core.c revision 03ffcf3d0838bd5e693cd4520becfb22577cf34d
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/**
112 * of_get_regulator - get a regulator device node based on supply name
113 * @dev: Device pointer for the consumer (of regulator) device
114 * @supply: regulator supply name
115 *
116 * Extract the regulator device node corresponding to the supply name.
117 * retruns the device node corresponding to the regulator if found, else
118 * returns NULL.
119 */
120static struct device_node *of_get_regulator(struct device *dev, const char *supply)
121{
122	struct device_node *regnode = NULL;
123	char prop_name[32]; /* 32 is max size of property name */
124
125	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
126
127	snprintf(prop_name, 32, "%s-supply", supply);
128	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
129
130	if (!regnode) {
131		dev_dbg(dev, "Looking up %s property in node %s failed",
132				prop_name, dev->of_node->full_name);
133		return NULL;
134	}
135	return regnode;
136}
137
138static int _regulator_can_change_status(struct regulator_dev *rdev)
139{
140	if (!rdev->constraints)
141		return 0;
142
143	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
144		return 1;
145	else
146		return 0;
147}
148
149/* Platform voltage constraint check */
150static int regulator_check_voltage(struct regulator_dev *rdev,
151				   int *min_uV, int *max_uV)
152{
153	BUG_ON(*min_uV > *max_uV);
154
155	if (!rdev->constraints) {
156		rdev_err(rdev, "no constraints\n");
157		return -ENODEV;
158	}
159	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
160		rdev_err(rdev, "operation not allowed\n");
161		return -EPERM;
162	}
163
164	if (*max_uV > rdev->constraints->max_uV)
165		*max_uV = rdev->constraints->max_uV;
166	if (*min_uV < rdev->constraints->min_uV)
167		*min_uV = rdev->constraints->min_uV;
168
169	if (*min_uV > *max_uV) {
170		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
171			 *min_uV, *max_uV);
172		return -EINVAL;
173	}
174
175	return 0;
176}
177
178/* Make sure we select a voltage that suits the needs of all
179 * regulator consumers
180 */
181static int regulator_check_consumers(struct regulator_dev *rdev,
182				     int *min_uV, int *max_uV)
183{
184	struct regulator *regulator;
185
186	list_for_each_entry(regulator, &rdev->consumer_list, list) {
187		/*
188		 * Assume consumers that didn't say anything are OK
189		 * with anything in the constraint range.
190		 */
191		if (!regulator->min_uV && !regulator->max_uV)
192			continue;
193
194		if (*max_uV > regulator->max_uV)
195			*max_uV = regulator->max_uV;
196		if (*min_uV < regulator->min_uV)
197			*min_uV = regulator->min_uV;
198	}
199
200	if (*min_uV > *max_uV)
201		return -EINVAL;
202
203	return 0;
204}
205
206/* current constraint check */
207static int regulator_check_current_limit(struct regulator_dev *rdev,
208					int *min_uA, int *max_uA)
209{
210	BUG_ON(*min_uA > *max_uA);
211
212	if (!rdev->constraints) {
213		rdev_err(rdev, "no constraints\n");
214		return -ENODEV;
215	}
216	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
217		rdev_err(rdev, "operation not allowed\n");
218		return -EPERM;
219	}
220
221	if (*max_uA > rdev->constraints->max_uA)
222		*max_uA = rdev->constraints->max_uA;
223	if (*min_uA < rdev->constraints->min_uA)
224		*min_uA = rdev->constraints->min_uA;
225
226	if (*min_uA > *max_uA) {
227		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
228			 *min_uA, *max_uA);
229		return -EINVAL;
230	}
231
232	return 0;
233}
234
235/* operating mode constraint check */
236static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
237{
238	switch (*mode) {
239	case REGULATOR_MODE_FAST:
240	case REGULATOR_MODE_NORMAL:
241	case REGULATOR_MODE_IDLE:
242	case REGULATOR_MODE_STANDBY:
243		break;
244	default:
245		rdev_err(rdev, "invalid mode %x specified\n", *mode);
246		return -EINVAL;
247	}
248
249	if (!rdev->constraints) {
250		rdev_err(rdev, "no constraints\n");
251		return -ENODEV;
252	}
253	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
254		rdev_err(rdev, "operation not allowed\n");
255		return -EPERM;
256	}
257
258	/* The modes are bitmasks, the most power hungry modes having
259	 * the lowest values. If the requested mode isn't supported
260	 * try higher modes. */
261	while (*mode) {
262		if (rdev->constraints->valid_modes_mask & *mode)
263			return 0;
264		*mode /= 2;
265	}
266
267	return -EINVAL;
268}
269
270/* dynamic regulator mode switching constraint check */
271static int regulator_check_drms(struct regulator_dev *rdev)
272{
273	if (!rdev->constraints) {
274		rdev_err(rdev, "no constraints\n");
275		return -ENODEV;
276	}
277	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
278		rdev_err(rdev, "operation not allowed\n");
279		return -EPERM;
280	}
281	return 0;
282}
283
284static ssize_t regulator_uV_show(struct device *dev,
285				struct device_attribute *attr, char *buf)
286{
287	struct regulator_dev *rdev = dev_get_drvdata(dev);
288	ssize_t ret;
289
290	mutex_lock(&rdev->mutex);
291	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
292	mutex_unlock(&rdev->mutex);
293
294	return ret;
295}
296static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
297
298static ssize_t regulator_uA_show(struct device *dev,
299				struct device_attribute *attr, char *buf)
300{
301	struct regulator_dev *rdev = dev_get_drvdata(dev);
302
303	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
304}
305static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
306
307static ssize_t regulator_name_show(struct device *dev,
308			     struct device_attribute *attr, char *buf)
309{
310	struct regulator_dev *rdev = dev_get_drvdata(dev);
311
312	return sprintf(buf, "%s\n", rdev_get_name(rdev));
313}
314
315static ssize_t regulator_print_opmode(char *buf, int mode)
316{
317	switch (mode) {
318	case REGULATOR_MODE_FAST:
319		return sprintf(buf, "fast\n");
320	case REGULATOR_MODE_NORMAL:
321		return sprintf(buf, "normal\n");
322	case REGULATOR_MODE_IDLE:
323		return sprintf(buf, "idle\n");
324	case REGULATOR_MODE_STANDBY:
325		return sprintf(buf, "standby\n");
326	}
327	return sprintf(buf, "unknown\n");
328}
329
330static ssize_t regulator_opmode_show(struct device *dev,
331				    struct device_attribute *attr, char *buf)
332{
333	struct regulator_dev *rdev = dev_get_drvdata(dev);
334
335	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
336}
337static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
338
339static ssize_t regulator_print_state(char *buf, int state)
340{
341	if (state > 0)
342		return sprintf(buf, "enabled\n");
343	else if (state == 0)
344		return sprintf(buf, "disabled\n");
345	else
346		return sprintf(buf, "unknown\n");
347}
348
349static ssize_t regulator_state_show(struct device *dev,
350				   struct device_attribute *attr, char *buf)
351{
352	struct regulator_dev *rdev = dev_get_drvdata(dev);
353	ssize_t ret;
354
355	mutex_lock(&rdev->mutex);
356	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
357	mutex_unlock(&rdev->mutex);
358
359	return ret;
360}
361static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
362
363static ssize_t regulator_status_show(struct device *dev,
364				   struct device_attribute *attr, char *buf)
365{
366	struct regulator_dev *rdev = dev_get_drvdata(dev);
367	int status;
368	char *label;
369
370	status = rdev->desc->ops->get_status(rdev);
371	if (status < 0)
372		return status;
373
374	switch (status) {
375	case REGULATOR_STATUS_OFF:
376		label = "off";
377		break;
378	case REGULATOR_STATUS_ON:
379		label = "on";
380		break;
381	case REGULATOR_STATUS_ERROR:
382		label = "error";
383		break;
384	case REGULATOR_STATUS_FAST:
385		label = "fast";
386		break;
387	case REGULATOR_STATUS_NORMAL:
388		label = "normal";
389		break;
390	case REGULATOR_STATUS_IDLE:
391		label = "idle";
392		break;
393	case REGULATOR_STATUS_STANDBY:
394		label = "standby";
395		break;
396	default:
397		return -ERANGE;
398	}
399
400	return sprintf(buf, "%s\n", label);
401}
402static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
403
404static ssize_t regulator_min_uA_show(struct device *dev,
405				    struct device_attribute *attr, char *buf)
406{
407	struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409	if (!rdev->constraints)
410		return sprintf(buf, "constraint not defined\n");
411
412	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
413}
414static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
415
416static ssize_t regulator_max_uA_show(struct device *dev,
417				    struct device_attribute *attr, char *buf)
418{
419	struct regulator_dev *rdev = dev_get_drvdata(dev);
420
421	if (!rdev->constraints)
422		return sprintf(buf, "constraint not defined\n");
423
424	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
425}
426static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
427
428static ssize_t regulator_min_uV_show(struct device *dev,
429				    struct device_attribute *attr, char *buf)
430{
431	struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433	if (!rdev->constraints)
434		return sprintf(buf, "constraint not defined\n");
435
436	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
437}
438static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
439
440static ssize_t regulator_max_uV_show(struct device *dev,
441				    struct device_attribute *attr, char *buf)
442{
443	struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445	if (!rdev->constraints)
446		return sprintf(buf, "constraint not defined\n");
447
448	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
449}
450static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
451
452static ssize_t regulator_total_uA_show(struct device *dev,
453				      struct device_attribute *attr, char *buf)
454{
455	struct regulator_dev *rdev = dev_get_drvdata(dev);
456	struct regulator *regulator;
457	int uA = 0;
458
459	mutex_lock(&rdev->mutex);
460	list_for_each_entry(regulator, &rdev->consumer_list, list)
461		uA += regulator->uA_load;
462	mutex_unlock(&rdev->mutex);
463	return sprintf(buf, "%d\n", uA);
464}
465static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
466
467static ssize_t regulator_num_users_show(struct device *dev,
468				      struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471	return sprintf(buf, "%d\n", rdev->use_count);
472}
473
474static ssize_t regulator_type_show(struct device *dev,
475				  struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	switch (rdev->desc->type) {
480	case REGULATOR_VOLTAGE:
481		return sprintf(buf, "voltage\n");
482	case REGULATOR_CURRENT:
483		return sprintf(buf, "current\n");
484	}
485	return sprintf(buf, "unknown\n");
486}
487
488static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
489				struct device_attribute *attr, char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492
493	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
494}
495static DEVICE_ATTR(suspend_mem_microvolts, 0444,
496		regulator_suspend_mem_uV_show, NULL);
497
498static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
499				struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
504}
505static DEVICE_ATTR(suspend_disk_microvolts, 0444,
506		regulator_suspend_disk_uV_show, NULL);
507
508static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
509				struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
514}
515static DEVICE_ATTR(suspend_standby_microvolts, 0444,
516		regulator_suspend_standby_uV_show, NULL);
517
518static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
519				struct device_attribute *attr, char *buf)
520{
521	struct regulator_dev *rdev = dev_get_drvdata(dev);
522
523	return regulator_print_opmode(buf,
524		rdev->constraints->state_mem.mode);
525}
526static DEVICE_ATTR(suspend_mem_mode, 0444,
527		regulator_suspend_mem_mode_show, NULL);
528
529static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return regulator_print_opmode(buf,
535		rdev->constraints->state_disk.mode);
536}
537static DEVICE_ATTR(suspend_disk_mode, 0444,
538		regulator_suspend_disk_mode_show, NULL);
539
540static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
541				struct device_attribute *attr, char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545	return regulator_print_opmode(buf,
546		rdev->constraints->state_standby.mode);
547}
548static DEVICE_ATTR(suspend_standby_mode, 0444,
549		regulator_suspend_standby_mode_show, NULL);
550
551static ssize_t regulator_suspend_mem_state_show(struct device *dev,
552				   struct device_attribute *attr, char *buf)
553{
554	struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556	return regulator_print_state(buf,
557			rdev->constraints->state_mem.enabled);
558}
559static DEVICE_ATTR(suspend_mem_state, 0444,
560		regulator_suspend_mem_state_show, NULL);
561
562static ssize_t regulator_suspend_disk_state_show(struct device *dev,
563				   struct device_attribute *attr, char *buf)
564{
565	struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567	return regulator_print_state(buf,
568			rdev->constraints->state_disk.enabled);
569}
570static DEVICE_ATTR(suspend_disk_state, 0444,
571		regulator_suspend_disk_state_show, NULL);
572
573static ssize_t regulator_suspend_standby_state_show(struct device *dev,
574				   struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return regulator_print_state(buf,
579			rdev->constraints->state_standby.enabled);
580}
581static DEVICE_ATTR(suspend_standby_state, 0444,
582		regulator_suspend_standby_state_show, NULL);
583
584
585/*
586 * These are the only attributes are present for all regulators.
587 * Other attributes are a function of regulator functionality.
588 */
589static struct device_attribute regulator_dev_attrs[] = {
590	__ATTR(name, 0444, regulator_name_show, NULL),
591	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
592	__ATTR(type, 0444, regulator_type_show, NULL),
593	__ATTR_NULL,
594};
595
596static void regulator_dev_release(struct device *dev)
597{
598	struct regulator_dev *rdev = dev_get_drvdata(dev);
599	kfree(rdev);
600}
601
602static struct class regulator_class = {
603	.name = "regulator",
604	.dev_release = regulator_dev_release,
605	.dev_attrs = regulator_dev_attrs,
606};
607
608/* Calculate the new optimum regulator operating mode based on the new total
609 * consumer load. All locks held by caller */
610static void drms_uA_update(struct regulator_dev *rdev)
611{
612	struct regulator *sibling;
613	int current_uA = 0, output_uV, input_uV, err;
614	unsigned int mode;
615
616	err = regulator_check_drms(rdev);
617	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
618	    (!rdev->desc->ops->get_voltage &&
619	     !rdev->desc->ops->get_voltage_sel) ||
620	    !rdev->desc->ops->set_mode)
621		return;
622
623	/* get output voltage */
624	output_uV = _regulator_get_voltage(rdev);
625	if (output_uV <= 0)
626		return;
627
628	/* get input voltage */
629	input_uV = 0;
630	if (rdev->supply)
631		input_uV = regulator_get_voltage(rdev->supply);
632	if (input_uV <= 0)
633		input_uV = rdev->constraints->input_uV;
634	if (input_uV <= 0)
635		return;
636
637	/* calc total requested load */
638	list_for_each_entry(sibling, &rdev->consumer_list, list)
639		current_uA += sibling->uA_load;
640
641	/* now get the optimum mode for our new total regulator load */
642	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
643						  output_uV, current_uA);
644
645	/* check the new mode is allowed */
646	err = regulator_mode_constrain(rdev, &mode);
647	if (err == 0)
648		rdev->desc->ops->set_mode(rdev, mode);
649}
650
651static int suspend_set_state(struct regulator_dev *rdev,
652	struct regulator_state *rstate)
653{
654	int ret = 0;
655
656	/* If we have no suspend mode configration don't set anything;
657	 * only warn if the driver implements set_suspend_voltage or
658	 * set_suspend_mode callback.
659	 */
660	if (!rstate->enabled && !rstate->disabled) {
661		if (rdev->desc->ops->set_suspend_voltage ||
662		    rdev->desc->ops->set_suspend_mode)
663			rdev_warn(rdev, "No configuration\n");
664		return 0;
665	}
666
667	if (rstate->enabled && rstate->disabled) {
668		rdev_err(rdev, "invalid configuration\n");
669		return -EINVAL;
670	}
671
672	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
673		ret = rdev->desc->ops->set_suspend_enable(rdev);
674	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
675		ret = rdev->desc->ops->set_suspend_disable(rdev);
676	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
677		ret = 0;
678
679	if (ret < 0) {
680		rdev_err(rdev, "failed to enabled/disable\n");
681		return ret;
682	}
683
684	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
685		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
686		if (ret < 0) {
687			rdev_err(rdev, "failed to set voltage\n");
688			return ret;
689		}
690	}
691
692	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
693		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
694		if (ret < 0) {
695			rdev_err(rdev, "failed to set mode\n");
696			return ret;
697		}
698	}
699	return ret;
700}
701
702/* locks held by caller */
703static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
704{
705	if (!rdev->constraints)
706		return -EINVAL;
707
708	switch (state) {
709	case PM_SUSPEND_STANDBY:
710		return suspend_set_state(rdev,
711			&rdev->constraints->state_standby);
712	case PM_SUSPEND_MEM:
713		return suspend_set_state(rdev,
714			&rdev->constraints->state_mem);
715	case PM_SUSPEND_MAX:
716		return suspend_set_state(rdev,
717			&rdev->constraints->state_disk);
718	default:
719		return -EINVAL;
720	}
721}
722
723static void print_constraints(struct regulator_dev *rdev)
724{
725	struct regulation_constraints *constraints = rdev->constraints;
726	char buf[80] = "";
727	int count = 0;
728	int ret;
729
730	if (constraints->min_uV && constraints->max_uV) {
731		if (constraints->min_uV == constraints->max_uV)
732			count += sprintf(buf + count, "%d mV ",
733					 constraints->min_uV / 1000);
734		else
735			count += sprintf(buf + count, "%d <--> %d mV ",
736					 constraints->min_uV / 1000,
737					 constraints->max_uV / 1000);
738	}
739
740	if (!constraints->min_uV ||
741	    constraints->min_uV != constraints->max_uV) {
742		ret = _regulator_get_voltage(rdev);
743		if (ret > 0)
744			count += sprintf(buf + count, "at %d mV ", ret / 1000);
745	}
746
747	if (constraints->uV_offset)
748		count += sprintf(buf, "%dmV offset ",
749				 constraints->uV_offset / 1000);
750
751	if (constraints->min_uA && constraints->max_uA) {
752		if (constraints->min_uA == constraints->max_uA)
753			count += sprintf(buf + count, "%d mA ",
754					 constraints->min_uA / 1000);
755		else
756			count += sprintf(buf + count, "%d <--> %d mA ",
757					 constraints->min_uA / 1000,
758					 constraints->max_uA / 1000);
759	}
760
761	if (!constraints->min_uA ||
762	    constraints->min_uA != constraints->max_uA) {
763		ret = _regulator_get_current_limit(rdev);
764		if (ret > 0)
765			count += sprintf(buf + count, "at %d mA ", ret / 1000);
766	}
767
768	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
769		count += sprintf(buf + count, "fast ");
770	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
771		count += sprintf(buf + count, "normal ");
772	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
773		count += sprintf(buf + count, "idle ");
774	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
775		count += sprintf(buf + count, "standby");
776
777	rdev_info(rdev, "%s\n", buf);
778
779	if ((constraints->min_uV != constraints->max_uV) &&
780	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
781		rdev_warn(rdev,
782			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
783}
784
785static int machine_constraints_voltage(struct regulator_dev *rdev,
786	struct regulation_constraints *constraints)
787{
788	struct regulator_ops *ops = rdev->desc->ops;
789	int ret;
790
791	/* do we need to apply the constraint voltage */
792	if (rdev->constraints->apply_uV &&
793	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
794		ret = _regulator_do_set_voltage(rdev,
795						rdev->constraints->min_uV,
796						rdev->constraints->max_uV);
797		if (ret < 0) {
798			rdev_err(rdev, "failed to apply %duV constraint\n",
799				 rdev->constraints->min_uV);
800			return ret;
801		}
802	}
803
804	/* constrain machine-level voltage specs to fit
805	 * the actual range supported by this regulator.
806	 */
807	if (ops->list_voltage && rdev->desc->n_voltages) {
808		int	count = rdev->desc->n_voltages;
809		int	i;
810		int	min_uV = INT_MAX;
811		int	max_uV = INT_MIN;
812		int	cmin = constraints->min_uV;
813		int	cmax = constraints->max_uV;
814
815		/* it's safe to autoconfigure fixed-voltage supplies
816		   and the constraints are used by list_voltage. */
817		if (count == 1 && !cmin) {
818			cmin = 1;
819			cmax = INT_MAX;
820			constraints->min_uV = cmin;
821			constraints->max_uV = cmax;
822		}
823
824		/* voltage constraints are optional */
825		if ((cmin == 0) && (cmax == 0))
826			return 0;
827
828		/* else require explicit machine-level constraints */
829		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
830			rdev_err(rdev, "invalid voltage constraints\n");
831			return -EINVAL;
832		}
833
834		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
835		for (i = 0; i < count; i++) {
836			int	value;
837
838			value = ops->list_voltage(rdev, i);
839			if (value <= 0)
840				continue;
841
842			/* maybe adjust [min_uV..max_uV] */
843			if (value >= cmin && value < min_uV)
844				min_uV = value;
845			if (value <= cmax && value > max_uV)
846				max_uV = value;
847		}
848
849		/* final: [min_uV..max_uV] valid iff constraints valid */
850		if (max_uV < min_uV) {
851			rdev_err(rdev, "unsupportable voltage constraints\n");
852			return -EINVAL;
853		}
854
855		/* use regulator's subset of machine constraints */
856		if (constraints->min_uV < min_uV) {
857			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
858				 constraints->min_uV, min_uV);
859			constraints->min_uV = min_uV;
860		}
861		if (constraints->max_uV > max_uV) {
862			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
863				 constraints->max_uV, max_uV);
864			constraints->max_uV = max_uV;
865		}
866	}
867
868	return 0;
869}
870
871/**
872 * set_machine_constraints - sets regulator constraints
873 * @rdev: regulator source
874 * @constraints: constraints to apply
875 *
876 * Allows platform initialisation code to define and constrain
877 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
878 * Constraints *must* be set by platform code in order for some
879 * regulator operations to proceed i.e. set_voltage, set_current_limit,
880 * set_mode.
881 */
882static int set_machine_constraints(struct regulator_dev *rdev,
883	const struct regulation_constraints *constraints)
884{
885	int ret = 0;
886	struct regulator_ops *ops = rdev->desc->ops;
887
888	if (constraints)
889		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
890					    GFP_KERNEL);
891	else
892		rdev->constraints = kzalloc(sizeof(*constraints),
893					    GFP_KERNEL);
894	if (!rdev->constraints)
895		return -ENOMEM;
896
897	ret = machine_constraints_voltage(rdev, rdev->constraints);
898	if (ret != 0)
899		goto out;
900
901	/* do we need to setup our suspend state */
902	if (rdev->constraints->initial_state) {
903		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
904		if (ret < 0) {
905			rdev_err(rdev, "failed to set suspend state\n");
906			goto out;
907		}
908	}
909
910	if (rdev->constraints->initial_mode) {
911		if (!ops->set_mode) {
912			rdev_err(rdev, "no set_mode operation\n");
913			ret = -EINVAL;
914			goto out;
915		}
916
917		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
918		if (ret < 0) {
919			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
920			goto out;
921		}
922	}
923
924	/* If the constraints say the regulator should be on at this point
925	 * and we have control then make sure it is enabled.
926	 */
927	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
928	    ops->enable) {
929		ret = ops->enable(rdev);
930		if (ret < 0) {
931			rdev_err(rdev, "failed to enable\n");
932			goto out;
933		}
934	}
935
936	print_constraints(rdev);
937	return 0;
938out:
939	kfree(rdev->constraints);
940	rdev->constraints = NULL;
941	return ret;
942}
943
944/**
945 * set_supply - set regulator supply regulator
946 * @rdev: regulator name
947 * @supply_rdev: supply regulator name
948 *
949 * Called by platform initialisation code to set the supply regulator for this
950 * regulator. This ensures that a regulators supply will also be enabled by the
951 * core if it's child is enabled.
952 */
953static int set_supply(struct regulator_dev *rdev,
954		      struct regulator_dev *supply_rdev)
955{
956	int err;
957
958	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
959
960	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
961	if (rdev->supply == NULL) {
962		err = -ENOMEM;
963		return err;
964	}
965
966	return 0;
967}
968
969/**
970 * set_consumer_device_supply - Bind a regulator to a symbolic supply
971 * @rdev:         regulator source
972 * @consumer_dev_name: dev_name() string for device supply applies to
973 * @supply:       symbolic name for supply
974 *
975 * Allows platform initialisation code to map physical regulator
976 * sources to symbolic names for supplies for use by devices.  Devices
977 * should use these symbolic names to request regulators, avoiding the
978 * need to provide board-specific regulator names as platform data.
979 */
980static int set_consumer_device_supply(struct regulator_dev *rdev,
981				      const char *consumer_dev_name,
982				      const char *supply)
983{
984	struct regulator_map *node;
985	int has_dev;
986
987	if (supply == NULL)
988		return -EINVAL;
989
990	if (consumer_dev_name != NULL)
991		has_dev = 1;
992	else
993		has_dev = 0;
994
995	list_for_each_entry(node, &regulator_map_list, list) {
996		if (node->dev_name && consumer_dev_name) {
997			if (strcmp(node->dev_name, consumer_dev_name) != 0)
998				continue;
999		} else if (node->dev_name || consumer_dev_name) {
1000			continue;
1001		}
1002
1003		if (strcmp(node->supply, supply) != 0)
1004			continue;
1005
1006		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1007			 consumer_dev_name,
1008			 dev_name(&node->regulator->dev),
1009			 node->regulator->desc->name,
1010			 supply,
1011			 dev_name(&rdev->dev), rdev_get_name(rdev));
1012		return -EBUSY;
1013	}
1014
1015	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1016	if (node == NULL)
1017		return -ENOMEM;
1018
1019	node->regulator = rdev;
1020	node->supply = supply;
1021
1022	if (has_dev) {
1023		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1024		if (node->dev_name == NULL) {
1025			kfree(node);
1026			return -ENOMEM;
1027		}
1028	}
1029
1030	list_add(&node->list, &regulator_map_list);
1031	return 0;
1032}
1033
1034static void unset_regulator_supplies(struct regulator_dev *rdev)
1035{
1036	struct regulator_map *node, *n;
1037
1038	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1039		if (rdev == node->regulator) {
1040			list_del(&node->list);
1041			kfree(node->dev_name);
1042			kfree(node);
1043		}
1044	}
1045}
1046
1047#define REG_STR_SIZE	64
1048
1049static struct regulator *create_regulator(struct regulator_dev *rdev,
1050					  struct device *dev,
1051					  const char *supply_name)
1052{
1053	struct regulator *regulator;
1054	char buf[REG_STR_SIZE];
1055	int err, size;
1056
1057	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1058	if (regulator == NULL)
1059		return NULL;
1060
1061	mutex_lock(&rdev->mutex);
1062	regulator->rdev = rdev;
1063	list_add(&regulator->list, &rdev->consumer_list);
1064
1065	if (dev) {
1066		regulator->dev = dev;
1067
1068		/* Add a link to the device sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1070				 dev->kobj.name, supply_name);
1071		if (size >= REG_STR_SIZE)
1072			goto overflow_err;
1073
1074		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1075		if (regulator->supply_name == NULL)
1076			goto overflow_err;
1077
1078		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1079					buf);
1080		if (err) {
1081			rdev_warn(rdev, "could not add device link %s err %d\n",
1082				  dev->kobj.name, err);
1083			/* non-fatal */
1084		}
1085	} else {
1086		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1087		if (regulator->supply_name == NULL)
1088			goto overflow_err;
1089	}
1090
1091	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1092						rdev->debugfs);
1093	if (!regulator->debugfs) {
1094		rdev_warn(rdev, "Failed to create debugfs directory\n");
1095	} else {
1096		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1097				   &regulator->uA_load);
1098		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1099				   &regulator->min_uV);
1100		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1101				   &regulator->max_uV);
1102	}
1103
1104	/*
1105	 * Check now if the regulator is an always on regulator - if
1106	 * it is then we don't need to do nearly so much work for
1107	 * enable/disable calls.
1108	 */
1109	if (!_regulator_can_change_status(rdev) &&
1110	    _regulator_is_enabled(rdev))
1111		regulator->always_on = true;
1112
1113	mutex_unlock(&rdev->mutex);
1114	return regulator;
1115overflow_err:
1116	list_del(&regulator->list);
1117	kfree(regulator);
1118	mutex_unlock(&rdev->mutex);
1119	return NULL;
1120}
1121
1122static int _regulator_get_enable_time(struct regulator_dev *rdev)
1123{
1124	if (!rdev->desc->ops->enable_time)
1125		return 0;
1126	return rdev->desc->ops->enable_time(rdev);
1127}
1128
1129static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1130						  const char *supply,
1131						  int *ret)
1132{
1133	struct regulator_dev *r;
1134	struct device_node *node;
1135	struct regulator_map *map;
1136	const char *devname = NULL;
1137
1138	/* first do a dt based lookup */
1139	if (dev && dev->of_node) {
1140		node = of_get_regulator(dev, supply);
1141		if (node) {
1142			list_for_each_entry(r, &regulator_list, list)
1143				if (r->dev.parent &&
1144					node == r->dev.of_node)
1145					return r;
1146		} else {
1147			/*
1148			 * If we couldn't even get the node then it's
1149			 * not just that the device didn't register
1150			 * yet, there's no node and we'll never
1151			 * succeed.
1152			 */
1153			*ret = -ENODEV;
1154		}
1155	}
1156
1157	/* if not found, try doing it non-dt way */
1158	if (dev)
1159		devname = dev_name(dev);
1160
1161	list_for_each_entry(r, &regulator_list, list)
1162		if (strcmp(rdev_get_name(r), supply) == 0)
1163			return r;
1164
1165	list_for_each_entry(map, &regulator_map_list, list) {
1166		/* If the mapping has a device set up it must match */
1167		if (map->dev_name &&
1168		    (!devname || strcmp(map->dev_name, devname)))
1169			continue;
1170
1171		if (strcmp(map->supply, supply) == 0)
1172			return map->regulator;
1173	}
1174
1175
1176	return NULL;
1177}
1178
1179/* Internal regulator request function */
1180static struct regulator *_regulator_get(struct device *dev, const char *id,
1181					int exclusive)
1182{
1183	struct regulator_dev *rdev;
1184	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1185	const char *devname = NULL;
1186	int ret;
1187
1188	if (id == NULL) {
1189		pr_err("get() with no identifier\n");
1190		return regulator;
1191	}
1192
1193	if (dev)
1194		devname = dev_name(dev);
1195
1196	mutex_lock(&regulator_list_mutex);
1197
1198	rdev = regulator_dev_lookup(dev, id, &ret);
1199	if (rdev)
1200		goto found;
1201
1202	if (board_wants_dummy_regulator) {
1203		rdev = dummy_regulator_rdev;
1204		goto found;
1205	}
1206
1207#ifdef CONFIG_REGULATOR_DUMMY
1208	if (!devname)
1209		devname = "deviceless";
1210
1211	/* If the board didn't flag that it was fully constrained then
1212	 * substitute in a dummy regulator so consumers can continue.
1213	 */
1214	if (!has_full_constraints) {
1215		pr_warn("%s supply %s not found, using dummy regulator\n",
1216			devname, id);
1217		rdev = dummy_regulator_rdev;
1218		goto found;
1219	}
1220#endif
1221
1222	mutex_unlock(&regulator_list_mutex);
1223	return regulator;
1224
1225found:
1226	if (rdev->exclusive) {
1227		regulator = ERR_PTR(-EPERM);
1228		goto out;
1229	}
1230
1231	if (exclusive && rdev->open_count) {
1232		regulator = ERR_PTR(-EBUSY);
1233		goto out;
1234	}
1235
1236	if (!try_module_get(rdev->owner))
1237		goto out;
1238
1239	regulator = create_regulator(rdev, dev, id);
1240	if (regulator == NULL) {
1241		regulator = ERR_PTR(-ENOMEM);
1242		module_put(rdev->owner);
1243		goto out;
1244	}
1245
1246	rdev->open_count++;
1247	if (exclusive) {
1248		rdev->exclusive = 1;
1249
1250		ret = _regulator_is_enabled(rdev);
1251		if (ret > 0)
1252			rdev->use_count = 1;
1253		else
1254			rdev->use_count = 0;
1255	}
1256
1257out:
1258	mutex_unlock(&regulator_list_mutex);
1259
1260	return regulator;
1261}
1262
1263/**
1264 * regulator_get - lookup and obtain a reference to a regulator.
1265 * @dev: device for regulator "consumer"
1266 * @id: Supply name or regulator ID.
1267 *
1268 * Returns a struct regulator corresponding to the regulator producer,
1269 * or IS_ERR() condition containing errno.
1270 *
1271 * Use of supply names configured via regulator_set_device_supply() is
1272 * strongly encouraged.  It is recommended that the supply name used
1273 * should match the name used for the supply and/or the relevant
1274 * device pins in the datasheet.
1275 */
1276struct regulator *regulator_get(struct device *dev, const char *id)
1277{
1278	return _regulator_get(dev, id, 0);
1279}
1280EXPORT_SYMBOL_GPL(regulator_get);
1281
1282static void devm_regulator_release(struct device *dev, void *res)
1283{
1284	regulator_put(*(struct regulator **)res);
1285}
1286
1287/**
1288 * devm_regulator_get - Resource managed regulator_get()
1289 * @dev: device for regulator "consumer"
1290 * @id: Supply name or regulator ID.
1291 *
1292 * Managed regulator_get(). Regulators returned from this function are
1293 * automatically regulator_put() on driver detach. See regulator_get() for more
1294 * information.
1295 */
1296struct regulator *devm_regulator_get(struct device *dev, const char *id)
1297{
1298	struct regulator **ptr, *regulator;
1299
1300	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1301	if (!ptr)
1302		return ERR_PTR(-ENOMEM);
1303
1304	regulator = regulator_get(dev, id);
1305	if (!IS_ERR(regulator)) {
1306		*ptr = regulator;
1307		devres_add(dev, ptr);
1308	} else {
1309		devres_free(ptr);
1310	}
1311
1312	return regulator;
1313}
1314EXPORT_SYMBOL_GPL(devm_regulator_get);
1315
1316/**
1317 * regulator_get_exclusive - obtain exclusive access to a regulator.
1318 * @dev: device for regulator "consumer"
1319 * @id: Supply name or regulator ID.
1320 *
1321 * Returns a struct regulator corresponding to the regulator producer,
1322 * or IS_ERR() condition containing errno.  Other consumers will be
1323 * unable to obtain this reference is held and the use count for the
1324 * regulator will be initialised to reflect the current state of the
1325 * regulator.
1326 *
1327 * This is intended for use by consumers which cannot tolerate shared
1328 * use of the regulator such as those which need to force the
1329 * regulator off for correct operation of the hardware they are
1330 * controlling.
1331 *
1332 * Use of supply names configured via regulator_set_device_supply() is
1333 * strongly encouraged.  It is recommended that the supply name used
1334 * should match the name used for the supply and/or the relevant
1335 * device pins in the datasheet.
1336 */
1337struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1338{
1339	return _regulator_get(dev, id, 1);
1340}
1341EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1342
1343/**
1344 * regulator_put - "free" the regulator source
1345 * @regulator: regulator source
1346 *
1347 * Note: drivers must ensure that all regulator_enable calls made on this
1348 * regulator source are balanced by regulator_disable calls prior to calling
1349 * this function.
1350 */
1351void regulator_put(struct regulator *regulator)
1352{
1353	struct regulator_dev *rdev;
1354
1355	if (regulator == NULL || IS_ERR(regulator))
1356		return;
1357
1358	mutex_lock(&regulator_list_mutex);
1359	rdev = regulator->rdev;
1360
1361	debugfs_remove_recursive(regulator->debugfs);
1362
1363	/* remove any sysfs entries */
1364	if (regulator->dev)
1365		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1366	kfree(regulator->supply_name);
1367	list_del(&regulator->list);
1368	kfree(regulator);
1369
1370	rdev->open_count--;
1371	rdev->exclusive = 0;
1372
1373	module_put(rdev->owner);
1374	mutex_unlock(&regulator_list_mutex);
1375}
1376EXPORT_SYMBOL_GPL(regulator_put);
1377
1378static int devm_regulator_match(struct device *dev, void *res, void *data)
1379{
1380	struct regulator **r = res;
1381	if (!r || !*r) {
1382		WARN_ON(!r || !*r);
1383		return 0;
1384	}
1385	return *r == data;
1386}
1387
1388/**
1389 * devm_regulator_put - Resource managed regulator_put()
1390 * @regulator: regulator to free
1391 *
1392 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1393 * this function will not need to be called and the resource management
1394 * code will ensure that the resource is freed.
1395 */
1396void devm_regulator_put(struct regulator *regulator)
1397{
1398	int rc;
1399
1400	rc = devres_release(regulator->dev, devm_regulator_release,
1401			    devm_regulator_match, regulator);
1402	if (rc != 0)
1403		WARN_ON(rc);
1404}
1405EXPORT_SYMBOL_GPL(devm_regulator_put);
1406
1407/* locks held by regulator_enable() */
1408static int _regulator_enable(struct regulator_dev *rdev)
1409{
1410	int ret, delay;
1411
1412	/* check voltage and requested load before enabling */
1413	if (rdev->constraints &&
1414	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1415		drms_uA_update(rdev);
1416
1417	if (rdev->use_count == 0) {
1418		/* The regulator may on if it's not switchable or left on */
1419		ret = _regulator_is_enabled(rdev);
1420		if (ret == -EINVAL || ret == 0) {
1421			if (!_regulator_can_change_status(rdev))
1422				return -EPERM;
1423
1424			if (!rdev->desc->ops->enable)
1425				return -EINVAL;
1426
1427			/* Query before enabling in case configuration
1428			 * dependent.  */
1429			ret = _regulator_get_enable_time(rdev);
1430			if (ret >= 0) {
1431				delay = ret;
1432			} else {
1433				rdev_warn(rdev, "enable_time() failed: %d\n",
1434					   ret);
1435				delay = 0;
1436			}
1437
1438			trace_regulator_enable(rdev_get_name(rdev));
1439
1440			/* Allow the regulator to ramp; it would be useful
1441			 * to extend this for bulk operations so that the
1442			 * regulators can ramp together.  */
1443			ret = rdev->desc->ops->enable(rdev);
1444			if (ret < 0)
1445				return ret;
1446
1447			trace_regulator_enable_delay(rdev_get_name(rdev));
1448
1449			if (delay >= 1000) {
1450				mdelay(delay / 1000);
1451				udelay(delay % 1000);
1452			} else if (delay) {
1453				udelay(delay);
1454			}
1455
1456			trace_regulator_enable_complete(rdev_get_name(rdev));
1457
1458		} else if (ret < 0) {
1459			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1460			return ret;
1461		}
1462		/* Fallthrough on positive return values - already enabled */
1463	}
1464
1465	rdev->use_count++;
1466
1467	return 0;
1468}
1469
1470/**
1471 * regulator_enable - enable regulator output
1472 * @regulator: regulator source
1473 *
1474 * Request that the regulator be enabled with the regulator output at
1475 * the predefined voltage or current value.  Calls to regulator_enable()
1476 * must be balanced with calls to regulator_disable().
1477 *
1478 * NOTE: the output value can be set by other drivers, boot loader or may be
1479 * hardwired in the regulator.
1480 */
1481int regulator_enable(struct regulator *regulator)
1482{
1483	struct regulator_dev *rdev = regulator->rdev;
1484	int ret = 0;
1485
1486	if (regulator->always_on)
1487		return 0;
1488
1489	if (rdev->supply) {
1490		ret = regulator_enable(rdev->supply);
1491		if (ret != 0)
1492			return ret;
1493	}
1494
1495	mutex_lock(&rdev->mutex);
1496	ret = _regulator_enable(rdev);
1497	mutex_unlock(&rdev->mutex);
1498
1499	if (ret != 0 && rdev->supply)
1500		regulator_disable(rdev->supply);
1501
1502	return ret;
1503}
1504EXPORT_SYMBOL_GPL(regulator_enable);
1505
1506/* locks held by regulator_disable() */
1507static int _regulator_disable(struct regulator_dev *rdev)
1508{
1509	int ret = 0;
1510
1511	if (WARN(rdev->use_count <= 0,
1512		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1513		return -EIO;
1514
1515	/* are we the last user and permitted to disable ? */
1516	if (rdev->use_count == 1 &&
1517	    (rdev->constraints && !rdev->constraints->always_on)) {
1518
1519		/* we are last user */
1520		if (_regulator_can_change_status(rdev) &&
1521		    rdev->desc->ops->disable) {
1522			trace_regulator_disable(rdev_get_name(rdev));
1523
1524			ret = rdev->desc->ops->disable(rdev);
1525			if (ret < 0) {
1526				rdev_err(rdev, "failed to disable\n");
1527				return ret;
1528			}
1529
1530			trace_regulator_disable_complete(rdev_get_name(rdev));
1531
1532			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1533					     NULL);
1534		}
1535
1536		rdev->use_count = 0;
1537	} else if (rdev->use_count > 1) {
1538
1539		if (rdev->constraints &&
1540			(rdev->constraints->valid_ops_mask &
1541			REGULATOR_CHANGE_DRMS))
1542			drms_uA_update(rdev);
1543
1544		rdev->use_count--;
1545	}
1546
1547	return ret;
1548}
1549
1550/**
1551 * regulator_disable - disable regulator output
1552 * @regulator: regulator source
1553 *
1554 * Disable the regulator output voltage or current.  Calls to
1555 * regulator_enable() must be balanced with calls to
1556 * regulator_disable().
1557 *
1558 * NOTE: this will only disable the regulator output if no other consumer
1559 * devices have it enabled, the regulator device supports disabling and
1560 * machine constraints permit this operation.
1561 */
1562int regulator_disable(struct regulator *regulator)
1563{
1564	struct regulator_dev *rdev = regulator->rdev;
1565	int ret = 0;
1566
1567	if (regulator->always_on)
1568		return 0;
1569
1570	mutex_lock(&rdev->mutex);
1571	ret = _regulator_disable(rdev);
1572	mutex_unlock(&rdev->mutex);
1573
1574	if (ret == 0 && rdev->supply)
1575		regulator_disable(rdev->supply);
1576
1577	return ret;
1578}
1579EXPORT_SYMBOL_GPL(regulator_disable);
1580
1581/* locks held by regulator_force_disable() */
1582static int _regulator_force_disable(struct regulator_dev *rdev)
1583{
1584	int ret = 0;
1585
1586	/* force disable */
1587	if (rdev->desc->ops->disable) {
1588		/* ah well, who wants to live forever... */
1589		ret = rdev->desc->ops->disable(rdev);
1590		if (ret < 0) {
1591			rdev_err(rdev, "failed to force disable\n");
1592			return ret;
1593		}
1594		/* notify other consumers that power has been forced off */
1595		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1596			REGULATOR_EVENT_DISABLE, NULL);
1597	}
1598
1599	return ret;
1600}
1601
1602/**
1603 * regulator_force_disable - force disable regulator output
1604 * @regulator: regulator source
1605 *
1606 * Forcibly disable the regulator output voltage or current.
1607 * NOTE: this *will* disable the regulator output even if other consumer
1608 * devices have it enabled. This should be used for situations when device
1609 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1610 */
1611int regulator_force_disable(struct regulator *regulator)
1612{
1613	struct regulator_dev *rdev = regulator->rdev;
1614	int ret;
1615
1616	mutex_lock(&rdev->mutex);
1617	regulator->uA_load = 0;
1618	ret = _regulator_force_disable(regulator->rdev);
1619	mutex_unlock(&rdev->mutex);
1620
1621	if (rdev->supply)
1622		while (rdev->open_count--)
1623			regulator_disable(rdev->supply);
1624
1625	return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_force_disable);
1628
1629static void regulator_disable_work(struct work_struct *work)
1630{
1631	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1632						  disable_work.work);
1633	int count, i, ret;
1634
1635	mutex_lock(&rdev->mutex);
1636
1637	BUG_ON(!rdev->deferred_disables);
1638
1639	count = rdev->deferred_disables;
1640	rdev->deferred_disables = 0;
1641
1642	for (i = 0; i < count; i++) {
1643		ret = _regulator_disable(rdev);
1644		if (ret != 0)
1645			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1646	}
1647
1648	mutex_unlock(&rdev->mutex);
1649
1650	if (rdev->supply) {
1651		for (i = 0; i < count; i++) {
1652			ret = regulator_disable(rdev->supply);
1653			if (ret != 0) {
1654				rdev_err(rdev,
1655					 "Supply disable failed: %d\n", ret);
1656			}
1657		}
1658	}
1659}
1660
1661/**
1662 * regulator_disable_deferred - disable regulator output with delay
1663 * @regulator: regulator source
1664 * @ms: miliseconds until the regulator is disabled
1665 *
1666 * Execute regulator_disable() on the regulator after a delay.  This
1667 * is intended for use with devices that require some time to quiesce.
1668 *
1669 * NOTE: this will only disable the regulator output if no other consumer
1670 * devices have it enabled, the regulator device supports disabling and
1671 * machine constraints permit this operation.
1672 */
1673int regulator_disable_deferred(struct regulator *regulator, int ms)
1674{
1675	struct regulator_dev *rdev = regulator->rdev;
1676	int ret;
1677
1678	if (regulator->always_on)
1679		return 0;
1680
1681	mutex_lock(&rdev->mutex);
1682	rdev->deferred_disables++;
1683	mutex_unlock(&rdev->mutex);
1684
1685	ret = schedule_delayed_work(&rdev->disable_work,
1686				    msecs_to_jiffies(ms));
1687	if (ret < 0)
1688		return ret;
1689	else
1690		return 0;
1691}
1692EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1693
1694/**
1695 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1696 *
1697 * @rdev: regulator to operate on
1698 *
1699 * Regulators that use regmap for their register I/O can set the
1700 * enable_reg and enable_mask fields in their descriptor and then use
1701 * this as their is_enabled operation, saving some code.
1702 */
1703int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1704{
1705	unsigned int val;
1706	int ret;
1707
1708	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1709	if (ret != 0)
1710		return ret;
1711
1712	return (val & rdev->desc->enable_mask) != 0;
1713}
1714EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1715
1716/**
1717 * regulator_enable_regmap - standard enable() for regmap users
1718 *
1719 * @rdev: regulator to operate on
1720 *
1721 * Regulators that use regmap for their register I/O can set the
1722 * enable_reg and enable_mask fields in their descriptor and then use
1723 * this as their enable() operation, saving some code.
1724 */
1725int regulator_enable_regmap(struct regulator_dev *rdev)
1726{
1727	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1728				  rdev->desc->enable_mask,
1729				  rdev->desc->enable_mask);
1730}
1731EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1732
1733/**
1734 * regulator_disable_regmap - standard disable() for regmap users
1735 *
1736 * @rdev: regulator to operate on
1737 *
1738 * Regulators that use regmap for their register I/O can set the
1739 * enable_reg and enable_mask fields in their descriptor and then use
1740 * this as their disable() operation, saving some code.
1741 */
1742int regulator_disable_regmap(struct regulator_dev *rdev)
1743{
1744	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1745				  rdev->desc->enable_mask, 0);
1746}
1747EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1748
1749static int _regulator_is_enabled(struct regulator_dev *rdev)
1750{
1751	/* If we don't know then assume that the regulator is always on */
1752	if (!rdev->desc->ops->is_enabled)
1753		return 1;
1754
1755	return rdev->desc->ops->is_enabled(rdev);
1756}
1757
1758/**
1759 * regulator_is_enabled - is the regulator output enabled
1760 * @regulator: regulator source
1761 *
1762 * Returns positive if the regulator driver backing the source/client
1763 * has requested that the device be enabled, zero if it hasn't, else a
1764 * negative errno code.
1765 *
1766 * Note that the device backing this regulator handle can have multiple
1767 * users, so it might be enabled even if regulator_enable() was never
1768 * called for this particular source.
1769 */
1770int regulator_is_enabled(struct regulator *regulator)
1771{
1772	int ret;
1773
1774	if (regulator->always_on)
1775		return 1;
1776
1777	mutex_lock(&regulator->rdev->mutex);
1778	ret = _regulator_is_enabled(regulator->rdev);
1779	mutex_unlock(&regulator->rdev->mutex);
1780
1781	return ret;
1782}
1783EXPORT_SYMBOL_GPL(regulator_is_enabled);
1784
1785/**
1786 * regulator_count_voltages - count regulator_list_voltage() selectors
1787 * @regulator: regulator source
1788 *
1789 * Returns number of selectors, or negative errno.  Selectors are
1790 * numbered starting at zero, and typically correspond to bitfields
1791 * in hardware registers.
1792 */
1793int regulator_count_voltages(struct regulator *regulator)
1794{
1795	struct regulator_dev	*rdev = regulator->rdev;
1796
1797	return rdev->desc->n_voltages ? : -EINVAL;
1798}
1799EXPORT_SYMBOL_GPL(regulator_count_voltages);
1800
1801/**
1802 * regulator_list_voltage_linear - List voltages with simple calculation
1803 *
1804 * @rdev: Regulator device
1805 * @selector: Selector to convert into a voltage
1806 *
1807 * Regulators with a simple linear mapping between voltages and
1808 * selectors can set min_uV and uV_step in the regulator descriptor
1809 * and then use this function as their list_voltage() operation,
1810 */
1811int regulator_list_voltage_linear(struct regulator_dev *rdev,
1812				  unsigned int selector)
1813{
1814	if (selector >= rdev->desc->n_voltages)
1815		return -EINVAL;
1816
1817	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1818}
1819EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1820
1821/**
1822 * regulator_list_voltage_table - List voltages with table based mapping
1823 *
1824 * @rdev: Regulator device
1825 * @selector: Selector to convert into a voltage
1826 *
1827 * Regulators with table based mapping between voltages and
1828 * selectors can set volt_table in the regulator descriptor
1829 * and then use this function as their list_voltage() operation.
1830 */
1831int regulator_list_voltage_table(struct regulator_dev *rdev,
1832				 unsigned int selector)
1833{
1834	if (!rdev->desc->volt_table) {
1835		BUG_ON(!rdev->desc->volt_table);
1836		return -EINVAL;
1837	}
1838
1839	if (selector >= rdev->desc->n_voltages)
1840		return -EINVAL;
1841
1842	return rdev->desc->volt_table[selector];
1843}
1844EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1845
1846/**
1847 * regulator_list_voltage - enumerate supported voltages
1848 * @regulator: regulator source
1849 * @selector: identify voltage to list
1850 * Context: can sleep
1851 *
1852 * Returns a voltage that can be passed to @regulator_set_voltage(),
1853 * zero if this selector code can't be used on this system, or a
1854 * negative errno.
1855 */
1856int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1857{
1858	struct regulator_dev	*rdev = regulator->rdev;
1859	struct regulator_ops	*ops = rdev->desc->ops;
1860	int			ret;
1861
1862	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1863		return -EINVAL;
1864
1865	mutex_lock(&rdev->mutex);
1866	ret = ops->list_voltage(rdev, selector);
1867	mutex_unlock(&rdev->mutex);
1868
1869	if (ret > 0) {
1870		if (ret < rdev->constraints->min_uV)
1871			ret = 0;
1872		else if (ret > rdev->constraints->max_uV)
1873			ret = 0;
1874	}
1875
1876	return ret;
1877}
1878EXPORT_SYMBOL_GPL(regulator_list_voltage);
1879
1880/**
1881 * regulator_is_supported_voltage - check if a voltage range can be supported
1882 *
1883 * @regulator: Regulator to check.
1884 * @min_uV: Minimum required voltage in uV.
1885 * @max_uV: Maximum required voltage in uV.
1886 *
1887 * Returns a boolean or a negative error code.
1888 */
1889int regulator_is_supported_voltage(struct regulator *regulator,
1890				   int min_uV, int max_uV)
1891{
1892	struct regulator_dev *rdev = regulator->rdev;
1893	int i, voltages, ret;
1894
1895	/* If we can't change voltage check the current voltage */
1896	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1897		ret = regulator_get_voltage(regulator);
1898		if (ret >= 0)
1899			return (min_uV >= ret && ret <= max_uV);
1900		else
1901			return ret;
1902	}
1903
1904	ret = regulator_count_voltages(regulator);
1905	if (ret < 0)
1906		return ret;
1907	voltages = ret;
1908
1909	for (i = 0; i < voltages; i++) {
1910		ret = regulator_list_voltage(regulator, i);
1911
1912		if (ret >= min_uV && ret <= max_uV)
1913			return 1;
1914	}
1915
1916	return 0;
1917}
1918EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1919
1920/**
1921 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1922 *
1923 * @rdev: regulator to operate on
1924 *
1925 * Regulators that use regmap for their register I/O can set the
1926 * vsel_reg and vsel_mask fields in their descriptor and then use this
1927 * as their get_voltage_vsel operation, saving some code.
1928 */
1929int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1930{
1931	unsigned int val;
1932	int ret;
1933
1934	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1935	if (ret != 0)
1936		return ret;
1937
1938	val &= rdev->desc->vsel_mask;
1939	val >>= ffs(rdev->desc->vsel_mask) - 1;
1940
1941	return val;
1942}
1943EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1944
1945/**
1946 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1947 *
1948 * @rdev: regulator to operate on
1949 * @sel: Selector to set
1950 *
1951 * Regulators that use regmap for their register I/O can set the
1952 * vsel_reg and vsel_mask fields in their descriptor and then use this
1953 * as their set_voltage_vsel operation, saving some code.
1954 */
1955int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1956{
1957	sel <<= ffs(rdev->desc->vsel_mask) - 1;
1958
1959	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1960				  rdev->desc->vsel_mask, sel);
1961}
1962EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1963
1964/**
1965 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1966 *
1967 * @rdev: Regulator to operate on
1968 * @min_uV: Lower bound for voltage
1969 * @max_uV: Upper bound for voltage
1970 *
1971 * Drivers implementing set_voltage_sel() and list_voltage() can use
1972 * this as their map_voltage() operation.  It will find a suitable
1973 * voltage by calling list_voltage() until it gets something in bounds
1974 * for the requested voltages.
1975 */
1976int regulator_map_voltage_iterate(struct regulator_dev *rdev,
1977				  int min_uV, int max_uV)
1978{
1979	int best_val = INT_MAX;
1980	int selector = 0;
1981	int i, ret;
1982
1983	/* Find the smallest voltage that falls within the specified
1984	 * range.
1985	 */
1986	for (i = 0; i < rdev->desc->n_voltages; i++) {
1987		ret = rdev->desc->ops->list_voltage(rdev, i);
1988		if (ret < 0)
1989			continue;
1990
1991		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1992			best_val = ret;
1993			selector = i;
1994		}
1995	}
1996
1997	if (best_val != INT_MAX)
1998		return selector;
1999	else
2000		return -EINVAL;
2001}
2002EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2003
2004/**
2005 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2006 *
2007 * @rdev: Regulator to operate on
2008 * @min_uV: Lower bound for voltage
2009 * @max_uV: Upper bound for voltage
2010 *
2011 * Drivers providing min_uV and uV_step in their regulator_desc can
2012 * use this as their map_voltage() operation.
2013 */
2014int regulator_map_voltage_linear(struct regulator_dev *rdev,
2015				 int min_uV, int max_uV)
2016{
2017	int ret, voltage;
2018
2019	if (!rdev->desc->uV_step) {
2020		BUG_ON(!rdev->desc->uV_step);
2021		return -EINVAL;
2022	}
2023
2024	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2025	if (ret < 0)
2026		return ret;
2027
2028	/* Map back into a voltage to verify we're still in bounds */
2029	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2030	if (voltage < min_uV || voltage > max_uV)
2031		return -EINVAL;
2032
2033	return ret;
2034}
2035EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2036
2037static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2038				     int min_uV, int max_uV)
2039{
2040	int ret;
2041	int delay = 0;
2042	int best_val = 0;
2043	unsigned int selector;
2044	int old_selector = -1;
2045
2046	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2047
2048	min_uV += rdev->constraints->uV_offset;
2049	max_uV += rdev->constraints->uV_offset;
2050
2051	/*
2052	 * If we can't obtain the old selector there is not enough
2053	 * info to call set_voltage_time_sel().
2054	 */
2055	if (_regulator_is_enabled(rdev) &&
2056	    rdev->desc->ops->set_voltage_time_sel &&
2057	    rdev->desc->ops->get_voltage_sel) {
2058		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2059		if (old_selector < 0)
2060			return old_selector;
2061	}
2062
2063	if (rdev->desc->ops->set_voltage) {
2064		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2065						   &selector);
2066
2067		if (ret >= 0) {
2068			if (rdev->desc->ops->list_voltage)
2069				best_val = rdev->desc->ops->list_voltage(rdev,
2070									 selector);
2071			else
2072				best_val = _regulator_get_voltage(rdev);
2073		}
2074
2075	} else if (rdev->desc->ops->set_voltage_sel) {
2076		if (rdev->desc->ops->map_voltage) {
2077			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2078							   max_uV);
2079		} else {
2080			if (rdev->desc->ops->list_voltage ==
2081			    regulator_list_voltage_linear)
2082				ret = regulator_map_voltage_linear(rdev,
2083								min_uV, max_uV);
2084			else
2085				ret = regulator_map_voltage_iterate(rdev,
2086								min_uV, max_uV);
2087		}
2088
2089		if (ret >= 0) {
2090			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2091			if (min_uV <= best_val && max_uV >= best_val) {
2092				selector = ret;
2093				ret = rdev->desc->ops->set_voltage_sel(rdev,
2094								       ret);
2095			} else {
2096				ret = -EINVAL;
2097			}
2098		}
2099	} else {
2100		ret = -EINVAL;
2101	}
2102
2103	/* Call set_voltage_time_sel if successfully obtained old_selector */
2104	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2105	    rdev->desc->ops->set_voltage_time_sel) {
2106
2107		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2108						old_selector, selector);
2109		if (delay < 0) {
2110			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2111				  delay);
2112			delay = 0;
2113		}
2114
2115		/* Insert any necessary delays */
2116		if (delay >= 1000) {
2117			mdelay(delay / 1000);
2118			udelay(delay % 1000);
2119		} else if (delay) {
2120			udelay(delay);
2121		}
2122	}
2123
2124	if (ret == 0 && best_val >= 0)
2125		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2126				     (void *)best_val);
2127
2128	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2129
2130	return ret;
2131}
2132
2133/**
2134 * regulator_set_voltage - set regulator output voltage
2135 * @regulator: regulator source
2136 * @min_uV: Minimum required voltage in uV
2137 * @max_uV: Maximum acceptable voltage in uV
2138 *
2139 * Sets a voltage regulator to the desired output voltage. This can be set
2140 * during any regulator state. IOW, regulator can be disabled or enabled.
2141 *
2142 * If the regulator is enabled then the voltage will change to the new value
2143 * immediately otherwise if the regulator is disabled the regulator will
2144 * output at the new voltage when enabled.
2145 *
2146 * NOTE: If the regulator is shared between several devices then the lowest
2147 * request voltage that meets the system constraints will be used.
2148 * Regulator system constraints must be set for this regulator before
2149 * calling this function otherwise this call will fail.
2150 */
2151int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2152{
2153	struct regulator_dev *rdev = regulator->rdev;
2154	int ret = 0;
2155
2156	mutex_lock(&rdev->mutex);
2157
2158	/* If we're setting the same range as last time the change
2159	 * should be a noop (some cpufreq implementations use the same
2160	 * voltage for multiple frequencies, for example).
2161	 */
2162	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2163		goto out;
2164
2165	/* sanity check */
2166	if (!rdev->desc->ops->set_voltage &&
2167	    !rdev->desc->ops->set_voltage_sel) {
2168		ret = -EINVAL;
2169		goto out;
2170	}
2171
2172	/* constraints check */
2173	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2174	if (ret < 0)
2175		goto out;
2176	regulator->min_uV = min_uV;
2177	regulator->max_uV = max_uV;
2178
2179	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2180	if (ret < 0)
2181		goto out;
2182
2183	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2184
2185out:
2186	mutex_unlock(&rdev->mutex);
2187	return ret;
2188}
2189EXPORT_SYMBOL_GPL(regulator_set_voltage);
2190
2191/**
2192 * regulator_set_voltage_time - get raise/fall time
2193 * @regulator: regulator source
2194 * @old_uV: starting voltage in microvolts
2195 * @new_uV: target voltage in microvolts
2196 *
2197 * Provided with the starting and ending voltage, this function attempts to
2198 * calculate the time in microseconds required to rise or fall to this new
2199 * voltage.
2200 */
2201int regulator_set_voltage_time(struct regulator *regulator,
2202			       int old_uV, int new_uV)
2203{
2204	struct regulator_dev	*rdev = regulator->rdev;
2205	struct regulator_ops	*ops = rdev->desc->ops;
2206	int old_sel = -1;
2207	int new_sel = -1;
2208	int voltage;
2209	int i;
2210
2211	/* Currently requires operations to do this */
2212	if (!ops->list_voltage || !ops->set_voltage_time_sel
2213	    || !rdev->desc->n_voltages)
2214		return -EINVAL;
2215
2216	for (i = 0; i < rdev->desc->n_voltages; i++) {
2217		/* We only look for exact voltage matches here */
2218		voltage = regulator_list_voltage(regulator, i);
2219		if (voltage < 0)
2220			return -EINVAL;
2221		if (voltage == 0)
2222			continue;
2223		if (voltage == old_uV)
2224			old_sel = i;
2225		if (voltage == new_uV)
2226			new_sel = i;
2227	}
2228
2229	if (old_sel < 0 || new_sel < 0)
2230		return -EINVAL;
2231
2232	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2233}
2234EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2235
2236/**
2237 * regulator_sync_voltage - re-apply last regulator output voltage
2238 * @regulator: regulator source
2239 *
2240 * Re-apply the last configured voltage.  This is intended to be used
2241 * where some external control source the consumer is cooperating with
2242 * has caused the configured voltage to change.
2243 */
2244int regulator_sync_voltage(struct regulator *regulator)
2245{
2246	struct regulator_dev *rdev = regulator->rdev;
2247	int ret, min_uV, max_uV;
2248
2249	mutex_lock(&rdev->mutex);
2250
2251	if (!rdev->desc->ops->set_voltage &&
2252	    !rdev->desc->ops->set_voltage_sel) {
2253		ret = -EINVAL;
2254		goto out;
2255	}
2256
2257	/* This is only going to work if we've had a voltage configured. */
2258	if (!regulator->min_uV && !regulator->max_uV) {
2259		ret = -EINVAL;
2260		goto out;
2261	}
2262
2263	min_uV = regulator->min_uV;
2264	max_uV = regulator->max_uV;
2265
2266	/* This should be a paranoia check... */
2267	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2268	if (ret < 0)
2269		goto out;
2270
2271	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2272	if (ret < 0)
2273		goto out;
2274
2275	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2276
2277out:
2278	mutex_unlock(&rdev->mutex);
2279	return ret;
2280}
2281EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2282
2283static int _regulator_get_voltage(struct regulator_dev *rdev)
2284{
2285	int sel, ret;
2286
2287	if (rdev->desc->ops->get_voltage_sel) {
2288		sel = rdev->desc->ops->get_voltage_sel(rdev);
2289		if (sel < 0)
2290			return sel;
2291		ret = rdev->desc->ops->list_voltage(rdev, sel);
2292	} else if (rdev->desc->ops->get_voltage) {
2293		ret = rdev->desc->ops->get_voltage(rdev);
2294	} else {
2295		return -EINVAL;
2296	}
2297
2298	if (ret < 0)
2299		return ret;
2300	return ret - rdev->constraints->uV_offset;
2301}
2302
2303/**
2304 * regulator_get_voltage - get regulator output voltage
2305 * @regulator: regulator source
2306 *
2307 * This returns the current regulator voltage in uV.
2308 *
2309 * NOTE: If the regulator is disabled it will return the voltage value. This
2310 * function should not be used to determine regulator state.
2311 */
2312int regulator_get_voltage(struct regulator *regulator)
2313{
2314	int ret;
2315
2316	mutex_lock(&regulator->rdev->mutex);
2317
2318	ret = _regulator_get_voltage(regulator->rdev);
2319
2320	mutex_unlock(&regulator->rdev->mutex);
2321
2322	return ret;
2323}
2324EXPORT_SYMBOL_GPL(regulator_get_voltage);
2325
2326/**
2327 * regulator_set_current_limit - set regulator output current limit
2328 * @regulator: regulator source
2329 * @min_uA: Minimuum supported current in uA
2330 * @max_uA: Maximum supported current in uA
2331 *
2332 * Sets current sink to the desired output current. This can be set during
2333 * any regulator state. IOW, regulator can be disabled or enabled.
2334 *
2335 * If the regulator is enabled then the current will change to the new value
2336 * immediately otherwise if the regulator is disabled the regulator will
2337 * output at the new current when enabled.
2338 *
2339 * NOTE: Regulator system constraints must be set for this regulator before
2340 * calling this function otherwise this call will fail.
2341 */
2342int regulator_set_current_limit(struct regulator *regulator,
2343			       int min_uA, int max_uA)
2344{
2345	struct regulator_dev *rdev = regulator->rdev;
2346	int ret;
2347
2348	mutex_lock(&rdev->mutex);
2349
2350	/* sanity check */
2351	if (!rdev->desc->ops->set_current_limit) {
2352		ret = -EINVAL;
2353		goto out;
2354	}
2355
2356	/* constraints check */
2357	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2358	if (ret < 0)
2359		goto out;
2360
2361	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2362out:
2363	mutex_unlock(&rdev->mutex);
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2367
2368static int _regulator_get_current_limit(struct regulator_dev *rdev)
2369{
2370	int ret;
2371
2372	mutex_lock(&rdev->mutex);
2373
2374	/* sanity check */
2375	if (!rdev->desc->ops->get_current_limit) {
2376		ret = -EINVAL;
2377		goto out;
2378	}
2379
2380	ret = rdev->desc->ops->get_current_limit(rdev);
2381out:
2382	mutex_unlock(&rdev->mutex);
2383	return ret;
2384}
2385
2386/**
2387 * regulator_get_current_limit - get regulator output current
2388 * @regulator: regulator source
2389 *
2390 * This returns the current supplied by the specified current sink in uA.
2391 *
2392 * NOTE: If the regulator is disabled it will return the current value. This
2393 * function should not be used to determine regulator state.
2394 */
2395int regulator_get_current_limit(struct regulator *regulator)
2396{
2397	return _regulator_get_current_limit(regulator->rdev);
2398}
2399EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2400
2401/**
2402 * regulator_set_mode - set regulator operating mode
2403 * @regulator: regulator source
2404 * @mode: operating mode - one of the REGULATOR_MODE constants
2405 *
2406 * Set regulator operating mode to increase regulator efficiency or improve
2407 * regulation performance.
2408 *
2409 * NOTE: Regulator system constraints must be set for this regulator before
2410 * calling this function otherwise this call will fail.
2411 */
2412int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2413{
2414	struct regulator_dev *rdev = regulator->rdev;
2415	int ret;
2416	int regulator_curr_mode;
2417
2418	mutex_lock(&rdev->mutex);
2419
2420	/* sanity check */
2421	if (!rdev->desc->ops->set_mode) {
2422		ret = -EINVAL;
2423		goto out;
2424	}
2425
2426	/* return if the same mode is requested */
2427	if (rdev->desc->ops->get_mode) {
2428		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2429		if (regulator_curr_mode == mode) {
2430			ret = 0;
2431			goto out;
2432		}
2433	}
2434
2435	/* constraints check */
2436	ret = regulator_mode_constrain(rdev, &mode);
2437	if (ret < 0)
2438		goto out;
2439
2440	ret = rdev->desc->ops->set_mode(rdev, mode);
2441out:
2442	mutex_unlock(&rdev->mutex);
2443	return ret;
2444}
2445EXPORT_SYMBOL_GPL(regulator_set_mode);
2446
2447static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2448{
2449	int ret;
2450
2451	mutex_lock(&rdev->mutex);
2452
2453	/* sanity check */
2454	if (!rdev->desc->ops->get_mode) {
2455		ret = -EINVAL;
2456		goto out;
2457	}
2458
2459	ret = rdev->desc->ops->get_mode(rdev);
2460out:
2461	mutex_unlock(&rdev->mutex);
2462	return ret;
2463}
2464
2465/**
2466 * regulator_get_mode - get regulator operating mode
2467 * @regulator: regulator source
2468 *
2469 * Get the current regulator operating mode.
2470 */
2471unsigned int regulator_get_mode(struct regulator *regulator)
2472{
2473	return _regulator_get_mode(regulator->rdev);
2474}
2475EXPORT_SYMBOL_GPL(regulator_get_mode);
2476
2477/**
2478 * regulator_set_optimum_mode - set regulator optimum operating mode
2479 * @regulator: regulator source
2480 * @uA_load: load current
2481 *
2482 * Notifies the regulator core of a new device load. This is then used by
2483 * DRMS (if enabled by constraints) to set the most efficient regulator
2484 * operating mode for the new regulator loading.
2485 *
2486 * Consumer devices notify their supply regulator of the maximum power
2487 * they will require (can be taken from device datasheet in the power
2488 * consumption tables) when they change operational status and hence power
2489 * state. Examples of operational state changes that can affect power
2490 * consumption are :-
2491 *
2492 *    o Device is opened / closed.
2493 *    o Device I/O is about to begin or has just finished.
2494 *    o Device is idling in between work.
2495 *
2496 * This information is also exported via sysfs to userspace.
2497 *
2498 * DRMS will sum the total requested load on the regulator and change
2499 * to the most efficient operating mode if platform constraints allow.
2500 *
2501 * Returns the new regulator mode or error.
2502 */
2503int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2504{
2505	struct regulator_dev *rdev = regulator->rdev;
2506	struct regulator *consumer;
2507	int ret, output_uV, input_uV, total_uA_load = 0;
2508	unsigned int mode;
2509
2510	mutex_lock(&rdev->mutex);
2511
2512	/*
2513	 * first check to see if we can set modes at all, otherwise just
2514	 * tell the consumer everything is OK.
2515	 */
2516	regulator->uA_load = uA_load;
2517	ret = regulator_check_drms(rdev);
2518	if (ret < 0) {
2519		ret = 0;
2520		goto out;
2521	}
2522
2523	if (!rdev->desc->ops->get_optimum_mode)
2524		goto out;
2525
2526	/*
2527	 * we can actually do this so any errors are indicators of
2528	 * potential real failure.
2529	 */
2530	ret = -EINVAL;
2531
2532	if (!rdev->desc->ops->set_mode)
2533		goto out;
2534
2535	/* get output voltage */
2536	output_uV = _regulator_get_voltage(rdev);
2537	if (output_uV <= 0) {
2538		rdev_err(rdev, "invalid output voltage found\n");
2539		goto out;
2540	}
2541
2542	/* get input voltage */
2543	input_uV = 0;
2544	if (rdev->supply)
2545		input_uV = regulator_get_voltage(rdev->supply);
2546	if (input_uV <= 0)
2547		input_uV = rdev->constraints->input_uV;
2548	if (input_uV <= 0) {
2549		rdev_err(rdev, "invalid input voltage found\n");
2550		goto out;
2551	}
2552
2553	/* calc total requested load for this regulator */
2554	list_for_each_entry(consumer, &rdev->consumer_list, list)
2555		total_uA_load += consumer->uA_load;
2556
2557	mode = rdev->desc->ops->get_optimum_mode(rdev,
2558						 input_uV, output_uV,
2559						 total_uA_load);
2560	ret = regulator_mode_constrain(rdev, &mode);
2561	if (ret < 0) {
2562		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2563			 total_uA_load, input_uV, output_uV);
2564		goto out;
2565	}
2566
2567	ret = rdev->desc->ops->set_mode(rdev, mode);
2568	if (ret < 0) {
2569		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2570		goto out;
2571	}
2572	ret = mode;
2573out:
2574	mutex_unlock(&rdev->mutex);
2575	return ret;
2576}
2577EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2578
2579/**
2580 * regulator_register_notifier - register regulator event notifier
2581 * @regulator: regulator source
2582 * @nb: notifier block
2583 *
2584 * Register notifier block to receive regulator events.
2585 */
2586int regulator_register_notifier(struct regulator *regulator,
2587			      struct notifier_block *nb)
2588{
2589	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2590						nb);
2591}
2592EXPORT_SYMBOL_GPL(regulator_register_notifier);
2593
2594/**
2595 * regulator_unregister_notifier - unregister regulator event notifier
2596 * @regulator: regulator source
2597 * @nb: notifier block
2598 *
2599 * Unregister regulator event notifier block.
2600 */
2601int regulator_unregister_notifier(struct regulator *regulator,
2602				struct notifier_block *nb)
2603{
2604	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2605						  nb);
2606}
2607EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2608
2609/* notify regulator consumers and downstream regulator consumers.
2610 * Note mutex must be held by caller.
2611 */
2612static void _notifier_call_chain(struct regulator_dev *rdev,
2613				  unsigned long event, void *data)
2614{
2615	/* call rdev chain first */
2616	blocking_notifier_call_chain(&rdev->notifier, event, data);
2617}
2618
2619/**
2620 * regulator_bulk_get - get multiple regulator consumers
2621 *
2622 * @dev:           Device to supply
2623 * @num_consumers: Number of consumers to register
2624 * @consumers:     Configuration of consumers; clients are stored here.
2625 *
2626 * @return 0 on success, an errno on failure.
2627 *
2628 * This helper function allows drivers to get several regulator
2629 * consumers in one operation.  If any of the regulators cannot be
2630 * acquired then any regulators that were allocated will be freed
2631 * before returning to the caller.
2632 */
2633int regulator_bulk_get(struct device *dev, int num_consumers,
2634		       struct regulator_bulk_data *consumers)
2635{
2636	int i;
2637	int ret;
2638
2639	for (i = 0; i < num_consumers; i++)
2640		consumers[i].consumer = NULL;
2641
2642	for (i = 0; i < num_consumers; i++) {
2643		consumers[i].consumer = regulator_get(dev,
2644						      consumers[i].supply);
2645		if (IS_ERR(consumers[i].consumer)) {
2646			ret = PTR_ERR(consumers[i].consumer);
2647			dev_err(dev, "Failed to get supply '%s': %d\n",
2648				consumers[i].supply, ret);
2649			consumers[i].consumer = NULL;
2650			goto err;
2651		}
2652	}
2653
2654	return 0;
2655
2656err:
2657	while (--i >= 0)
2658		regulator_put(consumers[i].consumer);
2659
2660	return ret;
2661}
2662EXPORT_SYMBOL_GPL(regulator_bulk_get);
2663
2664/**
2665 * devm_regulator_bulk_get - managed get multiple regulator consumers
2666 *
2667 * @dev:           Device to supply
2668 * @num_consumers: Number of consumers to register
2669 * @consumers:     Configuration of consumers; clients are stored here.
2670 *
2671 * @return 0 on success, an errno on failure.
2672 *
2673 * This helper function allows drivers to get several regulator
2674 * consumers in one operation with management, the regulators will
2675 * automatically be freed when the device is unbound.  If any of the
2676 * regulators cannot be acquired then any regulators that were
2677 * allocated will be freed before returning to the caller.
2678 */
2679int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2680			    struct regulator_bulk_data *consumers)
2681{
2682	int i;
2683	int ret;
2684
2685	for (i = 0; i < num_consumers; i++)
2686		consumers[i].consumer = NULL;
2687
2688	for (i = 0; i < num_consumers; i++) {
2689		consumers[i].consumer = devm_regulator_get(dev,
2690							   consumers[i].supply);
2691		if (IS_ERR(consumers[i].consumer)) {
2692			ret = PTR_ERR(consumers[i].consumer);
2693			dev_err(dev, "Failed to get supply '%s': %d\n",
2694				consumers[i].supply, ret);
2695			consumers[i].consumer = NULL;
2696			goto err;
2697		}
2698	}
2699
2700	return 0;
2701
2702err:
2703	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2704		devm_regulator_put(consumers[i].consumer);
2705
2706	return ret;
2707}
2708EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2709
2710static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2711{
2712	struct regulator_bulk_data *bulk = data;
2713
2714	bulk->ret = regulator_enable(bulk->consumer);
2715}
2716
2717/**
2718 * regulator_bulk_enable - enable multiple regulator consumers
2719 *
2720 * @num_consumers: Number of consumers
2721 * @consumers:     Consumer data; clients are stored here.
2722 * @return         0 on success, an errno on failure
2723 *
2724 * This convenience API allows consumers to enable multiple regulator
2725 * clients in a single API call.  If any consumers cannot be enabled
2726 * then any others that were enabled will be disabled again prior to
2727 * return.
2728 */
2729int regulator_bulk_enable(int num_consumers,
2730			  struct regulator_bulk_data *consumers)
2731{
2732	LIST_HEAD(async_domain);
2733	int i;
2734	int ret = 0;
2735
2736	for (i = 0; i < num_consumers; i++) {
2737		if (consumers[i].consumer->always_on)
2738			consumers[i].ret = 0;
2739		else
2740			async_schedule_domain(regulator_bulk_enable_async,
2741					      &consumers[i], &async_domain);
2742	}
2743
2744	async_synchronize_full_domain(&async_domain);
2745
2746	/* If any consumer failed we need to unwind any that succeeded */
2747	for (i = 0; i < num_consumers; i++) {
2748		if (consumers[i].ret != 0) {
2749			ret = consumers[i].ret;
2750			goto err;
2751		}
2752	}
2753
2754	return 0;
2755
2756err:
2757	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2758	while (--i >= 0)
2759		regulator_disable(consumers[i].consumer);
2760
2761	return ret;
2762}
2763EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2764
2765/**
2766 * regulator_bulk_disable - disable multiple regulator consumers
2767 *
2768 * @num_consumers: Number of consumers
2769 * @consumers:     Consumer data; clients are stored here.
2770 * @return         0 on success, an errno on failure
2771 *
2772 * This convenience API allows consumers to disable multiple regulator
2773 * clients in a single API call.  If any consumers cannot be disabled
2774 * then any others that were disabled will be enabled again prior to
2775 * return.
2776 */
2777int regulator_bulk_disable(int num_consumers,
2778			   struct regulator_bulk_data *consumers)
2779{
2780	int i;
2781	int ret, r;
2782
2783	for (i = num_consumers - 1; i >= 0; --i) {
2784		ret = regulator_disable(consumers[i].consumer);
2785		if (ret != 0)
2786			goto err;
2787	}
2788
2789	return 0;
2790
2791err:
2792	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2793	for (++i; i < num_consumers; ++i) {
2794		r = regulator_enable(consumers[i].consumer);
2795		if (r != 0)
2796			pr_err("Failed to reename %s: %d\n",
2797			       consumers[i].supply, r);
2798	}
2799
2800	return ret;
2801}
2802EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2803
2804/**
2805 * regulator_bulk_force_disable - force disable multiple regulator consumers
2806 *
2807 * @num_consumers: Number of consumers
2808 * @consumers:     Consumer data; clients are stored here.
2809 * @return         0 on success, an errno on failure
2810 *
2811 * This convenience API allows consumers to forcibly disable multiple regulator
2812 * clients in a single API call.
2813 * NOTE: This should be used for situations when device damage will
2814 * likely occur if the regulators are not disabled (e.g. over temp).
2815 * Although regulator_force_disable function call for some consumers can
2816 * return error numbers, the function is called for all consumers.
2817 */
2818int regulator_bulk_force_disable(int num_consumers,
2819			   struct regulator_bulk_data *consumers)
2820{
2821	int i;
2822	int ret;
2823
2824	for (i = 0; i < num_consumers; i++)
2825		consumers[i].ret =
2826			    regulator_force_disable(consumers[i].consumer);
2827
2828	for (i = 0; i < num_consumers; i++) {
2829		if (consumers[i].ret != 0) {
2830			ret = consumers[i].ret;
2831			goto out;
2832		}
2833	}
2834
2835	return 0;
2836out:
2837	return ret;
2838}
2839EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2840
2841/**
2842 * regulator_bulk_free - free multiple regulator consumers
2843 *
2844 * @num_consumers: Number of consumers
2845 * @consumers:     Consumer data; clients are stored here.
2846 *
2847 * This convenience API allows consumers to free multiple regulator
2848 * clients in a single API call.
2849 */
2850void regulator_bulk_free(int num_consumers,
2851			 struct regulator_bulk_data *consumers)
2852{
2853	int i;
2854
2855	for (i = 0; i < num_consumers; i++) {
2856		regulator_put(consumers[i].consumer);
2857		consumers[i].consumer = NULL;
2858	}
2859}
2860EXPORT_SYMBOL_GPL(regulator_bulk_free);
2861
2862/**
2863 * regulator_notifier_call_chain - call regulator event notifier
2864 * @rdev: regulator source
2865 * @event: notifier block
2866 * @data: callback-specific data.
2867 *
2868 * Called by regulator drivers to notify clients a regulator event has
2869 * occurred. We also notify regulator clients downstream.
2870 * Note lock must be held by caller.
2871 */
2872int regulator_notifier_call_chain(struct regulator_dev *rdev,
2873				  unsigned long event, void *data)
2874{
2875	_notifier_call_chain(rdev, event, data);
2876	return NOTIFY_DONE;
2877
2878}
2879EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2880
2881/**
2882 * regulator_mode_to_status - convert a regulator mode into a status
2883 *
2884 * @mode: Mode to convert
2885 *
2886 * Convert a regulator mode into a status.
2887 */
2888int regulator_mode_to_status(unsigned int mode)
2889{
2890	switch (mode) {
2891	case REGULATOR_MODE_FAST:
2892		return REGULATOR_STATUS_FAST;
2893	case REGULATOR_MODE_NORMAL:
2894		return REGULATOR_STATUS_NORMAL;
2895	case REGULATOR_MODE_IDLE:
2896		return REGULATOR_STATUS_IDLE;
2897	case REGULATOR_MODE_STANDBY:
2898		return REGULATOR_STATUS_STANDBY;
2899	default:
2900		return 0;
2901	}
2902}
2903EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2904
2905/*
2906 * To avoid cluttering sysfs (and memory) with useless state, only
2907 * create attributes that can be meaningfully displayed.
2908 */
2909static int add_regulator_attributes(struct regulator_dev *rdev)
2910{
2911	struct device		*dev = &rdev->dev;
2912	struct regulator_ops	*ops = rdev->desc->ops;
2913	int			status = 0;
2914
2915	/* some attributes need specific methods to be displayed */
2916	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2917	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2918		status = device_create_file(dev, &dev_attr_microvolts);
2919		if (status < 0)
2920			return status;
2921	}
2922	if (ops->get_current_limit) {
2923		status = device_create_file(dev, &dev_attr_microamps);
2924		if (status < 0)
2925			return status;
2926	}
2927	if (ops->get_mode) {
2928		status = device_create_file(dev, &dev_attr_opmode);
2929		if (status < 0)
2930			return status;
2931	}
2932	if (ops->is_enabled) {
2933		status = device_create_file(dev, &dev_attr_state);
2934		if (status < 0)
2935			return status;
2936	}
2937	if (ops->get_status) {
2938		status = device_create_file(dev, &dev_attr_status);
2939		if (status < 0)
2940			return status;
2941	}
2942
2943	/* some attributes are type-specific */
2944	if (rdev->desc->type == REGULATOR_CURRENT) {
2945		status = device_create_file(dev, &dev_attr_requested_microamps);
2946		if (status < 0)
2947			return status;
2948	}
2949
2950	/* all the other attributes exist to support constraints;
2951	 * don't show them if there are no constraints, or if the
2952	 * relevant supporting methods are missing.
2953	 */
2954	if (!rdev->constraints)
2955		return status;
2956
2957	/* constraints need specific supporting methods */
2958	if (ops->set_voltage || ops->set_voltage_sel) {
2959		status = device_create_file(dev, &dev_attr_min_microvolts);
2960		if (status < 0)
2961			return status;
2962		status = device_create_file(dev, &dev_attr_max_microvolts);
2963		if (status < 0)
2964			return status;
2965	}
2966	if (ops->set_current_limit) {
2967		status = device_create_file(dev, &dev_attr_min_microamps);
2968		if (status < 0)
2969			return status;
2970		status = device_create_file(dev, &dev_attr_max_microamps);
2971		if (status < 0)
2972			return status;
2973	}
2974
2975	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2976	if (status < 0)
2977		return status;
2978	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2979	if (status < 0)
2980		return status;
2981	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2982	if (status < 0)
2983		return status;
2984
2985	if (ops->set_suspend_voltage) {
2986		status = device_create_file(dev,
2987				&dev_attr_suspend_standby_microvolts);
2988		if (status < 0)
2989			return status;
2990		status = device_create_file(dev,
2991				&dev_attr_suspend_mem_microvolts);
2992		if (status < 0)
2993			return status;
2994		status = device_create_file(dev,
2995				&dev_attr_suspend_disk_microvolts);
2996		if (status < 0)
2997			return status;
2998	}
2999
3000	if (ops->set_suspend_mode) {
3001		status = device_create_file(dev,
3002				&dev_attr_suspend_standby_mode);
3003		if (status < 0)
3004			return status;
3005		status = device_create_file(dev,
3006				&dev_attr_suspend_mem_mode);
3007		if (status < 0)
3008			return status;
3009		status = device_create_file(dev,
3010				&dev_attr_suspend_disk_mode);
3011		if (status < 0)
3012			return status;
3013	}
3014
3015	return status;
3016}
3017
3018static void rdev_init_debugfs(struct regulator_dev *rdev)
3019{
3020	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3021	if (!rdev->debugfs) {
3022		rdev_warn(rdev, "Failed to create debugfs directory\n");
3023		return;
3024	}
3025
3026	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3027			   &rdev->use_count);
3028	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3029			   &rdev->open_count);
3030}
3031
3032/**
3033 * regulator_register - register regulator
3034 * @regulator_desc: regulator to register
3035 * @config: runtime configuration for regulator
3036 *
3037 * Called by regulator drivers to register a regulator.
3038 * Returns 0 on success.
3039 */
3040struct regulator_dev *
3041regulator_register(const struct regulator_desc *regulator_desc,
3042		   const struct regulator_config *config)
3043{
3044	const struct regulation_constraints *constraints = NULL;
3045	const struct regulator_init_data *init_data;
3046	static atomic_t regulator_no = ATOMIC_INIT(0);
3047	struct regulator_dev *rdev;
3048	struct device *dev;
3049	int ret, i;
3050	const char *supply = NULL;
3051
3052	if (regulator_desc == NULL || config == NULL)
3053		return ERR_PTR(-EINVAL);
3054
3055	dev = config->dev;
3056	WARN_ON(!dev);
3057
3058	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3059		return ERR_PTR(-EINVAL);
3060
3061	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3062	    regulator_desc->type != REGULATOR_CURRENT)
3063		return ERR_PTR(-EINVAL);
3064
3065	/* Only one of each should be implemented */
3066	WARN_ON(regulator_desc->ops->get_voltage &&
3067		regulator_desc->ops->get_voltage_sel);
3068	WARN_ON(regulator_desc->ops->set_voltage &&
3069		regulator_desc->ops->set_voltage_sel);
3070
3071	/* If we're using selectors we must implement list_voltage. */
3072	if (regulator_desc->ops->get_voltage_sel &&
3073	    !regulator_desc->ops->list_voltage) {
3074		return ERR_PTR(-EINVAL);
3075	}
3076	if (regulator_desc->ops->set_voltage_sel &&
3077	    !regulator_desc->ops->list_voltage) {
3078		return ERR_PTR(-EINVAL);
3079	}
3080
3081	init_data = config->init_data;
3082
3083	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3084	if (rdev == NULL)
3085		return ERR_PTR(-ENOMEM);
3086
3087	mutex_lock(&regulator_list_mutex);
3088
3089	mutex_init(&rdev->mutex);
3090	rdev->reg_data = config->driver_data;
3091	rdev->owner = regulator_desc->owner;
3092	rdev->desc = regulator_desc;
3093	if (config->regmap)
3094		rdev->regmap = config->regmap;
3095	else
3096		rdev->regmap = dev_get_regmap(dev, NULL);
3097	INIT_LIST_HEAD(&rdev->consumer_list);
3098	INIT_LIST_HEAD(&rdev->list);
3099	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3100	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3101
3102	/* preform any regulator specific init */
3103	if (init_data && init_data->regulator_init) {
3104		ret = init_data->regulator_init(rdev->reg_data);
3105		if (ret < 0)
3106			goto clean;
3107	}
3108
3109	/* register with sysfs */
3110	rdev->dev.class = &regulator_class;
3111	rdev->dev.of_node = config->of_node;
3112	rdev->dev.parent = dev;
3113	dev_set_name(&rdev->dev, "regulator.%d",
3114		     atomic_inc_return(&regulator_no) - 1);
3115	ret = device_register(&rdev->dev);
3116	if (ret != 0) {
3117		put_device(&rdev->dev);
3118		goto clean;
3119	}
3120
3121	dev_set_drvdata(&rdev->dev, rdev);
3122
3123	/* set regulator constraints */
3124	if (init_data)
3125		constraints = &init_data->constraints;
3126
3127	ret = set_machine_constraints(rdev, constraints);
3128	if (ret < 0)
3129		goto scrub;
3130
3131	/* add attributes supported by this regulator */
3132	ret = add_regulator_attributes(rdev);
3133	if (ret < 0)
3134		goto scrub;
3135
3136	if (init_data && init_data->supply_regulator)
3137		supply = init_data->supply_regulator;
3138	else if (regulator_desc->supply_name)
3139		supply = regulator_desc->supply_name;
3140
3141	if (supply) {
3142		struct regulator_dev *r;
3143
3144		r = regulator_dev_lookup(dev, supply, &ret);
3145
3146		if (!r) {
3147			dev_err(dev, "Failed to find supply %s\n", supply);
3148			ret = -EPROBE_DEFER;
3149			goto scrub;
3150		}
3151
3152		ret = set_supply(rdev, r);
3153		if (ret < 0)
3154			goto scrub;
3155
3156		/* Enable supply if rail is enabled */
3157		if (_regulator_is_enabled(rdev)) {
3158			ret = regulator_enable(rdev->supply);
3159			if (ret < 0)
3160				goto scrub;
3161		}
3162	}
3163
3164	/* add consumers devices */
3165	if (init_data) {
3166		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3167			ret = set_consumer_device_supply(rdev,
3168				init_data->consumer_supplies[i].dev_name,
3169				init_data->consumer_supplies[i].supply);
3170			if (ret < 0) {
3171				dev_err(dev, "Failed to set supply %s\n",
3172					init_data->consumer_supplies[i].supply);
3173				goto unset_supplies;
3174			}
3175		}
3176	}
3177
3178	list_add(&rdev->list, &regulator_list);
3179
3180	rdev_init_debugfs(rdev);
3181out:
3182	mutex_unlock(&regulator_list_mutex);
3183	return rdev;
3184
3185unset_supplies:
3186	unset_regulator_supplies(rdev);
3187
3188scrub:
3189	if (rdev->supply)
3190		regulator_put(rdev->supply);
3191	kfree(rdev->constraints);
3192	device_unregister(&rdev->dev);
3193	/* device core frees rdev */
3194	rdev = ERR_PTR(ret);
3195	goto out;
3196
3197clean:
3198	kfree(rdev);
3199	rdev = ERR_PTR(ret);
3200	goto out;
3201}
3202EXPORT_SYMBOL_GPL(regulator_register);
3203
3204/**
3205 * regulator_unregister - unregister regulator
3206 * @rdev: regulator to unregister
3207 *
3208 * Called by regulator drivers to unregister a regulator.
3209 */
3210void regulator_unregister(struct regulator_dev *rdev)
3211{
3212	if (rdev == NULL)
3213		return;
3214
3215	if (rdev->supply)
3216		regulator_put(rdev->supply);
3217	mutex_lock(&regulator_list_mutex);
3218	debugfs_remove_recursive(rdev->debugfs);
3219	flush_work_sync(&rdev->disable_work.work);
3220	WARN_ON(rdev->open_count);
3221	unset_regulator_supplies(rdev);
3222	list_del(&rdev->list);
3223	kfree(rdev->constraints);
3224	device_unregister(&rdev->dev);
3225	mutex_unlock(&regulator_list_mutex);
3226}
3227EXPORT_SYMBOL_GPL(regulator_unregister);
3228
3229/**
3230 * regulator_suspend_prepare - prepare regulators for system wide suspend
3231 * @state: system suspend state
3232 *
3233 * Configure each regulator with it's suspend operating parameters for state.
3234 * This will usually be called by machine suspend code prior to supending.
3235 */
3236int regulator_suspend_prepare(suspend_state_t state)
3237{
3238	struct regulator_dev *rdev;
3239	int ret = 0;
3240
3241	/* ON is handled by regulator active state */
3242	if (state == PM_SUSPEND_ON)
3243		return -EINVAL;
3244
3245	mutex_lock(&regulator_list_mutex);
3246	list_for_each_entry(rdev, &regulator_list, list) {
3247
3248		mutex_lock(&rdev->mutex);
3249		ret = suspend_prepare(rdev, state);
3250		mutex_unlock(&rdev->mutex);
3251
3252		if (ret < 0) {
3253			rdev_err(rdev, "failed to prepare\n");
3254			goto out;
3255		}
3256	}
3257out:
3258	mutex_unlock(&regulator_list_mutex);
3259	return ret;
3260}
3261EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3262
3263/**
3264 * regulator_suspend_finish - resume regulators from system wide suspend
3265 *
3266 * Turn on regulators that might be turned off by regulator_suspend_prepare
3267 * and that should be turned on according to the regulators properties.
3268 */
3269int regulator_suspend_finish(void)
3270{
3271	struct regulator_dev *rdev;
3272	int ret = 0, error;
3273
3274	mutex_lock(&regulator_list_mutex);
3275	list_for_each_entry(rdev, &regulator_list, list) {
3276		struct regulator_ops *ops = rdev->desc->ops;
3277
3278		mutex_lock(&rdev->mutex);
3279		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3280				ops->enable) {
3281			error = ops->enable(rdev);
3282			if (error)
3283				ret = error;
3284		} else {
3285			if (!has_full_constraints)
3286				goto unlock;
3287			if (!ops->disable)
3288				goto unlock;
3289			if (!_regulator_is_enabled(rdev))
3290				goto unlock;
3291
3292			error = ops->disable(rdev);
3293			if (error)
3294				ret = error;
3295		}
3296unlock:
3297		mutex_unlock(&rdev->mutex);
3298	}
3299	mutex_unlock(&regulator_list_mutex);
3300	return ret;
3301}
3302EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3303
3304/**
3305 * regulator_has_full_constraints - the system has fully specified constraints
3306 *
3307 * Calling this function will cause the regulator API to disable all
3308 * regulators which have a zero use count and don't have an always_on
3309 * constraint in a late_initcall.
3310 *
3311 * The intention is that this will become the default behaviour in a
3312 * future kernel release so users are encouraged to use this facility
3313 * now.
3314 */
3315void regulator_has_full_constraints(void)
3316{
3317	has_full_constraints = 1;
3318}
3319EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3320
3321/**
3322 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3323 *
3324 * Calling this function will cause the regulator API to provide a
3325 * dummy regulator to consumers if no physical regulator is found,
3326 * allowing most consumers to proceed as though a regulator were
3327 * configured.  This allows systems such as those with software
3328 * controllable regulators for the CPU core only to be brought up more
3329 * readily.
3330 */
3331void regulator_use_dummy_regulator(void)
3332{
3333	board_wants_dummy_regulator = true;
3334}
3335EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3336
3337/**
3338 * rdev_get_drvdata - get rdev regulator driver data
3339 * @rdev: regulator
3340 *
3341 * Get rdev regulator driver private data. This call can be used in the
3342 * regulator driver context.
3343 */
3344void *rdev_get_drvdata(struct regulator_dev *rdev)
3345{
3346	return rdev->reg_data;
3347}
3348EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3349
3350/**
3351 * regulator_get_drvdata - get regulator driver data
3352 * @regulator: regulator
3353 *
3354 * Get regulator driver private data. This call can be used in the consumer
3355 * driver context when non API regulator specific functions need to be called.
3356 */
3357void *regulator_get_drvdata(struct regulator *regulator)
3358{
3359	return regulator->rdev->reg_data;
3360}
3361EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3362
3363/**
3364 * regulator_set_drvdata - set regulator driver data
3365 * @regulator: regulator
3366 * @data: data
3367 */
3368void regulator_set_drvdata(struct regulator *regulator, void *data)
3369{
3370	regulator->rdev->reg_data = data;
3371}
3372EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3373
3374/**
3375 * regulator_get_id - get regulator ID
3376 * @rdev: regulator
3377 */
3378int rdev_get_id(struct regulator_dev *rdev)
3379{
3380	return rdev->desc->id;
3381}
3382EXPORT_SYMBOL_GPL(rdev_get_id);
3383
3384struct device *rdev_get_dev(struct regulator_dev *rdev)
3385{
3386	return &rdev->dev;
3387}
3388EXPORT_SYMBOL_GPL(rdev_get_dev);
3389
3390void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3391{
3392	return reg_init_data->driver_data;
3393}
3394EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3395
3396#ifdef CONFIG_DEBUG_FS
3397static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3398				    size_t count, loff_t *ppos)
3399{
3400	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3401	ssize_t len, ret = 0;
3402	struct regulator_map *map;
3403
3404	if (!buf)
3405		return -ENOMEM;
3406
3407	list_for_each_entry(map, &regulator_map_list, list) {
3408		len = snprintf(buf + ret, PAGE_SIZE - ret,
3409			       "%s -> %s.%s\n",
3410			       rdev_get_name(map->regulator), map->dev_name,
3411			       map->supply);
3412		if (len >= 0)
3413			ret += len;
3414		if (ret > PAGE_SIZE) {
3415			ret = PAGE_SIZE;
3416			break;
3417		}
3418	}
3419
3420	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3421
3422	kfree(buf);
3423
3424	return ret;
3425}
3426#endif
3427
3428static const struct file_operations supply_map_fops = {
3429#ifdef CONFIG_DEBUG_FS
3430	.read = supply_map_read_file,
3431	.llseek = default_llseek,
3432#endif
3433};
3434
3435static int __init regulator_init(void)
3436{
3437	int ret;
3438
3439	ret = class_register(&regulator_class);
3440
3441	debugfs_root = debugfs_create_dir("regulator", NULL);
3442	if (!debugfs_root)
3443		pr_warn("regulator: Failed to create debugfs directory\n");
3444
3445	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3446			    &supply_map_fops);
3447
3448	regulator_dummy_init();
3449
3450	return ret;
3451}
3452
3453/* init early to allow our consumers to complete system booting */
3454core_initcall(regulator_init);
3455
3456static int __init regulator_init_complete(void)
3457{
3458	struct regulator_dev *rdev;
3459	struct regulator_ops *ops;
3460	struct regulation_constraints *c;
3461	int enabled, ret;
3462
3463	mutex_lock(&regulator_list_mutex);
3464
3465	/* If we have a full configuration then disable any regulators
3466	 * which are not in use or always_on.  This will become the
3467	 * default behaviour in the future.
3468	 */
3469	list_for_each_entry(rdev, &regulator_list, list) {
3470		ops = rdev->desc->ops;
3471		c = rdev->constraints;
3472
3473		if (!ops->disable || (c && c->always_on))
3474			continue;
3475
3476		mutex_lock(&rdev->mutex);
3477
3478		if (rdev->use_count)
3479			goto unlock;
3480
3481		/* If we can't read the status assume it's on. */
3482		if (ops->is_enabled)
3483			enabled = ops->is_enabled(rdev);
3484		else
3485			enabled = 1;
3486
3487		if (!enabled)
3488			goto unlock;
3489
3490		if (has_full_constraints) {
3491			/* We log since this may kill the system if it
3492			 * goes wrong. */
3493			rdev_info(rdev, "disabling\n");
3494			ret = ops->disable(rdev);
3495			if (ret != 0) {
3496				rdev_err(rdev, "couldn't disable: %d\n", ret);
3497			}
3498		} else {
3499			/* The intention is that in future we will
3500			 * assume that full constraints are provided
3501			 * so warn even if we aren't going to do
3502			 * anything here.
3503			 */
3504			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3505		}
3506
3507unlock:
3508		mutex_unlock(&rdev->mutex);
3509	}
3510
3511	mutex_unlock(&regulator_list_mutex);
3512
3513	return 0;
3514}
3515late_initcall(regulator_init_complete);
3516