hw.c revision e4744ec78669926000e47e6ec78b987c0b2f10e9
1/* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17#include <linux/io.h> 18#include <linux/slab.h> 19#include <linux/module.h> 20#include <asm/unaligned.h> 21 22#include "hw.h" 23#include "hw-ops.h" 24#include "rc.h" 25#include "ar9003_mac.h" 26#include "ar9003_mci.h" 27#include "ar9003_phy.h" 28#include "debug.h" 29#include "ath9k.h" 30 31static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 32 33MODULE_AUTHOR("Atheros Communications"); 34MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 35MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 36MODULE_LICENSE("Dual BSD/GPL"); 37 38static int __init ath9k_init(void) 39{ 40 return 0; 41} 42module_init(ath9k_init); 43 44static void __exit ath9k_exit(void) 45{ 46 return; 47} 48module_exit(ath9k_exit); 49 50/* Private hardware callbacks */ 51 52static void ath9k_hw_init_cal_settings(struct ath_hw *ah) 53{ 54 ath9k_hw_private_ops(ah)->init_cal_settings(ah); 55} 56 57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, 58 struct ath9k_channel *chan) 59{ 60 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); 61} 62 63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) 64{ 65 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) 66 return; 67 68 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); 69} 70 71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) 72{ 73 /* You will not have this callback if using the old ANI */ 74 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) 75 return; 76 77 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); 78} 79 80/********************/ 81/* Helper Functions */ 82/********************/ 83 84#ifdef CONFIG_ATH9K_DEBUGFS 85 86void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause) 87{ 88 struct ath_softc *sc = common->priv; 89 if (sync_cause) 90 sc->debug.stats.istats.sync_cause_all++; 91 if (sync_cause & AR_INTR_SYNC_RTC_IRQ) 92 sc->debug.stats.istats.sync_rtc_irq++; 93 if (sync_cause & AR_INTR_SYNC_MAC_IRQ) 94 sc->debug.stats.istats.sync_mac_irq++; 95 if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS) 96 sc->debug.stats.istats.eeprom_illegal_access++; 97 if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT) 98 sc->debug.stats.istats.apb_timeout++; 99 if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT) 100 sc->debug.stats.istats.pci_mode_conflict++; 101 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) 102 sc->debug.stats.istats.host1_fatal++; 103 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) 104 sc->debug.stats.istats.host1_perr++; 105 if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR) 106 sc->debug.stats.istats.trcv_fifo_perr++; 107 if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP) 108 sc->debug.stats.istats.radm_cpl_ep++; 109 if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT) 110 sc->debug.stats.istats.radm_cpl_dllp_abort++; 111 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT) 112 sc->debug.stats.istats.radm_cpl_tlp_abort++; 113 if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR) 114 sc->debug.stats.istats.radm_cpl_ecrc_err++; 115 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) 116 sc->debug.stats.istats.radm_cpl_timeout++; 117 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) 118 sc->debug.stats.istats.local_timeout++; 119 if (sync_cause & AR_INTR_SYNC_PM_ACCESS) 120 sc->debug.stats.istats.pm_access++; 121 if (sync_cause & AR_INTR_SYNC_MAC_AWAKE) 122 sc->debug.stats.istats.mac_awake++; 123 if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP) 124 sc->debug.stats.istats.mac_asleep++; 125 if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS) 126 sc->debug.stats.istats.mac_sleep_access++; 127} 128#endif 129 130 131static void ath9k_hw_set_clockrate(struct ath_hw *ah) 132{ 133 struct ath_common *common = ath9k_hw_common(ah); 134 struct ath9k_channel *chan = ah->curchan; 135 unsigned int clockrate; 136 137 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 138 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 139 clockrate = 117; 140 else if (!chan) /* should really check for CCK instead */ 141 clockrate = ATH9K_CLOCK_RATE_CCK; 142 else if (IS_CHAN_2GHZ(chan)) 143 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 144 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 145 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 146 else 147 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 148 149 if (IS_CHAN_HT40(chan)) 150 clockrate *= 2; 151 152 if (ah->curchan) { 153 if (IS_CHAN_HALF_RATE(chan)) 154 clockrate /= 2; 155 if (IS_CHAN_QUARTER_RATE(chan)) 156 clockrate /= 4; 157 } 158 159 common->clockrate = clockrate; 160} 161 162static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 163{ 164 struct ath_common *common = ath9k_hw_common(ah); 165 166 return usecs * common->clockrate; 167} 168 169bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 170{ 171 int i; 172 173 BUG_ON(timeout < AH_TIME_QUANTUM); 174 175 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 176 if ((REG_READ(ah, reg) & mask) == val) 177 return true; 178 179 udelay(AH_TIME_QUANTUM); 180 } 181 182 ath_dbg(ath9k_hw_common(ah), ANY, 183 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 184 timeout, reg, REG_READ(ah, reg), mask, val); 185 186 return false; 187} 188EXPORT_SYMBOL(ath9k_hw_wait); 189 190void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, 191 int hw_delay) 192{ 193 hw_delay /= 10; 194 195 if (IS_CHAN_HALF_RATE(chan)) 196 hw_delay *= 2; 197 else if (IS_CHAN_QUARTER_RATE(chan)) 198 hw_delay *= 4; 199 200 udelay(hw_delay + BASE_ACTIVATE_DELAY); 201} 202 203void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, 204 int column, unsigned int *writecnt) 205{ 206 int r; 207 208 ENABLE_REGWRITE_BUFFER(ah); 209 for (r = 0; r < array->ia_rows; r++) { 210 REG_WRITE(ah, INI_RA(array, r, 0), 211 INI_RA(array, r, column)); 212 DO_DELAY(*writecnt); 213 } 214 REGWRITE_BUFFER_FLUSH(ah); 215} 216 217u32 ath9k_hw_reverse_bits(u32 val, u32 n) 218{ 219 u32 retval; 220 int i; 221 222 for (i = 0, retval = 0; i < n; i++) { 223 retval = (retval << 1) | (val & 1); 224 val >>= 1; 225 } 226 return retval; 227} 228 229u16 ath9k_hw_computetxtime(struct ath_hw *ah, 230 u8 phy, int kbps, 231 u32 frameLen, u16 rateix, 232 bool shortPreamble) 233{ 234 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 235 236 if (kbps == 0) 237 return 0; 238 239 switch (phy) { 240 case WLAN_RC_PHY_CCK: 241 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 242 if (shortPreamble) 243 phyTime >>= 1; 244 numBits = frameLen << 3; 245 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 246 break; 247 case WLAN_RC_PHY_OFDM: 248 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 249 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 250 numBits = OFDM_PLCP_BITS + (frameLen << 3); 251 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 252 txTime = OFDM_SIFS_TIME_QUARTER 253 + OFDM_PREAMBLE_TIME_QUARTER 254 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 255 } else if (ah->curchan && 256 IS_CHAN_HALF_RATE(ah->curchan)) { 257 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 258 numBits = OFDM_PLCP_BITS + (frameLen << 3); 259 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 260 txTime = OFDM_SIFS_TIME_HALF + 261 OFDM_PREAMBLE_TIME_HALF 262 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 263 } else { 264 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 265 numBits = OFDM_PLCP_BITS + (frameLen << 3); 266 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 267 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 268 + (numSymbols * OFDM_SYMBOL_TIME); 269 } 270 break; 271 default: 272 ath_err(ath9k_hw_common(ah), 273 "Unknown phy %u (rate ix %u)\n", phy, rateix); 274 txTime = 0; 275 break; 276 } 277 278 return txTime; 279} 280EXPORT_SYMBOL(ath9k_hw_computetxtime); 281 282void ath9k_hw_get_channel_centers(struct ath_hw *ah, 283 struct ath9k_channel *chan, 284 struct chan_centers *centers) 285{ 286 int8_t extoff; 287 288 if (!IS_CHAN_HT40(chan)) { 289 centers->ctl_center = centers->ext_center = 290 centers->synth_center = chan->channel; 291 return; 292 } 293 294 if (IS_CHAN_HT40PLUS(chan)) { 295 centers->synth_center = 296 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 297 extoff = 1; 298 } else { 299 centers->synth_center = 300 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 301 extoff = -1; 302 } 303 304 centers->ctl_center = 305 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 306 /* 25 MHz spacing is supported by hw but not on upper layers */ 307 centers->ext_center = 308 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 309} 310 311/******************/ 312/* Chip Revisions */ 313/******************/ 314 315static void ath9k_hw_read_revisions(struct ath_hw *ah) 316{ 317 u32 val; 318 319 switch (ah->hw_version.devid) { 320 case AR5416_AR9100_DEVID: 321 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 322 break; 323 case AR9300_DEVID_AR9330: 324 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 325 if (ah->get_mac_revision) { 326 ah->hw_version.macRev = ah->get_mac_revision(); 327 } else { 328 val = REG_READ(ah, AR_SREV); 329 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 330 } 331 return; 332 case AR9300_DEVID_AR9340: 333 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 334 val = REG_READ(ah, AR_SREV); 335 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 336 return; 337 case AR9300_DEVID_QCA955X: 338 ah->hw_version.macVersion = AR_SREV_VERSION_9550; 339 return; 340 } 341 342 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 343 344 if (val == 0xFF) { 345 val = REG_READ(ah, AR_SREV); 346 ah->hw_version.macVersion = 347 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 348 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 349 350 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 351 ah->is_pciexpress = true; 352 else 353 ah->is_pciexpress = (val & 354 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 355 } else { 356 if (!AR_SREV_9100(ah)) 357 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 358 359 ah->hw_version.macRev = val & AR_SREV_REVISION; 360 361 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 362 ah->is_pciexpress = true; 363 } 364} 365 366/************************************/ 367/* HW Attach, Detach, Init Routines */ 368/************************************/ 369 370static void ath9k_hw_disablepcie(struct ath_hw *ah) 371{ 372 if (!AR_SREV_5416(ah)) 373 return; 374 375 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 376 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 377 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 378 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 379 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 380 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 381 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 382 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 383 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 384 385 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 386} 387 388/* This should work for all families including legacy */ 389static bool ath9k_hw_chip_test(struct ath_hw *ah) 390{ 391 struct ath_common *common = ath9k_hw_common(ah); 392 u32 regAddr[2] = { AR_STA_ID0 }; 393 u32 regHold[2]; 394 static const u32 patternData[4] = { 395 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 396 }; 397 int i, j, loop_max; 398 399 if (!AR_SREV_9300_20_OR_LATER(ah)) { 400 loop_max = 2; 401 regAddr[1] = AR_PHY_BASE + (8 << 2); 402 } else 403 loop_max = 1; 404 405 for (i = 0; i < loop_max; i++) { 406 u32 addr = regAddr[i]; 407 u32 wrData, rdData; 408 409 regHold[i] = REG_READ(ah, addr); 410 for (j = 0; j < 0x100; j++) { 411 wrData = (j << 16) | j; 412 REG_WRITE(ah, addr, wrData); 413 rdData = REG_READ(ah, addr); 414 if (rdData != wrData) { 415 ath_err(common, 416 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 417 addr, wrData, rdData); 418 return false; 419 } 420 } 421 for (j = 0; j < 4; j++) { 422 wrData = patternData[j]; 423 REG_WRITE(ah, addr, wrData); 424 rdData = REG_READ(ah, addr); 425 if (wrData != rdData) { 426 ath_err(common, 427 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 428 addr, wrData, rdData); 429 return false; 430 } 431 } 432 REG_WRITE(ah, regAddr[i], regHold[i]); 433 } 434 udelay(100); 435 436 return true; 437} 438 439static void ath9k_hw_init_config(struct ath_hw *ah) 440{ 441 int i; 442 443 ah->config.dma_beacon_response_time = 1; 444 ah->config.sw_beacon_response_time = 6; 445 ah->config.additional_swba_backoff = 0; 446 ah->config.ack_6mb = 0x0; 447 ah->config.cwm_ignore_extcca = 0; 448 ah->config.pcie_clock_req = 0; 449 ah->config.analog_shiftreg = 1; 450 451 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 452 ah->config.spurchans[i][0] = AR_NO_SPUR; 453 ah->config.spurchans[i][1] = AR_NO_SPUR; 454 } 455 456 ah->config.rx_intr_mitigation = true; 457 ah->config.pcieSerDesWrite = true; 458 459 /* 460 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 461 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 462 * This means we use it for all AR5416 devices, and the few 463 * minor PCI AR9280 devices out there. 464 * 465 * Serialization is required because these devices do not handle 466 * well the case of two concurrent reads/writes due to the latency 467 * involved. During one read/write another read/write can be issued 468 * on another CPU while the previous read/write may still be working 469 * on our hardware, if we hit this case the hardware poops in a loop. 470 * We prevent this by serializing reads and writes. 471 * 472 * This issue is not present on PCI-Express devices or pre-AR5416 473 * devices (legacy, 802.11abg). 474 */ 475 if (num_possible_cpus() > 1) 476 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 477} 478 479static void ath9k_hw_init_defaults(struct ath_hw *ah) 480{ 481 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 482 483 regulatory->country_code = CTRY_DEFAULT; 484 regulatory->power_limit = MAX_RATE_POWER; 485 486 ah->hw_version.magic = AR5416_MAGIC; 487 ah->hw_version.subvendorid = 0; 488 489 ah->atim_window = 0; 490 ah->sta_id1_defaults = 491 AR_STA_ID1_CRPT_MIC_ENABLE | 492 AR_STA_ID1_MCAST_KSRCH; 493 if (AR_SREV_9100(ah)) 494 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 495 ah->slottime = ATH9K_SLOT_TIME_9; 496 ah->globaltxtimeout = (u32) -1; 497 ah->power_mode = ATH9K_PM_UNDEFINED; 498 ah->htc_reset_init = true; 499} 500 501static int ath9k_hw_init_macaddr(struct ath_hw *ah) 502{ 503 struct ath_common *common = ath9k_hw_common(ah); 504 u32 sum; 505 int i; 506 u16 eeval; 507 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 508 509 sum = 0; 510 for (i = 0; i < 3; i++) { 511 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 512 sum += eeval; 513 common->macaddr[2 * i] = eeval >> 8; 514 common->macaddr[2 * i + 1] = eeval & 0xff; 515 } 516 if (sum == 0 || sum == 0xffff * 3) 517 return -EADDRNOTAVAIL; 518 519 return 0; 520} 521 522static int ath9k_hw_post_init(struct ath_hw *ah) 523{ 524 struct ath_common *common = ath9k_hw_common(ah); 525 int ecode; 526 527 if (common->bus_ops->ath_bus_type != ATH_USB) { 528 if (!ath9k_hw_chip_test(ah)) 529 return -ENODEV; 530 } 531 532 if (!AR_SREV_9300_20_OR_LATER(ah)) { 533 ecode = ar9002_hw_rf_claim(ah); 534 if (ecode != 0) 535 return ecode; 536 } 537 538 ecode = ath9k_hw_eeprom_init(ah); 539 if (ecode != 0) 540 return ecode; 541 542 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 543 ah->eep_ops->get_eeprom_ver(ah), 544 ah->eep_ops->get_eeprom_rev(ah)); 545 546 ath9k_hw_ani_init(ah); 547 548 /* 549 * EEPROM needs to be initialized before we do this. 550 * This is required for regulatory compliance. 551 */ 552 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 553 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 554 if ((regdmn & 0xF0) == CTL_FCC) { 555 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_2GHZ; 556 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_5GHZ; 557 } 558 } 559 560 return 0; 561} 562 563static int ath9k_hw_attach_ops(struct ath_hw *ah) 564{ 565 if (!AR_SREV_9300_20_OR_LATER(ah)) 566 return ar9002_hw_attach_ops(ah); 567 568 ar9003_hw_attach_ops(ah); 569 return 0; 570} 571 572/* Called for all hardware families */ 573static int __ath9k_hw_init(struct ath_hw *ah) 574{ 575 struct ath_common *common = ath9k_hw_common(ah); 576 int r = 0; 577 578 ath9k_hw_read_revisions(ah); 579 580 /* 581 * Read back AR_WA into a permanent copy and set bits 14 and 17. 582 * We need to do this to avoid RMW of this register. We cannot 583 * read the reg when chip is asleep. 584 */ 585 if (AR_SREV_9300_20_OR_LATER(ah)) { 586 ah->WARegVal = REG_READ(ah, AR_WA); 587 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 588 AR_WA_ASPM_TIMER_BASED_DISABLE); 589 } 590 591 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 592 ath_err(common, "Couldn't reset chip\n"); 593 return -EIO; 594 } 595 596 if (AR_SREV_9565(ah)) { 597 ah->WARegVal |= AR_WA_BIT22; 598 REG_WRITE(ah, AR_WA, ah->WARegVal); 599 } 600 601 ath9k_hw_init_defaults(ah); 602 ath9k_hw_init_config(ah); 603 604 r = ath9k_hw_attach_ops(ah); 605 if (r) 606 return r; 607 608 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 609 ath_err(common, "Couldn't wakeup chip\n"); 610 return -EIO; 611 } 612 613 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 614 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 615 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && 616 !ah->is_pciexpress)) { 617 ah->config.serialize_regmode = 618 SER_REG_MODE_ON; 619 } else { 620 ah->config.serialize_regmode = 621 SER_REG_MODE_OFF; 622 } 623 } 624 625 ath_dbg(common, RESET, "serialize_regmode is %d\n", 626 ah->config.serialize_regmode); 627 628 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 629 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 630 else 631 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 632 633 switch (ah->hw_version.macVersion) { 634 case AR_SREV_VERSION_5416_PCI: 635 case AR_SREV_VERSION_5416_PCIE: 636 case AR_SREV_VERSION_9160: 637 case AR_SREV_VERSION_9100: 638 case AR_SREV_VERSION_9280: 639 case AR_SREV_VERSION_9285: 640 case AR_SREV_VERSION_9287: 641 case AR_SREV_VERSION_9271: 642 case AR_SREV_VERSION_9300: 643 case AR_SREV_VERSION_9330: 644 case AR_SREV_VERSION_9485: 645 case AR_SREV_VERSION_9340: 646 case AR_SREV_VERSION_9462: 647 case AR_SREV_VERSION_9550: 648 case AR_SREV_VERSION_9565: 649 break; 650 default: 651 ath_err(common, 652 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 653 ah->hw_version.macVersion, ah->hw_version.macRev); 654 return -EOPNOTSUPP; 655 } 656 657 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 658 AR_SREV_9330(ah) || AR_SREV_9550(ah)) 659 ah->is_pciexpress = false; 660 661 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 662 ath9k_hw_init_cal_settings(ah); 663 664 ah->ani_function = ATH9K_ANI_ALL; 665 if (!AR_SREV_9300_20_OR_LATER(ah)) 666 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 667 668 if (!ah->is_pciexpress) 669 ath9k_hw_disablepcie(ah); 670 671 r = ath9k_hw_post_init(ah); 672 if (r) 673 return r; 674 675 ath9k_hw_init_mode_gain_regs(ah); 676 r = ath9k_hw_fill_cap_info(ah); 677 if (r) 678 return r; 679 680 r = ath9k_hw_init_macaddr(ah); 681 if (r) { 682 ath_err(common, "Failed to initialize MAC address\n"); 683 return r; 684 } 685 686 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 687 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 688 else 689 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 690 691 if (AR_SREV_9330(ah)) 692 ah->bb_watchdog_timeout_ms = 85; 693 else 694 ah->bb_watchdog_timeout_ms = 25; 695 696 common->state = ATH_HW_INITIALIZED; 697 698 return 0; 699} 700 701int ath9k_hw_init(struct ath_hw *ah) 702{ 703 int ret; 704 struct ath_common *common = ath9k_hw_common(ah); 705 706 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ 707 switch (ah->hw_version.devid) { 708 case AR5416_DEVID_PCI: 709 case AR5416_DEVID_PCIE: 710 case AR5416_AR9100_DEVID: 711 case AR9160_DEVID_PCI: 712 case AR9280_DEVID_PCI: 713 case AR9280_DEVID_PCIE: 714 case AR9285_DEVID_PCIE: 715 case AR9287_DEVID_PCI: 716 case AR9287_DEVID_PCIE: 717 case AR2427_DEVID_PCIE: 718 case AR9300_DEVID_PCIE: 719 case AR9300_DEVID_AR9485_PCIE: 720 case AR9300_DEVID_AR9330: 721 case AR9300_DEVID_AR9340: 722 case AR9300_DEVID_QCA955X: 723 case AR9300_DEVID_AR9580: 724 case AR9300_DEVID_AR9462: 725 case AR9485_DEVID_AR1111: 726 case AR9300_DEVID_AR9565: 727 break; 728 default: 729 if (common->bus_ops->ath_bus_type == ATH_USB) 730 break; 731 ath_err(common, "Hardware device ID 0x%04x not supported\n", 732 ah->hw_version.devid); 733 return -EOPNOTSUPP; 734 } 735 736 ret = __ath9k_hw_init(ah); 737 if (ret) { 738 ath_err(common, 739 "Unable to initialize hardware; initialization status: %d\n", 740 ret); 741 return ret; 742 } 743 744 return 0; 745} 746EXPORT_SYMBOL(ath9k_hw_init); 747 748static void ath9k_hw_init_qos(struct ath_hw *ah) 749{ 750 ENABLE_REGWRITE_BUFFER(ah); 751 752 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 753 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 754 755 REG_WRITE(ah, AR_QOS_NO_ACK, 756 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 757 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 758 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 759 760 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 761 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 762 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 763 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 764 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 765 766 REGWRITE_BUFFER_FLUSH(ah); 767} 768 769u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 770{ 771 struct ath_common *common = ath9k_hw_common(ah); 772 int i = 0; 773 774 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 775 udelay(100); 776 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 777 778 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { 779 780 udelay(100); 781 782 if (WARN_ON_ONCE(i >= 100)) { 783 ath_err(common, "PLL4 meaurement not done\n"); 784 break; 785 } 786 787 i++; 788 } 789 790 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 791} 792EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 793 794static void ath9k_hw_init_pll(struct ath_hw *ah, 795 struct ath9k_channel *chan) 796{ 797 u32 pll; 798 799 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 800 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 801 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 802 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 803 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 804 AR_CH0_DPLL2_KD, 0x40); 805 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 806 AR_CH0_DPLL2_KI, 0x4); 807 808 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 809 AR_CH0_BB_DPLL1_REFDIV, 0x5); 810 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 811 AR_CH0_BB_DPLL1_NINI, 0x58); 812 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 813 AR_CH0_BB_DPLL1_NFRAC, 0x0); 814 815 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 816 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 817 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 818 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 819 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 820 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 821 822 /* program BB PLL phase_shift to 0x6 */ 823 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 824 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 825 826 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 827 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 828 udelay(1000); 829 } else if (AR_SREV_9330(ah)) { 830 u32 ddr_dpll2, pll_control2, kd; 831 832 if (ah->is_clk_25mhz) { 833 ddr_dpll2 = 0x18e82f01; 834 pll_control2 = 0xe04a3d; 835 kd = 0x1d; 836 } else { 837 ddr_dpll2 = 0x19e82f01; 838 pll_control2 = 0x886666; 839 kd = 0x3d; 840 } 841 842 /* program DDR PLL ki and kd value */ 843 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 844 845 /* program DDR PLL phase_shift */ 846 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 847 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 848 849 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 850 udelay(1000); 851 852 /* program refdiv, nint, frac to RTC register */ 853 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 854 855 /* program BB PLL kd and ki value */ 856 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 857 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 858 859 /* program BB PLL phase_shift */ 860 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 861 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 862 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) { 863 u32 regval, pll2_divint, pll2_divfrac, refdiv; 864 865 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 866 udelay(1000); 867 868 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 869 udelay(100); 870 871 if (ah->is_clk_25mhz) { 872 pll2_divint = 0x54; 873 pll2_divfrac = 0x1eb85; 874 refdiv = 3; 875 } else { 876 if (AR_SREV_9340(ah)) { 877 pll2_divint = 88; 878 pll2_divfrac = 0; 879 refdiv = 5; 880 } else { 881 pll2_divint = 0x11; 882 pll2_divfrac = 0x26666; 883 refdiv = 1; 884 } 885 } 886 887 regval = REG_READ(ah, AR_PHY_PLL_MODE); 888 regval |= (0x1 << 16); 889 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 890 udelay(100); 891 892 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 893 (pll2_divint << 18) | pll2_divfrac); 894 udelay(100); 895 896 regval = REG_READ(ah, AR_PHY_PLL_MODE); 897 if (AR_SREV_9340(ah)) 898 regval = (regval & 0x80071fff) | (0x1 << 30) | 899 (0x1 << 13) | (0x4 << 26) | (0x18 << 19); 900 else 901 regval = (regval & 0x80071fff) | (0x3 << 30) | 902 (0x1 << 13) | (0x4 << 26) | (0x60 << 19); 903 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 904 REG_WRITE(ah, AR_PHY_PLL_MODE, 905 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 906 udelay(1000); 907 } 908 909 pll = ath9k_hw_compute_pll_control(ah, chan); 910 if (AR_SREV_9565(ah)) 911 pll |= 0x40000; 912 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 913 914 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 915 AR_SREV_9550(ah)) 916 udelay(1000); 917 918 /* Switch the core clock for ar9271 to 117Mhz */ 919 if (AR_SREV_9271(ah)) { 920 udelay(500); 921 REG_WRITE(ah, 0x50040, 0x304); 922 } 923 924 udelay(RTC_PLL_SETTLE_DELAY); 925 926 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 927 928 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) { 929 if (ah->is_clk_25mhz) { 930 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); 931 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 932 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 933 } else { 934 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); 935 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 936 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 937 } 938 udelay(100); 939 } 940} 941 942static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 943 enum nl80211_iftype opmode) 944{ 945 u32 sync_default = AR_INTR_SYNC_DEFAULT; 946 u32 imr_reg = AR_IMR_TXERR | 947 AR_IMR_TXURN | 948 AR_IMR_RXERR | 949 AR_IMR_RXORN | 950 AR_IMR_BCNMISC; 951 952 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) 953 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 954 955 if (AR_SREV_9300_20_OR_LATER(ah)) { 956 imr_reg |= AR_IMR_RXOK_HP; 957 if (ah->config.rx_intr_mitigation) 958 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 959 else 960 imr_reg |= AR_IMR_RXOK_LP; 961 962 } else { 963 if (ah->config.rx_intr_mitigation) 964 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 965 else 966 imr_reg |= AR_IMR_RXOK; 967 } 968 969 if (ah->config.tx_intr_mitigation) 970 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 971 else 972 imr_reg |= AR_IMR_TXOK; 973 974 ENABLE_REGWRITE_BUFFER(ah); 975 976 REG_WRITE(ah, AR_IMR, imr_reg); 977 ah->imrs2_reg |= AR_IMR_S2_GTT; 978 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 979 980 if (!AR_SREV_9100(ah)) { 981 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 982 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 983 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 984 } 985 986 REGWRITE_BUFFER_FLUSH(ah); 987 988 if (AR_SREV_9300_20_OR_LATER(ah)) { 989 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 990 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 991 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 992 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 993 } 994} 995 996static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 997{ 998 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 999 val = min(val, (u32) 0xFFFF); 1000 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 1001} 1002 1003static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 1004{ 1005 u32 val = ath9k_hw_mac_to_clks(ah, us); 1006 val = min(val, (u32) 0xFFFF); 1007 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 1008} 1009 1010static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 1011{ 1012 u32 val = ath9k_hw_mac_to_clks(ah, us); 1013 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 1014 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 1015} 1016 1017static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 1018{ 1019 u32 val = ath9k_hw_mac_to_clks(ah, us); 1020 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 1021 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 1022} 1023 1024static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 1025{ 1026 if (tu > 0xFFFF) { 1027 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 1028 tu); 1029 ah->globaltxtimeout = (u32) -1; 1030 return false; 1031 } else { 1032 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 1033 ah->globaltxtimeout = tu; 1034 return true; 1035 } 1036} 1037 1038void ath9k_hw_init_global_settings(struct ath_hw *ah) 1039{ 1040 struct ath_common *common = ath9k_hw_common(ah); 1041 const struct ath9k_channel *chan = ah->curchan; 1042 int acktimeout, ctstimeout, ack_offset = 0; 1043 int slottime; 1044 int sifstime; 1045 int rx_lat = 0, tx_lat = 0, eifs = 0; 1046 u32 reg; 1047 1048 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 1049 ah->misc_mode); 1050 1051 if (!chan) 1052 return; 1053 1054 if (ah->misc_mode != 0) 1055 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 1056 1057 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1058 rx_lat = 41; 1059 else 1060 rx_lat = 37; 1061 tx_lat = 54; 1062 1063 if (IS_CHAN_5GHZ(chan)) 1064 sifstime = 16; 1065 else 1066 sifstime = 10; 1067 1068 if (IS_CHAN_HALF_RATE(chan)) { 1069 eifs = 175; 1070 rx_lat *= 2; 1071 tx_lat *= 2; 1072 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1073 tx_lat += 11; 1074 1075 sifstime = 32; 1076 ack_offset = 16; 1077 slottime = 13; 1078 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1079 eifs = 340; 1080 rx_lat = (rx_lat * 4) - 1; 1081 tx_lat *= 4; 1082 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1083 tx_lat += 22; 1084 1085 sifstime = 64; 1086 ack_offset = 32; 1087 slottime = 21; 1088 } else { 1089 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1090 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1091 reg = AR_USEC_ASYNC_FIFO; 1092 } else { 1093 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1094 common->clockrate; 1095 reg = REG_READ(ah, AR_USEC); 1096 } 1097 rx_lat = MS(reg, AR_USEC_RX_LAT); 1098 tx_lat = MS(reg, AR_USEC_TX_LAT); 1099 1100 slottime = ah->slottime; 1101 } 1102 1103 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1104 slottime += 3 * ah->coverage_class; 1105 acktimeout = slottime + sifstime + ack_offset; 1106 ctstimeout = acktimeout; 1107 1108 /* 1109 * Workaround for early ACK timeouts, add an offset to match the 1110 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1111 * This was initially only meant to work around an issue with delayed 1112 * BA frames in some implementations, but it has been found to fix ACK 1113 * timeout issues in other cases as well. 1114 */ 1115 if (IS_CHAN_2GHZ(chan) && 1116 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { 1117 acktimeout += 64 - sifstime - ah->slottime; 1118 ctstimeout += 48 - sifstime - ah->slottime; 1119 } 1120 1121 ath9k_hw_set_sifs_time(ah, sifstime); 1122 ath9k_hw_setslottime(ah, slottime); 1123 ath9k_hw_set_ack_timeout(ah, acktimeout); 1124 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1125 if (ah->globaltxtimeout != (u32) -1) 1126 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1127 1128 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1129 REG_RMW(ah, AR_USEC, 1130 (common->clockrate - 1) | 1131 SM(rx_lat, AR_USEC_RX_LAT) | 1132 SM(tx_lat, AR_USEC_TX_LAT), 1133 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1134 1135} 1136EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1137 1138void ath9k_hw_deinit(struct ath_hw *ah) 1139{ 1140 struct ath_common *common = ath9k_hw_common(ah); 1141 1142 if (common->state < ATH_HW_INITIALIZED) 1143 return; 1144 1145 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1146} 1147EXPORT_SYMBOL(ath9k_hw_deinit); 1148 1149/*******/ 1150/* INI */ 1151/*******/ 1152 1153u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1154{ 1155 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1156 1157 if (IS_CHAN_2GHZ(chan)) 1158 ctl |= CTL_11G; 1159 else 1160 ctl |= CTL_11A; 1161 1162 return ctl; 1163} 1164 1165/****************************************/ 1166/* Reset and Channel Switching Routines */ 1167/****************************************/ 1168 1169static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1170{ 1171 struct ath_common *common = ath9k_hw_common(ah); 1172 int txbuf_size; 1173 1174 ENABLE_REGWRITE_BUFFER(ah); 1175 1176 /* 1177 * set AHB_MODE not to do cacheline prefetches 1178 */ 1179 if (!AR_SREV_9300_20_OR_LATER(ah)) 1180 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1181 1182 /* 1183 * let mac dma reads be in 128 byte chunks 1184 */ 1185 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1186 1187 REGWRITE_BUFFER_FLUSH(ah); 1188 1189 /* 1190 * Restore TX Trigger Level to its pre-reset value. 1191 * The initial value depends on whether aggregation is enabled, and is 1192 * adjusted whenever underruns are detected. 1193 */ 1194 if (!AR_SREV_9300_20_OR_LATER(ah)) 1195 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1196 1197 ENABLE_REGWRITE_BUFFER(ah); 1198 1199 /* 1200 * let mac dma writes be in 128 byte chunks 1201 */ 1202 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1203 1204 /* 1205 * Setup receive FIFO threshold to hold off TX activities 1206 */ 1207 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1208 1209 if (AR_SREV_9300_20_OR_LATER(ah)) { 1210 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1211 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1212 1213 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1214 ah->caps.rx_status_len); 1215 } 1216 1217 /* 1218 * reduce the number of usable entries in PCU TXBUF to avoid 1219 * wrap around issues. 1220 */ 1221 if (AR_SREV_9285(ah)) { 1222 /* For AR9285 the number of Fifos are reduced to half. 1223 * So set the usable tx buf size also to half to 1224 * avoid data/delimiter underruns 1225 */ 1226 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; 1227 } else if (AR_SREV_9340_13_OR_LATER(ah)) { 1228 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ 1229 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; 1230 } else { 1231 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; 1232 } 1233 1234 if (!AR_SREV_9271(ah)) 1235 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); 1236 1237 REGWRITE_BUFFER_FLUSH(ah); 1238 1239 if (AR_SREV_9300_20_OR_LATER(ah)) 1240 ath9k_hw_reset_txstatus_ring(ah); 1241} 1242 1243static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1244{ 1245 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1246 u32 set = AR_STA_ID1_KSRCH_MODE; 1247 1248 switch (opmode) { 1249 case NL80211_IFTYPE_ADHOC: 1250 set |= AR_STA_ID1_ADHOC; 1251 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1252 break; 1253 case NL80211_IFTYPE_MESH_POINT: 1254 case NL80211_IFTYPE_AP: 1255 set |= AR_STA_ID1_STA_AP; 1256 /* fall through */ 1257 case NL80211_IFTYPE_STATION: 1258 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1259 break; 1260 default: 1261 if (!ah->is_monitoring) 1262 set = 0; 1263 break; 1264 } 1265 REG_RMW(ah, AR_STA_ID1, set, mask); 1266} 1267 1268void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1269 u32 *coef_mantissa, u32 *coef_exponent) 1270{ 1271 u32 coef_exp, coef_man; 1272 1273 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1274 if ((coef_scaled >> coef_exp) & 0x1) 1275 break; 1276 1277 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1278 1279 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1280 1281 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1282 *coef_exponent = coef_exp - 16; 1283} 1284 1285static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1286{ 1287 u32 rst_flags; 1288 u32 tmpReg; 1289 1290 if (AR_SREV_9100(ah)) { 1291 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1292 AR_RTC_DERIVED_CLK_PERIOD, 1); 1293 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1294 } 1295 1296 ENABLE_REGWRITE_BUFFER(ah); 1297 1298 if (AR_SREV_9300_20_OR_LATER(ah)) { 1299 REG_WRITE(ah, AR_WA, ah->WARegVal); 1300 udelay(10); 1301 } 1302 1303 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1304 AR_RTC_FORCE_WAKE_ON_INT); 1305 1306 if (AR_SREV_9100(ah)) { 1307 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1308 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1309 } else { 1310 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1311 if (AR_SREV_9340(ah)) 1312 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; 1313 else 1314 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | 1315 AR_INTR_SYNC_RADM_CPL_TIMEOUT; 1316 1317 if (tmpReg) { 1318 u32 val; 1319 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1320 1321 val = AR_RC_HOSTIF; 1322 if (!AR_SREV_9300_20_OR_LATER(ah)) 1323 val |= AR_RC_AHB; 1324 REG_WRITE(ah, AR_RC, val); 1325 1326 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1327 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1328 1329 rst_flags = AR_RTC_RC_MAC_WARM; 1330 if (type == ATH9K_RESET_COLD) 1331 rst_flags |= AR_RTC_RC_MAC_COLD; 1332 } 1333 1334 if (AR_SREV_9330(ah)) { 1335 int npend = 0; 1336 int i; 1337 1338 /* AR9330 WAR: 1339 * call external reset function to reset WMAC if: 1340 * - doing a cold reset 1341 * - we have pending frames in the TX queues 1342 */ 1343 1344 for (i = 0; i < AR_NUM_QCU; i++) { 1345 npend = ath9k_hw_numtxpending(ah, i); 1346 if (npend) 1347 break; 1348 } 1349 1350 if (ah->external_reset && 1351 (npend || type == ATH9K_RESET_COLD)) { 1352 int reset_err = 0; 1353 1354 ath_dbg(ath9k_hw_common(ah), RESET, 1355 "reset MAC via external reset\n"); 1356 1357 reset_err = ah->external_reset(); 1358 if (reset_err) { 1359 ath_err(ath9k_hw_common(ah), 1360 "External reset failed, err=%d\n", 1361 reset_err); 1362 return false; 1363 } 1364 1365 REG_WRITE(ah, AR_RTC_RESET, 1); 1366 } 1367 } 1368 1369 if (ath9k_hw_mci_is_enabled(ah)) 1370 ar9003_mci_check_gpm_offset(ah); 1371 1372 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1373 1374 REGWRITE_BUFFER_FLUSH(ah); 1375 1376 udelay(50); 1377 1378 REG_WRITE(ah, AR_RTC_RC, 0); 1379 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1380 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1381 return false; 1382 } 1383 1384 if (!AR_SREV_9100(ah)) 1385 REG_WRITE(ah, AR_RC, 0); 1386 1387 if (AR_SREV_9100(ah)) 1388 udelay(50); 1389 1390 return true; 1391} 1392 1393static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1394{ 1395 ENABLE_REGWRITE_BUFFER(ah); 1396 1397 if (AR_SREV_9300_20_OR_LATER(ah)) { 1398 REG_WRITE(ah, AR_WA, ah->WARegVal); 1399 udelay(10); 1400 } 1401 1402 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1403 AR_RTC_FORCE_WAKE_ON_INT); 1404 1405 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1406 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1407 1408 REG_WRITE(ah, AR_RTC_RESET, 0); 1409 1410 REGWRITE_BUFFER_FLUSH(ah); 1411 1412 if (!AR_SREV_9300_20_OR_LATER(ah)) 1413 udelay(2); 1414 1415 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1416 REG_WRITE(ah, AR_RC, 0); 1417 1418 REG_WRITE(ah, AR_RTC_RESET, 1); 1419 1420 if (!ath9k_hw_wait(ah, 1421 AR_RTC_STATUS, 1422 AR_RTC_STATUS_M, 1423 AR_RTC_STATUS_ON, 1424 AH_WAIT_TIMEOUT)) { 1425 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1426 return false; 1427 } 1428 1429 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1430} 1431 1432static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1433{ 1434 bool ret = false; 1435 1436 if (AR_SREV_9300_20_OR_LATER(ah)) { 1437 REG_WRITE(ah, AR_WA, ah->WARegVal); 1438 udelay(10); 1439 } 1440 1441 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1442 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1443 1444 if (!ah->reset_power_on) 1445 type = ATH9K_RESET_POWER_ON; 1446 1447 switch (type) { 1448 case ATH9K_RESET_POWER_ON: 1449 ret = ath9k_hw_set_reset_power_on(ah); 1450 if (ret) 1451 ah->reset_power_on = true; 1452 break; 1453 case ATH9K_RESET_WARM: 1454 case ATH9K_RESET_COLD: 1455 ret = ath9k_hw_set_reset(ah, type); 1456 break; 1457 default: 1458 break; 1459 } 1460 1461 return ret; 1462} 1463 1464static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1465 struct ath9k_channel *chan) 1466{ 1467 int reset_type = ATH9K_RESET_WARM; 1468 1469 if (AR_SREV_9280(ah)) { 1470 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1471 reset_type = ATH9K_RESET_POWER_ON; 1472 else 1473 reset_type = ATH9K_RESET_COLD; 1474 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || 1475 (REG_READ(ah, AR_CR) & AR_CR_RXE)) 1476 reset_type = ATH9K_RESET_COLD; 1477 1478 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1479 return false; 1480 1481 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1482 return false; 1483 1484 ah->chip_fullsleep = false; 1485 1486 if (AR_SREV_9330(ah)) 1487 ar9003_hw_internal_regulator_apply(ah); 1488 ath9k_hw_init_pll(ah, chan); 1489 ath9k_hw_set_rfmode(ah, chan); 1490 1491 return true; 1492} 1493 1494static bool ath9k_hw_channel_change(struct ath_hw *ah, 1495 struct ath9k_channel *chan) 1496{ 1497 struct ath_common *common = ath9k_hw_common(ah); 1498 struct ath9k_hw_capabilities *pCap = &ah->caps; 1499 bool band_switch = false, mode_diff = false; 1500 u8 ini_reloaded = 0; 1501 u32 qnum; 1502 int r; 1503 1504 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { 1505 band_switch = IS_CHAN_5GHZ(ah->curchan) != IS_CHAN_5GHZ(chan); 1506 mode_diff = (chan->channelFlags != ah->curchan->channelFlags); 1507 } 1508 1509 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1510 if (ath9k_hw_numtxpending(ah, qnum)) { 1511 ath_dbg(common, QUEUE, 1512 "Transmit frames pending on queue %d\n", qnum); 1513 return false; 1514 } 1515 } 1516 1517 if (!ath9k_hw_rfbus_req(ah)) { 1518 ath_err(common, "Could not kill baseband RX\n"); 1519 return false; 1520 } 1521 1522 if (band_switch || mode_diff) { 1523 ath9k_hw_mark_phy_inactive(ah); 1524 udelay(5); 1525 1526 if (band_switch) 1527 ath9k_hw_init_pll(ah, chan); 1528 1529 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1530 ath_err(common, "Failed to do fast channel change\n"); 1531 return false; 1532 } 1533 } 1534 1535 ath9k_hw_set_channel_regs(ah, chan); 1536 1537 r = ath9k_hw_rf_set_freq(ah, chan); 1538 if (r) { 1539 ath_err(common, "Failed to set channel\n"); 1540 return false; 1541 } 1542 ath9k_hw_set_clockrate(ah); 1543 ath9k_hw_apply_txpower(ah, chan, false); 1544 1545 ath9k_hw_set_delta_slope(ah, chan); 1546 ath9k_hw_spur_mitigate_freq(ah, chan); 1547 1548 if (band_switch || ini_reloaded) 1549 ah->eep_ops->set_board_values(ah, chan); 1550 1551 ath9k_hw_init_bb(ah, chan); 1552 ath9k_hw_rfbus_done(ah); 1553 1554 if (band_switch || ini_reloaded) { 1555 ah->ah_flags |= AH_FASTCC; 1556 ath9k_hw_init_cal(ah, chan); 1557 ah->ah_flags &= ~AH_FASTCC; 1558 } 1559 1560 return true; 1561} 1562 1563static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1564{ 1565 u32 gpio_mask = ah->gpio_mask; 1566 int i; 1567 1568 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1569 if (!(gpio_mask & 1)) 1570 continue; 1571 1572 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1573 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1574 } 1575} 1576 1577static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states, 1578 int *hang_state, int *hang_pos) 1579{ 1580 static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */ 1581 u32 chain_state, dcs_pos, i; 1582 1583 for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) { 1584 chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f; 1585 for (i = 0; i < 3; i++) { 1586 if (chain_state == dcu_chain_state[i]) { 1587 *hang_state = chain_state; 1588 *hang_pos = dcs_pos; 1589 return true; 1590 } 1591 } 1592 } 1593 return false; 1594} 1595 1596#define DCU_COMPLETE_STATE 1 1597#define DCU_COMPLETE_STATE_MASK 0x3 1598#define NUM_STATUS_READS 50 1599static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah) 1600{ 1601 u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4; 1602 u32 i, hang_pos, hang_state, num_state = 6; 1603 1604 comp_state = REG_READ(ah, AR_DMADBG_6); 1605 1606 if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) { 1607 ath_dbg(ath9k_hw_common(ah), RESET, 1608 "MAC Hang signature not found at DCU complete\n"); 1609 return false; 1610 } 1611 1612 chain_state = REG_READ(ah, dcs_reg); 1613 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos)) 1614 goto hang_check_iter; 1615 1616 dcs_reg = AR_DMADBG_5; 1617 num_state = 4; 1618 chain_state = REG_READ(ah, dcs_reg); 1619 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos)) 1620 goto hang_check_iter; 1621 1622 ath_dbg(ath9k_hw_common(ah), RESET, 1623 "MAC Hang signature 1 not found\n"); 1624 return false; 1625 1626hang_check_iter: 1627 ath_dbg(ath9k_hw_common(ah), RESET, 1628 "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n", 1629 chain_state, comp_state, hang_state, hang_pos); 1630 1631 for (i = 0; i < NUM_STATUS_READS; i++) { 1632 chain_state = REG_READ(ah, dcs_reg); 1633 chain_state = (chain_state >> (5 * hang_pos)) & 0x1f; 1634 comp_state = REG_READ(ah, AR_DMADBG_6); 1635 1636 if (((comp_state & DCU_COMPLETE_STATE_MASK) != 1637 DCU_COMPLETE_STATE) || 1638 (chain_state != hang_state)) 1639 return false; 1640 } 1641 1642 ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n"); 1643 1644 return true; 1645} 1646 1647void ath9k_hw_check_nav(struct ath_hw *ah) 1648{ 1649 struct ath_common *common = ath9k_hw_common(ah); 1650 u32 val; 1651 1652 val = REG_READ(ah, AR_NAV); 1653 if (val != 0xdeadbeef && val > 0x7fff) { 1654 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); 1655 REG_WRITE(ah, AR_NAV, 0); 1656 } 1657} 1658EXPORT_SYMBOL(ath9k_hw_check_nav); 1659 1660bool ath9k_hw_check_alive(struct ath_hw *ah) 1661{ 1662 int count = 50; 1663 u32 reg; 1664 1665 if (AR_SREV_9300(ah)) 1666 return !ath9k_hw_detect_mac_hang(ah); 1667 1668 if (AR_SREV_9285_12_OR_LATER(ah)) 1669 return true; 1670 1671 do { 1672 reg = REG_READ(ah, AR_OBS_BUS_1); 1673 1674 if ((reg & 0x7E7FFFEF) == 0x00702400) 1675 continue; 1676 1677 switch (reg & 0x7E000B00) { 1678 case 0x1E000000: 1679 case 0x52000B00: 1680 case 0x18000B00: 1681 continue; 1682 default: 1683 return true; 1684 } 1685 } while (count-- > 0); 1686 1687 return false; 1688} 1689EXPORT_SYMBOL(ath9k_hw_check_alive); 1690 1691static void ath9k_hw_init_mfp(struct ath_hw *ah) 1692{ 1693 /* Setup MFP options for CCMP */ 1694 if (AR_SREV_9280_20_OR_LATER(ah)) { 1695 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1696 * frames when constructing CCMP AAD. */ 1697 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1698 0xc7ff); 1699 ah->sw_mgmt_crypto = false; 1700 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1701 /* Disable hardware crypto for management frames */ 1702 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1703 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1704 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1705 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1706 ah->sw_mgmt_crypto = true; 1707 } else { 1708 ah->sw_mgmt_crypto = true; 1709 } 1710} 1711 1712static void ath9k_hw_reset_opmode(struct ath_hw *ah, 1713 u32 macStaId1, u32 saveDefAntenna) 1714{ 1715 struct ath_common *common = ath9k_hw_common(ah); 1716 1717 ENABLE_REGWRITE_BUFFER(ah); 1718 1719 REG_RMW(ah, AR_STA_ID1, macStaId1 1720 | AR_STA_ID1_RTS_USE_DEF 1721 | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 1722 | ah->sta_id1_defaults, 1723 ~AR_STA_ID1_SADH_MASK); 1724 ath_hw_setbssidmask(common); 1725 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1726 ath9k_hw_write_associd(ah); 1727 REG_WRITE(ah, AR_ISR, ~0); 1728 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1729 1730 REGWRITE_BUFFER_FLUSH(ah); 1731 1732 ath9k_hw_set_operating_mode(ah, ah->opmode); 1733} 1734 1735static void ath9k_hw_init_queues(struct ath_hw *ah) 1736{ 1737 int i; 1738 1739 ENABLE_REGWRITE_BUFFER(ah); 1740 1741 for (i = 0; i < AR_NUM_DCU; i++) 1742 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1743 1744 REGWRITE_BUFFER_FLUSH(ah); 1745 1746 ah->intr_txqs = 0; 1747 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1748 ath9k_hw_resettxqueue(ah, i); 1749} 1750 1751/* 1752 * For big endian systems turn on swapping for descriptors 1753 */ 1754static void ath9k_hw_init_desc(struct ath_hw *ah) 1755{ 1756 struct ath_common *common = ath9k_hw_common(ah); 1757 1758 if (AR_SREV_9100(ah)) { 1759 u32 mask; 1760 mask = REG_READ(ah, AR_CFG); 1761 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1762 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1763 mask); 1764 } else { 1765 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1766 REG_WRITE(ah, AR_CFG, mask); 1767 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1768 REG_READ(ah, AR_CFG)); 1769 } 1770 } else { 1771 if (common->bus_ops->ath_bus_type == ATH_USB) { 1772 /* Configure AR9271 target WLAN */ 1773 if (AR_SREV_9271(ah)) 1774 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1775 else 1776 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1777 } 1778#ifdef __BIG_ENDIAN 1779 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 1780 AR_SREV_9550(ah)) 1781 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1782 else 1783 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1784#endif 1785 } 1786} 1787 1788/* 1789 * Fast channel change: 1790 * (Change synthesizer based on channel freq without resetting chip) 1791 */ 1792static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1793{ 1794 struct ath_common *common = ath9k_hw_common(ah); 1795 struct ath9k_hw_capabilities *pCap = &ah->caps; 1796 int ret; 1797 1798 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1799 goto fail; 1800 1801 if (ah->chip_fullsleep) 1802 goto fail; 1803 1804 if (!ah->curchan) 1805 goto fail; 1806 1807 if (chan->channel == ah->curchan->channel) 1808 goto fail; 1809 1810 if ((ah->curchan->channelFlags | chan->channelFlags) & 1811 (CHANNEL_HALF | CHANNEL_QUARTER)) 1812 goto fail; 1813 1814 /* 1815 * If cross-band fcc is not supoprted, bail out if channelFlags differ. 1816 */ 1817 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && 1818 chan->channelFlags != ah->curchan->channelFlags) 1819 goto fail; 1820 1821 if (!ath9k_hw_check_alive(ah)) 1822 goto fail; 1823 1824 /* 1825 * For AR9462, make sure that calibration data for 1826 * re-using are present. 1827 */ 1828 if (AR_SREV_9462(ah) && (ah->caldata && 1829 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || 1830 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || 1831 !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) 1832 goto fail; 1833 1834 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1835 ah->curchan->channel, chan->channel); 1836 1837 ret = ath9k_hw_channel_change(ah, chan); 1838 if (!ret) 1839 goto fail; 1840 1841 if (ath9k_hw_mci_is_enabled(ah)) 1842 ar9003_mci_2g5g_switch(ah, false); 1843 1844 ath9k_hw_loadnf(ah, ah->curchan); 1845 ath9k_hw_start_nfcal(ah, true); 1846 1847 if (AR_SREV_9271(ah)) 1848 ar9002_hw_load_ani_reg(ah, chan); 1849 1850 return 0; 1851fail: 1852 return -EINVAL; 1853} 1854 1855int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1856 struct ath9k_hw_cal_data *caldata, bool fastcc) 1857{ 1858 struct ath_common *common = ath9k_hw_common(ah); 1859 u32 saveLedState; 1860 u32 saveDefAntenna; 1861 u32 macStaId1; 1862 u64 tsf = 0; 1863 int r; 1864 bool start_mci_reset = false; 1865 bool save_fullsleep = ah->chip_fullsleep; 1866 1867 if (ath9k_hw_mci_is_enabled(ah)) { 1868 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1869 if (start_mci_reset) 1870 return 0; 1871 } 1872 1873 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1874 return -EIO; 1875 1876 if (ah->curchan && !ah->chip_fullsleep) 1877 ath9k_hw_getnf(ah, ah->curchan); 1878 1879 ah->caldata = caldata; 1880 if (caldata && (chan->channel != caldata->channel || 1881 chan->channelFlags != caldata->channelFlags)) { 1882 /* Operating channel changed, reset channel calibration data */ 1883 memset(caldata, 0, sizeof(*caldata)); 1884 ath9k_init_nfcal_hist_buffer(ah, chan); 1885 } else if (caldata) { 1886 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); 1887 } 1888 ah->noise = ath9k_hw_getchan_noise(ah, chan); 1889 1890 if (fastcc) { 1891 r = ath9k_hw_do_fastcc(ah, chan); 1892 if (!r) 1893 return r; 1894 } 1895 1896 if (ath9k_hw_mci_is_enabled(ah)) 1897 ar9003_mci_stop_bt(ah, save_fullsleep); 1898 1899 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1900 if (saveDefAntenna == 0) 1901 saveDefAntenna = 1; 1902 1903 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1904 1905 /* For chips on which RTC reset is done, save TSF before it gets cleared */ 1906 if (AR_SREV_9100(ah) || 1907 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) 1908 tsf = ath9k_hw_gettsf64(ah); 1909 1910 saveLedState = REG_READ(ah, AR_CFG_LED) & 1911 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1912 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1913 1914 ath9k_hw_mark_phy_inactive(ah); 1915 1916 ah->paprd_table_write_done = false; 1917 1918 /* Only required on the first reset */ 1919 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1920 REG_WRITE(ah, 1921 AR9271_RESET_POWER_DOWN_CONTROL, 1922 AR9271_RADIO_RF_RST); 1923 udelay(50); 1924 } 1925 1926 if (!ath9k_hw_chip_reset(ah, chan)) { 1927 ath_err(common, "Chip reset failed\n"); 1928 return -EINVAL; 1929 } 1930 1931 /* Only required on the first reset */ 1932 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1933 ah->htc_reset_init = false; 1934 REG_WRITE(ah, 1935 AR9271_RESET_POWER_DOWN_CONTROL, 1936 AR9271_GATE_MAC_CTL); 1937 udelay(50); 1938 } 1939 1940 /* Restore TSF */ 1941 if (tsf) 1942 ath9k_hw_settsf64(ah, tsf); 1943 1944 if (AR_SREV_9280_20_OR_LATER(ah)) 1945 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1946 1947 if (!AR_SREV_9300_20_OR_LATER(ah)) 1948 ar9002_hw_enable_async_fifo(ah); 1949 1950 r = ath9k_hw_process_ini(ah, chan); 1951 if (r) 1952 return r; 1953 1954 if (ath9k_hw_mci_is_enabled(ah)) 1955 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1956 1957 /* 1958 * Some AR91xx SoC devices frequently fail to accept TSF writes 1959 * right after the chip reset. When that happens, write a new 1960 * value after the initvals have been applied, with an offset 1961 * based on measured time difference 1962 */ 1963 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1964 tsf += 1500; 1965 ath9k_hw_settsf64(ah, tsf); 1966 } 1967 1968 ath9k_hw_init_mfp(ah); 1969 1970 ath9k_hw_set_delta_slope(ah, chan); 1971 ath9k_hw_spur_mitigate_freq(ah, chan); 1972 ah->eep_ops->set_board_values(ah, chan); 1973 1974 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); 1975 1976 r = ath9k_hw_rf_set_freq(ah, chan); 1977 if (r) 1978 return r; 1979 1980 ath9k_hw_set_clockrate(ah); 1981 1982 ath9k_hw_init_queues(ah); 1983 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1984 ath9k_hw_ani_cache_ini_regs(ah); 1985 ath9k_hw_init_qos(ah); 1986 1987 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1988 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1989 1990 ath9k_hw_init_global_settings(ah); 1991 1992 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1993 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1994 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1995 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1996 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1997 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1998 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1999 } 2000 2001 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 2002 2003 ath9k_hw_set_dma(ah); 2004 2005 if (!ath9k_hw_mci_is_enabled(ah)) 2006 REG_WRITE(ah, AR_OBS, 8); 2007 2008 if (ah->config.rx_intr_mitigation) { 2009 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 2010 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 2011 } 2012 2013 if (ah->config.tx_intr_mitigation) { 2014 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 2015 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 2016 } 2017 2018 ath9k_hw_init_bb(ah, chan); 2019 2020 if (caldata) { 2021 clear_bit(TXIQCAL_DONE, &caldata->cal_flags); 2022 clear_bit(TXCLCAL_DONE, &caldata->cal_flags); 2023 } 2024 if (!ath9k_hw_init_cal(ah, chan)) 2025 return -EIO; 2026 2027 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) 2028 return -EIO; 2029 2030 ENABLE_REGWRITE_BUFFER(ah); 2031 2032 ath9k_hw_restore_chainmask(ah); 2033 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 2034 2035 REGWRITE_BUFFER_FLUSH(ah); 2036 2037 ath9k_hw_init_desc(ah); 2038 2039 if (ath9k_hw_btcoex_is_enabled(ah)) 2040 ath9k_hw_btcoex_enable(ah); 2041 2042 if (ath9k_hw_mci_is_enabled(ah)) 2043 ar9003_mci_check_bt(ah); 2044 2045 ath9k_hw_loadnf(ah, chan); 2046 ath9k_hw_start_nfcal(ah, true); 2047 2048 if (AR_SREV_9300_20_OR_LATER(ah)) { 2049 ar9003_hw_bb_watchdog_config(ah); 2050 ar9003_hw_disable_phy_restart(ah); 2051 } 2052 2053 ath9k_hw_apply_gpio_override(ah); 2054 2055 if (AR_SREV_9565(ah) && common->bt_ant_diversity) 2056 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 2057 2058 return 0; 2059} 2060EXPORT_SYMBOL(ath9k_hw_reset); 2061 2062/******************************/ 2063/* Power Management (Chipset) */ 2064/******************************/ 2065 2066/* 2067 * Notify Power Mgt is disabled in self-generated frames. 2068 * If requested, force chip to sleep. 2069 */ 2070static void ath9k_set_power_sleep(struct ath_hw *ah) 2071{ 2072 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2073 2074 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2075 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); 2076 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); 2077 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); 2078 /* xxx Required for WLAN only case ? */ 2079 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 2080 udelay(100); 2081 } 2082 2083 /* 2084 * Clear the RTC force wake bit to allow the 2085 * mac to go to sleep. 2086 */ 2087 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2088 2089 if (ath9k_hw_mci_is_enabled(ah)) 2090 udelay(100); 2091 2092 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 2093 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 2094 2095 /* Shutdown chip. Active low */ 2096 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 2097 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 2098 udelay(2); 2099 } 2100 2101 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 2102 if (AR_SREV_9300_20_OR_LATER(ah)) 2103 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2104} 2105 2106/* 2107 * Notify Power Management is enabled in self-generating 2108 * frames. If request, set power mode of chip to 2109 * auto/normal. Duration in units of 128us (1/8 TU). 2110 */ 2111static void ath9k_set_power_network_sleep(struct ath_hw *ah) 2112{ 2113 struct ath9k_hw_capabilities *pCap = &ah->caps; 2114 2115 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2116 2117 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2118 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 2119 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2120 AR_RTC_FORCE_WAKE_ON_INT); 2121 } else { 2122 2123 /* When chip goes into network sleep, it could be waken 2124 * up by MCI_INT interrupt caused by BT's HW messages 2125 * (LNA_xxx, CONT_xxx) which chould be in a very fast 2126 * rate (~100us). This will cause chip to leave and 2127 * re-enter network sleep mode frequently, which in 2128 * consequence will have WLAN MCI HW to generate lots of 2129 * SYS_WAKING and SYS_SLEEPING messages which will make 2130 * BT CPU to busy to process. 2131 */ 2132 if (ath9k_hw_mci_is_enabled(ah)) 2133 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 2134 AR_MCI_INTERRUPT_RX_HW_MSG_MASK); 2135 /* 2136 * Clear the RTC force wake bit to allow the 2137 * mac to go to sleep. 2138 */ 2139 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2140 2141 if (ath9k_hw_mci_is_enabled(ah)) 2142 udelay(30); 2143 } 2144 2145 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 2146 if (AR_SREV_9300_20_OR_LATER(ah)) 2147 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2148} 2149 2150static bool ath9k_hw_set_power_awake(struct ath_hw *ah) 2151{ 2152 u32 val; 2153 int i; 2154 2155 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 2156 if (AR_SREV_9300_20_OR_LATER(ah)) { 2157 REG_WRITE(ah, AR_WA, ah->WARegVal); 2158 udelay(10); 2159 } 2160 2161 if ((REG_READ(ah, AR_RTC_STATUS) & 2162 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2163 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 2164 return false; 2165 } 2166 if (!AR_SREV_9300_20_OR_LATER(ah)) 2167 ath9k_hw_init_pll(ah, NULL); 2168 } 2169 if (AR_SREV_9100(ah)) 2170 REG_SET_BIT(ah, AR_RTC_RESET, 2171 AR_RTC_RESET_EN); 2172 2173 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2174 AR_RTC_FORCE_WAKE_EN); 2175 udelay(50); 2176 2177 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2178 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2179 if (val == AR_RTC_STATUS_ON) 2180 break; 2181 udelay(50); 2182 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2183 AR_RTC_FORCE_WAKE_EN); 2184 } 2185 if (i == 0) { 2186 ath_err(ath9k_hw_common(ah), 2187 "Failed to wakeup in %uus\n", 2188 POWER_UP_TIME / 20); 2189 return false; 2190 } 2191 2192 if (ath9k_hw_mci_is_enabled(ah)) 2193 ar9003_mci_set_power_awake(ah); 2194 2195 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2196 2197 return true; 2198} 2199 2200bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2201{ 2202 struct ath_common *common = ath9k_hw_common(ah); 2203 int status = true; 2204 static const char *modes[] = { 2205 "AWAKE", 2206 "FULL-SLEEP", 2207 "NETWORK SLEEP", 2208 "UNDEFINED" 2209 }; 2210 2211 if (ah->power_mode == mode) 2212 return status; 2213 2214 ath_dbg(common, RESET, "%s -> %s\n", 2215 modes[ah->power_mode], modes[mode]); 2216 2217 switch (mode) { 2218 case ATH9K_PM_AWAKE: 2219 status = ath9k_hw_set_power_awake(ah); 2220 break; 2221 case ATH9K_PM_FULL_SLEEP: 2222 if (ath9k_hw_mci_is_enabled(ah)) 2223 ar9003_mci_set_full_sleep(ah); 2224 2225 ath9k_set_power_sleep(ah); 2226 ah->chip_fullsleep = true; 2227 break; 2228 case ATH9K_PM_NETWORK_SLEEP: 2229 ath9k_set_power_network_sleep(ah); 2230 break; 2231 default: 2232 ath_err(common, "Unknown power mode %u\n", mode); 2233 return false; 2234 } 2235 ah->power_mode = mode; 2236 2237 /* 2238 * XXX: If this warning never comes up after a while then 2239 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2240 * ath9k_hw_setpower() return type void. 2241 */ 2242 2243 if (!(ah->ah_flags & AH_UNPLUGGED)) 2244 ATH_DBG_WARN_ON_ONCE(!status); 2245 2246 return status; 2247} 2248EXPORT_SYMBOL(ath9k_hw_setpower); 2249 2250/*******************/ 2251/* Beacon Handling */ 2252/*******************/ 2253 2254void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2255{ 2256 int flags = 0; 2257 2258 ENABLE_REGWRITE_BUFFER(ah); 2259 2260 switch (ah->opmode) { 2261 case NL80211_IFTYPE_ADHOC: 2262 REG_SET_BIT(ah, AR_TXCFG, 2263 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2264 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon + 2265 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1)); 2266 flags |= AR_NDP_TIMER_EN; 2267 case NL80211_IFTYPE_MESH_POINT: 2268 case NL80211_IFTYPE_AP: 2269 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2270 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2271 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2272 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2273 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2274 flags |= 2275 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2276 break; 2277 default: 2278 ath_dbg(ath9k_hw_common(ah), BEACON, 2279 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2280 return; 2281 break; 2282 } 2283 2284 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2285 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2286 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2287 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period); 2288 2289 REGWRITE_BUFFER_FLUSH(ah); 2290 2291 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2292} 2293EXPORT_SYMBOL(ath9k_hw_beaconinit); 2294 2295void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2296 const struct ath9k_beacon_state *bs) 2297{ 2298 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2299 struct ath9k_hw_capabilities *pCap = &ah->caps; 2300 struct ath_common *common = ath9k_hw_common(ah); 2301 2302 ENABLE_REGWRITE_BUFFER(ah); 2303 2304 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 2305 2306 REG_WRITE(ah, AR_BEACON_PERIOD, 2307 TU_TO_USEC(bs->bs_intval)); 2308 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 2309 TU_TO_USEC(bs->bs_intval)); 2310 2311 REGWRITE_BUFFER_FLUSH(ah); 2312 2313 REG_RMW_FIELD(ah, AR_RSSI_THR, 2314 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2315 2316 beaconintval = bs->bs_intval; 2317 2318 if (bs->bs_sleepduration > beaconintval) 2319 beaconintval = bs->bs_sleepduration; 2320 2321 dtimperiod = bs->bs_dtimperiod; 2322 if (bs->bs_sleepduration > dtimperiod) 2323 dtimperiod = bs->bs_sleepduration; 2324 2325 if (beaconintval == dtimperiod) 2326 nextTbtt = bs->bs_nextdtim; 2327 else 2328 nextTbtt = bs->bs_nexttbtt; 2329 2330 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim); 2331 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt); 2332 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval); 2333 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod); 2334 2335 ENABLE_REGWRITE_BUFFER(ah); 2336 2337 REG_WRITE(ah, AR_NEXT_DTIM, 2338 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 2339 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 2340 2341 REG_WRITE(ah, AR_SLEEP1, 2342 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2343 | AR_SLEEP1_ASSUME_DTIM); 2344 2345 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2346 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2347 else 2348 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2349 2350 REG_WRITE(ah, AR_SLEEP2, 2351 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2352 2353 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 2354 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 2355 2356 REGWRITE_BUFFER_FLUSH(ah); 2357 2358 REG_SET_BIT(ah, AR_TIMER_MODE, 2359 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2360 AR_DTIM_TIMER_EN); 2361 2362 /* TSF Out of Range Threshold */ 2363 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2364} 2365EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2366 2367/*******************/ 2368/* HW Capabilities */ 2369/*******************/ 2370 2371static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2372{ 2373 eeprom_chainmask &= chip_chainmask; 2374 if (eeprom_chainmask) 2375 return eeprom_chainmask; 2376 else 2377 return chip_chainmask; 2378} 2379 2380/** 2381 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2382 * @ah: the atheros hardware data structure 2383 * 2384 * We enable DFS support upstream on chipsets which have passed a series 2385 * of tests. The testing requirements are going to be documented. Desired 2386 * test requirements are documented at: 2387 * 2388 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs 2389 * 2390 * Once a new chipset gets properly tested an individual commit can be used 2391 * to document the testing for DFS for that chipset. 2392 */ 2393static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2394{ 2395 2396 switch (ah->hw_version.macVersion) { 2397 /* for temporary testing DFS with 9280 */ 2398 case AR_SREV_VERSION_9280: 2399 /* AR9580 will likely be our first target to get testing on */ 2400 case AR_SREV_VERSION_9580: 2401 return true; 2402 default: 2403 return false; 2404 } 2405} 2406 2407int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2408{ 2409 struct ath9k_hw_capabilities *pCap = &ah->caps; 2410 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2411 struct ath_common *common = ath9k_hw_common(ah); 2412 unsigned int chip_chainmask; 2413 2414 u16 eeval; 2415 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2416 2417 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2418 regulatory->current_rd = eeval; 2419 2420 if (ah->opmode != NL80211_IFTYPE_AP && 2421 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2422 if (regulatory->current_rd == 0x64 || 2423 regulatory->current_rd == 0x65) 2424 regulatory->current_rd += 5; 2425 else if (regulatory->current_rd == 0x41) 2426 regulatory->current_rd = 0x43; 2427 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2428 regulatory->current_rd); 2429 } 2430 2431 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2432 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 2433 ath_err(common, 2434 "no band has been marked as supported in EEPROM\n"); 2435 return -EINVAL; 2436 } 2437 2438 if (eeval & AR5416_OPFLAGS_11A) 2439 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2440 2441 if (eeval & AR5416_OPFLAGS_11G) 2442 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2443 2444 if (AR_SREV_9485(ah) || 2445 AR_SREV_9285(ah) || 2446 AR_SREV_9330(ah) || 2447 AR_SREV_9565(ah)) 2448 chip_chainmask = 1; 2449 else if (AR_SREV_9462(ah)) 2450 chip_chainmask = 3; 2451 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2452 chip_chainmask = 7; 2453 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah)) 2454 chip_chainmask = 3; 2455 else 2456 chip_chainmask = 7; 2457 2458 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2459 /* 2460 * For AR9271 we will temporarilly uses the rx chainmax as read from 2461 * the EEPROM. 2462 */ 2463 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2464 !(eeval & AR5416_OPFLAGS_11A) && 2465 !(AR_SREV_9271(ah))) 2466 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2467 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2468 else if (AR_SREV_9100(ah)) 2469 pCap->rx_chainmask = 0x7; 2470 else 2471 /* Use rx_chainmask from EEPROM. */ 2472 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2473 2474 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask); 2475 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask); 2476 ah->txchainmask = pCap->tx_chainmask; 2477 ah->rxchainmask = pCap->rx_chainmask; 2478 2479 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2480 2481 /* enable key search for every frame in an aggregate */ 2482 if (AR_SREV_9300_20_OR_LATER(ah)) 2483 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2484 2485 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2486 2487 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2488 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2489 else 2490 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2491 2492 if (AR_SREV_9271(ah)) 2493 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2494 else if (AR_DEVID_7010(ah)) 2495 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2496 else if (AR_SREV_9300_20_OR_LATER(ah)) 2497 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2498 else if (AR_SREV_9287_11_OR_LATER(ah)) 2499 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2500 else if (AR_SREV_9285_12_OR_LATER(ah)) 2501 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2502 else if (AR_SREV_9280_20_OR_LATER(ah)) 2503 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2504 else 2505 pCap->num_gpio_pins = AR_NUM_GPIO; 2506 2507 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2508 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2509 else 2510 pCap->rts_aggr_limit = (8 * 1024); 2511 2512#ifdef CONFIG_ATH9K_RFKILL 2513 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2514 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2515 ah->rfkill_gpio = 2516 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2517 ah->rfkill_polarity = 2518 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2519 2520 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2521 } 2522#endif 2523 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2524 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2525 else 2526 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2527 2528 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2529 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2530 else 2531 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2532 2533 if (AR_SREV_9300_20_OR_LATER(ah)) { 2534 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2535 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah)) 2536 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2537 2538 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2539 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2540 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2541 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2542 pCap->txs_len = sizeof(struct ar9003_txs); 2543 } else { 2544 pCap->tx_desc_len = sizeof(struct ath_desc); 2545 if (AR_SREV_9280_20(ah)) 2546 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2547 } 2548 2549 if (AR_SREV_9300_20_OR_LATER(ah)) 2550 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2551 2552 if (AR_SREV_9300_20_OR_LATER(ah)) 2553 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2554 2555 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2556 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2557 2558 if (AR_SREV_9285(ah)) { 2559 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2560 ant_div_ctl1 = 2561 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2562 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { 2563 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2564 ath_info(common, "Enable LNA combining\n"); 2565 } 2566 } 2567 } 2568 2569 if (AR_SREV_9300_20_OR_LATER(ah)) { 2570 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2571 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2572 } 2573 2574 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 2575 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2576 if ((ant_div_ctl1 >> 0x6) == 0x3) { 2577 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2578 ath_info(common, "Enable LNA combining\n"); 2579 } 2580 } 2581 2582 if (ath9k_hw_dfs_tested(ah)) 2583 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2584 2585 tx_chainmask = pCap->tx_chainmask; 2586 rx_chainmask = pCap->rx_chainmask; 2587 while (tx_chainmask || rx_chainmask) { 2588 if (tx_chainmask & BIT(0)) 2589 pCap->max_txchains++; 2590 if (rx_chainmask & BIT(0)) 2591 pCap->max_rxchains++; 2592 2593 tx_chainmask >>= 1; 2594 rx_chainmask >>= 1; 2595 } 2596 2597 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2598 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2599 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2600 2601 if (AR_SREV_9462_20_OR_LATER(ah)) 2602 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2603 } 2604 2605 if (AR_SREV_9462(ah)) 2606 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE; 2607 2608 if (AR_SREV_9300_20_OR_LATER(ah) && 2609 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2610 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2611 2612 /* 2613 * Fast channel change across bands is available 2614 * only for AR9462 and AR9565. 2615 */ 2616 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 2617 pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH; 2618 2619 return 0; 2620} 2621 2622/****************************/ 2623/* GPIO / RFKILL / Antennae */ 2624/****************************/ 2625 2626static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2627 u32 gpio, u32 type) 2628{ 2629 int addr; 2630 u32 gpio_shift, tmp; 2631 2632 if (gpio > 11) 2633 addr = AR_GPIO_OUTPUT_MUX3; 2634 else if (gpio > 5) 2635 addr = AR_GPIO_OUTPUT_MUX2; 2636 else 2637 addr = AR_GPIO_OUTPUT_MUX1; 2638 2639 gpio_shift = (gpio % 6) * 5; 2640 2641 if (AR_SREV_9280_20_OR_LATER(ah) 2642 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2643 REG_RMW(ah, addr, (type << gpio_shift), 2644 (0x1f << gpio_shift)); 2645 } else { 2646 tmp = REG_READ(ah, addr); 2647 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2648 tmp &= ~(0x1f << gpio_shift); 2649 tmp |= (type << gpio_shift); 2650 REG_WRITE(ah, addr, tmp); 2651 } 2652} 2653 2654void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2655{ 2656 u32 gpio_shift; 2657 2658 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2659 2660 if (AR_DEVID_7010(ah)) { 2661 gpio_shift = gpio; 2662 REG_RMW(ah, AR7010_GPIO_OE, 2663 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2664 (AR7010_GPIO_OE_MASK << gpio_shift)); 2665 return; 2666 } 2667 2668 gpio_shift = gpio << 1; 2669 REG_RMW(ah, 2670 AR_GPIO_OE_OUT, 2671 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2672 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2673} 2674EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2675 2676u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2677{ 2678#define MS_REG_READ(x, y) \ 2679 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2680 2681 if (gpio >= ah->caps.num_gpio_pins) 2682 return 0xffffffff; 2683 2684 if (AR_DEVID_7010(ah)) { 2685 u32 val; 2686 val = REG_READ(ah, AR7010_GPIO_IN); 2687 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2688 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2689 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2690 AR_GPIO_BIT(gpio)) != 0; 2691 else if (AR_SREV_9271(ah)) 2692 return MS_REG_READ(AR9271, gpio) != 0; 2693 else if (AR_SREV_9287_11_OR_LATER(ah)) 2694 return MS_REG_READ(AR9287, gpio) != 0; 2695 else if (AR_SREV_9285_12_OR_LATER(ah)) 2696 return MS_REG_READ(AR9285, gpio) != 0; 2697 else if (AR_SREV_9280_20_OR_LATER(ah)) 2698 return MS_REG_READ(AR928X, gpio) != 0; 2699 else 2700 return MS_REG_READ(AR, gpio) != 0; 2701} 2702EXPORT_SYMBOL(ath9k_hw_gpio_get); 2703 2704void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2705 u32 ah_signal_type) 2706{ 2707 u32 gpio_shift; 2708 2709 if (AR_DEVID_7010(ah)) { 2710 gpio_shift = gpio; 2711 REG_RMW(ah, AR7010_GPIO_OE, 2712 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2713 (AR7010_GPIO_OE_MASK << gpio_shift)); 2714 return; 2715 } 2716 2717 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2718 gpio_shift = 2 * gpio; 2719 REG_RMW(ah, 2720 AR_GPIO_OE_OUT, 2721 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2722 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2723} 2724EXPORT_SYMBOL(ath9k_hw_cfg_output); 2725 2726void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2727{ 2728 if (AR_DEVID_7010(ah)) { 2729 val = val ? 0 : 1; 2730 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2731 AR_GPIO_BIT(gpio)); 2732 return; 2733 } 2734 2735 if (AR_SREV_9271(ah)) 2736 val = ~val; 2737 2738 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2739 AR_GPIO_BIT(gpio)); 2740} 2741EXPORT_SYMBOL(ath9k_hw_set_gpio); 2742 2743void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2744{ 2745 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2746} 2747EXPORT_SYMBOL(ath9k_hw_setantenna); 2748 2749/*********************/ 2750/* General Operation */ 2751/*********************/ 2752 2753u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2754{ 2755 u32 bits = REG_READ(ah, AR_RX_FILTER); 2756 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2757 2758 if (phybits & AR_PHY_ERR_RADAR) 2759 bits |= ATH9K_RX_FILTER_PHYRADAR; 2760 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2761 bits |= ATH9K_RX_FILTER_PHYERR; 2762 2763 return bits; 2764} 2765EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2766 2767void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2768{ 2769 u32 phybits; 2770 2771 ENABLE_REGWRITE_BUFFER(ah); 2772 2773 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 2774 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER; 2775 2776 REG_WRITE(ah, AR_RX_FILTER, bits); 2777 2778 phybits = 0; 2779 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2780 phybits |= AR_PHY_ERR_RADAR; 2781 if (bits & ATH9K_RX_FILTER_PHYERR) 2782 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2783 REG_WRITE(ah, AR_PHY_ERR, phybits); 2784 2785 if (phybits) 2786 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2787 else 2788 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2789 2790 REGWRITE_BUFFER_FLUSH(ah); 2791} 2792EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2793 2794bool ath9k_hw_phy_disable(struct ath_hw *ah) 2795{ 2796 if (ath9k_hw_mci_is_enabled(ah)) 2797 ar9003_mci_bt_gain_ctrl(ah); 2798 2799 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2800 return false; 2801 2802 ath9k_hw_init_pll(ah, NULL); 2803 ah->htc_reset_init = true; 2804 return true; 2805} 2806EXPORT_SYMBOL(ath9k_hw_phy_disable); 2807 2808bool ath9k_hw_disable(struct ath_hw *ah) 2809{ 2810 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2811 return false; 2812 2813 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2814 return false; 2815 2816 ath9k_hw_init_pll(ah, NULL); 2817 return true; 2818} 2819EXPORT_SYMBOL(ath9k_hw_disable); 2820 2821static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2822{ 2823 enum eeprom_param gain_param; 2824 2825 if (IS_CHAN_2GHZ(chan)) 2826 gain_param = EEP_ANTENNA_GAIN_2G; 2827 else 2828 gain_param = EEP_ANTENNA_GAIN_5G; 2829 2830 return ah->eep_ops->get_eeprom(ah, gain_param); 2831} 2832 2833void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, 2834 bool test) 2835{ 2836 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2837 struct ieee80211_channel *channel; 2838 int chan_pwr, new_pwr, max_gain; 2839 int ant_gain, ant_reduction = 0; 2840 2841 if (!chan) 2842 return; 2843 2844 channel = chan->chan; 2845 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); 2846 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2847 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2; 2848 2849 ant_gain = get_antenna_gain(ah, chan); 2850 if (ant_gain > max_gain) 2851 ant_reduction = ant_gain - max_gain; 2852 2853 ah->eep_ops->set_txpower(ah, chan, 2854 ath9k_regd_get_ctl(reg, chan), 2855 ant_reduction, new_pwr, test); 2856} 2857 2858void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2859{ 2860 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2861 struct ath9k_channel *chan = ah->curchan; 2862 struct ieee80211_channel *channel = chan->chan; 2863 2864 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); 2865 if (test) 2866 channel->max_power = MAX_RATE_POWER / 2; 2867 2868 ath9k_hw_apply_txpower(ah, chan, test); 2869 2870 if (test) 2871 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2872} 2873EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2874 2875void ath9k_hw_setopmode(struct ath_hw *ah) 2876{ 2877 ath9k_hw_set_operating_mode(ah, ah->opmode); 2878} 2879EXPORT_SYMBOL(ath9k_hw_setopmode); 2880 2881void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2882{ 2883 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2884 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2885} 2886EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2887 2888void ath9k_hw_write_associd(struct ath_hw *ah) 2889{ 2890 struct ath_common *common = ath9k_hw_common(ah); 2891 2892 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2893 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2894 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2895} 2896EXPORT_SYMBOL(ath9k_hw_write_associd); 2897 2898#define ATH9K_MAX_TSF_READ 10 2899 2900u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2901{ 2902 u32 tsf_lower, tsf_upper1, tsf_upper2; 2903 int i; 2904 2905 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2906 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2907 tsf_lower = REG_READ(ah, AR_TSF_L32); 2908 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2909 if (tsf_upper2 == tsf_upper1) 2910 break; 2911 tsf_upper1 = tsf_upper2; 2912 } 2913 2914 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2915 2916 return (((u64)tsf_upper1 << 32) | tsf_lower); 2917} 2918EXPORT_SYMBOL(ath9k_hw_gettsf64); 2919 2920void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2921{ 2922 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2923 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2924} 2925EXPORT_SYMBOL(ath9k_hw_settsf64); 2926 2927void ath9k_hw_reset_tsf(struct ath_hw *ah) 2928{ 2929 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2930 AH_TSF_WRITE_TIMEOUT)) 2931 ath_dbg(ath9k_hw_common(ah), RESET, 2932 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2933 2934 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2935} 2936EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2937 2938void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) 2939{ 2940 if (set) 2941 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2942 else 2943 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2944} 2945EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2946 2947void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) 2948{ 2949 u32 macmode; 2950 2951 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) 2952 macmode = AR_2040_JOINED_RX_CLEAR; 2953 else 2954 macmode = 0; 2955 2956 REG_WRITE(ah, AR_2040_MODE, macmode); 2957} 2958 2959/* HW Generic timers configuration */ 2960 2961static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2962{ 2963 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2964 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2965 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2966 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2967 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2968 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2969 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2970 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2971 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2972 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2973 AR_NDP2_TIMER_MODE, 0x0002}, 2974 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2975 AR_NDP2_TIMER_MODE, 0x0004}, 2976 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2977 AR_NDP2_TIMER_MODE, 0x0008}, 2978 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2979 AR_NDP2_TIMER_MODE, 0x0010}, 2980 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2981 AR_NDP2_TIMER_MODE, 0x0020}, 2982 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2983 AR_NDP2_TIMER_MODE, 0x0040}, 2984 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2985 AR_NDP2_TIMER_MODE, 0x0080} 2986}; 2987 2988/* HW generic timer primitives */ 2989 2990/* compute and clear index of rightmost 1 */ 2991static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) 2992{ 2993 u32 b; 2994 2995 b = *mask; 2996 b &= (0-b); 2997 *mask &= ~b; 2998 b *= debruijn32; 2999 b >>= 27; 3000 3001 return timer_table->gen_timer_index[b]; 3002} 3003 3004u32 ath9k_hw_gettsf32(struct ath_hw *ah) 3005{ 3006 return REG_READ(ah, AR_TSF_L32); 3007} 3008EXPORT_SYMBOL(ath9k_hw_gettsf32); 3009 3010struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 3011 void (*trigger)(void *), 3012 void (*overflow)(void *), 3013 void *arg, 3014 u8 timer_index) 3015{ 3016 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3017 struct ath_gen_timer *timer; 3018 3019 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 3020 if (timer == NULL) 3021 return NULL; 3022 3023 /* allocate a hardware generic timer slot */ 3024 timer_table->timers[timer_index] = timer; 3025 timer->index = timer_index; 3026 timer->trigger = trigger; 3027 timer->overflow = overflow; 3028 timer->arg = arg; 3029 3030 return timer; 3031} 3032EXPORT_SYMBOL(ath_gen_timer_alloc); 3033 3034void ath9k_hw_gen_timer_start(struct ath_hw *ah, 3035 struct ath_gen_timer *timer, 3036 u32 trig_timeout, 3037 u32 timer_period) 3038{ 3039 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3040 u32 tsf, timer_next; 3041 3042 BUG_ON(!timer_period); 3043 3044 set_bit(timer->index, &timer_table->timer_mask.timer_bits); 3045 3046 tsf = ath9k_hw_gettsf32(ah); 3047 3048 timer_next = tsf + trig_timeout; 3049 3050 ath_dbg(ath9k_hw_common(ah), BTCOEX, 3051 "current tsf %x period %x timer_next %x\n", 3052 tsf, timer_period, timer_next); 3053 3054 /* 3055 * Program generic timer registers 3056 */ 3057 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 3058 timer_next); 3059 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 3060 timer_period); 3061 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3062 gen_tmr_configuration[timer->index].mode_mask); 3063 3064 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3065 /* 3066 * Starting from AR9462, each generic timer can select which tsf 3067 * to use. But we still follow the old rule, 0 - 7 use tsf and 3068 * 8 - 15 use tsf2. 3069 */ 3070 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 3071 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3072 (1 << timer->index)); 3073 else 3074 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3075 (1 << timer->index)); 3076 } 3077 3078 /* Enable both trigger and thresh interrupt masks */ 3079 REG_SET_BIT(ah, AR_IMR_S5, 3080 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3081 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3082} 3083EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 3084 3085void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 3086{ 3087 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3088 3089 if ((timer->index < AR_FIRST_NDP_TIMER) || 3090 (timer->index >= ATH_MAX_GEN_TIMER)) { 3091 return; 3092 } 3093 3094 /* Clear generic timer enable bits. */ 3095 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3096 gen_tmr_configuration[timer->index].mode_mask); 3097 3098 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3099 /* 3100 * Need to switch back to TSF if it was using TSF2. 3101 */ 3102 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { 3103 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3104 (1 << timer->index)); 3105 } 3106 } 3107 3108 /* Disable both trigger and thresh interrupt masks */ 3109 REG_CLR_BIT(ah, AR_IMR_S5, 3110 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3111 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3112 3113 clear_bit(timer->index, &timer_table->timer_mask.timer_bits); 3114} 3115EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 3116 3117void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 3118{ 3119 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3120 3121 /* free the hardware generic timer slot */ 3122 timer_table->timers[timer->index] = NULL; 3123 kfree(timer); 3124} 3125EXPORT_SYMBOL(ath_gen_timer_free); 3126 3127/* 3128 * Generic Timer Interrupts handling 3129 */ 3130void ath_gen_timer_isr(struct ath_hw *ah) 3131{ 3132 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3133 struct ath_gen_timer *timer; 3134 struct ath_common *common = ath9k_hw_common(ah); 3135 u32 trigger_mask, thresh_mask, index; 3136 3137 /* get hardware generic timer interrupt status */ 3138 trigger_mask = ah->intr_gen_timer_trigger; 3139 thresh_mask = ah->intr_gen_timer_thresh; 3140 trigger_mask &= timer_table->timer_mask.val; 3141 thresh_mask &= timer_table->timer_mask.val; 3142 3143 trigger_mask &= ~thresh_mask; 3144 3145 while (thresh_mask) { 3146 index = rightmost_index(timer_table, &thresh_mask); 3147 timer = timer_table->timers[index]; 3148 BUG_ON(!timer); 3149 ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n", 3150 index); 3151 timer->overflow(timer->arg); 3152 } 3153 3154 while (trigger_mask) { 3155 index = rightmost_index(timer_table, &trigger_mask); 3156 timer = timer_table->timers[index]; 3157 BUG_ON(!timer); 3158 ath_dbg(common, BTCOEX, 3159 "Gen timer[%d] trigger\n", index); 3160 timer->trigger(timer->arg); 3161 } 3162} 3163EXPORT_SYMBOL(ath_gen_timer_isr); 3164 3165/********/ 3166/* HTC */ 3167/********/ 3168 3169static struct { 3170 u32 version; 3171 const char * name; 3172} ath_mac_bb_names[] = { 3173 /* Devices with external radios */ 3174 { AR_SREV_VERSION_5416_PCI, "5416" }, 3175 { AR_SREV_VERSION_5416_PCIE, "5418" }, 3176 { AR_SREV_VERSION_9100, "9100" }, 3177 { AR_SREV_VERSION_9160, "9160" }, 3178 /* Single-chip solutions */ 3179 { AR_SREV_VERSION_9280, "9280" }, 3180 { AR_SREV_VERSION_9285, "9285" }, 3181 { AR_SREV_VERSION_9287, "9287" }, 3182 { AR_SREV_VERSION_9271, "9271" }, 3183 { AR_SREV_VERSION_9300, "9300" }, 3184 { AR_SREV_VERSION_9330, "9330" }, 3185 { AR_SREV_VERSION_9340, "9340" }, 3186 { AR_SREV_VERSION_9485, "9485" }, 3187 { AR_SREV_VERSION_9462, "9462" }, 3188 { AR_SREV_VERSION_9550, "9550" }, 3189 { AR_SREV_VERSION_9565, "9565" }, 3190}; 3191 3192/* For devices with external radios */ 3193static struct { 3194 u16 version; 3195 const char * name; 3196} ath_rf_names[] = { 3197 { 0, "5133" }, 3198 { AR_RAD5133_SREV_MAJOR, "5133" }, 3199 { AR_RAD5122_SREV_MAJOR, "5122" }, 3200 { AR_RAD2133_SREV_MAJOR, "2133" }, 3201 { AR_RAD2122_SREV_MAJOR, "2122" } 3202}; 3203 3204/* 3205 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3206 */ 3207static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3208{ 3209 int i; 3210 3211 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3212 if (ath_mac_bb_names[i].version == mac_bb_version) { 3213 return ath_mac_bb_names[i].name; 3214 } 3215 } 3216 3217 return "????"; 3218} 3219 3220/* 3221 * Return the RF name. "????" is returned if the RF is unknown. 3222 * Used for devices with external radios. 3223 */ 3224static const char *ath9k_hw_rf_name(u16 rf_version) 3225{ 3226 int i; 3227 3228 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3229 if (ath_rf_names[i].version == rf_version) { 3230 return ath_rf_names[i].name; 3231 } 3232 } 3233 3234 return "????"; 3235} 3236 3237void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3238{ 3239 int used; 3240 3241 /* chipsets >= AR9280 are single-chip */ 3242 if (AR_SREV_9280_20_OR_LATER(ah)) { 3243 used = scnprintf(hw_name, len, 3244 "Atheros AR%s Rev:%x", 3245 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3246 ah->hw_version.macRev); 3247 } 3248 else { 3249 used = scnprintf(hw_name, len, 3250 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3251 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3252 ah->hw_version.macRev, 3253 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev 3254 & AR_RADIO_SREV_MAJOR)), 3255 ah->hw_version.phyRev); 3256 } 3257 3258 hw_name[used] = '\0'; 3259} 3260EXPORT_SYMBOL(ath9k_hw_name); 3261