1/*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/slab.h>
18#include <linux/delay.h>
19#include <linux/pci.h>
20#include <net/cfg80211.h>
21#include <net/mac80211.h>
22
23#include <brcmu_utils.h>
24#include <aiutils.h>
25#include "types.h"
26#include "main.h"
27#include "dma.h"
28#include "soc.h"
29#include "scb.h"
30#include "ampdu.h"
31#include "debug.h"
32#include "brcms_trace_events.h"
33
34/*
35 * dma register field offset calculation
36 */
37#define DMA64REGOFFS(field)		offsetof(struct dma64regs, field)
38#define DMA64TXREGOFFS(di, field)	(di->d64txregbase + DMA64REGOFFS(field))
39#define DMA64RXREGOFFS(di, field)	(di->d64rxregbase + DMA64REGOFFS(field))
40
41/*
42 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
43 * a contiguous 8kB physical address.
44 */
45#define D64RINGALIGN_BITS	13
46#define	D64MAXRINGSZ		(1 << D64RINGALIGN_BITS)
47#define	D64RINGALIGN		(1 << D64RINGALIGN_BITS)
48
49#define	D64MAXDD	(D64MAXRINGSZ / sizeof(struct dma64desc))
50
51/* transmit channel control */
52#define	D64_XC_XE		0x00000001	/* transmit enable */
53#define	D64_XC_SE		0x00000002	/* transmit suspend request */
54#define	D64_XC_LE		0x00000004	/* loopback enable */
55#define	D64_XC_FL		0x00000010	/* flush request */
56#define	D64_XC_PD		0x00000800	/* parity check disable */
57#define	D64_XC_AE		0x00030000	/* address extension bits */
58#define	D64_XC_AE_SHIFT		16
59
60/* transmit descriptor table pointer */
61#define	D64_XP_LD_MASK		0x00000fff	/* last valid descriptor */
62
63/* transmit channel status */
64#define	D64_XS0_CD_MASK		0x00001fff	/* current descriptor pointer */
65#define	D64_XS0_XS_MASK		0xf0000000	/* transmit state */
66#define	D64_XS0_XS_SHIFT		28
67#define	D64_XS0_XS_DISABLED	0x00000000	/* disabled */
68#define	D64_XS0_XS_ACTIVE	0x10000000	/* active */
69#define	D64_XS0_XS_IDLE		0x20000000	/* idle wait */
70#define	D64_XS0_XS_STOPPED	0x30000000	/* stopped */
71#define	D64_XS0_XS_SUSP		0x40000000	/* suspend pending */
72
73#define	D64_XS1_AD_MASK		0x00001fff	/* active descriptor */
74#define	D64_XS1_XE_MASK		0xf0000000	/* transmit errors */
75#define	D64_XS1_XE_SHIFT		28
76#define	D64_XS1_XE_NOERR	0x00000000	/* no error */
77#define	D64_XS1_XE_DPE		0x10000000	/* descriptor protocol error */
78#define	D64_XS1_XE_DFU		0x20000000	/* data fifo underrun */
79#define	D64_XS1_XE_DTE		0x30000000	/* data transfer error */
80#define	D64_XS1_XE_DESRE	0x40000000	/* descriptor read error */
81#define	D64_XS1_XE_COREE	0x50000000	/* core error */
82
83/* receive channel control */
84/* receive enable */
85#define	D64_RC_RE		0x00000001
86/* receive frame offset */
87#define	D64_RC_RO_MASK		0x000000fe
88#define	D64_RC_RO_SHIFT		1
89/* direct fifo receive (pio) mode */
90#define	D64_RC_FM		0x00000100
91/* separate rx header descriptor enable */
92#define	D64_RC_SH		0x00000200
93/* overflow continue */
94#define	D64_RC_OC		0x00000400
95/* parity check disable */
96#define	D64_RC_PD		0x00000800
97/* address extension bits */
98#define	D64_RC_AE		0x00030000
99#define	D64_RC_AE_SHIFT		16
100
101/* flags for dma controller */
102/* partity enable */
103#define DMA_CTRL_PEN		(1 << 0)
104/* rx overflow continue */
105#define DMA_CTRL_ROC		(1 << 1)
106/* allow rx scatter to multiple descriptors */
107#define DMA_CTRL_RXMULTI	(1 << 2)
108/* Unframed Rx/Tx data */
109#define DMA_CTRL_UNFRAMED	(1 << 3)
110
111/* receive descriptor table pointer */
112#define	D64_RP_LD_MASK		0x00000fff	/* last valid descriptor */
113
114/* receive channel status */
115#define	D64_RS0_CD_MASK		0x00001fff	/* current descriptor pointer */
116#define	D64_RS0_RS_MASK		0xf0000000	/* receive state */
117#define	D64_RS0_RS_SHIFT		28
118#define	D64_RS0_RS_DISABLED	0x00000000	/* disabled */
119#define	D64_RS0_RS_ACTIVE	0x10000000	/* active */
120#define	D64_RS0_RS_IDLE		0x20000000	/* idle wait */
121#define	D64_RS0_RS_STOPPED	0x30000000	/* stopped */
122#define	D64_RS0_RS_SUSP		0x40000000	/* suspend pending */
123
124#define	D64_RS1_AD_MASK		0x0001ffff	/* active descriptor */
125#define	D64_RS1_RE_MASK		0xf0000000	/* receive errors */
126#define	D64_RS1_RE_SHIFT		28
127#define	D64_RS1_RE_NOERR	0x00000000	/* no error */
128#define	D64_RS1_RE_DPO		0x10000000	/* descriptor protocol error */
129#define	D64_RS1_RE_DFU		0x20000000	/* data fifo overflow */
130#define	D64_RS1_RE_DTE		0x30000000	/* data transfer error */
131#define	D64_RS1_RE_DESRE	0x40000000	/* descriptor read error */
132#define	D64_RS1_RE_COREE	0x50000000	/* core error */
133
134/* fifoaddr */
135#define	D64_FA_OFF_MASK		0xffff	/* offset */
136#define	D64_FA_SEL_MASK		0xf0000	/* select */
137#define	D64_FA_SEL_SHIFT	16
138#define	D64_FA_SEL_XDD		0x00000	/* transmit dma data */
139#define	D64_FA_SEL_XDP		0x10000	/* transmit dma pointers */
140#define	D64_FA_SEL_RDD		0x40000	/* receive dma data */
141#define	D64_FA_SEL_RDP		0x50000	/* receive dma pointers */
142#define	D64_FA_SEL_XFD		0x80000	/* transmit fifo data */
143#define	D64_FA_SEL_XFP		0x90000	/* transmit fifo pointers */
144#define	D64_FA_SEL_RFD		0xc0000	/* receive fifo data */
145#define	D64_FA_SEL_RFP		0xd0000	/* receive fifo pointers */
146#define	D64_FA_SEL_RSD		0xe0000	/* receive frame status data */
147#define	D64_FA_SEL_RSP		0xf0000	/* receive frame status pointers */
148
149/* descriptor control flags 1 */
150#define D64_CTRL_COREFLAGS	0x0ff00000	/* core specific flags */
151#define	D64_CTRL1_EOT		((u32)1 << 28)	/* end of descriptor table */
152#define	D64_CTRL1_IOC		((u32)1 << 29)	/* interrupt on completion */
153#define	D64_CTRL1_EOF		((u32)1 << 30)	/* end of frame */
154#define	D64_CTRL1_SOF		((u32)1 << 31)	/* start of frame */
155
156/* descriptor control flags 2 */
157/* buffer byte count. real data len must <= 16KB */
158#define	D64_CTRL2_BC_MASK	0x00007fff
159/* address extension bits */
160#define	D64_CTRL2_AE		0x00030000
161#define	D64_CTRL2_AE_SHIFT	16
162/* parity bit */
163#define D64_CTRL2_PARITY	0x00040000
164
165/* control flags in the range [27:20] are core-specific and not defined here */
166#define	D64_CTRL_CORE_MASK	0x0ff00000
167
168#define D64_RX_FRM_STS_LEN	0x0000ffff	/* frame length mask */
169#define D64_RX_FRM_STS_OVFL	0x00800000	/* RxOverFlow */
170#define D64_RX_FRM_STS_DSCRCNT	0x0f000000  /* no. of descriptors used - 1 */
171#define D64_RX_FRM_STS_DATATYPE	0xf0000000	/* core-dependent data type */
172
173/*
174 * packet headroom necessary to accommodate the largest header
175 * in the system, (i.e TXOFF). By doing, we avoid the need to
176 * allocate an extra buffer for the header when bridging to WL.
177 * There is a compile time check in wlc.c which ensure that this
178 * value is at least as big as TXOFF. This value is used in
179 * dma_rxfill().
180 */
181
182#define BCMEXTRAHDROOM 172
183
184#define	MAXNAMEL	8	/* 8 char names */
185
186/* macros to convert between byte offsets and indexes */
187#define	B2I(bytes, type)	((bytes) / sizeof(type))
188#define	I2B(index, type)	((index) * sizeof(type))
189
190#define	PCI32ADDR_HIGH		0xc0000000	/* address[31:30] */
191#define	PCI32ADDR_HIGH_SHIFT	30	/* address[31:30] */
192
193#define	PCI64ADDR_HIGH		0x80000000	/* address[63] */
194#define	PCI64ADDR_HIGH_SHIFT	31	/* address[63] */
195
196/*
197 * DMA Descriptor
198 * Descriptors are only read by the hardware, never written back.
199 */
200struct dma64desc {
201	__le32 ctrl1;	/* misc control bits & bufcount */
202	__le32 ctrl2;	/* buffer count and address extension */
203	__le32 addrlow;	/* memory address of the date buffer, bits 31:0 */
204	__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
205};
206
207/* dma engine software state */
208struct dma_info {
209	struct dma_pub dma; /* exported structure */
210	char name[MAXNAMEL];	/* callers name for diag msgs */
211
212	struct bcma_device *core;
213	struct device *dmadev;
214
215	/* session information for AMPDU */
216	struct brcms_ampdu_session ampdu_session;
217
218	bool dma64;	/* this dma engine is operating in 64-bit mode */
219	bool addrext;	/* this dma engine supports DmaExtendedAddrChanges */
220
221	/* 64-bit dma tx engine registers */
222	uint d64txregbase;
223	/* 64-bit dma rx engine registers */
224	uint d64rxregbase;
225	/* pointer to dma64 tx descriptor ring */
226	struct dma64desc *txd64;
227	/* pointer to dma64 rx descriptor ring */
228	struct dma64desc *rxd64;
229
230	u16 dmadesc_align;	/* alignment requirement for dma descriptors */
231
232	u16 ntxd;		/* # tx descriptors tunable */
233	u16 txin;		/* index of next descriptor to reclaim */
234	u16 txout;		/* index of next descriptor to post */
235	/* pointer to parallel array of pointers to packets */
236	struct sk_buff **txp;
237	/* Aligned physical address of descriptor ring */
238	dma_addr_t txdpa;
239	/* Original physical address of descriptor ring */
240	dma_addr_t txdpaorig;
241	u16 txdalign;	/* #bytes added to alloc'd mem to align txd */
242	u32 txdalloc;	/* #bytes allocated for the ring */
243	u32 xmtptrbase;	/* When using unaligned descriptors, the ptr register
244			 * is not just an index, it needs all 13 bits to be
245			 * an offset from the addr register.
246			 */
247
248	u16 nrxd;	/* # rx descriptors tunable */
249	u16 rxin;	/* index of next descriptor to reclaim */
250	u16 rxout;	/* index of next descriptor to post */
251	/* pointer to parallel array of pointers to packets */
252	struct sk_buff **rxp;
253	/* Aligned physical address of descriptor ring */
254	dma_addr_t rxdpa;
255	/* Original physical address of descriptor ring */
256	dma_addr_t rxdpaorig;
257	u16 rxdalign;	/* #bytes added to alloc'd mem to align rxd */
258	u32 rxdalloc;	/* #bytes allocated for the ring */
259	u32 rcvptrbase;	/* Base for ptr reg when using unaligned descriptors */
260
261	/* tunables */
262	unsigned int rxbufsize;	/* rx buffer size in bytes, not including
263				 * the extra headroom
264				 */
265	uint rxextrahdrroom;	/* extra rx headroom, reverseved to assist upper
266				 * stack, e.g. some rx pkt buffers will be
267				 * bridged to tx side without byte copying.
268				 * The extra headroom needs to be large enough
269				 * to fit txheader needs. Some dongle driver may
270				 * not need it.
271				 */
272	uint nrxpost;		/* # rx buffers to keep posted */
273	unsigned int rxoffset;	/* rxcontrol offset */
274	/* add to get dma address of descriptor ring, low 32 bits */
275	uint ddoffsetlow;
276	/*   high 32 bits */
277	uint ddoffsethigh;
278	/* add to get dma address of data buffer, low 32 bits */
279	uint dataoffsetlow;
280	/*   high 32 bits */
281	uint dataoffsethigh;
282	/* descriptor base need to be aligned or not */
283	bool aligndesc_4k;
284};
285
286/* Check for odd number of 1's */
287static u32 parity32(__le32 data)
288{
289	/* no swap needed for counting 1's */
290	u32 par_data = *(u32 *)&data;
291
292	par_data ^= par_data >> 16;
293	par_data ^= par_data >> 8;
294	par_data ^= par_data >> 4;
295	par_data ^= par_data >> 2;
296	par_data ^= par_data >> 1;
297
298	return par_data & 1;
299}
300
301static bool dma64_dd_parity(struct dma64desc *dd)
302{
303	return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
304}
305
306/* descriptor bumping functions */
307
308static uint xxd(uint x, uint n)
309{
310	return x & (n - 1); /* faster than %, but n must be power of 2 */
311}
312
313static uint txd(struct dma_info *di, uint x)
314{
315	return xxd(x, di->ntxd);
316}
317
318static uint rxd(struct dma_info *di, uint x)
319{
320	return xxd(x, di->nrxd);
321}
322
323static uint nexttxd(struct dma_info *di, uint i)
324{
325	return txd(di, i + 1);
326}
327
328static uint prevtxd(struct dma_info *di, uint i)
329{
330	return txd(di, i - 1);
331}
332
333static uint nextrxd(struct dma_info *di, uint i)
334{
335	return rxd(di, i + 1);
336}
337
338static uint ntxdactive(struct dma_info *di, uint h, uint t)
339{
340	return txd(di, t-h);
341}
342
343static uint nrxdactive(struct dma_info *di, uint h, uint t)
344{
345	return rxd(di, t-h);
346}
347
348static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
349{
350	uint dmactrlflags;
351
352	if (di == NULL)
353		return 0;
354
355	dmactrlflags = di->dma.dmactrlflags;
356	dmactrlflags &= ~mask;
357	dmactrlflags |= flags;
358
359	/* If trying to enable parity, check if parity is actually supported */
360	if (dmactrlflags & DMA_CTRL_PEN) {
361		u32 control;
362
363		control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
364		bcma_write32(di->core, DMA64TXREGOFFS(di, control),
365		      control | D64_XC_PD);
366		if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
367		    D64_XC_PD)
368			/* We *can* disable it so it is supported,
369			 * restore control register
370			 */
371			bcma_write32(di->core, DMA64TXREGOFFS(di, control),
372				     control);
373		else
374			/* Not supported, don't allow it to be enabled */
375			dmactrlflags &= ~DMA_CTRL_PEN;
376	}
377
378	di->dma.dmactrlflags = dmactrlflags;
379
380	return dmactrlflags;
381}
382
383static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
384{
385	u32 w;
386	bcma_set32(di->core, ctrl_offset, D64_XC_AE);
387	w = bcma_read32(di->core, ctrl_offset);
388	bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
389	return (w & D64_XC_AE) == D64_XC_AE;
390}
391
392/*
393 * return true if this dma engine supports DmaExtendedAddrChanges,
394 * otherwise false
395 */
396static bool _dma_isaddrext(struct dma_info *di)
397{
398	/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
399
400	/* not all tx or rx channel are available */
401	if (di->d64txregbase != 0) {
402		if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
403			brcms_dbg_dma(di->core,
404				      "%s: DMA64 tx doesn't have AE set\n",
405				      di->name);
406		return true;
407	} else if (di->d64rxregbase != 0) {
408		if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
409			brcms_dbg_dma(di->core,
410				      "%s: DMA64 rx doesn't have AE set\n",
411				      di->name);
412		return true;
413	}
414
415	return false;
416}
417
418static bool _dma_descriptor_align(struct dma_info *di)
419{
420	u32 addrl;
421
422	/* Check to see if the descriptors need to be aligned on 4K/8K or not */
423	if (di->d64txregbase != 0) {
424		bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
425		addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
426		if (addrl != 0)
427			return false;
428	} else if (di->d64rxregbase != 0) {
429		bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
430		addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
431		if (addrl != 0)
432			return false;
433	}
434	return true;
435}
436
437/*
438 * Descriptor table must start at the DMA hardware dictated alignment, so
439 * allocated memory must be large enough to support this requirement.
440 */
441static void *dma_alloc_consistent(struct dma_info *di, uint size,
442				  u16 align_bits, uint *alloced,
443				  dma_addr_t *pap)
444{
445	if (align_bits) {
446		u16 align = (1 << align_bits);
447		if (!IS_ALIGNED(PAGE_SIZE, align))
448			size += align;
449		*alloced = size;
450	}
451	return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
452}
453
454static
455u8 dma_align_sizetobits(uint size)
456{
457	u8 bitpos = 0;
458	while (size >>= 1)
459		bitpos++;
460	return bitpos;
461}
462
463/* This function ensures that the DMA descriptor ring will not get allocated
464 * across Page boundary. If the allocation is done across the page boundary
465 * at the first time, then it is freed and the allocation is done at
466 * descriptor ring size aligned location. This will ensure that the ring will
467 * not cross page boundary
468 */
469static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
470			   u16 *alignbits, uint *alloced,
471			   dma_addr_t *descpa)
472{
473	void *va;
474	u32 desc_strtaddr;
475	u32 alignbytes = 1 << *alignbits;
476
477	va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
478
479	if (NULL == va)
480		return NULL;
481
482	desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
483	if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
484							& boundary)) {
485		*alignbits = dma_align_sizetobits(size);
486		dma_free_coherent(di->dmadev, size, va, *descpa);
487		va = dma_alloc_consistent(di, size, *alignbits,
488			alloced, descpa);
489	}
490	return va;
491}
492
493static bool dma64_alloc(struct dma_info *di, uint direction)
494{
495	u16 size;
496	uint ddlen;
497	void *va;
498	uint alloced = 0;
499	u16 align;
500	u16 align_bits;
501
502	ddlen = sizeof(struct dma64desc);
503
504	size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
505	align_bits = di->dmadesc_align;
506	align = (1 << align_bits);
507
508	if (direction == DMA_TX) {
509		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
510			&alloced, &di->txdpaorig);
511		if (va == NULL) {
512			brcms_dbg_dma(di->core,
513				      "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
514				      di->name);
515			return false;
516		}
517		align = (1 << align_bits);
518		di->txd64 = (struct dma64desc *)
519					roundup((unsigned long)va, align);
520		di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
521		di->txdpa = di->txdpaorig + di->txdalign;
522		di->txdalloc = alloced;
523	} else {
524		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
525			&alloced, &di->rxdpaorig);
526		if (va == NULL) {
527			brcms_dbg_dma(di->core,
528				      "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
529				      di->name);
530			return false;
531		}
532		align = (1 << align_bits);
533		di->rxd64 = (struct dma64desc *)
534					roundup((unsigned long)va, align);
535		di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
536		di->rxdpa = di->rxdpaorig + di->rxdalign;
537		di->rxdalloc = alloced;
538	}
539
540	return true;
541}
542
543static bool _dma_alloc(struct dma_info *di, uint direction)
544{
545	return dma64_alloc(di, direction);
546}
547
548struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
549			   uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
550			   uint rxbufsize, int rxextheadroom,
551			   uint nrxpost, uint rxoffset)
552{
553	struct si_pub *sih = wlc->hw->sih;
554	struct bcma_device *core = wlc->hw->d11core;
555	struct dma_info *di;
556	u8 rev = core->id.rev;
557	uint size;
558	struct si_info *sii = container_of(sih, struct si_info, pub);
559
560	/* allocate private info structure */
561	di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
562	if (di == NULL)
563		return NULL;
564
565	di->dma64 =
566		((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
567
568	/* init dma reg info */
569	di->core = core;
570	di->d64txregbase = txregbase;
571	di->d64rxregbase = rxregbase;
572
573	/*
574	 * Default flags (which can be changed by the driver calling
575	 * dma_ctrlflags before enable): For backwards compatibility
576	 * both Rx Overflow Continue and Parity are DISABLED.
577	 */
578	_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
579
580	brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
581		      "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
582		      "txregbase %u rxregbase %u\n", name, "DMA64",
583		      di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
584		      rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
585
586	/* make a private copy of our callers name */
587	strncpy(di->name, name, MAXNAMEL);
588	di->name[MAXNAMEL - 1] = '\0';
589
590	di->dmadev = core->dma_dev;
591
592	/* save tunables */
593	di->ntxd = (u16) ntxd;
594	di->nrxd = (u16) nrxd;
595
596	/* the actual dma size doesn't include the extra headroom */
597	di->rxextrahdrroom =
598	    (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
599	if (rxbufsize > BCMEXTRAHDROOM)
600		di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
601	else
602		di->rxbufsize = (u16) rxbufsize;
603
604	di->nrxpost = (u16) nrxpost;
605	di->rxoffset = (u8) rxoffset;
606
607	/*
608	 * figure out the DMA physical address offset for dd and data
609	 *     PCI/PCIE: they map silicon backplace address to zero
610	 *     based memory, need offset
611	 *     Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
612	 *     swapped region for data buffer, not descriptor
613	 */
614	di->ddoffsetlow = 0;
615	di->dataoffsetlow = 0;
616	/* for pci bus, add offset */
617	if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
618		/* add offset for pcie with DMA64 bus */
619		di->ddoffsetlow = 0;
620		di->ddoffsethigh = SI_PCIE_DMA_H32;
621	}
622	di->dataoffsetlow = di->ddoffsetlow;
623	di->dataoffsethigh = di->ddoffsethigh;
624
625	/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
626	if ((core->id.id == BCMA_CORE_SDIO_DEV)
627	    && ((rev > 0) && (rev <= 2)))
628		di->addrext = false;
629	else if ((core->id.id == BCMA_CORE_I2S) &&
630		 ((rev == 0) || (rev == 1)))
631		di->addrext = false;
632	else
633		di->addrext = _dma_isaddrext(di);
634
635	/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
636	di->aligndesc_4k = _dma_descriptor_align(di);
637	if (di->aligndesc_4k) {
638		di->dmadesc_align = D64RINGALIGN_BITS;
639		if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
640			/* for smaller dd table, HW relax alignment reqmnt */
641			di->dmadesc_align = D64RINGALIGN_BITS - 1;
642	} else {
643		di->dmadesc_align = 4;	/* 16 byte alignment */
644	}
645
646	brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
647		      di->aligndesc_4k, di->dmadesc_align);
648
649	/* allocate tx packet pointer vector */
650	if (ntxd) {
651		size = ntxd * sizeof(void *);
652		di->txp = kzalloc(size, GFP_ATOMIC);
653		if (di->txp == NULL)
654			goto fail;
655	}
656
657	/* allocate rx packet pointer vector */
658	if (nrxd) {
659		size = nrxd * sizeof(void *);
660		di->rxp = kzalloc(size, GFP_ATOMIC);
661		if (di->rxp == NULL)
662			goto fail;
663	}
664
665	/*
666	 * allocate transmit descriptor ring, only need ntxd descriptors
667	 * but it must be aligned
668	 */
669	if (ntxd) {
670		if (!_dma_alloc(di, DMA_TX))
671			goto fail;
672	}
673
674	/*
675	 * allocate receive descriptor ring, only need nrxd descriptors
676	 * but it must be aligned
677	 */
678	if (nrxd) {
679		if (!_dma_alloc(di, DMA_RX))
680			goto fail;
681	}
682
683	if ((di->ddoffsetlow != 0) && !di->addrext) {
684		if (di->txdpa > SI_PCI_DMA_SZ) {
685			brcms_dbg_dma(di->core,
686				      "%s: txdpa 0x%x: addrext not supported\n",
687				      di->name, (u32)di->txdpa);
688			goto fail;
689		}
690		if (di->rxdpa > SI_PCI_DMA_SZ) {
691			brcms_dbg_dma(di->core,
692				      "%s: rxdpa 0x%x: addrext not supported\n",
693				      di->name, (u32)di->rxdpa);
694			goto fail;
695		}
696	}
697
698	/* Initialize AMPDU session */
699	brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
700
701	brcms_dbg_dma(di->core,
702		      "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
703		      di->ddoffsetlow, di->ddoffsethigh,
704		      di->dataoffsetlow, di->dataoffsethigh,
705		      di->addrext);
706
707	return (struct dma_pub *) di;
708
709 fail:
710	dma_detach((struct dma_pub *)di);
711	return NULL;
712}
713
714static inline void
715dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
716	     dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
717{
718	u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
719
720	/* PCI bus with big(>1G) physical address, use address extension */
721	if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
722		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
723		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
724		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
725		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
726	} else {
727		/* address extension for 32-bit PCI */
728		u32 ae;
729
730		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
731		pa &= ~PCI32ADDR_HIGH;
732
733		ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
734		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
735		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
736		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
737		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
738	}
739	if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
740		if (dma64_dd_parity(&ddring[outidx]))
741			ddring[outidx].ctrl2 =
742			     cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
743	}
744}
745
746/* !! may be called with core in reset */
747void dma_detach(struct dma_pub *pub)
748{
749	struct dma_info *di = container_of(pub, struct dma_info, dma);
750
751	brcms_dbg_dma(di->core, "%s:\n", di->name);
752
753	/* free dma descriptor rings */
754	if (di->txd64)
755		dma_free_coherent(di->dmadev, di->txdalloc,
756				  ((s8 *)di->txd64 - di->txdalign),
757				  (di->txdpaorig));
758	if (di->rxd64)
759		dma_free_coherent(di->dmadev, di->rxdalloc,
760				  ((s8 *)di->rxd64 - di->rxdalign),
761				  (di->rxdpaorig));
762
763	/* free packet pointer vectors */
764	kfree(di->txp);
765	kfree(di->rxp);
766
767	/* free our private info structure */
768	kfree(di);
769
770}
771
772/* initialize descriptor table base address */
773static void
774_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
775{
776	if (!di->aligndesc_4k) {
777		if (direction == DMA_TX)
778			di->xmtptrbase = pa;
779		else
780			di->rcvptrbase = pa;
781	}
782
783	if ((di->ddoffsetlow == 0)
784	    || !(pa & PCI32ADDR_HIGH)) {
785		if (direction == DMA_TX) {
786			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
787				     pa + di->ddoffsetlow);
788			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
789				     di->ddoffsethigh);
790		} else {
791			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
792				     pa + di->ddoffsetlow);
793			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
794				     di->ddoffsethigh);
795		}
796	} else {
797		/* DMA64 32bits address extension */
798		u32 ae;
799
800		/* shift the high bit(s) from pa to ae */
801		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
802		pa &= ~PCI32ADDR_HIGH;
803
804		if (direction == DMA_TX) {
805			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
806				     pa + di->ddoffsetlow);
807			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
808				     di->ddoffsethigh);
809			bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
810				       D64_XC_AE, (ae << D64_XC_AE_SHIFT));
811		} else {
812			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
813				     pa + di->ddoffsetlow);
814			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
815				     di->ddoffsethigh);
816			bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
817				       D64_RC_AE, (ae << D64_RC_AE_SHIFT));
818		}
819	}
820}
821
822static void _dma_rxenable(struct dma_info *di)
823{
824	uint dmactrlflags = di->dma.dmactrlflags;
825	u32 control;
826
827	brcms_dbg_dma(di->core, "%s:\n", di->name);
828
829	control = D64_RC_RE | (bcma_read32(di->core,
830					   DMA64RXREGOFFS(di, control)) &
831			       D64_RC_AE);
832
833	if ((dmactrlflags & DMA_CTRL_PEN) == 0)
834		control |= D64_RC_PD;
835
836	if (dmactrlflags & DMA_CTRL_ROC)
837		control |= D64_RC_OC;
838
839	bcma_write32(di->core, DMA64RXREGOFFS(di, control),
840		((di->rxoffset << D64_RC_RO_SHIFT) | control));
841}
842
843void dma_rxinit(struct dma_pub *pub)
844{
845	struct dma_info *di = container_of(pub, struct dma_info, dma);
846
847	brcms_dbg_dma(di->core, "%s:\n", di->name);
848
849	if (di->nrxd == 0)
850		return;
851
852	di->rxin = di->rxout = 0;
853
854	/* clear rx descriptor ring */
855	memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
856
857	/* DMA engine with out alignment requirement requires table to be inited
858	 * before enabling the engine
859	 */
860	if (!di->aligndesc_4k)
861		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
862
863	_dma_rxenable(di);
864
865	if (di->aligndesc_4k)
866		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
867}
868
869static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
870{
871	uint i, curr;
872	struct sk_buff *rxp;
873	dma_addr_t pa;
874
875	i = di->rxin;
876
877	/* return if no packets posted */
878	if (i == di->rxout)
879		return NULL;
880
881	curr =
882	    B2I(((bcma_read32(di->core,
883			      DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
884		 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
885
886	/* ignore curr if forceall */
887	if (!forceall && (i == curr))
888		return NULL;
889
890	/* get the packet pointer that corresponds to the rx descriptor */
891	rxp = di->rxp[i];
892	di->rxp[i] = NULL;
893
894	pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
895
896	/* clear this packet from the descriptor ring */
897	dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
898
899	di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
900	di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
901
902	di->rxin = nextrxd(di, i);
903
904	return rxp;
905}
906
907static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
908{
909	if (di->nrxd == 0)
910		return NULL;
911
912	return dma64_getnextrxp(di, forceall);
913}
914
915/*
916 * !! rx entry routine
917 * returns the number packages in the next frame, or 0 if there are no more
918 *   if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
919 *   supported with pkts chain
920 *   otherwise, it's treated as giant pkt and will be tossed.
921 *   The DMA scattering starts with normal DMA header, followed by first
922 *   buffer data. After it reaches the max size of buffer, the data continues
923 *   in next DMA descriptor buffer WITHOUT DMA header
924 */
925int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
926{
927	struct dma_info *di = container_of(pub, struct dma_info, dma);
928	struct sk_buff_head dma_frames;
929	struct sk_buff *p, *next;
930	uint len;
931	uint pkt_len;
932	int resid = 0;
933	int pktcnt = 1;
934
935	skb_queue_head_init(&dma_frames);
936 next_frame:
937	p = _dma_getnextrxp(di, false);
938	if (p == NULL)
939		return 0;
940
941	len = le16_to_cpu(*(__le16 *) (p->data));
942	brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
943	dma_spin_for_len(len, p);
944
945	/* set actual length */
946	pkt_len = min((di->rxoffset + len), di->rxbufsize);
947	__skb_trim(p, pkt_len);
948	skb_queue_tail(&dma_frames, p);
949	resid = len - (di->rxbufsize - di->rxoffset);
950
951	/* check for single or multi-buffer rx */
952	if (resid > 0) {
953		while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
954			pkt_len = min_t(uint, resid, di->rxbufsize);
955			__skb_trim(p, pkt_len);
956			skb_queue_tail(&dma_frames, p);
957			resid -= di->rxbufsize;
958			pktcnt++;
959		}
960
961#ifdef DEBUG
962		if (resid > 0) {
963			uint cur;
964			cur =
965			    B2I(((bcma_read32(di->core,
966					      DMA64RXREGOFFS(di, status0)) &
967				  D64_RS0_CD_MASK) - di->rcvptrbase) &
968				D64_RS0_CD_MASK, struct dma64desc);
969			brcms_dbg_dma(di->core,
970				      "rxin %d rxout %d, hw_curr %d\n",
971				      di->rxin, di->rxout, cur);
972		}
973#endif				/* DEBUG */
974
975		if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
976			brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
977				      di->name, len);
978			skb_queue_walk_safe(&dma_frames, p, next) {
979				skb_unlink(p, &dma_frames);
980				brcmu_pkt_buf_free_skb(p);
981			}
982			di->dma.rxgiants++;
983			pktcnt = 1;
984			goto next_frame;
985		}
986	}
987
988	skb_queue_splice_tail(&dma_frames, skb_list);
989	return pktcnt;
990}
991
992static bool dma64_rxidle(struct dma_info *di)
993{
994	brcms_dbg_dma(di->core, "%s:\n", di->name);
995
996	if (di->nrxd == 0)
997		return true;
998
999	return ((bcma_read32(di->core,
1000			     DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1001		(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1002		 D64_RS0_CD_MASK));
1003}
1004
1005static bool dma64_txidle(struct dma_info *di)
1006{
1007	if (di->ntxd == 0)
1008		return true;
1009
1010	return ((bcma_read32(di->core,
1011			     DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1012		(bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1013		 D64_XS0_CD_MASK));
1014}
1015
1016/*
1017 * post receive buffers
1018 *  Return false if refill failed completely or dma mapping failed. The ring
1019 *  is empty, which will stall the rx dma and user might want to call rxfill
1020 *  again asap. This is unlikely to happen on a memory-rich NIC, but often on
1021 *  memory-constrained dongle.
1022 */
1023bool dma_rxfill(struct dma_pub *pub)
1024{
1025	struct dma_info *di = container_of(pub, struct dma_info, dma);
1026	struct sk_buff *p;
1027	u16 rxin, rxout;
1028	u32 flags = 0;
1029	uint n;
1030	uint i;
1031	dma_addr_t pa;
1032	uint extra_offset = 0;
1033	bool ring_empty;
1034
1035	ring_empty = false;
1036
1037	/*
1038	 * Determine how many receive buffers we're lacking
1039	 * from the full complement, allocate, initialize,
1040	 * and post them, then update the chip rx lastdscr.
1041	 */
1042
1043	rxin = di->rxin;
1044	rxout = di->rxout;
1045
1046	n = di->nrxpost - nrxdactive(di, rxin, rxout);
1047
1048	brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1049
1050	if (di->rxbufsize > BCMEXTRAHDROOM)
1051		extra_offset = di->rxextrahdrroom;
1052
1053	for (i = 0; i < n; i++) {
1054		/*
1055		 * the di->rxbufsize doesn't include the extra headroom,
1056		 * we need to add it to the size to be allocated
1057		 */
1058		p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1059
1060		if (p == NULL) {
1061			brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1062				      di->name);
1063			if (i == 0 && dma64_rxidle(di)) {
1064				brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1065					      di->name);
1066				ring_empty = true;
1067			}
1068			di->dma.rxnobuf++;
1069			break;
1070		}
1071		/* reserve an extra headroom, if applicable */
1072		if (extra_offset)
1073			skb_pull(p, extra_offset);
1074
1075		/* Do a cached write instead of uncached write since DMA_MAP
1076		 * will flush the cache.
1077		 */
1078		*(u32 *) (p->data) = 0;
1079
1080		pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1081				    DMA_FROM_DEVICE);
1082		if (dma_mapping_error(di->dmadev, pa))
1083			return false;
1084
1085		/* save the free packet pointer */
1086		di->rxp[rxout] = p;
1087
1088		/* reset flags for each descriptor */
1089		flags = 0;
1090		if (rxout == (di->nrxd - 1))
1091			flags = D64_CTRL1_EOT;
1092
1093		dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1094			     di->rxbufsize);
1095		rxout = nextrxd(di, rxout);
1096	}
1097
1098	di->rxout = rxout;
1099
1100	/* update the chip lastdscr pointer */
1101	bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1102	      di->rcvptrbase + I2B(rxout, struct dma64desc));
1103
1104	return ring_empty;
1105}
1106
1107void dma_rxreclaim(struct dma_pub *pub)
1108{
1109	struct dma_info *di = container_of(pub, struct dma_info, dma);
1110	struct sk_buff *p;
1111
1112	brcms_dbg_dma(di->core, "%s:\n", di->name);
1113
1114	while ((p = _dma_getnextrxp(di, true)))
1115		brcmu_pkt_buf_free_skb(p);
1116}
1117
1118void dma_counterreset(struct dma_pub *pub)
1119{
1120	/* reset all software counters */
1121	pub->rxgiants = 0;
1122	pub->rxnobuf = 0;
1123	pub->txnobuf = 0;
1124}
1125
1126/* get the address of the var in order to change later */
1127unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1128{
1129	struct dma_info *di = container_of(pub, struct dma_info, dma);
1130
1131	if (!strcmp(name, "&txavail"))
1132		return (unsigned long)&(di->dma.txavail);
1133	return 0;
1134}
1135
1136/* 64-bit DMA functions */
1137
1138void dma_txinit(struct dma_pub *pub)
1139{
1140	struct dma_info *di = container_of(pub, struct dma_info, dma);
1141	u32 control = D64_XC_XE;
1142
1143	brcms_dbg_dma(di->core, "%s:\n", di->name);
1144
1145	if (di->ntxd == 0)
1146		return;
1147
1148	di->txin = di->txout = 0;
1149	di->dma.txavail = di->ntxd - 1;
1150
1151	/* clear tx descriptor ring */
1152	memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1153
1154	/* DMA engine with out alignment requirement requires table to be inited
1155	 * before enabling the engine
1156	 */
1157	if (!di->aligndesc_4k)
1158		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1159
1160	if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1161		control |= D64_XC_PD;
1162	bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1163
1164	/* DMA engine with alignment requirement requires table to be inited
1165	 * before enabling the engine
1166	 */
1167	if (di->aligndesc_4k)
1168		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1169}
1170
1171void dma_txsuspend(struct dma_pub *pub)
1172{
1173	struct dma_info *di = container_of(pub, struct dma_info, dma);
1174
1175	brcms_dbg_dma(di->core, "%s:\n", di->name);
1176
1177	if (di->ntxd == 0)
1178		return;
1179
1180	bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1181}
1182
1183void dma_txresume(struct dma_pub *pub)
1184{
1185	struct dma_info *di = container_of(pub, struct dma_info, dma);
1186
1187	brcms_dbg_dma(di->core, "%s:\n", di->name);
1188
1189	if (di->ntxd == 0)
1190		return;
1191
1192	bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1193}
1194
1195bool dma_txsuspended(struct dma_pub *pub)
1196{
1197	struct dma_info *di = container_of(pub, struct dma_info, dma);
1198
1199	return (di->ntxd == 0) ||
1200	       ((bcma_read32(di->core,
1201			     DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1202		D64_XC_SE);
1203}
1204
1205void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1206{
1207	struct dma_info *di = container_of(pub, struct dma_info, dma);
1208	struct sk_buff *p;
1209
1210	brcms_dbg_dma(di->core, "%s: %s\n",
1211		      di->name,
1212		      range == DMA_RANGE_ALL ? "all" :
1213		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1214		      "transferred");
1215
1216	if (di->txin == di->txout)
1217		return;
1218
1219	while ((p = dma_getnexttxp(pub, range))) {
1220		/* For unframed data, we don't have any packets to free */
1221		if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1222			brcmu_pkt_buf_free_skb(p);
1223	}
1224}
1225
1226bool dma_txreset(struct dma_pub *pub)
1227{
1228	struct dma_info *di = container_of(pub, struct dma_info, dma);
1229	u32 status;
1230
1231	if (di->ntxd == 0)
1232		return true;
1233
1234	/* suspend tx DMA first */
1235	bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1236	SPINWAIT(((status =
1237		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1238		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1239		  (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1240		 10000);
1241
1242	bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1243	SPINWAIT(((status =
1244		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1245		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1246
1247	/* wait for the last transaction to complete */
1248	udelay(300);
1249
1250	return status == D64_XS0_XS_DISABLED;
1251}
1252
1253bool dma_rxreset(struct dma_pub *pub)
1254{
1255	struct dma_info *di = container_of(pub, struct dma_info, dma);
1256	u32 status;
1257
1258	if (di->nrxd == 0)
1259		return true;
1260
1261	bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1262	SPINWAIT(((status =
1263		   (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1264		    D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1265
1266	return status == D64_RS0_RS_DISABLED;
1267}
1268
1269static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1270{
1271	unsigned char *data;
1272	uint len;
1273	u16 txout;
1274	u32 flags = 0;
1275	dma_addr_t pa;
1276
1277	txout = di->txout;
1278
1279	if (WARN_ON(nexttxd(di, txout) == di->txin))
1280		return;
1281
1282	/*
1283	 * obtain and initialize transmit descriptor entry.
1284	 */
1285	data = p->data;
1286	len = p->len;
1287
1288	/* get physical address of buffer start */
1289	pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1290	/* if mapping failed, free skb */
1291	if (dma_mapping_error(di->dmadev, pa)) {
1292		brcmu_pkt_buf_free_skb(p);
1293		return;
1294	}
1295	/* With a DMA segment list, Descriptor table is filled
1296	 * using the segment list instead of looping over
1297	 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1298	 * is when end of segment list is reached.
1299	 */
1300	flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1301	if (txout == (di->ntxd - 1))
1302		flags |= D64_CTRL1_EOT;
1303
1304	dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1305
1306	txout = nexttxd(di, txout);
1307
1308	/* save the packet */
1309	di->txp[prevtxd(di, txout)] = p;
1310
1311	/* bump the tx descriptor index */
1312	di->txout = txout;
1313}
1314
1315static void ampdu_finalize(struct dma_info *di)
1316{
1317	struct brcms_ampdu_session *session = &di->ampdu_session;
1318	struct sk_buff *p;
1319
1320	trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1321				  session->max_ampdu_len,
1322				  session->max_ampdu_frames,
1323				  session->ampdu_len,
1324				  skb_queue_len(&session->skb_list),
1325				  session->dma_len);
1326
1327	if (WARN_ON(skb_queue_empty(&session->skb_list)))
1328		return;
1329
1330	brcms_c_ampdu_finalize(session);
1331
1332	while (!skb_queue_empty(&session->skb_list)) {
1333		p = skb_dequeue(&session->skb_list);
1334		dma_txenq(di, p);
1335	}
1336
1337	bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1338		     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1339	brcms_c_ampdu_reset_session(session, session->wlc);
1340}
1341
1342static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1343{
1344	struct brcms_ampdu_session *session = &di->ampdu_session;
1345	int ret;
1346
1347	ret = brcms_c_ampdu_add_frame(session, p);
1348	if (ret == -ENOSPC) {
1349		/*
1350		 * AMPDU cannot accomodate this frame. Close out the in-
1351		 * progress AMPDU session and start a new one.
1352		 */
1353		ampdu_finalize(di);
1354		ret = brcms_c_ampdu_add_frame(session, p);
1355	}
1356
1357	WARN_ON(ret);
1358}
1359
1360/* Update count of available tx descriptors based on current DMA state */
1361static void dma_update_txavail(struct dma_info *di)
1362{
1363	/*
1364	 * Available space is number of descriptors less the number of
1365	 * active descriptors and the number of queued AMPDU frames.
1366	 */
1367	di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1368			  skb_queue_len(&di->ampdu_session.skb_list) - 1;
1369}
1370
1371/*
1372 * !! tx entry routine
1373 * WARNING: call must check the return value for error.
1374 *   the error(toss frames) could be fatal and cause many subsequent hard
1375 *   to debug problems
1376 */
1377int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1378	       struct sk_buff *p)
1379{
1380	struct dma_info *di = container_of(pub, struct dma_info, dma);
1381	struct brcms_ampdu_session *session = &di->ampdu_session;
1382	struct ieee80211_tx_info *tx_info;
1383	bool is_ampdu;
1384
1385	/* no use to transmit a zero length packet */
1386	if (p->len == 0)
1387		return 0;
1388
1389	/* return nonzero if out of tx descriptors */
1390	if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1391		goto outoftxd;
1392
1393	tx_info = IEEE80211_SKB_CB(p);
1394	is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1395	if (is_ampdu)
1396		prep_ampdu_frame(di, p);
1397	else
1398		dma_txenq(di, p);
1399
1400	/* tx flow control */
1401	dma_update_txavail(di);
1402
1403	/* kick the chip */
1404	if (is_ampdu) {
1405		/*
1406		 * Start sending data if we've got a full AMPDU, there's
1407		 * no more space in the DMA ring, or the ring isn't
1408		 * currently transmitting.
1409		 */
1410		if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1411		    di->dma.txavail == 0 || dma64_txidle(di))
1412			ampdu_finalize(di);
1413	} else {
1414		bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1415			     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1416	}
1417
1418	return 0;
1419
1420 outoftxd:
1421	brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1422	brcmu_pkt_buf_free_skb(p);
1423	di->dma.txavail = 0;
1424	di->dma.txnobuf++;
1425	return -ENOSPC;
1426}
1427
1428void dma_txflush(struct dma_pub *pub)
1429{
1430	struct dma_info *di = container_of(pub, struct dma_info, dma);
1431	struct brcms_ampdu_session *session = &di->ampdu_session;
1432
1433	if (!skb_queue_empty(&session->skb_list))
1434		ampdu_finalize(di);
1435}
1436
1437int dma_txpending(struct dma_pub *pub)
1438{
1439	struct dma_info *di = container_of(pub, struct dma_info, dma);
1440	return ntxdactive(di, di->txin, di->txout);
1441}
1442
1443/*
1444 * If we have an active AMPDU session and are not transmitting,
1445 * this function will force tx to start.
1446 */
1447void dma_kick_tx(struct dma_pub *pub)
1448{
1449	struct dma_info *di = container_of(pub, struct dma_info, dma);
1450	struct brcms_ampdu_session *session = &di->ampdu_session;
1451
1452	if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1453		ampdu_finalize(di);
1454}
1455
1456/*
1457 * Reclaim next completed txd (txds if using chained buffers) in the range
1458 * specified and return associated packet.
1459 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1460 * transmitted as noted by the hardware "CurrDescr" pointer.
1461 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1462 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1463 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1464 * return associated packet regardless of the value of hardware pointers.
1465 */
1466struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1467{
1468	struct dma_info *di = container_of(pub, struct dma_info, dma);
1469	u16 start, end, i;
1470	u16 active_desc;
1471	struct sk_buff *txp;
1472
1473	brcms_dbg_dma(di->core, "%s: %s\n",
1474		      di->name,
1475		      range == DMA_RANGE_ALL ? "all" :
1476		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1477		      "transferred");
1478
1479	if (di->ntxd == 0)
1480		return NULL;
1481
1482	txp = NULL;
1483
1484	start = di->txin;
1485	if (range == DMA_RANGE_ALL)
1486		end = di->txout;
1487	else {
1488		end = (u16) (B2I(((bcma_read32(di->core,
1489					       DMA64TXREGOFFS(di, status0)) &
1490				   D64_XS0_CD_MASK) - di->xmtptrbase) &
1491				 D64_XS0_CD_MASK, struct dma64desc));
1492
1493		if (range == DMA_RANGE_TRANSFERED) {
1494			active_desc =
1495				(u16)(bcma_read32(di->core,
1496						  DMA64TXREGOFFS(di, status1)) &
1497				      D64_XS1_AD_MASK);
1498			active_desc =
1499			    (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1500			active_desc = B2I(active_desc, struct dma64desc);
1501			if (end != active_desc)
1502				end = prevtxd(di, active_desc);
1503		}
1504	}
1505
1506	if ((start == 0) && (end > di->txout))
1507		goto bogus;
1508
1509	for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1510		dma_addr_t pa;
1511		uint size;
1512
1513		pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1514
1515		size =
1516		    (le32_to_cpu(di->txd64[i].ctrl2) &
1517		     D64_CTRL2_BC_MASK);
1518
1519		di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1520		di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1521
1522		txp = di->txp[i];
1523		di->txp[i] = NULL;
1524
1525		dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1526	}
1527
1528	di->txin = i;
1529
1530	/* tx flow control */
1531	dma_update_txavail(di);
1532
1533	return txp;
1534
1535 bogus:
1536	brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1537		      start, end, di->txout);
1538	return NULL;
1539}
1540
1541/*
1542 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1543 * modified. The modified portion of the packet is not under control of the DMA
1544 * engine. This function calls a caller-supplied function for each packet in
1545 * the caller specified dma chain.
1546 */
1547void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1548		      (void *pkt, void *arg_a), void *arg_a)
1549{
1550	struct dma_info *di = container_of(dmah, struct dma_info, dma);
1551	uint i =   di->txin;
1552	uint end = di->txout;
1553	struct sk_buff *skb;
1554	struct ieee80211_tx_info *tx_info;
1555
1556	while (i != end) {
1557		skb = di->txp[i];
1558		if (skb != NULL) {
1559			tx_info = (struct ieee80211_tx_info *)skb->cb;
1560			(callback_fnc)(tx_info, arg_a);
1561		}
1562		i = nexttxd(di, i);
1563	}
1564}
1565