hw.c revision e31a16d6f64ef0e324c6f54d5112703c3f13a9c4
1/* 2 * Copyright (c) 2008-2009 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17#include <linux/io.h> 18#include <asm/unaligned.h> 19 20#include "ath9k.h" 21#include "initvals.h" 22 23static int btcoex_enable; 24module_param(btcoex_enable, bool, 0); 25MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support"); 26 27#define ATH9K_CLOCK_RATE_CCK 22 28#define ATH9K_CLOCK_RATE_5GHZ_OFDM 40 29#define ATH9K_CLOCK_RATE_2GHZ_OFDM 44 30 31static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 32static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan, 33 enum ath9k_ht_macmode macmode); 34static u32 ath9k_hw_ini_fixup(struct ath_hw *ah, 35 struct ar5416_eeprom_def *pEepData, 36 u32 reg, u32 value); 37static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan); 38static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan); 39 40/********************/ 41/* Helper Functions */ 42/********************/ 43 44static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks) 45{ 46 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; 47 48 if (!ah->curchan) /* should really check for CCK instead */ 49 return clks / ATH9K_CLOCK_RATE_CCK; 50 if (conf->channel->band == IEEE80211_BAND_2GHZ) 51 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM; 52 53 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM; 54} 55 56static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks) 57{ 58 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; 59 60 if (conf_is_ht40(conf)) 61 return ath9k_hw_mac_usec(ah, clks) / 2; 62 else 63 return ath9k_hw_mac_usec(ah, clks); 64} 65 66static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs) 67{ 68 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; 69 70 if (!ah->curchan) /* should really check for CCK instead */ 71 return usecs *ATH9K_CLOCK_RATE_CCK; 72 if (conf->channel->band == IEEE80211_BAND_2GHZ) 73 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM; 74 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM; 75} 76 77static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 78{ 79 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf; 80 81 if (conf_is_ht40(conf)) 82 return ath9k_hw_mac_clks(ah, usecs) * 2; 83 else 84 return ath9k_hw_mac_clks(ah, usecs); 85} 86 87/* 88 * Read and write, they both share the same lock. We do this to serialize 89 * reads and writes on Atheros 802.11n PCI devices only. This is required 90 * as the FIFO on these devices can only accept sanely 2 requests. After 91 * that the device goes bananas. Serializing the reads/writes prevents this 92 * from happening. 93 */ 94 95void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val) 96{ 97 if (ah->config.serialize_regmode == SER_REG_MODE_ON) { 98 unsigned long flags; 99 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags); 100 iowrite32(val, ah->ah_sc->mem + reg_offset); 101 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags); 102 } else 103 iowrite32(val, ah->ah_sc->mem + reg_offset); 104} 105 106unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset) 107{ 108 u32 val; 109 if (ah->config.serialize_regmode == SER_REG_MODE_ON) { 110 unsigned long flags; 111 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags); 112 val = ioread32(ah->ah_sc->mem + reg_offset); 113 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags); 114 } else 115 val = ioread32(ah->ah_sc->mem + reg_offset); 116 return val; 117} 118 119bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 120{ 121 int i; 122 123 BUG_ON(timeout < AH_TIME_QUANTUM); 124 125 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 126 if ((REG_READ(ah, reg) & mask) == val) 127 return true; 128 129 udelay(AH_TIME_QUANTUM); 130 } 131 132 DPRINTF(ah->ah_sc, ATH_DBG_ANY, 133 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 134 timeout, reg, REG_READ(ah, reg), mask, val); 135 136 return false; 137} 138 139u32 ath9k_hw_reverse_bits(u32 val, u32 n) 140{ 141 u32 retval; 142 int i; 143 144 for (i = 0, retval = 0; i < n; i++) { 145 retval = (retval << 1) | (val & 1); 146 val >>= 1; 147 } 148 return retval; 149} 150 151bool ath9k_get_channel_edges(struct ath_hw *ah, 152 u16 flags, u16 *low, 153 u16 *high) 154{ 155 struct ath9k_hw_capabilities *pCap = &ah->caps; 156 157 if (flags & CHANNEL_5GHZ) { 158 *low = pCap->low_5ghz_chan; 159 *high = pCap->high_5ghz_chan; 160 return true; 161 } 162 if ((flags & CHANNEL_2GHZ)) { 163 *low = pCap->low_2ghz_chan; 164 *high = pCap->high_2ghz_chan; 165 return true; 166 } 167 return false; 168} 169 170u16 ath9k_hw_computetxtime(struct ath_hw *ah, 171 const struct ath_rate_table *rates, 172 u32 frameLen, u16 rateix, 173 bool shortPreamble) 174{ 175 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 176 u32 kbps; 177 178 kbps = rates->info[rateix].ratekbps; 179 180 if (kbps == 0) 181 return 0; 182 183 switch (rates->info[rateix].phy) { 184 case WLAN_RC_PHY_CCK: 185 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 186 if (shortPreamble && rates->info[rateix].short_preamble) 187 phyTime >>= 1; 188 numBits = frameLen << 3; 189 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 190 break; 191 case WLAN_RC_PHY_OFDM: 192 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 193 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 194 numBits = OFDM_PLCP_BITS + (frameLen << 3); 195 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 196 txTime = OFDM_SIFS_TIME_QUARTER 197 + OFDM_PREAMBLE_TIME_QUARTER 198 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 199 } else if (ah->curchan && 200 IS_CHAN_HALF_RATE(ah->curchan)) { 201 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 202 numBits = OFDM_PLCP_BITS + (frameLen << 3); 203 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 204 txTime = OFDM_SIFS_TIME_HALF + 205 OFDM_PREAMBLE_TIME_HALF 206 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 207 } else { 208 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 209 numBits = OFDM_PLCP_BITS + (frameLen << 3); 210 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 211 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 212 + (numSymbols * OFDM_SYMBOL_TIME); 213 } 214 break; 215 default: 216 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 217 "Unknown phy %u (rate ix %u)\n", 218 rates->info[rateix].phy, rateix); 219 txTime = 0; 220 break; 221 } 222 223 return txTime; 224} 225 226void ath9k_hw_get_channel_centers(struct ath_hw *ah, 227 struct ath9k_channel *chan, 228 struct chan_centers *centers) 229{ 230 int8_t extoff; 231 232 if (!IS_CHAN_HT40(chan)) { 233 centers->ctl_center = centers->ext_center = 234 centers->synth_center = chan->channel; 235 return; 236 } 237 238 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 239 (chan->chanmode == CHANNEL_G_HT40PLUS)) { 240 centers->synth_center = 241 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 242 extoff = 1; 243 } else { 244 centers->synth_center = 245 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 246 extoff = -1; 247 } 248 249 centers->ctl_center = 250 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 251 centers->ext_center = 252 centers->synth_center + (extoff * 253 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ? 254 HT40_CHANNEL_CENTER_SHIFT : 15)); 255} 256 257/******************/ 258/* Chip Revisions */ 259/******************/ 260 261static void ath9k_hw_read_revisions(struct ath_hw *ah) 262{ 263 u32 val; 264 265 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 266 267 if (val == 0xFF) { 268 val = REG_READ(ah, AR_SREV); 269 ah->hw_version.macVersion = 270 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 271 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 272 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 273 } else { 274 if (!AR_SREV_9100(ah)) 275 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 276 277 ah->hw_version.macRev = val & AR_SREV_REVISION; 278 279 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 280 ah->is_pciexpress = true; 281 } 282} 283 284static int ath9k_hw_get_radiorev(struct ath_hw *ah) 285{ 286 u32 val; 287 int i; 288 289 REG_WRITE(ah, AR_PHY(0x36), 0x00007058); 290 291 for (i = 0; i < 8; i++) 292 REG_WRITE(ah, AR_PHY(0x20), 0x00010000); 293 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff; 294 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4); 295 296 return ath9k_hw_reverse_bits(val, 8); 297} 298 299/************************************/ 300/* HW Attach, Detach, Init Routines */ 301/************************************/ 302 303static void ath9k_hw_disablepcie(struct ath_hw *ah) 304{ 305 if (AR_SREV_9100(ah)) 306 return; 307 308 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 309 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 310 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 311 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 312 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 313 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 314 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 315 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 316 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 317 318 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 319} 320 321static bool ath9k_hw_chip_test(struct ath_hw *ah) 322{ 323 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) }; 324 u32 regHold[2]; 325 u32 patternData[4] = { 0x55555555, 326 0xaaaaaaaa, 327 0x66666666, 328 0x99999999 }; 329 int i, j; 330 331 for (i = 0; i < 2; i++) { 332 u32 addr = regAddr[i]; 333 u32 wrData, rdData; 334 335 regHold[i] = REG_READ(ah, addr); 336 for (j = 0; j < 0x100; j++) { 337 wrData = (j << 16) | j; 338 REG_WRITE(ah, addr, wrData); 339 rdData = REG_READ(ah, addr); 340 if (rdData != wrData) { 341 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 342 "address test failed " 343 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 344 addr, wrData, rdData); 345 return false; 346 } 347 } 348 for (j = 0; j < 4; j++) { 349 wrData = patternData[j]; 350 REG_WRITE(ah, addr, wrData); 351 rdData = REG_READ(ah, addr); 352 if (wrData != rdData) { 353 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 354 "address test failed " 355 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 356 addr, wrData, rdData); 357 return false; 358 } 359 } 360 REG_WRITE(ah, regAddr[i], regHold[i]); 361 } 362 udelay(100); 363 364 return true; 365} 366 367static const char *ath9k_hw_devname(u16 devid) 368{ 369 switch (devid) { 370 case AR5416_DEVID_PCI: 371 return "Atheros 5416"; 372 case AR5416_DEVID_PCIE: 373 return "Atheros 5418"; 374 case AR9160_DEVID_PCI: 375 return "Atheros 9160"; 376 case AR5416_AR9100_DEVID: 377 return "Atheros 9100"; 378 case AR9280_DEVID_PCI: 379 case AR9280_DEVID_PCIE: 380 return "Atheros 9280"; 381 case AR9285_DEVID_PCIE: 382 return "Atheros 9285"; 383 } 384 385 return NULL; 386} 387 388static void ath9k_hw_set_defaults(struct ath_hw *ah) 389{ 390 int i; 391 392 ah->config.dma_beacon_response_time = 2; 393 ah->config.sw_beacon_response_time = 10; 394 ah->config.additional_swba_backoff = 0; 395 ah->config.ack_6mb = 0x0; 396 ah->config.cwm_ignore_extcca = 0; 397 ah->config.pcie_powersave_enable = 0; 398 ah->config.pcie_clock_req = 0; 399 ah->config.pcie_waen = 0; 400 ah->config.analog_shiftreg = 1; 401 ah->config.ht_enable = 1; 402 ah->config.ofdm_trig_low = 200; 403 ah->config.ofdm_trig_high = 500; 404 ah->config.cck_trig_high = 200; 405 ah->config.cck_trig_low = 100; 406 ah->config.enable_ani = 1; 407 ah->config.diversity_control = 0; 408 ah->config.antenna_switch_swap = 0; 409 410 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 411 ah->config.spurchans[i][0] = AR_NO_SPUR; 412 ah->config.spurchans[i][1] = AR_NO_SPUR; 413 } 414 415 ah->config.intr_mitigation = true; 416 417 /* 418 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 419 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 420 * This means we use it for all AR5416 devices, and the few 421 * minor PCI AR9280 devices out there. 422 * 423 * Serialization is required because these devices do not handle 424 * well the case of two concurrent reads/writes due to the latency 425 * involved. During one read/write another read/write can be issued 426 * on another CPU while the previous read/write may still be working 427 * on our hardware, if we hit this case the hardware poops in a loop. 428 * We prevent this by serializing reads and writes. 429 * 430 * This issue is not present on PCI-Express devices or pre-AR5416 431 * devices (legacy, 802.11abg). 432 */ 433 if (num_possible_cpus() > 1) 434 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 435} 436 437static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc, 438 int *status) 439{ 440 struct ath_hw *ah; 441 442 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL); 443 if (ah == NULL) { 444 DPRINTF(sc, ATH_DBG_FATAL, 445 "Cannot allocate memory for state block\n"); 446 *status = -ENOMEM; 447 return NULL; 448 } 449 450 ah->ah_sc = sc; 451 ah->hw_version.magic = AR5416_MAGIC; 452 ah->regulatory.country_code = CTRY_DEFAULT; 453 ah->hw_version.devid = devid; 454 ah->hw_version.subvendorid = 0; 455 456 ah->ah_flags = 0; 457 if ((devid == AR5416_AR9100_DEVID)) 458 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 459 if (!AR_SREV_9100(ah)) 460 ah->ah_flags = AH_USE_EEPROM; 461 462 ah->regulatory.power_limit = MAX_RATE_POWER; 463 ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX; 464 ah->atim_window = 0; 465 ah->diversity_control = ah->config.diversity_control; 466 ah->antenna_switch_swap = 467 ah->config.antenna_switch_swap; 468 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE; 469 ah->beacon_interval = 100; 470 ah->enable_32kHz_clock = DONT_USE_32KHZ; 471 ah->slottime = (u32) -1; 472 ah->acktimeout = (u32) -1; 473 ah->ctstimeout = (u32) -1; 474 ah->globaltxtimeout = (u32) -1; 475 476 ah->gbeacon_rate = 0; 477 478 return ah; 479} 480 481static int ath9k_hw_rfattach(struct ath_hw *ah) 482{ 483 bool rfStatus = false; 484 int ecode = 0; 485 486 rfStatus = ath9k_hw_init_rf(ah, &ecode); 487 if (!rfStatus) { 488 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 489 "RF setup failed, status: %u\n", ecode); 490 return ecode; 491 } 492 493 return 0; 494} 495 496static int ath9k_hw_rf_claim(struct ath_hw *ah) 497{ 498 u32 val; 499 500 REG_WRITE(ah, AR_PHY(0), 0x00000007); 501 502 val = ath9k_hw_get_radiorev(ah); 503 switch (val & AR_RADIO_SREV_MAJOR) { 504 case 0: 505 val = AR_RAD5133_SREV_MAJOR; 506 break; 507 case AR_RAD5133_SREV_MAJOR: 508 case AR_RAD5122_SREV_MAJOR: 509 case AR_RAD2133_SREV_MAJOR: 510 case AR_RAD2122_SREV_MAJOR: 511 break; 512 default: 513 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 514 "Radio Chip Rev 0x%02X not supported\n", 515 val & AR_RADIO_SREV_MAJOR); 516 return -EOPNOTSUPP; 517 } 518 519 ah->hw_version.analog5GhzRev = val; 520 521 return 0; 522} 523 524static int ath9k_hw_init_macaddr(struct ath_hw *ah) 525{ 526 u32 sum; 527 int i; 528 u16 eeval; 529 530 sum = 0; 531 for (i = 0; i < 3; i++) { 532 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i)); 533 sum += eeval; 534 ah->macaddr[2 * i] = eeval >> 8; 535 ah->macaddr[2 * i + 1] = eeval & 0xff; 536 } 537 if (sum == 0 || sum == 0xffff * 3) 538 return -EADDRNOTAVAIL; 539 540 return 0; 541} 542 543static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah) 544{ 545 u32 rxgain_type; 546 547 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) { 548 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE); 549 550 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF) 551 INIT_INI_ARRAY(&ah->iniModesRxGain, 552 ar9280Modes_backoff_13db_rxgain_9280_2, 553 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6); 554 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF) 555 INIT_INI_ARRAY(&ah->iniModesRxGain, 556 ar9280Modes_backoff_23db_rxgain_9280_2, 557 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6); 558 else 559 INIT_INI_ARRAY(&ah->iniModesRxGain, 560 ar9280Modes_original_rxgain_9280_2, 561 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6); 562 } else { 563 INIT_INI_ARRAY(&ah->iniModesRxGain, 564 ar9280Modes_original_rxgain_9280_2, 565 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6); 566 } 567} 568 569static void ath9k_hw_init_txgain_ini(struct ath_hw *ah) 570{ 571 u32 txgain_type; 572 573 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) { 574 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE); 575 576 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) 577 INIT_INI_ARRAY(&ah->iniModesTxGain, 578 ar9280Modes_high_power_tx_gain_9280_2, 579 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6); 580 else 581 INIT_INI_ARRAY(&ah->iniModesTxGain, 582 ar9280Modes_original_tx_gain_9280_2, 583 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6); 584 } else { 585 INIT_INI_ARRAY(&ah->iniModesTxGain, 586 ar9280Modes_original_tx_gain_9280_2, 587 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6); 588 } 589} 590 591static int ath9k_hw_post_attach(struct ath_hw *ah) 592{ 593 int ecode; 594 595 if (!ath9k_hw_chip_test(ah)) 596 return -ENODEV; 597 598 ecode = ath9k_hw_rf_claim(ah); 599 if (ecode != 0) 600 return ecode; 601 602 ecode = ath9k_hw_eeprom_attach(ah); 603 if (ecode != 0) 604 return ecode; 605 606 DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n", 607 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah)); 608 609 ecode = ath9k_hw_rfattach(ah); 610 if (ecode != 0) 611 return ecode; 612 613 if (!AR_SREV_9100(ah)) { 614 ath9k_hw_ani_setup(ah); 615 ath9k_hw_ani_attach(ah); 616 } 617 618 return 0; 619} 620 621static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc, 622 int *status) 623{ 624 struct ath_hw *ah; 625 int ecode; 626 u32 i, j; 627 628 ah = ath9k_hw_newstate(devid, sc, status); 629 if (ah == NULL) 630 return NULL; 631 632 ath9k_hw_set_defaults(ah); 633 634 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 635 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n"); 636 ecode = -EIO; 637 goto bad; 638 } 639 640 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 641 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n"); 642 ecode = -EIO; 643 goto bad; 644 } 645 646 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 647 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 648 (AR_SREV_9280(ah) && !ah->is_pciexpress)) { 649 ah->config.serialize_regmode = 650 SER_REG_MODE_ON; 651 } else { 652 ah->config.serialize_regmode = 653 SER_REG_MODE_OFF; 654 } 655 } 656 657 DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n", 658 ah->config.serialize_regmode); 659 660 if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) && 661 (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) && 662 (ah->hw_version.macVersion != AR_SREV_VERSION_9160) && 663 (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) { 664 DPRINTF(sc, ATH_DBG_FATAL, 665 "Mac Chip Rev 0x%02x.%x is not supported by " 666 "this driver\n", ah->hw_version.macVersion, 667 ah->hw_version.macRev); 668 ecode = -EOPNOTSUPP; 669 goto bad; 670 } 671 672 if (AR_SREV_9100(ah)) { 673 ah->iq_caldata.calData = &iq_cal_multi_sample; 674 ah->supp_cals = IQ_MISMATCH_CAL; 675 ah->is_pciexpress = false; 676 } 677 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 678 679 if (AR_SREV_9160_10_OR_LATER(ah)) { 680 if (AR_SREV_9280_10_OR_LATER(ah)) { 681 ah->iq_caldata.calData = &iq_cal_single_sample; 682 ah->adcgain_caldata.calData = 683 &adc_gain_cal_single_sample; 684 ah->adcdc_caldata.calData = 685 &adc_dc_cal_single_sample; 686 ah->adcdc_calinitdata.calData = 687 &adc_init_dc_cal; 688 } else { 689 ah->iq_caldata.calData = &iq_cal_multi_sample; 690 ah->adcgain_caldata.calData = 691 &adc_gain_cal_multi_sample; 692 ah->adcdc_caldata.calData = 693 &adc_dc_cal_multi_sample; 694 ah->adcdc_calinitdata.calData = 695 &adc_init_dc_cal; 696 } 697 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; 698 } 699 700 ah->ani_function = ATH9K_ANI_ALL; 701 if (AR_SREV_9280_10_OR_LATER(ah)) 702 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; 703 704 if (AR_SREV_9285_12_OR_LATER(ah)) { 705 706 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2, 707 ARRAY_SIZE(ar9285Modes_9285_1_2), 6); 708 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2, 709 ARRAY_SIZE(ar9285Common_9285_1_2), 2); 710 711 if (ah->config.pcie_clock_req) { 712 INIT_INI_ARRAY(&ah->iniPcieSerdes, 713 ar9285PciePhy_clkreq_off_L1_9285_1_2, 714 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2); 715 } else { 716 INIT_INI_ARRAY(&ah->iniPcieSerdes, 717 ar9285PciePhy_clkreq_always_on_L1_9285_1_2, 718 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2), 719 2); 720 } 721 } else if (AR_SREV_9285_10_OR_LATER(ah)) { 722 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285, 723 ARRAY_SIZE(ar9285Modes_9285), 6); 724 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285, 725 ARRAY_SIZE(ar9285Common_9285), 2); 726 727 if (ah->config.pcie_clock_req) { 728 INIT_INI_ARRAY(&ah->iniPcieSerdes, 729 ar9285PciePhy_clkreq_off_L1_9285, 730 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2); 731 } else { 732 INIT_INI_ARRAY(&ah->iniPcieSerdes, 733 ar9285PciePhy_clkreq_always_on_L1_9285, 734 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2); 735 } 736 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 737 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2, 738 ARRAY_SIZE(ar9280Modes_9280_2), 6); 739 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2, 740 ARRAY_SIZE(ar9280Common_9280_2), 2); 741 742 if (ah->config.pcie_clock_req) { 743 INIT_INI_ARRAY(&ah->iniPcieSerdes, 744 ar9280PciePhy_clkreq_off_L1_9280, 745 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2); 746 } else { 747 INIT_INI_ARRAY(&ah->iniPcieSerdes, 748 ar9280PciePhy_clkreq_always_on_L1_9280, 749 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2); 750 } 751 INIT_INI_ARRAY(&ah->iniModesAdditional, 752 ar9280Modes_fast_clock_9280_2, 753 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3); 754 } else if (AR_SREV_9280_10_OR_LATER(ah)) { 755 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280, 756 ARRAY_SIZE(ar9280Modes_9280), 6); 757 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280, 758 ARRAY_SIZE(ar9280Common_9280), 2); 759 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 760 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160, 761 ARRAY_SIZE(ar5416Modes_9160), 6); 762 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160, 763 ARRAY_SIZE(ar5416Common_9160), 2); 764 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160, 765 ARRAY_SIZE(ar5416Bank0_9160), 2); 766 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160, 767 ARRAY_SIZE(ar5416BB_RfGain_9160), 3); 768 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160, 769 ARRAY_SIZE(ar5416Bank1_9160), 2); 770 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160, 771 ARRAY_SIZE(ar5416Bank2_9160), 2); 772 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160, 773 ARRAY_SIZE(ar5416Bank3_9160), 3); 774 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160, 775 ARRAY_SIZE(ar5416Bank6_9160), 3); 776 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160, 777 ARRAY_SIZE(ar5416Bank6TPC_9160), 3); 778 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160, 779 ARRAY_SIZE(ar5416Bank7_9160), 2); 780 if (AR_SREV_9160_11(ah)) { 781 INIT_INI_ARRAY(&ah->iniAddac, 782 ar5416Addac_91601_1, 783 ARRAY_SIZE(ar5416Addac_91601_1), 2); 784 } else { 785 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160, 786 ARRAY_SIZE(ar5416Addac_9160), 2); 787 } 788 } else if (AR_SREV_9100_OR_LATER(ah)) { 789 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100, 790 ARRAY_SIZE(ar5416Modes_9100), 6); 791 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100, 792 ARRAY_SIZE(ar5416Common_9100), 2); 793 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100, 794 ARRAY_SIZE(ar5416Bank0_9100), 2); 795 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100, 796 ARRAY_SIZE(ar5416BB_RfGain_9100), 3); 797 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100, 798 ARRAY_SIZE(ar5416Bank1_9100), 2); 799 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100, 800 ARRAY_SIZE(ar5416Bank2_9100), 2); 801 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100, 802 ARRAY_SIZE(ar5416Bank3_9100), 3); 803 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100, 804 ARRAY_SIZE(ar5416Bank6_9100), 3); 805 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100, 806 ARRAY_SIZE(ar5416Bank6TPC_9100), 3); 807 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100, 808 ARRAY_SIZE(ar5416Bank7_9100), 2); 809 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100, 810 ARRAY_SIZE(ar5416Addac_9100), 2); 811 } else { 812 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes, 813 ARRAY_SIZE(ar5416Modes), 6); 814 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common, 815 ARRAY_SIZE(ar5416Common), 2); 816 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0, 817 ARRAY_SIZE(ar5416Bank0), 2); 818 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain, 819 ARRAY_SIZE(ar5416BB_RfGain), 3); 820 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1, 821 ARRAY_SIZE(ar5416Bank1), 2); 822 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2, 823 ARRAY_SIZE(ar5416Bank2), 2); 824 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3, 825 ARRAY_SIZE(ar5416Bank3), 3); 826 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6, 827 ARRAY_SIZE(ar5416Bank6), 3); 828 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC, 829 ARRAY_SIZE(ar5416Bank6TPC), 3); 830 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7, 831 ARRAY_SIZE(ar5416Bank7), 2); 832 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac, 833 ARRAY_SIZE(ar5416Addac), 2); 834 } 835 836 if (ah->is_pciexpress) 837 ath9k_hw_configpcipowersave(ah, 0); 838 else 839 ath9k_hw_disablepcie(ah); 840 841 ecode = ath9k_hw_post_attach(ah); 842 if (ecode != 0) 843 goto bad; 844 845 if (AR_SREV_9285_12_OR_LATER(ah)) { 846 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE); 847 848 /* txgain table */ 849 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) { 850 INIT_INI_ARRAY(&ah->iniModesTxGain, 851 ar9285Modes_high_power_tx_gain_9285_1_2, 852 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6); 853 } else { 854 INIT_INI_ARRAY(&ah->iniModesTxGain, 855 ar9285Modes_original_tx_gain_9285_1_2, 856 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6); 857 } 858 859 } 860 861 /* rxgain table */ 862 if (AR_SREV_9280_20(ah)) 863 ath9k_hw_init_rxgain_ini(ah); 864 865 /* txgain table */ 866 if (AR_SREV_9280_20(ah)) 867 ath9k_hw_init_txgain_ini(ah); 868 869 ath9k_hw_fill_cap_info(ah); 870 871 if ((ah->hw_version.devid == AR9280_DEVID_PCI) && 872 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) { 873 874 /* EEPROM Fixup */ 875 for (i = 0; i < ah->iniModes.ia_rows; i++) { 876 u32 reg = INI_RA(&ah->iniModes, i, 0); 877 878 for (j = 1; j < ah->iniModes.ia_columns; j++) { 879 u32 val = INI_RA(&ah->iniModes, i, j); 880 881 INI_RA(&ah->iniModes, i, j) = 882 ath9k_hw_ini_fixup(ah, 883 &ah->eeprom.def, 884 reg, val); 885 } 886 } 887 } 888 889 ecode = ath9k_hw_init_macaddr(ah); 890 if (ecode != 0) { 891 DPRINTF(sc, ATH_DBG_FATAL, 892 "Failed to initialize MAC address\n"); 893 goto bad; 894 } 895 896 if (AR_SREV_9285(ah)) 897 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 898 else 899 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 900 901 ath9k_init_nfcal_hist_buffer(ah); 902 903 return ah; 904bad: 905 if (ah) 906 ath9k_hw_detach(ah); 907 if (status) 908 *status = ecode; 909 910 return NULL; 911} 912 913static void ath9k_hw_init_bb(struct ath_hw *ah, 914 struct ath9k_channel *chan) 915{ 916 u32 synthDelay; 917 918 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 919 if (IS_CHAN_B(chan)) 920 synthDelay = (4 * synthDelay) / 22; 921 else 922 synthDelay /= 10; 923 924 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 925 926 udelay(synthDelay + BASE_ACTIVATE_DELAY); 927} 928 929static void ath9k_hw_init_qos(struct ath_hw *ah) 930{ 931 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 932 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 933 934 REG_WRITE(ah, AR_QOS_NO_ACK, 935 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 936 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 937 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 938 939 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 940 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 941 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 942 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 943 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 944} 945 946static void ath9k_hw_init_pll(struct ath_hw *ah, 947 struct ath9k_channel *chan) 948{ 949 u32 pll; 950 951 if (AR_SREV_9100(ah)) { 952 if (chan && IS_CHAN_5GHZ(chan)) 953 pll = 0x1450; 954 else 955 pll = 0x1458; 956 } else { 957 if (AR_SREV_9280_10_OR_LATER(ah)) { 958 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); 959 960 if (chan && IS_CHAN_HALF_RATE(chan)) 961 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); 962 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 963 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); 964 965 if (chan && IS_CHAN_5GHZ(chan)) { 966 pll |= SM(0x28, AR_RTC_9160_PLL_DIV); 967 968 969 if (AR_SREV_9280_20(ah)) { 970 if (((chan->channel % 20) == 0) 971 || ((chan->channel % 10) == 0)) 972 pll = 0x2850; 973 else 974 pll = 0x142c; 975 } 976 } else { 977 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); 978 } 979 980 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 981 982 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); 983 984 if (chan && IS_CHAN_HALF_RATE(chan)) 985 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); 986 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 987 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); 988 989 if (chan && IS_CHAN_5GHZ(chan)) 990 pll |= SM(0x50, AR_RTC_9160_PLL_DIV); 991 else 992 pll |= SM(0x58, AR_RTC_9160_PLL_DIV); 993 } else { 994 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 995 996 if (chan && IS_CHAN_HALF_RATE(chan)) 997 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 998 else if (chan && IS_CHAN_QUARTER_RATE(chan)) 999 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 1000 1001 if (chan && IS_CHAN_5GHZ(chan)) 1002 pll |= SM(0xa, AR_RTC_PLL_DIV); 1003 else 1004 pll |= SM(0xb, AR_RTC_PLL_DIV); 1005 } 1006 } 1007 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 1008 1009 udelay(RTC_PLL_SETTLE_DELAY); 1010 1011 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 1012} 1013 1014static void ath9k_hw_init_chain_masks(struct ath_hw *ah) 1015{ 1016 int rx_chainmask, tx_chainmask; 1017 1018 rx_chainmask = ah->rxchainmask; 1019 tx_chainmask = ah->txchainmask; 1020 1021 switch (rx_chainmask) { 1022 case 0x5: 1023 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 1024 AR_PHY_SWAP_ALT_CHAIN); 1025 case 0x3: 1026 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) { 1027 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 1028 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 1029 break; 1030 } 1031 case 0x1: 1032 case 0x2: 1033 case 0x7: 1034 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 1035 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 1036 break; 1037 default: 1038 break; 1039 } 1040 1041 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); 1042 if (tx_chainmask == 0x5) { 1043 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, 1044 AR_PHY_SWAP_ALT_CHAIN); 1045 } 1046 if (AR_SREV_9100(ah)) 1047 REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 1048 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 1049} 1050 1051static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 1052 enum nl80211_iftype opmode) 1053{ 1054 ah->mask_reg = AR_IMR_TXERR | 1055 AR_IMR_TXURN | 1056 AR_IMR_RXERR | 1057 AR_IMR_RXORN | 1058 AR_IMR_BCNMISC; 1059 1060 if (ah->config.intr_mitigation) 1061 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 1062 else 1063 ah->mask_reg |= AR_IMR_RXOK; 1064 1065 ah->mask_reg |= AR_IMR_TXOK; 1066 1067 if (opmode == NL80211_IFTYPE_AP) 1068 ah->mask_reg |= AR_IMR_MIB; 1069 1070 REG_WRITE(ah, AR_IMR, ah->mask_reg); 1071 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT); 1072 1073 if (!AR_SREV_9100(ah)) { 1074 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 1075 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 1076 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 1077 } 1078} 1079 1080static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 1081{ 1082 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { 1083 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us); 1084 ah->acktimeout = (u32) -1; 1085 return false; 1086 } else { 1087 REG_RMW_FIELD(ah, AR_TIME_OUT, 1088 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us)); 1089 ah->acktimeout = us; 1090 return true; 1091 } 1092} 1093 1094static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 1095{ 1096 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { 1097 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us); 1098 ah->ctstimeout = (u32) -1; 1099 return false; 1100 } else { 1101 REG_RMW_FIELD(ah, AR_TIME_OUT, 1102 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us)); 1103 ah->ctstimeout = us; 1104 return true; 1105 } 1106} 1107 1108static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 1109{ 1110 if (tu > 0xFFFF) { 1111 DPRINTF(ah->ah_sc, ATH_DBG_XMIT, 1112 "bad global tx timeout %u\n", tu); 1113 ah->globaltxtimeout = (u32) -1; 1114 return false; 1115 } else { 1116 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 1117 ah->globaltxtimeout = tu; 1118 return true; 1119 } 1120} 1121 1122static void ath9k_hw_init_user_settings(struct ath_hw *ah) 1123{ 1124 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n", 1125 ah->misc_mode); 1126 1127 if (ah->misc_mode != 0) 1128 REG_WRITE(ah, AR_PCU_MISC, 1129 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode); 1130 if (ah->slottime != (u32) -1) 1131 ath9k_hw_setslottime(ah, ah->slottime); 1132 if (ah->acktimeout != (u32) -1) 1133 ath9k_hw_set_ack_timeout(ah, ah->acktimeout); 1134 if (ah->ctstimeout != (u32) -1) 1135 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout); 1136 if (ah->globaltxtimeout != (u32) -1) 1137 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1138} 1139 1140const char *ath9k_hw_probe(u16 vendorid, u16 devid) 1141{ 1142 return vendorid == ATHEROS_VENDOR_ID ? 1143 ath9k_hw_devname(devid) : NULL; 1144} 1145 1146void ath9k_hw_detach(struct ath_hw *ah) 1147{ 1148 if (!AR_SREV_9100(ah)) 1149 ath9k_hw_ani_detach(ah); 1150 1151 ath9k_hw_rfdetach(ah); 1152 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1153 kfree(ah); 1154} 1155 1156struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error) 1157{ 1158 struct ath_hw *ah = NULL; 1159 1160 switch (devid) { 1161 case AR5416_DEVID_PCI: 1162 case AR5416_DEVID_PCIE: 1163 case AR5416_AR9100_DEVID: 1164 case AR9160_DEVID_PCI: 1165 case AR9280_DEVID_PCI: 1166 case AR9280_DEVID_PCIE: 1167 case AR9285_DEVID_PCIE: 1168 ah = ath9k_hw_do_attach(devid, sc, error); 1169 break; 1170 default: 1171 *error = -ENXIO; 1172 break; 1173 } 1174 1175 return ah; 1176} 1177 1178/*******/ 1179/* INI */ 1180/*******/ 1181 1182static void ath9k_hw_override_ini(struct ath_hw *ah, 1183 struct ath9k_channel *chan) 1184{ 1185 /* 1186 * Set the RX_ABORT and RX_DIS and clear if off only after 1187 * RXE is set for MAC. This prevents frames with corrupted 1188 * descriptor status. 1189 */ 1190 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 1191 1192 1193 if (!AR_SREV_5416_20_OR_LATER(ah) || 1194 AR_SREV_9280_10_OR_LATER(ah)) 1195 return; 1196 1197 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 1198} 1199 1200static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah, 1201 struct ar5416_eeprom_def *pEepData, 1202 u32 reg, u32 value) 1203{ 1204 struct base_eep_header *pBase = &(pEepData->baseEepHeader); 1205 1206 switch (ah->hw_version.devid) { 1207 case AR9280_DEVID_PCI: 1208 if (reg == 0x7894) { 1209 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, 1210 "ini VAL: %x EEPROM: %x\n", value, 1211 (pBase->version & 0xff)); 1212 1213 if ((pBase->version & 0xff) > 0x0a) { 1214 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, 1215 "PWDCLKIND: %d\n", 1216 pBase->pwdclkind); 1217 value &= ~AR_AN_TOP2_PWDCLKIND; 1218 value |= AR_AN_TOP2_PWDCLKIND & 1219 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S); 1220 } else { 1221 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, 1222 "PWDCLKIND Earlier Rev\n"); 1223 } 1224 1225 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, 1226 "final ini VAL: %x\n", value); 1227 } 1228 break; 1229 } 1230 1231 return value; 1232} 1233 1234static u32 ath9k_hw_ini_fixup(struct ath_hw *ah, 1235 struct ar5416_eeprom_def *pEepData, 1236 u32 reg, u32 value) 1237{ 1238 if (ah->eep_map == EEP_MAP_4KBITS) 1239 return value; 1240 else 1241 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value); 1242} 1243 1244static void ath9k_olc_init(struct ath_hw *ah) 1245{ 1246 u32 i; 1247 1248 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) 1249 ah->originalGain[i] = 1250 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), 1251 AR_PHY_TX_GAIN); 1252 ah->PDADCdelta = 0; 1253} 1254 1255static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, 1256 struct ath9k_channel *chan) 1257{ 1258 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1259 1260 if (IS_CHAN_B(chan)) 1261 ctl |= CTL_11B; 1262 else if (IS_CHAN_G(chan)) 1263 ctl |= CTL_11G; 1264 else 1265 ctl |= CTL_11A; 1266 1267 return ctl; 1268} 1269 1270static int ath9k_hw_process_ini(struct ath_hw *ah, 1271 struct ath9k_channel *chan, 1272 enum ath9k_ht_macmode macmode) 1273{ 1274 int i, regWrites = 0; 1275 struct ieee80211_channel *channel = chan->chan; 1276 u32 modesIndex, freqIndex; 1277 1278 switch (chan->chanmode) { 1279 case CHANNEL_A: 1280 case CHANNEL_A_HT20: 1281 modesIndex = 1; 1282 freqIndex = 1; 1283 break; 1284 case CHANNEL_A_HT40PLUS: 1285 case CHANNEL_A_HT40MINUS: 1286 modesIndex = 2; 1287 freqIndex = 1; 1288 break; 1289 case CHANNEL_G: 1290 case CHANNEL_G_HT20: 1291 case CHANNEL_B: 1292 modesIndex = 4; 1293 freqIndex = 2; 1294 break; 1295 case CHANNEL_G_HT40PLUS: 1296 case CHANNEL_G_HT40MINUS: 1297 modesIndex = 3; 1298 freqIndex = 2; 1299 break; 1300 1301 default: 1302 return -EINVAL; 1303 } 1304 1305 REG_WRITE(ah, AR_PHY(0), 0x00000007); 1306 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); 1307 ah->eep_ops->set_addac(ah, chan); 1308 1309 if (AR_SREV_5416_22_OR_LATER(ah)) { 1310 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites); 1311 } else { 1312 struct ar5416IniArray temp; 1313 u32 addacSize = 1314 sizeof(u32) * ah->iniAddac.ia_rows * 1315 ah->iniAddac.ia_columns; 1316 1317 memcpy(ah->addac5416_21, 1318 ah->iniAddac.ia_array, addacSize); 1319 1320 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0; 1321 1322 temp.ia_array = ah->addac5416_21; 1323 temp.ia_columns = ah->iniAddac.ia_columns; 1324 temp.ia_rows = ah->iniAddac.ia_rows; 1325 REG_WRITE_ARRAY(&temp, 1, regWrites); 1326 } 1327 1328 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); 1329 1330 for (i = 0; i < ah->iniModes.ia_rows; i++) { 1331 u32 reg = INI_RA(&ah->iniModes, i, 0); 1332 u32 val = INI_RA(&ah->iniModes, i, modesIndex); 1333 1334 REG_WRITE(ah, reg, val); 1335 1336 if (reg >= 0x7800 && reg < 0x78a0 1337 && ah->config.analog_shiftreg) { 1338 udelay(100); 1339 } 1340 1341 DO_DELAY(regWrites); 1342 } 1343 1344 if (AR_SREV_9280(ah)) 1345 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites); 1346 1347 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah)) 1348 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); 1349 1350 for (i = 0; i < ah->iniCommon.ia_rows; i++) { 1351 u32 reg = INI_RA(&ah->iniCommon, i, 0); 1352 u32 val = INI_RA(&ah->iniCommon, i, 1); 1353 1354 REG_WRITE(ah, reg, val); 1355 1356 if (reg >= 0x7800 && reg < 0x78a0 1357 && ah->config.analog_shiftreg) { 1358 udelay(100); 1359 } 1360 1361 DO_DELAY(regWrites); 1362 } 1363 1364 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites); 1365 1366 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) { 1367 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex, 1368 regWrites); 1369 } 1370 1371 ath9k_hw_override_ini(ah, chan); 1372 ath9k_hw_set_regs(ah, chan, macmode); 1373 ath9k_hw_init_chain_masks(ah); 1374 1375 if (OLC_FOR_AR9280_20_LATER) 1376 ath9k_olc_init(ah); 1377 1378 ah->eep_ops->set_txpower(ah, chan, 1379 ath9k_regd_get_ctl(&ah->regulatory, chan), 1380 channel->max_antenna_gain * 2, 1381 channel->max_power * 2, 1382 min((u32) MAX_RATE_POWER, 1383 (u32) ah->regulatory.power_limit)); 1384 1385 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { 1386 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 1387 "ar5416SetRfRegs failed\n"); 1388 return -EIO; 1389 } 1390 1391 return 0; 1392} 1393 1394/****************************************/ 1395/* Reset and Channel Switching Routines */ 1396/****************************************/ 1397 1398static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) 1399{ 1400 u32 rfMode = 0; 1401 1402 if (chan == NULL) 1403 return; 1404 1405 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) 1406 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 1407 1408 if (!AR_SREV_9280_10_OR_LATER(ah)) 1409 rfMode |= (IS_CHAN_5GHZ(chan)) ? 1410 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 1411 1412 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) 1413 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); 1414 1415 REG_WRITE(ah, AR_PHY_MODE, rfMode); 1416} 1417 1418static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah) 1419{ 1420 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 1421} 1422 1423static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1424{ 1425 u32 regval; 1426 1427 regval = REG_READ(ah, AR_AHB_MODE); 1428 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); 1429 1430 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; 1431 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); 1432 1433 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1434 1435 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; 1436 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); 1437 1438 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1439 1440 if (AR_SREV_9285(ah)) { 1441 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1442 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 1443 } else { 1444 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1445 AR_PCU_TXBUF_CTRL_USABLE_SIZE); 1446 } 1447} 1448 1449static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1450{ 1451 u32 val; 1452 1453 val = REG_READ(ah, AR_STA_ID1); 1454 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); 1455 switch (opmode) { 1456 case NL80211_IFTYPE_AP: 1457 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP 1458 | AR_STA_ID1_KSRCH_MODE); 1459 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1460 break; 1461 case NL80211_IFTYPE_ADHOC: 1462 case NL80211_IFTYPE_MESH_POINT: 1463 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC 1464 | AR_STA_ID1_KSRCH_MODE); 1465 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1466 break; 1467 case NL80211_IFTYPE_STATION: 1468 case NL80211_IFTYPE_MONITOR: 1469 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); 1470 break; 1471 } 1472} 1473 1474static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, 1475 u32 coef_scaled, 1476 u32 *coef_mantissa, 1477 u32 *coef_exponent) 1478{ 1479 u32 coef_exp, coef_man; 1480 1481 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1482 if ((coef_scaled >> coef_exp) & 0x1) 1483 break; 1484 1485 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1486 1487 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1488 1489 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1490 *coef_exponent = coef_exp - 16; 1491} 1492 1493static void ath9k_hw_set_delta_slope(struct ath_hw *ah, 1494 struct ath9k_channel *chan) 1495{ 1496 u32 coef_scaled, ds_coef_exp, ds_coef_man; 1497 u32 clockMhzScaled = 0x64000000; 1498 struct chan_centers centers; 1499 1500 if (IS_CHAN_HALF_RATE(chan)) 1501 clockMhzScaled = clockMhzScaled >> 1; 1502 else if (IS_CHAN_QUARTER_RATE(chan)) 1503 clockMhzScaled = clockMhzScaled >> 2; 1504 1505 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 1506 coef_scaled = clockMhzScaled / centers.synth_center; 1507 1508 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 1509 &ds_coef_exp); 1510 1511 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 1512 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 1513 REG_RMW_FIELD(ah, AR_PHY_TIMING3, 1514 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 1515 1516 coef_scaled = (9 * coef_scaled) / 10; 1517 1518 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, 1519 &ds_coef_exp); 1520 1521 REG_RMW_FIELD(ah, AR_PHY_HALFGI, 1522 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 1523 REG_RMW_FIELD(ah, AR_PHY_HALFGI, 1524 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 1525} 1526 1527static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1528{ 1529 u32 rst_flags; 1530 u32 tmpReg; 1531 1532 if (AR_SREV_9100(ah)) { 1533 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK); 1534 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1535 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1536 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1537 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1538 } 1539 1540 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1541 AR_RTC_FORCE_WAKE_ON_INT); 1542 1543 if (AR_SREV_9100(ah)) { 1544 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1545 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1546 } else { 1547 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1548 if (tmpReg & 1549 (AR_INTR_SYNC_LOCAL_TIMEOUT | 1550 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1551 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1552 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 1553 } else { 1554 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1555 } 1556 1557 rst_flags = AR_RTC_RC_MAC_WARM; 1558 if (type == ATH9K_RESET_COLD) 1559 rst_flags |= AR_RTC_RC_MAC_COLD; 1560 } 1561 1562 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1563 udelay(50); 1564 1565 REG_WRITE(ah, AR_RTC_RC, 0); 1566 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1567 DPRINTF(ah->ah_sc, ATH_DBG_RESET, 1568 "RTC stuck in MAC reset\n"); 1569 return false; 1570 } 1571 1572 if (!AR_SREV_9100(ah)) 1573 REG_WRITE(ah, AR_RC, 0); 1574 1575 ath9k_hw_init_pll(ah, NULL); 1576 1577 if (AR_SREV_9100(ah)) 1578 udelay(50); 1579 1580 return true; 1581} 1582 1583static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1584{ 1585 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1586 AR_RTC_FORCE_WAKE_ON_INT); 1587 1588 REG_WRITE(ah, AR_RTC_RESET, 0); 1589 udelay(2); 1590 REG_WRITE(ah, AR_RTC_RESET, 1); 1591 1592 if (!ath9k_hw_wait(ah, 1593 AR_RTC_STATUS, 1594 AR_RTC_STATUS_M, 1595 AR_RTC_STATUS_ON, 1596 AH_WAIT_TIMEOUT)) { 1597 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n"); 1598 return false; 1599 } 1600 1601 ath9k_hw_read_revisions(ah); 1602 1603 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1604} 1605 1606static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1607{ 1608 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1609 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1610 1611 switch (type) { 1612 case ATH9K_RESET_POWER_ON: 1613 return ath9k_hw_set_reset_power_on(ah); 1614 case ATH9K_RESET_WARM: 1615 case ATH9K_RESET_COLD: 1616 return ath9k_hw_set_reset(ah, type); 1617 default: 1618 return false; 1619 } 1620} 1621 1622static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan, 1623 enum ath9k_ht_macmode macmode) 1624{ 1625 u32 phymode; 1626 u32 enableDacFifo = 0; 1627 1628 if (AR_SREV_9285_10_OR_LATER(ah)) 1629 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) & 1630 AR_PHY_FC_ENABLE_DAC_FIFO); 1631 1632 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 1633 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 1634 1635 if (IS_CHAN_HT40(chan)) { 1636 phymode |= AR_PHY_FC_DYN2040_EN; 1637 1638 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 1639 (chan->chanmode == CHANNEL_G_HT40PLUS)) 1640 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 1641 1642 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25) 1643 phymode |= AR_PHY_FC_DYN2040_EXT_CH; 1644 } 1645 REG_WRITE(ah, AR_PHY_TURBO, phymode); 1646 1647 ath9k_hw_set11nmac2040(ah, macmode); 1648 1649 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); 1650 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 1651} 1652 1653static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1654 struct ath9k_channel *chan) 1655{ 1656 if (OLC_FOR_AR9280_20_LATER) { 1657 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) 1658 return false; 1659 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 1660 return false; 1661 1662 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1663 return false; 1664 1665 ah->chip_fullsleep = false; 1666 ath9k_hw_init_pll(ah, chan); 1667 ath9k_hw_set_rfmode(ah, chan); 1668 1669 return true; 1670} 1671 1672static bool ath9k_hw_channel_change(struct ath_hw *ah, 1673 struct ath9k_channel *chan, 1674 enum ath9k_ht_macmode macmode) 1675{ 1676 struct ieee80211_channel *channel = chan->chan; 1677 u32 synthDelay, qnum; 1678 1679 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1680 if (ath9k_hw_numtxpending(ah, qnum)) { 1681 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, 1682 "Transmit frames pending on queue %d\n", qnum); 1683 return false; 1684 } 1685 } 1686 1687 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1688 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, 1689 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) { 1690 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 1691 "Could not kill baseband RX\n"); 1692 return false; 1693 } 1694 1695 ath9k_hw_set_regs(ah, chan, macmode); 1696 1697 if (AR_SREV_9280_10_OR_LATER(ah)) { 1698 ath9k_hw_ar9280_set_channel(ah, chan); 1699 } else { 1700 if (!(ath9k_hw_set_channel(ah, chan))) { 1701 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 1702 "Failed to set channel\n"); 1703 return false; 1704 } 1705 } 1706 1707 ah->eep_ops->set_txpower(ah, chan, 1708 ath9k_regd_get_ctl(&ah->regulatory, chan), 1709 channel->max_antenna_gain * 2, 1710 channel->max_power * 2, 1711 min((u32) MAX_RATE_POWER, 1712 (u32) ah->regulatory.power_limit)); 1713 1714 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 1715 if (IS_CHAN_B(chan)) 1716 synthDelay = (4 * synthDelay) / 22; 1717 else 1718 synthDelay /= 10; 1719 1720 udelay(synthDelay + BASE_ACTIVATE_DELAY); 1721 1722 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 1723 1724 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1725 ath9k_hw_set_delta_slope(ah, chan); 1726 1727 if (AR_SREV_9280_10_OR_LATER(ah)) 1728 ath9k_hw_9280_spur_mitigate(ah, chan); 1729 else 1730 ath9k_hw_spur_mitigate(ah, chan); 1731 1732 if (!chan->oneTimeCalsDone) 1733 chan->oneTimeCalsDone = true; 1734 1735 return true; 1736} 1737 1738static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) 1739{ 1740 int bb_spur = AR_NO_SPUR; 1741 int freq; 1742 int bin, cur_bin; 1743 int bb_spur_off, spur_subchannel_sd; 1744 int spur_freq_sd; 1745 int spur_delta_phase; 1746 int denominator; 1747 int upper, lower, cur_vit_mask; 1748 int tmp, newVal; 1749 int i; 1750 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, 1751 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 1752 }; 1753 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, 1754 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 1755 }; 1756 int inc[4] = { 0, 100, 0, 0 }; 1757 struct chan_centers centers; 1758 1759 int8_t mask_m[123]; 1760 int8_t mask_p[123]; 1761 int8_t mask_amt; 1762 int tmp_mask; 1763 int cur_bb_spur; 1764 bool is2GHz = IS_CHAN_2GHZ(chan); 1765 1766 memset(&mask_m, 0, sizeof(int8_t) * 123); 1767 memset(&mask_p, 0, sizeof(int8_t) * 123); 1768 1769 ath9k_hw_get_channel_centers(ah, chan, ¢ers); 1770 freq = centers.synth_center; 1771 1772 ah->config.spurmode = SPUR_ENABLE_EEPROM; 1773 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 1774 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); 1775 1776 if (is2GHz) 1777 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; 1778 else 1779 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; 1780 1781 if (AR_NO_SPUR == cur_bb_spur) 1782 break; 1783 cur_bb_spur = cur_bb_spur - freq; 1784 1785 if (IS_CHAN_HT40(chan)) { 1786 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && 1787 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { 1788 bb_spur = cur_bb_spur; 1789 break; 1790 } 1791 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && 1792 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { 1793 bb_spur = cur_bb_spur; 1794 break; 1795 } 1796 } 1797 1798 if (AR_NO_SPUR == bb_spur) { 1799 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, 1800 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 1801 return; 1802 } else { 1803 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, 1804 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 1805 } 1806 1807 bin = bb_spur * 320; 1808 1809 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); 1810 1811 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 1812 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 1813 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 1814 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 1815 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); 1816 1817 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | 1818 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 1819 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 1820 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 1821 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); 1822 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); 1823 1824 if (IS_CHAN_HT40(chan)) { 1825 if (bb_spur < 0) { 1826 spur_subchannel_sd = 1; 1827 bb_spur_off = bb_spur + 10; 1828 } else { 1829 spur_subchannel_sd = 0; 1830 bb_spur_off = bb_spur - 10; 1831 } 1832 } else { 1833 spur_subchannel_sd = 0; 1834 bb_spur_off = bb_spur; 1835 } 1836 1837 if (IS_CHAN_HT40(chan)) 1838 spur_delta_phase = 1839 ((bb_spur * 262144) / 1840 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; 1841 else 1842 spur_delta_phase = 1843 ((bb_spur * 524288) / 1844 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; 1845 1846 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; 1847 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; 1848 1849 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | 1850 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | 1851 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); 1852 REG_WRITE(ah, AR_PHY_TIMING11, newVal); 1853 1854 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; 1855 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); 1856 1857 cur_bin = -6000; 1858 upper = bin + 100; 1859 lower = bin - 100; 1860 1861 for (i = 0; i < 4; i++) { 1862 int pilot_mask = 0; 1863 int chan_mask = 0; 1864 int bp = 0; 1865 for (bp = 0; bp < 30; bp++) { 1866 if ((cur_bin > lower) && (cur_bin < upper)) { 1867 pilot_mask = pilot_mask | 0x1 << bp; 1868 chan_mask = chan_mask | 0x1 << bp; 1869 } 1870 cur_bin += 100; 1871 } 1872 cur_bin += inc[i]; 1873 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); 1874 REG_WRITE(ah, chan_mask_reg[i], chan_mask); 1875 } 1876 1877 cur_vit_mask = 6100; 1878 upper = bin + 120; 1879 lower = bin - 120; 1880 1881 for (i = 0; i < 123; i++) { 1882 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { 1883 1884 /* workaround for gcc bug #37014 */ 1885 volatile int tmp_v = abs(cur_vit_mask - bin); 1886 1887 if (tmp_v < 75) 1888 mask_amt = 1; 1889 else 1890 mask_amt = 0; 1891 if (cur_vit_mask < 0) 1892 mask_m[abs(cur_vit_mask / 100)] = mask_amt; 1893 else 1894 mask_p[cur_vit_mask / 100] = mask_amt; 1895 } 1896 cur_vit_mask -= 100; 1897 } 1898 1899 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) 1900 | (mask_m[48] << 26) | (mask_m[49] << 24) 1901 | (mask_m[50] << 22) | (mask_m[51] << 20) 1902 | (mask_m[52] << 18) | (mask_m[53] << 16) 1903 | (mask_m[54] << 14) | (mask_m[55] << 12) 1904 | (mask_m[56] << 10) | (mask_m[57] << 8) 1905 | (mask_m[58] << 6) | (mask_m[59] << 4) 1906 | (mask_m[60] << 2) | (mask_m[61] << 0); 1907 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); 1908 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); 1909 1910 tmp_mask = (mask_m[31] << 28) 1911 | (mask_m[32] << 26) | (mask_m[33] << 24) 1912 | (mask_m[34] << 22) | (mask_m[35] << 20) 1913 | (mask_m[36] << 18) | (mask_m[37] << 16) 1914 | (mask_m[48] << 14) | (mask_m[39] << 12) 1915 | (mask_m[40] << 10) | (mask_m[41] << 8) 1916 | (mask_m[42] << 6) | (mask_m[43] << 4) 1917 | (mask_m[44] << 2) | (mask_m[45] << 0); 1918 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); 1919 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); 1920 1921 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) 1922 | (mask_m[18] << 26) | (mask_m[18] << 24) 1923 | (mask_m[20] << 22) | (mask_m[20] << 20) 1924 | (mask_m[22] << 18) | (mask_m[22] << 16) 1925 | (mask_m[24] << 14) | (mask_m[24] << 12) 1926 | (mask_m[25] << 10) | (mask_m[26] << 8) 1927 | (mask_m[27] << 6) | (mask_m[28] << 4) 1928 | (mask_m[29] << 2) | (mask_m[30] << 0); 1929 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); 1930 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); 1931 1932 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) 1933 | (mask_m[2] << 26) | (mask_m[3] << 24) 1934 | (mask_m[4] << 22) | (mask_m[5] << 20) 1935 | (mask_m[6] << 18) | (mask_m[7] << 16) 1936 | (mask_m[8] << 14) | (mask_m[9] << 12) 1937 | (mask_m[10] << 10) | (mask_m[11] << 8) 1938 | (mask_m[12] << 6) | (mask_m[13] << 4) 1939 | (mask_m[14] << 2) | (mask_m[15] << 0); 1940 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); 1941 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); 1942 1943 tmp_mask = (mask_p[15] << 28) 1944 | (mask_p[14] << 26) | (mask_p[13] << 24) 1945 | (mask_p[12] << 22) | (mask_p[11] << 20) 1946 | (mask_p[10] << 18) | (mask_p[9] << 16) 1947 | (mask_p[8] << 14) | (mask_p[7] << 12) 1948 | (mask_p[6] << 10) | (mask_p[5] << 8) 1949 | (mask_p[4] << 6) | (mask_p[3] << 4) 1950 | (mask_p[2] << 2) | (mask_p[1] << 0); 1951 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); 1952 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); 1953 1954 tmp_mask = (mask_p[30] << 28) 1955 | (mask_p[29] << 26) | (mask_p[28] << 24) 1956 | (mask_p[27] << 22) | (mask_p[26] << 20) 1957 | (mask_p[25] << 18) | (mask_p[24] << 16) 1958 | (mask_p[23] << 14) | (mask_p[22] << 12) 1959 | (mask_p[21] << 10) | (mask_p[20] << 8) 1960 | (mask_p[19] << 6) | (mask_p[18] << 4) 1961 | (mask_p[17] << 2) | (mask_p[16] << 0); 1962 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); 1963 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); 1964 1965 tmp_mask = (mask_p[45] << 28) 1966 | (mask_p[44] << 26) | (mask_p[43] << 24) 1967 | (mask_p[42] << 22) | (mask_p[41] << 20) 1968 | (mask_p[40] << 18) | (mask_p[39] << 16) 1969 | (mask_p[38] << 14) | (mask_p[37] << 12) 1970 | (mask_p[36] << 10) | (mask_p[35] << 8) 1971 | (mask_p[34] << 6) | (mask_p[33] << 4) 1972 | (mask_p[32] << 2) | (mask_p[31] << 0); 1973 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); 1974 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); 1975 1976 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) 1977 | (mask_p[59] << 26) | (mask_p[58] << 24) 1978 | (mask_p[57] << 22) | (mask_p[56] << 20) 1979 | (mask_p[55] << 18) | (mask_p[54] << 16) 1980 | (mask_p[53] << 14) | (mask_p[52] << 12) 1981 | (mask_p[51] << 10) | (mask_p[50] << 8) 1982 | (mask_p[49] << 6) | (mask_p[48] << 4) 1983 | (mask_p[47] << 2) | (mask_p[46] << 0); 1984 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); 1985 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); 1986} 1987 1988static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) 1989{ 1990 int bb_spur = AR_NO_SPUR; 1991 int bin, cur_bin; 1992 int spur_freq_sd; 1993 int spur_delta_phase; 1994 int denominator; 1995 int upper, lower, cur_vit_mask; 1996 int tmp, new; 1997 int i; 1998 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, 1999 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 2000 }; 2001 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, 2002 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 2003 }; 2004 int inc[4] = { 0, 100, 0, 0 }; 2005 2006 int8_t mask_m[123]; 2007 int8_t mask_p[123]; 2008 int8_t mask_amt; 2009 int tmp_mask; 2010 int cur_bb_spur; 2011 bool is2GHz = IS_CHAN_2GHZ(chan); 2012 2013 memset(&mask_m, 0, sizeof(int8_t) * 123); 2014 memset(&mask_p, 0, sizeof(int8_t) * 123); 2015 2016 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 2017 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); 2018 if (AR_NO_SPUR == cur_bb_spur) 2019 break; 2020 cur_bb_spur = cur_bb_spur - (chan->channel * 10); 2021 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { 2022 bb_spur = cur_bb_spur; 2023 break; 2024 } 2025 } 2026 2027 if (AR_NO_SPUR == bb_spur) 2028 return; 2029 2030 bin = bb_spur * 32; 2031 2032 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); 2033 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 2034 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 2035 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 2036 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 2037 2038 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new); 2039 2040 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | 2041 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 2042 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 2043 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 2044 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); 2045 REG_WRITE(ah, AR_PHY_SPUR_REG, new); 2046 2047 spur_delta_phase = ((bb_spur * 524288) / 100) & 2048 AR_PHY_TIMING11_SPUR_DELTA_PHASE; 2049 2050 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400; 2051 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; 2052 2053 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | 2054 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | 2055 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); 2056 REG_WRITE(ah, AR_PHY_TIMING11, new); 2057 2058 cur_bin = -6000; 2059 upper = bin + 100; 2060 lower = bin - 100; 2061 2062 for (i = 0; i < 4; i++) { 2063 int pilot_mask = 0; 2064 int chan_mask = 0; 2065 int bp = 0; 2066 for (bp = 0; bp < 30; bp++) { 2067 if ((cur_bin > lower) && (cur_bin < upper)) { 2068 pilot_mask = pilot_mask | 0x1 << bp; 2069 chan_mask = chan_mask | 0x1 << bp; 2070 } 2071 cur_bin += 100; 2072 } 2073 cur_bin += inc[i]; 2074 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); 2075 REG_WRITE(ah, chan_mask_reg[i], chan_mask); 2076 } 2077 2078 cur_vit_mask = 6100; 2079 upper = bin + 120; 2080 lower = bin - 120; 2081 2082 for (i = 0; i < 123; i++) { 2083 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { 2084 2085 /* workaround for gcc bug #37014 */ 2086 volatile int tmp_v = abs(cur_vit_mask - bin); 2087 2088 if (tmp_v < 75) 2089 mask_amt = 1; 2090 else 2091 mask_amt = 0; 2092 if (cur_vit_mask < 0) 2093 mask_m[abs(cur_vit_mask / 100)] = mask_amt; 2094 else 2095 mask_p[cur_vit_mask / 100] = mask_amt; 2096 } 2097 cur_vit_mask -= 100; 2098 } 2099 2100 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) 2101 | (mask_m[48] << 26) | (mask_m[49] << 24) 2102 | (mask_m[50] << 22) | (mask_m[51] << 20) 2103 | (mask_m[52] << 18) | (mask_m[53] << 16) 2104 | (mask_m[54] << 14) | (mask_m[55] << 12) 2105 | (mask_m[56] << 10) | (mask_m[57] << 8) 2106 | (mask_m[58] << 6) | (mask_m[59] << 4) 2107 | (mask_m[60] << 2) | (mask_m[61] << 0); 2108 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); 2109 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); 2110 2111 tmp_mask = (mask_m[31] << 28) 2112 | (mask_m[32] << 26) | (mask_m[33] << 24) 2113 | (mask_m[34] << 22) | (mask_m[35] << 20) 2114 | (mask_m[36] << 18) | (mask_m[37] << 16) 2115 | (mask_m[48] << 14) | (mask_m[39] << 12) 2116 | (mask_m[40] << 10) | (mask_m[41] << 8) 2117 | (mask_m[42] << 6) | (mask_m[43] << 4) 2118 | (mask_m[44] << 2) | (mask_m[45] << 0); 2119 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); 2120 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); 2121 2122 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) 2123 | (mask_m[18] << 26) | (mask_m[18] << 24) 2124 | (mask_m[20] << 22) | (mask_m[20] << 20) 2125 | (mask_m[22] << 18) | (mask_m[22] << 16) 2126 | (mask_m[24] << 14) | (mask_m[24] << 12) 2127 | (mask_m[25] << 10) | (mask_m[26] << 8) 2128 | (mask_m[27] << 6) | (mask_m[28] << 4) 2129 | (mask_m[29] << 2) | (mask_m[30] << 0); 2130 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); 2131 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); 2132 2133 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) 2134 | (mask_m[2] << 26) | (mask_m[3] << 24) 2135 | (mask_m[4] << 22) | (mask_m[5] << 20) 2136 | (mask_m[6] << 18) | (mask_m[7] << 16) 2137 | (mask_m[8] << 14) | (mask_m[9] << 12) 2138 | (mask_m[10] << 10) | (mask_m[11] << 8) 2139 | (mask_m[12] << 6) | (mask_m[13] << 4) 2140 | (mask_m[14] << 2) | (mask_m[15] << 0); 2141 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); 2142 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); 2143 2144 tmp_mask = (mask_p[15] << 28) 2145 | (mask_p[14] << 26) | (mask_p[13] << 24) 2146 | (mask_p[12] << 22) | (mask_p[11] << 20) 2147 | (mask_p[10] << 18) | (mask_p[9] << 16) 2148 | (mask_p[8] << 14) | (mask_p[7] << 12) 2149 | (mask_p[6] << 10) | (mask_p[5] << 8) 2150 | (mask_p[4] << 6) | (mask_p[3] << 4) 2151 | (mask_p[2] << 2) | (mask_p[1] << 0); 2152 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); 2153 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); 2154 2155 tmp_mask = (mask_p[30] << 28) 2156 | (mask_p[29] << 26) | (mask_p[28] << 24) 2157 | (mask_p[27] << 22) | (mask_p[26] << 20) 2158 | (mask_p[25] << 18) | (mask_p[24] << 16) 2159 | (mask_p[23] << 14) | (mask_p[22] << 12) 2160 | (mask_p[21] << 10) | (mask_p[20] << 8) 2161 | (mask_p[19] << 6) | (mask_p[18] << 4) 2162 | (mask_p[17] << 2) | (mask_p[16] << 0); 2163 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); 2164 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); 2165 2166 tmp_mask = (mask_p[45] << 28) 2167 | (mask_p[44] << 26) | (mask_p[43] << 24) 2168 | (mask_p[42] << 22) | (mask_p[41] << 20) 2169 | (mask_p[40] << 18) | (mask_p[39] << 16) 2170 | (mask_p[38] << 14) | (mask_p[37] << 12) 2171 | (mask_p[36] << 10) | (mask_p[35] << 8) 2172 | (mask_p[34] << 6) | (mask_p[33] << 4) 2173 | (mask_p[32] << 2) | (mask_p[31] << 0); 2174 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); 2175 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); 2176 2177 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) 2178 | (mask_p[59] << 26) | (mask_p[58] << 24) 2179 | (mask_p[57] << 22) | (mask_p[56] << 20) 2180 | (mask_p[55] << 18) | (mask_p[54] << 16) 2181 | (mask_p[53] << 14) | (mask_p[52] << 12) 2182 | (mask_p[51] << 10) | (mask_p[50] << 8) 2183 | (mask_p[49] << 6) | (mask_p[48] << 4) 2184 | (mask_p[47] << 2) | (mask_p[46] << 0); 2185 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); 2186 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); 2187} 2188 2189int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 2190 bool bChannelChange) 2191{ 2192 u32 saveLedState; 2193 struct ath_softc *sc = ah->ah_sc; 2194 struct ath9k_channel *curchan = ah->curchan; 2195 u32 saveDefAntenna; 2196 u32 macStaId1; 2197 int i, rx_chainmask, r; 2198 2199 ah->extprotspacing = sc->ht_extprotspacing; 2200 ah->txchainmask = sc->tx_chainmask; 2201 ah->rxchainmask = sc->rx_chainmask; 2202 2203 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2204 return -EIO; 2205 2206 if (curchan) 2207 ath9k_hw_getnf(ah, curchan); 2208 2209 if (bChannelChange && 2210 (ah->chip_fullsleep != true) && 2211 (ah->curchan != NULL) && 2212 (chan->channel != ah->curchan->channel) && 2213 ((chan->channelFlags & CHANNEL_ALL) == 2214 (ah->curchan->channelFlags & CHANNEL_ALL)) && 2215 (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) && 2216 !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) { 2217 2218 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) { 2219 ath9k_hw_loadnf(ah, ah->curchan); 2220 ath9k_hw_start_nfcal(ah); 2221 return 0; 2222 } 2223 } 2224 2225 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 2226 if (saveDefAntenna == 0) 2227 saveDefAntenna = 1; 2228 2229 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 2230 2231 saveLedState = REG_READ(ah, AR_CFG_LED) & 2232 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 2233 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 2234 2235 ath9k_hw_mark_phy_inactive(ah); 2236 2237 if (!ath9k_hw_chip_reset(ah, chan)) { 2238 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n"); 2239 return -EINVAL; 2240 } 2241 2242 if (AR_SREV_9280_10_OR_LATER(ah)) 2243 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 2244 2245 r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width); 2246 if (r) 2247 return r; 2248 2249 /* Setup MFP options for CCMP */ 2250 if (AR_SREV_9280_20_OR_LATER(ah)) { 2251 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 2252 * frames when constructing CCMP AAD. */ 2253 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 2254 0xc7ff); 2255 ah->sw_mgmt_crypto = false; 2256 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 2257 /* Disable hardware crypto for management frames */ 2258 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 2259 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 2260 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 2261 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 2262 ah->sw_mgmt_crypto = true; 2263 } else 2264 ah->sw_mgmt_crypto = true; 2265 2266 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 2267 ath9k_hw_set_delta_slope(ah, chan); 2268 2269 if (AR_SREV_9280_10_OR_LATER(ah)) 2270 ath9k_hw_9280_spur_mitigate(ah, chan); 2271 else 2272 ath9k_hw_spur_mitigate(ah, chan); 2273 2274 ah->eep_ops->set_board_values(ah, chan); 2275 2276 ath9k_hw_decrease_chain_power(ah, chan); 2277 2278 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr)); 2279 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4) 2280 | macStaId1 2281 | AR_STA_ID1_RTS_USE_DEF 2282 | (ah->config. 2283 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 2284 | ah->sta_id1_defaults); 2285 ath9k_hw_set_operating_mode(ah, ah->opmode); 2286 2287 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask)); 2288 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4)); 2289 2290 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 2291 2292 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid)); 2293 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) | 2294 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2295 2296 REG_WRITE(ah, AR_ISR, ~0); 2297 2298 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 2299 2300 if (AR_SREV_9280_10_OR_LATER(ah)) 2301 ath9k_hw_ar9280_set_channel(ah, chan); 2302 else 2303 if (!(ath9k_hw_set_channel(ah, chan))) 2304 return -EIO; 2305 2306 for (i = 0; i < AR_NUM_DCU; i++) 2307 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 2308 2309 ah->intr_txqs = 0; 2310 for (i = 0; i < ah->caps.total_queues; i++) 2311 ath9k_hw_resettxqueue(ah, i); 2312 2313 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 2314 ath9k_hw_init_qos(ah); 2315 2316#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 2317 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 2318 ath9k_enable_rfkill(ah); 2319#endif 2320 ath9k_hw_init_user_settings(ah); 2321 2322 REG_WRITE(ah, AR_STA_ID1, 2323 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 2324 2325 ath9k_hw_set_dma(ah); 2326 2327 REG_WRITE(ah, AR_OBS, 8); 2328 2329 if (ah->config.intr_mitigation) { 2330 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 2331 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 2332 } 2333 2334 ath9k_hw_init_bb(ah, chan); 2335 2336 if (!ath9k_hw_init_cal(ah, chan)) 2337 return -EIO;; 2338 2339 rx_chainmask = ah->rxchainmask; 2340 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { 2341 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 2342 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 2343 } 2344 2345 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 2346 2347 if (AR_SREV_9100(ah)) { 2348 u32 mask; 2349 mask = REG_READ(ah, AR_CFG); 2350 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 2351 DPRINTF(ah->ah_sc, ATH_DBG_RESET, 2352 "CFG Byte Swap Set 0x%x\n", mask); 2353 } else { 2354 mask = 2355 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 2356 REG_WRITE(ah, AR_CFG, mask); 2357 DPRINTF(ah->ah_sc, ATH_DBG_RESET, 2358 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); 2359 } 2360 } else { 2361#ifdef __BIG_ENDIAN 2362 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 2363#endif 2364 } 2365 2366 return 0; 2367} 2368 2369/************************/ 2370/* Key Cache Management */ 2371/************************/ 2372 2373bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry) 2374{ 2375 u32 keyType; 2376 2377 if (entry >= ah->caps.keycache_size) { 2378 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 2379 "keychache entry %u out of range\n", entry); 2380 return false; 2381 } 2382 2383 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); 2384 2385 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); 2386 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); 2387 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); 2388 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); 2389 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); 2390 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); 2391 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); 2392 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); 2393 2394 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { 2395 u16 micentry = entry + 64; 2396 2397 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); 2398 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); 2399 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); 2400 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); 2401 2402 } 2403 2404 if (ah->curchan == NULL) 2405 return true; 2406 2407 return true; 2408} 2409 2410bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac) 2411{ 2412 u32 macHi, macLo; 2413 2414 if (entry >= ah->caps.keycache_size) { 2415 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 2416 "keychache entry %u out of range\n", entry); 2417 return false; 2418 } 2419 2420 if (mac != NULL) { 2421 macHi = (mac[5] << 8) | mac[4]; 2422 macLo = (mac[3] << 24) | 2423 (mac[2] << 16) | 2424 (mac[1] << 8) | 2425 mac[0]; 2426 macLo >>= 1; 2427 macLo |= (macHi & 1) << 31; 2428 macHi >>= 1; 2429 } else { 2430 macLo = macHi = 0; 2431 } 2432 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); 2433 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID); 2434 2435 return true; 2436} 2437 2438bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry, 2439 const struct ath9k_keyval *k, 2440 const u8 *mac) 2441{ 2442 const struct ath9k_hw_capabilities *pCap = &ah->caps; 2443 u32 key0, key1, key2, key3, key4; 2444 u32 keyType; 2445 2446 if (entry >= pCap->keycache_size) { 2447 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 2448 "keycache entry %u out of range\n", entry); 2449 return false; 2450 } 2451 2452 switch (k->kv_type) { 2453 case ATH9K_CIPHER_AES_OCB: 2454 keyType = AR_KEYTABLE_TYPE_AES; 2455 break; 2456 case ATH9K_CIPHER_AES_CCM: 2457 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) { 2458 DPRINTF(ah->ah_sc, ATH_DBG_ANY, 2459 "AES-CCM not supported by mac rev 0x%x\n", 2460 ah->hw_version.macRev); 2461 return false; 2462 } 2463 keyType = AR_KEYTABLE_TYPE_CCM; 2464 break; 2465 case ATH9K_CIPHER_TKIP: 2466 keyType = AR_KEYTABLE_TYPE_TKIP; 2467 if (ATH9K_IS_MIC_ENABLED(ah) 2468 && entry + 64 >= pCap->keycache_size) { 2469 DPRINTF(ah->ah_sc, ATH_DBG_ANY, 2470 "entry %u inappropriate for TKIP\n", entry); 2471 return false; 2472 } 2473 break; 2474 case ATH9K_CIPHER_WEP: 2475 if (k->kv_len < WLAN_KEY_LEN_WEP40) { 2476 DPRINTF(ah->ah_sc, ATH_DBG_ANY, 2477 "WEP key length %u too small\n", k->kv_len); 2478 return false; 2479 } 2480 if (k->kv_len <= WLAN_KEY_LEN_WEP40) 2481 keyType = AR_KEYTABLE_TYPE_40; 2482 else if (k->kv_len <= WLAN_KEY_LEN_WEP104) 2483 keyType = AR_KEYTABLE_TYPE_104; 2484 else 2485 keyType = AR_KEYTABLE_TYPE_128; 2486 break; 2487 case ATH9K_CIPHER_CLR: 2488 keyType = AR_KEYTABLE_TYPE_CLR; 2489 break; 2490 default: 2491 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 2492 "cipher %u not supported\n", k->kv_type); 2493 return false; 2494 } 2495 2496 key0 = get_unaligned_le32(k->kv_val + 0); 2497 key1 = get_unaligned_le16(k->kv_val + 4); 2498 key2 = get_unaligned_le32(k->kv_val + 6); 2499 key3 = get_unaligned_le16(k->kv_val + 10); 2500 key4 = get_unaligned_le32(k->kv_val + 12); 2501 if (k->kv_len <= WLAN_KEY_LEN_WEP104) 2502 key4 &= 0xff; 2503 2504 /* 2505 * Note: Key cache registers access special memory area that requires 2506 * two 32-bit writes to actually update the values in the internal 2507 * memory. Consequently, the exact order and pairs used here must be 2508 * maintained. 2509 */ 2510 2511 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { 2512 u16 micentry = entry + 64; 2513 2514 /* 2515 * Write inverted key[47:0] first to avoid Michael MIC errors 2516 * on frames that could be sent or received at the same time. 2517 * The correct key will be written in the end once everything 2518 * else is ready. 2519 */ 2520 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); 2521 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); 2522 2523 /* Write key[95:48] */ 2524 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); 2525 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); 2526 2527 /* Write key[127:96] and key type */ 2528 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); 2529 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); 2530 2531 /* Write MAC address for the entry */ 2532 (void) ath9k_hw_keysetmac(ah, entry, mac); 2533 2534 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) { 2535 /* 2536 * TKIP uses two key cache entries: 2537 * Michael MIC TX/RX keys in the same key cache entry 2538 * (idx = main index + 64): 2539 * key0 [31:0] = RX key [31:0] 2540 * key1 [15:0] = TX key [31:16] 2541 * key1 [31:16] = reserved 2542 * key2 [31:0] = RX key [63:32] 2543 * key3 [15:0] = TX key [15:0] 2544 * key3 [31:16] = reserved 2545 * key4 [31:0] = TX key [63:32] 2546 */ 2547 u32 mic0, mic1, mic2, mic3, mic4; 2548 2549 mic0 = get_unaligned_le32(k->kv_mic + 0); 2550 mic2 = get_unaligned_le32(k->kv_mic + 4); 2551 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; 2552 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; 2553 mic4 = get_unaligned_le32(k->kv_txmic + 4); 2554 2555 /* Write RX[31:0] and TX[31:16] */ 2556 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); 2557 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); 2558 2559 /* Write RX[63:32] and TX[15:0] */ 2560 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); 2561 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); 2562 2563 /* Write TX[63:32] and keyType(reserved) */ 2564 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); 2565 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), 2566 AR_KEYTABLE_TYPE_CLR); 2567 2568 } else { 2569 /* 2570 * TKIP uses four key cache entries (two for group 2571 * keys): 2572 * Michael MIC TX/RX keys are in different key cache 2573 * entries (idx = main index + 64 for TX and 2574 * main index + 32 + 96 for RX): 2575 * key0 [31:0] = TX/RX MIC key [31:0] 2576 * key1 [31:0] = reserved 2577 * key2 [31:0] = TX/RX MIC key [63:32] 2578 * key3 [31:0] = reserved 2579 * key4 [31:0] = reserved 2580 * 2581 * Upper layer code will call this function separately 2582 * for TX and RX keys when these registers offsets are 2583 * used. 2584 */ 2585 u32 mic0, mic2; 2586 2587 mic0 = get_unaligned_le32(k->kv_mic + 0); 2588 mic2 = get_unaligned_le32(k->kv_mic + 4); 2589 2590 /* Write MIC key[31:0] */ 2591 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); 2592 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); 2593 2594 /* Write MIC key[63:32] */ 2595 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); 2596 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); 2597 2598 /* Write TX[63:32] and keyType(reserved) */ 2599 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); 2600 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), 2601 AR_KEYTABLE_TYPE_CLR); 2602 } 2603 2604 /* MAC address registers are reserved for the MIC entry */ 2605 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); 2606 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); 2607 2608 /* 2609 * Write the correct (un-inverted) key[47:0] last to enable 2610 * TKIP now that all other registers are set with correct 2611 * values. 2612 */ 2613 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); 2614 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); 2615 } else { 2616 /* Write key[47:0] */ 2617 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); 2618 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); 2619 2620 /* Write key[95:48] */ 2621 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); 2622 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); 2623 2624 /* Write key[127:96] and key type */ 2625 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); 2626 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); 2627 2628 /* Write MAC address for the entry */ 2629 (void) ath9k_hw_keysetmac(ah, entry, mac); 2630 } 2631 2632 return true; 2633} 2634 2635bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry) 2636{ 2637 if (entry < ah->caps.keycache_size) { 2638 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry)); 2639 if (val & AR_KEYTABLE_VALID) 2640 return true; 2641 } 2642 return false; 2643} 2644 2645/******************************/ 2646/* Power Management (Chipset) */ 2647/******************************/ 2648 2649static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip) 2650{ 2651 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2652 if (setChip) { 2653 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 2654 AR_RTC_FORCE_WAKE_EN); 2655 if (!AR_SREV_9100(ah)) 2656 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 2657 2658 REG_CLR_BIT(ah, (AR_RTC_RESET), 2659 AR_RTC_RESET_EN); 2660 } 2661} 2662 2663static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip) 2664{ 2665 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2666 if (setChip) { 2667 struct ath9k_hw_capabilities *pCap = &ah->caps; 2668 2669 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2670 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2671 AR_RTC_FORCE_WAKE_ON_INT); 2672 } else { 2673 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, 2674 AR_RTC_FORCE_WAKE_EN); 2675 } 2676 } 2677} 2678 2679static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip) 2680{ 2681 u32 val; 2682 int i; 2683 2684 if (setChip) { 2685 if ((REG_READ(ah, AR_RTC_STATUS) & 2686 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2687 if (ath9k_hw_set_reset_reg(ah, 2688 ATH9K_RESET_POWER_ON) != true) { 2689 return false; 2690 } 2691 } 2692 if (AR_SREV_9100(ah)) 2693 REG_SET_BIT(ah, AR_RTC_RESET, 2694 AR_RTC_RESET_EN); 2695 2696 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2697 AR_RTC_FORCE_WAKE_EN); 2698 udelay(50); 2699 2700 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2701 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2702 if (val == AR_RTC_STATUS_ON) 2703 break; 2704 udelay(50); 2705 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2706 AR_RTC_FORCE_WAKE_EN); 2707 } 2708 if (i == 0) { 2709 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 2710 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20); 2711 return false; 2712 } 2713 } 2714 2715 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2716 2717 return true; 2718} 2719 2720bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2721{ 2722 int status = true, setChip = true; 2723 static const char *modes[] = { 2724 "AWAKE", 2725 "FULL-SLEEP", 2726 "NETWORK SLEEP", 2727 "UNDEFINED" 2728 }; 2729 2730 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n", 2731 modes[ah->power_mode], modes[mode]); 2732 2733 switch (mode) { 2734 case ATH9K_PM_AWAKE: 2735 status = ath9k_hw_set_power_awake(ah, setChip); 2736 break; 2737 case ATH9K_PM_FULL_SLEEP: 2738 ath9k_set_power_sleep(ah, setChip); 2739 ah->chip_fullsleep = true; 2740 break; 2741 case ATH9K_PM_NETWORK_SLEEP: 2742 ath9k_set_power_network_sleep(ah, setChip); 2743 break; 2744 default: 2745 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, 2746 "Unknown power mode %u\n", mode); 2747 return false; 2748 } 2749 ah->power_mode = mode; 2750 2751 return status; 2752} 2753 2754/* 2755 * Helper for ASPM support. 2756 * 2757 * Disable PLL when in L0s as well as receiver clock when in L1. 2758 * This power saving option must be enabled through the SerDes. 2759 * 2760 * Programming the SerDes must go through the same 288 bit serial shift 2761 * register as the other analog registers. Hence the 9 writes. 2762 */ 2763void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore) 2764{ 2765 u8 i; 2766 2767 if (ah->is_pciexpress != true) 2768 return; 2769 2770 /* Do not touch SerDes registers */ 2771 if (ah->config.pcie_powersave_enable == 2) 2772 return; 2773 2774 /* Nothing to do on restore for 11N */ 2775 if (restore) 2776 return; 2777 2778 if (AR_SREV_9280_20_OR_LATER(ah)) { 2779 /* 2780 * AR9280 2.0 or later chips use SerDes values from the 2781 * initvals.h initialized depending on chipset during 2782 * ath9k_hw_do_attach() 2783 */ 2784 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) { 2785 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0), 2786 INI_RA(&ah->iniPcieSerdes, i, 1)); 2787 } 2788 } else if (AR_SREV_9280(ah) && 2789 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) { 2790 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00); 2791 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 2792 2793 /* RX shut off when elecidle is asserted */ 2794 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019); 2795 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820); 2796 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560); 2797 2798 /* Shut off CLKREQ active in L1 */ 2799 if (ah->config.pcie_clock_req) 2800 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc); 2801 else 2802 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd); 2803 2804 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 2805 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 2806 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007); 2807 2808 /* Load the new settings */ 2809 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 2810 2811 } else { 2812 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 2813 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 2814 2815 /* RX shut off when elecidle is asserted */ 2816 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039); 2817 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824); 2818 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579); 2819 2820 /* 2821 * Ignore ah->ah_config.pcie_clock_req setting for 2822 * pre-AR9280 11n 2823 */ 2824 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff); 2825 2826 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 2827 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 2828 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007); 2829 2830 /* Load the new settings */ 2831 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 2832 } 2833 2834 udelay(1000); 2835 2836 /* set bit 19 to allow forcing of pcie core into L1 state */ 2837 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); 2838 2839 /* Several PCIe massages to ensure proper behaviour */ 2840 if (ah->config.pcie_waen) { 2841 REG_WRITE(ah, AR_WA, ah->config.pcie_waen); 2842 } else { 2843 if (AR_SREV_9285(ah)) 2844 REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT); 2845 /* 2846 * On AR9280 chips bit 22 of 0x4004 needs to be set to 2847 * otherwise card may disappear. 2848 */ 2849 else if (AR_SREV_9280(ah)) 2850 REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT); 2851 else 2852 REG_WRITE(ah, AR_WA, AR_WA_DEFAULT); 2853 } 2854} 2855 2856/**********************/ 2857/* Interrupt Handling */ 2858/**********************/ 2859 2860bool ath9k_hw_intrpend(struct ath_hw *ah) 2861{ 2862 u32 host_isr; 2863 2864 if (AR_SREV_9100(ah)) 2865 return true; 2866 2867 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); 2868 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS)) 2869 return true; 2870 2871 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); 2872 if ((host_isr & AR_INTR_SYNC_DEFAULT) 2873 && (host_isr != AR_INTR_SPURIOUS)) 2874 return true; 2875 2876 return false; 2877} 2878 2879bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked) 2880{ 2881 u32 isr = 0; 2882 u32 mask2 = 0; 2883 struct ath9k_hw_capabilities *pCap = &ah->caps; 2884 u32 sync_cause = 0; 2885 bool fatal_int = false; 2886 2887 if (!AR_SREV_9100(ah)) { 2888 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) { 2889 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) 2890 == AR_RTC_STATUS_ON) { 2891 isr = REG_READ(ah, AR_ISR); 2892 } 2893 } 2894 2895 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) & 2896 AR_INTR_SYNC_DEFAULT; 2897 2898 *masked = 0; 2899 2900 if (!isr && !sync_cause) 2901 return false; 2902 } else { 2903 *masked = 0; 2904 isr = REG_READ(ah, AR_ISR); 2905 } 2906 2907 if (isr) { 2908 if (isr & AR_ISR_BCNMISC) { 2909 u32 isr2; 2910 isr2 = REG_READ(ah, AR_ISR_S2); 2911 if (isr2 & AR_ISR_S2_TIM) 2912 mask2 |= ATH9K_INT_TIM; 2913 if (isr2 & AR_ISR_S2_DTIM) 2914 mask2 |= ATH9K_INT_DTIM; 2915 if (isr2 & AR_ISR_S2_DTIMSYNC) 2916 mask2 |= ATH9K_INT_DTIMSYNC; 2917 if (isr2 & (AR_ISR_S2_CABEND)) 2918 mask2 |= ATH9K_INT_CABEND; 2919 if (isr2 & AR_ISR_S2_GTT) 2920 mask2 |= ATH9K_INT_GTT; 2921 if (isr2 & AR_ISR_S2_CST) 2922 mask2 |= ATH9K_INT_CST; 2923 if (isr2 & AR_ISR_S2_TSFOOR) 2924 mask2 |= ATH9K_INT_TSFOOR; 2925 } 2926 2927 isr = REG_READ(ah, AR_ISR_RAC); 2928 if (isr == 0xffffffff) { 2929 *masked = 0; 2930 return false; 2931 } 2932 2933 *masked = isr & ATH9K_INT_COMMON; 2934 2935 if (ah->config.intr_mitigation) { 2936 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) 2937 *masked |= ATH9K_INT_RX; 2938 } 2939 2940 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) 2941 *masked |= ATH9K_INT_RX; 2942 if (isr & 2943 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | 2944 AR_ISR_TXEOL)) { 2945 u32 s0_s, s1_s; 2946 2947 *masked |= ATH9K_INT_TX; 2948 2949 s0_s = REG_READ(ah, AR_ISR_S0_S); 2950 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK); 2951 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC); 2952 2953 s1_s = REG_READ(ah, AR_ISR_S1_S); 2954 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR); 2955 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL); 2956 } 2957 2958 if (isr & AR_ISR_RXORN) { 2959 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, 2960 "receive FIFO overrun interrupt\n"); 2961 } 2962 2963 if (!AR_SREV_9100(ah)) { 2964 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2965 u32 isr5 = REG_READ(ah, AR_ISR_S5_S); 2966 if (isr5 & AR_ISR_S5_TIM_TIMER) 2967 *masked |= ATH9K_INT_TIM_TIMER; 2968 } 2969 } 2970 2971 *masked |= mask2; 2972 } 2973 2974 if (AR_SREV_9100(ah)) 2975 return true; 2976 2977 if (sync_cause) { 2978 fatal_int = 2979 (sync_cause & 2980 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) 2981 ? true : false; 2982 2983 if (fatal_int) { 2984 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) { 2985 DPRINTF(ah->ah_sc, ATH_DBG_ANY, 2986 "received PCI FATAL interrupt\n"); 2987 } 2988 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) { 2989 DPRINTF(ah->ah_sc, ATH_DBG_ANY, 2990 "received PCI PERR interrupt\n"); 2991 } 2992 *masked |= ATH9K_INT_FATAL; 2993 } 2994 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { 2995 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, 2996 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n"); 2997 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF); 2998 REG_WRITE(ah, AR_RC, 0); 2999 *masked |= ATH9K_INT_FATAL; 3000 } 3001 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) { 3002 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, 3003 "AR_INTR_SYNC_LOCAL_TIMEOUT\n"); 3004 } 3005 3006 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause); 3007 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR); 3008 } 3009 3010 return true; 3011} 3012 3013enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah) 3014{ 3015 return ah->mask_reg; 3016} 3017 3018enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints) 3019{ 3020 u32 omask = ah->mask_reg; 3021 u32 mask, mask2; 3022 struct ath9k_hw_capabilities *pCap = &ah->caps; 3023 3024 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints); 3025 3026 if (omask & ATH9K_INT_GLOBAL) { 3027 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n"); 3028 REG_WRITE(ah, AR_IER, AR_IER_DISABLE); 3029 (void) REG_READ(ah, AR_IER); 3030 if (!AR_SREV_9100(ah)) { 3031 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); 3032 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); 3033 3034 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 3035 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); 3036 } 3037 } 3038 3039 mask = ints & ATH9K_INT_COMMON; 3040 mask2 = 0; 3041 3042 if (ints & ATH9K_INT_TX) { 3043 if (ah->txok_interrupt_mask) 3044 mask |= AR_IMR_TXOK; 3045 if (ah->txdesc_interrupt_mask) 3046 mask |= AR_IMR_TXDESC; 3047 if (ah->txerr_interrupt_mask) 3048 mask |= AR_IMR_TXERR; 3049 if (ah->txeol_interrupt_mask) 3050 mask |= AR_IMR_TXEOL; 3051 } 3052 if (ints & ATH9K_INT_RX) { 3053 mask |= AR_IMR_RXERR; 3054 if (ah->config.intr_mitigation) 3055 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; 3056 else 3057 mask |= AR_IMR_RXOK | AR_IMR_RXDESC; 3058 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) 3059 mask |= AR_IMR_GENTMR; 3060 } 3061 3062 if (ints & (ATH9K_INT_BMISC)) { 3063 mask |= AR_IMR_BCNMISC; 3064 if (ints & ATH9K_INT_TIM) 3065 mask2 |= AR_IMR_S2_TIM; 3066 if (ints & ATH9K_INT_DTIM) 3067 mask2 |= AR_IMR_S2_DTIM; 3068 if (ints & ATH9K_INT_DTIMSYNC) 3069 mask2 |= AR_IMR_S2_DTIMSYNC; 3070 if (ints & ATH9K_INT_CABEND) 3071 mask2 |= AR_IMR_S2_CABEND; 3072 if (ints & ATH9K_INT_TSFOOR) 3073 mask2 |= AR_IMR_S2_TSFOOR; 3074 } 3075 3076 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { 3077 mask |= AR_IMR_BCNMISC; 3078 if (ints & ATH9K_INT_GTT) 3079 mask2 |= AR_IMR_S2_GTT; 3080 if (ints & ATH9K_INT_CST) 3081 mask2 |= AR_IMR_S2_CST; 3082 } 3083 3084 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask); 3085 REG_WRITE(ah, AR_IMR, mask); 3086 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM | 3087 AR_IMR_S2_DTIM | 3088 AR_IMR_S2_DTIMSYNC | 3089 AR_IMR_S2_CABEND | 3090 AR_IMR_S2_CABTO | 3091 AR_IMR_S2_TSFOOR | 3092 AR_IMR_S2_GTT | AR_IMR_S2_CST); 3093 REG_WRITE(ah, AR_IMR_S2, mask | mask2); 3094 ah->mask_reg = ints; 3095 3096 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 3097 if (ints & ATH9K_INT_TIM_TIMER) 3098 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); 3099 else 3100 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); 3101 } 3102 3103 if (ints & ATH9K_INT_GLOBAL) { 3104 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n"); 3105 REG_WRITE(ah, AR_IER, AR_IER_ENABLE); 3106 if (!AR_SREV_9100(ah)) { 3107 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 3108 AR_INTR_MAC_IRQ); 3109 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); 3110 3111 3112 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 3113 AR_INTR_SYNC_DEFAULT); 3114 REG_WRITE(ah, AR_INTR_SYNC_MASK, 3115 AR_INTR_SYNC_DEFAULT); 3116 } 3117 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", 3118 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); 3119 } 3120 3121 return omask; 3122} 3123 3124/*******************/ 3125/* Beacon Handling */ 3126/*******************/ 3127 3128void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 3129{ 3130 int flags = 0; 3131 3132 ah->beacon_interval = beacon_period; 3133 3134 switch (ah->opmode) { 3135 case NL80211_IFTYPE_STATION: 3136 case NL80211_IFTYPE_MONITOR: 3137 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); 3138 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); 3139 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); 3140 flags |= AR_TBTT_TIMER_EN; 3141 break; 3142 case NL80211_IFTYPE_ADHOC: 3143 case NL80211_IFTYPE_MESH_POINT: 3144 REG_SET_BIT(ah, AR_TXCFG, 3145 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 3146 REG_WRITE(ah, AR_NEXT_NDP_TIMER, 3147 TU_TO_USEC(next_beacon + 3148 (ah->atim_window ? ah-> 3149 atim_window : 1))); 3150 flags |= AR_NDP_TIMER_EN; 3151 case NL80211_IFTYPE_AP: 3152 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); 3153 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 3154 TU_TO_USEC(next_beacon - 3155 ah->config. 3156 dma_beacon_response_time)); 3157 REG_WRITE(ah, AR_NEXT_SWBA, 3158 TU_TO_USEC(next_beacon - 3159 ah->config. 3160 sw_beacon_response_time)); 3161 flags |= 3162 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 3163 break; 3164 default: 3165 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, 3166 "%s: unsupported opmode: %d\n", 3167 __func__, ah->opmode); 3168 return; 3169 break; 3170 } 3171 3172 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); 3173 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); 3174 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); 3175 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); 3176 3177 beacon_period &= ~ATH9K_BEACON_ENA; 3178 if (beacon_period & ATH9K_BEACON_RESET_TSF) { 3179 beacon_period &= ~ATH9K_BEACON_RESET_TSF; 3180 ath9k_hw_reset_tsf(ah); 3181 } 3182 3183 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 3184} 3185 3186void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 3187 const struct ath9k_beacon_state *bs) 3188{ 3189 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 3190 struct ath9k_hw_capabilities *pCap = &ah->caps; 3191 3192 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 3193 3194 REG_WRITE(ah, AR_BEACON_PERIOD, 3195 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); 3196 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 3197 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); 3198 3199 REG_RMW_FIELD(ah, AR_RSSI_THR, 3200 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 3201 3202 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; 3203 3204 if (bs->bs_sleepduration > beaconintval) 3205 beaconintval = bs->bs_sleepduration; 3206 3207 dtimperiod = bs->bs_dtimperiod; 3208 if (bs->bs_sleepduration > dtimperiod) 3209 dtimperiod = bs->bs_sleepduration; 3210 3211 if (beaconintval == dtimperiod) 3212 nextTbtt = bs->bs_nextdtim; 3213 else 3214 nextTbtt = bs->bs_nexttbtt; 3215 3216 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim); 3217 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt); 3218 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval); 3219 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod); 3220 3221 REG_WRITE(ah, AR_NEXT_DTIM, 3222 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 3223 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 3224 3225 REG_WRITE(ah, AR_SLEEP1, 3226 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 3227 | AR_SLEEP1_ASSUME_DTIM); 3228 3229 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 3230 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 3231 else 3232 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 3233 3234 REG_WRITE(ah, AR_SLEEP2, 3235 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 3236 3237 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 3238 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 3239 3240 REG_SET_BIT(ah, AR_TIMER_MODE, 3241 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 3242 AR_DTIM_TIMER_EN); 3243 3244 /* TSF Out of Range Threshold */ 3245 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 3246} 3247 3248/*******************/ 3249/* HW Capabilities */ 3250/*******************/ 3251 3252void ath9k_hw_fill_cap_info(struct ath_hw *ah) 3253{ 3254 struct ath9k_hw_capabilities *pCap = &ah->caps; 3255 u16 capField = 0, eeval; 3256 3257 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 3258 ah->regulatory.current_rd = eeval; 3259 3260 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1); 3261 if (AR_SREV_9285_10_OR_LATER(ah)) 3262 eeval |= AR9285_RDEXT_DEFAULT; 3263 ah->regulatory.current_rd_ext = eeval; 3264 3265 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP); 3266 3267 if (ah->opmode != NL80211_IFTYPE_AP && 3268 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 3269 if (ah->regulatory.current_rd == 0x64 || 3270 ah->regulatory.current_rd == 0x65) 3271 ah->regulatory.current_rd += 5; 3272 else if (ah->regulatory.current_rd == 0x41) 3273 ah->regulatory.current_rd = 0x43; 3274 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, 3275 "regdomain mapped to 0x%x\n", ah->regulatory.current_rd); 3276 } 3277 3278 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 3279 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX); 3280 3281 if (eeval & AR5416_OPFLAGS_11A) { 3282 set_bit(ATH9K_MODE_11A, pCap->wireless_modes); 3283 if (ah->config.ht_enable) { 3284 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20)) 3285 set_bit(ATH9K_MODE_11NA_HT20, 3286 pCap->wireless_modes); 3287 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) { 3288 set_bit(ATH9K_MODE_11NA_HT40PLUS, 3289 pCap->wireless_modes); 3290 set_bit(ATH9K_MODE_11NA_HT40MINUS, 3291 pCap->wireless_modes); 3292 } 3293 } 3294 } 3295 3296 if (eeval & AR5416_OPFLAGS_11G) { 3297 set_bit(ATH9K_MODE_11B, pCap->wireless_modes); 3298 set_bit(ATH9K_MODE_11G, pCap->wireless_modes); 3299 if (ah->config.ht_enable) { 3300 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20)) 3301 set_bit(ATH9K_MODE_11NG_HT20, 3302 pCap->wireless_modes); 3303 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) { 3304 set_bit(ATH9K_MODE_11NG_HT40PLUS, 3305 pCap->wireless_modes); 3306 set_bit(ATH9K_MODE_11NG_HT40MINUS, 3307 pCap->wireless_modes); 3308 } 3309 } 3310 } 3311 3312 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 3313 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 3314 !(eeval & AR5416_OPFLAGS_11A)) 3315 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 3316 else 3317 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 3318 3319 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0))) 3320 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 3321 3322 pCap->low_2ghz_chan = 2312; 3323 pCap->high_2ghz_chan = 2732; 3324 3325 pCap->low_5ghz_chan = 4920; 3326 pCap->high_5ghz_chan = 6100; 3327 3328 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP; 3329 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP; 3330 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM; 3331 3332 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP; 3333 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP; 3334 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM; 3335 3336 if (ah->config.ht_enable) 3337 pCap->hw_caps |= ATH9K_HW_CAP_HT; 3338 else 3339 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 3340 3341 pCap->hw_caps |= ATH9K_HW_CAP_GTT; 3342 pCap->hw_caps |= ATH9K_HW_CAP_VEOL; 3343 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK; 3344 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH; 3345 3346 if (capField & AR_EEPROM_EEPCAP_MAXQCU) 3347 pCap->total_queues = 3348 MS(capField, AR_EEPROM_EEPCAP_MAXQCU); 3349 else 3350 pCap->total_queues = ATH9K_NUM_TX_QUEUES; 3351 3352 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) 3353 pCap->keycache_size = 3354 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); 3355 else 3356 pCap->keycache_size = AR_KEYTABLE_SIZE; 3357 3358 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC; 3359 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; 3360 3361 if (AR_SREV_9285_10_OR_LATER(ah)) 3362 pCap->num_gpio_pins = AR9285_NUM_GPIO; 3363 else if (AR_SREV_9280_10_OR_LATER(ah)) 3364 pCap->num_gpio_pins = AR928X_NUM_GPIO; 3365 else 3366 pCap->num_gpio_pins = AR_NUM_GPIO; 3367 3368 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { 3369 pCap->hw_caps |= ATH9K_HW_CAP_CST; 3370 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 3371 } else { 3372 pCap->rts_aggr_limit = (8 * 1024); 3373 } 3374 3375 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; 3376 3377#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 3378 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 3379 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 3380 ah->rfkill_gpio = 3381 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 3382 ah->rfkill_polarity = 3383 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 3384 3385 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 3386 } 3387#endif 3388 3389 if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) || 3390 (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) || 3391 (ah->hw_version.macVersion == AR_SREV_VERSION_9160) || 3392 (ah->hw_version.macVersion == AR_SREV_VERSION_9100) || 3393 (ah->hw_version.macVersion == AR_SREV_VERSION_9280) || 3394 (ah->hw_version.macVersion == AR_SREV_VERSION_9285)) 3395 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 3396 else 3397 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 3398 3399 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 3400 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 3401 else 3402 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 3403 3404 if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) { 3405 pCap->reg_cap = 3406 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | 3407 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | 3408 AR_EEPROM_EEREGCAP_EN_KK_U2 | 3409 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; 3410 } else { 3411 pCap->reg_cap = 3412 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | 3413 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; 3414 } 3415 3416 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; 3417 3418 pCap->num_antcfg_5ghz = 3419 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ); 3420 pCap->num_antcfg_2ghz = 3421 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ); 3422 3423 if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) { 3424 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX; 3425 ah->btactive_gpio = 6; 3426 ah->wlanactive_gpio = 5; 3427 } 3428} 3429 3430bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type, 3431 u32 capability, u32 *result) 3432{ 3433 switch (type) { 3434 case ATH9K_CAP_CIPHER: 3435 switch (capability) { 3436 case ATH9K_CIPHER_AES_CCM: 3437 case ATH9K_CIPHER_AES_OCB: 3438 case ATH9K_CIPHER_TKIP: 3439 case ATH9K_CIPHER_WEP: 3440 case ATH9K_CIPHER_MIC: 3441 case ATH9K_CIPHER_CLR: 3442 return true; 3443 default: 3444 return false; 3445 } 3446 case ATH9K_CAP_TKIP_MIC: 3447 switch (capability) { 3448 case 0: 3449 return true; 3450 case 1: 3451 return (ah->sta_id1_defaults & 3452 AR_STA_ID1_CRPT_MIC_ENABLE) ? true : 3453 false; 3454 } 3455 case ATH9K_CAP_TKIP_SPLIT: 3456 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ? 3457 false : true; 3458 case ATH9K_CAP_DIVERSITY: 3459 return (REG_READ(ah, AR_PHY_CCK_DETECT) & 3460 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ? 3461 true : false; 3462 case ATH9K_CAP_MCAST_KEYSRCH: 3463 switch (capability) { 3464 case 0: 3465 return true; 3466 case 1: 3467 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { 3468 return false; 3469 } else { 3470 return (ah->sta_id1_defaults & 3471 AR_STA_ID1_MCAST_KSRCH) ? true : 3472 false; 3473 } 3474 } 3475 return false; 3476 case ATH9K_CAP_TXPOW: 3477 switch (capability) { 3478 case 0: 3479 return 0; 3480 case 1: 3481 *result = ah->regulatory.power_limit; 3482 return 0; 3483 case 2: 3484 *result = ah->regulatory.max_power_level; 3485 return 0; 3486 case 3: 3487 *result = ah->regulatory.tp_scale; 3488 return 0; 3489 } 3490 return false; 3491 case ATH9K_CAP_DS: 3492 return (AR_SREV_9280_20_OR_LATER(ah) && 3493 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1)) 3494 ? false : true; 3495 default: 3496 return false; 3497 } 3498} 3499 3500bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type, 3501 u32 capability, u32 setting, int *status) 3502{ 3503 u32 v; 3504 3505 switch (type) { 3506 case ATH9K_CAP_TKIP_MIC: 3507 if (setting) 3508 ah->sta_id1_defaults |= 3509 AR_STA_ID1_CRPT_MIC_ENABLE; 3510 else 3511 ah->sta_id1_defaults &= 3512 ~AR_STA_ID1_CRPT_MIC_ENABLE; 3513 return true; 3514 case ATH9K_CAP_DIVERSITY: 3515 v = REG_READ(ah, AR_PHY_CCK_DETECT); 3516 if (setting) 3517 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 3518 else 3519 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 3520 REG_WRITE(ah, AR_PHY_CCK_DETECT, v); 3521 return true; 3522 case ATH9K_CAP_MCAST_KEYSRCH: 3523 if (setting) 3524 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH; 3525 else 3526 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH; 3527 return true; 3528 default: 3529 return false; 3530 } 3531} 3532 3533/****************************/ 3534/* GPIO / RFKILL / Antennae */ 3535/****************************/ 3536 3537static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 3538 u32 gpio, u32 type) 3539{ 3540 int addr; 3541 u32 gpio_shift, tmp; 3542 3543 if (gpio > 11) 3544 addr = AR_GPIO_OUTPUT_MUX3; 3545 else if (gpio > 5) 3546 addr = AR_GPIO_OUTPUT_MUX2; 3547 else 3548 addr = AR_GPIO_OUTPUT_MUX1; 3549 3550 gpio_shift = (gpio % 6) * 5; 3551 3552 if (AR_SREV_9280_20_OR_LATER(ah) 3553 || (addr != AR_GPIO_OUTPUT_MUX1)) { 3554 REG_RMW(ah, addr, (type << gpio_shift), 3555 (0x1f << gpio_shift)); 3556 } else { 3557 tmp = REG_READ(ah, addr); 3558 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 3559 tmp &= ~(0x1f << gpio_shift); 3560 tmp |= (type << gpio_shift); 3561 REG_WRITE(ah, addr, tmp); 3562 } 3563} 3564 3565void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 3566{ 3567 u32 gpio_shift; 3568 3569 ASSERT(gpio < ah->caps.num_gpio_pins); 3570 3571 gpio_shift = gpio << 1; 3572 3573 REG_RMW(ah, 3574 AR_GPIO_OE_OUT, 3575 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 3576 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 3577} 3578 3579u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 3580{ 3581#define MS_REG_READ(x, y) \ 3582 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 3583 3584 if (gpio >= ah->caps.num_gpio_pins) 3585 return 0xffffffff; 3586 3587 if (AR_SREV_9285_10_OR_LATER(ah)) 3588 return MS_REG_READ(AR9285, gpio) != 0; 3589 else if (AR_SREV_9280_10_OR_LATER(ah)) 3590 return MS_REG_READ(AR928X, gpio) != 0; 3591 else 3592 return MS_REG_READ(AR, gpio) != 0; 3593} 3594 3595void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 3596 u32 ah_signal_type) 3597{ 3598 u32 gpio_shift; 3599 3600 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 3601 3602 gpio_shift = 2 * gpio; 3603 3604 REG_RMW(ah, 3605 AR_GPIO_OE_OUT, 3606 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 3607 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 3608} 3609 3610void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 3611{ 3612 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 3613 AR_GPIO_BIT(gpio)); 3614} 3615 3616#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 3617void ath9k_enable_rfkill(struct ath_hw *ah) 3618{ 3619 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, 3620 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); 3621 3622 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2, 3623 AR_GPIO_INPUT_MUX2_RFSILENT); 3624 3625 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 3626 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); 3627} 3628#endif 3629 3630u32 ath9k_hw_getdefantenna(struct ath_hw *ah) 3631{ 3632 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; 3633} 3634 3635void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 3636{ 3637 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 3638} 3639 3640bool ath9k_hw_setantennaswitch(struct ath_hw *ah, 3641 enum ath9k_ant_setting settings, 3642 struct ath9k_channel *chan, 3643 u8 *tx_chainmask, 3644 u8 *rx_chainmask, 3645 u8 *antenna_cfgd) 3646{ 3647 static u8 tx_chainmask_cfg, rx_chainmask_cfg; 3648 3649 if (AR_SREV_9280(ah)) { 3650 if (!tx_chainmask_cfg) { 3651 3652 tx_chainmask_cfg = *tx_chainmask; 3653 rx_chainmask_cfg = *rx_chainmask; 3654 } 3655 3656 switch (settings) { 3657 case ATH9K_ANT_FIXED_A: 3658 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK; 3659 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK; 3660 *antenna_cfgd = true; 3661 break; 3662 case ATH9K_ANT_FIXED_B: 3663 if (ah->caps.tx_chainmask > 3664 ATH9K_ANTENNA1_CHAINMASK) { 3665 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK; 3666 } 3667 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK; 3668 *antenna_cfgd = true; 3669 break; 3670 case ATH9K_ANT_VARIABLE: 3671 *tx_chainmask = tx_chainmask_cfg; 3672 *rx_chainmask = rx_chainmask_cfg; 3673 *antenna_cfgd = true; 3674 break; 3675 default: 3676 break; 3677 } 3678 } else { 3679 ah->diversity_control = settings; 3680 } 3681 3682 return true; 3683} 3684 3685/*********************/ 3686/* General Operation */ 3687/*********************/ 3688 3689u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 3690{ 3691 u32 bits = REG_READ(ah, AR_RX_FILTER); 3692 u32 phybits = REG_READ(ah, AR_PHY_ERR); 3693 3694 if (phybits & AR_PHY_ERR_RADAR) 3695 bits |= ATH9K_RX_FILTER_PHYRADAR; 3696 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 3697 bits |= ATH9K_RX_FILTER_PHYERR; 3698 3699 return bits; 3700} 3701 3702void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 3703{ 3704 u32 phybits; 3705 3706 REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR); 3707 phybits = 0; 3708 if (bits & ATH9K_RX_FILTER_PHYRADAR) 3709 phybits |= AR_PHY_ERR_RADAR; 3710 if (bits & ATH9K_RX_FILTER_PHYERR) 3711 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 3712 REG_WRITE(ah, AR_PHY_ERR, phybits); 3713 3714 if (phybits) 3715 REG_WRITE(ah, AR_RXCFG, 3716 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); 3717 else 3718 REG_WRITE(ah, AR_RXCFG, 3719 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); 3720} 3721 3722bool ath9k_hw_phy_disable(struct ath_hw *ah) 3723{ 3724 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM); 3725} 3726 3727bool ath9k_hw_disable(struct ath_hw *ah) 3728{ 3729 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 3730 return false; 3731 3732 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD); 3733} 3734 3735void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit) 3736{ 3737 struct ath9k_channel *chan = ah->curchan; 3738 struct ieee80211_channel *channel = chan->chan; 3739 3740 ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER); 3741 3742 ah->eep_ops->set_txpower(ah, chan, 3743 ath9k_regd_get_ctl(&ah->regulatory, chan), 3744 channel->max_antenna_gain * 2, 3745 channel->max_power * 2, 3746 min((u32) MAX_RATE_POWER, 3747 (u32) ah->regulatory.power_limit)); 3748} 3749 3750void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac) 3751{ 3752 memcpy(ah->macaddr, mac, ETH_ALEN); 3753} 3754 3755void ath9k_hw_setopmode(struct ath_hw *ah) 3756{ 3757 ath9k_hw_set_operating_mode(ah, ah->opmode); 3758} 3759 3760void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 3761{ 3762 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 3763 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 3764} 3765 3766void ath9k_hw_setbssidmask(struct ath_softc *sc) 3767{ 3768 REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask)); 3769 REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4)); 3770} 3771 3772void ath9k_hw_write_associd(struct ath_softc *sc) 3773{ 3774 REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid)); 3775 REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) | 3776 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 3777} 3778 3779u64 ath9k_hw_gettsf64(struct ath_hw *ah) 3780{ 3781 u64 tsf; 3782 3783 tsf = REG_READ(ah, AR_TSF_U32); 3784 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32); 3785 3786 return tsf; 3787} 3788 3789void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 3790{ 3791 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 3792 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 3793} 3794 3795void ath9k_hw_reset_tsf(struct ath_hw *ah) 3796{ 3797 int count; 3798 3799 count = 0; 3800 while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) { 3801 count++; 3802 if (count > 10) { 3803 DPRINTF(ah->ah_sc, ATH_DBG_RESET, 3804 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 3805 break; 3806 } 3807 udelay(10); 3808 } 3809 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 3810} 3811 3812bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting) 3813{ 3814 if (setting) 3815 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 3816 else 3817 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 3818 3819 return true; 3820} 3821 3822bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 3823{ 3824 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) { 3825 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us); 3826 ah->slottime = (u32) -1; 3827 return false; 3828 } else { 3829 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us)); 3830 ah->slottime = us; 3831 return true; 3832 } 3833} 3834 3835void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode) 3836{ 3837 u32 macmode; 3838 3839 if (mode == ATH9K_HT_MACMODE_2040 && 3840 !ah->config.cwm_ignore_extcca) 3841 macmode = AR_2040_JOINED_RX_CLEAR; 3842 else 3843 macmode = 0; 3844 3845 REG_WRITE(ah, AR_2040_MODE, macmode); 3846} 3847 3848/***************************/ 3849/* Bluetooth Coexistence */ 3850/***************************/ 3851 3852void ath9k_hw_btcoex_enable(struct ath_hw *ah) 3853{ 3854 /* connect bt_active to baseband */ 3855 REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL, 3856 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF | 3857 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF)); 3858 3859 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, 3860 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB); 3861 3862 /* Set input mux for bt_active to gpio pin */ 3863 REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1, 3864 AR_GPIO_INPUT_MUX1_BT_ACTIVE, 3865 ah->btactive_gpio); 3866 3867 /* Configure the desired gpio port for input */ 3868 ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio); 3869 3870 /* Configure the desired GPIO port for TX_FRAME output */ 3871 ath9k_hw_cfg_output(ah, ah->wlanactive_gpio, 3872 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME); 3873} 3874