1/* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/firmware.h>
24#include <linux/device.h>
25#include <linux/errno.h>
26#include <linux/slab.h>
27#include <linux/skbuff.h>
28#include <linux/usb.h>
29#include <linux/workqueue.h>
30#include <linux/module.h>
31#include <net/mac80211.h>
32#include <asm/unaligned.h>
33
34#include "zd_def.h"
35#include "zd_mac.h"
36#include "zd_usb.h"
37
38static struct usb_device_id usb_ids[] = {
39	/* ZD1211 */
40	{ USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41	{ USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42	{ USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43	{ USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44	{ USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45	{ USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46	{ USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47	{ USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48	{ USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49	{ USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50	{ USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51	{ USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52	{ USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53	{ USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54	{ USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55	{ USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56	{ USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57	{ USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58	{ USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59	{ USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60	{ USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61	{ USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62	{ USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63	{ USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64	{ USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65	{ USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66	/* ZD1211B */
67	{ USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68	{ USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69	{ USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70	{ USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71	{ USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72	{ USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73	{ USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74	{ USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75	{ USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76	{ USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77	{ USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78	{ USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79	{ USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80	{ USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81	{ USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82	{ USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83	{ USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84	{ USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85	{ USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86	{ USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87	{ USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88	{ USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89	{ USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90	{ USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91	{ USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92	{ USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93	{ USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94	{ USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95	{ USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96	{ USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97	{ USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98	/* "Driverless" devices that need ejecting */
99	{ USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100	{ USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101	{}
102};
103
104MODULE_LICENSE("GPL");
105MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106MODULE_AUTHOR("Ulrich Kunitz");
107MODULE_AUTHOR("Daniel Drake");
108MODULE_VERSION("1.0");
109MODULE_DEVICE_TABLE(usb, usb_ids);
110
111#define FW_ZD1211_PREFIX	"zd1211/zd1211_"
112#define FW_ZD1211B_PREFIX	"zd1211/zd1211b_"
113
114static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
115			    unsigned int count);
116
117/* USB device initialization */
118static void int_urb_complete(struct urb *urb);
119
120static int request_fw_file(
121	const struct firmware **fw, const char *name, struct device *device)
122{
123	int r;
124
125	dev_dbg_f(device, "fw name %s\n", name);
126
127	r = request_firmware(fw, name, device);
128	if (r)
129		dev_err(device,
130		       "Could not load firmware file %s. Error number %d\n",
131		       name, r);
132	return r;
133}
134
135static inline u16 get_bcdDevice(const struct usb_device *udev)
136{
137	return le16_to_cpu(udev->descriptor.bcdDevice);
138}
139
140enum upload_code_flags {
141	REBOOT = 1,
142};
143
144/* Ensures that MAX_TRANSFER_SIZE is even. */
145#define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
146
147static int upload_code(struct usb_device *udev,
148	const u8 *data, size_t size, u16 code_offset, int flags)
149{
150	u8 *p;
151	int r;
152
153	/* USB request blocks need "kmalloced" buffers.
154	 */
155	p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
156	if (!p) {
157		r = -ENOMEM;
158		goto error;
159	}
160
161	size &= ~1;
162	while (size > 0) {
163		size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
164			size : MAX_TRANSFER_SIZE;
165
166		dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
167
168		memcpy(p, data, transfer_size);
169		r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
170			USB_REQ_FIRMWARE_DOWNLOAD,
171			USB_DIR_OUT | USB_TYPE_VENDOR,
172			code_offset, 0, p, transfer_size, 1000 /* ms */);
173		if (r < 0) {
174			dev_err(&udev->dev,
175			       "USB control request for firmware upload"
176			       " failed. Error number %d\n", r);
177			goto error;
178		}
179		transfer_size = r & ~1;
180
181		size -= transfer_size;
182		data += transfer_size;
183		code_offset += transfer_size/sizeof(u16);
184	}
185
186	if (flags & REBOOT) {
187		u8 ret;
188
189		/* Use "DMA-aware" buffer. */
190		r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
191			USB_REQ_FIRMWARE_CONFIRM,
192			USB_DIR_IN | USB_TYPE_VENDOR,
193			0, 0, p, sizeof(ret), 5000 /* ms */);
194		if (r != sizeof(ret)) {
195			dev_err(&udev->dev,
196				"control request firmeware confirmation failed."
197				" Return value %d\n", r);
198			if (r >= 0)
199				r = -ENODEV;
200			goto error;
201		}
202		ret = p[0];
203		if (ret & 0x80) {
204			dev_err(&udev->dev,
205				"Internal error while downloading."
206				" Firmware confirm return value %#04x\n",
207				(unsigned int)ret);
208			r = -ENODEV;
209			goto error;
210		}
211		dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
212			(unsigned int)ret);
213	}
214
215	r = 0;
216error:
217	kfree(p);
218	return r;
219}
220
221static u16 get_word(const void *data, u16 offset)
222{
223	const __le16 *p = data;
224	return le16_to_cpu(p[offset]);
225}
226
227static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
228	               const char* postfix)
229{
230	scnprintf(buffer, size, "%s%s",
231		usb->is_zd1211b ?
232			FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
233		postfix);
234	return buffer;
235}
236
237static int handle_version_mismatch(struct zd_usb *usb,
238	const struct firmware *ub_fw)
239{
240	struct usb_device *udev = zd_usb_to_usbdev(usb);
241	const struct firmware *ur_fw = NULL;
242	int offset;
243	int r = 0;
244	char fw_name[128];
245
246	r = request_fw_file(&ur_fw,
247		get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
248		&udev->dev);
249	if (r)
250		goto error;
251
252	r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
253	if (r)
254		goto error;
255
256	offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
257	r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
258		E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
259
260	/* At this point, the vendor driver downloads the whole firmware
261	 * image, hacks around with version IDs, and uploads it again,
262	 * completely overwriting the boot code. We do not do this here as
263	 * it is not required on any tested devices, and it is suspected to
264	 * cause problems. */
265error:
266	release_firmware(ur_fw);
267	return r;
268}
269
270static int upload_firmware(struct zd_usb *usb)
271{
272	int r;
273	u16 fw_bcdDevice;
274	u16 bcdDevice;
275	struct usb_device *udev = zd_usb_to_usbdev(usb);
276	const struct firmware *ub_fw = NULL;
277	const struct firmware *uph_fw = NULL;
278	char fw_name[128];
279
280	bcdDevice = get_bcdDevice(udev);
281
282	r = request_fw_file(&ub_fw,
283		get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
284		&udev->dev);
285	if (r)
286		goto error;
287
288	fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
289
290	if (fw_bcdDevice != bcdDevice) {
291		dev_info(&udev->dev,
292			"firmware version %#06x and device bootcode version "
293			"%#06x differ\n", fw_bcdDevice, bcdDevice);
294		if (bcdDevice <= 0x4313)
295			dev_warn(&udev->dev, "device has old bootcode, please "
296				"report success or failure\n");
297
298		r = handle_version_mismatch(usb, ub_fw);
299		if (r)
300			goto error;
301	} else {
302		dev_dbg_f(&udev->dev,
303			"firmware device id %#06x is equal to the "
304			"actual device id\n", fw_bcdDevice);
305	}
306
307
308	r = request_fw_file(&uph_fw,
309		get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
310		&udev->dev);
311	if (r)
312		goto error;
313
314	r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
315	if (r) {
316		dev_err(&udev->dev,
317			"Could not upload firmware code uph. Error number %d\n",
318			r);
319	}
320
321	/* FALL-THROUGH */
322error:
323	release_firmware(ub_fw);
324	release_firmware(uph_fw);
325	return r;
326}
327
328MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
329MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
330MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
331MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
332MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
333MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
334
335/* Read data from device address space using "firmware interface" which does
336 * not require firmware to be loaded. */
337int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
338{
339	int r;
340	struct usb_device *udev = zd_usb_to_usbdev(usb);
341	u8 *buf;
342
343	/* Use "DMA-aware" buffer. */
344	buf = kmalloc(len, GFP_KERNEL);
345	if (!buf)
346		return -ENOMEM;
347	r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
348		USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
349		buf, len, 5000);
350	if (r < 0) {
351		dev_err(&udev->dev,
352			"read over firmware interface failed: %d\n", r);
353		goto exit;
354	} else if (r != len) {
355		dev_err(&udev->dev,
356			"incomplete read over firmware interface: %d/%d\n",
357			r, len);
358		r = -EIO;
359		goto exit;
360	}
361	r = 0;
362	memcpy(data, buf, len);
363exit:
364	kfree(buf);
365	return r;
366}
367
368#define urb_dev(urb) (&(urb)->dev->dev)
369
370static inline void handle_regs_int_override(struct urb *urb)
371{
372	struct zd_usb *usb = urb->context;
373	struct zd_usb_interrupt *intr = &usb->intr;
374
375	spin_lock(&intr->lock);
376	if (atomic_read(&intr->read_regs_enabled)) {
377		atomic_set(&intr->read_regs_enabled, 0);
378		intr->read_regs_int_overridden = 1;
379		complete(&intr->read_regs.completion);
380	}
381	spin_unlock(&intr->lock);
382}
383
384static inline void handle_regs_int(struct urb *urb)
385{
386	struct zd_usb *usb = urb->context;
387	struct zd_usb_interrupt *intr = &usb->intr;
388	int len;
389	u16 int_num;
390
391	ZD_ASSERT(in_interrupt());
392	spin_lock(&intr->lock);
393
394	int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
395	if (int_num == CR_INTERRUPT) {
396		struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
397		spin_lock(&mac->lock);
398		memcpy(&mac->intr_buffer, urb->transfer_buffer,
399				USB_MAX_EP_INT_BUFFER);
400		spin_unlock(&mac->lock);
401		schedule_work(&mac->process_intr);
402	} else if (atomic_read(&intr->read_regs_enabled)) {
403		len = urb->actual_length;
404		intr->read_regs.length = urb->actual_length;
405		if (len > sizeof(intr->read_regs.buffer))
406			len = sizeof(intr->read_regs.buffer);
407
408		memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
409
410		/* Sometimes USB_INT_ID_REGS is not overridden, but comes after
411		 * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
412		 * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
413		 * retry unhandled. Next read-reg command then might catch
414		 * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
415		 */
416		if (!check_read_regs(usb, intr->read_regs.req,
417						intr->read_regs.req_count))
418			goto out;
419
420		atomic_set(&intr->read_regs_enabled, 0);
421		intr->read_regs_int_overridden = 0;
422		complete(&intr->read_regs.completion);
423
424		goto out;
425	}
426
427out:
428	spin_unlock(&intr->lock);
429
430	/* CR_INTERRUPT might override read_reg too. */
431	if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
432		handle_regs_int_override(urb);
433}
434
435static void int_urb_complete(struct urb *urb)
436{
437	int r;
438	struct usb_int_header *hdr;
439	struct zd_usb *usb;
440	struct zd_usb_interrupt *intr;
441
442	switch (urb->status) {
443	case 0:
444		break;
445	case -ESHUTDOWN:
446	case -EINVAL:
447	case -ENODEV:
448	case -ENOENT:
449	case -ECONNRESET:
450	case -EPIPE:
451		dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
452		return;
453	default:
454		dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
455		goto resubmit;
456	}
457
458	if (urb->actual_length < sizeof(hdr)) {
459		dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
460		goto resubmit;
461	}
462
463	hdr = urb->transfer_buffer;
464	if (hdr->type != USB_INT_TYPE) {
465		dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
466		goto resubmit;
467	}
468
469	/* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
470	 * pending USB_INT_ID_REGS causing read command timeout.
471	 */
472	usb = urb->context;
473	intr = &usb->intr;
474	if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
475		handle_regs_int_override(urb);
476
477	switch (hdr->id) {
478	case USB_INT_ID_REGS:
479		handle_regs_int(urb);
480		break;
481	case USB_INT_ID_RETRY_FAILED:
482		zd_mac_tx_failed(urb);
483		break;
484	default:
485		dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
486			(unsigned int)hdr->id);
487		goto resubmit;
488	}
489
490resubmit:
491	r = usb_submit_urb(urb, GFP_ATOMIC);
492	if (r) {
493		dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
494			  urb, r);
495		/* TODO: add worker to reset intr->urb */
496	}
497	return;
498}
499
500static inline int int_urb_interval(struct usb_device *udev)
501{
502	switch (udev->speed) {
503	case USB_SPEED_HIGH:
504		return 4;
505	case USB_SPEED_LOW:
506		return 10;
507	case USB_SPEED_FULL:
508	default:
509		return 1;
510	}
511}
512
513static inline int usb_int_enabled(struct zd_usb *usb)
514{
515	unsigned long flags;
516	struct zd_usb_interrupt *intr = &usb->intr;
517	struct urb *urb;
518
519	spin_lock_irqsave(&intr->lock, flags);
520	urb = intr->urb;
521	spin_unlock_irqrestore(&intr->lock, flags);
522	return urb != NULL;
523}
524
525int zd_usb_enable_int(struct zd_usb *usb)
526{
527	int r;
528	struct usb_device *udev = zd_usb_to_usbdev(usb);
529	struct zd_usb_interrupt *intr = &usb->intr;
530	struct urb *urb;
531
532	dev_dbg_f(zd_usb_dev(usb), "\n");
533
534	urb = usb_alloc_urb(0, GFP_KERNEL);
535	if (!urb) {
536		r = -ENOMEM;
537		goto out;
538	}
539
540	ZD_ASSERT(!irqs_disabled());
541	spin_lock_irq(&intr->lock);
542	if (intr->urb) {
543		spin_unlock_irq(&intr->lock);
544		r = 0;
545		goto error_free_urb;
546	}
547	intr->urb = urb;
548	spin_unlock_irq(&intr->lock);
549
550	r = -ENOMEM;
551	intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
552					  GFP_KERNEL, &intr->buffer_dma);
553	if (!intr->buffer) {
554		dev_dbg_f(zd_usb_dev(usb),
555			"couldn't allocate transfer_buffer\n");
556		goto error_set_urb_null;
557	}
558
559	usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
560			 intr->buffer, USB_MAX_EP_INT_BUFFER,
561			 int_urb_complete, usb,
562			 intr->interval);
563	urb->transfer_dma = intr->buffer_dma;
564	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
565
566	dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
567	r = usb_submit_urb(urb, GFP_KERNEL);
568	if (r) {
569		dev_dbg_f(zd_usb_dev(usb),
570			 "Couldn't submit urb. Error number %d\n", r);
571		goto error;
572	}
573
574	return 0;
575error:
576	usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
577			  intr->buffer, intr->buffer_dma);
578error_set_urb_null:
579	spin_lock_irq(&intr->lock);
580	intr->urb = NULL;
581	spin_unlock_irq(&intr->lock);
582error_free_urb:
583	usb_free_urb(urb);
584out:
585	return r;
586}
587
588void zd_usb_disable_int(struct zd_usb *usb)
589{
590	unsigned long flags;
591	struct usb_device *udev = zd_usb_to_usbdev(usb);
592	struct zd_usb_interrupt *intr = &usb->intr;
593	struct urb *urb;
594	void *buffer;
595	dma_addr_t buffer_dma;
596
597	spin_lock_irqsave(&intr->lock, flags);
598	urb = intr->urb;
599	if (!urb) {
600		spin_unlock_irqrestore(&intr->lock, flags);
601		return;
602	}
603	intr->urb = NULL;
604	buffer = intr->buffer;
605	buffer_dma = intr->buffer_dma;
606	intr->buffer = NULL;
607	spin_unlock_irqrestore(&intr->lock, flags);
608
609	usb_kill_urb(urb);
610	dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
611	usb_free_urb(urb);
612
613	if (buffer)
614		usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
615				  buffer, buffer_dma);
616}
617
618static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
619			     unsigned int length)
620{
621	int i;
622	const struct rx_length_info *length_info;
623
624	if (length < sizeof(struct rx_length_info)) {
625		/* It's not a complete packet anyhow. */
626		dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
627					   length);
628		return;
629	}
630	length_info = (struct rx_length_info *)
631		(buffer + length - sizeof(struct rx_length_info));
632
633	/* It might be that three frames are merged into a single URB
634	 * transaction. We have to check for the length info tag.
635	 *
636	 * While testing we discovered that length_info might be unaligned,
637	 * because if USB transactions are merged, the last packet will not
638	 * be padded. Unaligned access might also happen if the length_info
639	 * structure is not present.
640	 */
641	if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
642	{
643		unsigned int l, k, n;
644		for (i = 0, l = 0;; i++) {
645			k = get_unaligned_le16(&length_info->length[i]);
646			if (k == 0)
647				return;
648			n = l+k;
649			if (n > length)
650				return;
651			zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
652			if (i >= 2)
653				return;
654			l = (n+3) & ~3;
655		}
656	} else {
657		zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
658	}
659}
660
661static void rx_urb_complete(struct urb *urb)
662{
663	int r;
664	struct zd_usb *usb;
665	struct zd_usb_rx *rx;
666	const u8 *buffer;
667	unsigned int length;
668
669	switch (urb->status) {
670	case 0:
671		break;
672	case -ESHUTDOWN:
673	case -EINVAL:
674	case -ENODEV:
675	case -ENOENT:
676	case -ECONNRESET:
677	case -EPIPE:
678		dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
679		return;
680	default:
681		dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
682		goto resubmit;
683	}
684
685	buffer = urb->transfer_buffer;
686	length = urb->actual_length;
687	usb = urb->context;
688	rx = &usb->rx;
689
690	tasklet_schedule(&rx->reset_timer_tasklet);
691
692	if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
693		/* If there is an old first fragment, we don't care. */
694		dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
695		ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
696		spin_lock(&rx->lock);
697		memcpy(rx->fragment, buffer, length);
698		rx->fragment_length = length;
699		spin_unlock(&rx->lock);
700		goto resubmit;
701	}
702
703	spin_lock(&rx->lock);
704	if (rx->fragment_length > 0) {
705		/* We are on a second fragment, we believe */
706		ZD_ASSERT(length + rx->fragment_length <=
707			  ARRAY_SIZE(rx->fragment));
708		dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
709		memcpy(rx->fragment+rx->fragment_length, buffer, length);
710		handle_rx_packet(usb, rx->fragment,
711			         rx->fragment_length + length);
712		rx->fragment_length = 0;
713		spin_unlock(&rx->lock);
714	} else {
715		spin_unlock(&rx->lock);
716		handle_rx_packet(usb, buffer, length);
717	}
718
719resubmit:
720	r = usb_submit_urb(urb, GFP_ATOMIC);
721	if (r)
722		dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
723}
724
725static struct urb *alloc_rx_urb(struct zd_usb *usb)
726{
727	struct usb_device *udev = zd_usb_to_usbdev(usb);
728	struct urb *urb;
729	void *buffer;
730
731	urb = usb_alloc_urb(0, GFP_KERNEL);
732	if (!urb)
733		return NULL;
734	buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
735				    &urb->transfer_dma);
736	if (!buffer) {
737		usb_free_urb(urb);
738		return NULL;
739	}
740
741	usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
742			  buffer, USB_MAX_RX_SIZE,
743			  rx_urb_complete, usb);
744	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
745
746	return urb;
747}
748
749static void free_rx_urb(struct urb *urb)
750{
751	if (!urb)
752		return;
753	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
754			  urb->transfer_buffer, urb->transfer_dma);
755	usb_free_urb(urb);
756}
757
758static int __zd_usb_enable_rx(struct zd_usb *usb)
759{
760	int i, r;
761	struct zd_usb_rx *rx = &usb->rx;
762	struct urb **urbs;
763
764	dev_dbg_f(zd_usb_dev(usb), "\n");
765
766	r = -ENOMEM;
767	urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
768	if (!urbs)
769		goto error;
770	for (i = 0; i < RX_URBS_COUNT; i++) {
771		urbs[i] = alloc_rx_urb(usb);
772		if (!urbs[i])
773			goto error;
774	}
775
776	ZD_ASSERT(!irqs_disabled());
777	spin_lock_irq(&rx->lock);
778	if (rx->urbs) {
779		spin_unlock_irq(&rx->lock);
780		r = 0;
781		goto error;
782	}
783	rx->urbs = urbs;
784	rx->urbs_count = RX_URBS_COUNT;
785	spin_unlock_irq(&rx->lock);
786
787	for (i = 0; i < RX_URBS_COUNT; i++) {
788		r = usb_submit_urb(urbs[i], GFP_KERNEL);
789		if (r)
790			goto error_submit;
791	}
792
793	return 0;
794error_submit:
795	for (i = 0; i < RX_URBS_COUNT; i++) {
796		usb_kill_urb(urbs[i]);
797	}
798	spin_lock_irq(&rx->lock);
799	rx->urbs = NULL;
800	rx->urbs_count = 0;
801	spin_unlock_irq(&rx->lock);
802error:
803	if (urbs) {
804		for (i = 0; i < RX_URBS_COUNT; i++)
805			free_rx_urb(urbs[i]);
806	}
807	return r;
808}
809
810int zd_usb_enable_rx(struct zd_usb *usb)
811{
812	int r;
813	struct zd_usb_rx *rx = &usb->rx;
814
815	mutex_lock(&rx->setup_mutex);
816	r = __zd_usb_enable_rx(usb);
817	mutex_unlock(&rx->setup_mutex);
818
819	zd_usb_reset_rx_idle_timer(usb);
820
821	return r;
822}
823
824static void __zd_usb_disable_rx(struct zd_usb *usb)
825{
826	int i;
827	unsigned long flags;
828	struct urb **urbs;
829	unsigned int count;
830	struct zd_usb_rx *rx = &usb->rx;
831
832	spin_lock_irqsave(&rx->lock, flags);
833	urbs = rx->urbs;
834	count = rx->urbs_count;
835	spin_unlock_irqrestore(&rx->lock, flags);
836	if (!urbs)
837		return;
838
839	for (i = 0; i < count; i++) {
840		usb_kill_urb(urbs[i]);
841		free_rx_urb(urbs[i]);
842	}
843	kfree(urbs);
844
845	spin_lock_irqsave(&rx->lock, flags);
846	rx->urbs = NULL;
847	rx->urbs_count = 0;
848	spin_unlock_irqrestore(&rx->lock, flags);
849}
850
851void zd_usb_disable_rx(struct zd_usb *usb)
852{
853	struct zd_usb_rx *rx = &usb->rx;
854
855	mutex_lock(&rx->setup_mutex);
856	__zd_usb_disable_rx(usb);
857	mutex_unlock(&rx->setup_mutex);
858
859	tasklet_kill(&rx->reset_timer_tasklet);
860	cancel_delayed_work_sync(&rx->idle_work);
861}
862
863static void zd_usb_reset_rx(struct zd_usb *usb)
864{
865	bool do_reset;
866	struct zd_usb_rx *rx = &usb->rx;
867	unsigned long flags;
868
869	mutex_lock(&rx->setup_mutex);
870
871	spin_lock_irqsave(&rx->lock, flags);
872	do_reset = rx->urbs != NULL;
873	spin_unlock_irqrestore(&rx->lock, flags);
874
875	if (do_reset) {
876		__zd_usb_disable_rx(usb);
877		__zd_usb_enable_rx(usb);
878	}
879
880	mutex_unlock(&rx->setup_mutex);
881
882	if (do_reset)
883		zd_usb_reset_rx_idle_timer(usb);
884}
885
886/**
887 * zd_usb_disable_tx - disable transmission
888 * @usb: the zd1211rw-private USB structure
889 *
890 * Frees all URBs in the free list and marks the transmission as disabled.
891 */
892void zd_usb_disable_tx(struct zd_usb *usb)
893{
894	struct zd_usb_tx *tx = &usb->tx;
895	unsigned long flags;
896
897	atomic_set(&tx->enabled, 0);
898
899	/* kill all submitted tx-urbs */
900	usb_kill_anchored_urbs(&tx->submitted);
901
902	spin_lock_irqsave(&tx->lock, flags);
903	WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
904	WARN_ON(tx->submitted_urbs != 0);
905	tx->submitted_urbs = 0;
906	spin_unlock_irqrestore(&tx->lock, flags);
907
908	/* The stopped state is ignored, relying on ieee80211_wake_queues()
909	 * in a potentionally following zd_usb_enable_tx().
910	 */
911}
912
913/**
914 * zd_usb_enable_tx - enables transmission
915 * @usb: a &struct zd_usb pointer
916 *
917 * This function enables transmission and prepares the &zd_usb_tx data
918 * structure.
919 */
920void zd_usb_enable_tx(struct zd_usb *usb)
921{
922	unsigned long flags;
923	struct zd_usb_tx *tx = &usb->tx;
924
925	spin_lock_irqsave(&tx->lock, flags);
926	atomic_set(&tx->enabled, 1);
927	tx->submitted_urbs = 0;
928	ieee80211_wake_queues(zd_usb_to_hw(usb));
929	tx->stopped = 0;
930	spin_unlock_irqrestore(&tx->lock, flags);
931}
932
933static void tx_dec_submitted_urbs(struct zd_usb *usb)
934{
935	struct zd_usb_tx *tx = &usb->tx;
936	unsigned long flags;
937
938	spin_lock_irqsave(&tx->lock, flags);
939	--tx->submitted_urbs;
940	if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
941		ieee80211_wake_queues(zd_usb_to_hw(usb));
942		tx->stopped = 0;
943	}
944	spin_unlock_irqrestore(&tx->lock, flags);
945}
946
947static void tx_inc_submitted_urbs(struct zd_usb *usb)
948{
949	struct zd_usb_tx *tx = &usb->tx;
950	unsigned long flags;
951
952	spin_lock_irqsave(&tx->lock, flags);
953	++tx->submitted_urbs;
954	if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
955		ieee80211_stop_queues(zd_usb_to_hw(usb));
956		tx->stopped = 1;
957	}
958	spin_unlock_irqrestore(&tx->lock, flags);
959}
960
961/**
962 * tx_urb_complete - completes the execution of an URB
963 * @urb: a URB
964 *
965 * This function is called if the URB has been transferred to a device or an
966 * error has happened.
967 */
968static void tx_urb_complete(struct urb *urb)
969{
970	int r;
971	struct sk_buff *skb;
972	struct ieee80211_tx_info *info;
973	struct zd_usb *usb;
974	struct zd_usb_tx *tx;
975
976	skb = (struct sk_buff *)urb->context;
977	info = IEEE80211_SKB_CB(skb);
978	/*
979	 * grab 'usb' pointer before handing off the skb (since
980	 * it might be freed by zd_mac_tx_to_dev or mac80211)
981	 */
982	usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
983	tx = &usb->tx;
984
985	switch (urb->status) {
986	case 0:
987		break;
988	case -ESHUTDOWN:
989	case -EINVAL:
990	case -ENODEV:
991	case -ENOENT:
992	case -ECONNRESET:
993	case -EPIPE:
994		dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
995		break;
996	default:
997		dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
998		goto resubmit;
999	}
1000free_urb:
1001	skb_unlink(skb, &usb->tx.submitted_skbs);
1002	zd_mac_tx_to_dev(skb, urb->status);
1003	usb_free_urb(urb);
1004	tx_dec_submitted_urbs(usb);
1005	return;
1006resubmit:
1007	usb_anchor_urb(urb, &tx->submitted);
1008	r = usb_submit_urb(urb, GFP_ATOMIC);
1009	if (r) {
1010		usb_unanchor_urb(urb);
1011		dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1012		goto free_urb;
1013	}
1014}
1015
1016/**
1017 * zd_usb_tx: initiates transfer of a frame of the device
1018 *
1019 * @usb: the zd1211rw-private USB structure
1020 * @skb: a &struct sk_buff pointer
1021 *
1022 * This function tranmits a frame to the device. It doesn't wait for
1023 * completion. The frame must contain the control set and have all the
1024 * control set information available.
1025 *
1026 * The function returns 0 if the transfer has been successfully initiated.
1027 */
1028int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1029{
1030	int r;
1031	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1032	struct usb_device *udev = zd_usb_to_usbdev(usb);
1033	struct urb *urb;
1034	struct zd_usb_tx *tx = &usb->tx;
1035
1036	if (!atomic_read(&tx->enabled)) {
1037		r = -ENOENT;
1038		goto out;
1039	}
1040
1041	urb = usb_alloc_urb(0, GFP_ATOMIC);
1042	if (!urb) {
1043		r = -ENOMEM;
1044		goto out;
1045	}
1046
1047	usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1048		          skb->data, skb->len, tx_urb_complete, skb);
1049
1050	info->rate_driver_data[1] = (void *)jiffies;
1051	skb_queue_tail(&tx->submitted_skbs, skb);
1052	usb_anchor_urb(urb, &tx->submitted);
1053
1054	r = usb_submit_urb(urb, GFP_ATOMIC);
1055	if (r) {
1056		dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1057		usb_unanchor_urb(urb);
1058		skb_unlink(skb, &tx->submitted_skbs);
1059		goto error;
1060	}
1061	tx_inc_submitted_urbs(usb);
1062	return 0;
1063error:
1064	usb_free_urb(urb);
1065out:
1066	return r;
1067}
1068
1069static bool zd_tx_timeout(struct zd_usb *usb)
1070{
1071	struct zd_usb_tx *tx = &usb->tx;
1072	struct sk_buff_head *q = &tx->submitted_skbs;
1073	struct sk_buff *skb, *skbnext;
1074	struct ieee80211_tx_info *info;
1075	unsigned long flags, trans_start;
1076	bool have_timedout = false;
1077
1078	spin_lock_irqsave(&q->lock, flags);
1079	skb_queue_walk_safe(q, skb, skbnext) {
1080		info = IEEE80211_SKB_CB(skb);
1081		trans_start = (unsigned long)info->rate_driver_data[1];
1082
1083		if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1084			have_timedout = true;
1085			break;
1086		}
1087	}
1088	spin_unlock_irqrestore(&q->lock, flags);
1089
1090	return have_timedout;
1091}
1092
1093static void zd_tx_watchdog_handler(struct work_struct *work)
1094{
1095	struct zd_usb *usb =
1096		container_of(work, struct zd_usb, tx.watchdog_work.work);
1097	struct zd_usb_tx *tx = &usb->tx;
1098
1099	if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1100		goto out;
1101	if (!zd_tx_timeout(usb))
1102		goto out;
1103
1104	/* TX halted, try reset */
1105	dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1106
1107	usb_queue_reset_device(usb->intf);
1108
1109	/* reset will stop this worker, don't rearm */
1110	return;
1111out:
1112	queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1113			   ZD_TX_WATCHDOG_INTERVAL);
1114}
1115
1116void zd_tx_watchdog_enable(struct zd_usb *usb)
1117{
1118	struct zd_usb_tx *tx = &usb->tx;
1119
1120	if (!tx->watchdog_enabled) {
1121		dev_dbg_f(zd_usb_dev(usb), "\n");
1122		queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1123				   ZD_TX_WATCHDOG_INTERVAL);
1124		tx->watchdog_enabled = 1;
1125	}
1126}
1127
1128void zd_tx_watchdog_disable(struct zd_usb *usb)
1129{
1130	struct zd_usb_tx *tx = &usb->tx;
1131
1132	if (tx->watchdog_enabled) {
1133		dev_dbg_f(zd_usb_dev(usb), "\n");
1134		tx->watchdog_enabled = 0;
1135		cancel_delayed_work_sync(&tx->watchdog_work);
1136	}
1137}
1138
1139static void zd_rx_idle_timer_handler(struct work_struct *work)
1140{
1141	struct zd_usb *usb =
1142		container_of(work, struct zd_usb, rx.idle_work.work);
1143	struct zd_mac *mac = zd_usb_to_mac(usb);
1144
1145	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1146		return;
1147
1148	dev_dbg_f(zd_usb_dev(usb), "\n");
1149
1150	/* 30 seconds since last rx, reset rx */
1151	zd_usb_reset_rx(usb);
1152}
1153
1154static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1155{
1156	struct zd_usb *usb = (struct zd_usb *)param;
1157
1158	zd_usb_reset_rx_idle_timer(usb);
1159}
1160
1161void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1162{
1163	struct zd_usb_rx *rx = &usb->rx;
1164
1165	mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1166}
1167
1168static inline void init_usb_interrupt(struct zd_usb *usb)
1169{
1170	struct zd_usb_interrupt *intr = &usb->intr;
1171
1172	spin_lock_init(&intr->lock);
1173	intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1174	init_completion(&intr->read_regs.completion);
1175	atomic_set(&intr->read_regs_enabled, 0);
1176	intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1177}
1178
1179static inline void init_usb_rx(struct zd_usb *usb)
1180{
1181	struct zd_usb_rx *rx = &usb->rx;
1182
1183	spin_lock_init(&rx->lock);
1184	mutex_init(&rx->setup_mutex);
1185	if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1186		rx->usb_packet_size = 512;
1187	} else {
1188		rx->usb_packet_size = 64;
1189	}
1190	ZD_ASSERT(rx->fragment_length == 0);
1191	INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1192	rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1193	rx->reset_timer_tasklet.data = (unsigned long)usb;
1194}
1195
1196static inline void init_usb_tx(struct zd_usb *usb)
1197{
1198	struct zd_usb_tx *tx = &usb->tx;
1199
1200	spin_lock_init(&tx->lock);
1201	atomic_set(&tx->enabled, 0);
1202	tx->stopped = 0;
1203	skb_queue_head_init(&tx->submitted_skbs);
1204	init_usb_anchor(&tx->submitted);
1205	tx->submitted_urbs = 0;
1206	tx->watchdog_enabled = 0;
1207	INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1208}
1209
1210void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1211	         struct usb_interface *intf)
1212{
1213	memset(usb, 0, sizeof(*usb));
1214	usb->intf = usb_get_intf(intf);
1215	usb_set_intfdata(usb->intf, hw);
1216	init_usb_anchor(&usb->submitted_cmds);
1217	init_usb_interrupt(usb);
1218	init_usb_tx(usb);
1219	init_usb_rx(usb);
1220}
1221
1222void zd_usb_clear(struct zd_usb *usb)
1223{
1224	usb_set_intfdata(usb->intf, NULL);
1225	usb_put_intf(usb->intf);
1226	ZD_MEMCLEAR(usb, sizeof(*usb));
1227	/* FIXME: usb_interrupt, usb_tx, usb_rx? */
1228}
1229
1230static const char *speed(enum usb_device_speed speed)
1231{
1232	switch (speed) {
1233	case USB_SPEED_LOW:
1234		return "low";
1235	case USB_SPEED_FULL:
1236		return "full";
1237	case USB_SPEED_HIGH:
1238		return "high";
1239	default:
1240		return "unknown speed";
1241	}
1242}
1243
1244static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1245{
1246	return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1247		le16_to_cpu(udev->descriptor.idVendor),
1248		le16_to_cpu(udev->descriptor.idProduct),
1249		get_bcdDevice(udev),
1250		speed(udev->speed));
1251}
1252
1253int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1254{
1255	struct usb_device *udev = interface_to_usbdev(usb->intf);
1256	return scnprint_id(udev, buffer, size);
1257}
1258
1259#ifdef DEBUG
1260static void print_id(struct usb_device *udev)
1261{
1262	char buffer[40];
1263
1264	scnprint_id(udev, buffer, sizeof(buffer));
1265	buffer[sizeof(buffer)-1] = 0;
1266	dev_dbg_f(&udev->dev, "%s\n", buffer);
1267}
1268#else
1269#define print_id(udev) do { } while (0)
1270#endif
1271
1272static int eject_installer(struct usb_interface *intf)
1273{
1274	struct usb_device *udev = interface_to_usbdev(intf);
1275	struct usb_host_interface *iface_desc = &intf->altsetting[0];
1276	struct usb_endpoint_descriptor *endpoint;
1277	unsigned char *cmd;
1278	u8 bulk_out_ep;
1279	int r;
1280
1281	/* Find bulk out endpoint */
1282	for (r = 1; r >= 0; r--) {
1283		endpoint = &iface_desc->endpoint[r].desc;
1284		if (usb_endpoint_dir_out(endpoint) &&
1285		    usb_endpoint_xfer_bulk(endpoint)) {
1286			bulk_out_ep = endpoint->bEndpointAddress;
1287			break;
1288		}
1289	}
1290	if (r == -1) {
1291		dev_err(&udev->dev,
1292			"zd1211rw: Could not find bulk out endpoint\n");
1293		return -ENODEV;
1294	}
1295
1296	cmd = kzalloc(31, GFP_KERNEL);
1297	if (cmd == NULL)
1298		return -ENODEV;
1299
1300	/* USB bulk command block */
1301	cmd[0] = 0x55;	/* bulk command signature */
1302	cmd[1] = 0x53;	/* bulk command signature */
1303	cmd[2] = 0x42;	/* bulk command signature */
1304	cmd[3] = 0x43;	/* bulk command signature */
1305	cmd[14] = 6;	/* command length */
1306
1307	cmd[15] = 0x1b;	/* SCSI command: START STOP UNIT */
1308	cmd[19] = 0x2;	/* eject disc */
1309
1310	dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1311	r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1312		cmd, 31, NULL, 2000);
1313	kfree(cmd);
1314	if (r)
1315		return r;
1316
1317	/* At this point, the device disconnects and reconnects with the real
1318	 * ID numbers. */
1319
1320	usb_set_intfdata(intf, NULL);
1321	return 0;
1322}
1323
1324int zd_usb_init_hw(struct zd_usb *usb)
1325{
1326	int r;
1327	struct zd_mac *mac = zd_usb_to_mac(usb);
1328
1329	dev_dbg_f(zd_usb_dev(usb), "\n");
1330
1331	r = upload_firmware(usb);
1332	if (r) {
1333		dev_err(zd_usb_dev(usb),
1334		       "couldn't load firmware. Error number %d\n", r);
1335		return r;
1336	}
1337
1338	r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1339	if (r) {
1340		dev_dbg_f(zd_usb_dev(usb),
1341			"couldn't reset configuration. Error number %d\n", r);
1342		return r;
1343	}
1344
1345	r = zd_mac_init_hw(mac->hw);
1346	if (r) {
1347		dev_dbg_f(zd_usb_dev(usb),
1348		         "couldn't initialize mac. Error number %d\n", r);
1349		return r;
1350	}
1351
1352	usb->initialized = 1;
1353	return 0;
1354}
1355
1356static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1357{
1358	int r;
1359	struct usb_device *udev = interface_to_usbdev(intf);
1360	struct zd_usb *usb;
1361	struct ieee80211_hw *hw = NULL;
1362
1363	print_id(udev);
1364
1365	if (id->driver_info & DEVICE_INSTALLER)
1366		return eject_installer(intf);
1367
1368	switch (udev->speed) {
1369	case USB_SPEED_LOW:
1370	case USB_SPEED_FULL:
1371	case USB_SPEED_HIGH:
1372		break;
1373	default:
1374		dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1375		r = -ENODEV;
1376		goto error;
1377	}
1378
1379	r = usb_reset_device(udev);
1380	if (r) {
1381		dev_err(&intf->dev,
1382			"couldn't reset usb device. Error number %d\n", r);
1383		goto error;
1384	}
1385
1386	hw = zd_mac_alloc_hw(intf);
1387	if (hw == NULL) {
1388		r = -ENOMEM;
1389		goto error;
1390	}
1391
1392	usb = &zd_hw_mac(hw)->chip.usb;
1393	usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1394
1395	r = zd_mac_preinit_hw(hw);
1396	if (r) {
1397		dev_dbg_f(&intf->dev,
1398		         "couldn't initialize mac. Error number %d\n", r);
1399		goto error;
1400	}
1401
1402	r = ieee80211_register_hw(hw);
1403	if (r) {
1404		dev_dbg_f(&intf->dev,
1405			 "couldn't register device. Error number %d\n", r);
1406		goto error;
1407	}
1408
1409	dev_dbg_f(&intf->dev, "successful\n");
1410	dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1411	return 0;
1412error:
1413	usb_reset_device(interface_to_usbdev(intf));
1414	if (hw) {
1415		zd_mac_clear(zd_hw_mac(hw));
1416		ieee80211_free_hw(hw);
1417	}
1418	return r;
1419}
1420
1421static void disconnect(struct usb_interface *intf)
1422{
1423	struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1424	struct zd_mac *mac;
1425	struct zd_usb *usb;
1426
1427	/* Either something really bad happened, or we're just dealing with
1428	 * a DEVICE_INSTALLER. */
1429	if (hw == NULL)
1430		return;
1431
1432	mac = zd_hw_mac(hw);
1433	usb = &mac->chip.usb;
1434
1435	dev_dbg_f(zd_usb_dev(usb), "\n");
1436
1437	ieee80211_unregister_hw(hw);
1438
1439	/* Just in case something has gone wrong! */
1440	zd_usb_disable_tx(usb);
1441	zd_usb_disable_rx(usb);
1442	zd_usb_disable_int(usb);
1443
1444	/* If the disconnect has been caused by a removal of the
1445	 * driver module, the reset allows reloading of the driver. If the
1446	 * reset will not be executed here, the upload of the firmware in the
1447	 * probe function caused by the reloading of the driver will fail.
1448	 */
1449	usb_reset_device(interface_to_usbdev(intf));
1450
1451	zd_mac_clear(mac);
1452	ieee80211_free_hw(hw);
1453	dev_dbg(&intf->dev, "disconnected\n");
1454}
1455
1456static void zd_usb_resume(struct zd_usb *usb)
1457{
1458	struct zd_mac *mac = zd_usb_to_mac(usb);
1459	int r;
1460
1461	dev_dbg_f(zd_usb_dev(usb), "\n");
1462
1463	r = zd_op_start(zd_usb_to_hw(usb));
1464	if (r < 0) {
1465		dev_warn(zd_usb_dev(usb), "Device resume failed "
1466			 "with error code %d. Retrying...\n", r);
1467		if (usb->was_running)
1468			set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1469		usb_queue_reset_device(usb->intf);
1470		return;
1471	}
1472
1473	if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1474		r = zd_restore_settings(mac);
1475		if (r < 0) {
1476			dev_dbg(zd_usb_dev(usb),
1477				"failed to restore settings, %d\n", r);
1478			return;
1479		}
1480	}
1481}
1482
1483static void zd_usb_stop(struct zd_usb *usb)
1484{
1485	dev_dbg_f(zd_usb_dev(usb), "\n");
1486
1487	zd_op_stop(zd_usb_to_hw(usb));
1488
1489	zd_usb_disable_tx(usb);
1490	zd_usb_disable_rx(usb);
1491	zd_usb_disable_int(usb);
1492
1493	usb->initialized = 0;
1494}
1495
1496static int pre_reset(struct usb_interface *intf)
1497{
1498	struct ieee80211_hw *hw = usb_get_intfdata(intf);
1499	struct zd_mac *mac;
1500	struct zd_usb *usb;
1501
1502	if (!hw || intf->condition != USB_INTERFACE_BOUND)
1503		return 0;
1504
1505	mac = zd_hw_mac(hw);
1506	usb = &mac->chip.usb;
1507
1508	usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1509
1510	zd_usb_stop(usb);
1511
1512	mutex_lock(&mac->chip.mutex);
1513	return 0;
1514}
1515
1516static int post_reset(struct usb_interface *intf)
1517{
1518	struct ieee80211_hw *hw = usb_get_intfdata(intf);
1519	struct zd_mac *mac;
1520	struct zd_usb *usb;
1521
1522	if (!hw || intf->condition != USB_INTERFACE_BOUND)
1523		return 0;
1524
1525	mac = zd_hw_mac(hw);
1526	usb = &mac->chip.usb;
1527
1528	mutex_unlock(&mac->chip.mutex);
1529
1530	if (usb->was_running)
1531		zd_usb_resume(usb);
1532	return 0;
1533}
1534
1535static struct usb_driver driver = {
1536	.name		= KBUILD_MODNAME,
1537	.id_table	= usb_ids,
1538	.probe		= probe,
1539	.disconnect	= disconnect,
1540	.pre_reset	= pre_reset,
1541	.post_reset	= post_reset,
1542	.disable_hub_initiated_lpm = 1,
1543};
1544
1545struct workqueue_struct *zd_workqueue;
1546
1547static int __init usb_init(void)
1548{
1549	int r;
1550
1551	pr_debug("%s usb_init()\n", driver.name);
1552
1553	zd_workqueue = create_singlethread_workqueue(driver.name);
1554	if (zd_workqueue == NULL) {
1555		printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1556		return -ENOMEM;
1557	}
1558
1559	r = usb_register(&driver);
1560	if (r) {
1561		destroy_workqueue(zd_workqueue);
1562		printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1563		       driver.name, r);
1564		return r;
1565	}
1566
1567	pr_debug("%s initialized\n", driver.name);
1568	return 0;
1569}
1570
1571static void __exit usb_exit(void)
1572{
1573	pr_debug("%s usb_exit()\n", driver.name);
1574	usb_deregister(&driver);
1575	destroy_workqueue(zd_workqueue);
1576}
1577
1578module_init(usb_init);
1579module_exit(usb_exit);
1580
1581static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1582			      int *actual_length, int timeout)
1583{
1584	/* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1585	 * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1586	 * descriptor.
1587	 */
1588	struct usb_host_endpoint *ep;
1589	unsigned int pipe;
1590
1591	pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1592	ep = usb_pipe_endpoint(udev, pipe);
1593	if (!ep)
1594		return -EINVAL;
1595
1596	if (usb_endpoint_xfer_int(&ep->desc)) {
1597		return usb_interrupt_msg(udev, pipe, data, len,
1598					 actual_length, timeout);
1599	} else {
1600		pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1601		return usb_bulk_msg(udev, pipe, data, len, actual_length,
1602				    timeout);
1603	}
1604}
1605
1606static int usb_int_regs_length(unsigned int count)
1607{
1608	return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1609}
1610
1611static void prepare_read_regs_int(struct zd_usb *usb,
1612				  struct usb_req_read_regs *req,
1613				  unsigned int count)
1614{
1615	struct zd_usb_interrupt *intr = &usb->intr;
1616
1617	spin_lock_irq(&intr->lock);
1618	atomic_set(&intr->read_regs_enabled, 1);
1619	intr->read_regs.req = req;
1620	intr->read_regs.req_count = count;
1621	reinit_completion(&intr->read_regs.completion);
1622	spin_unlock_irq(&intr->lock);
1623}
1624
1625static void disable_read_regs_int(struct zd_usb *usb)
1626{
1627	struct zd_usb_interrupt *intr = &usb->intr;
1628
1629	spin_lock_irq(&intr->lock);
1630	atomic_set(&intr->read_regs_enabled, 0);
1631	spin_unlock_irq(&intr->lock);
1632}
1633
1634static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1635			    unsigned int count)
1636{
1637	int i;
1638	struct zd_usb_interrupt *intr = &usb->intr;
1639	struct read_regs_int *rr = &intr->read_regs;
1640	struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1641
1642	/* The created block size seems to be larger than expected.
1643	 * However results appear to be correct.
1644	 */
1645	if (rr->length < usb_int_regs_length(count)) {
1646		dev_dbg_f(zd_usb_dev(usb),
1647			 "error: actual length %d less than expected %d\n",
1648			 rr->length, usb_int_regs_length(count));
1649		return false;
1650	}
1651
1652	if (rr->length > sizeof(rr->buffer)) {
1653		dev_dbg_f(zd_usb_dev(usb),
1654			 "error: actual length %d exceeds buffer size %zu\n",
1655			 rr->length, sizeof(rr->buffer));
1656		return false;
1657	}
1658
1659	for (i = 0; i < count; i++) {
1660		struct reg_data *rd = &regs->regs[i];
1661		if (rd->addr != req->addr[i]) {
1662			dev_dbg_f(zd_usb_dev(usb),
1663				 "rd[%d] addr %#06hx expected %#06hx\n", i,
1664				 le16_to_cpu(rd->addr),
1665				 le16_to_cpu(req->addr[i]));
1666			return false;
1667		}
1668	}
1669
1670	return true;
1671}
1672
1673static int get_results(struct zd_usb *usb, u16 *values,
1674		       struct usb_req_read_regs *req, unsigned int count,
1675		       bool *retry)
1676{
1677	int r;
1678	int i;
1679	struct zd_usb_interrupt *intr = &usb->intr;
1680	struct read_regs_int *rr = &intr->read_regs;
1681	struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1682
1683	spin_lock_irq(&intr->lock);
1684
1685	r = -EIO;
1686
1687	/* Read failed because firmware bug? */
1688	*retry = !!intr->read_regs_int_overridden;
1689	if (*retry)
1690		goto error_unlock;
1691
1692	if (!check_read_regs(usb, req, count)) {
1693		dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1694		goto error_unlock;
1695	}
1696
1697	for (i = 0; i < count; i++) {
1698		struct reg_data *rd = &regs->regs[i];
1699		values[i] = le16_to_cpu(rd->value);
1700	}
1701
1702	r = 0;
1703error_unlock:
1704	spin_unlock_irq(&intr->lock);
1705	return r;
1706}
1707
1708int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1709	             const zd_addr_t *addresses, unsigned int count)
1710{
1711	int r, i, req_len, actual_req_len, try_count = 0;
1712	struct usb_device *udev;
1713	struct usb_req_read_regs *req = NULL;
1714	unsigned long timeout;
1715	bool retry = false;
1716
1717	if (count < 1) {
1718		dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1719		return -EINVAL;
1720	}
1721	if (count > USB_MAX_IOREAD16_COUNT) {
1722		dev_dbg_f(zd_usb_dev(usb),
1723			 "error: count %u exceeds possible max %u\n",
1724			 count, USB_MAX_IOREAD16_COUNT);
1725		return -EINVAL;
1726	}
1727	if (in_atomic()) {
1728		dev_dbg_f(zd_usb_dev(usb),
1729			 "error: io in atomic context not supported\n");
1730		return -EWOULDBLOCK;
1731	}
1732	if (!usb_int_enabled(usb)) {
1733		dev_dbg_f(zd_usb_dev(usb),
1734			  "error: usb interrupt not enabled\n");
1735		return -EWOULDBLOCK;
1736	}
1737
1738	ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1739	BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1740		     sizeof(__le16) > sizeof(usb->req_buf));
1741	BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1742	       sizeof(usb->req_buf));
1743
1744	req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1745	req = (void *)usb->req_buf;
1746
1747	req->id = cpu_to_le16(USB_REQ_READ_REGS);
1748	for (i = 0; i < count; i++)
1749		req->addr[i] = cpu_to_le16((u16)addresses[i]);
1750
1751retry_read:
1752	try_count++;
1753	udev = zd_usb_to_usbdev(usb);
1754	prepare_read_regs_int(usb, req, count);
1755	r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1756	if (r) {
1757		dev_dbg_f(zd_usb_dev(usb),
1758			"error in zd_ep_regs_out_msg(). Error number %d\n", r);
1759		goto error;
1760	}
1761	if (req_len != actual_req_len) {
1762		dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1763			" req_len %d != actual_req_len %d\n",
1764			req_len, actual_req_len);
1765		r = -EIO;
1766		goto error;
1767	}
1768
1769	timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1770					      msecs_to_jiffies(50));
1771	if (!timeout) {
1772		disable_read_regs_int(usb);
1773		dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1774		r = -ETIMEDOUT;
1775		goto error;
1776	}
1777
1778	r = get_results(usb, values, req, count, &retry);
1779	if (retry && try_count < 20) {
1780		dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1781				try_count);
1782		goto retry_read;
1783	}
1784error:
1785	return r;
1786}
1787
1788static void iowrite16v_urb_complete(struct urb *urb)
1789{
1790	struct zd_usb *usb = urb->context;
1791
1792	if (urb->status && !usb->cmd_error)
1793		usb->cmd_error = urb->status;
1794
1795	if (!usb->cmd_error &&
1796			urb->actual_length != urb->transfer_buffer_length)
1797		usb->cmd_error = -EIO;
1798}
1799
1800static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1801{
1802	int r = 0;
1803	struct urb *urb = usb->urb_async_waiting;
1804
1805	if (!urb)
1806		return 0;
1807
1808	usb->urb_async_waiting = NULL;
1809
1810	if (!last)
1811		urb->transfer_flags |= URB_NO_INTERRUPT;
1812
1813	usb_anchor_urb(urb, &usb->submitted_cmds);
1814	r = usb_submit_urb(urb, GFP_KERNEL);
1815	if (r) {
1816		usb_unanchor_urb(urb);
1817		dev_dbg_f(zd_usb_dev(usb),
1818			"error in usb_submit_urb(). Error number %d\n", r);
1819		goto error;
1820	}
1821
1822	/* fall-through with r == 0 */
1823error:
1824	usb_free_urb(urb);
1825	return r;
1826}
1827
1828void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1829{
1830	ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1831	ZD_ASSERT(usb->urb_async_waiting == NULL);
1832	ZD_ASSERT(!usb->in_async);
1833
1834	ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1835
1836	usb->in_async = 1;
1837	usb->cmd_error = 0;
1838	usb->urb_async_waiting = NULL;
1839}
1840
1841int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1842{
1843	int r;
1844
1845	ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1846	ZD_ASSERT(usb->in_async);
1847
1848	/* Submit last iowrite16v URB */
1849	r = zd_submit_waiting_urb(usb, true);
1850	if (r) {
1851		dev_dbg_f(zd_usb_dev(usb),
1852			"error in zd_submit_waiting_usb(). "
1853			"Error number %d\n", r);
1854
1855		usb_kill_anchored_urbs(&usb->submitted_cmds);
1856		goto error;
1857	}
1858
1859	if (timeout)
1860		timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1861							timeout);
1862	if (!timeout) {
1863		usb_kill_anchored_urbs(&usb->submitted_cmds);
1864		if (usb->cmd_error == -ENOENT) {
1865			dev_dbg_f(zd_usb_dev(usb), "timed out");
1866			r = -ETIMEDOUT;
1867			goto error;
1868		}
1869	}
1870
1871	r = usb->cmd_error;
1872error:
1873	usb->in_async = 0;
1874	return r;
1875}
1876
1877int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1878			    unsigned int count)
1879{
1880	int r;
1881	struct usb_device *udev;
1882	struct usb_req_write_regs *req = NULL;
1883	int i, req_len;
1884	struct urb *urb;
1885	struct usb_host_endpoint *ep;
1886
1887	ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1888	ZD_ASSERT(usb->in_async);
1889
1890	if (count == 0)
1891		return 0;
1892	if (count > USB_MAX_IOWRITE16_COUNT) {
1893		dev_dbg_f(zd_usb_dev(usb),
1894			"error: count %u exceeds possible max %u\n",
1895			count, USB_MAX_IOWRITE16_COUNT);
1896		return -EINVAL;
1897	}
1898	if (in_atomic()) {
1899		dev_dbg_f(zd_usb_dev(usb),
1900			"error: io in atomic context not supported\n");
1901		return -EWOULDBLOCK;
1902	}
1903
1904	udev = zd_usb_to_usbdev(usb);
1905
1906	ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1907	if (!ep)
1908		return -ENOENT;
1909
1910	urb = usb_alloc_urb(0, GFP_KERNEL);
1911	if (!urb)
1912		return -ENOMEM;
1913
1914	req_len = sizeof(struct usb_req_write_regs) +
1915		  count * sizeof(struct reg_data);
1916	req = kmalloc(req_len, GFP_KERNEL);
1917	if (!req) {
1918		r = -ENOMEM;
1919		goto error;
1920	}
1921
1922	req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1923	for (i = 0; i < count; i++) {
1924		struct reg_data *rw  = &req->reg_writes[i];
1925		rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1926		rw->value = cpu_to_le16(ioreqs[i].value);
1927	}
1928
1929	/* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1930	 * endpoint is bulk. Select correct type URB by endpoint descriptor.
1931	 */
1932	if (usb_endpoint_xfer_int(&ep->desc))
1933		usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1934				 req, req_len, iowrite16v_urb_complete, usb,
1935				 ep->desc.bInterval);
1936	else
1937		usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1938				  req, req_len, iowrite16v_urb_complete, usb);
1939
1940	urb->transfer_flags |= URB_FREE_BUFFER;
1941
1942	/* Submit previous URB */
1943	r = zd_submit_waiting_urb(usb, false);
1944	if (r) {
1945		dev_dbg_f(zd_usb_dev(usb),
1946			"error in zd_submit_waiting_usb(). "
1947			"Error number %d\n", r);
1948		goto error;
1949	}
1950
1951	/* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1952	 * of currect batch except for very last.
1953	 */
1954	usb->urb_async_waiting = urb;
1955	return 0;
1956error:
1957	usb_free_urb(urb);
1958	return r;
1959}
1960
1961int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1962			unsigned int count)
1963{
1964	int r;
1965
1966	zd_usb_iowrite16v_async_start(usb);
1967	r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1968	if (r) {
1969		zd_usb_iowrite16v_async_end(usb, 0);
1970		return r;
1971	}
1972	return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1973}
1974
1975int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1976{
1977	int r;
1978	struct usb_device *udev;
1979	struct usb_req_rfwrite *req = NULL;
1980	int i, req_len, actual_req_len;
1981	u16 bit_value_template;
1982
1983	if (in_atomic()) {
1984		dev_dbg_f(zd_usb_dev(usb),
1985			"error: io in atomic context not supported\n");
1986		return -EWOULDBLOCK;
1987	}
1988	if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1989		dev_dbg_f(zd_usb_dev(usb),
1990			"error: bits %d are smaller than"
1991			" USB_MIN_RFWRITE_BIT_COUNT %d\n",
1992			bits, USB_MIN_RFWRITE_BIT_COUNT);
1993		return -EINVAL;
1994	}
1995	if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1996		dev_dbg_f(zd_usb_dev(usb),
1997			"error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1998			bits, USB_MAX_RFWRITE_BIT_COUNT);
1999		return -EINVAL;
2000	}
2001#ifdef DEBUG
2002	if (value & (~0UL << bits)) {
2003		dev_dbg_f(zd_usb_dev(usb),
2004			"error: value %#09x has bits >= %d set\n",
2005			value, bits);
2006		return -EINVAL;
2007	}
2008#endif /* DEBUG */
2009
2010	dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2011
2012	r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2013	if (r) {
2014		dev_dbg_f(zd_usb_dev(usb),
2015			"error %d: Couldn't read ZD_CR203\n", r);
2016		return r;
2017	}
2018	bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2019
2020	ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2021	BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2022		     USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2023		     sizeof(usb->req_buf));
2024	BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2025	       sizeof(usb->req_buf));
2026
2027	req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2028	req = (void *)usb->req_buf;
2029
2030	req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2031	/* 1: 3683a, but not used in ZYDAS driver */
2032	req->value = cpu_to_le16(2);
2033	req->bits = cpu_to_le16(bits);
2034
2035	for (i = 0; i < bits; i++) {
2036		u16 bv = bit_value_template;
2037		if (value & (1 << (bits-1-i)))
2038			bv |= RF_DATA;
2039		req->bit_values[i] = cpu_to_le16(bv);
2040	}
2041
2042	udev = zd_usb_to_usbdev(usb);
2043	r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2044	if (r) {
2045		dev_dbg_f(zd_usb_dev(usb),
2046			"error in zd_ep_regs_out_msg(). Error number %d\n", r);
2047		goto out;
2048	}
2049	if (req_len != actual_req_len) {
2050		dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2051			" req_len %d != actual_req_len %d\n",
2052			req_len, actual_req_len);
2053		r = -EIO;
2054		goto out;
2055	}
2056
2057	/* FALL-THROUGH with r == 0 */
2058out:
2059	return r;
2060}
2061