hw.c revision f934c4d9de85571ff792360aa72dd26e00e1afc7
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <asm/unaligned.h>
19
20#include "hw.h"
21#include "rc.h"
22#include "initvals.h"
23
24#define ATH9K_CLOCK_RATE_CCK		22
25#define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26#define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27
28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31			      struct ar5416_eeprom_def *pEepData,
32			      u32 reg, u32 value);
33static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
34static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35
36MODULE_AUTHOR("Atheros Communications");
37MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
38MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
39MODULE_LICENSE("Dual BSD/GPL");
40
41static int __init ath9k_init(void)
42{
43	return 0;
44}
45module_init(ath9k_init);
46
47static void __exit ath9k_exit(void)
48{
49	return;
50}
51module_exit(ath9k_exit);
52
53/********************/
54/* Helper Functions */
55/********************/
56
57static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
58{
59	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
60
61	if (!ah->curchan) /* should really check for CCK instead */
62		return clks / ATH9K_CLOCK_RATE_CCK;
63	if (conf->channel->band == IEEE80211_BAND_2GHZ)
64		return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
65
66	return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
67}
68
69static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
70{
71	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
72
73	if (conf_is_ht40(conf))
74		return ath9k_hw_mac_usec(ah, clks) / 2;
75	else
76		return ath9k_hw_mac_usec(ah, clks);
77}
78
79static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
80{
81	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
82
83	if (!ah->curchan) /* should really check for CCK instead */
84		return usecs *ATH9K_CLOCK_RATE_CCK;
85	if (conf->channel->band == IEEE80211_BAND_2GHZ)
86		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
87	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
88}
89
90static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
91{
92	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
93
94	if (conf_is_ht40(conf))
95		return ath9k_hw_mac_clks(ah, usecs) * 2;
96	else
97		return ath9k_hw_mac_clks(ah, usecs);
98}
99
100bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
101{
102	int i;
103
104	BUG_ON(timeout < AH_TIME_QUANTUM);
105
106	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
107		if ((REG_READ(ah, reg) & mask) == val)
108			return true;
109
110		udelay(AH_TIME_QUANTUM);
111	}
112
113	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
114		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
115		  timeout, reg, REG_READ(ah, reg), mask, val);
116
117	return false;
118}
119EXPORT_SYMBOL(ath9k_hw_wait);
120
121u32 ath9k_hw_reverse_bits(u32 val, u32 n)
122{
123	u32 retval;
124	int i;
125
126	for (i = 0, retval = 0; i < n; i++) {
127		retval = (retval << 1) | (val & 1);
128		val >>= 1;
129	}
130	return retval;
131}
132
133bool ath9k_get_channel_edges(struct ath_hw *ah,
134			     u16 flags, u16 *low,
135			     u16 *high)
136{
137	struct ath9k_hw_capabilities *pCap = &ah->caps;
138
139	if (flags & CHANNEL_5GHZ) {
140		*low = pCap->low_5ghz_chan;
141		*high = pCap->high_5ghz_chan;
142		return true;
143	}
144	if ((flags & CHANNEL_2GHZ)) {
145		*low = pCap->low_2ghz_chan;
146		*high = pCap->high_2ghz_chan;
147		return true;
148	}
149	return false;
150}
151
152u16 ath9k_hw_computetxtime(struct ath_hw *ah,
153			   const struct ath_rate_table *rates,
154			   u32 frameLen, u16 rateix,
155			   bool shortPreamble)
156{
157	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
158	u32 kbps;
159
160	kbps = rates->info[rateix].ratekbps;
161
162	if (kbps == 0)
163		return 0;
164
165	switch (rates->info[rateix].phy) {
166	case WLAN_RC_PHY_CCK:
167		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
168		if (shortPreamble && rates->info[rateix].short_preamble)
169			phyTime >>= 1;
170		numBits = frameLen << 3;
171		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
172		break;
173	case WLAN_RC_PHY_OFDM:
174		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
175			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
176			numBits = OFDM_PLCP_BITS + (frameLen << 3);
177			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
178			txTime = OFDM_SIFS_TIME_QUARTER
179				+ OFDM_PREAMBLE_TIME_QUARTER
180				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
181		} else if (ah->curchan &&
182			   IS_CHAN_HALF_RATE(ah->curchan)) {
183			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
184			numBits = OFDM_PLCP_BITS + (frameLen << 3);
185			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
186			txTime = OFDM_SIFS_TIME_HALF +
187				OFDM_PREAMBLE_TIME_HALF
188				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
189		} else {
190			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
191			numBits = OFDM_PLCP_BITS + (frameLen << 3);
192			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
194				+ (numSymbols * OFDM_SYMBOL_TIME);
195		}
196		break;
197	default:
198		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
199			  "Unknown phy %u (rate ix %u)\n",
200			  rates->info[rateix].phy, rateix);
201		txTime = 0;
202		break;
203	}
204
205	return txTime;
206}
207EXPORT_SYMBOL(ath9k_hw_computetxtime);
208
209void ath9k_hw_get_channel_centers(struct ath_hw *ah,
210				  struct ath9k_channel *chan,
211				  struct chan_centers *centers)
212{
213	int8_t extoff;
214
215	if (!IS_CHAN_HT40(chan)) {
216		centers->ctl_center = centers->ext_center =
217			centers->synth_center = chan->channel;
218		return;
219	}
220
221	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
222	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
223		centers->synth_center =
224			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
225		extoff = 1;
226	} else {
227		centers->synth_center =
228			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
229		extoff = -1;
230	}
231
232	centers->ctl_center =
233		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
234	/* 25 MHz spacing is supported by hw but not on upper layers */
235	centers->ext_center =
236		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
237}
238
239/******************/
240/* Chip Revisions */
241/******************/
242
243static void ath9k_hw_read_revisions(struct ath_hw *ah)
244{
245	u32 val;
246
247	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
248
249	if (val == 0xFF) {
250		val = REG_READ(ah, AR_SREV);
251		ah->hw_version.macVersion =
252			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
253		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
254		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
255	} else {
256		if (!AR_SREV_9100(ah))
257			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
258
259		ah->hw_version.macRev = val & AR_SREV_REVISION;
260
261		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
262			ah->is_pciexpress = true;
263	}
264}
265
266static int ath9k_hw_get_radiorev(struct ath_hw *ah)
267{
268	u32 val;
269	int i;
270
271	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
272
273	for (i = 0; i < 8; i++)
274		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
275	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
276	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
277
278	return ath9k_hw_reverse_bits(val, 8);
279}
280
281/************************************/
282/* HW Attach, Detach, Init Routines */
283/************************************/
284
285static void ath9k_hw_disablepcie(struct ath_hw *ah)
286{
287	if (AR_SREV_9100(ah))
288		return;
289
290	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
291	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
292	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
293	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
294	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
295	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
296	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
297	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
298	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
299
300	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
301}
302
303static bool ath9k_hw_chip_test(struct ath_hw *ah)
304{
305	struct ath_common *common = ath9k_hw_common(ah);
306	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
307	u32 regHold[2];
308	u32 patternData[4] = { 0x55555555,
309			       0xaaaaaaaa,
310			       0x66666666,
311			       0x99999999 };
312	int i, j;
313
314	for (i = 0; i < 2; i++) {
315		u32 addr = regAddr[i];
316		u32 wrData, rdData;
317
318		regHold[i] = REG_READ(ah, addr);
319		for (j = 0; j < 0x100; j++) {
320			wrData = (j << 16) | j;
321			REG_WRITE(ah, addr, wrData);
322			rdData = REG_READ(ah, addr);
323			if (rdData != wrData) {
324				ath_print(common, ATH_DBG_FATAL,
325					  "address test failed "
326					  "addr: 0x%08x - wr:0x%08x != "
327					  "rd:0x%08x\n",
328					  addr, wrData, rdData);
329				return false;
330			}
331		}
332		for (j = 0; j < 4; j++) {
333			wrData = patternData[j];
334			REG_WRITE(ah, addr, wrData);
335			rdData = REG_READ(ah, addr);
336			if (wrData != rdData) {
337				ath_print(common, ATH_DBG_FATAL,
338					  "address test failed "
339					  "addr: 0x%08x - wr:0x%08x != "
340					  "rd:0x%08x\n",
341					  addr, wrData, rdData);
342				return false;
343			}
344		}
345		REG_WRITE(ah, regAddr[i], regHold[i]);
346	}
347	udelay(100);
348
349	return true;
350}
351
352static const char *ath9k_hw_devname(u16 devid)
353{
354	switch (devid) {
355	case AR5416_DEVID_PCI:
356		return "Atheros 5416";
357	case AR5416_DEVID_PCIE:
358		return "Atheros 5418";
359	case AR9160_DEVID_PCI:
360		return "Atheros 9160";
361	case AR5416_AR9100_DEVID:
362		return "Atheros 9100";
363	case AR9280_DEVID_PCI:
364	case AR9280_DEVID_PCIE:
365		return "Atheros 9280";
366	case AR9285_DEVID_PCIE:
367		return "Atheros 9285";
368	case AR5416_DEVID_AR9287_PCI:
369	case AR5416_DEVID_AR9287_PCIE:
370		return "Atheros 9287";
371	}
372
373	return NULL;
374}
375
376static void ath9k_hw_init_config(struct ath_hw *ah)
377{
378	int i;
379
380	ah->config.dma_beacon_response_time = 2;
381	ah->config.sw_beacon_response_time = 10;
382	ah->config.additional_swba_backoff = 0;
383	ah->config.ack_6mb = 0x0;
384	ah->config.cwm_ignore_extcca = 0;
385	ah->config.pcie_powersave_enable = 0;
386	ah->config.pcie_clock_req = 0;
387	ah->config.pcie_waen = 0;
388	ah->config.analog_shiftreg = 1;
389	ah->config.ht_enable = 1;
390	ah->config.ofdm_trig_low = 200;
391	ah->config.ofdm_trig_high = 500;
392	ah->config.cck_trig_high = 200;
393	ah->config.cck_trig_low = 100;
394	ah->config.enable_ani = 1;
395	ah->config.diversity_control = ATH9K_ANT_VARIABLE;
396	ah->config.antenna_switch_swap = 0;
397
398	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
399		ah->config.spurchans[i][0] = AR_NO_SPUR;
400		ah->config.spurchans[i][1] = AR_NO_SPUR;
401	}
402
403	ah->config.intr_mitigation = true;
404
405	/*
406	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
407	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
408	 * This means we use it for all AR5416 devices, and the few
409	 * minor PCI AR9280 devices out there.
410	 *
411	 * Serialization is required because these devices do not handle
412	 * well the case of two concurrent reads/writes due to the latency
413	 * involved. During one read/write another read/write can be issued
414	 * on another CPU while the previous read/write may still be working
415	 * on our hardware, if we hit this case the hardware poops in a loop.
416	 * We prevent this by serializing reads and writes.
417	 *
418	 * This issue is not present on PCI-Express devices or pre-AR5416
419	 * devices (legacy, 802.11abg).
420	 */
421	if (num_possible_cpus() > 1)
422		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
423}
424EXPORT_SYMBOL(ath9k_hw_init);
425
426static void ath9k_hw_init_defaults(struct ath_hw *ah)
427{
428	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
429
430	regulatory->country_code = CTRY_DEFAULT;
431	regulatory->power_limit = MAX_RATE_POWER;
432	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
433
434	ah->hw_version.magic = AR5416_MAGIC;
435	ah->hw_version.subvendorid = 0;
436
437	ah->ah_flags = 0;
438	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
439		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
440	if (!AR_SREV_9100(ah))
441		ah->ah_flags = AH_USE_EEPROM;
442
443	ah->atim_window = 0;
444	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
445	ah->beacon_interval = 100;
446	ah->enable_32kHz_clock = DONT_USE_32KHZ;
447	ah->slottime = (u32) -1;
448	ah->acktimeout = (u32) -1;
449	ah->ctstimeout = (u32) -1;
450	ah->globaltxtimeout = (u32) -1;
451
452	ah->gbeacon_rate = 0;
453
454	ah->power_mode = ATH9K_PM_UNDEFINED;
455}
456
457static int ath9k_hw_rfattach(struct ath_hw *ah)
458{
459	bool rfStatus = false;
460	int ecode = 0;
461
462	rfStatus = ath9k_hw_init_rf(ah, &ecode);
463	if (!rfStatus) {
464		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
465			  "RF setup failed, status: %u\n", ecode);
466		return ecode;
467	}
468
469	return 0;
470}
471
472static int ath9k_hw_rf_claim(struct ath_hw *ah)
473{
474	u32 val;
475
476	REG_WRITE(ah, AR_PHY(0), 0x00000007);
477
478	val = ath9k_hw_get_radiorev(ah);
479	switch (val & AR_RADIO_SREV_MAJOR) {
480	case 0:
481		val = AR_RAD5133_SREV_MAJOR;
482		break;
483	case AR_RAD5133_SREV_MAJOR:
484	case AR_RAD5122_SREV_MAJOR:
485	case AR_RAD2133_SREV_MAJOR:
486	case AR_RAD2122_SREV_MAJOR:
487		break;
488	default:
489		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
490			  "Radio Chip Rev 0x%02X not supported\n",
491			  val & AR_RADIO_SREV_MAJOR);
492		return -EOPNOTSUPP;
493	}
494
495	ah->hw_version.analog5GhzRev = val;
496
497	return 0;
498}
499
500static int ath9k_hw_init_macaddr(struct ath_hw *ah)
501{
502	struct ath_common *common = ath9k_hw_common(ah);
503	u32 sum;
504	int i;
505	u16 eeval;
506
507	sum = 0;
508	for (i = 0; i < 3; i++) {
509		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
510		sum += eeval;
511		common->macaddr[2 * i] = eeval >> 8;
512		common->macaddr[2 * i + 1] = eeval & 0xff;
513	}
514	if (sum == 0 || sum == 0xffff * 3)
515		return -EADDRNOTAVAIL;
516
517	return 0;
518}
519
520static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
521{
522	u32 rxgain_type;
523
524	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
525		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
526
527		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
528			INIT_INI_ARRAY(&ah->iniModesRxGain,
529			ar9280Modes_backoff_13db_rxgain_9280_2,
530			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
531		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
532			INIT_INI_ARRAY(&ah->iniModesRxGain,
533			ar9280Modes_backoff_23db_rxgain_9280_2,
534			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
535		else
536			INIT_INI_ARRAY(&ah->iniModesRxGain,
537			ar9280Modes_original_rxgain_9280_2,
538			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
539	} else {
540		INIT_INI_ARRAY(&ah->iniModesRxGain,
541			ar9280Modes_original_rxgain_9280_2,
542			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
543	}
544}
545
546static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
547{
548	u32 txgain_type;
549
550	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
551		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
552
553		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
554			INIT_INI_ARRAY(&ah->iniModesTxGain,
555			ar9280Modes_high_power_tx_gain_9280_2,
556			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
557		else
558			INIT_INI_ARRAY(&ah->iniModesTxGain,
559			ar9280Modes_original_tx_gain_9280_2,
560			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
561	} else {
562		INIT_INI_ARRAY(&ah->iniModesTxGain,
563		ar9280Modes_original_tx_gain_9280_2,
564		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
565	}
566}
567
568static int ath9k_hw_post_init(struct ath_hw *ah)
569{
570	int ecode;
571
572	if (!ath9k_hw_chip_test(ah))
573		return -ENODEV;
574
575	ecode = ath9k_hw_rf_claim(ah);
576	if (ecode != 0)
577		return ecode;
578
579	ecode = ath9k_hw_eeprom_init(ah);
580	if (ecode != 0)
581		return ecode;
582
583	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
584		  "Eeprom VER: %d, REV: %d\n",
585		  ah->eep_ops->get_eeprom_ver(ah),
586		  ah->eep_ops->get_eeprom_rev(ah));
587
588	ecode = ath9k_hw_rfattach(ah);
589	if (ecode != 0)
590		return ecode;
591
592	if (!AR_SREV_9100(ah)) {
593		ath9k_hw_ani_setup(ah);
594		ath9k_hw_ani_init(ah);
595	}
596
597	return 0;
598}
599
600static bool ath9k_hw_devid_supported(u16 devid)
601{
602	switch (devid) {
603	case AR5416_DEVID_PCI:
604	case AR5416_DEVID_PCIE:
605	case AR5416_AR9100_DEVID:
606	case AR9160_DEVID_PCI:
607	case AR9280_DEVID_PCI:
608	case AR9280_DEVID_PCIE:
609	case AR9285_DEVID_PCIE:
610	case AR5416_DEVID_AR9287_PCI:
611	case AR5416_DEVID_AR9287_PCIE:
612	case AR9271_USB:
613		return true;
614	default:
615		break;
616	}
617	return false;
618}
619
620static bool ath9k_hw_macversion_supported(u32 macversion)
621{
622	switch (macversion) {
623	case AR_SREV_VERSION_5416_PCI:
624	case AR_SREV_VERSION_5416_PCIE:
625	case AR_SREV_VERSION_9160:
626	case AR_SREV_VERSION_9100:
627	case AR_SREV_VERSION_9280:
628	case AR_SREV_VERSION_9285:
629	case AR_SREV_VERSION_9287:
630	case AR_SREV_VERSION_9271:
631		return true;
632	default:
633		break;
634	}
635	return false;
636}
637
638static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
639{
640	if (AR_SREV_9160_10_OR_LATER(ah)) {
641		if (AR_SREV_9280_10_OR_LATER(ah)) {
642			ah->iq_caldata.calData = &iq_cal_single_sample;
643			ah->adcgain_caldata.calData =
644				&adc_gain_cal_single_sample;
645			ah->adcdc_caldata.calData =
646				&adc_dc_cal_single_sample;
647			ah->adcdc_calinitdata.calData =
648				&adc_init_dc_cal;
649		} else {
650			ah->iq_caldata.calData = &iq_cal_multi_sample;
651			ah->adcgain_caldata.calData =
652				&adc_gain_cal_multi_sample;
653			ah->adcdc_caldata.calData =
654				&adc_dc_cal_multi_sample;
655			ah->adcdc_calinitdata.calData =
656				&adc_init_dc_cal;
657		}
658		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
659	}
660}
661
662static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
663{
664	if (AR_SREV_9271(ah)) {
665		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
666			       ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
667		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
668			       ARRAY_SIZE(ar9271Common_9271_1_0), 2);
669		return;
670	}
671
672	if (AR_SREV_9287_11_OR_LATER(ah)) {
673		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
674				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
675		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
676				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
677		if (ah->config.pcie_clock_req)
678			INIT_INI_ARRAY(&ah->iniPcieSerdes,
679			ar9287PciePhy_clkreq_off_L1_9287_1_1,
680			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
681		else
682			INIT_INI_ARRAY(&ah->iniPcieSerdes,
683			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
684			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
685					2);
686	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
687		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
688				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
689		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
690				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
691
692		if (ah->config.pcie_clock_req)
693			INIT_INI_ARRAY(&ah->iniPcieSerdes,
694			ar9287PciePhy_clkreq_off_L1_9287_1_0,
695			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
696		else
697			INIT_INI_ARRAY(&ah->iniPcieSerdes,
698			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
699			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
700				  2);
701	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
702
703
704		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
705			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
706		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
707			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
708
709		if (ah->config.pcie_clock_req) {
710			INIT_INI_ARRAY(&ah->iniPcieSerdes,
711			ar9285PciePhy_clkreq_off_L1_9285_1_2,
712			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
713		} else {
714			INIT_INI_ARRAY(&ah->iniPcieSerdes,
715			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
716			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
717				  2);
718		}
719	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
720		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
721			       ARRAY_SIZE(ar9285Modes_9285), 6);
722		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
723			       ARRAY_SIZE(ar9285Common_9285), 2);
724
725		if (ah->config.pcie_clock_req) {
726			INIT_INI_ARRAY(&ah->iniPcieSerdes,
727			ar9285PciePhy_clkreq_off_L1_9285,
728			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
729		} else {
730			INIT_INI_ARRAY(&ah->iniPcieSerdes,
731			ar9285PciePhy_clkreq_always_on_L1_9285,
732			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
733		}
734	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
735		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
736			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
737		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
738			       ARRAY_SIZE(ar9280Common_9280_2), 2);
739
740		if (ah->config.pcie_clock_req) {
741			INIT_INI_ARRAY(&ah->iniPcieSerdes,
742			       ar9280PciePhy_clkreq_off_L1_9280,
743			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
744		} else {
745			INIT_INI_ARRAY(&ah->iniPcieSerdes,
746			       ar9280PciePhy_clkreq_always_on_L1_9280,
747			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
748		}
749		INIT_INI_ARRAY(&ah->iniModesAdditional,
750			       ar9280Modes_fast_clock_9280_2,
751			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
752	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
753		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
754			       ARRAY_SIZE(ar9280Modes_9280), 6);
755		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
756			       ARRAY_SIZE(ar9280Common_9280), 2);
757	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
758		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
759			       ARRAY_SIZE(ar5416Modes_9160), 6);
760		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
761			       ARRAY_SIZE(ar5416Common_9160), 2);
762		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
763			       ARRAY_SIZE(ar5416Bank0_9160), 2);
764		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
765			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
766		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
767			       ARRAY_SIZE(ar5416Bank1_9160), 2);
768		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
769			       ARRAY_SIZE(ar5416Bank2_9160), 2);
770		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
771			       ARRAY_SIZE(ar5416Bank3_9160), 3);
772		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
773			       ARRAY_SIZE(ar5416Bank6_9160), 3);
774		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
775			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
776		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
777			       ARRAY_SIZE(ar5416Bank7_9160), 2);
778		if (AR_SREV_9160_11(ah)) {
779			INIT_INI_ARRAY(&ah->iniAddac,
780				       ar5416Addac_91601_1,
781				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
782		} else {
783			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
784				       ARRAY_SIZE(ar5416Addac_9160), 2);
785		}
786	} else if (AR_SREV_9100_OR_LATER(ah)) {
787		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
788			       ARRAY_SIZE(ar5416Modes_9100), 6);
789		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
790			       ARRAY_SIZE(ar5416Common_9100), 2);
791		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
792			       ARRAY_SIZE(ar5416Bank0_9100), 2);
793		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
794			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
795		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
796			       ARRAY_SIZE(ar5416Bank1_9100), 2);
797		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
798			       ARRAY_SIZE(ar5416Bank2_9100), 2);
799		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
800			       ARRAY_SIZE(ar5416Bank3_9100), 3);
801		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
802			       ARRAY_SIZE(ar5416Bank6_9100), 3);
803		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
804			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
805		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
806			       ARRAY_SIZE(ar5416Bank7_9100), 2);
807		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
808			       ARRAY_SIZE(ar5416Addac_9100), 2);
809	} else {
810		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
811			       ARRAY_SIZE(ar5416Modes), 6);
812		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
813			       ARRAY_SIZE(ar5416Common), 2);
814		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
815			       ARRAY_SIZE(ar5416Bank0), 2);
816		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
817			       ARRAY_SIZE(ar5416BB_RfGain), 3);
818		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
819			       ARRAY_SIZE(ar5416Bank1), 2);
820		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
821			       ARRAY_SIZE(ar5416Bank2), 2);
822		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
823			       ARRAY_SIZE(ar5416Bank3), 3);
824		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
825			       ARRAY_SIZE(ar5416Bank6), 3);
826		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
827			       ARRAY_SIZE(ar5416Bank6TPC), 3);
828		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
829			       ARRAY_SIZE(ar5416Bank7), 2);
830		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
831			       ARRAY_SIZE(ar5416Addac), 2);
832	}
833}
834
835static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
836{
837	if (AR_SREV_9287_11_OR_LATER(ah))
838		INIT_INI_ARRAY(&ah->iniModesRxGain,
839		ar9287Modes_rx_gain_9287_1_1,
840		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
841	else if (AR_SREV_9287_10(ah))
842		INIT_INI_ARRAY(&ah->iniModesRxGain,
843		ar9287Modes_rx_gain_9287_1_0,
844		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
845	else if (AR_SREV_9280_20(ah))
846		ath9k_hw_init_rxgain_ini(ah);
847
848	if (AR_SREV_9287_11_OR_LATER(ah)) {
849		INIT_INI_ARRAY(&ah->iniModesTxGain,
850		ar9287Modes_tx_gain_9287_1_1,
851		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
852	} else if (AR_SREV_9287_10(ah)) {
853		INIT_INI_ARRAY(&ah->iniModesTxGain,
854		ar9287Modes_tx_gain_9287_1_0,
855		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
856	} else if (AR_SREV_9280_20(ah)) {
857		ath9k_hw_init_txgain_ini(ah);
858	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
859		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
860
861		/* txgain table */
862		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
863			INIT_INI_ARRAY(&ah->iniModesTxGain,
864			ar9285Modes_high_power_tx_gain_9285_1_2,
865			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
866		} else {
867			INIT_INI_ARRAY(&ah->iniModesTxGain,
868			ar9285Modes_original_tx_gain_9285_1_2,
869			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
870		}
871
872	}
873}
874
875static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
876{
877	u32 i, j;
878
879	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
880	    test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
881
882		/* EEPROM Fixup */
883		for (i = 0; i < ah->iniModes.ia_rows; i++) {
884			u32 reg = INI_RA(&ah->iniModes, i, 0);
885
886			for (j = 1; j < ah->iniModes.ia_columns; j++) {
887				u32 val = INI_RA(&ah->iniModes, i, j);
888
889				INI_RA(&ah->iniModes, i, j) =
890					ath9k_hw_ini_fixup(ah,
891							   &ah->eeprom.def,
892							   reg, val);
893			}
894		}
895	}
896}
897
898int ath9k_hw_init(struct ath_hw *ah)
899{
900	struct ath_common *common = ath9k_hw_common(ah);
901	int r = 0;
902
903	if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
904		ath_print(common, ATH_DBG_FATAL,
905			  "Unsupported device ID: 0x%0x\n",
906			  ah->hw_version.devid);
907		return -EOPNOTSUPP;
908	}
909
910	ath9k_hw_init_defaults(ah);
911	ath9k_hw_init_config(ah);
912
913	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
914		ath_print(common, ATH_DBG_FATAL,
915			  "Couldn't reset chip\n");
916		return -EIO;
917	}
918
919	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
920		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
921		return -EIO;
922	}
923
924	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
925		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
926		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
927			ah->config.serialize_regmode =
928				SER_REG_MODE_ON;
929		} else {
930			ah->config.serialize_regmode =
931				SER_REG_MODE_OFF;
932		}
933	}
934
935	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
936		ah->config.serialize_regmode);
937
938	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
939		ath_print(common, ATH_DBG_FATAL,
940			  "Mac Chip Rev 0x%02x.%x is not supported by "
941			  "this driver\n", ah->hw_version.macVersion,
942			  ah->hw_version.macRev);
943		return -EOPNOTSUPP;
944	}
945
946	if (AR_SREV_9100(ah)) {
947		ah->iq_caldata.calData = &iq_cal_multi_sample;
948		ah->supp_cals = IQ_MISMATCH_CAL;
949		ah->is_pciexpress = false;
950	}
951
952	if (AR_SREV_9271(ah))
953		ah->is_pciexpress = false;
954
955	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
956
957	ath9k_hw_init_cal_settings(ah);
958
959	ah->ani_function = ATH9K_ANI_ALL;
960	if (AR_SREV_9280_10_OR_LATER(ah))
961		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
962
963	ath9k_hw_init_mode_regs(ah);
964
965	if (ah->is_pciexpress)
966		ath9k_hw_configpcipowersave(ah, 0, 0);
967	else
968		ath9k_hw_disablepcie(ah);
969
970	/* Support for Japan ch.14 (2484) spread */
971	if (AR_SREV_9287_11_OR_LATER(ah)) {
972		INIT_INI_ARRAY(&ah->iniCckfirNormal,
973		       ar9287Common_normal_cck_fir_coeff_92871_1,
974		       ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
975		INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
976		       ar9287Common_japan_2484_cck_fir_coeff_92871_1,
977		       ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
978	}
979
980	r = ath9k_hw_post_init(ah);
981	if (r)
982		return r;
983
984	ath9k_hw_init_mode_gain_regs(ah);
985	ath9k_hw_fill_cap_info(ah);
986	ath9k_hw_init_11a_eeprom_fix(ah);
987
988	r = ath9k_hw_init_macaddr(ah);
989	if (r) {
990		ath_print(common, ATH_DBG_FATAL,
991			  "Failed to initialize MAC address\n");
992		return r;
993	}
994
995	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
996		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
997	else
998		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
999
1000	ath9k_init_nfcal_hist_buffer(ah);
1001
1002	common->state = ATH_HW_INITIALIZED;
1003
1004	return 0;
1005}
1006
1007static void ath9k_hw_init_bb(struct ath_hw *ah,
1008			     struct ath9k_channel *chan)
1009{
1010	u32 synthDelay;
1011
1012	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1013	if (IS_CHAN_B(chan))
1014		synthDelay = (4 * synthDelay) / 22;
1015	else
1016		synthDelay /= 10;
1017
1018	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1019
1020	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1021}
1022
1023static void ath9k_hw_init_qos(struct ath_hw *ah)
1024{
1025	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1026	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1027
1028	REG_WRITE(ah, AR_QOS_NO_ACK,
1029		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1030		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1031		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1032
1033	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1034	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1035	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1036	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1037	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1038}
1039
1040static void ath9k_hw_init_pll(struct ath_hw *ah,
1041			      struct ath9k_channel *chan)
1042{
1043	u32 pll;
1044
1045	if (AR_SREV_9100(ah)) {
1046		if (chan && IS_CHAN_5GHZ(chan))
1047			pll = 0x1450;
1048		else
1049			pll = 0x1458;
1050	} else {
1051		if (AR_SREV_9280_10_OR_LATER(ah)) {
1052			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1053
1054			if (chan && IS_CHAN_HALF_RATE(chan))
1055				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1056			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1057				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1058
1059			if (chan && IS_CHAN_5GHZ(chan)) {
1060				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1061
1062
1063				if (AR_SREV_9280_20(ah)) {
1064					if (((chan->channel % 20) == 0)
1065					    || ((chan->channel % 10) == 0))
1066						pll = 0x2850;
1067					else
1068						pll = 0x142c;
1069				}
1070			} else {
1071				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1072			}
1073
1074		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1075
1076			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1077
1078			if (chan && IS_CHAN_HALF_RATE(chan))
1079				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1080			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1081				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1082
1083			if (chan && IS_CHAN_5GHZ(chan))
1084				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1085			else
1086				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1087		} else {
1088			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1089
1090			if (chan && IS_CHAN_HALF_RATE(chan))
1091				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1092			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1093				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1094
1095			if (chan && IS_CHAN_5GHZ(chan))
1096				pll |= SM(0xa, AR_RTC_PLL_DIV);
1097			else
1098				pll |= SM(0xb, AR_RTC_PLL_DIV);
1099		}
1100	}
1101	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1102
1103	udelay(RTC_PLL_SETTLE_DELAY);
1104
1105	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1106}
1107
1108static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1109{
1110	int rx_chainmask, tx_chainmask;
1111
1112	rx_chainmask = ah->rxchainmask;
1113	tx_chainmask = ah->txchainmask;
1114
1115	switch (rx_chainmask) {
1116	case 0x5:
1117		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1118			    AR_PHY_SWAP_ALT_CHAIN);
1119	case 0x3:
1120		if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1121			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1122			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1123			break;
1124		}
1125	case 0x1:
1126	case 0x2:
1127	case 0x7:
1128		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1129		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1130		break;
1131	default:
1132		break;
1133	}
1134
1135	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1136	if (tx_chainmask == 0x5) {
1137		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1138			    AR_PHY_SWAP_ALT_CHAIN);
1139	}
1140	if (AR_SREV_9100(ah))
1141		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1142			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1143}
1144
1145static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1146					  enum nl80211_iftype opmode)
1147{
1148	ah->mask_reg = AR_IMR_TXERR |
1149		AR_IMR_TXURN |
1150		AR_IMR_RXERR |
1151		AR_IMR_RXORN |
1152		AR_IMR_BCNMISC;
1153
1154	if (ah->config.intr_mitigation)
1155		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1156	else
1157		ah->mask_reg |= AR_IMR_RXOK;
1158
1159	ah->mask_reg |= AR_IMR_TXOK;
1160
1161	if (opmode == NL80211_IFTYPE_AP)
1162		ah->mask_reg |= AR_IMR_MIB;
1163
1164	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1165	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1166
1167	if (!AR_SREV_9100(ah)) {
1168		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1169		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1170		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1171	}
1172}
1173
1174static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1175{
1176	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1177		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1178			  "bad ack timeout %u\n", us);
1179		ah->acktimeout = (u32) -1;
1180		return false;
1181	} else {
1182		REG_RMW_FIELD(ah, AR_TIME_OUT,
1183			      AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1184		ah->acktimeout = us;
1185		return true;
1186	}
1187}
1188
1189static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1190{
1191	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1192		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1193			  "bad cts timeout %u\n", us);
1194		ah->ctstimeout = (u32) -1;
1195		return false;
1196	} else {
1197		REG_RMW_FIELD(ah, AR_TIME_OUT,
1198			      AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1199		ah->ctstimeout = us;
1200		return true;
1201	}
1202}
1203
1204static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1205{
1206	if (tu > 0xFFFF) {
1207		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1208			  "bad global tx timeout %u\n", tu);
1209		ah->globaltxtimeout = (u32) -1;
1210		return false;
1211	} else {
1212		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1213		ah->globaltxtimeout = tu;
1214		return true;
1215	}
1216}
1217
1218static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1219{
1220	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1221		  ah->misc_mode);
1222
1223	if (ah->misc_mode != 0)
1224		REG_WRITE(ah, AR_PCU_MISC,
1225			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1226	if (ah->slottime != (u32) -1)
1227		ath9k_hw_setslottime(ah, ah->slottime);
1228	if (ah->acktimeout != (u32) -1)
1229		ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1230	if (ah->ctstimeout != (u32) -1)
1231		ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1232	if (ah->globaltxtimeout != (u32) -1)
1233		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1234}
1235
1236const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1237{
1238	return vendorid == ATHEROS_VENDOR_ID ?
1239		ath9k_hw_devname(devid) : NULL;
1240}
1241
1242void ath9k_hw_detach(struct ath_hw *ah)
1243{
1244	struct ath_common *common = ath9k_hw_common(ah);
1245
1246	if (common->state <= ATH_HW_INITIALIZED)
1247		goto free_hw;
1248
1249	if (!AR_SREV_9100(ah))
1250		ath9k_hw_ani_disable(ah);
1251
1252	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1253
1254free_hw:
1255	ath9k_hw_rf_free(ah);
1256	kfree(ah);
1257	ah = NULL;
1258}
1259EXPORT_SYMBOL(ath9k_hw_detach);
1260
1261/*******/
1262/* INI */
1263/*******/
1264
1265static void ath9k_hw_override_ini(struct ath_hw *ah,
1266				  struct ath9k_channel *chan)
1267{
1268	u32 val;
1269
1270	if (AR_SREV_9271(ah)) {
1271		/*
1272		 * Enable spectral scan to solution for issues with stuck
1273		 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1274		 * AR9271 1.1
1275		 */
1276		if (AR_SREV_9271_10(ah)) {
1277			val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1278			REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1279		}
1280		else if (AR_SREV_9271_11(ah))
1281			/*
1282			 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1283			 * present on AR9271 1.1
1284			 */
1285			REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1286		return;
1287	}
1288
1289	/*
1290	 * Set the RX_ABORT and RX_DIS and clear if off only after
1291	 * RXE is set for MAC. This prevents frames with corrupted
1292	 * descriptor status.
1293	 */
1294	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1295
1296	if (AR_SREV_9280_10_OR_LATER(ah)) {
1297		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1298			       (~AR_PCU_MISC_MODE2_HWWAR1);
1299
1300		if (AR_SREV_9287_10_OR_LATER(ah))
1301			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1302
1303		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1304	}
1305
1306	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1307	    AR_SREV_9280_10_OR_LATER(ah))
1308		return;
1309	/*
1310	 * Disable BB clock gating
1311	 * Necessary to avoid issues on AR5416 2.0
1312	 */
1313	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1314}
1315
1316static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1317			      struct ar5416_eeprom_def *pEepData,
1318			      u32 reg, u32 value)
1319{
1320	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1321	struct ath_common *common = ath9k_hw_common(ah);
1322
1323	switch (ah->hw_version.devid) {
1324	case AR9280_DEVID_PCI:
1325		if (reg == 0x7894) {
1326			ath_print(common, ATH_DBG_EEPROM,
1327				"ini VAL: %x  EEPROM: %x\n", value,
1328				(pBase->version & 0xff));
1329
1330			if ((pBase->version & 0xff) > 0x0a) {
1331				ath_print(common, ATH_DBG_EEPROM,
1332					  "PWDCLKIND: %d\n",
1333					  pBase->pwdclkind);
1334				value &= ~AR_AN_TOP2_PWDCLKIND;
1335				value |= AR_AN_TOP2_PWDCLKIND &
1336					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1337			} else {
1338				ath_print(common, ATH_DBG_EEPROM,
1339					  "PWDCLKIND Earlier Rev\n");
1340			}
1341
1342			ath_print(common, ATH_DBG_EEPROM,
1343				  "final ini VAL: %x\n", value);
1344		}
1345		break;
1346	}
1347
1348	return value;
1349}
1350
1351static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1352			      struct ar5416_eeprom_def *pEepData,
1353			      u32 reg, u32 value)
1354{
1355	if (ah->eep_map == EEP_MAP_4KBITS)
1356		return value;
1357	else
1358		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1359}
1360
1361static void ath9k_olc_init(struct ath_hw *ah)
1362{
1363	u32 i;
1364
1365	if (OLC_FOR_AR9287_10_LATER) {
1366		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1367				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1368		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1369				AR9287_AN_TXPC0_TXPCMODE,
1370				AR9287_AN_TXPC0_TXPCMODE_S,
1371				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1372		udelay(100);
1373	} else {
1374		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1375			ah->originalGain[i] =
1376				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1377						AR_PHY_TX_GAIN);
1378		ah->PDADCdelta = 0;
1379	}
1380}
1381
1382static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1383			      struct ath9k_channel *chan)
1384{
1385	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1386
1387	if (IS_CHAN_B(chan))
1388		ctl |= CTL_11B;
1389	else if (IS_CHAN_G(chan))
1390		ctl |= CTL_11G;
1391	else
1392		ctl |= CTL_11A;
1393
1394	return ctl;
1395}
1396
1397static int ath9k_hw_process_ini(struct ath_hw *ah,
1398				struct ath9k_channel *chan)
1399{
1400	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1401	int i, regWrites = 0;
1402	struct ieee80211_channel *channel = chan->chan;
1403	u32 modesIndex, freqIndex;
1404
1405	switch (chan->chanmode) {
1406	case CHANNEL_A:
1407	case CHANNEL_A_HT20:
1408		modesIndex = 1;
1409		freqIndex = 1;
1410		break;
1411	case CHANNEL_A_HT40PLUS:
1412	case CHANNEL_A_HT40MINUS:
1413		modesIndex = 2;
1414		freqIndex = 1;
1415		break;
1416	case CHANNEL_G:
1417	case CHANNEL_G_HT20:
1418	case CHANNEL_B:
1419		modesIndex = 4;
1420		freqIndex = 2;
1421		break;
1422	case CHANNEL_G_HT40PLUS:
1423	case CHANNEL_G_HT40MINUS:
1424		modesIndex = 3;
1425		freqIndex = 2;
1426		break;
1427
1428	default:
1429		return -EINVAL;
1430	}
1431
1432	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1433	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1434	ah->eep_ops->set_addac(ah, chan);
1435
1436	if (AR_SREV_5416_22_OR_LATER(ah)) {
1437		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1438	} else {
1439		struct ar5416IniArray temp;
1440		u32 addacSize =
1441			sizeof(u32) * ah->iniAddac.ia_rows *
1442			ah->iniAddac.ia_columns;
1443
1444		memcpy(ah->addac5416_21,
1445		       ah->iniAddac.ia_array, addacSize);
1446
1447		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1448
1449		temp.ia_array = ah->addac5416_21;
1450		temp.ia_columns = ah->iniAddac.ia_columns;
1451		temp.ia_rows = ah->iniAddac.ia_rows;
1452		REG_WRITE_ARRAY(&temp, 1, regWrites);
1453	}
1454
1455	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1456
1457	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1458		u32 reg = INI_RA(&ah->iniModes, i, 0);
1459		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1460
1461		REG_WRITE(ah, reg, val);
1462
1463		if (reg >= 0x7800 && reg < 0x78a0
1464		    && ah->config.analog_shiftreg) {
1465			udelay(100);
1466		}
1467
1468		DO_DELAY(regWrites);
1469	}
1470
1471	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1472		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1473
1474	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1475	    AR_SREV_9287_10_OR_LATER(ah))
1476		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1477
1478	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1479		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1480		u32 val = INI_RA(&ah->iniCommon, i, 1);
1481
1482		REG_WRITE(ah, reg, val);
1483
1484		if (reg >= 0x7800 && reg < 0x78a0
1485		    && ah->config.analog_shiftreg) {
1486			udelay(100);
1487		}
1488
1489		DO_DELAY(regWrites);
1490	}
1491
1492	ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1493
1494	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1495		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1496				regWrites);
1497	}
1498
1499	ath9k_hw_override_ini(ah, chan);
1500	ath9k_hw_set_regs(ah, chan);
1501	ath9k_hw_init_chain_masks(ah);
1502
1503	if (OLC_FOR_AR9280_20_LATER)
1504		ath9k_olc_init(ah);
1505
1506	ah->eep_ops->set_txpower(ah, chan,
1507				 ath9k_regd_get_ctl(regulatory, chan),
1508				 channel->max_antenna_gain * 2,
1509				 channel->max_power * 2,
1510				 min((u32) MAX_RATE_POWER,
1511				 (u32) regulatory->power_limit));
1512
1513	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1514		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1515			  "ar5416SetRfRegs failed\n");
1516		return -EIO;
1517	}
1518
1519	return 0;
1520}
1521
1522/****************************************/
1523/* Reset and Channel Switching Routines */
1524/****************************************/
1525
1526static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1527{
1528	u32 rfMode = 0;
1529
1530	if (chan == NULL)
1531		return;
1532
1533	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1534		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1535
1536	if (!AR_SREV_9280_10_OR_LATER(ah))
1537		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1538			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1539
1540	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1541		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1542
1543	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1544}
1545
1546static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1547{
1548	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1549}
1550
1551static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1552{
1553	u32 regval;
1554
1555	/*
1556	 * set AHB_MODE not to do cacheline prefetches
1557	*/
1558	regval = REG_READ(ah, AR_AHB_MODE);
1559	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1560
1561	/*
1562	 * let mac dma reads be in 128 byte chunks
1563	 */
1564	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1565	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1566
1567	/*
1568	 * Restore TX Trigger Level to its pre-reset value.
1569	 * The initial value depends on whether aggregation is enabled, and is
1570	 * adjusted whenever underruns are detected.
1571	 */
1572	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1573
1574	/*
1575	 * let mac dma writes be in 128 byte chunks
1576	 */
1577	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1578	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1579
1580	/*
1581	 * Setup receive FIFO threshold to hold off TX activities
1582	 */
1583	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1584
1585	/*
1586	 * reduce the number of usable entries in PCU TXBUF to avoid
1587	 * wrap around issues.
1588	 */
1589	if (AR_SREV_9285(ah)) {
1590		/* For AR9285 the number of Fifos are reduced to half.
1591		 * So set the usable tx buf size also to half to
1592		 * avoid data/delimiter underruns
1593		 */
1594		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1595			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1596	} else if (!AR_SREV_9271(ah)) {
1597		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1598			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1599	}
1600}
1601
1602static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1603{
1604	u32 val;
1605
1606	val = REG_READ(ah, AR_STA_ID1);
1607	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1608	switch (opmode) {
1609	case NL80211_IFTYPE_AP:
1610		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1611			  | AR_STA_ID1_KSRCH_MODE);
1612		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1613		break;
1614	case NL80211_IFTYPE_ADHOC:
1615	case NL80211_IFTYPE_MESH_POINT:
1616		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1617			  | AR_STA_ID1_KSRCH_MODE);
1618		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1619		break;
1620	case NL80211_IFTYPE_STATION:
1621	case NL80211_IFTYPE_MONITOR:
1622		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1623		break;
1624	}
1625}
1626
1627static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1628						 u32 coef_scaled,
1629						 u32 *coef_mantissa,
1630						 u32 *coef_exponent)
1631{
1632	u32 coef_exp, coef_man;
1633
1634	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1635		if ((coef_scaled >> coef_exp) & 0x1)
1636			break;
1637
1638	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1639
1640	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1641
1642	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1643	*coef_exponent = coef_exp - 16;
1644}
1645
1646static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1647				     struct ath9k_channel *chan)
1648{
1649	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1650	u32 clockMhzScaled = 0x64000000;
1651	struct chan_centers centers;
1652
1653	if (IS_CHAN_HALF_RATE(chan))
1654		clockMhzScaled = clockMhzScaled >> 1;
1655	else if (IS_CHAN_QUARTER_RATE(chan))
1656		clockMhzScaled = clockMhzScaled >> 2;
1657
1658	ath9k_hw_get_channel_centers(ah, chan, &centers);
1659	coef_scaled = clockMhzScaled / centers.synth_center;
1660
1661	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1662				      &ds_coef_exp);
1663
1664	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1665		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1666	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1667		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1668
1669	coef_scaled = (9 * coef_scaled) / 10;
1670
1671	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1672				      &ds_coef_exp);
1673
1674	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1675		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1676	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1677		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1678}
1679
1680static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1681{
1682	u32 rst_flags;
1683	u32 tmpReg;
1684
1685	if (AR_SREV_9100(ah)) {
1686		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1687		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1688		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1689		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1690		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1691	}
1692
1693	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1694		  AR_RTC_FORCE_WAKE_ON_INT);
1695
1696	if (AR_SREV_9100(ah)) {
1697		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1698			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1699	} else {
1700		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1701		if (tmpReg &
1702		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1703		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1704			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1705			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1706		} else {
1707			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1708		}
1709
1710		rst_flags = AR_RTC_RC_MAC_WARM;
1711		if (type == ATH9K_RESET_COLD)
1712			rst_flags |= AR_RTC_RC_MAC_COLD;
1713	}
1714
1715	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1716	udelay(50);
1717
1718	REG_WRITE(ah, AR_RTC_RC, 0);
1719	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1720		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1721			  "RTC stuck in MAC reset\n");
1722		return false;
1723	}
1724
1725	if (!AR_SREV_9100(ah))
1726		REG_WRITE(ah, AR_RC, 0);
1727
1728	if (AR_SREV_9100(ah))
1729		udelay(50);
1730
1731	return true;
1732}
1733
1734static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1735{
1736	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1737		  AR_RTC_FORCE_WAKE_ON_INT);
1738
1739	if (!AR_SREV_9100(ah))
1740		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1741
1742	REG_WRITE(ah, AR_RTC_RESET, 0);
1743	udelay(2);
1744
1745	if (!AR_SREV_9100(ah))
1746		REG_WRITE(ah, AR_RC, 0);
1747
1748	REG_WRITE(ah, AR_RTC_RESET, 1);
1749
1750	if (!ath9k_hw_wait(ah,
1751			   AR_RTC_STATUS,
1752			   AR_RTC_STATUS_M,
1753			   AR_RTC_STATUS_ON,
1754			   AH_WAIT_TIMEOUT)) {
1755		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1756			  "RTC not waking up\n");
1757		return false;
1758	}
1759
1760	ath9k_hw_read_revisions(ah);
1761
1762	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1763}
1764
1765static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1766{
1767	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1768		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1769
1770	switch (type) {
1771	case ATH9K_RESET_POWER_ON:
1772		return ath9k_hw_set_reset_power_on(ah);
1773	case ATH9K_RESET_WARM:
1774	case ATH9K_RESET_COLD:
1775		return ath9k_hw_set_reset(ah, type);
1776	default:
1777		return false;
1778	}
1779}
1780
1781static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1782{
1783	u32 phymode;
1784	u32 enableDacFifo = 0;
1785
1786	if (AR_SREV_9285_10_OR_LATER(ah))
1787		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1788					 AR_PHY_FC_ENABLE_DAC_FIFO);
1789
1790	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1791		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1792
1793	if (IS_CHAN_HT40(chan)) {
1794		phymode |= AR_PHY_FC_DYN2040_EN;
1795
1796		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1797		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1798			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1799
1800	}
1801	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1802
1803	ath9k_hw_set11nmac2040(ah);
1804
1805	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1806	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1807}
1808
1809static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1810				struct ath9k_channel *chan)
1811{
1812	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1813		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1814			return false;
1815	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1816		return false;
1817
1818	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1819		return false;
1820
1821	ah->chip_fullsleep = false;
1822	ath9k_hw_init_pll(ah, chan);
1823	ath9k_hw_set_rfmode(ah, chan);
1824
1825	return true;
1826}
1827
1828static bool ath9k_hw_channel_change(struct ath_hw *ah,
1829				    struct ath9k_channel *chan)
1830{
1831	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1832	struct ath_common *common = ath9k_hw_common(ah);
1833	struct ieee80211_channel *channel = chan->chan;
1834	u32 synthDelay, qnum;
1835
1836	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1837		if (ath9k_hw_numtxpending(ah, qnum)) {
1838			ath_print(common, ATH_DBG_QUEUE,
1839				  "Transmit frames pending on "
1840				  "queue %d\n", qnum);
1841			return false;
1842		}
1843	}
1844
1845	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1846	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1847			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1848		ath_print(common, ATH_DBG_FATAL,
1849			  "Could not kill baseband RX\n");
1850		return false;
1851	}
1852
1853	ath9k_hw_set_regs(ah, chan);
1854
1855	if (AR_SREV_9280_10_OR_LATER(ah)) {
1856		ath9k_hw_ar9280_set_channel(ah, chan);
1857	} else {
1858		if (!(ath9k_hw_set_channel(ah, chan))) {
1859			ath_print(common, ATH_DBG_FATAL,
1860				  "Failed to set channel\n");
1861			return false;
1862		}
1863	}
1864
1865	ah->eep_ops->set_txpower(ah, chan,
1866			     ath9k_regd_get_ctl(regulatory, chan),
1867			     channel->max_antenna_gain * 2,
1868			     channel->max_power * 2,
1869			     min((u32) MAX_RATE_POWER,
1870			     (u32) regulatory->power_limit));
1871
1872	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1873	if (IS_CHAN_B(chan))
1874		synthDelay = (4 * synthDelay) / 22;
1875	else
1876		synthDelay /= 10;
1877
1878	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1879
1880	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1881
1882	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1883		ath9k_hw_set_delta_slope(ah, chan);
1884
1885	if (AR_SREV_9280_10_OR_LATER(ah))
1886		ath9k_hw_9280_spur_mitigate(ah, chan);
1887	else
1888		ath9k_hw_spur_mitigate(ah, chan);
1889
1890	if (!chan->oneTimeCalsDone)
1891		chan->oneTimeCalsDone = true;
1892
1893	return true;
1894}
1895
1896static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1897{
1898	int bb_spur = AR_NO_SPUR;
1899	int freq;
1900	int bin, cur_bin;
1901	int bb_spur_off, spur_subchannel_sd;
1902	int spur_freq_sd;
1903	int spur_delta_phase;
1904	int denominator;
1905	int upper, lower, cur_vit_mask;
1906	int tmp, newVal;
1907	int i;
1908	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1909			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1910	};
1911	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1912			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1913	};
1914	int inc[4] = { 0, 100, 0, 0 };
1915	struct chan_centers centers;
1916
1917	int8_t mask_m[123];
1918	int8_t mask_p[123];
1919	int8_t mask_amt;
1920	int tmp_mask;
1921	int cur_bb_spur;
1922	bool is2GHz = IS_CHAN_2GHZ(chan);
1923
1924	memset(&mask_m, 0, sizeof(int8_t) * 123);
1925	memset(&mask_p, 0, sizeof(int8_t) * 123);
1926
1927	ath9k_hw_get_channel_centers(ah, chan, &centers);
1928	freq = centers.synth_center;
1929
1930	ah->config.spurmode = SPUR_ENABLE_EEPROM;
1931	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1932		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1933
1934		if (is2GHz)
1935			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1936		else
1937			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1938
1939		if (AR_NO_SPUR == cur_bb_spur)
1940			break;
1941		cur_bb_spur = cur_bb_spur - freq;
1942
1943		if (IS_CHAN_HT40(chan)) {
1944			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1945			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1946				bb_spur = cur_bb_spur;
1947				break;
1948			}
1949		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1950			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1951			bb_spur = cur_bb_spur;
1952			break;
1953		}
1954	}
1955
1956	if (AR_NO_SPUR == bb_spur) {
1957		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1958			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1959		return;
1960	} else {
1961		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1962			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1963	}
1964
1965	bin = bb_spur * 320;
1966
1967	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1968
1969	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1970			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1971			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1972			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1973	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1974
1975	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1976		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1977		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1978		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1979		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1980	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1981
1982	if (IS_CHAN_HT40(chan)) {
1983		if (bb_spur < 0) {
1984			spur_subchannel_sd = 1;
1985			bb_spur_off = bb_spur + 10;
1986		} else {
1987			spur_subchannel_sd = 0;
1988			bb_spur_off = bb_spur - 10;
1989		}
1990	} else {
1991		spur_subchannel_sd = 0;
1992		bb_spur_off = bb_spur;
1993	}
1994
1995	if (IS_CHAN_HT40(chan))
1996		spur_delta_phase =
1997			((bb_spur * 262144) /
1998			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1999	else
2000		spur_delta_phase =
2001			((bb_spur * 524288) /
2002			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2003
2004	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
2005	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
2006
2007	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2008		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2009		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2010	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
2011
2012	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
2013	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
2014
2015	cur_bin = -6000;
2016	upper = bin + 100;
2017	lower = bin - 100;
2018
2019	for (i = 0; i < 4; i++) {
2020		int pilot_mask = 0;
2021		int chan_mask = 0;
2022		int bp = 0;
2023		for (bp = 0; bp < 30; bp++) {
2024			if ((cur_bin > lower) && (cur_bin < upper)) {
2025				pilot_mask = pilot_mask | 0x1 << bp;
2026				chan_mask = chan_mask | 0x1 << bp;
2027			}
2028			cur_bin += 100;
2029		}
2030		cur_bin += inc[i];
2031		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2032		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2033	}
2034
2035	cur_vit_mask = 6100;
2036	upper = bin + 120;
2037	lower = bin - 120;
2038
2039	for (i = 0; i < 123; i++) {
2040		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2041
2042			/* workaround for gcc bug #37014 */
2043			volatile int tmp_v = abs(cur_vit_mask - bin);
2044
2045			if (tmp_v < 75)
2046				mask_amt = 1;
2047			else
2048				mask_amt = 0;
2049			if (cur_vit_mask < 0)
2050				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2051			else
2052				mask_p[cur_vit_mask / 100] = mask_amt;
2053		}
2054		cur_vit_mask -= 100;
2055	}
2056
2057	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2058		| (mask_m[48] << 26) | (mask_m[49] << 24)
2059		| (mask_m[50] << 22) | (mask_m[51] << 20)
2060		| (mask_m[52] << 18) | (mask_m[53] << 16)
2061		| (mask_m[54] << 14) | (mask_m[55] << 12)
2062		| (mask_m[56] << 10) | (mask_m[57] << 8)
2063		| (mask_m[58] << 6) | (mask_m[59] << 4)
2064		| (mask_m[60] << 2) | (mask_m[61] << 0);
2065	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2066	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2067
2068	tmp_mask = (mask_m[31] << 28)
2069		| (mask_m[32] << 26) | (mask_m[33] << 24)
2070		| (mask_m[34] << 22) | (mask_m[35] << 20)
2071		| (mask_m[36] << 18) | (mask_m[37] << 16)
2072		| (mask_m[48] << 14) | (mask_m[39] << 12)
2073		| (mask_m[40] << 10) | (mask_m[41] << 8)
2074		| (mask_m[42] << 6) | (mask_m[43] << 4)
2075		| (mask_m[44] << 2) | (mask_m[45] << 0);
2076	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2077	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2078
2079	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2080		| (mask_m[18] << 26) | (mask_m[18] << 24)
2081		| (mask_m[20] << 22) | (mask_m[20] << 20)
2082		| (mask_m[22] << 18) | (mask_m[22] << 16)
2083		| (mask_m[24] << 14) | (mask_m[24] << 12)
2084		| (mask_m[25] << 10) | (mask_m[26] << 8)
2085		| (mask_m[27] << 6) | (mask_m[28] << 4)
2086		| (mask_m[29] << 2) | (mask_m[30] << 0);
2087	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2088	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2089
2090	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2091		| (mask_m[2] << 26) | (mask_m[3] << 24)
2092		| (mask_m[4] << 22) | (mask_m[5] << 20)
2093		| (mask_m[6] << 18) | (mask_m[7] << 16)
2094		| (mask_m[8] << 14) | (mask_m[9] << 12)
2095		| (mask_m[10] << 10) | (mask_m[11] << 8)
2096		| (mask_m[12] << 6) | (mask_m[13] << 4)
2097		| (mask_m[14] << 2) | (mask_m[15] << 0);
2098	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2099	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2100
2101	tmp_mask = (mask_p[15] << 28)
2102		| (mask_p[14] << 26) | (mask_p[13] << 24)
2103		| (mask_p[12] << 22) | (mask_p[11] << 20)
2104		| (mask_p[10] << 18) | (mask_p[9] << 16)
2105		| (mask_p[8] << 14) | (mask_p[7] << 12)
2106		| (mask_p[6] << 10) | (mask_p[5] << 8)
2107		| (mask_p[4] << 6) | (mask_p[3] << 4)
2108		| (mask_p[2] << 2) | (mask_p[1] << 0);
2109	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2110	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2111
2112	tmp_mask = (mask_p[30] << 28)
2113		| (mask_p[29] << 26) | (mask_p[28] << 24)
2114		| (mask_p[27] << 22) | (mask_p[26] << 20)
2115		| (mask_p[25] << 18) | (mask_p[24] << 16)
2116		| (mask_p[23] << 14) | (mask_p[22] << 12)
2117		| (mask_p[21] << 10) | (mask_p[20] << 8)
2118		| (mask_p[19] << 6) | (mask_p[18] << 4)
2119		| (mask_p[17] << 2) | (mask_p[16] << 0);
2120	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2121	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2122
2123	tmp_mask = (mask_p[45] << 28)
2124		| (mask_p[44] << 26) | (mask_p[43] << 24)
2125		| (mask_p[42] << 22) | (mask_p[41] << 20)
2126		| (mask_p[40] << 18) | (mask_p[39] << 16)
2127		| (mask_p[38] << 14) | (mask_p[37] << 12)
2128		| (mask_p[36] << 10) | (mask_p[35] << 8)
2129		| (mask_p[34] << 6) | (mask_p[33] << 4)
2130		| (mask_p[32] << 2) | (mask_p[31] << 0);
2131	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2132	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2133
2134	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2135		| (mask_p[59] << 26) | (mask_p[58] << 24)
2136		| (mask_p[57] << 22) | (mask_p[56] << 20)
2137		| (mask_p[55] << 18) | (mask_p[54] << 16)
2138		| (mask_p[53] << 14) | (mask_p[52] << 12)
2139		| (mask_p[51] << 10) | (mask_p[50] << 8)
2140		| (mask_p[49] << 6) | (mask_p[48] << 4)
2141		| (mask_p[47] << 2) | (mask_p[46] << 0);
2142	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2143	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2144}
2145
2146static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2147{
2148	int bb_spur = AR_NO_SPUR;
2149	int bin, cur_bin;
2150	int spur_freq_sd;
2151	int spur_delta_phase;
2152	int denominator;
2153	int upper, lower, cur_vit_mask;
2154	int tmp, new;
2155	int i;
2156	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2157			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2158	};
2159	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2160			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2161	};
2162	int inc[4] = { 0, 100, 0, 0 };
2163
2164	int8_t mask_m[123];
2165	int8_t mask_p[123];
2166	int8_t mask_amt;
2167	int tmp_mask;
2168	int cur_bb_spur;
2169	bool is2GHz = IS_CHAN_2GHZ(chan);
2170
2171	memset(&mask_m, 0, sizeof(int8_t) * 123);
2172	memset(&mask_p, 0, sizeof(int8_t) * 123);
2173
2174	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2175		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2176		if (AR_NO_SPUR == cur_bb_spur)
2177			break;
2178		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2179		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2180			bb_spur = cur_bb_spur;
2181			break;
2182		}
2183	}
2184
2185	if (AR_NO_SPUR == bb_spur)
2186		return;
2187
2188	bin = bb_spur * 32;
2189
2190	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2191	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2192		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2193		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2194		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2195
2196	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2197
2198	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2199	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2200	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2201	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2202	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2203	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2204
2205	spur_delta_phase = ((bb_spur * 524288) / 100) &
2206		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2207
2208	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2209	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2210
2211	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2212	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2213	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2214	REG_WRITE(ah, AR_PHY_TIMING11, new);
2215
2216	cur_bin = -6000;
2217	upper = bin + 100;
2218	lower = bin - 100;
2219
2220	for (i = 0; i < 4; i++) {
2221		int pilot_mask = 0;
2222		int chan_mask = 0;
2223		int bp = 0;
2224		for (bp = 0; bp < 30; bp++) {
2225			if ((cur_bin > lower) && (cur_bin < upper)) {
2226				pilot_mask = pilot_mask | 0x1 << bp;
2227				chan_mask = chan_mask | 0x1 << bp;
2228			}
2229			cur_bin += 100;
2230		}
2231		cur_bin += inc[i];
2232		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2233		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2234	}
2235
2236	cur_vit_mask = 6100;
2237	upper = bin + 120;
2238	lower = bin - 120;
2239
2240	for (i = 0; i < 123; i++) {
2241		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2242
2243			/* workaround for gcc bug #37014 */
2244			volatile int tmp_v = abs(cur_vit_mask - bin);
2245
2246			if (tmp_v < 75)
2247				mask_amt = 1;
2248			else
2249				mask_amt = 0;
2250			if (cur_vit_mask < 0)
2251				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2252			else
2253				mask_p[cur_vit_mask / 100] = mask_amt;
2254		}
2255		cur_vit_mask -= 100;
2256	}
2257
2258	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2259		| (mask_m[48] << 26) | (mask_m[49] << 24)
2260		| (mask_m[50] << 22) | (mask_m[51] << 20)
2261		| (mask_m[52] << 18) | (mask_m[53] << 16)
2262		| (mask_m[54] << 14) | (mask_m[55] << 12)
2263		| (mask_m[56] << 10) | (mask_m[57] << 8)
2264		| (mask_m[58] << 6) | (mask_m[59] << 4)
2265		| (mask_m[60] << 2) | (mask_m[61] << 0);
2266	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2267	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2268
2269	tmp_mask = (mask_m[31] << 28)
2270		| (mask_m[32] << 26) | (mask_m[33] << 24)
2271		| (mask_m[34] << 22) | (mask_m[35] << 20)
2272		| (mask_m[36] << 18) | (mask_m[37] << 16)
2273		| (mask_m[48] << 14) | (mask_m[39] << 12)
2274		| (mask_m[40] << 10) | (mask_m[41] << 8)
2275		| (mask_m[42] << 6) | (mask_m[43] << 4)
2276		| (mask_m[44] << 2) | (mask_m[45] << 0);
2277	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2278	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2279
2280	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2281		| (mask_m[18] << 26) | (mask_m[18] << 24)
2282		| (mask_m[20] << 22) | (mask_m[20] << 20)
2283		| (mask_m[22] << 18) | (mask_m[22] << 16)
2284		| (mask_m[24] << 14) | (mask_m[24] << 12)
2285		| (mask_m[25] << 10) | (mask_m[26] << 8)
2286		| (mask_m[27] << 6) | (mask_m[28] << 4)
2287		| (mask_m[29] << 2) | (mask_m[30] << 0);
2288	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2289	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2290
2291	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2292		| (mask_m[2] << 26) | (mask_m[3] << 24)
2293		| (mask_m[4] << 22) | (mask_m[5] << 20)
2294		| (mask_m[6] << 18) | (mask_m[7] << 16)
2295		| (mask_m[8] << 14) | (mask_m[9] << 12)
2296		| (mask_m[10] << 10) | (mask_m[11] << 8)
2297		| (mask_m[12] << 6) | (mask_m[13] << 4)
2298		| (mask_m[14] << 2) | (mask_m[15] << 0);
2299	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2300	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2301
2302	tmp_mask = (mask_p[15] << 28)
2303		| (mask_p[14] << 26) | (mask_p[13] << 24)
2304		| (mask_p[12] << 22) | (mask_p[11] << 20)
2305		| (mask_p[10] << 18) | (mask_p[9] << 16)
2306		| (mask_p[8] << 14) | (mask_p[7] << 12)
2307		| (mask_p[6] << 10) | (mask_p[5] << 8)
2308		| (mask_p[4] << 6) | (mask_p[3] << 4)
2309		| (mask_p[2] << 2) | (mask_p[1] << 0);
2310	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2311	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2312
2313	tmp_mask = (mask_p[30] << 28)
2314		| (mask_p[29] << 26) | (mask_p[28] << 24)
2315		| (mask_p[27] << 22) | (mask_p[26] << 20)
2316		| (mask_p[25] << 18) | (mask_p[24] << 16)
2317		| (mask_p[23] << 14) | (mask_p[22] << 12)
2318		| (mask_p[21] << 10) | (mask_p[20] << 8)
2319		| (mask_p[19] << 6) | (mask_p[18] << 4)
2320		| (mask_p[17] << 2) | (mask_p[16] << 0);
2321	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2322	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2323
2324	tmp_mask = (mask_p[45] << 28)
2325		| (mask_p[44] << 26) | (mask_p[43] << 24)
2326		| (mask_p[42] << 22) | (mask_p[41] << 20)
2327		| (mask_p[40] << 18) | (mask_p[39] << 16)
2328		| (mask_p[38] << 14) | (mask_p[37] << 12)
2329		| (mask_p[36] << 10) | (mask_p[35] << 8)
2330		| (mask_p[34] << 6) | (mask_p[33] << 4)
2331		| (mask_p[32] << 2) | (mask_p[31] << 0);
2332	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2333	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2334
2335	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2336		| (mask_p[59] << 26) | (mask_p[58] << 24)
2337		| (mask_p[57] << 22) | (mask_p[56] << 20)
2338		| (mask_p[55] << 18) | (mask_p[54] << 16)
2339		| (mask_p[53] << 14) | (mask_p[52] << 12)
2340		| (mask_p[51] << 10) | (mask_p[50] << 8)
2341		| (mask_p[49] << 6) | (mask_p[48] << 4)
2342		| (mask_p[47] << 2) | (mask_p[46] << 0);
2343	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2344	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2345}
2346
2347static void ath9k_enable_rfkill(struct ath_hw *ah)
2348{
2349	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2350		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2351
2352	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2353		    AR_GPIO_INPUT_MUX2_RFSILENT);
2354
2355	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2356	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2357}
2358
2359int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2360		    bool bChannelChange)
2361{
2362	struct ath_common *common = ath9k_hw_common(ah);
2363	u32 saveLedState;
2364	struct ath9k_channel *curchan = ah->curchan;
2365	u32 saveDefAntenna;
2366	u32 macStaId1;
2367	u64 tsf = 0;
2368	int i, rx_chainmask, r;
2369
2370	ah->txchainmask = common->tx_chainmask;
2371	ah->rxchainmask = common->rx_chainmask;
2372
2373	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2374		return -EIO;
2375
2376	if (curchan && !ah->chip_fullsleep)
2377		ath9k_hw_getnf(ah, curchan);
2378
2379	if (bChannelChange &&
2380	    (ah->chip_fullsleep != true) &&
2381	    (ah->curchan != NULL) &&
2382	    (chan->channel != ah->curchan->channel) &&
2383	    ((chan->channelFlags & CHANNEL_ALL) ==
2384	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2385	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2386	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2387
2388		if (ath9k_hw_channel_change(ah, chan)) {
2389			ath9k_hw_loadnf(ah, ah->curchan);
2390			ath9k_hw_start_nfcal(ah);
2391			return 0;
2392		}
2393	}
2394
2395	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2396	if (saveDefAntenna == 0)
2397		saveDefAntenna = 1;
2398
2399	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2400
2401	/* For chips on which RTC reset is done, save TSF before it gets cleared */
2402	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2403		tsf = ath9k_hw_gettsf64(ah);
2404
2405	saveLedState = REG_READ(ah, AR_CFG_LED) &
2406		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2407		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2408
2409	ath9k_hw_mark_phy_inactive(ah);
2410
2411	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2412		REG_WRITE(ah,
2413			  AR9271_RESET_POWER_DOWN_CONTROL,
2414			  AR9271_RADIO_RF_RST);
2415		udelay(50);
2416	}
2417
2418	if (!ath9k_hw_chip_reset(ah, chan)) {
2419		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2420		return -EINVAL;
2421	}
2422
2423	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2424		ah->htc_reset_init = false;
2425		REG_WRITE(ah,
2426			  AR9271_RESET_POWER_DOWN_CONTROL,
2427			  AR9271_GATE_MAC_CTL);
2428		udelay(50);
2429	}
2430
2431	/* Restore TSF */
2432	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2433		ath9k_hw_settsf64(ah, tsf);
2434
2435	if (AR_SREV_9280_10_OR_LATER(ah))
2436		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2437
2438	if (AR_SREV_9287_12_OR_LATER(ah)) {
2439		/* Enable ASYNC FIFO */
2440		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2441				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2442		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2443		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2444				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2445		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2446				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2447	}
2448	r = ath9k_hw_process_ini(ah, chan);
2449	if (r)
2450		return r;
2451
2452	/* Setup MFP options for CCMP */
2453	if (AR_SREV_9280_20_OR_LATER(ah)) {
2454		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2455		 * frames when constructing CCMP AAD. */
2456		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2457			      0xc7ff);
2458		ah->sw_mgmt_crypto = false;
2459	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2460		/* Disable hardware crypto for management frames */
2461		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2462			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2463		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2464			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2465		ah->sw_mgmt_crypto = true;
2466	} else
2467		ah->sw_mgmt_crypto = true;
2468
2469	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2470		ath9k_hw_set_delta_slope(ah, chan);
2471
2472	if (AR_SREV_9280_10_OR_LATER(ah))
2473		ath9k_hw_9280_spur_mitigate(ah, chan);
2474	else
2475		ath9k_hw_spur_mitigate(ah, chan);
2476
2477	ah->eep_ops->set_board_values(ah, chan);
2478
2479	ath9k_hw_decrease_chain_power(ah, chan);
2480
2481	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2482	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2483		  | macStaId1
2484		  | AR_STA_ID1_RTS_USE_DEF
2485		  | (ah->config.
2486		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2487		  | ah->sta_id1_defaults);
2488	ath9k_hw_set_operating_mode(ah, ah->opmode);
2489
2490	ath_hw_setbssidmask(common);
2491
2492	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2493
2494	ath9k_hw_write_associd(ah);
2495
2496	REG_WRITE(ah, AR_ISR, ~0);
2497
2498	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2499
2500	if (AR_SREV_9280_10_OR_LATER(ah))
2501		ath9k_hw_ar9280_set_channel(ah, chan);
2502	else
2503		if (!(ath9k_hw_set_channel(ah, chan)))
2504			return -EIO;
2505
2506	for (i = 0; i < AR_NUM_DCU; i++)
2507		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2508
2509	ah->intr_txqs = 0;
2510	for (i = 0; i < ah->caps.total_queues; i++)
2511		ath9k_hw_resettxqueue(ah, i);
2512
2513	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2514	ath9k_hw_init_qos(ah);
2515
2516	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2517		ath9k_enable_rfkill(ah);
2518
2519	ath9k_hw_init_user_settings(ah);
2520
2521	if (AR_SREV_9287_12_OR_LATER(ah)) {
2522		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2523			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2524		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2525			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2526		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2527			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2528
2529		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2530		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2531
2532		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2533			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2534		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2535			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2536	}
2537	if (AR_SREV_9287_12_OR_LATER(ah)) {
2538		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2539				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2540	}
2541
2542	REG_WRITE(ah, AR_STA_ID1,
2543		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2544
2545	ath9k_hw_set_dma(ah);
2546
2547	REG_WRITE(ah, AR_OBS, 8);
2548
2549	if (ah->config.intr_mitigation) {
2550		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2551		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2552	}
2553
2554	ath9k_hw_init_bb(ah, chan);
2555
2556	if (!ath9k_hw_init_cal(ah, chan))
2557		return -EIO;
2558
2559	rx_chainmask = ah->rxchainmask;
2560	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2561		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2562		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2563	}
2564
2565	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2566
2567	/*
2568	 * For big endian systems turn on swapping for descriptors
2569	 */
2570	if (AR_SREV_9100(ah)) {
2571		u32 mask;
2572		mask = REG_READ(ah, AR_CFG);
2573		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2574			ath_print(common, ATH_DBG_RESET,
2575				"CFG Byte Swap Set 0x%x\n", mask);
2576		} else {
2577			mask =
2578				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2579			REG_WRITE(ah, AR_CFG, mask);
2580			ath_print(common, ATH_DBG_RESET,
2581				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2582		}
2583	} else {
2584		/* Configure AR9271 target WLAN */
2585                if (AR_SREV_9271(ah))
2586			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2587#ifdef __BIG_ENDIAN
2588                else
2589			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2590#endif
2591	}
2592
2593	if (ah->btcoex_hw.enabled)
2594		ath9k_hw_btcoex_enable(ah);
2595
2596	return 0;
2597}
2598EXPORT_SYMBOL(ath9k_hw_reset);
2599
2600/************************/
2601/* Key Cache Management */
2602/************************/
2603
2604bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2605{
2606	u32 keyType;
2607
2608	if (entry >= ah->caps.keycache_size) {
2609		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2610			  "keychache entry %u out of range\n", entry);
2611		return false;
2612	}
2613
2614	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2615
2616	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2617	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2618	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2619	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2620	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2621	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2622	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2623	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2624
2625	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2626		u16 micentry = entry + 64;
2627
2628		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2629		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2630		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2631		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2632
2633	}
2634
2635	return true;
2636}
2637EXPORT_SYMBOL(ath9k_hw_keyreset);
2638
2639bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2640{
2641	u32 macHi, macLo;
2642
2643	if (entry >= ah->caps.keycache_size) {
2644		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2645			  "keychache entry %u out of range\n", entry);
2646		return false;
2647	}
2648
2649	if (mac != NULL) {
2650		macHi = (mac[5] << 8) | mac[4];
2651		macLo = (mac[3] << 24) |
2652			(mac[2] << 16) |
2653			(mac[1] << 8) |
2654			mac[0];
2655		macLo >>= 1;
2656		macLo |= (macHi & 1) << 31;
2657		macHi >>= 1;
2658	} else {
2659		macLo = macHi = 0;
2660	}
2661	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2662	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2663
2664	return true;
2665}
2666EXPORT_SYMBOL(ath9k_hw_keysetmac);
2667
2668bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2669				 const struct ath9k_keyval *k,
2670				 const u8 *mac)
2671{
2672	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2673	struct ath_common *common = ath9k_hw_common(ah);
2674	u32 key0, key1, key2, key3, key4;
2675	u32 keyType;
2676
2677	if (entry >= pCap->keycache_size) {
2678		ath_print(common, ATH_DBG_FATAL,
2679			  "keycache entry %u out of range\n", entry);
2680		return false;
2681	}
2682
2683	switch (k->kv_type) {
2684	case ATH9K_CIPHER_AES_OCB:
2685		keyType = AR_KEYTABLE_TYPE_AES;
2686		break;
2687	case ATH9K_CIPHER_AES_CCM:
2688		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2689			ath_print(common, ATH_DBG_ANY,
2690				  "AES-CCM not supported by mac rev 0x%x\n",
2691				  ah->hw_version.macRev);
2692			return false;
2693		}
2694		keyType = AR_KEYTABLE_TYPE_CCM;
2695		break;
2696	case ATH9K_CIPHER_TKIP:
2697		keyType = AR_KEYTABLE_TYPE_TKIP;
2698		if (ATH9K_IS_MIC_ENABLED(ah)
2699		    && entry + 64 >= pCap->keycache_size) {
2700			ath_print(common, ATH_DBG_ANY,
2701				  "entry %u inappropriate for TKIP\n", entry);
2702			return false;
2703		}
2704		break;
2705	case ATH9K_CIPHER_WEP:
2706		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2707			ath_print(common, ATH_DBG_ANY,
2708				  "WEP key length %u too small\n", k->kv_len);
2709			return false;
2710		}
2711		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2712			keyType = AR_KEYTABLE_TYPE_40;
2713		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2714			keyType = AR_KEYTABLE_TYPE_104;
2715		else
2716			keyType = AR_KEYTABLE_TYPE_128;
2717		break;
2718	case ATH9K_CIPHER_CLR:
2719		keyType = AR_KEYTABLE_TYPE_CLR;
2720		break;
2721	default:
2722		ath_print(common, ATH_DBG_FATAL,
2723			  "cipher %u not supported\n", k->kv_type);
2724		return false;
2725	}
2726
2727	key0 = get_unaligned_le32(k->kv_val + 0);
2728	key1 = get_unaligned_le16(k->kv_val + 4);
2729	key2 = get_unaligned_le32(k->kv_val + 6);
2730	key3 = get_unaligned_le16(k->kv_val + 10);
2731	key4 = get_unaligned_le32(k->kv_val + 12);
2732	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2733		key4 &= 0xff;
2734
2735	/*
2736	 * Note: Key cache registers access special memory area that requires
2737	 * two 32-bit writes to actually update the values in the internal
2738	 * memory. Consequently, the exact order and pairs used here must be
2739	 * maintained.
2740	 */
2741
2742	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2743		u16 micentry = entry + 64;
2744
2745		/*
2746		 * Write inverted key[47:0] first to avoid Michael MIC errors
2747		 * on frames that could be sent or received at the same time.
2748		 * The correct key will be written in the end once everything
2749		 * else is ready.
2750		 */
2751		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2752		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2753
2754		/* Write key[95:48] */
2755		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2756		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2757
2758		/* Write key[127:96] and key type */
2759		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2760		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2761
2762		/* Write MAC address for the entry */
2763		(void) ath9k_hw_keysetmac(ah, entry, mac);
2764
2765		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2766			/*
2767			 * TKIP uses two key cache entries:
2768			 * Michael MIC TX/RX keys in the same key cache entry
2769			 * (idx = main index + 64):
2770			 * key0 [31:0] = RX key [31:0]
2771			 * key1 [15:0] = TX key [31:16]
2772			 * key1 [31:16] = reserved
2773			 * key2 [31:0] = RX key [63:32]
2774			 * key3 [15:0] = TX key [15:0]
2775			 * key3 [31:16] = reserved
2776			 * key4 [31:0] = TX key [63:32]
2777			 */
2778			u32 mic0, mic1, mic2, mic3, mic4;
2779
2780			mic0 = get_unaligned_le32(k->kv_mic + 0);
2781			mic2 = get_unaligned_le32(k->kv_mic + 4);
2782			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2783			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2784			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2785
2786			/* Write RX[31:0] and TX[31:16] */
2787			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2788			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2789
2790			/* Write RX[63:32] and TX[15:0] */
2791			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2792			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2793
2794			/* Write TX[63:32] and keyType(reserved) */
2795			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2796			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2797				  AR_KEYTABLE_TYPE_CLR);
2798
2799		} else {
2800			/*
2801			 * TKIP uses four key cache entries (two for group
2802			 * keys):
2803			 * Michael MIC TX/RX keys are in different key cache
2804			 * entries (idx = main index + 64 for TX and
2805			 * main index + 32 + 96 for RX):
2806			 * key0 [31:0] = TX/RX MIC key [31:0]
2807			 * key1 [31:0] = reserved
2808			 * key2 [31:0] = TX/RX MIC key [63:32]
2809			 * key3 [31:0] = reserved
2810			 * key4 [31:0] = reserved
2811			 *
2812			 * Upper layer code will call this function separately
2813			 * for TX and RX keys when these registers offsets are
2814			 * used.
2815			 */
2816			u32 mic0, mic2;
2817
2818			mic0 = get_unaligned_le32(k->kv_mic + 0);
2819			mic2 = get_unaligned_le32(k->kv_mic + 4);
2820
2821			/* Write MIC key[31:0] */
2822			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2823			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2824
2825			/* Write MIC key[63:32] */
2826			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2827			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2828
2829			/* Write TX[63:32] and keyType(reserved) */
2830			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2831			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2832				  AR_KEYTABLE_TYPE_CLR);
2833		}
2834
2835		/* MAC address registers are reserved for the MIC entry */
2836		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2837		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2838
2839		/*
2840		 * Write the correct (un-inverted) key[47:0] last to enable
2841		 * TKIP now that all other registers are set with correct
2842		 * values.
2843		 */
2844		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2845		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2846	} else {
2847		/* Write key[47:0] */
2848		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2849		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2850
2851		/* Write key[95:48] */
2852		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2853		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2854
2855		/* Write key[127:96] and key type */
2856		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2857		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2858
2859		/* Write MAC address for the entry */
2860		(void) ath9k_hw_keysetmac(ah, entry, mac);
2861	}
2862
2863	return true;
2864}
2865EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2866
2867bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2868{
2869	if (entry < ah->caps.keycache_size) {
2870		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2871		if (val & AR_KEYTABLE_VALID)
2872			return true;
2873	}
2874	return false;
2875}
2876EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2877
2878/******************************/
2879/* Power Management (Chipset) */
2880/******************************/
2881
2882static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2883{
2884	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2885	if (setChip) {
2886		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2887			    AR_RTC_FORCE_WAKE_EN);
2888		if (!AR_SREV_9100(ah))
2889			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2890
2891		if(!AR_SREV_5416(ah))
2892			REG_CLR_BIT(ah, (AR_RTC_RESET),
2893				    AR_RTC_RESET_EN);
2894	}
2895}
2896
2897static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2898{
2899	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2900	if (setChip) {
2901		struct ath9k_hw_capabilities *pCap = &ah->caps;
2902
2903		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2904			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2905				  AR_RTC_FORCE_WAKE_ON_INT);
2906		} else {
2907			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2908				    AR_RTC_FORCE_WAKE_EN);
2909		}
2910	}
2911}
2912
2913static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2914{
2915	u32 val;
2916	int i;
2917
2918	if (setChip) {
2919		if ((REG_READ(ah, AR_RTC_STATUS) &
2920		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2921			if (ath9k_hw_set_reset_reg(ah,
2922					   ATH9K_RESET_POWER_ON) != true) {
2923				return false;
2924			}
2925			ath9k_hw_init_pll(ah, NULL);
2926		}
2927		if (AR_SREV_9100(ah))
2928			REG_SET_BIT(ah, AR_RTC_RESET,
2929				    AR_RTC_RESET_EN);
2930
2931		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2932			    AR_RTC_FORCE_WAKE_EN);
2933		udelay(50);
2934
2935		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2936			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2937			if (val == AR_RTC_STATUS_ON)
2938				break;
2939			udelay(50);
2940			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2941				    AR_RTC_FORCE_WAKE_EN);
2942		}
2943		if (i == 0) {
2944			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2945				  "Failed to wakeup in %uus\n",
2946				  POWER_UP_TIME / 20);
2947			return false;
2948		}
2949	}
2950
2951	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2952
2953	return true;
2954}
2955
2956bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2957{
2958	struct ath_common *common = ath9k_hw_common(ah);
2959	int status = true, setChip = true;
2960	static const char *modes[] = {
2961		"AWAKE",
2962		"FULL-SLEEP",
2963		"NETWORK SLEEP",
2964		"UNDEFINED"
2965	};
2966
2967	if (ah->power_mode == mode)
2968		return status;
2969
2970	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2971		  modes[ah->power_mode], modes[mode]);
2972
2973	switch (mode) {
2974	case ATH9K_PM_AWAKE:
2975		status = ath9k_hw_set_power_awake(ah, setChip);
2976		break;
2977	case ATH9K_PM_FULL_SLEEP:
2978		ath9k_set_power_sleep(ah, setChip);
2979		ah->chip_fullsleep = true;
2980		break;
2981	case ATH9K_PM_NETWORK_SLEEP:
2982		ath9k_set_power_network_sleep(ah, setChip);
2983		break;
2984	default:
2985		ath_print(common, ATH_DBG_FATAL,
2986			  "Unknown power mode %u\n", mode);
2987		return false;
2988	}
2989	ah->power_mode = mode;
2990
2991	return status;
2992}
2993EXPORT_SYMBOL(ath9k_hw_setpower);
2994
2995/*
2996 * Helper for ASPM support.
2997 *
2998 * Disable PLL when in L0s as well as receiver clock when in L1.
2999 * This power saving option must be enabled through the SerDes.
3000 *
3001 * Programming the SerDes must go through the same 288 bit serial shift
3002 * register as the other analog registers.  Hence the 9 writes.
3003 */
3004void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
3005{
3006	u8 i;
3007	u32 val;
3008
3009	if (ah->is_pciexpress != true)
3010		return;
3011
3012	/* Do not touch SerDes registers */
3013	if (ah->config.pcie_powersave_enable == 2)
3014		return;
3015
3016	/* Nothing to do on restore for 11N */
3017	if (!restore) {
3018		if (AR_SREV_9280_20_OR_LATER(ah)) {
3019			/*
3020			 * AR9280 2.0 or later chips use SerDes values from the
3021			 * initvals.h initialized depending on chipset during
3022			 * ath9k_hw_init()
3023			 */
3024			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
3025				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
3026					  INI_RA(&ah->iniPcieSerdes, i, 1));
3027			}
3028		} else if (AR_SREV_9280(ah) &&
3029			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
3030			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3031			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3032
3033			/* RX shut off when elecidle is asserted */
3034			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3035			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3036			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3037
3038			/* Shut off CLKREQ active in L1 */
3039			if (ah->config.pcie_clock_req)
3040				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3041			else
3042				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3043
3044			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3045			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3046			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3047
3048			/* Load the new settings */
3049			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3050
3051		} else {
3052			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3053			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3054
3055			/* RX shut off when elecidle is asserted */
3056			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3057			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3058			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3059
3060			/*
3061			 * Ignore ah->ah_config.pcie_clock_req setting for
3062			 * pre-AR9280 11n
3063			 */
3064			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3065
3066			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3067			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3068			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3069
3070			/* Load the new settings */
3071			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3072		}
3073
3074		udelay(1000);
3075
3076		/* set bit 19 to allow forcing of pcie core into L1 state */
3077		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3078
3079		/* Several PCIe massages to ensure proper behaviour */
3080		if (ah->config.pcie_waen) {
3081			val = ah->config.pcie_waen;
3082			if (!power_off)
3083				val &= (~AR_WA_D3_L1_DISABLE);
3084		} else {
3085			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3086			    AR_SREV_9287(ah)) {
3087				val = AR9285_WA_DEFAULT;
3088				if (!power_off)
3089					val &= (~AR_WA_D3_L1_DISABLE);
3090			} else if (AR_SREV_9280(ah)) {
3091				/*
3092				 * On AR9280 chips bit 22 of 0x4004 needs to be
3093				 * set otherwise card may disappear.
3094				 */
3095				val = AR9280_WA_DEFAULT;
3096				if (!power_off)
3097					val &= (~AR_WA_D3_L1_DISABLE);
3098			} else
3099				val = AR_WA_DEFAULT;
3100		}
3101
3102		REG_WRITE(ah, AR_WA, val);
3103	}
3104
3105	if (power_off) {
3106		/*
3107		 * Set PCIe workaround bits
3108		 * bit 14 in WA register (disable L1) should only
3109		 * be set when device enters D3 and be cleared
3110		 * when device comes back to D0.
3111		 */
3112		if (ah->config.pcie_waen) {
3113			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3114				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3115		} else {
3116			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3117			      AR_SREV_9287(ah)) &&
3118			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3119			    (AR_SREV_9280(ah) &&
3120			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3121				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3122			}
3123		}
3124	}
3125}
3126EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
3127
3128/**********************/
3129/* Interrupt Handling */
3130/**********************/
3131
3132bool ath9k_hw_intrpend(struct ath_hw *ah)
3133{
3134	u32 host_isr;
3135
3136	if (AR_SREV_9100(ah))
3137		return true;
3138
3139	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3140	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3141		return true;
3142
3143	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3144	if ((host_isr & AR_INTR_SYNC_DEFAULT)
3145	    && (host_isr != AR_INTR_SPURIOUS))
3146		return true;
3147
3148	return false;
3149}
3150EXPORT_SYMBOL(ath9k_hw_intrpend);
3151
3152bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3153{
3154	u32 isr = 0;
3155	u32 mask2 = 0;
3156	struct ath9k_hw_capabilities *pCap = &ah->caps;
3157	u32 sync_cause = 0;
3158	bool fatal_int = false;
3159	struct ath_common *common = ath9k_hw_common(ah);
3160
3161	if (!AR_SREV_9100(ah)) {
3162		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3163			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3164			    == AR_RTC_STATUS_ON) {
3165				isr = REG_READ(ah, AR_ISR);
3166			}
3167		}
3168
3169		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3170			AR_INTR_SYNC_DEFAULT;
3171
3172		*masked = 0;
3173
3174		if (!isr && !sync_cause)
3175			return false;
3176	} else {
3177		*masked = 0;
3178		isr = REG_READ(ah, AR_ISR);
3179	}
3180
3181	if (isr) {
3182		if (isr & AR_ISR_BCNMISC) {
3183			u32 isr2;
3184			isr2 = REG_READ(ah, AR_ISR_S2);
3185			if (isr2 & AR_ISR_S2_TIM)
3186				mask2 |= ATH9K_INT_TIM;
3187			if (isr2 & AR_ISR_S2_DTIM)
3188				mask2 |= ATH9K_INT_DTIM;
3189			if (isr2 & AR_ISR_S2_DTIMSYNC)
3190				mask2 |= ATH9K_INT_DTIMSYNC;
3191			if (isr2 & (AR_ISR_S2_CABEND))
3192				mask2 |= ATH9K_INT_CABEND;
3193			if (isr2 & AR_ISR_S2_GTT)
3194				mask2 |= ATH9K_INT_GTT;
3195			if (isr2 & AR_ISR_S2_CST)
3196				mask2 |= ATH9K_INT_CST;
3197			if (isr2 & AR_ISR_S2_TSFOOR)
3198				mask2 |= ATH9K_INT_TSFOOR;
3199		}
3200
3201		isr = REG_READ(ah, AR_ISR_RAC);
3202		if (isr == 0xffffffff) {
3203			*masked = 0;
3204			return false;
3205		}
3206
3207		*masked = isr & ATH9K_INT_COMMON;
3208
3209		if (ah->config.intr_mitigation) {
3210			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3211				*masked |= ATH9K_INT_RX;
3212		}
3213
3214		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3215			*masked |= ATH9K_INT_RX;
3216		if (isr &
3217		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3218		     AR_ISR_TXEOL)) {
3219			u32 s0_s, s1_s;
3220
3221			*masked |= ATH9K_INT_TX;
3222
3223			s0_s = REG_READ(ah, AR_ISR_S0_S);
3224			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3225			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3226
3227			s1_s = REG_READ(ah, AR_ISR_S1_S);
3228			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3229			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3230		}
3231
3232		if (isr & AR_ISR_RXORN) {
3233			ath_print(common, ATH_DBG_INTERRUPT,
3234				  "receive FIFO overrun interrupt\n");
3235		}
3236
3237		if (!AR_SREV_9100(ah)) {
3238			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3239				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3240				if (isr5 & AR_ISR_S5_TIM_TIMER)
3241					*masked |= ATH9K_INT_TIM_TIMER;
3242			}
3243		}
3244
3245		*masked |= mask2;
3246	}
3247
3248	if (AR_SREV_9100(ah))
3249		return true;
3250
3251	if (isr & AR_ISR_GENTMR) {
3252		u32 s5_s;
3253
3254		s5_s = REG_READ(ah, AR_ISR_S5_S);
3255		if (isr & AR_ISR_GENTMR) {
3256			ah->intr_gen_timer_trigger =
3257				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3258
3259			ah->intr_gen_timer_thresh =
3260				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3261
3262			if (ah->intr_gen_timer_trigger)
3263				*masked |= ATH9K_INT_GENTIMER;
3264
3265		}
3266	}
3267
3268	if (sync_cause) {
3269		fatal_int =
3270			(sync_cause &
3271			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3272			? true : false;
3273
3274		if (fatal_int) {
3275			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3276				ath_print(common, ATH_DBG_ANY,
3277					  "received PCI FATAL interrupt\n");
3278			}
3279			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3280				ath_print(common, ATH_DBG_ANY,
3281					  "received PCI PERR interrupt\n");
3282			}
3283			*masked |= ATH9K_INT_FATAL;
3284		}
3285		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3286			ath_print(common, ATH_DBG_INTERRUPT,
3287				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3288			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3289			REG_WRITE(ah, AR_RC, 0);
3290			*masked |= ATH9K_INT_FATAL;
3291		}
3292		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3293			ath_print(common, ATH_DBG_INTERRUPT,
3294				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3295		}
3296
3297		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3298		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3299	}
3300
3301	return true;
3302}
3303EXPORT_SYMBOL(ath9k_hw_getisr);
3304
3305enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3306{
3307	u32 omask = ah->mask_reg;
3308	u32 mask, mask2;
3309	struct ath9k_hw_capabilities *pCap = &ah->caps;
3310	struct ath_common *common = ath9k_hw_common(ah);
3311
3312	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3313
3314	if (omask & ATH9K_INT_GLOBAL) {
3315		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
3316		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3317		(void) REG_READ(ah, AR_IER);
3318		if (!AR_SREV_9100(ah)) {
3319			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3320			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3321
3322			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3323			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3324		}
3325	}
3326
3327	mask = ints & ATH9K_INT_COMMON;
3328	mask2 = 0;
3329
3330	if (ints & ATH9K_INT_TX) {
3331		if (ah->txok_interrupt_mask)
3332			mask |= AR_IMR_TXOK;
3333		if (ah->txdesc_interrupt_mask)
3334			mask |= AR_IMR_TXDESC;
3335		if (ah->txerr_interrupt_mask)
3336			mask |= AR_IMR_TXERR;
3337		if (ah->txeol_interrupt_mask)
3338			mask |= AR_IMR_TXEOL;
3339	}
3340	if (ints & ATH9K_INT_RX) {
3341		mask |= AR_IMR_RXERR;
3342		if (ah->config.intr_mitigation)
3343			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3344		else
3345			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3346		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3347			mask |= AR_IMR_GENTMR;
3348	}
3349
3350	if (ints & (ATH9K_INT_BMISC)) {
3351		mask |= AR_IMR_BCNMISC;
3352		if (ints & ATH9K_INT_TIM)
3353			mask2 |= AR_IMR_S2_TIM;
3354		if (ints & ATH9K_INT_DTIM)
3355			mask2 |= AR_IMR_S2_DTIM;
3356		if (ints & ATH9K_INT_DTIMSYNC)
3357			mask2 |= AR_IMR_S2_DTIMSYNC;
3358		if (ints & ATH9K_INT_CABEND)
3359			mask2 |= AR_IMR_S2_CABEND;
3360		if (ints & ATH9K_INT_TSFOOR)
3361			mask2 |= AR_IMR_S2_TSFOOR;
3362	}
3363
3364	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3365		mask |= AR_IMR_BCNMISC;
3366		if (ints & ATH9K_INT_GTT)
3367			mask2 |= AR_IMR_S2_GTT;
3368		if (ints & ATH9K_INT_CST)
3369			mask2 |= AR_IMR_S2_CST;
3370	}
3371
3372	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3373	REG_WRITE(ah, AR_IMR, mask);
3374	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3375					   AR_IMR_S2_DTIM |
3376					   AR_IMR_S2_DTIMSYNC |
3377					   AR_IMR_S2_CABEND |
3378					   AR_IMR_S2_CABTO |
3379					   AR_IMR_S2_TSFOOR |
3380					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
3381	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3382	ah->mask_reg = ints;
3383
3384	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3385		if (ints & ATH9K_INT_TIM_TIMER)
3386			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3387		else
3388			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3389	}
3390
3391	if (ints & ATH9K_INT_GLOBAL) {
3392		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
3393		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3394		if (!AR_SREV_9100(ah)) {
3395			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3396				  AR_INTR_MAC_IRQ);
3397			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3398
3399
3400			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3401				  AR_INTR_SYNC_DEFAULT);
3402			REG_WRITE(ah, AR_INTR_SYNC_MASK,
3403				  AR_INTR_SYNC_DEFAULT);
3404		}
3405		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3406			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3407	}
3408
3409	return omask;
3410}
3411EXPORT_SYMBOL(ath9k_hw_set_interrupts);
3412
3413/*******************/
3414/* Beacon Handling */
3415/*******************/
3416
3417void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3418{
3419	int flags = 0;
3420
3421	ah->beacon_interval = beacon_period;
3422
3423	switch (ah->opmode) {
3424	case NL80211_IFTYPE_STATION:
3425	case NL80211_IFTYPE_MONITOR:
3426		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3427		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3428		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3429		flags |= AR_TBTT_TIMER_EN;
3430		break;
3431	case NL80211_IFTYPE_ADHOC:
3432	case NL80211_IFTYPE_MESH_POINT:
3433		REG_SET_BIT(ah, AR_TXCFG,
3434			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3435		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3436			  TU_TO_USEC(next_beacon +
3437				     (ah->atim_window ? ah->
3438				      atim_window : 1)));
3439		flags |= AR_NDP_TIMER_EN;
3440	case NL80211_IFTYPE_AP:
3441		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3442		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3443			  TU_TO_USEC(next_beacon -
3444				     ah->config.
3445				     dma_beacon_response_time));
3446		REG_WRITE(ah, AR_NEXT_SWBA,
3447			  TU_TO_USEC(next_beacon -
3448				     ah->config.
3449				     sw_beacon_response_time));
3450		flags |=
3451			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3452		break;
3453	default:
3454		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3455			  "%s: unsupported opmode: %d\n",
3456			  __func__, ah->opmode);
3457		return;
3458		break;
3459	}
3460
3461	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3462	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3463	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3464	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3465
3466	beacon_period &= ~ATH9K_BEACON_ENA;
3467	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3468		ath9k_hw_reset_tsf(ah);
3469	}
3470
3471	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3472}
3473EXPORT_SYMBOL(ath9k_hw_beaconinit);
3474
3475void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3476				    const struct ath9k_beacon_state *bs)
3477{
3478	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3479	struct ath9k_hw_capabilities *pCap = &ah->caps;
3480	struct ath_common *common = ath9k_hw_common(ah);
3481
3482	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3483
3484	REG_WRITE(ah, AR_BEACON_PERIOD,
3485		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3486	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3487		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3488
3489	REG_RMW_FIELD(ah, AR_RSSI_THR,
3490		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3491
3492	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3493
3494	if (bs->bs_sleepduration > beaconintval)
3495		beaconintval = bs->bs_sleepduration;
3496
3497	dtimperiod = bs->bs_dtimperiod;
3498	if (bs->bs_sleepduration > dtimperiod)
3499		dtimperiod = bs->bs_sleepduration;
3500
3501	if (beaconintval == dtimperiod)
3502		nextTbtt = bs->bs_nextdtim;
3503	else
3504		nextTbtt = bs->bs_nexttbtt;
3505
3506	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3507	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3508	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3509	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3510
3511	REG_WRITE(ah, AR_NEXT_DTIM,
3512		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3513	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3514
3515	REG_WRITE(ah, AR_SLEEP1,
3516		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3517		  | AR_SLEEP1_ASSUME_DTIM);
3518
3519	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3520		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3521	else
3522		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3523
3524	REG_WRITE(ah, AR_SLEEP2,
3525		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3526
3527	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3528	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3529
3530	REG_SET_BIT(ah, AR_TIMER_MODE,
3531		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3532		    AR_DTIM_TIMER_EN);
3533
3534	/* TSF Out of Range Threshold */
3535	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3536}
3537EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3538
3539/*******************/
3540/* HW Capabilities */
3541/*******************/
3542
3543void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3544{
3545	struct ath9k_hw_capabilities *pCap = &ah->caps;
3546	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3547	struct ath_common *common = ath9k_hw_common(ah);
3548	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3549
3550	u16 capField = 0, eeval;
3551
3552	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3553	regulatory->current_rd = eeval;
3554
3555	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3556	if (AR_SREV_9285_10_OR_LATER(ah))
3557		eeval |= AR9285_RDEXT_DEFAULT;
3558	regulatory->current_rd_ext = eeval;
3559
3560	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3561
3562	if (ah->opmode != NL80211_IFTYPE_AP &&
3563	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3564		if (regulatory->current_rd == 0x64 ||
3565		    regulatory->current_rd == 0x65)
3566			regulatory->current_rd += 5;
3567		else if (regulatory->current_rd == 0x41)
3568			regulatory->current_rd = 0x43;
3569		ath_print(common, ATH_DBG_REGULATORY,
3570			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3571	}
3572
3573	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3574	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3575
3576	if (eeval & AR5416_OPFLAGS_11A) {
3577		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3578		if (ah->config.ht_enable) {
3579			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3580				set_bit(ATH9K_MODE_11NA_HT20,
3581					pCap->wireless_modes);
3582			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3583				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3584					pCap->wireless_modes);
3585				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3586					pCap->wireless_modes);
3587			}
3588		}
3589	}
3590
3591	if (eeval & AR5416_OPFLAGS_11G) {
3592		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3593		if (ah->config.ht_enable) {
3594			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3595				set_bit(ATH9K_MODE_11NG_HT20,
3596					pCap->wireless_modes);
3597			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3598				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3599					pCap->wireless_modes);
3600				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3601					pCap->wireless_modes);
3602			}
3603		}
3604	}
3605
3606	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3607	/*
3608	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3609	 * the EEPROM.
3610	 */
3611	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3612	    !(eeval & AR5416_OPFLAGS_11A) &&
3613	    !(AR_SREV_9271(ah)))
3614		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3615		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3616	else
3617		/* Use rx_chainmask from EEPROM. */
3618		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3619
3620	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3621		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3622
3623	pCap->low_2ghz_chan = 2312;
3624	pCap->high_2ghz_chan = 2732;
3625
3626	pCap->low_5ghz_chan = 4920;
3627	pCap->high_5ghz_chan = 6100;
3628
3629	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3630	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3631	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3632
3633	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3634	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3635	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3636
3637	if (ah->config.ht_enable)
3638		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3639	else
3640		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3641
3642	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3643	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3644	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3645	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3646
3647	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3648		pCap->total_queues =
3649			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3650	else
3651		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3652
3653	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3654		pCap->keycache_size =
3655			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3656	else
3657		pCap->keycache_size = AR_KEYTABLE_SIZE;
3658
3659	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3660	pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3661
3662	if (AR_SREV_9285_10_OR_LATER(ah))
3663		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3664	else if (AR_SREV_9280_10_OR_LATER(ah))
3665		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3666	else
3667		pCap->num_gpio_pins = AR_NUM_GPIO;
3668
3669	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3670		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3671		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3672	} else {
3673		pCap->rts_aggr_limit = (8 * 1024);
3674	}
3675
3676	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3677
3678#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3679	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3680	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3681		ah->rfkill_gpio =
3682			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3683		ah->rfkill_polarity =
3684			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3685
3686		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3687	}
3688#endif
3689
3690	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3691
3692	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3693		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3694	else
3695		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3696
3697	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3698		pCap->reg_cap =
3699			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3700			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3701			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3702			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3703	} else {
3704		pCap->reg_cap =
3705			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3706			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3707	}
3708
3709	/* Advertise midband for AR5416 with FCC midband set in eeprom */
3710	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3711	    AR_SREV_5416(ah))
3712		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3713
3714	pCap->num_antcfg_5ghz =
3715		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3716	pCap->num_antcfg_2ghz =
3717		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3718
3719	if (AR_SREV_9280_10_OR_LATER(ah) &&
3720	    ath9k_hw_btcoex_supported(ah)) {
3721		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3722		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3723
3724		if (AR_SREV_9285(ah)) {
3725			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3726			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3727		} else {
3728			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3729		}
3730	} else {
3731		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3732	}
3733}
3734
3735bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3736			    u32 capability, u32 *result)
3737{
3738	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3739	switch (type) {
3740	case ATH9K_CAP_CIPHER:
3741		switch (capability) {
3742		case ATH9K_CIPHER_AES_CCM:
3743		case ATH9K_CIPHER_AES_OCB:
3744		case ATH9K_CIPHER_TKIP:
3745		case ATH9K_CIPHER_WEP:
3746		case ATH9K_CIPHER_MIC:
3747		case ATH9K_CIPHER_CLR:
3748			return true;
3749		default:
3750			return false;
3751		}
3752	case ATH9K_CAP_TKIP_MIC:
3753		switch (capability) {
3754		case 0:
3755			return true;
3756		case 1:
3757			return (ah->sta_id1_defaults &
3758				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3759			false;
3760		}
3761	case ATH9K_CAP_TKIP_SPLIT:
3762		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3763			false : true;
3764	case ATH9K_CAP_DIVERSITY:
3765		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3766			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3767			true : false;
3768	case ATH9K_CAP_MCAST_KEYSRCH:
3769		switch (capability) {
3770		case 0:
3771			return true;
3772		case 1:
3773			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3774				return false;
3775			} else {
3776				return (ah->sta_id1_defaults &
3777					AR_STA_ID1_MCAST_KSRCH) ? true :
3778					false;
3779			}
3780		}
3781		return false;
3782	case ATH9K_CAP_TXPOW:
3783		switch (capability) {
3784		case 0:
3785			return 0;
3786		case 1:
3787			*result = regulatory->power_limit;
3788			return 0;
3789		case 2:
3790			*result = regulatory->max_power_level;
3791			return 0;
3792		case 3:
3793			*result = regulatory->tp_scale;
3794			return 0;
3795		}
3796		return false;
3797	case ATH9K_CAP_DS:
3798		return (AR_SREV_9280_20_OR_LATER(ah) &&
3799			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3800			? false : true;
3801	default:
3802		return false;
3803	}
3804}
3805EXPORT_SYMBOL(ath9k_hw_getcapability);
3806
3807bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3808			    u32 capability, u32 setting, int *status)
3809{
3810	u32 v;
3811
3812	switch (type) {
3813	case ATH9K_CAP_TKIP_MIC:
3814		if (setting)
3815			ah->sta_id1_defaults |=
3816				AR_STA_ID1_CRPT_MIC_ENABLE;
3817		else
3818			ah->sta_id1_defaults &=
3819				~AR_STA_ID1_CRPT_MIC_ENABLE;
3820		return true;
3821	case ATH9K_CAP_DIVERSITY:
3822		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3823		if (setting)
3824			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3825		else
3826			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3827		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3828		return true;
3829	case ATH9K_CAP_MCAST_KEYSRCH:
3830		if (setting)
3831			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3832		else
3833			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3834		return true;
3835	default:
3836		return false;
3837	}
3838}
3839EXPORT_SYMBOL(ath9k_hw_setcapability);
3840
3841/****************************/
3842/* GPIO / RFKILL / Antennae */
3843/****************************/
3844
3845static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3846					 u32 gpio, u32 type)
3847{
3848	int addr;
3849	u32 gpio_shift, tmp;
3850
3851	if (gpio > 11)
3852		addr = AR_GPIO_OUTPUT_MUX3;
3853	else if (gpio > 5)
3854		addr = AR_GPIO_OUTPUT_MUX2;
3855	else
3856		addr = AR_GPIO_OUTPUT_MUX1;
3857
3858	gpio_shift = (gpio % 6) * 5;
3859
3860	if (AR_SREV_9280_20_OR_LATER(ah)
3861	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3862		REG_RMW(ah, addr, (type << gpio_shift),
3863			(0x1f << gpio_shift));
3864	} else {
3865		tmp = REG_READ(ah, addr);
3866		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3867		tmp &= ~(0x1f << gpio_shift);
3868		tmp |= (type << gpio_shift);
3869		REG_WRITE(ah, addr, tmp);
3870	}
3871}
3872
3873void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3874{
3875	u32 gpio_shift;
3876
3877	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3878
3879	gpio_shift = gpio << 1;
3880
3881	REG_RMW(ah,
3882		AR_GPIO_OE_OUT,
3883		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3884		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3885}
3886EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3887
3888u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3889{
3890#define MS_REG_READ(x, y) \
3891	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3892
3893	if (gpio >= ah->caps.num_gpio_pins)
3894		return 0xffffffff;
3895
3896	if (AR_SREV_9287_10_OR_LATER(ah))
3897		return MS_REG_READ(AR9287, gpio) != 0;
3898	else if (AR_SREV_9285_10_OR_LATER(ah))
3899		return MS_REG_READ(AR9285, gpio) != 0;
3900	else if (AR_SREV_9280_10_OR_LATER(ah))
3901		return MS_REG_READ(AR928X, gpio) != 0;
3902	else
3903		return MS_REG_READ(AR, gpio) != 0;
3904}
3905EXPORT_SYMBOL(ath9k_hw_gpio_get);
3906
3907void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3908			 u32 ah_signal_type)
3909{
3910	u32 gpio_shift;
3911
3912	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3913
3914	gpio_shift = 2 * gpio;
3915
3916	REG_RMW(ah,
3917		AR_GPIO_OE_OUT,
3918		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3919		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3920}
3921EXPORT_SYMBOL(ath9k_hw_cfg_output);
3922
3923void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3924{
3925	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3926		AR_GPIO_BIT(gpio));
3927}
3928EXPORT_SYMBOL(ath9k_hw_set_gpio);
3929
3930u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3931{
3932	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3933}
3934EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3935
3936void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3937{
3938	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3939}
3940EXPORT_SYMBOL(ath9k_hw_setantenna);
3941
3942bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3943			       enum ath9k_ant_setting settings,
3944			       struct ath9k_channel *chan,
3945			       u8 *tx_chainmask,
3946			       u8 *rx_chainmask,
3947			       u8 *antenna_cfgd)
3948{
3949	static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3950
3951	if (AR_SREV_9280(ah)) {
3952		if (!tx_chainmask_cfg) {
3953
3954			tx_chainmask_cfg = *tx_chainmask;
3955			rx_chainmask_cfg = *rx_chainmask;
3956		}
3957
3958		switch (settings) {
3959		case ATH9K_ANT_FIXED_A:
3960			*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3961			*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3962			*antenna_cfgd = true;
3963			break;
3964		case ATH9K_ANT_FIXED_B:
3965			if (ah->caps.tx_chainmask >
3966			    ATH9K_ANTENNA1_CHAINMASK) {
3967				*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3968			}
3969			*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3970			*antenna_cfgd = true;
3971			break;
3972		case ATH9K_ANT_VARIABLE:
3973			*tx_chainmask = tx_chainmask_cfg;
3974			*rx_chainmask = rx_chainmask_cfg;
3975			*antenna_cfgd = true;
3976			break;
3977		default:
3978			break;
3979		}
3980	} else {
3981		ah->config.diversity_control = settings;
3982	}
3983
3984	return true;
3985}
3986
3987/*********************/
3988/* General Operation */
3989/*********************/
3990
3991u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3992{
3993	u32 bits = REG_READ(ah, AR_RX_FILTER);
3994	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3995
3996	if (phybits & AR_PHY_ERR_RADAR)
3997		bits |= ATH9K_RX_FILTER_PHYRADAR;
3998	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3999		bits |= ATH9K_RX_FILTER_PHYERR;
4000
4001	return bits;
4002}
4003EXPORT_SYMBOL(ath9k_hw_getrxfilter);
4004
4005void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
4006{
4007	u32 phybits;
4008
4009	REG_WRITE(ah, AR_RX_FILTER, bits);
4010
4011	phybits = 0;
4012	if (bits & ATH9K_RX_FILTER_PHYRADAR)
4013		phybits |= AR_PHY_ERR_RADAR;
4014	if (bits & ATH9K_RX_FILTER_PHYERR)
4015		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
4016	REG_WRITE(ah, AR_PHY_ERR, phybits);
4017
4018	if (phybits)
4019		REG_WRITE(ah, AR_RXCFG,
4020			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
4021	else
4022		REG_WRITE(ah, AR_RXCFG,
4023			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
4024}
4025EXPORT_SYMBOL(ath9k_hw_setrxfilter);
4026
4027bool ath9k_hw_phy_disable(struct ath_hw *ah)
4028{
4029	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
4030		return false;
4031
4032	ath9k_hw_init_pll(ah, NULL);
4033	return true;
4034}
4035EXPORT_SYMBOL(ath9k_hw_phy_disable);
4036
4037bool ath9k_hw_disable(struct ath_hw *ah)
4038{
4039	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
4040		return false;
4041
4042	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
4043		return false;
4044
4045	ath9k_hw_init_pll(ah, NULL);
4046	return true;
4047}
4048EXPORT_SYMBOL(ath9k_hw_disable);
4049
4050void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
4051{
4052	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4053	struct ath9k_channel *chan = ah->curchan;
4054	struct ieee80211_channel *channel = chan->chan;
4055
4056	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
4057
4058	ah->eep_ops->set_txpower(ah, chan,
4059				 ath9k_regd_get_ctl(regulatory, chan),
4060				 channel->max_antenna_gain * 2,
4061				 channel->max_power * 2,
4062				 min((u32) MAX_RATE_POWER,
4063				 (u32) regulatory->power_limit));
4064}
4065EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
4066
4067void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
4068{
4069	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
4070}
4071EXPORT_SYMBOL(ath9k_hw_setmac);
4072
4073void ath9k_hw_setopmode(struct ath_hw *ah)
4074{
4075	ath9k_hw_set_operating_mode(ah, ah->opmode);
4076}
4077EXPORT_SYMBOL(ath9k_hw_setopmode);
4078
4079void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
4080{
4081	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4082	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4083}
4084EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
4085
4086void ath9k_hw_write_associd(struct ath_hw *ah)
4087{
4088	struct ath_common *common = ath9k_hw_common(ah);
4089
4090	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
4091	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
4092		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4093}
4094EXPORT_SYMBOL(ath9k_hw_write_associd);
4095
4096u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4097{
4098	u64 tsf;
4099
4100	tsf = REG_READ(ah, AR_TSF_U32);
4101	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4102
4103	return tsf;
4104}
4105EXPORT_SYMBOL(ath9k_hw_gettsf64);
4106
4107void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4108{
4109	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4110	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4111}
4112EXPORT_SYMBOL(ath9k_hw_settsf64);
4113
4114void ath9k_hw_reset_tsf(struct ath_hw *ah)
4115{
4116	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4117			   AH_TSF_WRITE_TIMEOUT))
4118		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
4119			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4120
4121	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4122}
4123EXPORT_SYMBOL(ath9k_hw_reset_tsf);
4124
4125void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4126{
4127	if (setting)
4128		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4129	else
4130		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4131}
4132EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
4133
4134bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4135{
4136	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4137		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
4138			  "bad slot time %u\n", us);
4139		ah->slottime = (u32) -1;
4140		return false;
4141	} else {
4142		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4143		ah->slottime = us;
4144		return true;
4145	}
4146}
4147EXPORT_SYMBOL(ath9k_hw_setslottime);
4148
4149void ath9k_hw_set11nmac2040(struct ath_hw *ah)
4150{
4151	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
4152	u32 macmode;
4153
4154	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
4155		macmode = AR_2040_JOINED_RX_CLEAR;
4156	else
4157		macmode = 0;
4158
4159	REG_WRITE(ah, AR_2040_MODE, macmode);
4160}
4161
4162/* HW Generic timers configuration */
4163
4164static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4165{
4166	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4167	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4168	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4169	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4170	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4171	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4172	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4173	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4174	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4175	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4176				AR_NDP2_TIMER_MODE, 0x0002},
4177	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4178				AR_NDP2_TIMER_MODE, 0x0004},
4179	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4180				AR_NDP2_TIMER_MODE, 0x0008},
4181	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4182				AR_NDP2_TIMER_MODE, 0x0010},
4183	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4184				AR_NDP2_TIMER_MODE, 0x0020},
4185	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4186				AR_NDP2_TIMER_MODE, 0x0040},
4187	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4188				AR_NDP2_TIMER_MODE, 0x0080}
4189};
4190
4191/* HW generic timer primitives */
4192
4193/* compute and clear index of rightmost 1 */
4194static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4195{
4196	u32 b;
4197
4198	b = *mask;
4199	b &= (0-b);
4200	*mask &= ~b;
4201	b *= debruijn32;
4202	b >>= 27;
4203
4204	return timer_table->gen_timer_index[b];
4205}
4206
4207u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4208{
4209	return REG_READ(ah, AR_TSF_L32);
4210}
4211EXPORT_SYMBOL(ath9k_hw_gettsf32);
4212
4213struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4214					  void (*trigger)(void *),
4215					  void (*overflow)(void *),
4216					  void *arg,
4217					  u8 timer_index)
4218{
4219	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4220	struct ath_gen_timer *timer;
4221
4222	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4223
4224	if (timer == NULL) {
4225		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
4226			  "Failed to allocate memory"
4227			  "for hw timer[%d]\n", timer_index);
4228		return NULL;
4229	}
4230
4231	/* allocate a hardware generic timer slot */
4232	timer_table->timers[timer_index] = timer;
4233	timer->index = timer_index;
4234	timer->trigger = trigger;
4235	timer->overflow = overflow;
4236	timer->arg = arg;
4237
4238	return timer;
4239}
4240EXPORT_SYMBOL(ath_gen_timer_alloc);
4241
4242void ath9k_hw_gen_timer_start(struct ath_hw *ah,
4243			      struct ath_gen_timer *timer,
4244			      u32 timer_next,
4245			      u32 timer_period)
4246{
4247	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4248	u32 tsf;
4249
4250	BUG_ON(!timer_period);
4251
4252	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4253
4254	tsf = ath9k_hw_gettsf32(ah);
4255
4256	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
4257		  "curent tsf %x period %x"
4258		  "timer_next %x\n", tsf, timer_period, timer_next);
4259
4260	/*
4261	 * Pull timer_next forward if the current TSF already passed it
4262	 * because of software latency
4263	 */
4264	if (timer_next < tsf)
4265		timer_next = tsf + timer_period;
4266
4267	/*
4268	 * Program generic timer registers
4269	 */
4270	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4271		 timer_next);
4272	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4273		  timer_period);
4274	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4275		    gen_tmr_configuration[timer->index].mode_mask);
4276
4277	/* Enable both trigger and thresh interrupt masks */
4278	REG_SET_BIT(ah, AR_IMR_S5,
4279		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4280		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4281}
4282EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
4283
4284void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4285{
4286	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4287
4288	if ((timer->index < AR_FIRST_NDP_TIMER) ||
4289		(timer->index >= ATH_MAX_GEN_TIMER)) {
4290		return;
4291	}
4292
4293	/* Clear generic timer enable bits. */
4294	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4295			gen_tmr_configuration[timer->index].mode_mask);
4296
4297	/* Disable both trigger and thresh interrupt masks */
4298	REG_CLR_BIT(ah, AR_IMR_S5,
4299		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4300		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4301
4302	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4303}
4304EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
4305
4306void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4307{
4308	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4309
4310	/* free the hardware generic timer slot */
4311	timer_table->timers[timer->index] = NULL;
4312	kfree(timer);
4313}
4314EXPORT_SYMBOL(ath_gen_timer_free);
4315
4316/*
4317 * Generic Timer Interrupts handling
4318 */
4319void ath_gen_timer_isr(struct ath_hw *ah)
4320{
4321	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4322	struct ath_gen_timer *timer;
4323	struct ath_common *common = ath9k_hw_common(ah);
4324	u32 trigger_mask, thresh_mask, index;
4325
4326	/* get hardware generic timer interrupt status */
4327	trigger_mask = ah->intr_gen_timer_trigger;
4328	thresh_mask = ah->intr_gen_timer_thresh;
4329	trigger_mask &= timer_table->timer_mask.val;
4330	thresh_mask &= timer_table->timer_mask.val;
4331
4332	trigger_mask &= ~thresh_mask;
4333
4334	while (thresh_mask) {
4335		index = rightmost_index(timer_table, &thresh_mask);
4336		timer = timer_table->timers[index];
4337		BUG_ON(!timer);
4338		ath_print(common, ATH_DBG_HWTIMER,
4339			  "TSF overflow for Gen timer %d\n", index);
4340		timer->overflow(timer->arg);
4341	}
4342
4343	while (trigger_mask) {
4344		index = rightmost_index(timer_table, &trigger_mask);
4345		timer = timer_table->timers[index];
4346		BUG_ON(!timer);
4347		ath_print(common, ATH_DBG_HWTIMER,
4348			  "Gen timer[%d] trigger\n", index);
4349		timer->trigger(timer->arg);
4350	}
4351}
4352EXPORT_SYMBOL(ath_gen_timer_isr);
4353
4354static struct {
4355	u32 version;
4356	const char * name;
4357} ath_mac_bb_names[] = {
4358	/* Devices with external radios */
4359	{ AR_SREV_VERSION_5416_PCI,	"5416" },
4360	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
4361	{ AR_SREV_VERSION_9100,		"9100" },
4362	{ AR_SREV_VERSION_9160,		"9160" },
4363	/* Single-chip solutions */
4364	{ AR_SREV_VERSION_9280,		"9280" },
4365	{ AR_SREV_VERSION_9285,		"9285" },
4366	{ AR_SREV_VERSION_9287,         "9287" }
4367};
4368
4369/* For devices with external radios */
4370static struct {
4371	u16 version;
4372	const char * name;
4373} ath_rf_names[] = {
4374	{ 0,				"5133" },
4375	{ AR_RAD5133_SREV_MAJOR,	"5133" },
4376	{ AR_RAD5122_SREV_MAJOR,	"5122" },
4377	{ AR_RAD2133_SREV_MAJOR,	"2133" },
4378	{ AR_RAD2122_SREV_MAJOR,	"2122" }
4379};
4380
4381/*
4382 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
4383 */
4384static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
4385{
4386	int i;
4387
4388	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
4389		if (ath_mac_bb_names[i].version == mac_bb_version) {
4390			return ath_mac_bb_names[i].name;
4391		}
4392	}
4393
4394	return "????";
4395}
4396
4397/*
4398 * Return the RF name. "????" is returned if the RF is unknown.
4399 * Used for devices with external radios.
4400 */
4401static const char *ath9k_hw_rf_name(u16 rf_version)
4402{
4403	int i;
4404
4405	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
4406		if (ath_rf_names[i].version == rf_version) {
4407			return ath_rf_names[i].name;
4408		}
4409	}
4410
4411	return "????";
4412}
4413
4414void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
4415{
4416	int used;
4417
4418	/* chipsets >= AR9280 are single-chip */
4419	if (AR_SREV_9280_10_OR_LATER(ah)) {
4420		used = snprintf(hw_name, len,
4421			       "Atheros AR%s Rev:%x",
4422			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4423			       ah->hw_version.macRev);
4424	}
4425	else {
4426		used = snprintf(hw_name, len,
4427			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
4428			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4429			       ah->hw_version.macRev,
4430			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
4431						AR_RADIO_SREV_MAJOR)),
4432			       ah->hw_version.phyRev);
4433	}
4434
4435	hw_name[used] = '\0';
4436}
4437EXPORT_SYMBOL(ath9k_hw_name);
4438