hw.c revision ffa49f8209ef77ebf2cce0bbc129ca40064b8fb6
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <asm/unaligned.h>
19
20#include "hw.h"
21#include "rc.h"
22#include "initvals.h"
23
24#define ATH9K_CLOCK_RATE_CCK		22
25#define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26#define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27
28static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31			      struct ar5416_eeprom_def *pEepData,
32			      u32 reg, u32 value);
33
34MODULE_AUTHOR("Atheros Communications");
35MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37MODULE_LICENSE("Dual BSD/GPL");
38
39static int __init ath9k_init(void)
40{
41	return 0;
42}
43module_init(ath9k_init);
44
45static void __exit ath9k_exit(void)
46{
47	return;
48}
49module_exit(ath9k_exit);
50
51/********************/
52/* Helper Functions */
53/********************/
54
55static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56{
57	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59	if (!ah->curchan) /* should really check for CCK instead */
60		return usecs *ATH9K_CLOCK_RATE_CCK;
61	if (conf->channel->band == IEEE80211_BAND_2GHZ)
62		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64}
65
66static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67{
68	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70	if (conf_is_ht40(conf))
71		return ath9k_hw_mac_clks(ah, usecs) * 2;
72	else
73		return ath9k_hw_mac_clks(ah, usecs);
74}
75
76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77{
78	int i;
79
80	BUG_ON(timeout < AH_TIME_QUANTUM);
81
82	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83		if ((REG_READ(ah, reg) & mask) == val)
84			return true;
85
86		udelay(AH_TIME_QUANTUM);
87	}
88
89	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91		  timeout, reg, REG_READ(ah, reg), mask, val);
92
93	return false;
94}
95EXPORT_SYMBOL(ath9k_hw_wait);
96
97u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98{
99	u32 retval;
100	int i;
101
102	for (i = 0, retval = 0; i < n; i++) {
103		retval = (retval << 1) | (val & 1);
104		val >>= 1;
105	}
106	return retval;
107}
108
109bool ath9k_get_channel_edges(struct ath_hw *ah,
110			     u16 flags, u16 *low,
111			     u16 *high)
112{
113	struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115	if (flags & CHANNEL_5GHZ) {
116		*low = pCap->low_5ghz_chan;
117		*high = pCap->high_5ghz_chan;
118		return true;
119	}
120	if ((flags & CHANNEL_2GHZ)) {
121		*low = pCap->low_2ghz_chan;
122		*high = pCap->high_2ghz_chan;
123		return true;
124	}
125	return false;
126}
127
128u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129			   u8 phy, int kbps,
130			   u32 frameLen, u16 rateix,
131			   bool shortPreamble)
132{
133	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135	if (kbps == 0)
136		return 0;
137
138	switch (phy) {
139	case WLAN_RC_PHY_CCK:
140		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141		if (shortPreamble)
142			phyTime >>= 1;
143		numBits = frameLen << 3;
144		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145		break;
146	case WLAN_RC_PHY_OFDM:
147		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149			numBits = OFDM_PLCP_BITS + (frameLen << 3);
150			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151			txTime = OFDM_SIFS_TIME_QUARTER
152				+ OFDM_PREAMBLE_TIME_QUARTER
153				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154		} else if (ah->curchan &&
155			   IS_CHAN_HALF_RATE(ah->curchan)) {
156			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157			numBits = OFDM_PLCP_BITS + (frameLen << 3);
158			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159			txTime = OFDM_SIFS_TIME_HALF +
160				OFDM_PREAMBLE_TIME_HALF
161				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
162		} else {
163			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164			numBits = OFDM_PLCP_BITS + (frameLen << 3);
165			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167				+ (numSymbols * OFDM_SYMBOL_TIME);
168		}
169		break;
170	default:
171		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
173		txTime = 0;
174		break;
175	}
176
177	return txTime;
178}
179EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182				  struct ath9k_channel *chan,
183				  struct chan_centers *centers)
184{
185	int8_t extoff;
186
187	if (!IS_CHAN_HT40(chan)) {
188		centers->ctl_center = centers->ext_center =
189			centers->synth_center = chan->channel;
190		return;
191	}
192
193	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195		centers->synth_center =
196			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197		extoff = 1;
198	} else {
199		centers->synth_center =
200			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201		extoff = -1;
202	}
203
204	centers->ctl_center =
205		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206	/* 25 MHz spacing is supported by hw but not on upper layers */
207	centers->ext_center =
208		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209}
210
211/******************/
212/* Chip Revisions */
213/******************/
214
215static void ath9k_hw_read_revisions(struct ath_hw *ah)
216{
217	u32 val;
218
219	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221	if (val == 0xFF) {
222		val = REG_READ(ah, AR_SREV);
223		ah->hw_version.macVersion =
224			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227	} else {
228		if (!AR_SREV_9100(ah))
229			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231		ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234			ah->is_pciexpress = true;
235	}
236}
237
238static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239{
240	u32 val;
241	int i;
242
243	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245	for (i = 0; i < 8; i++)
246		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250	return ath9k_hw_reverse_bits(val, 8);
251}
252
253/************************************/
254/* HW Attach, Detach, Init Routines */
255/************************************/
256
257static void ath9k_hw_disablepcie(struct ath_hw *ah)
258{
259	if (AR_SREV_9100(ah))
260		return;
261
262	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273}
274
275static bool ath9k_hw_chip_test(struct ath_hw *ah)
276{
277	struct ath_common *common = ath9k_hw_common(ah);
278	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279	u32 regHold[2];
280	u32 patternData[4] = { 0x55555555,
281			       0xaaaaaaaa,
282			       0x66666666,
283			       0x99999999 };
284	int i, j;
285
286	for (i = 0; i < 2; i++) {
287		u32 addr = regAddr[i];
288		u32 wrData, rdData;
289
290		regHold[i] = REG_READ(ah, addr);
291		for (j = 0; j < 0x100; j++) {
292			wrData = (j << 16) | j;
293			REG_WRITE(ah, addr, wrData);
294			rdData = REG_READ(ah, addr);
295			if (rdData != wrData) {
296				ath_print(common, ATH_DBG_FATAL,
297					  "address test failed "
298					  "addr: 0x%08x - wr:0x%08x != "
299					  "rd:0x%08x\n",
300					  addr, wrData, rdData);
301				return false;
302			}
303		}
304		for (j = 0; j < 4; j++) {
305			wrData = patternData[j];
306			REG_WRITE(ah, addr, wrData);
307			rdData = REG_READ(ah, addr);
308			if (wrData != rdData) {
309				ath_print(common, ATH_DBG_FATAL,
310					  "address test failed "
311					  "addr: 0x%08x - wr:0x%08x != "
312					  "rd:0x%08x\n",
313					  addr, wrData, rdData);
314				return false;
315			}
316		}
317		REG_WRITE(ah, regAddr[i], regHold[i]);
318	}
319	udelay(100);
320
321	return true;
322}
323
324static void ath9k_hw_init_config(struct ath_hw *ah)
325{
326	int i;
327
328	ah->config.dma_beacon_response_time = 2;
329	ah->config.sw_beacon_response_time = 10;
330	ah->config.additional_swba_backoff = 0;
331	ah->config.ack_6mb = 0x0;
332	ah->config.cwm_ignore_extcca = 0;
333	ah->config.pcie_powersave_enable = 0;
334	ah->config.pcie_clock_req = 0;
335	ah->config.pcie_waen = 0;
336	ah->config.analog_shiftreg = 1;
337	ah->config.ofdm_trig_low = 200;
338	ah->config.ofdm_trig_high = 500;
339	ah->config.cck_trig_high = 200;
340	ah->config.cck_trig_low = 100;
341	ah->config.enable_ani = 1;
342
343	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344		ah->config.spurchans[i][0] = AR_NO_SPUR;
345		ah->config.spurchans[i][1] = AR_NO_SPUR;
346	}
347
348	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349		ah->config.ht_enable = 1;
350	else
351		ah->config.ht_enable = 0;
352
353	ah->config.rx_intr_mitigation = true;
354
355	/*
356	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358	 * This means we use it for all AR5416 devices, and the few
359	 * minor PCI AR9280 devices out there.
360	 *
361	 * Serialization is required because these devices do not handle
362	 * well the case of two concurrent reads/writes due to the latency
363	 * involved. During one read/write another read/write can be issued
364	 * on another CPU while the previous read/write may still be working
365	 * on our hardware, if we hit this case the hardware poops in a loop.
366	 * We prevent this by serializing reads and writes.
367	 *
368	 * This issue is not present on PCI-Express devices or pre-AR5416
369	 * devices (legacy, 802.11abg).
370	 */
371	if (num_possible_cpus() > 1)
372		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373}
374EXPORT_SYMBOL(ath9k_hw_init);
375
376static void ath9k_hw_init_defaults(struct ath_hw *ah)
377{
378	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380	regulatory->country_code = CTRY_DEFAULT;
381	regulatory->power_limit = MAX_RATE_POWER;
382	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384	ah->hw_version.magic = AR5416_MAGIC;
385	ah->hw_version.subvendorid = 0;
386
387	ah->ah_flags = 0;
388	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390	if (!AR_SREV_9100(ah))
391		ah->ah_flags = AH_USE_EEPROM;
392
393	ah->atim_window = 0;
394	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395	ah->beacon_interval = 100;
396	ah->enable_32kHz_clock = DONT_USE_32KHZ;
397	ah->slottime = (u32) -1;
398	ah->globaltxtimeout = (u32) -1;
399	ah->power_mode = ATH9K_PM_UNDEFINED;
400}
401
402static int ath9k_hw_rf_claim(struct ath_hw *ah)
403{
404	u32 val;
405
406	REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408	val = ath9k_hw_get_radiorev(ah);
409	switch (val & AR_RADIO_SREV_MAJOR) {
410	case 0:
411		val = AR_RAD5133_SREV_MAJOR;
412		break;
413	case AR_RAD5133_SREV_MAJOR:
414	case AR_RAD5122_SREV_MAJOR:
415	case AR_RAD2133_SREV_MAJOR:
416	case AR_RAD2122_SREV_MAJOR:
417		break;
418	default:
419		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420			  "Radio Chip Rev 0x%02X not supported\n",
421			  val & AR_RADIO_SREV_MAJOR);
422		return -EOPNOTSUPP;
423	}
424
425	ah->hw_version.analog5GhzRev = val;
426
427	return 0;
428}
429
430static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431{
432	struct ath_common *common = ath9k_hw_common(ah);
433	u32 sum;
434	int i;
435	u16 eeval;
436
437	sum = 0;
438	for (i = 0; i < 3; i++) {
439		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440		sum += eeval;
441		common->macaddr[2 * i] = eeval >> 8;
442		common->macaddr[2 * i + 1] = eeval & 0xff;
443	}
444	if (sum == 0 || sum == 0xffff * 3)
445		return -EADDRNOTAVAIL;
446
447	return 0;
448}
449
450static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451{
452	u32 rxgain_type;
453
454	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458			INIT_INI_ARRAY(&ah->iniModesRxGain,
459			ar9280Modes_backoff_13db_rxgain_9280_2,
460			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462			INIT_INI_ARRAY(&ah->iniModesRxGain,
463			ar9280Modes_backoff_23db_rxgain_9280_2,
464			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465		else
466			INIT_INI_ARRAY(&ah->iniModesRxGain,
467			ar9280Modes_original_rxgain_9280_2,
468			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469	} else {
470		INIT_INI_ARRAY(&ah->iniModesRxGain,
471			ar9280Modes_original_rxgain_9280_2,
472			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473	}
474}
475
476static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477{
478	u32 txgain_type;
479
480	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484			INIT_INI_ARRAY(&ah->iniModesTxGain,
485			ar9280Modes_high_power_tx_gain_9280_2,
486			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487		else
488			INIT_INI_ARRAY(&ah->iniModesTxGain,
489			ar9280Modes_original_tx_gain_9280_2,
490			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491	} else {
492		INIT_INI_ARRAY(&ah->iniModesTxGain,
493		ar9280Modes_original_tx_gain_9280_2,
494		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495	}
496}
497
498static int ath9k_hw_post_init(struct ath_hw *ah)
499{
500	int ecode;
501
502	if (!AR_SREV_9271(ah)) {
503		if (!ath9k_hw_chip_test(ah))
504			return -ENODEV;
505	}
506
507	ecode = ath9k_hw_rf_claim(ah);
508	if (ecode != 0)
509		return ecode;
510
511	ecode = ath9k_hw_eeprom_init(ah);
512	if (ecode != 0)
513		return ecode;
514
515	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
516		  "Eeprom VER: %d, REV: %d\n",
517		  ah->eep_ops->get_eeprom_ver(ah),
518		  ah->eep_ops->get_eeprom_rev(ah));
519
520        if (!AR_SREV_9280_10_OR_LATER(ah)) {
521		ecode = ath9k_hw_rf_alloc_ext_banks(ah);
522		if (ecode) {
523			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
524				  "Failed allocating banks for "
525				  "external radio\n");
526			return ecode;
527		}
528	}
529
530	if (!AR_SREV_9100(ah)) {
531		ath9k_hw_ani_setup(ah);
532		ath9k_hw_ani_init(ah);
533	}
534
535	return 0;
536}
537
538static bool ath9k_hw_devid_supported(u16 devid)
539{
540	switch (devid) {
541	case AR5416_DEVID_PCI:
542	case AR5416_DEVID_PCIE:
543	case AR5416_AR9100_DEVID:
544	case AR9160_DEVID_PCI:
545	case AR9280_DEVID_PCI:
546	case AR9280_DEVID_PCIE:
547	case AR9285_DEVID_PCIE:
548	case AR5416_DEVID_AR9287_PCI:
549	case AR5416_DEVID_AR9287_PCIE:
550	case AR2427_DEVID_PCIE:
551		return true;
552	default:
553		break;
554	}
555	return false;
556}
557
558static bool ath9k_hw_macversion_supported(u32 macversion)
559{
560	switch (macversion) {
561	case AR_SREV_VERSION_5416_PCI:
562	case AR_SREV_VERSION_5416_PCIE:
563	case AR_SREV_VERSION_9160:
564	case AR_SREV_VERSION_9100:
565	case AR_SREV_VERSION_9280:
566	case AR_SREV_VERSION_9285:
567	case AR_SREV_VERSION_9287:
568	case AR_SREV_VERSION_9271:
569		return true;
570	default:
571		break;
572	}
573	return false;
574}
575
576static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
577{
578	if (AR_SREV_9160_10_OR_LATER(ah)) {
579		if (AR_SREV_9280_10_OR_LATER(ah)) {
580			ah->iq_caldata.calData = &iq_cal_single_sample;
581			ah->adcgain_caldata.calData =
582				&adc_gain_cal_single_sample;
583			ah->adcdc_caldata.calData =
584				&adc_dc_cal_single_sample;
585			ah->adcdc_calinitdata.calData =
586				&adc_init_dc_cal;
587		} else {
588			ah->iq_caldata.calData = &iq_cal_multi_sample;
589			ah->adcgain_caldata.calData =
590				&adc_gain_cal_multi_sample;
591			ah->adcdc_caldata.calData =
592				&adc_dc_cal_multi_sample;
593			ah->adcdc_calinitdata.calData =
594				&adc_init_dc_cal;
595		}
596		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
597	}
598}
599
600static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
601{
602	if (AR_SREV_9271(ah)) {
603		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
604			       ARRAY_SIZE(ar9271Modes_9271), 6);
605		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
606			       ARRAY_SIZE(ar9271Common_9271), 2);
607		INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
608			       ar9271Common_normal_cck_fir_coeff_9271,
609			       ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
610		INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
611			       ar9271Common_japan_2484_cck_fir_coeff_9271,
612			       ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
613		INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
614			       ar9271Modes_9271_1_0_only,
615			       ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
616		INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
617			       ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
618		INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
619			       ar9271Modes_high_power_tx_gain_9271,
620			       ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
621		INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
622			       ar9271Modes_normal_power_tx_gain_9271,
623			       ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
624		return;
625	}
626
627	if (AR_SREV_9287_11_OR_LATER(ah)) {
628		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
629				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
630		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
631				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
632		if (ah->config.pcie_clock_req)
633			INIT_INI_ARRAY(&ah->iniPcieSerdes,
634			ar9287PciePhy_clkreq_off_L1_9287_1_1,
635			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
636		else
637			INIT_INI_ARRAY(&ah->iniPcieSerdes,
638			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
639			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
640					2);
641	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
642		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
643				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
644		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
645				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
646
647		if (ah->config.pcie_clock_req)
648			INIT_INI_ARRAY(&ah->iniPcieSerdes,
649			ar9287PciePhy_clkreq_off_L1_9287_1_0,
650			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
651		else
652			INIT_INI_ARRAY(&ah->iniPcieSerdes,
653			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
654			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
655				  2);
656	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
657
658
659		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
660			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
661		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
662			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
663
664		if (ah->config.pcie_clock_req) {
665			INIT_INI_ARRAY(&ah->iniPcieSerdes,
666			ar9285PciePhy_clkreq_off_L1_9285_1_2,
667			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
668		} else {
669			INIT_INI_ARRAY(&ah->iniPcieSerdes,
670			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
671			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
672				  2);
673		}
674	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
675		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
676			       ARRAY_SIZE(ar9285Modes_9285), 6);
677		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
678			       ARRAY_SIZE(ar9285Common_9285), 2);
679
680		if (ah->config.pcie_clock_req) {
681			INIT_INI_ARRAY(&ah->iniPcieSerdes,
682			ar9285PciePhy_clkreq_off_L1_9285,
683			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
684		} else {
685			INIT_INI_ARRAY(&ah->iniPcieSerdes,
686			ar9285PciePhy_clkreq_always_on_L1_9285,
687			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
688		}
689	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
690		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
691			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
692		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
693			       ARRAY_SIZE(ar9280Common_9280_2), 2);
694
695		if (ah->config.pcie_clock_req) {
696			INIT_INI_ARRAY(&ah->iniPcieSerdes,
697			       ar9280PciePhy_clkreq_off_L1_9280,
698			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
699		} else {
700			INIT_INI_ARRAY(&ah->iniPcieSerdes,
701			       ar9280PciePhy_clkreq_always_on_L1_9280,
702			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
703		}
704		INIT_INI_ARRAY(&ah->iniModesAdditional,
705			       ar9280Modes_fast_clock_9280_2,
706			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
707	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
708		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
709			       ARRAY_SIZE(ar9280Modes_9280), 6);
710		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
711			       ARRAY_SIZE(ar9280Common_9280), 2);
712	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
713		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
714			       ARRAY_SIZE(ar5416Modes_9160), 6);
715		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
716			       ARRAY_SIZE(ar5416Common_9160), 2);
717		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
718			       ARRAY_SIZE(ar5416Bank0_9160), 2);
719		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
720			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
721		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
722			       ARRAY_SIZE(ar5416Bank1_9160), 2);
723		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
724			       ARRAY_SIZE(ar5416Bank2_9160), 2);
725		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
726			       ARRAY_SIZE(ar5416Bank3_9160), 3);
727		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
728			       ARRAY_SIZE(ar5416Bank6_9160), 3);
729		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
730			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
731		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
732			       ARRAY_SIZE(ar5416Bank7_9160), 2);
733		if (AR_SREV_9160_11(ah)) {
734			INIT_INI_ARRAY(&ah->iniAddac,
735				       ar5416Addac_91601_1,
736				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
737		} else {
738			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
739				       ARRAY_SIZE(ar5416Addac_9160), 2);
740		}
741	} else if (AR_SREV_9100_OR_LATER(ah)) {
742		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
743			       ARRAY_SIZE(ar5416Modes_9100), 6);
744		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
745			       ARRAY_SIZE(ar5416Common_9100), 2);
746		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
747			       ARRAY_SIZE(ar5416Bank0_9100), 2);
748		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
749			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
750		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
751			       ARRAY_SIZE(ar5416Bank1_9100), 2);
752		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
753			       ARRAY_SIZE(ar5416Bank2_9100), 2);
754		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
755			       ARRAY_SIZE(ar5416Bank3_9100), 3);
756		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
757			       ARRAY_SIZE(ar5416Bank6_9100), 3);
758		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
759			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
760		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
761			       ARRAY_SIZE(ar5416Bank7_9100), 2);
762		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
763			       ARRAY_SIZE(ar5416Addac_9100), 2);
764	} else {
765		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
766			       ARRAY_SIZE(ar5416Modes), 6);
767		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
768			       ARRAY_SIZE(ar5416Common), 2);
769		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
770			       ARRAY_SIZE(ar5416Bank0), 2);
771		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
772			       ARRAY_SIZE(ar5416BB_RfGain), 3);
773		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
774			       ARRAY_SIZE(ar5416Bank1), 2);
775		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
776			       ARRAY_SIZE(ar5416Bank2), 2);
777		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
778			       ARRAY_SIZE(ar5416Bank3), 3);
779		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
780			       ARRAY_SIZE(ar5416Bank6), 3);
781		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
782			       ARRAY_SIZE(ar5416Bank6TPC), 3);
783		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
784			       ARRAY_SIZE(ar5416Bank7), 2);
785		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
786			       ARRAY_SIZE(ar5416Addac), 2);
787	}
788}
789
790static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
791{
792	if (AR_SREV_9287_11_OR_LATER(ah))
793		INIT_INI_ARRAY(&ah->iniModesRxGain,
794		ar9287Modes_rx_gain_9287_1_1,
795		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
796	else if (AR_SREV_9287_10(ah))
797		INIT_INI_ARRAY(&ah->iniModesRxGain,
798		ar9287Modes_rx_gain_9287_1_0,
799		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
800	else if (AR_SREV_9280_20(ah))
801		ath9k_hw_init_rxgain_ini(ah);
802
803	if (AR_SREV_9287_11_OR_LATER(ah)) {
804		INIT_INI_ARRAY(&ah->iniModesTxGain,
805		ar9287Modes_tx_gain_9287_1_1,
806		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
807	} else if (AR_SREV_9287_10(ah)) {
808		INIT_INI_ARRAY(&ah->iniModesTxGain,
809		ar9287Modes_tx_gain_9287_1_0,
810		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
811	} else if (AR_SREV_9280_20(ah)) {
812		ath9k_hw_init_txgain_ini(ah);
813	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
814		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
815
816		/* txgain table */
817		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
818			INIT_INI_ARRAY(&ah->iniModesTxGain,
819			ar9285Modes_high_power_tx_gain_9285_1_2,
820			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
821		} else {
822			INIT_INI_ARRAY(&ah->iniModesTxGain,
823			ar9285Modes_original_tx_gain_9285_1_2,
824			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
825		}
826
827	}
828}
829
830static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
831{
832	u32 i, j;
833
834	if (ah->hw_version.devid == AR9280_DEVID_PCI) {
835
836		/* EEPROM Fixup */
837		for (i = 0; i < ah->iniModes.ia_rows; i++) {
838			u32 reg = INI_RA(&ah->iniModes, i, 0);
839
840			for (j = 1; j < ah->iniModes.ia_columns; j++) {
841				u32 val = INI_RA(&ah->iniModes, i, j);
842
843				INI_RA(&ah->iniModes, i, j) =
844					ath9k_hw_ini_fixup(ah,
845							   &ah->eeprom.def,
846							   reg, val);
847			}
848		}
849	}
850}
851
852int ath9k_hw_init(struct ath_hw *ah)
853{
854	struct ath_common *common = ath9k_hw_common(ah);
855	int r = 0;
856
857	if (common->bus_ops->ath_bus_type != ATH_USB) {
858		if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
859			ath_print(common, ATH_DBG_FATAL,
860				  "Unsupported device ID: 0x%0x\n",
861				  ah->hw_version.devid);
862			return -EOPNOTSUPP;
863		}
864	}
865
866	ath9k_hw_init_defaults(ah);
867	ath9k_hw_init_config(ah);
868
869	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
870		ath_print(common, ATH_DBG_FATAL,
871			  "Couldn't reset chip\n");
872		return -EIO;
873	}
874
875	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
876		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
877		return -EIO;
878	}
879
880	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
881		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
882		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
883			ah->config.serialize_regmode =
884				SER_REG_MODE_ON;
885		} else {
886			ah->config.serialize_regmode =
887				SER_REG_MODE_OFF;
888		}
889	}
890
891	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
892		ah->config.serialize_regmode);
893
894	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
895		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
896	else
897		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
898
899	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
900		ath_print(common, ATH_DBG_FATAL,
901			  "Mac Chip Rev 0x%02x.%x is not supported by "
902			  "this driver\n", ah->hw_version.macVersion,
903			  ah->hw_version.macRev);
904		return -EOPNOTSUPP;
905	}
906
907	if (AR_SREV_9100(ah)) {
908		ah->iq_caldata.calData = &iq_cal_multi_sample;
909		ah->supp_cals = IQ_MISMATCH_CAL;
910		ah->is_pciexpress = false;
911	}
912
913	if (AR_SREV_9271(ah))
914		ah->is_pciexpress = false;
915
916	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
917
918	ath9k_hw_init_cal_settings(ah);
919
920	ah->ani_function = ATH9K_ANI_ALL;
921	if (AR_SREV_9280_10_OR_LATER(ah)) {
922		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
923		ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
924		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
925	} else {
926		ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
927		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
928	}
929
930	ath9k_hw_init_mode_regs(ah);
931
932	if (ah->is_pciexpress)
933		ath9k_hw_configpcipowersave(ah, 0, 0);
934	else
935		ath9k_hw_disablepcie(ah);
936
937	/* Support for Japan ch.14 (2484) spread */
938	if (AR_SREV_9287_11_OR_LATER(ah)) {
939		INIT_INI_ARRAY(&ah->iniCckfirNormal,
940		       ar9287Common_normal_cck_fir_coeff_92871_1,
941		       ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
942		INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
943		       ar9287Common_japan_2484_cck_fir_coeff_92871_1,
944		       ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
945	}
946
947	r = ath9k_hw_post_init(ah);
948	if (r)
949		return r;
950
951	ath9k_hw_init_mode_gain_regs(ah);
952	r = ath9k_hw_fill_cap_info(ah);
953	if (r)
954		return r;
955
956	ath9k_hw_init_eeprom_fix(ah);
957
958	r = ath9k_hw_init_macaddr(ah);
959	if (r) {
960		ath_print(common, ATH_DBG_FATAL,
961			  "Failed to initialize MAC address\n");
962		return r;
963	}
964
965	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
966		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
967	else
968		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
969
970	ath9k_init_nfcal_hist_buffer(ah);
971
972	common->state = ATH_HW_INITIALIZED;
973
974	return 0;
975}
976
977static void ath9k_hw_init_bb(struct ath_hw *ah,
978			     struct ath9k_channel *chan)
979{
980	u32 synthDelay;
981
982	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
983	if (IS_CHAN_B(chan))
984		synthDelay = (4 * synthDelay) / 22;
985	else
986		synthDelay /= 10;
987
988	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
989
990	udelay(synthDelay + BASE_ACTIVATE_DELAY);
991}
992
993static void ath9k_hw_init_qos(struct ath_hw *ah)
994{
995	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
996	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
997
998	REG_WRITE(ah, AR_QOS_NO_ACK,
999		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1000		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1001		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1002
1003	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1004	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1005	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1006	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1007	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1008}
1009
1010static void ath9k_hw_init_pll(struct ath_hw *ah,
1011			      struct ath9k_channel *chan)
1012{
1013	u32 pll;
1014
1015	if (AR_SREV_9100(ah)) {
1016		if (chan && IS_CHAN_5GHZ(chan))
1017			pll = 0x1450;
1018		else
1019			pll = 0x1458;
1020	} else {
1021		if (AR_SREV_9280_10_OR_LATER(ah)) {
1022			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1023
1024			if (chan && IS_CHAN_HALF_RATE(chan))
1025				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1026			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1027				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1028
1029			if (chan && IS_CHAN_5GHZ(chan)) {
1030				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1031
1032
1033				if (AR_SREV_9280_20(ah)) {
1034					if (((chan->channel % 20) == 0)
1035					    || ((chan->channel % 10) == 0))
1036						pll = 0x2850;
1037					else
1038						pll = 0x142c;
1039				}
1040			} else {
1041				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1042			}
1043
1044		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1045
1046			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1047
1048			if (chan && IS_CHAN_HALF_RATE(chan))
1049				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1050			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1051				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1052
1053			if (chan && IS_CHAN_5GHZ(chan))
1054				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1055			else
1056				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1057		} else {
1058			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1059
1060			if (chan && IS_CHAN_HALF_RATE(chan))
1061				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1062			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1063				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1064
1065			if (chan && IS_CHAN_5GHZ(chan))
1066				pll |= SM(0xa, AR_RTC_PLL_DIV);
1067			else
1068				pll |= SM(0xb, AR_RTC_PLL_DIV);
1069		}
1070	}
1071	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1072
1073	/* Switch the core clock for ar9271 to 117Mhz */
1074	if (AR_SREV_9271(ah)) {
1075		udelay(500);
1076		REG_WRITE(ah, 0x50040, 0x304);
1077	}
1078
1079	udelay(RTC_PLL_SETTLE_DELAY);
1080
1081	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1082}
1083
1084static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1085{
1086	int rx_chainmask, tx_chainmask;
1087
1088	rx_chainmask = ah->rxchainmask;
1089	tx_chainmask = ah->txchainmask;
1090
1091	switch (rx_chainmask) {
1092	case 0x5:
1093		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1094			    AR_PHY_SWAP_ALT_CHAIN);
1095	case 0x3:
1096		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1097			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1098			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1099			break;
1100		}
1101	case 0x1:
1102	case 0x2:
1103	case 0x7:
1104		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1105		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1106		break;
1107	default:
1108		break;
1109	}
1110
1111	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1112	if (tx_chainmask == 0x5) {
1113		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1114			    AR_PHY_SWAP_ALT_CHAIN);
1115	}
1116	if (AR_SREV_9100(ah))
1117		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1118			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1119}
1120
1121static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1122					  enum nl80211_iftype opmode)
1123{
1124	u32 imr_reg = AR_IMR_TXERR |
1125		AR_IMR_TXURN |
1126		AR_IMR_RXERR |
1127		AR_IMR_RXORN |
1128		AR_IMR_BCNMISC;
1129
1130	if (ah->config.rx_intr_mitigation)
1131		imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1132	else
1133		imr_reg |= AR_IMR_RXOK;
1134
1135	imr_reg |= AR_IMR_TXOK;
1136
1137	if (opmode == NL80211_IFTYPE_AP)
1138		imr_reg |= AR_IMR_MIB;
1139
1140	REG_WRITE(ah, AR_IMR, imr_reg);
1141	ah->imrs2_reg |= AR_IMR_S2_GTT;
1142	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1143
1144	if (!AR_SREV_9100(ah)) {
1145		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1146		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1147		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1148	}
1149}
1150
1151static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1152{
1153	u32 val = ath9k_hw_mac_to_clks(ah, us);
1154	val = min(val, (u32) 0xFFFF);
1155	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1156}
1157
1158static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1159{
1160	u32 val = ath9k_hw_mac_to_clks(ah, us);
1161	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1162	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1163}
1164
1165static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1166{
1167	u32 val = ath9k_hw_mac_to_clks(ah, us);
1168	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1169	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1170}
1171
1172static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1173{
1174	if (tu > 0xFFFF) {
1175		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1176			  "bad global tx timeout %u\n", tu);
1177		ah->globaltxtimeout = (u32) -1;
1178		return false;
1179	} else {
1180		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1181		ah->globaltxtimeout = tu;
1182		return true;
1183	}
1184}
1185
1186void ath9k_hw_init_global_settings(struct ath_hw *ah)
1187{
1188	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1189	int acktimeout;
1190	int slottime;
1191	int sifstime;
1192
1193	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1194		  ah->misc_mode);
1195
1196	if (ah->misc_mode != 0)
1197		REG_WRITE(ah, AR_PCU_MISC,
1198			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1199
1200	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1201		sifstime = 16;
1202	else
1203		sifstime = 10;
1204
1205	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1206	slottime = ah->slottime + 3 * ah->coverage_class;
1207	acktimeout = slottime + sifstime;
1208
1209	/*
1210	 * Workaround for early ACK timeouts, add an offset to match the
1211	 * initval's 64us ack timeout value.
1212	 * This was initially only meant to work around an issue with delayed
1213	 * BA frames in some implementations, but it has been found to fix ACK
1214	 * timeout issues in other cases as well.
1215	 */
1216	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1217		acktimeout += 64 - sifstime - ah->slottime;
1218
1219	ath9k_hw_setslottime(ah, slottime);
1220	ath9k_hw_set_ack_timeout(ah, acktimeout);
1221	ath9k_hw_set_cts_timeout(ah, acktimeout);
1222	if (ah->globaltxtimeout != (u32) -1)
1223		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1224}
1225EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1226
1227void ath9k_hw_deinit(struct ath_hw *ah)
1228{
1229	struct ath_common *common = ath9k_hw_common(ah);
1230
1231	if (common->state < ATH_HW_INITIALIZED)
1232		goto free_hw;
1233
1234	if (!AR_SREV_9100(ah))
1235		ath9k_hw_ani_disable(ah);
1236
1237	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1238
1239free_hw:
1240	if (!AR_SREV_9280_10_OR_LATER(ah))
1241		ath9k_hw_rf_free_ext_banks(ah);
1242}
1243EXPORT_SYMBOL(ath9k_hw_deinit);
1244
1245/*******/
1246/* INI */
1247/*******/
1248
1249static void ath9k_hw_override_ini(struct ath_hw *ah,
1250				  struct ath9k_channel *chan)
1251{
1252	u32 val;
1253
1254	/*
1255	 * Set the RX_ABORT and RX_DIS and clear if off only after
1256	 * RXE is set for MAC. This prevents frames with corrupted
1257	 * descriptor status.
1258	 */
1259	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1260
1261	if (AR_SREV_9280_10_OR_LATER(ah)) {
1262		val = REG_READ(ah, AR_PCU_MISC_MODE2);
1263
1264		if (!AR_SREV_9271(ah))
1265			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
1266
1267		if (AR_SREV_9287_10_OR_LATER(ah))
1268			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1269
1270		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1271	}
1272
1273	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1274	    AR_SREV_9280_10_OR_LATER(ah))
1275		return;
1276	/*
1277	 * Disable BB clock gating
1278	 * Necessary to avoid issues on AR5416 2.0
1279	 */
1280	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1281
1282	/*
1283	 * Disable RIFS search on some chips to avoid baseband
1284	 * hang issues.
1285	 */
1286	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1287		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1288		val &= ~AR_PHY_RIFS_INIT_DELAY;
1289		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1290	}
1291}
1292
1293static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1294			      struct ar5416_eeprom_def *pEepData,
1295			      u32 reg, u32 value)
1296{
1297	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1298	struct ath_common *common = ath9k_hw_common(ah);
1299
1300	switch (ah->hw_version.devid) {
1301	case AR9280_DEVID_PCI:
1302		if (reg == 0x7894) {
1303			ath_print(common, ATH_DBG_EEPROM,
1304				"ini VAL: %x  EEPROM: %x\n", value,
1305				(pBase->version & 0xff));
1306
1307			if ((pBase->version & 0xff) > 0x0a) {
1308				ath_print(common, ATH_DBG_EEPROM,
1309					  "PWDCLKIND: %d\n",
1310					  pBase->pwdclkind);
1311				value &= ~AR_AN_TOP2_PWDCLKIND;
1312				value |= AR_AN_TOP2_PWDCLKIND &
1313					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1314			} else {
1315				ath_print(common, ATH_DBG_EEPROM,
1316					  "PWDCLKIND Earlier Rev\n");
1317			}
1318
1319			ath_print(common, ATH_DBG_EEPROM,
1320				  "final ini VAL: %x\n", value);
1321		}
1322		break;
1323	}
1324
1325	return value;
1326}
1327
1328static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1329			      struct ar5416_eeprom_def *pEepData,
1330			      u32 reg, u32 value)
1331{
1332	if (ah->eep_map == EEP_MAP_4KBITS)
1333		return value;
1334	else
1335		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1336}
1337
1338static void ath9k_olc_init(struct ath_hw *ah)
1339{
1340	u32 i;
1341
1342	if (OLC_FOR_AR9287_10_LATER) {
1343		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1344				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1345		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1346				AR9287_AN_TXPC0_TXPCMODE,
1347				AR9287_AN_TXPC0_TXPCMODE_S,
1348				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1349		udelay(100);
1350	} else {
1351		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1352			ah->originalGain[i] =
1353				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1354						AR_PHY_TX_GAIN);
1355		ah->PDADCdelta = 0;
1356	}
1357}
1358
1359static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1360			      struct ath9k_channel *chan)
1361{
1362	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1363
1364	if (IS_CHAN_B(chan))
1365		ctl |= CTL_11B;
1366	else if (IS_CHAN_G(chan))
1367		ctl |= CTL_11G;
1368	else
1369		ctl |= CTL_11A;
1370
1371	return ctl;
1372}
1373
1374static int ath9k_hw_process_ini(struct ath_hw *ah,
1375				struct ath9k_channel *chan)
1376{
1377	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1378	int i, regWrites = 0;
1379	struct ieee80211_channel *channel = chan->chan;
1380	u32 modesIndex, freqIndex;
1381
1382	switch (chan->chanmode) {
1383	case CHANNEL_A:
1384	case CHANNEL_A_HT20:
1385		modesIndex = 1;
1386		freqIndex = 1;
1387		break;
1388	case CHANNEL_A_HT40PLUS:
1389	case CHANNEL_A_HT40MINUS:
1390		modesIndex = 2;
1391		freqIndex = 1;
1392		break;
1393	case CHANNEL_G:
1394	case CHANNEL_G_HT20:
1395	case CHANNEL_B:
1396		modesIndex = 4;
1397		freqIndex = 2;
1398		break;
1399	case CHANNEL_G_HT40PLUS:
1400	case CHANNEL_G_HT40MINUS:
1401		modesIndex = 3;
1402		freqIndex = 2;
1403		break;
1404
1405	default:
1406		return -EINVAL;
1407	}
1408
1409	/* Set correct baseband to analog shift setting to access analog chips */
1410	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1411
1412	/* Write ADDAC shifts */
1413	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1414	ah->eep_ops->set_addac(ah, chan);
1415
1416	if (AR_SREV_5416_22_OR_LATER(ah)) {
1417		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1418	} else {
1419		struct ar5416IniArray temp;
1420		u32 addacSize =
1421			sizeof(u32) * ah->iniAddac.ia_rows *
1422			ah->iniAddac.ia_columns;
1423
1424		/* For AR5416 2.0/2.1 */
1425		memcpy(ah->addac5416_21,
1426		       ah->iniAddac.ia_array, addacSize);
1427
1428		/* override CLKDRV value at [row, column] = [31, 1] */
1429		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1430
1431		temp.ia_array = ah->addac5416_21;
1432		temp.ia_columns = ah->iniAddac.ia_columns;
1433		temp.ia_rows = ah->iniAddac.ia_rows;
1434		REG_WRITE_ARRAY(&temp, 1, regWrites);
1435	}
1436
1437	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1438
1439	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1440		u32 reg = INI_RA(&ah->iniModes, i, 0);
1441		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1442
1443		REG_WRITE(ah, reg, val);
1444
1445		if (reg >= 0x7800 && reg < 0x78a0
1446		    && ah->config.analog_shiftreg) {
1447			udelay(100);
1448		}
1449
1450		DO_DELAY(regWrites);
1451	}
1452
1453	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1454		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1455
1456	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1457	    AR_SREV_9287_10_OR_LATER(ah))
1458		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1459
1460	if (AR_SREV_9271_10(ah))
1461		REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1462				modesIndex, regWrites);
1463
1464	/* Write common array parameters */
1465	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1466		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1467		u32 val = INI_RA(&ah->iniCommon, i, 1);
1468
1469		REG_WRITE(ah, reg, val);
1470
1471		if (reg >= 0x7800 && reg < 0x78a0
1472		    && ah->config.analog_shiftreg) {
1473			udelay(100);
1474		}
1475
1476		DO_DELAY(regWrites);
1477	}
1478
1479	if (AR_SREV_9271(ah)) {
1480		if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
1481			REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
1482					modesIndex, regWrites);
1483		else
1484			REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
1485					modesIndex, regWrites);
1486	}
1487
1488	ath9k_hw_write_regs(ah, freqIndex, regWrites);
1489
1490	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1491		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1492				regWrites);
1493	}
1494
1495	ath9k_hw_override_ini(ah, chan);
1496	ath9k_hw_set_regs(ah, chan);
1497	ath9k_hw_init_chain_masks(ah);
1498
1499	if (OLC_FOR_AR9280_20_LATER)
1500		ath9k_olc_init(ah);
1501
1502	/* Set TX power */
1503	ah->eep_ops->set_txpower(ah, chan,
1504				 ath9k_regd_get_ctl(regulatory, chan),
1505				 channel->max_antenna_gain * 2,
1506				 channel->max_power * 2,
1507				 min((u32) MAX_RATE_POWER,
1508				 (u32) regulatory->power_limit));
1509
1510	/* Write analog registers */
1511	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1512		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1513			  "ar5416SetRfRegs failed\n");
1514		return -EIO;
1515	}
1516
1517	return 0;
1518}
1519
1520/****************************************/
1521/* Reset and Channel Switching Routines */
1522/****************************************/
1523
1524static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1525{
1526	u32 rfMode = 0;
1527
1528	if (chan == NULL)
1529		return;
1530
1531	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1532		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1533
1534	if (!AR_SREV_9280_10_OR_LATER(ah))
1535		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1536			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1537
1538	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1539		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1540
1541	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1542}
1543
1544static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1545{
1546	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1547}
1548
1549static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1550{
1551	u32 regval;
1552
1553	/*
1554	 * set AHB_MODE not to do cacheline prefetches
1555	*/
1556	regval = REG_READ(ah, AR_AHB_MODE);
1557	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1558
1559	/*
1560	 * let mac dma reads be in 128 byte chunks
1561	 */
1562	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1563	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1564
1565	/*
1566	 * Restore TX Trigger Level to its pre-reset value.
1567	 * The initial value depends on whether aggregation is enabled, and is
1568	 * adjusted whenever underruns are detected.
1569	 */
1570	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1571
1572	/*
1573	 * let mac dma writes be in 128 byte chunks
1574	 */
1575	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1576	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1577
1578	/*
1579	 * Setup receive FIFO threshold to hold off TX activities
1580	 */
1581	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1582
1583	/*
1584	 * reduce the number of usable entries in PCU TXBUF to avoid
1585	 * wrap around issues.
1586	 */
1587	if (AR_SREV_9285(ah)) {
1588		/* For AR9285 the number of Fifos are reduced to half.
1589		 * So set the usable tx buf size also to half to
1590		 * avoid data/delimiter underruns
1591		 */
1592		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1593			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1594	} else if (!AR_SREV_9271(ah)) {
1595		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1596			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1597	}
1598}
1599
1600static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1601{
1602	u32 val;
1603
1604	val = REG_READ(ah, AR_STA_ID1);
1605	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1606	switch (opmode) {
1607	case NL80211_IFTYPE_AP:
1608		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1609			  | AR_STA_ID1_KSRCH_MODE);
1610		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1611		break;
1612	case NL80211_IFTYPE_ADHOC:
1613	case NL80211_IFTYPE_MESH_POINT:
1614		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1615			  | AR_STA_ID1_KSRCH_MODE);
1616		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1617		break;
1618	case NL80211_IFTYPE_STATION:
1619	case NL80211_IFTYPE_MONITOR:
1620		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1621		break;
1622	}
1623}
1624
1625static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1626						 u32 coef_scaled,
1627						 u32 *coef_mantissa,
1628						 u32 *coef_exponent)
1629{
1630	u32 coef_exp, coef_man;
1631
1632	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1633		if ((coef_scaled >> coef_exp) & 0x1)
1634			break;
1635
1636	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1637
1638	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1639
1640	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1641	*coef_exponent = coef_exp - 16;
1642}
1643
1644static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1645				     struct ath9k_channel *chan)
1646{
1647	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1648	u32 clockMhzScaled = 0x64000000;
1649	struct chan_centers centers;
1650
1651	if (IS_CHAN_HALF_RATE(chan))
1652		clockMhzScaled = clockMhzScaled >> 1;
1653	else if (IS_CHAN_QUARTER_RATE(chan))
1654		clockMhzScaled = clockMhzScaled >> 2;
1655
1656	ath9k_hw_get_channel_centers(ah, chan, &centers);
1657	coef_scaled = clockMhzScaled / centers.synth_center;
1658
1659	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1660				      &ds_coef_exp);
1661
1662	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1663		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1664	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1665		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1666
1667	coef_scaled = (9 * coef_scaled) / 10;
1668
1669	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1670				      &ds_coef_exp);
1671
1672	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1673		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1674	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1675		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1676}
1677
1678static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1679{
1680	u32 rst_flags;
1681	u32 tmpReg;
1682
1683	if (AR_SREV_9100(ah)) {
1684		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1685		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1686		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1687		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1688		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1689	}
1690
1691	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1692		  AR_RTC_FORCE_WAKE_ON_INT);
1693
1694	if (AR_SREV_9100(ah)) {
1695		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1696			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1697	} else {
1698		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1699		if (tmpReg &
1700		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1701		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1702			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1703			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1704		} else {
1705			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1706		}
1707
1708		rst_flags = AR_RTC_RC_MAC_WARM;
1709		if (type == ATH9K_RESET_COLD)
1710			rst_flags |= AR_RTC_RC_MAC_COLD;
1711	}
1712
1713	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1714	udelay(50);
1715
1716	REG_WRITE(ah, AR_RTC_RC, 0);
1717	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1718		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1719			  "RTC stuck in MAC reset\n");
1720		return false;
1721	}
1722
1723	if (!AR_SREV_9100(ah))
1724		REG_WRITE(ah, AR_RC, 0);
1725
1726	if (AR_SREV_9100(ah))
1727		udelay(50);
1728
1729	return true;
1730}
1731
1732static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1733{
1734	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1735		  AR_RTC_FORCE_WAKE_ON_INT);
1736
1737	if (!AR_SREV_9100(ah))
1738		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1739
1740	REG_WRITE(ah, AR_RTC_RESET, 0);
1741	udelay(2);
1742
1743	if (!AR_SREV_9100(ah))
1744		REG_WRITE(ah, AR_RC, 0);
1745
1746	REG_WRITE(ah, AR_RTC_RESET, 1);
1747
1748	if (!ath9k_hw_wait(ah,
1749			   AR_RTC_STATUS,
1750			   AR_RTC_STATUS_M,
1751			   AR_RTC_STATUS_ON,
1752			   AH_WAIT_TIMEOUT)) {
1753		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1754			  "RTC not waking up\n");
1755		return false;
1756	}
1757
1758	ath9k_hw_read_revisions(ah);
1759
1760	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1761}
1762
1763static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1764{
1765	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1766		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1767
1768	switch (type) {
1769	case ATH9K_RESET_POWER_ON:
1770		return ath9k_hw_set_reset_power_on(ah);
1771	case ATH9K_RESET_WARM:
1772	case ATH9K_RESET_COLD:
1773		return ath9k_hw_set_reset(ah, type);
1774	default:
1775		return false;
1776	}
1777}
1778
1779static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1780{
1781	u32 phymode;
1782	u32 enableDacFifo = 0;
1783
1784	if (AR_SREV_9285_10_OR_LATER(ah))
1785		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1786					 AR_PHY_FC_ENABLE_DAC_FIFO);
1787
1788	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1789		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1790
1791	if (IS_CHAN_HT40(chan)) {
1792		phymode |= AR_PHY_FC_DYN2040_EN;
1793
1794		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1795		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1796			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1797
1798	}
1799	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1800
1801	ath9k_hw_set11nmac2040(ah);
1802
1803	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1804	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1805}
1806
1807static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1808				struct ath9k_channel *chan)
1809{
1810	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1811		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1812			return false;
1813	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1814		return false;
1815
1816	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1817		return false;
1818
1819	ah->chip_fullsleep = false;
1820	ath9k_hw_init_pll(ah, chan);
1821	ath9k_hw_set_rfmode(ah, chan);
1822
1823	return true;
1824}
1825
1826static bool ath9k_hw_channel_change(struct ath_hw *ah,
1827				    struct ath9k_channel *chan)
1828{
1829	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1830	struct ath_common *common = ath9k_hw_common(ah);
1831	struct ieee80211_channel *channel = chan->chan;
1832	u32 synthDelay, qnum;
1833	int r;
1834
1835	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1836		if (ath9k_hw_numtxpending(ah, qnum)) {
1837			ath_print(common, ATH_DBG_QUEUE,
1838				  "Transmit frames pending on "
1839				  "queue %d\n", qnum);
1840			return false;
1841		}
1842	}
1843
1844	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1845	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1846			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1847		ath_print(common, ATH_DBG_FATAL,
1848			  "Could not kill baseband RX\n");
1849		return false;
1850	}
1851
1852	ath9k_hw_set_regs(ah, chan);
1853
1854	r = ah->ath9k_hw_rf_set_freq(ah, chan);
1855	if (r) {
1856		ath_print(common, ATH_DBG_FATAL,
1857			  "Failed to set channel\n");
1858		return false;
1859	}
1860
1861	ah->eep_ops->set_txpower(ah, chan,
1862			     ath9k_regd_get_ctl(regulatory, chan),
1863			     channel->max_antenna_gain * 2,
1864			     channel->max_power * 2,
1865			     min((u32) MAX_RATE_POWER,
1866			     (u32) regulatory->power_limit));
1867
1868	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1869	if (IS_CHAN_B(chan))
1870		synthDelay = (4 * synthDelay) / 22;
1871	else
1872		synthDelay /= 10;
1873
1874	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1875
1876	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1877
1878	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1879		ath9k_hw_set_delta_slope(ah, chan);
1880
1881	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1882
1883	if (!chan->oneTimeCalsDone)
1884		chan->oneTimeCalsDone = true;
1885
1886	return true;
1887}
1888
1889static void ath9k_enable_rfkill(struct ath_hw *ah)
1890{
1891	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1892		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1893
1894	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1895		    AR_GPIO_INPUT_MUX2_RFSILENT);
1896
1897	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1898	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1899}
1900
1901int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1902		    bool bChannelChange)
1903{
1904	struct ath_common *common = ath9k_hw_common(ah);
1905	u32 saveLedState;
1906	struct ath9k_channel *curchan = ah->curchan;
1907	u32 saveDefAntenna;
1908	u32 macStaId1;
1909	u64 tsf = 0;
1910	int i, rx_chainmask, r;
1911
1912	ah->txchainmask = common->tx_chainmask;
1913	ah->rxchainmask = common->rx_chainmask;
1914
1915	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1916		return -EIO;
1917
1918	if (curchan && !ah->chip_fullsleep)
1919		ath9k_hw_getnf(ah, curchan);
1920
1921	if (bChannelChange &&
1922	    (ah->chip_fullsleep != true) &&
1923	    (ah->curchan != NULL) &&
1924	    (chan->channel != ah->curchan->channel) &&
1925	    ((chan->channelFlags & CHANNEL_ALL) ==
1926	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1927	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1928	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1929
1930		if (ath9k_hw_channel_change(ah, chan)) {
1931			ath9k_hw_loadnf(ah, ah->curchan);
1932			ath9k_hw_start_nfcal(ah);
1933			return 0;
1934		}
1935	}
1936
1937	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1938	if (saveDefAntenna == 0)
1939		saveDefAntenna = 1;
1940
1941	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1942
1943	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1944	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1945		tsf = ath9k_hw_gettsf64(ah);
1946
1947	saveLedState = REG_READ(ah, AR_CFG_LED) &
1948		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1949		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1950
1951	ath9k_hw_mark_phy_inactive(ah);
1952
1953	/* Only required on the first reset */
1954	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1955		REG_WRITE(ah,
1956			  AR9271_RESET_POWER_DOWN_CONTROL,
1957			  AR9271_RADIO_RF_RST);
1958		udelay(50);
1959	}
1960
1961	if (!ath9k_hw_chip_reset(ah, chan)) {
1962		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1963		return -EINVAL;
1964	}
1965
1966	/* Only required on the first reset */
1967	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1968		ah->htc_reset_init = false;
1969		REG_WRITE(ah,
1970			  AR9271_RESET_POWER_DOWN_CONTROL,
1971			  AR9271_GATE_MAC_CTL);
1972		udelay(50);
1973	}
1974
1975	/* Restore TSF */
1976	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1977		ath9k_hw_settsf64(ah, tsf);
1978
1979	if (AR_SREV_9280_10_OR_LATER(ah))
1980		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1981
1982	if (AR_SREV_9287_12_OR_LATER(ah)) {
1983		/* Enable ASYNC FIFO */
1984		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1985				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
1986		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
1987		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1988				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1989		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1990				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1991	}
1992	r = ath9k_hw_process_ini(ah, chan);
1993	if (r)
1994		return r;
1995
1996	/* Setup MFP options for CCMP */
1997	if (AR_SREV_9280_20_OR_LATER(ah)) {
1998		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1999		 * frames when constructing CCMP AAD. */
2000		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2001			      0xc7ff);
2002		ah->sw_mgmt_crypto = false;
2003	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2004		/* Disable hardware crypto for management frames */
2005		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2006			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2007		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2008			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2009		ah->sw_mgmt_crypto = true;
2010	} else
2011		ah->sw_mgmt_crypto = true;
2012
2013	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2014		ath9k_hw_set_delta_slope(ah, chan);
2015
2016	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2017	ah->eep_ops->set_board_values(ah, chan);
2018
2019	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2020	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2021		  | macStaId1
2022		  | AR_STA_ID1_RTS_USE_DEF
2023		  | (ah->config.
2024		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2025		  | ah->sta_id1_defaults);
2026	ath9k_hw_set_operating_mode(ah, ah->opmode);
2027
2028	ath_hw_setbssidmask(common);
2029
2030	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2031
2032	ath9k_hw_write_associd(ah);
2033
2034	REG_WRITE(ah, AR_ISR, ~0);
2035
2036	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2037
2038	r = ah->ath9k_hw_rf_set_freq(ah, chan);
2039	if (r)
2040		return r;
2041
2042	for (i = 0; i < AR_NUM_DCU; i++)
2043		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2044
2045	ah->intr_txqs = 0;
2046	for (i = 0; i < ah->caps.total_queues; i++)
2047		ath9k_hw_resettxqueue(ah, i);
2048
2049	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2050	ath9k_hw_init_qos(ah);
2051
2052	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2053		ath9k_enable_rfkill(ah);
2054
2055	ath9k_hw_init_global_settings(ah);
2056
2057	if (AR_SREV_9287_12_OR_LATER(ah)) {
2058		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2059			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2060		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2061			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2062		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2063			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2064
2065		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2066		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2067
2068		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2069			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2070		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2071			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2072	}
2073	if (AR_SREV_9287_12_OR_LATER(ah)) {
2074		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2075				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2076	}
2077
2078	REG_WRITE(ah, AR_STA_ID1,
2079		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2080
2081	ath9k_hw_set_dma(ah);
2082
2083	REG_WRITE(ah, AR_OBS, 8);
2084
2085	if (ah->config.rx_intr_mitigation) {
2086		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2087		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2088	}
2089
2090	ath9k_hw_init_bb(ah, chan);
2091
2092	if (!ath9k_hw_init_cal(ah, chan))
2093		return -EIO;
2094
2095	rx_chainmask = ah->rxchainmask;
2096	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2097		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2098		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2099	}
2100
2101	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2102
2103	/*
2104	 * For big endian systems turn on swapping for descriptors
2105	 */
2106	if (AR_SREV_9100(ah)) {
2107		u32 mask;
2108		mask = REG_READ(ah, AR_CFG);
2109		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2110			ath_print(common, ATH_DBG_RESET,
2111				"CFG Byte Swap Set 0x%x\n", mask);
2112		} else {
2113			mask =
2114				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2115			REG_WRITE(ah, AR_CFG, mask);
2116			ath_print(common, ATH_DBG_RESET,
2117				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2118		}
2119	} else {
2120		/* Configure AR9271 target WLAN */
2121                if (AR_SREV_9271(ah))
2122			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2123#ifdef __BIG_ENDIAN
2124                else
2125			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2126#endif
2127	}
2128
2129	if (ah->btcoex_hw.enabled)
2130		ath9k_hw_btcoex_enable(ah);
2131
2132	return 0;
2133}
2134EXPORT_SYMBOL(ath9k_hw_reset);
2135
2136/************************/
2137/* Key Cache Management */
2138/************************/
2139
2140bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2141{
2142	u32 keyType;
2143
2144	if (entry >= ah->caps.keycache_size) {
2145		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2146			  "keychache entry %u out of range\n", entry);
2147		return false;
2148	}
2149
2150	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2151
2152	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2153	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2154	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2155	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2156	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2157	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2158	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2159	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2160
2161	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2162		u16 micentry = entry + 64;
2163
2164		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2165		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2166		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2167		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2168
2169	}
2170
2171	return true;
2172}
2173EXPORT_SYMBOL(ath9k_hw_keyreset);
2174
2175bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2176{
2177	u32 macHi, macLo;
2178
2179	if (entry >= ah->caps.keycache_size) {
2180		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2181			  "keychache entry %u out of range\n", entry);
2182		return false;
2183	}
2184
2185	if (mac != NULL) {
2186		macHi = (mac[5] << 8) | mac[4];
2187		macLo = (mac[3] << 24) |
2188			(mac[2] << 16) |
2189			(mac[1] << 8) |
2190			mac[0];
2191		macLo >>= 1;
2192		macLo |= (macHi & 1) << 31;
2193		macHi >>= 1;
2194	} else {
2195		macLo = macHi = 0;
2196	}
2197	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2198	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2199
2200	return true;
2201}
2202EXPORT_SYMBOL(ath9k_hw_keysetmac);
2203
2204bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2205				 const struct ath9k_keyval *k,
2206				 const u8 *mac)
2207{
2208	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2209	struct ath_common *common = ath9k_hw_common(ah);
2210	u32 key0, key1, key2, key3, key4;
2211	u32 keyType;
2212
2213	if (entry >= pCap->keycache_size) {
2214		ath_print(common, ATH_DBG_FATAL,
2215			  "keycache entry %u out of range\n", entry);
2216		return false;
2217	}
2218
2219	switch (k->kv_type) {
2220	case ATH9K_CIPHER_AES_OCB:
2221		keyType = AR_KEYTABLE_TYPE_AES;
2222		break;
2223	case ATH9K_CIPHER_AES_CCM:
2224		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2225			ath_print(common, ATH_DBG_ANY,
2226				  "AES-CCM not supported by mac rev 0x%x\n",
2227				  ah->hw_version.macRev);
2228			return false;
2229		}
2230		keyType = AR_KEYTABLE_TYPE_CCM;
2231		break;
2232	case ATH9K_CIPHER_TKIP:
2233		keyType = AR_KEYTABLE_TYPE_TKIP;
2234		if (ATH9K_IS_MIC_ENABLED(ah)
2235		    && entry + 64 >= pCap->keycache_size) {
2236			ath_print(common, ATH_DBG_ANY,
2237				  "entry %u inappropriate for TKIP\n", entry);
2238			return false;
2239		}
2240		break;
2241	case ATH9K_CIPHER_WEP:
2242		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2243			ath_print(common, ATH_DBG_ANY,
2244				  "WEP key length %u too small\n", k->kv_len);
2245			return false;
2246		}
2247		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2248			keyType = AR_KEYTABLE_TYPE_40;
2249		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2250			keyType = AR_KEYTABLE_TYPE_104;
2251		else
2252			keyType = AR_KEYTABLE_TYPE_128;
2253		break;
2254	case ATH9K_CIPHER_CLR:
2255		keyType = AR_KEYTABLE_TYPE_CLR;
2256		break;
2257	default:
2258		ath_print(common, ATH_DBG_FATAL,
2259			  "cipher %u not supported\n", k->kv_type);
2260		return false;
2261	}
2262
2263	key0 = get_unaligned_le32(k->kv_val + 0);
2264	key1 = get_unaligned_le16(k->kv_val + 4);
2265	key2 = get_unaligned_le32(k->kv_val + 6);
2266	key3 = get_unaligned_le16(k->kv_val + 10);
2267	key4 = get_unaligned_le32(k->kv_val + 12);
2268	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2269		key4 &= 0xff;
2270
2271	/*
2272	 * Note: Key cache registers access special memory area that requires
2273	 * two 32-bit writes to actually update the values in the internal
2274	 * memory. Consequently, the exact order and pairs used here must be
2275	 * maintained.
2276	 */
2277
2278	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2279		u16 micentry = entry + 64;
2280
2281		/*
2282		 * Write inverted key[47:0] first to avoid Michael MIC errors
2283		 * on frames that could be sent or received at the same time.
2284		 * The correct key will be written in the end once everything
2285		 * else is ready.
2286		 */
2287		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2288		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2289
2290		/* Write key[95:48] */
2291		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2292		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2293
2294		/* Write key[127:96] and key type */
2295		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2296		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2297
2298		/* Write MAC address for the entry */
2299		(void) ath9k_hw_keysetmac(ah, entry, mac);
2300
2301		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2302			/*
2303			 * TKIP uses two key cache entries:
2304			 * Michael MIC TX/RX keys in the same key cache entry
2305			 * (idx = main index + 64):
2306			 * key0 [31:0] = RX key [31:0]
2307			 * key1 [15:0] = TX key [31:16]
2308			 * key1 [31:16] = reserved
2309			 * key2 [31:0] = RX key [63:32]
2310			 * key3 [15:0] = TX key [15:0]
2311			 * key3 [31:16] = reserved
2312			 * key4 [31:0] = TX key [63:32]
2313			 */
2314			u32 mic0, mic1, mic2, mic3, mic4;
2315
2316			mic0 = get_unaligned_le32(k->kv_mic + 0);
2317			mic2 = get_unaligned_le32(k->kv_mic + 4);
2318			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2319			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2320			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2321
2322			/* Write RX[31:0] and TX[31:16] */
2323			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2324			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2325
2326			/* Write RX[63:32] and TX[15:0] */
2327			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2328			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2329
2330			/* Write TX[63:32] and keyType(reserved) */
2331			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2332			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2333				  AR_KEYTABLE_TYPE_CLR);
2334
2335		} else {
2336			/*
2337			 * TKIP uses four key cache entries (two for group
2338			 * keys):
2339			 * Michael MIC TX/RX keys are in different key cache
2340			 * entries (idx = main index + 64 for TX and
2341			 * main index + 32 + 96 for RX):
2342			 * key0 [31:0] = TX/RX MIC key [31:0]
2343			 * key1 [31:0] = reserved
2344			 * key2 [31:0] = TX/RX MIC key [63:32]
2345			 * key3 [31:0] = reserved
2346			 * key4 [31:0] = reserved
2347			 *
2348			 * Upper layer code will call this function separately
2349			 * for TX and RX keys when these registers offsets are
2350			 * used.
2351			 */
2352			u32 mic0, mic2;
2353
2354			mic0 = get_unaligned_le32(k->kv_mic + 0);
2355			mic2 = get_unaligned_le32(k->kv_mic + 4);
2356
2357			/* Write MIC key[31:0] */
2358			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2359			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2360
2361			/* Write MIC key[63:32] */
2362			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2363			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2364
2365			/* Write TX[63:32] and keyType(reserved) */
2366			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2367			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2368				  AR_KEYTABLE_TYPE_CLR);
2369		}
2370
2371		/* MAC address registers are reserved for the MIC entry */
2372		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2373		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2374
2375		/*
2376		 * Write the correct (un-inverted) key[47:0] last to enable
2377		 * TKIP now that all other registers are set with correct
2378		 * values.
2379		 */
2380		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2381		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2382	} else {
2383		/* Write key[47:0] */
2384		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2385		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2386
2387		/* Write key[95:48] */
2388		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2389		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2390
2391		/* Write key[127:96] and key type */
2392		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2393		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2394
2395		/* Write MAC address for the entry */
2396		(void) ath9k_hw_keysetmac(ah, entry, mac);
2397	}
2398
2399	return true;
2400}
2401EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2402
2403bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2404{
2405	if (entry < ah->caps.keycache_size) {
2406		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2407		if (val & AR_KEYTABLE_VALID)
2408			return true;
2409	}
2410	return false;
2411}
2412EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2413
2414/******************************/
2415/* Power Management (Chipset) */
2416/******************************/
2417
2418static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2419{
2420	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2421	if (setChip) {
2422		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2423			    AR_RTC_FORCE_WAKE_EN);
2424		if (!AR_SREV_9100(ah))
2425			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2426
2427		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2428			REG_CLR_BIT(ah, (AR_RTC_RESET),
2429				    AR_RTC_RESET_EN);
2430	}
2431}
2432
2433static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2434{
2435	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2436	if (setChip) {
2437		struct ath9k_hw_capabilities *pCap = &ah->caps;
2438
2439		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2440			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2441				  AR_RTC_FORCE_WAKE_ON_INT);
2442		} else {
2443			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2444				    AR_RTC_FORCE_WAKE_EN);
2445		}
2446	}
2447}
2448
2449static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2450{
2451	u32 val;
2452	int i;
2453
2454	if (setChip) {
2455		if ((REG_READ(ah, AR_RTC_STATUS) &
2456		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2457			if (ath9k_hw_set_reset_reg(ah,
2458					   ATH9K_RESET_POWER_ON) != true) {
2459				return false;
2460			}
2461			ath9k_hw_init_pll(ah, NULL);
2462		}
2463		if (AR_SREV_9100(ah))
2464			REG_SET_BIT(ah, AR_RTC_RESET,
2465				    AR_RTC_RESET_EN);
2466
2467		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2468			    AR_RTC_FORCE_WAKE_EN);
2469		udelay(50);
2470
2471		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2472			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2473			if (val == AR_RTC_STATUS_ON)
2474				break;
2475			udelay(50);
2476			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2477				    AR_RTC_FORCE_WAKE_EN);
2478		}
2479		if (i == 0) {
2480			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2481				  "Failed to wakeup in %uus\n",
2482				  POWER_UP_TIME / 20);
2483			return false;
2484		}
2485	}
2486
2487	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2488
2489	return true;
2490}
2491
2492bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2493{
2494	struct ath_common *common = ath9k_hw_common(ah);
2495	int status = true, setChip = true;
2496	static const char *modes[] = {
2497		"AWAKE",
2498		"FULL-SLEEP",
2499		"NETWORK SLEEP",
2500		"UNDEFINED"
2501	};
2502
2503	if (ah->power_mode == mode)
2504		return status;
2505
2506	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2507		  modes[ah->power_mode], modes[mode]);
2508
2509	switch (mode) {
2510	case ATH9K_PM_AWAKE:
2511		status = ath9k_hw_set_power_awake(ah, setChip);
2512		break;
2513	case ATH9K_PM_FULL_SLEEP:
2514		ath9k_set_power_sleep(ah, setChip);
2515		ah->chip_fullsleep = true;
2516		break;
2517	case ATH9K_PM_NETWORK_SLEEP:
2518		ath9k_set_power_network_sleep(ah, setChip);
2519		break;
2520	default:
2521		ath_print(common, ATH_DBG_FATAL,
2522			  "Unknown power mode %u\n", mode);
2523		return false;
2524	}
2525	ah->power_mode = mode;
2526
2527	return status;
2528}
2529EXPORT_SYMBOL(ath9k_hw_setpower);
2530
2531/*
2532 * Helper for ASPM support.
2533 *
2534 * Disable PLL when in L0s as well as receiver clock when in L1.
2535 * This power saving option must be enabled through the SerDes.
2536 *
2537 * Programming the SerDes must go through the same 288 bit serial shift
2538 * register as the other analog registers.  Hence the 9 writes.
2539 */
2540void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2541{
2542	u8 i;
2543	u32 val;
2544
2545	if (ah->is_pciexpress != true)
2546		return;
2547
2548	/* Do not touch SerDes registers */
2549	if (ah->config.pcie_powersave_enable == 2)
2550		return;
2551
2552	/* Nothing to do on restore for 11N */
2553	if (!restore) {
2554		if (AR_SREV_9280_20_OR_LATER(ah)) {
2555			/*
2556			 * AR9280 2.0 or later chips use SerDes values from the
2557			 * initvals.h initialized depending on chipset during
2558			 * ath9k_hw_init()
2559			 */
2560			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2561				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2562					  INI_RA(&ah->iniPcieSerdes, i, 1));
2563			}
2564		} else if (AR_SREV_9280(ah) &&
2565			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2566			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2567			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2568
2569			/* RX shut off when elecidle is asserted */
2570			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2571			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2572			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2573
2574			/* Shut off CLKREQ active in L1 */
2575			if (ah->config.pcie_clock_req)
2576				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2577			else
2578				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2579
2580			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2581			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2582			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2583
2584			/* Load the new settings */
2585			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2586
2587		} else {
2588			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2589			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2590
2591			/* RX shut off when elecidle is asserted */
2592			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2593			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2594			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2595
2596			/*
2597			 * Ignore ah->ah_config.pcie_clock_req setting for
2598			 * pre-AR9280 11n
2599			 */
2600			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2601
2602			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2603			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2604			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2605
2606			/* Load the new settings */
2607			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2608		}
2609
2610		udelay(1000);
2611
2612		/* set bit 19 to allow forcing of pcie core into L1 state */
2613		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2614
2615		/* Several PCIe massages to ensure proper behaviour */
2616		if (ah->config.pcie_waen) {
2617			val = ah->config.pcie_waen;
2618			if (!power_off)
2619				val &= (~AR_WA_D3_L1_DISABLE);
2620		} else {
2621			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2622			    AR_SREV_9287(ah)) {
2623				val = AR9285_WA_DEFAULT;
2624				if (!power_off)
2625					val &= (~AR_WA_D3_L1_DISABLE);
2626			} else if (AR_SREV_9280(ah)) {
2627				/*
2628				 * On AR9280 chips bit 22 of 0x4004 needs to be
2629				 * set otherwise card may disappear.
2630				 */
2631				val = AR9280_WA_DEFAULT;
2632				if (!power_off)
2633					val &= (~AR_WA_D3_L1_DISABLE);
2634			} else
2635				val = AR_WA_DEFAULT;
2636		}
2637
2638		REG_WRITE(ah, AR_WA, val);
2639	}
2640
2641	if (power_off) {
2642		/*
2643		 * Set PCIe workaround bits
2644		 * bit 14 in WA register (disable L1) should only
2645		 * be set when device enters D3 and be cleared
2646		 * when device comes back to D0.
2647		 */
2648		if (ah->config.pcie_waen) {
2649			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2650				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2651		} else {
2652			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2653			      AR_SREV_9287(ah)) &&
2654			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2655			    (AR_SREV_9280(ah) &&
2656			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2657				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2658			}
2659		}
2660	}
2661}
2662EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2663
2664/**********************/
2665/* Interrupt Handling */
2666/**********************/
2667
2668bool ath9k_hw_intrpend(struct ath_hw *ah)
2669{
2670	u32 host_isr;
2671
2672	if (AR_SREV_9100(ah))
2673		return true;
2674
2675	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2676	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2677		return true;
2678
2679	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2680	if ((host_isr & AR_INTR_SYNC_DEFAULT)
2681	    && (host_isr != AR_INTR_SPURIOUS))
2682		return true;
2683
2684	return false;
2685}
2686EXPORT_SYMBOL(ath9k_hw_intrpend);
2687
2688bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2689{
2690	u32 isr = 0;
2691	u32 mask2 = 0;
2692	struct ath9k_hw_capabilities *pCap = &ah->caps;
2693	u32 sync_cause = 0;
2694	bool fatal_int = false;
2695	struct ath_common *common = ath9k_hw_common(ah);
2696
2697	if (!AR_SREV_9100(ah)) {
2698		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2699			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2700			    == AR_RTC_STATUS_ON) {
2701				isr = REG_READ(ah, AR_ISR);
2702			}
2703		}
2704
2705		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2706			AR_INTR_SYNC_DEFAULT;
2707
2708		*masked = 0;
2709
2710		if (!isr && !sync_cause)
2711			return false;
2712	} else {
2713		*masked = 0;
2714		isr = REG_READ(ah, AR_ISR);
2715	}
2716
2717	if (isr) {
2718		if (isr & AR_ISR_BCNMISC) {
2719			u32 isr2;
2720			isr2 = REG_READ(ah, AR_ISR_S2);
2721			if (isr2 & AR_ISR_S2_TIM)
2722				mask2 |= ATH9K_INT_TIM;
2723			if (isr2 & AR_ISR_S2_DTIM)
2724				mask2 |= ATH9K_INT_DTIM;
2725			if (isr2 & AR_ISR_S2_DTIMSYNC)
2726				mask2 |= ATH9K_INT_DTIMSYNC;
2727			if (isr2 & (AR_ISR_S2_CABEND))
2728				mask2 |= ATH9K_INT_CABEND;
2729			if (isr2 & AR_ISR_S2_GTT)
2730				mask2 |= ATH9K_INT_GTT;
2731			if (isr2 & AR_ISR_S2_CST)
2732				mask2 |= ATH9K_INT_CST;
2733			if (isr2 & AR_ISR_S2_TSFOOR)
2734				mask2 |= ATH9K_INT_TSFOOR;
2735		}
2736
2737		isr = REG_READ(ah, AR_ISR_RAC);
2738		if (isr == 0xffffffff) {
2739			*masked = 0;
2740			return false;
2741		}
2742
2743		*masked = isr & ATH9K_INT_COMMON;
2744
2745		if (ah->config.rx_intr_mitigation) {
2746			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2747				*masked |= ATH9K_INT_RX;
2748		}
2749
2750		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2751			*masked |= ATH9K_INT_RX;
2752		if (isr &
2753		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2754		     AR_ISR_TXEOL)) {
2755			u32 s0_s, s1_s;
2756
2757			*masked |= ATH9K_INT_TX;
2758
2759			s0_s = REG_READ(ah, AR_ISR_S0_S);
2760			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2761			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2762
2763			s1_s = REG_READ(ah, AR_ISR_S1_S);
2764			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2765			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2766		}
2767
2768		if (isr & AR_ISR_RXORN) {
2769			ath_print(common, ATH_DBG_INTERRUPT,
2770				  "receive FIFO overrun interrupt\n");
2771		}
2772
2773		if (!AR_SREV_9100(ah)) {
2774			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2775				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2776				if (isr5 & AR_ISR_S5_TIM_TIMER)
2777					*masked |= ATH9K_INT_TIM_TIMER;
2778			}
2779		}
2780
2781		*masked |= mask2;
2782	}
2783
2784	if (AR_SREV_9100(ah))
2785		return true;
2786
2787	if (isr & AR_ISR_GENTMR) {
2788		u32 s5_s;
2789
2790		s5_s = REG_READ(ah, AR_ISR_S5_S);
2791		if (isr & AR_ISR_GENTMR) {
2792			ah->intr_gen_timer_trigger =
2793				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2794
2795			ah->intr_gen_timer_thresh =
2796				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2797
2798			if (ah->intr_gen_timer_trigger)
2799				*masked |= ATH9K_INT_GENTIMER;
2800
2801		}
2802	}
2803
2804	if (sync_cause) {
2805		fatal_int =
2806			(sync_cause &
2807			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2808			? true : false;
2809
2810		if (fatal_int) {
2811			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2812				ath_print(common, ATH_DBG_ANY,
2813					  "received PCI FATAL interrupt\n");
2814			}
2815			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2816				ath_print(common, ATH_DBG_ANY,
2817					  "received PCI PERR interrupt\n");
2818			}
2819			*masked |= ATH9K_INT_FATAL;
2820		}
2821		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2822			ath_print(common, ATH_DBG_INTERRUPT,
2823				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2824			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2825			REG_WRITE(ah, AR_RC, 0);
2826			*masked |= ATH9K_INT_FATAL;
2827		}
2828		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2829			ath_print(common, ATH_DBG_INTERRUPT,
2830				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2831		}
2832
2833		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2834		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2835	}
2836
2837	return true;
2838}
2839EXPORT_SYMBOL(ath9k_hw_getisr);
2840
2841enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2842{
2843	enum ath9k_int omask = ah->imask;
2844	u32 mask, mask2;
2845	struct ath9k_hw_capabilities *pCap = &ah->caps;
2846	struct ath_common *common = ath9k_hw_common(ah);
2847
2848	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2849
2850	if (omask & ATH9K_INT_GLOBAL) {
2851		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2852		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2853		(void) REG_READ(ah, AR_IER);
2854		if (!AR_SREV_9100(ah)) {
2855			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2856			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2857
2858			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2859			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2860		}
2861	}
2862
2863	mask = ints & ATH9K_INT_COMMON;
2864	mask2 = 0;
2865
2866	if (ints & ATH9K_INT_TX) {
2867		if (ah->txok_interrupt_mask)
2868			mask |= AR_IMR_TXOK;
2869		if (ah->txdesc_interrupt_mask)
2870			mask |= AR_IMR_TXDESC;
2871		if (ah->txerr_interrupt_mask)
2872			mask |= AR_IMR_TXERR;
2873		if (ah->txeol_interrupt_mask)
2874			mask |= AR_IMR_TXEOL;
2875	}
2876	if (ints & ATH9K_INT_RX) {
2877		mask |= AR_IMR_RXERR;
2878		if (ah->config.rx_intr_mitigation)
2879			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2880		else
2881			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2882		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2883			mask |= AR_IMR_GENTMR;
2884	}
2885
2886	if (ints & (ATH9K_INT_BMISC)) {
2887		mask |= AR_IMR_BCNMISC;
2888		if (ints & ATH9K_INT_TIM)
2889			mask2 |= AR_IMR_S2_TIM;
2890		if (ints & ATH9K_INT_DTIM)
2891			mask2 |= AR_IMR_S2_DTIM;
2892		if (ints & ATH9K_INT_DTIMSYNC)
2893			mask2 |= AR_IMR_S2_DTIMSYNC;
2894		if (ints & ATH9K_INT_CABEND)
2895			mask2 |= AR_IMR_S2_CABEND;
2896		if (ints & ATH9K_INT_TSFOOR)
2897			mask2 |= AR_IMR_S2_TSFOOR;
2898	}
2899
2900	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2901		mask |= AR_IMR_BCNMISC;
2902		if (ints & ATH9K_INT_GTT)
2903			mask2 |= AR_IMR_S2_GTT;
2904		if (ints & ATH9K_INT_CST)
2905			mask2 |= AR_IMR_S2_CST;
2906	}
2907
2908	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2909	REG_WRITE(ah, AR_IMR, mask);
2910	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2911			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2912			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2913	ah->imrs2_reg |= mask2;
2914	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2915
2916	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2917		if (ints & ATH9K_INT_TIM_TIMER)
2918			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2919		else
2920			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2921	}
2922
2923	if (ints & ATH9K_INT_GLOBAL) {
2924		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2925		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2926		if (!AR_SREV_9100(ah)) {
2927			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2928				  AR_INTR_MAC_IRQ);
2929			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2930
2931
2932			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2933				  AR_INTR_SYNC_DEFAULT);
2934			REG_WRITE(ah, AR_INTR_SYNC_MASK,
2935				  AR_INTR_SYNC_DEFAULT);
2936		}
2937		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2938			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2939	}
2940
2941	return omask;
2942}
2943EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2944
2945/*******************/
2946/* Beacon Handling */
2947/*******************/
2948
2949void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2950{
2951	int flags = 0;
2952
2953	ah->beacon_interval = beacon_period;
2954
2955	switch (ah->opmode) {
2956	case NL80211_IFTYPE_STATION:
2957	case NL80211_IFTYPE_MONITOR:
2958		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2959		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2960		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2961		flags |= AR_TBTT_TIMER_EN;
2962		break;
2963	case NL80211_IFTYPE_ADHOC:
2964	case NL80211_IFTYPE_MESH_POINT:
2965		REG_SET_BIT(ah, AR_TXCFG,
2966			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2967		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2968			  TU_TO_USEC(next_beacon +
2969				     (ah->atim_window ? ah->
2970				      atim_window : 1)));
2971		flags |= AR_NDP_TIMER_EN;
2972	case NL80211_IFTYPE_AP:
2973		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2974		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2975			  TU_TO_USEC(next_beacon -
2976				     ah->config.
2977				     dma_beacon_response_time));
2978		REG_WRITE(ah, AR_NEXT_SWBA,
2979			  TU_TO_USEC(next_beacon -
2980				     ah->config.
2981				     sw_beacon_response_time));
2982		flags |=
2983			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2984		break;
2985	default:
2986		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2987			  "%s: unsupported opmode: %d\n",
2988			  __func__, ah->opmode);
2989		return;
2990		break;
2991	}
2992
2993	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2994	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2995	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2996	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2997
2998	beacon_period &= ~ATH9K_BEACON_ENA;
2999	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3000		ath9k_hw_reset_tsf(ah);
3001	}
3002
3003	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3004}
3005EXPORT_SYMBOL(ath9k_hw_beaconinit);
3006
3007void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3008				    const struct ath9k_beacon_state *bs)
3009{
3010	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3011	struct ath9k_hw_capabilities *pCap = &ah->caps;
3012	struct ath_common *common = ath9k_hw_common(ah);
3013
3014	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3015
3016	REG_WRITE(ah, AR_BEACON_PERIOD,
3017		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3018	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3019		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3020
3021	REG_RMW_FIELD(ah, AR_RSSI_THR,
3022		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3023
3024	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3025
3026	if (bs->bs_sleepduration > beaconintval)
3027		beaconintval = bs->bs_sleepduration;
3028
3029	dtimperiod = bs->bs_dtimperiod;
3030	if (bs->bs_sleepduration > dtimperiod)
3031		dtimperiod = bs->bs_sleepduration;
3032
3033	if (beaconintval == dtimperiod)
3034		nextTbtt = bs->bs_nextdtim;
3035	else
3036		nextTbtt = bs->bs_nexttbtt;
3037
3038	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3039	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3040	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3041	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3042
3043	REG_WRITE(ah, AR_NEXT_DTIM,
3044		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3045	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3046
3047	REG_WRITE(ah, AR_SLEEP1,
3048		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3049		  | AR_SLEEP1_ASSUME_DTIM);
3050
3051	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3052		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3053	else
3054		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3055
3056	REG_WRITE(ah, AR_SLEEP2,
3057		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3058
3059	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3060	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3061
3062	REG_SET_BIT(ah, AR_TIMER_MODE,
3063		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3064		    AR_DTIM_TIMER_EN);
3065
3066	/* TSF Out of Range Threshold */
3067	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3068}
3069EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3070
3071/*******************/
3072/* HW Capabilities */
3073/*******************/
3074
3075int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3076{
3077	struct ath9k_hw_capabilities *pCap = &ah->caps;
3078	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3079	struct ath_common *common = ath9k_hw_common(ah);
3080	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3081
3082	u16 capField = 0, eeval;
3083
3084	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3085	regulatory->current_rd = eeval;
3086
3087	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3088	if (AR_SREV_9285_10_OR_LATER(ah))
3089		eeval |= AR9285_RDEXT_DEFAULT;
3090	regulatory->current_rd_ext = eeval;
3091
3092	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3093
3094	if (ah->opmode != NL80211_IFTYPE_AP &&
3095	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3096		if (regulatory->current_rd == 0x64 ||
3097		    regulatory->current_rd == 0x65)
3098			regulatory->current_rd += 5;
3099		else if (regulatory->current_rd == 0x41)
3100			regulatory->current_rd = 0x43;
3101		ath_print(common, ATH_DBG_REGULATORY,
3102			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3103	}
3104
3105	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3106	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3107		ath_print(common, ATH_DBG_FATAL,
3108			  "no band has been marked as supported in EEPROM.\n");
3109		return -EINVAL;
3110	}
3111
3112	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3113
3114	if (eeval & AR5416_OPFLAGS_11A) {
3115		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3116		if (ah->config.ht_enable) {
3117			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3118				set_bit(ATH9K_MODE_11NA_HT20,
3119					pCap->wireless_modes);
3120			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3121				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3122					pCap->wireless_modes);
3123				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3124					pCap->wireless_modes);
3125			}
3126		}
3127	}
3128
3129	if (eeval & AR5416_OPFLAGS_11G) {
3130		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3131		if (ah->config.ht_enable) {
3132			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3133				set_bit(ATH9K_MODE_11NG_HT20,
3134					pCap->wireless_modes);
3135			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3136				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3137					pCap->wireless_modes);
3138				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3139					pCap->wireless_modes);
3140			}
3141		}
3142	}
3143
3144	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3145	/*
3146	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3147	 * the EEPROM.
3148	 */
3149	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3150	    !(eeval & AR5416_OPFLAGS_11A) &&
3151	    !(AR_SREV_9271(ah)))
3152		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3153		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3154	else
3155		/* Use rx_chainmask from EEPROM. */
3156		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3157
3158	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3159		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3160
3161	pCap->low_2ghz_chan = 2312;
3162	pCap->high_2ghz_chan = 2732;
3163
3164	pCap->low_5ghz_chan = 4920;
3165	pCap->high_5ghz_chan = 6100;
3166
3167	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3168	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3169	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3170
3171	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3172	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3173	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3174
3175	if (ah->config.ht_enable)
3176		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3177	else
3178		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3179
3180	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3181	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3182	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3183	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3184
3185	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3186		pCap->total_queues =
3187			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3188	else
3189		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3190
3191	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3192		pCap->keycache_size =
3193			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3194	else
3195		pCap->keycache_size = AR_KEYTABLE_SIZE;
3196
3197	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3198
3199	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3200		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3201	else
3202		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3203
3204	if (AR_SREV_9271(ah))
3205		pCap->num_gpio_pins = AR9271_NUM_GPIO;
3206	else if (AR_SREV_9285_10_OR_LATER(ah))
3207		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3208	else if (AR_SREV_9280_10_OR_LATER(ah))
3209		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3210	else
3211		pCap->num_gpio_pins = AR_NUM_GPIO;
3212
3213	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3214		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3215		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3216	} else {
3217		pCap->rts_aggr_limit = (8 * 1024);
3218	}
3219
3220	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3221
3222#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3223	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3224	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3225		ah->rfkill_gpio =
3226			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3227		ah->rfkill_polarity =
3228			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3229
3230		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3231	}
3232#endif
3233
3234	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3235
3236	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3237		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3238	else
3239		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3240
3241	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3242		pCap->reg_cap =
3243			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3244			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3245			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3246			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3247	} else {
3248		pCap->reg_cap =
3249			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3250			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3251	}
3252
3253	/* Advertise midband for AR5416 with FCC midband set in eeprom */
3254	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3255	    AR_SREV_5416(ah))
3256		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3257
3258	pCap->num_antcfg_5ghz =
3259		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3260	pCap->num_antcfg_2ghz =
3261		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3262
3263	if (AR_SREV_9280_10_OR_LATER(ah) &&
3264	    ath9k_hw_btcoex_supported(ah)) {
3265		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3266		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3267
3268		if (AR_SREV_9285(ah)) {
3269			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3270			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3271		} else {
3272			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3273		}
3274	} else {
3275		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3276	}
3277
3278	return 0;
3279}
3280
3281bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3282			    u32 capability, u32 *result)
3283{
3284	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3285	switch (type) {
3286	case ATH9K_CAP_CIPHER:
3287		switch (capability) {
3288		case ATH9K_CIPHER_AES_CCM:
3289		case ATH9K_CIPHER_AES_OCB:
3290		case ATH9K_CIPHER_TKIP:
3291		case ATH9K_CIPHER_WEP:
3292		case ATH9K_CIPHER_MIC:
3293		case ATH9K_CIPHER_CLR:
3294			return true;
3295		default:
3296			return false;
3297		}
3298	case ATH9K_CAP_TKIP_MIC:
3299		switch (capability) {
3300		case 0:
3301			return true;
3302		case 1:
3303			return (ah->sta_id1_defaults &
3304				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3305			false;
3306		}
3307	case ATH9K_CAP_TKIP_SPLIT:
3308		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3309			false : true;
3310	case ATH9K_CAP_DIVERSITY:
3311		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3312			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3313			true : false;
3314	case ATH9K_CAP_MCAST_KEYSRCH:
3315		switch (capability) {
3316		case 0:
3317			return true;
3318		case 1:
3319			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3320				return false;
3321			} else {
3322				return (ah->sta_id1_defaults &
3323					AR_STA_ID1_MCAST_KSRCH) ? true :
3324					false;
3325			}
3326		}
3327		return false;
3328	case ATH9K_CAP_TXPOW:
3329		switch (capability) {
3330		case 0:
3331			return 0;
3332		case 1:
3333			*result = regulatory->power_limit;
3334			return 0;
3335		case 2:
3336			*result = regulatory->max_power_level;
3337			return 0;
3338		case 3:
3339			*result = regulatory->tp_scale;
3340			return 0;
3341		}
3342		return false;
3343	case ATH9K_CAP_DS:
3344		return (AR_SREV_9280_20_OR_LATER(ah) &&
3345			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3346			? false : true;
3347	default:
3348		return false;
3349	}
3350}
3351EXPORT_SYMBOL(ath9k_hw_getcapability);
3352
3353bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3354			    u32 capability, u32 setting, int *status)
3355{
3356	u32 v;
3357
3358	switch (type) {
3359	case ATH9K_CAP_TKIP_MIC:
3360		if (setting)
3361			ah->sta_id1_defaults |=
3362				AR_STA_ID1_CRPT_MIC_ENABLE;
3363		else
3364			ah->sta_id1_defaults &=
3365				~AR_STA_ID1_CRPT_MIC_ENABLE;
3366		return true;
3367	case ATH9K_CAP_DIVERSITY:
3368		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3369		if (setting)
3370			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3371		else
3372			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3373		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3374		return true;
3375	case ATH9K_CAP_MCAST_KEYSRCH:
3376		if (setting)
3377			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3378		else
3379			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3380		return true;
3381	default:
3382		return false;
3383	}
3384}
3385EXPORT_SYMBOL(ath9k_hw_setcapability);
3386
3387/****************************/
3388/* GPIO / RFKILL / Antennae */
3389/****************************/
3390
3391static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3392					 u32 gpio, u32 type)
3393{
3394	int addr;
3395	u32 gpio_shift, tmp;
3396
3397	if (gpio > 11)
3398		addr = AR_GPIO_OUTPUT_MUX3;
3399	else if (gpio > 5)
3400		addr = AR_GPIO_OUTPUT_MUX2;
3401	else
3402		addr = AR_GPIO_OUTPUT_MUX1;
3403
3404	gpio_shift = (gpio % 6) * 5;
3405
3406	if (AR_SREV_9280_20_OR_LATER(ah)
3407	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3408		REG_RMW(ah, addr, (type << gpio_shift),
3409			(0x1f << gpio_shift));
3410	} else {
3411		tmp = REG_READ(ah, addr);
3412		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3413		tmp &= ~(0x1f << gpio_shift);
3414		tmp |= (type << gpio_shift);
3415		REG_WRITE(ah, addr, tmp);
3416	}
3417}
3418
3419void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3420{
3421	u32 gpio_shift;
3422
3423	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3424
3425	gpio_shift = gpio << 1;
3426
3427	REG_RMW(ah,
3428		AR_GPIO_OE_OUT,
3429		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3430		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3431}
3432EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3433
3434u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3435{
3436#define MS_REG_READ(x, y) \
3437	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3438
3439	if (gpio >= ah->caps.num_gpio_pins)
3440		return 0xffffffff;
3441
3442	if (AR_SREV_9271(ah))
3443		return MS_REG_READ(AR9271, gpio) != 0;
3444	else if (AR_SREV_9287_10_OR_LATER(ah))
3445		return MS_REG_READ(AR9287, gpio) != 0;
3446	else if (AR_SREV_9285_10_OR_LATER(ah))
3447		return MS_REG_READ(AR9285, gpio) != 0;
3448	else if (AR_SREV_9280_10_OR_LATER(ah))
3449		return MS_REG_READ(AR928X, gpio) != 0;
3450	else
3451		return MS_REG_READ(AR, gpio) != 0;
3452}
3453EXPORT_SYMBOL(ath9k_hw_gpio_get);
3454
3455void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3456			 u32 ah_signal_type)
3457{
3458	u32 gpio_shift;
3459
3460	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3461
3462	gpio_shift = 2 * gpio;
3463
3464	REG_RMW(ah,
3465		AR_GPIO_OE_OUT,
3466		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3467		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3468}
3469EXPORT_SYMBOL(ath9k_hw_cfg_output);
3470
3471void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3472{
3473	if (AR_SREV_9271(ah))
3474		val = ~val;
3475
3476	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3477		AR_GPIO_BIT(gpio));
3478}
3479EXPORT_SYMBOL(ath9k_hw_set_gpio);
3480
3481u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3482{
3483	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3484}
3485EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3486
3487void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3488{
3489	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3490}
3491EXPORT_SYMBOL(ath9k_hw_setantenna);
3492
3493/*********************/
3494/* General Operation */
3495/*********************/
3496
3497u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3498{
3499	u32 bits = REG_READ(ah, AR_RX_FILTER);
3500	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3501
3502	if (phybits & AR_PHY_ERR_RADAR)
3503		bits |= ATH9K_RX_FILTER_PHYRADAR;
3504	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3505		bits |= ATH9K_RX_FILTER_PHYERR;
3506
3507	return bits;
3508}
3509EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3510
3511void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3512{
3513	u32 phybits;
3514
3515	REG_WRITE(ah, AR_RX_FILTER, bits);
3516
3517	phybits = 0;
3518	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3519		phybits |= AR_PHY_ERR_RADAR;
3520	if (bits & ATH9K_RX_FILTER_PHYERR)
3521		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3522	REG_WRITE(ah, AR_PHY_ERR, phybits);
3523
3524	if (phybits)
3525		REG_WRITE(ah, AR_RXCFG,
3526			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3527	else
3528		REG_WRITE(ah, AR_RXCFG,
3529			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3530}
3531EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3532
3533bool ath9k_hw_phy_disable(struct ath_hw *ah)
3534{
3535	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3536		return false;
3537
3538	ath9k_hw_init_pll(ah, NULL);
3539	return true;
3540}
3541EXPORT_SYMBOL(ath9k_hw_phy_disable);
3542
3543bool ath9k_hw_disable(struct ath_hw *ah)
3544{
3545	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3546		return false;
3547
3548	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3549		return false;
3550
3551	ath9k_hw_init_pll(ah, NULL);
3552	return true;
3553}
3554EXPORT_SYMBOL(ath9k_hw_disable);
3555
3556void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3557{
3558	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3559	struct ath9k_channel *chan = ah->curchan;
3560	struct ieee80211_channel *channel = chan->chan;
3561
3562	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3563
3564	ah->eep_ops->set_txpower(ah, chan,
3565				 ath9k_regd_get_ctl(regulatory, chan),
3566				 channel->max_antenna_gain * 2,
3567				 channel->max_power * 2,
3568				 min((u32) MAX_RATE_POWER,
3569				 (u32) regulatory->power_limit));
3570}
3571EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3572
3573void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3574{
3575	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3576}
3577EXPORT_SYMBOL(ath9k_hw_setmac);
3578
3579void ath9k_hw_setopmode(struct ath_hw *ah)
3580{
3581	ath9k_hw_set_operating_mode(ah, ah->opmode);
3582}
3583EXPORT_SYMBOL(ath9k_hw_setopmode);
3584
3585void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3586{
3587	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3588	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3589}
3590EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3591
3592void ath9k_hw_write_associd(struct ath_hw *ah)
3593{
3594	struct ath_common *common = ath9k_hw_common(ah);
3595
3596	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3597	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3598		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3599}
3600EXPORT_SYMBOL(ath9k_hw_write_associd);
3601
3602u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3603{
3604	u64 tsf;
3605
3606	tsf = REG_READ(ah, AR_TSF_U32);
3607	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3608
3609	return tsf;
3610}
3611EXPORT_SYMBOL(ath9k_hw_gettsf64);
3612
3613void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3614{
3615	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3616	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3617}
3618EXPORT_SYMBOL(ath9k_hw_settsf64);
3619
3620void ath9k_hw_reset_tsf(struct ath_hw *ah)
3621{
3622	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3623			   AH_TSF_WRITE_TIMEOUT))
3624		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3625			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3626
3627	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3628}
3629EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3630
3631void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3632{
3633	if (setting)
3634		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3635	else
3636		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3637}
3638EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3639
3640/*
3641 *  Extend 15-bit time stamp from rx descriptor to
3642 *  a full 64-bit TSF using the current h/w TSF.
3643*/
3644u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3645{
3646	u64 tsf;
3647
3648	tsf = ath9k_hw_gettsf64(ah);
3649	if ((tsf & 0x7fff) < rstamp)
3650		tsf -= 0x8000;
3651	return (tsf & ~0x7fff) | rstamp;
3652}
3653EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3654
3655void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3656{
3657	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3658	u32 macmode;
3659
3660	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3661		macmode = AR_2040_JOINED_RX_CLEAR;
3662	else
3663		macmode = 0;
3664
3665	REG_WRITE(ah, AR_2040_MODE, macmode);
3666}
3667
3668/* HW Generic timers configuration */
3669
3670static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3671{
3672	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3673	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3674	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3675	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3676	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3677	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3678	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3679	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3680	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3681	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3682				AR_NDP2_TIMER_MODE, 0x0002},
3683	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3684				AR_NDP2_TIMER_MODE, 0x0004},
3685	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3686				AR_NDP2_TIMER_MODE, 0x0008},
3687	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3688				AR_NDP2_TIMER_MODE, 0x0010},
3689	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3690				AR_NDP2_TIMER_MODE, 0x0020},
3691	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3692				AR_NDP2_TIMER_MODE, 0x0040},
3693	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3694				AR_NDP2_TIMER_MODE, 0x0080}
3695};
3696
3697/* HW generic timer primitives */
3698
3699/* compute and clear index of rightmost 1 */
3700static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3701{
3702	u32 b;
3703
3704	b = *mask;
3705	b &= (0-b);
3706	*mask &= ~b;
3707	b *= debruijn32;
3708	b >>= 27;
3709
3710	return timer_table->gen_timer_index[b];
3711}
3712
3713u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3714{
3715	return REG_READ(ah, AR_TSF_L32);
3716}
3717EXPORT_SYMBOL(ath9k_hw_gettsf32);
3718
3719struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3720					  void (*trigger)(void *),
3721					  void (*overflow)(void *),
3722					  void *arg,
3723					  u8 timer_index)
3724{
3725	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3726	struct ath_gen_timer *timer;
3727
3728	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3729
3730	if (timer == NULL) {
3731		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3732			  "Failed to allocate memory"
3733			  "for hw timer[%d]\n", timer_index);
3734		return NULL;
3735	}
3736
3737	/* allocate a hardware generic timer slot */
3738	timer_table->timers[timer_index] = timer;
3739	timer->index = timer_index;
3740	timer->trigger = trigger;
3741	timer->overflow = overflow;
3742	timer->arg = arg;
3743
3744	return timer;
3745}
3746EXPORT_SYMBOL(ath_gen_timer_alloc);
3747
3748void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3749			      struct ath_gen_timer *timer,
3750			      u32 timer_next,
3751			      u32 timer_period)
3752{
3753	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3754	u32 tsf;
3755
3756	BUG_ON(!timer_period);
3757
3758	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3759
3760	tsf = ath9k_hw_gettsf32(ah);
3761
3762	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3763		  "curent tsf %x period %x"
3764		  "timer_next %x\n", tsf, timer_period, timer_next);
3765
3766	/*
3767	 * Pull timer_next forward if the current TSF already passed it
3768	 * because of software latency
3769	 */
3770	if (timer_next < tsf)
3771		timer_next = tsf + timer_period;
3772
3773	/*
3774	 * Program generic timer registers
3775	 */
3776	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3777		 timer_next);
3778	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3779		  timer_period);
3780	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3781		    gen_tmr_configuration[timer->index].mode_mask);
3782
3783	/* Enable both trigger and thresh interrupt masks */
3784	REG_SET_BIT(ah, AR_IMR_S5,
3785		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3786		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3787}
3788EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3789
3790void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3791{
3792	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3793
3794	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3795		(timer->index >= ATH_MAX_GEN_TIMER)) {
3796		return;
3797	}
3798
3799	/* Clear generic timer enable bits. */
3800	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3801			gen_tmr_configuration[timer->index].mode_mask);
3802
3803	/* Disable both trigger and thresh interrupt masks */
3804	REG_CLR_BIT(ah, AR_IMR_S5,
3805		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3806		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3807
3808	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3809}
3810EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3811
3812void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3813{
3814	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3815
3816	/* free the hardware generic timer slot */
3817	timer_table->timers[timer->index] = NULL;
3818	kfree(timer);
3819}
3820EXPORT_SYMBOL(ath_gen_timer_free);
3821
3822/*
3823 * Generic Timer Interrupts handling
3824 */
3825void ath_gen_timer_isr(struct ath_hw *ah)
3826{
3827	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3828	struct ath_gen_timer *timer;
3829	struct ath_common *common = ath9k_hw_common(ah);
3830	u32 trigger_mask, thresh_mask, index;
3831
3832	/* get hardware generic timer interrupt status */
3833	trigger_mask = ah->intr_gen_timer_trigger;
3834	thresh_mask = ah->intr_gen_timer_thresh;
3835	trigger_mask &= timer_table->timer_mask.val;
3836	thresh_mask &= timer_table->timer_mask.val;
3837
3838	trigger_mask &= ~thresh_mask;
3839
3840	while (thresh_mask) {
3841		index = rightmost_index(timer_table, &thresh_mask);
3842		timer = timer_table->timers[index];
3843		BUG_ON(!timer);
3844		ath_print(common, ATH_DBG_HWTIMER,
3845			  "TSF overflow for Gen timer %d\n", index);
3846		timer->overflow(timer->arg);
3847	}
3848
3849	while (trigger_mask) {
3850		index = rightmost_index(timer_table, &trigger_mask);
3851		timer = timer_table->timers[index];
3852		BUG_ON(!timer);
3853		ath_print(common, ATH_DBG_HWTIMER,
3854			  "Gen timer[%d] trigger\n", index);
3855		timer->trigger(timer->arg);
3856	}
3857}
3858EXPORT_SYMBOL(ath_gen_timer_isr);
3859
3860/********/
3861/* HTC  */
3862/********/
3863
3864void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3865{
3866	ah->htc_reset_init = true;
3867}
3868EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3869
3870static struct {
3871	u32 version;
3872	const char * name;
3873} ath_mac_bb_names[] = {
3874	/* Devices with external radios */
3875	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3876	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3877	{ AR_SREV_VERSION_9100,		"9100" },
3878	{ AR_SREV_VERSION_9160,		"9160" },
3879	/* Single-chip solutions */
3880	{ AR_SREV_VERSION_9280,		"9280" },
3881	{ AR_SREV_VERSION_9285,		"9285" },
3882	{ AR_SREV_VERSION_9287,         "9287" },
3883	{ AR_SREV_VERSION_9271,         "9271" },
3884};
3885
3886/* For devices with external radios */
3887static struct {
3888	u16 version;
3889	const char * name;
3890} ath_rf_names[] = {
3891	{ 0,				"5133" },
3892	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3893	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3894	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3895	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3896};
3897
3898/*
3899 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3900 */
3901static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3902{
3903	int i;
3904
3905	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3906		if (ath_mac_bb_names[i].version == mac_bb_version) {
3907			return ath_mac_bb_names[i].name;
3908		}
3909	}
3910
3911	return "????";
3912}
3913
3914/*
3915 * Return the RF name. "????" is returned if the RF is unknown.
3916 * Used for devices with external radios.
3917 */
3918static const char *ath9k_hw_rf_name(u16 rf_version)
3919{
3920	int i;
3921
3922	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3923		if (ath_rf_names[i].version == rf_version) {
3924			return ath_rf_names[i].name;
3925		}
3926	}
3927
3928	return "????";
3929}
3930
3931void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3932{
3933	int used;
3934
3935	/* chipsets >= AR9280 are single-chip */
3936	if (AR_SREV_9280_10_OR_LATER(ah)) {
3937		used = snprintf(hw_name, len,
3938			       "Atheros AR%s Rev:%x",
3939			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3940			       ah->hw_version.macRev);
3941	}
3942	else {
3943		used = snprintf(hw_name, len,
3944			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3945			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3946			       ah->hw_version.macRev,
3947			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3948						AR_RADIO_SREV_MAJOR)),
3949			       ah->hw_version.phyRev);
3950	}
3951
3952	hw_name[used] = '\0';
3953}
3954EXPORT_SYMBOL(ath9k_hw_name);
3955