core.c revision 04eca28cde52cdf9eb91e127cc358ad79a8ec53b
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122static bool have_full_constraints(void)
123{
124	return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		int current_uV = _regulator_get_voltage(rdev);
848		if (current_uV < 0) {
849			rdev_err(rdev, "failed to get the current voltage\n");
850			return current_uV;
851		}
852		if (current_uV < rdev->constraints->min_uV ||
853		    current_uV > rdev->constraints->max_uV) {
854			ret = _regulator_do_set_voltage(
855				rdev, rdev->constraints->min_uV,
856				rdev->constraints->max_uV);
857			if (ret < 0) {
858				rdev_err(rdev,
859					"failed to apply %duV constraint\n",
860					rdev->constraints->min_uV);
861				return ret;
862			}
863		}
864	}
865
866	/* constrain machine-level voltage specs to fit
867	 * the actual range supported by this regulator.
868	 */
869	if (ops->list_voltage && rdev->desc->n_voltages) {
870		int	count = rdev->desc->n_voltages;
871		int	i;
872		int	min_uV = INT_MAX;
873		int	max_uV = INT_MIN;
874		int	cmin = constraints->min_uV;
875		int	cmax = constraints->max_uV;
876
877		/* it's safe to autoconfigure fixed-voltage supplies
878		   and the constraints are used by list_voltage. */
879		if (count == 1 && !cmin) {
880			cmin = 1;
881			cmax = INT_MAX;
882			constraints->min_uV = cmin;
883			constraints->max_uV = cmax;
884		}
885
886		/* voltage constraints are optional */
887		if ((cmin == 0) && (cmax == 0))
888			return 0;
889
890		/* else require explicit machine-level constraints */
891		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
892			rdev_err(rdev, "invalid voltage constraints\n");
893			return -EINVAL;
894		}
895
896		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897		for (i = 0; i < count; i++) {
898			int	value;
899
900			value = ops->list_voltage(rdev, i);
901			if (value <= 0)
902				continue;
903
904			/* maybe adjust [min_uV..max_uV] */
905			if (value >= cmin && value < min_uV)
906				min_uV = value;
907			if (value <= cmax && value > max_uV)
908				max_uV = value;
909		}
910
911		/* final: [min_uV..max_uV] valid iff constraints valid */
912		if (max_uV < min_uV) {
913			rdev_err(rdev,
914				 "unsupportable voltage constraints %u-%uuV\n",
915				 min_uV, max_uV);
916			return -EINVAL;
917		}
918
919		/* use regulator's subset of machine constraints */
920		if (constraints->min_uV < min_uV) {
921			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
922				 constraints->min_uV, min_uV);
923			constraints->min_uV = min_uV;
924		}
925		if (constraints->max_uV > max_uV) {
926			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
927				 constraints->max_uV, max_uV);
928			constraints->max_uV = max_uV;
929		}
930	}
931
932	return 0;
933}
934
935static int machine_constraints_current(struct regulator_dev *rdev,
936	struct regulation_constraints *constraints)
937{
938	struct regulator_ops *ops = rdev->desc->ops;
939	int ret;
940
941	if (!constraints->min_uA && !constraints->max_uA)
942		return 0;
943
944	if (constraints->min_uA > constraints->max_uA) {
945		rdev_err(rdev, "Invalid current constraints\n");
946		return -EINVAL;
947	}
948
949	if (!ops->set_current_limit || !ops->get_current_limit) {
950		rdev_warn(rdev, "Operation of current configuration missing\n");
951		return 0;
952	}
953
954	/* Set regulator current in constraints range */
955	ret = ops->set_current_limit(rdev, constraints->min_uA,
956			constraints->max_uA);
957	if (ret < 0) {
958		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
959		return ret;
960	}
961
962	return 0;
963}
964
965static int _regulator_do_enable(struct regulator_dev *rdev);
966
967/**
968 * set_machine_constraints - sets regulator constraints
969 * @rdev: regulator source
970 * @constraints: constraints to apply
971 *
972 * Allows platform initialisation code to define and constrain
973 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
974 * Constraints *must* be set by platform code in order for some
975 * regulator operations to proceed i.e. set_voltage, set_current_limit,
976 * set_mode.
977 */
978static int set_machine_constraints(struct regulator_dev *rdev,
979	const struct regulation_constraints *constraints)
980{
981	int ret = 0;
982	struct regulator_ops *ops = rdev->desc->ops;
983
984	if (constraints)
985		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
986					    GFP_KERNEL);
987	else
988		rdev->constraints = kzalloc(sizeof(*constraints),
989					    GFP_KERNEL);
990	if (!rdev->constraints)
991		return -ENOMEM;
992
993	ret = machine_constraints_voltage(rdev, rdev->constraints);
994	if (ret != 0)
995		goto out;
996
997	ret = machine_constraints_current(rdev, rdev->constraints);
998	if (ret != 0)
999		goto out;
1000
1001	/* do we need to setup our suspend state */
1002	if (rdev->constraints->initial_state) {
1003		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1004		if (ret < 0) {
1005			rdev_err(rdev, "failed to set suspend state\n");
1006			goto out;
1007		}
1008	}
1009
1010	if (rdev->constraints->initial_mode) {
1011		if (!ops->set_mode) {
1012			rdev_err(rdev, "no set_mode operation\n");
1013			ret = -EINVAL;
1014			goto out;
1015		}
1016
1017		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1018		if (ret < 0) {
1019			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1020			goto out;
1021		}
1022	}
1023
1024	/* If the constraints say the regulator should be on at this point
1025	 * and we have control then make sure it is enabled.
1026	 */
1027	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1028		ret = _regulator_do_enable(rdev);
1029		if (ret < 0 && ret != -EINVAL) {
1030			rdev_err(rdev, "failed to enable\n");
1031			goto out;
1032		}
1033	}
1034
1035	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1036		&& ops->set_ramp_delay) {
1037		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1038		if (ret < 0) {
1039			rdev_err(rdev, "failed to set ramp_delay\n");
1040			goto out;
1041		}
1042	}
1043
1044	print_constraints(rdev);
1045	return 0;
1046out:
1047	kfree(rdev->constraints);
1048	rdev->constraints = NULL;
1049	return ret;
1050}
1051
1052/**
1053 * set_supply - set regulator supply regulator
1054 * @rdev: regulator name
1055 * @supply_rdev: supply regulator name
1056 *
1057 * Called by platform initialisation code to set the supply regulator for this
1058 * regulator. This ensures that a regulators supply will also be enabled by the
1059 * core if it's child is enabled.
1060 */
1061static int set_supply(struct regulator_dev *rdev,
1062		      struct regulator_dev *supply_rdev)
1063{
1064	int err;
1065
1066	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1067
1068	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1069	if (rdev->supply == NULL) {
1070		err = -ENOMEM;
1071		return err;
1072	}
1073	supply_rdev->open_count++;
1074
1075	return 0;
1076}
1077
1078/**
1079 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080 * @rdev:         regulator source
1081 * @consumer_dev_name: dev_name() string for device supply applies to
1082 * @supply:       symbolic name for supply
1083 *
1084 * Allows platform initialisation code to map physical regulator
1085 * sources to symbolic names for supplies for use by devices.  Devices
1086 * should use these symbolic names to request regulators, avoiding the
1087 * need to provide board-specific regulator names as platform data.
1088 */
1089static int set_consumer_device_supply(struct regulator_dev *rdev,
1090				      const char *consumer_dev_name,
1091				      const char *supply)
1092{
1093	struct regulator_map *node;
1094	int has_dev;
1095
1096	if (supply == NULL)
1097		return -EINVAL;
1098
1099	if (consumer_dev_name != NULL)
1100		has_dev = 1;
1101	else
1102		has_dev = 0;
1103
1104	list_for_each_entry(node, &regulator_map_list, list) {
1105		if (node->dev_name && consumer_dev_name) {
1106			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1107				continue;
1108		} else if (node->dev_name || consumer_dev_name) {
1109			continue;
1110		}
1111
1112		if (strcmp(node->supply, supply) != 0)
1113			continue;
1114
1115		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1116			 consumer_dev_name,
1117			 dev_name(&node->regulator->dev),
1118			 node->regulator->desc->name,
1119			 supply,
1120			 dev_name(&rdev->dev), rdev_get_name(rdev));
1121		return -EBUSY;
1122	}
1123
1124	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1125	if (node == NULL)
1126		return -ENOMEM;
1127
1128	node->regulator = rdev;
1129	node->supply = supply;
1130
1131	if (has_dev) {
1132		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1133		if (node->dev_name == NULL) {
1134			kfree(node);
1135			return -ENOMEM;
1136		}
1137	}
1138
1139	list_add(&node->list, &regulator_map_list);
1140	return 0;
1141}
1142
1143static void unset_regulator_supplies(struct regulator_dev *rdev)
1144{
1145	struct regulator_map *node, *n;
1146
1147	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1148		if (rdev == node->regulator) {
1149			list_del(&node->list);
1150			kfree(node->dev_name);
1151			kfree(node);
1152		}
1153	}
1154}
1155
1156#define REG_STR_SIZE	64
1157
1158static struct regulator *create_regulator(struct regulator_dev *rdev,
1159					  struct device *dev,
1160					  const char *supply_name)
1161{
1162	struct regulator *regulator;
1163	char buf[REG_STR_SIZE];
1164	int err, size;
1165
1166	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1167	if (regulator == NULL)
1168		return NULL;
1169
1170	mutex_lock(&rdev->mutex);
1171	regulator->rdev = rdev;
1172	list_add(&regulator->list, &rdev->consumer_list);
1173
1174	if (dev) {
1175		regulator->dev = dev;
1176
1177		/* Add a link to the device sysfs entry */
1178		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1179				 dev->kobj.name, supply_name);
1180		if (size >= REG_STR_SIZE)
1181			goto overflow_err;
1182
1183		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1184		if (regulator->supply_name == NULL)
1185			goto overflow_err;
1186
1187		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1188					buf);
1189		if (err) {
1190			rdev_warn(rdev, "could not add device link %s err %d\n",
1191				  dev->kobj.name, err);
1192			/* non-fatal */
1193		}
1194	} else {
1195		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1196		if (regulator->supply_name == NULL)
1197			goto overflow_err;
1198	}
1199
1200	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1201						rdev->debugfs);
1202	if (!regulator->debugfs) {
1203		rdev_warn(rdev, "Failed to create debugfs directory\n");
1204	} else {
1205		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1206				   &regulator->uA_load);
1207		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1208				   &regulator->min_uV);
1209		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1210				   &regulator->max_uV);
1211	}
1212
1213	/*
1214	 * Check now if the regulator is an always on regulator - if
1215	 * it is then we don't need to do nearly so much work for
1216	 * enable/disable calls.
1217	 */
1218	if (!_regulator_can_change_status(rdev) &&
1219	    _regulator_is_enabled(rdev))
1220		regulator->always_on = true;
1221
1222	mutex_unlock(&rdev->mutex);
1223	return regulator;
1224overflow_err:
1225	list_del(&regulator->list);
1226	kfree(regulator);
1227	mutex_unlock(&rdev->mutex);
1228	return NULL;
1229}
1230
1231static int _regulator_get_enable_time(struct regulator_dev *rdev)
1232{
1233	if (rdev->constraints && rdev->constraints->enable_time)
1234		return rdev->constraints->enable_time;
1235	if (!rdev->desc->ops->enable_time)
1236		return rdev->desc->enable_time;
1237	return rdev->desc->ops->enable_time(rdev);
1238}
1239
1240static struct regulator_supply_alias *regulator_find_supply_alias(
1241		struct device *dev, const char *supply)
1242{
1243	struct regulator_supply_alias *map;
1244
1245	list_for_each_entry(map, &regulator_supply_alias_list, list)
1246		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1247			return map;
1248
1249	return NULL;
1250}
1251
1252static void regulator_supply_alias(struct device **dev, const char **supply)
1253{
1254	struct regulator_supply_alias *map;
1255
1256	map = regulator_find_supply_alias(*dev, *supply);
1257	if (map) {
1258		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1259				*supply, map->alias_supply,
1260				dev_name(map->alias_dev));
1261		*dev = map->alias_dev;
1262		*supply = map->alias_supply;
1263	}
1264}
1265
1266static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1267						  const char *supply,
1268						  int *ret)
1269{
1270	struct regulator_dev *r;
1271	struct device_node *node;
1272	struct regulator_map *map;
1273	const char *devname = NULL;
1274
1275	regulator_supply_alias(&dev, &supply);
1276
1277	/* first do a dt based lookup */
1278	if (dev && dev->of_node) {
1279		node = of_get_regulator(dev, supply);
1280		if (node) {
1281			list_for_each_entry(r, &regulator_list, list)
1282				if (r->dev.parent &&
1283					node == r->dev.of_node)
1284					return r;
1285			*ret = -EPROBE_DEFER;
1286			return NULL;
1287		} else {
1288			/*
1289			 * If we couldn't even get the node then it's
1290			 * not just that the device didn't register
1291			 * yet, there's no node and we'll never
1292			 * succeed.
1293			 */
1294			*ret = -ENODEV;
1295		}
1296	}
1297
1298	/* if not found, try doing it non-dt way */
1299	if (dev)
1300		devname = dev_name(dev);
1301
1302	list_for_each_entry(r, &regulator_list, list)
1303		if (strcmp(rdev_get_name(r), supply) == 0)
1304			return r;
1305
1306	list_for_each_entry(map, &regulator_map_list, list) {
1307		/* If the mapping has a device set up it must match */
1308		if (map->dev_name &&
1309		    (!devname || strcmp(map->dev_name, devname)))
1310			continue;
1311
1312		if (strcmp(map->supply, supply) == 0)
1313			return map->regulator;
1314	}
1315
1316
1317	return NULL;
1318}
1319
1320/* Internal regulator request function */
1321static struct regulator *_regulator_get(struct device *dev, const char *id,
1322					bool exclusive, bool allow_dummy)
1323{
1324	struct regulator_dev *rdev;
1325	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1326	const char *devname = NULL;
1327	int ret;
1328
1329	if (id == NULL) {
1330		pr_err("get() with no identifier\n");
1331		return ERR_PTR(-EINVAL);
1332	}
1333
1334	if (dev)
1335		devname = dev_name(dev);
1336
1337	if (have_full_constraints())
1338		ret = -ENODEV;
1339	else
1340		ret = -EPROBE_DEFER;
1341
1342	mutex_lock(&regulator_list_mutex);
1343
1344	rdev = regulator_dev_lookup(dev, id, &ret);
1345	if (rdev)
1346		goto found;
1347
1348	regulator = ERR_PTR(ret);
1349
1350	/*
1351	 * If we have return value from dev_lookup fail, we do not expect to
1352	 * succeed, so, quit with appropriate error value
1353	 */
1354	if (ret && ret != -ENODEV)
1355		goto out;
1356
1357	if (!devname)
1358		devname = "deviceless";
1359
1360	/*
1361	 * Assume that a regulator is physically present and enabled
1362	 * even if it isn't hooked up and just provide a dummy.
1363	 */
1364	if (have_full_constraints() && allow_dummy) {
1365		pr_warn("%s supply %s not found, using dummy regulator\n",
1366			devname, id);
1367
1368		rdev = dummy_regulator_rdev;
1369		goto found;
1370	/* Don't log an error when called from regulator_get_optional() */
1371	} else if (!have_full_constraints() || exclusive) {
1372		dev_warn(dev, "dummy supplies not allowed\n");
1373	}
1374
1375	mutex_unlock(&regulator_list_mutex);
1376	return regulator;
1377
1378found:
1379	if (rdev->exclusive) {
1380		regulator = ERR_PTR(-EPERM);
1381		goto out;
1382	}
1383
1384	if (exclusive && rdev->open_count) {
1385		regulator = ERR_PTR(-EBUSY);
1386		goto out;
1387	}
1388
1389	if (!try_module_get(rdev->owner))
1390		goto out;
1391
1392	regulator = create_regulator(rdev, dev, id);
1393	if (regulator == NULL) {
1394		regulator = ERR_PTR(-ENOMEM);
1395		module_put(rdev->owner);
1396		goto out;
1397	}
1398
1399	rdev->open_count++;
1400	if (exclusive) {
1401		rdev->exclusive = 1;
1402
1403		ret = _regulator_is_enabled(rdev);
1404		if (ret > 0)
1405			rdev->use_count = 1;
1406		else
1407			rdev->use_count = 0;
1408	}
1409
1410out:
1411	mutex_unlock(&regulator_list_mutex);
1412
1413	return regulator;
1414}
1415
1416/**
1417 * regulator_get - lookup and obtain a reference to a regulator.
1418 * @dev: device for regulator "consumer"
1419 * @id: Supply name or regulator ID.
1420 *
1421 * Returns a struct regulator corresponding to the regulator producer,
1422 * or IS_ERR() condition containing errno.
1423 *
1424 * Use of supply names configured via regulator_set_device_supply() is
1425 * strongly encouraged.  It is recommended that the supply name used
1426 * should match the name used for the supply and/or the relevant
1427 * device pins in the datasheet.
1428 */
1429struct regulator *regulator_get(struct device *dev, const char *id)
1430{
1431	return _regulator_get(dev, id, false, true);
1432}
1433EXPORT_SYMBOL_GPL(regulator_get);
1434
1435/**
1436 * regulator_get_exclusive - obtain exclusive access to a regulator.
1437 * @dev: device for regulator "consumer"
1438 * @id: Supply name or regulator ID.
1439 *
1440 * Returns a struct regulator corresponding to the regulator producer,
1441 * or IS_ERR() condition containing errno.  Other consumers will be
1442 * unable to obtain this regulator while this reference is held and the
1443 * use count for the regulator will be initialised to reflect the current
1444 * state of the regulator.
1445 *
1446 * This is intended for use by consumers which cannot tolerate shared
1447 * use of the regulator such as those which need to force the
1448 * regulator off for correct operation of the hardware they are
1449 * controlling.
1450 *
1451 * Use of supply names configured via regulator_set_device_supply() is
1452 * strongly encouraged.  It is recommended that the supply name used
1453 * should match the name used for the supply and/or the relevant
1454 * device pins in the datasheet.
1455 */
1456struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1457{
1458	return _regulator_get(dev, id, true, false);
1459}
1460EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1461
1462/**
1463 * regulator_get_optional - obtain optional access to a regulator.
1464 * @dev: device for regulator "consumer"
1465 * @id: Supply name or regulator ID.
1466 *
1467 * Returns a struct regulator corresponding to the regulator producer,
1468 * or IS_ERR() condition containing errno.
1469 *
1470 * This is intended for use by consumers for devices which can have
1471 * some supplies unconnected in normal use, such as some MMC devices.
1472 * It can allow the regulator core to provide stub supplies for other
1473 * supplies requested using normal regulator_get() calls without
1474 * disrupting the operation of drivers that can handle absent
1475 * supplies.
1476 *
1477 * Use of supply names configured via regulator_set_device_supply() is
1478 * strongly encouraged.  It is recommended that the supply name used
1479 * should match the name used for the supply and/or the relevant
1480 * device pins in the datasheet.
1481 */
1482struct regulator *regulator_get_optional(struct device *dev, const char *id)
1483{
1484	return _regulator_get(dev, id, false, false);
1485}
1486EXPORT_SYMBOL_GPL(regulator_get_optional);
1487
1488/* Locks held by regulator_put() */
1489static void _regulator_put(struct regulator *regulator)
1490{
1491	struct regulator_dev *rdev;
1492
1493	if (regulator == NULL || IS_ERR(regulator))
1494		return;
1495
1496	rdev = regulator->rdev;
1497
1498	debugfs_remove_recursive(regulator->debugfs);
1499
1500	/* remove any sysfs entries */
1501	if (regulator->dev)
1502		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1503	kfree(regulator->supply_name);
1504	list_del(&regulator->list);
1505	kfree(regulator);
1506
1507	rdev->open_count--;
1508	rdev->exclusive = 0;
1509
1510	module_put(rdev->owner);
1511}
1512
1513/**
1514 * regulator_put - "free" the regulator source
1515 * @regulator: regulator source
1516 *
1517 * Note: drivers must ensure that all regulator_enable calls made on this
1518 * regulator source are balanced by regulator_disable calls prior to calling
1519 * this function.
1520 */
1521void regulator_put(struct regulator *regulator)
1522{
1523	mutex_lock(&regulator_list_mutex);
1524	_regulator_put(regulator);
1525	mutex_unlock(&regulator_list_mutex);
1526}
1527EXPORT_SYMBOL_GPL(regulator_put);
1528
1529/**
1530 * regulator_register_supply_alias - Provide device alias for supply lookup
1531 *
1532 * @dev: device that will be given as the regulator "consumer"
1533 * @id: Supply name or regulator ID
1534 * @alias_dev: device that should be used to lookup the supply
1535 * @alias_id: Supply name or regulator ID that should be used to lookup the
1536 * supply
1537 *
1538 * All lookups for id on dev will instead be conducted for alias_id on
1539 * alias_dev.
1540 */
1541int regulator_register_supply_alias(struct device *dev, const char *id,
1542				    struct device *alias_dev,
1543				    const char *alias_id)
1544{
1545	struct regulator_supply_alias *map;
1546
1547	map = regulator_find_supply_alias(dev, id);
1548	if (map)
1549		return -EEXIST;
1550
1551	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1552	if (!map)
1553		return -ENOMEM;
1554
1555	map->src_dev = dev;
1556	map->src_supply = id;
1557	map->alias_dev = alias_dev;
1558	map->alias_supply = alias_id;
1559
1560	list_add(&map->list, &regulator_supply_alias_list);
1561
1562	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1563		id, dev_name(dev), alias_id, dev_name(alias_dev));
1564
1565	return 0;
1566}
1567EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1568
1569/**
1570 * regulator_unregister_supply_alias - Remove device alias
1571 *
1572 * @dev: device that will be given as the regulator "consumer"
1573 * @id: Supply name or regulator ID
1574 *
1575 * Remove a lookup alias if one exists for id on dev.
1576 */
1577void regulator_unregister_supply_alias(struct device *dev, const char *id)
1578{
1579	struct regulator_supply_alias *map;
1580
1581	map = regulator_find_supply_alias(dev, id);
1582	if (map) {
1583		list_del(&map->list);
1584		kfree(map);
1585	}
1586}
1587EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1588
1589/**
1590 * regulator_bulk_register_supply_alias - register multiple aliases
1591 *
1592 * @dev: device that will be given as the regulator "consumer"
1593 * @id: List of supply names or regulator IDs
1594 * @alias_dev: device that should be used to lookup the supply
1595 * @alias_id: List of supply names or regulator IDs that should be used to
1596 * lookup the supply
1597 * @num_id: Number of aliases to register
1598 *
1599 * @return 0 on success, an errno on failure.
1600 *
1601 * This helper function allows drivers to register several supply
1602 * aliases in one operation.  If any of the aliases cannot be
1603 * registered any aliases that were registered will be removed
1604 * before returning to the caller.
1605 */
1606int regulator_bulk_register_supply_alias(struct device *dev,
1607					 const char *const *id,
1608					 struct device *alias_dev,
1609					 const char *const *alias_id,
1610					 int num_id)
1611{
1612	int i;
1613	int ret;
1614
1615	for (i = 0; i < num_id; ++i) {
1616		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1617						      alias_id[i]);
1618		if (ret < 0)
1619			goto err;
1620	}
1621
1622	return 0;
1623
1624err:
1625	dev_err(dev,
1626		"Failed to create supply alias %s,%s -> %s,%s\n",
1627		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1628
1629	while (--i >= 0)
1630		regulator_unregister_supply_alias(dev, id[i]);
1631
1632	return ret;
1633}
1634EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1635
1636/**
1637 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1638 *
1639 * @dev: device that will be given as the regulator "consumer"
1640 * @id: List of supply names or regulator IDs
1641 * @num_id: Number of aliases to unregister
1642 *
1643 * This helper function allows drivers to unregister several supply
1644 * aliases in one operation.
1645 */
1646void regulator_bulk_unregister_supply_alias(struct device *dev,
1647					    const char *const *id,
1648					    int num_id)
1649{
1650	int i;
1651
1652	for (i = 0; i < num_id; ++i)
1653		regulator_unregister_supply_alias(dev, id[i]);
1654}
1655EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1656
1657
1658/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1659static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1660				const struct regulator_config *config)
1661{
1662	struct regulator_enable_gpio *pin;
1663	int ret;
1664
1665	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1666		if (pin->gpio == config->ena_gpio) {
1667			rdev_dbg(rdev, "GPIO %d is already used\n",
1668				config->ena_gpio);
1669			goto update_ena_gpio_to_rdev;
1670		}
1671	}
1672
1673	ret = gpio_request_one(config->ena_gpio,
1674				GPIOF_DIR_OUT | config->ena_gpio_flags,
1675				rdev_get_name(rdev));
1676	if (ret)
1677		return ret;
1678
1679	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1680	if (pin == NULL) {
1681		gpio_free(config->ena_gpio);
1682		return -ENOMEM;
1683	}
1684
1685	pin->gpio = config->ena_gpio;
1686	pin->ena_gpio_invert = config->ena_gpio_invert;
1687	list_add(&pin->list, &regulator_ena_gpio_list);
1688
1689update_ena_gpio_to_rdev:
1690	pin->request_count++;
1691	rdev->ena_pin = pin;
1692	return 0;
1693}
1694
1695static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1696{
1697	struct regulator_enable_gpio *pin, *n;
1698
1699	if (!rdev->ena_pin)
1700		return;
1701
1702	/* Free the GPIO only in case of no use */
1703	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1704		if (pin->gpio == rdev->ena_pin->gpio) {
1705			if (pin->request_count <= 1) {
1706				pin->request_count = 0;
1707				gpio_free(pin->gpio);
1708				list_del(&pin->list);
1709				kfree(pin);
1710			} else {
1711				pin->request_count--;
1712			}
1713		}
1714	}
1715}
1716
1717/**
1718 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1719 * @rdev: regulator_dev structure
1720 * @enable: enable GPIO at initial use?
1721 *
1722 * GPIO is enabled in case of initial use. (enable_count is 0)
1723 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1724 */
1725static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1726{
1727	struct regulator_enable_gpio *pin = rdev->ena_pin;
1728
1729	if (!pin)
1730		return -EINVAL;
1731
1732	if (enable) {
1733		/* Enable GPIO at initial use */
1734		if (pin->enable_count == 0)
1735			gpio_set_value_cansleep(pin->gpio,
1736						!pin->ena_gpio_invert);
1737
1738		pin->enable_count++;
1739	} else {
1740		if (pin->enable_count > 1) {
1741			pin->enable_count--;
1742			return 0;
1743		}
1744
1745		/* Disable GPIO if not used */
1746		if (pin->enable_count <= 1) {
1747			gpio_set_value_cansleep(pin->gpio,
1748						pin->ena_gpio_invert);
1749			pin->enable_count = 0;
1750		}
1751	}
1752
1753	return 0;
1754}
1755
1756static int _regulator_do_enable(struct regulator_dev *rdev)
1757{
1758	int ret, delay;
1759
1760	/* Query before enabling in case configuration dependent.  */
1761	ret = _regulator_get_enable_time(rdev);
1762	if (ret >= 0) {
1763		delay = ret;
1764	} else {
1765		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1766		delay = 0;
1767	}
1768
1769	trace_regulator_enable(rdev_get_name(rdev));
1770
1771	if (rdev->ena_pin) {
1772		ret = regulator_ena_gpio_ctrl(rdev, true);
1773		if (ret < 0)
1774			return ret;
1775		rdev->ena_gpio_state = 1;
1776	} else if (rdev->desc->ops->enable) {
1777		ret = rdev->desc->ops->enable(rdev);
1778		if (ret < 0)
1779			return ret;
1780	} else {
1781		return -EINVAL;
1782	}
1783
1784	/* Allow the regulator to ramp; it would be useful to extend
1785	 * this for bulk operations so that the regulators can ramp
1786	 * together.  */
1787	trace_regulator_enable_delay(rdev_get_name(rdev));
1788
1789	/*
1790	 * Delay for the requested amount of time as per the guidelines in:
1791	 *
1792	 *     Documentation/timers/timers-howto.txt
1793	 *
1794	 * The assumption here is that regulators will never be enabled in
1795	 * atomic context and therefore sleeping functions can be used.
1796	 */
1797	if (delay) {
1798		unsigned int ms = delay / 1000;
1799		unsigned int us = delay % 1000;
1800
1801		if (ms > 0) {
1802			/*
1803			 * For small enough values, handle super-millisecond
1804			 * delays in the usleep_range() call below.
1805			 */
1806			if (ms < 20)
1807				us += ms * 1000;
1808			else
1809				msleep(ms);
1810		}
1811
1812		/*
1813		 * Give the scheduler some room to coalesce with any other
1814		 * wakeup sources. For delays shorter than 10 us, don't even
1815		 * bother setting up high-resolution timers and just busy-
1816		 * loop.
1817		 */
1818		if (us >= 10)
1819			usleep_range(us, us + 100);
1820		else
1821			udelay(us);
1822	}
1823
1824	trace_regulator_enable_complete(rdev_get_name(rdev));
1825
1826	return 0;
1827}
1828
1829/* locks held by regulator_enable() */
1830static int _regulator_enable(struct regulator_dev *rdev)
1831{
1832	int ret;
1833
1834	/* check voltage and requested load before enabling */
1835	if (rdev->constraints &&
1836	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1837		drms_uA_update(rdev);
1838
1839	if (rdev->use_count == 0) {
1840		/* The regulator may on if it's not switchable or left on */
1841		ret = _regulator_is_enabled(rdev);
1842		if (ret == -EINVAL || ret == 0) {
1843			if (!_regulator_can_change_status(rdev))
1844				return -EPERM;
1845
1846			ret = _regulator_do_enable(rdev);
1847			if (ret < 0)
1848				return ret;
1849
1850		} else if (ret < 0) {
1851			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1852			return ret;
1853		}
1854		/* Fallthrough on positive return values - already enabled */
1855	}
1856
1857	rdev->use_count++;
1858
1859	return 0;
1860}
1861
1862/**
1863 * regulator_enable - enable regulator output
1864 * @regulator: regulator source
1865 *
1866 * Request that the regulator be enabled with the regulator output at
1867 * the predefined voltage or current value.  Calls to regulator_enable()
1868 * must be balanced with calls to regulator_disable().
1869 *
1870 * NOTE: the output value can be set by other drivers, boot loader or may be
1871 * hardwired in the regulator.
1872 */
1873int regulator_enable(struct regulator *regulator)
1874{
1875	struct regulator_dev *rdev = regulator->rdev;
1876	int ret = 0;
1877
1878	if (regulator->always_on)
1879		return 0;
1880
1881	if (rdev->supply) {
1882		ret = regulator_enable(rdev->supply);
1883		if (ret != 0)
1884			return ret;
1885	}
1886
1887	mutex_lock(&rdev->mutex);
1888	ret = _regulator_enable(rdev);
1889	mutex_unlock(&rdev->mutex);
1890
1891	if (ret != 0 && rdev->supply)
1892		regulator_disable(rdev->supply);
1893
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(regulator_enable);
1897
1898static int _regulator_do_disable(struct regulator_dev *rdev)
1899{
1900	int ret;
1901
1902	trace_regulator_disable(rdev_get_name(rdev));
1903
1904	if (rdev->ena_pin) {
1905		ret = regulator_ena_gpio_ctrl(rdev, false);
1906		if (ret < 0)
1907			return ret;
1908		rdev->ena_gpio_state = 0;
1909
1910	} else if (rdev->desc->ops->disable) {
1911		ret = rdev->desc->ops->disable(rdev);
1912		if (ret != 0)
1913			return ret;
1914	}
1915
1916	trace_regulator_disable_complete(rdev_get_name(rdev));
1917
1918	return 0;
1919}
1920
1921/* locks held by regulator_disable() */
1922static int _regulator_disable(struct regulator_dev *rdev)
1923{
1924	int ret = 0;
1925
1926	if (WARN(rdev->use_count <= 0,
1927		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1928		return -EIO;
1929
1930	/* are we the last user and permitted to disable ? */
1931	if (rdev->use_count == 1 &&
1932	    (rdev->constraints && !rdev->constraints->always_on)) {
1933
1934		/* we are last user */
1935		if (_regulator_can_change_status(rdev)) {
1936			ret = _regulator_do_disable(rdev);
1937			if (ret < 0) {
1938				rdev_err(rdev, "failed to disable\n");
1939				return ret;
1940			}
1941			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1942					NULL);
1943		}
1944
1945		rdev->use_count = 0;
1946	} else if (rdev->use_count > 1) {
1947
1948		if (rdev->constraints &&
1949			(rdev->constraints->valid_ops_mask &
1950			REGULATOR_CHANGE_DRMS))
1951			drms_uA_update(rdev);
1952
1953		rdev->use_count--;
1954	}
1955
1956	return ret;
1957}
1958
1959/**
1960 * regulator_disable - disable regulator output
1961 * @regulator: regulator source
1962 *
1963 * Disable the regulator output voltage or current.  Calls to
1964 * regulator_enable() must be balanced with calls to
1965 * regulator_disable().
1966 *
1967 * NOTE: this will only disable the regulator output if no other consumer
1968 * devices have it enabled, the regulator device supports disabling and
1969 * machine constraints permit this operation.
1970 */
1971int regulator_disable(struct regulator *regulator)
1972{
1973	struct regulator_dev *rdev = regulator->rdev;
1974	int ret = 0;
1975
1976	if (regulator->always_on)
1977		return 0;
1978
1979	mutex_lock(&rdev->mutex);
1980	ret = _regulator_disable(rdev);
1981	mutex_unlock(&rdev->mutex);
1982
1983	if (ret == 0 && rdev->supply)
1984		regulator_disable(rdev->supply);
1985
1986	return ret;
1987}
1988EXPORT_SYMBOL_GPL(regulator_disable);
1989
1990/* locks held by regulator_force_disable() */
1991static int _regulator_force_disable(struct regulator_dev *rdev)
1992{
1993	int ret = 0;
1994
1995	ret = _regulator_do_disable(rdev);
1996	if (ret < 0) {
1997		rdev_err(rdev, "failed to force disable\n");
1998		return ret;
1999	}
2000
2001	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2002			REGULATOR_EVENT_DISABLE, NULL);
2003
2004	return 0;
2005}
2006
2007/**
2008 * regulator_force_disable - force disable regulator output
2009 * @regulator: regulator source
2010 *
2011 * Forcibly disable the regulator output voltage or current.
2012 * NOTE: this *will* disable the regulator output even if other consumer
2013 * devices have it enabled. This should be used for situations when device
2014 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2015 */
2016int regulator_force_disable(struct regulator *regulator)
2017{
2018	struct regulator_dev *rdev = regulator->rdev;
2019	int ret;
2020
2021	mutex_lock(&rdev->mutex);
2022	regulator->uA_load = 0;
2023	ret = _regulator_force_disable(regulator->rdev);
2024	mutex_unlock(&rdev->mutex);
2025
2026	if (rdev->supply)
2027		while (rdev->open_count--)
2028			regulator_disable(rdev->supply);
2029
2030	return ret;
2031}
2032EXPORT_SYMBOL_GPL(regulator_force_disable);
2033
2034static void regulator_disable_work(struct work_struct *work)
2035{
2036	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2037						  disable_work.work);
2038	int count, i, ret;
2039
2040	mutex_lock(&rdev->mutex);
2041
2042	BUG_ON(!rdev->deferred_disables);
2043
2044	count = rdev->deferred_disables;
2045	rdev->deferred_disables = 0;
2046
2047	for (i = 0; i < count; i++) {
2048		ret = _regulator_disable(rdev);
2049		if (ret != 0)
2050			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2051	}
2052
2053	mutex_unlock(&rdev->mutex);
2054
2055	if (rdev->supply) {
2056		for (i = 0; i < count; i++) {
2057			ret = regulator_disable(rdev->supply);
2058			if (ret != 0) {
2059				rdev_err(rdev,
2060					 "Supply disable failed: %d\n", ret);
2061			}
2062		}
2063	}
2064}
2065
2066/**
2067 * regulator_disable_deferred - disable regulator output with delay
2068 * @regulator: regulator source
2069 * @ms: miliseconds until the regulator is disabled
2070 *
2071 * Execute regulator_disable() on the regulator after a delay.  This
2072 * is intended for use with devices that require some time to quiesce.
2073 *
2074 * NOTE: this will only disable the regulator output if no other consumer
2075 * devices have it enabled, the regulator device supports disabling and
2076 * machine constraints permit this operation.
2077 */
2078int regulator_disable_deferred(struct regulator *regulator, int ms)
2079{
2080	struct regulator_dev *rdev = regulator->rdev;
2081	int ret;
2082
2083	if (regulator->always_on)
2084		return 0;
2085
2086	if (!ms)
2087		return regulator_disable(regulator);
2088
2089	mutex_lock(&rdev->mutex);
2090	rdev->deferred_disables++;
2091	mutex_unlock(&rdev->mutex);
2092
2093	ret = queue_delayed_work(system_power_efficient_wq,
2094				 &rdev->disable_work,
2095				 msecs_to_jiffies(ms));
2096	if (ret < 0)
2097		return ret;
2098	else
2099		return 0;
2100}
2101EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2102
2103static int _regulator_is_enabled(struct regulator_dev *rdev)
2104{
2105	/* A GPIO control always takes precedence */
2106	if (rdev->ena_pin)
2107		return rdev->ena_gpio_state;
2108
2109	/* If we don't know then assume that the regulator is always on */
2110	if (!rdev->desc->ops->is_enabled)
2111		return 1;
2112
2113	return rdev->desc->ops->is_enabled(rdev);
2114}
2115
2116/**
2117 * regulator_is_enabled - is the regulator output enabled
2118 * @regulator: regulator source
2119 *
2120 * Returns positive if the regulator driver backing the source/client
2121 * has requested that the device be enabled, zero if it hasn't, else a
2122 * negative errno code.
2123 *
2124 * Note that the device backing this regulator handle can have multiple
2125 * users, so it might be enabled even if regulator_enable() was never
2126 * called for this particular source.
2127 */
2128int regulator_is_enabled(struct regulator *regulator)
2129{
2130	int ret;
2131
2132	if (regulator->always_on)
2133		return 1;
2134
2135	mutex_lock(&regulator->rdev->mutex);
2136	ret = _regulator_is_enabled(regulator->rdev);
2137	mutex_unlock(&regulator->rdev->mutex);
2138
2139	return ret;
2140}
2141EXPORT_SYMBOL_GPL(regulator_is_enabled);
2142
2143/**
2144 * regulator_can_change_voltage - check if regulator can change voltage
2145 * @regulator: regulator source
2146 *
2147 * Returns positive if the regulator driver backing the source/client
2148 * can change its voltage, false otherwise. Useful for detecting fixed
2149 * or dummy regulators and disabling voltage change logic in the client
2150 * driver.
2151 */
2152int regulator_can_change_voltage(struct regulator *regulator)
2153{
2154	struct regulator_dev	*rdev = regulator->rdev;
2155
2156	if (rdev->constraints &&
2157	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2158		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2159			return 1;
2160
2161		if (rdev->desc->continuous_voltage_range &&
2162		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2163		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2164			return 1;
2165	}
2166
2167	return 0;
2168}
2169EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2170
2171/**
2172 * regulator_count_voltages - count regulator_list_voltage() selectors
2173 * @regulator: regulator source
2174 *
2175 * Returns number of selectors, or negative errno.  Selectors are
2176 * numbered starting at zero, and typically correspond to bitfields
2177 * in hardware registers.
2178 */
2179int regulator_count_voltages(struct regulator *regulator)
2180{
2181	struct regulator_dev	*rdev = regulator->rdev;
2182
2183	return rdev->desc->n_voltages ? : -EINVAL;
2184}
2185EXPORT_SYMBOL_GPL(regulator_count_voltages);
2186
2187/**
2188 * regulator_list_voltage - enumerate supported voltages
2189 * @regulator: regulator source
2190 * @selector: identify voltage to list
2191 * Context: can sleep
2192 *
2193 * Returns a voltage that can be passed to @regulator_set_voltage(),
2194 * zero if this selector code can't be used on this system, or a
2195 * negative errno.
2196 */
2197int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2198{
2199	struct regulator_dev	*rdev = regulator->rdev;
2200	struct regulator_ops	*ops = rdev->desc->ops;
2201	int			ret;
2202
2203	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2204		return rdev->desc->fixed_uV;
2205
2206	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2207		return -EINVAL;
2208
2209	mutex_lock(&rdev->mutex);
2210	ret = ops->list_voltage(rdev, selector);
2211	mutex_unlock(&rdev->mutex);
2212
2213	if (ret > 0) {
2214		if (ret < rdev->constraints->min_uV)
2215			ret = 0;
2216		else if (ret > rdev->constraints->max_uV)
2217			ret = 0;
2218	}
2219
2220	return ret;
2221}
2222EXPORT_SYMBOL_GPL(regulator_list_voltage);
2223
2224/**
2225 * regulator_get_regmap - get the regulator's register map
2226 * @regulator: regulator source
2227 *
2228 * Returns the register map for the given regulator, or an ERR_PTR value
2229 * if the regulator doesn't use regmap.
2230 */
2231struct regmap *regulator_get_regmap(struct regulator *regulator)
2232{
2233	struct regmap *map = regulator->rdev->regmap;
2234
2235	return map ? map : ERR_PTR(-EOPNOTSUPP);
2236}
2237
2238/**
2239 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2240 * @regulator: regulator source
2241 * @vsel_reg: voltage selector register, output parameter
2242 * @vsel_mask: mask for voltage selector bitfield, output parameter
2243 *
2244 * Returns the hardware register offset and bitmask used for setting the
2245 * regulator voltage. This might be useful when configuring voltage-scaling
2246 * hardware or firmware that can make I2C requests behind the kernel's back,
2247 * for example.
2248 *
2249 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2250 * and 0 is returned, otherwise a negative errno is returned.
2251 */
2252int regulator_get_hardware_vsel_register(struct regulator *regulator,
2253					 unsigned *vsel_reg,
2254					 unsigned *vsel_mask)
2255{
2256	struct regulator_dev	*rdev = regulator->rdev;
2257	struct regulator_ops	*ops = rdev->desc->ops;
2258
2259	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2260		return -EOPNOTSUPP;
2261
2262	 *vsel_reg = rdev->desc->vsel_reg;
2263	 *vsel_mask = rdev->desc->vsel_mask;
2264
2265	 return 0;
2266}
2267EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2268
2269/**
2270 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2271 * @regulator: regulator source
2272 * @selector: identify voltage to list
2273 *
2274 * Converts the selector to a hardware-specific voltage selector that can be
2275 * directly written to the regulator registers. The address of the voltage
2276 * register can be determined by calling @regulator_get_hardware_vsel_register.
2277 *
2278 * On error a negative errno is returned.
2279 */
2280int regulator_list_hardware_vsel(struct regulator *regulator,
2281				 unsigned selector)
2282{
2283	struct regulator_dev	*rdev = regulator->rdev;
2284	struct regulator_ops	*ops = rdev->desc->ops;
2285
2286	if (selector >= rdev->desc->n_voltages)
2287		return -EINVAL;
2288	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2289		return -EOPNOTSUPP;
2290
2291	return selector;
2292}
2293EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2294
2295/**
2296 * regulator_get_linear_step - return the voltage step size between VSEL values
2297 * @regulator: regulator source
2298 *
2299 * Returns the voltage step size between VSEL values for linear
2300 * regulators, or return 0 if the regulator isn't a linear regulator.
2301 */
2302unsigned int regulator_get_linear_step(struct regulator *regulator)
2303{
2304	struct regulator_dev *rdev = regulator->rdev;
2305
2306	return rdev->desc->uV_step;
2307}
2308EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2309
2310/**
2311 * regulator_is_supported_voltage - check if a voltage range can be supported
2312 *
2313 * @regulator: Regulator to check.
2314 * @min_uV: Minimum required voltage in uV.
2315 * @max_uV: Maximum required voltage in uV.
2316 *
2317 * Returns a boolean or a negative error code.
2318 */
2319int regulator_is_supported_voltage(struct regulator *regulator,
2320				   int min_uV, int max_uV)
2321{
2322	struct regulator_dev *rdev = regulator->rdev;
2323	int i, voltages, ret;
2324
2325	/* If we can't change voltage check the current voltage */
2326	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2327		ret = regulator_get_voltage(regulator);
2328		if (ret >= 0)
2329			return min_uV <= ret && ret <= max_uV;
2330		else
2331			return ret;
2332	}
2333
2334	/* Any voltage within constrains range is fine? */
2335	if (rdev->desc->continuous_voltage_range)
2336		return min_uV >= rdev->constraints->min_uV &&
2337				max_uV <= rdev->constraints->max_uV;
2338
2339	ret = regulator_count_voltages(regulator);
2340	if (ret < 0)
2341		return ret;
2342	voltages = ret;
2343
2344	for (i = 0; i < voltages; i++) {
2345		ret = regulator_list_voltage(regulator, i);
2346
2347		if (ret >= min_uV && ret <= max_uV)
2348			return 1;
2349	}
2350
2351	return 0;
2352}
2353EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2354
2355static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2356				     int min_uV, int max_uV)
2357{
2358	int ret;
2359	int delay = 0;
2360	int best_val = 0;
2361	unsigned int selector;
2362	int old_selector = -1;
2363
2364	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2365
2366	min_uV += rdev->constraints->uV_offset;
2367	max_uV += rdev->constraints->uV_offset;
2368
2369	/*
2370	 * If we can't obtain the old selector there is not enough
2371	 * info to call set_voltage_time_sel().
2372	 */
2373	if (_regulator_is_enabled(rdev) &&
2374	    rdev->desc->ops->set_voltage_time_sel &&
2375	    rdev->desc->ops->get_voltage_sel) {
2376		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2377		if (old_selector < 0)
2378			return old_selector;
2379	}
2380
2381	if (rdev->desc->ops->set_voltage) {
2382		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2383						   &selector);
2384
2385		if (ret >= 0) {
2386			if (rdev->desc->ops->list_voltage)
2387				best_val = rdev->desc->ops->list_voltage(rdev,
2388									 selector);
2389			else
2390				best_val = _regulator_get_voltage(rdev);
2391		}
2392
2393	} else if (rdev->desc->ops->set_voltage_sel) {
2394		if (rdev->desc->ops->map_voltage) {
2395			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2396							   max_uV);
2397		} else {
2398			if (rdev->desc->ops->list_voltage ==
2399			    regulator_list_voltage_linear)
2400				ret = regulator_map_voltage_linear(rdev,
2401								min_uV, max_uV);
2402			else if (rdev->desc->ops->list_voltage ==
2403				 regulator_list_voltage_linear_range)
2404				ret = regulator_map_voltage_linear_range(rdev,
2405								min_uV, max_uV);
2406			else
2407				ret = regulator_map_voltage_iterate(rdev,
2408								min_uV, max_uV);
2409		}
2410
2411		if (ret >= 0) {
2412			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2413			if (min_uV <= best_val && max_uV >= best_val) {
2414				selector = ret;
2415				if (old_selector == selector)
2416					ret = 0;
2417				else
2418					ret = rdev->desc->ops->set_voltage_sel(
2419								rdev, ret);
2420			} else {
2421				ret = -EINVAL;
2422			}
2423		}
2424	} else {
2425		ret = -EINVAL;
2426	}
2427
2428	/* Call set_voltage_time_sel if successfully obtained old_selector */
2429	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2430		&& old_selector != selector) {
2431
2432		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2433						old_selector, selector);
2434		if (delay < 0) {
2435			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2436				  delay);
2437			delay = 0;
2438		}
2439
2440		/* Insert any necessary delays */
2441		if (delay >= 1000) {
2442			mdelay(delay / 1000);
2443			udelay(delay % 1000);
2444		} else if (delay) {
2445			udelay(delay);
2446		}
2447	}
2448
2449	if (ret == 0 && best_val >= 0) {
2450		unsigned long data = best_val;
2451
2452		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2453				     (void *)data);
2454	}
2455
2456	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2457
2458	return ret;
2459}
2460
2461/**
2462 * regulator_set_voltage - set regulator output voltage
2463 * @regulator: regulator source
2464 * @min_uV: Minimum required voltage in uV
2465 * @max_uV: Maximum acceptable voltage in uV
2466 *
2467 * Sets a voltage regulator to the desired output voltage. This can be set
2468 * during any regulator state. IOW, regulator can be disabled or enabled.
2469 *
2470 * If the regulator is enabled then the voltage will change to the new value
2471 * immediately otherwise if the regulator is disabled the regulator will
2472 * output at the new voltage when enabled.
2473 *
2474 * NOTE: If the regulator is shared between several devices then the lowest
2475 * request voltage that meets the system constraints will be used.
2476 * Regulator system constraints must be set for this regulator before
2477 * calling this function otherwise this call will fail.
2478 */
2479int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2480{
2481	struct regulator_dev *rdev = regulator->rdev;
2482	int ret = 0;
2483	int old_min_uV, old_max_uV;
2484	int current_uV;
2485
2486	mutex_lock(&rdev->mutex);
2487
2488	/* If we're setting the same range as last time the change
2489	 * should be a noop (some cpufreq implementations use the same
2490	 * voltage for multiple frequencies, for example).
2491	 */
2492	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2493		goto out;
2494
2495	/* If we're trying to set a range that overlaps the current voltage,
2496	 * return succesfully even though the regulator does not support
2497	 * changing the voltage.
2498	 */
2499	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2500		current_uV = _regulator_get_voltage(rdev);
2501		if (min_uV <= current_uV && current_uV <= max_uV) {
2502			regulator->min_uV = min_uV;
2503			regulator->max_uV = max_uV;
2504			goto out;
2505		}
2506	}
2507
2508	/* sanity check */
2509	if (!rdev->desc->ops->set_voltage &&
2510	    !rdev->desc->ops->set_voltage_sel) {
2511		ret = -EINVAL;
2512		goto out;
2513	}
2514
2515	/* constraints check */
2516	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2517	if (ret < 0)
2518		goto out;
2519
2520	/* restore original values in case of error */
2521	old_min_uV = regulator->min_uV;
2522	old_max_uV = regulator->max_uV;
2523	regulator->min_uV = min_uV;
2524	regulator->max_uV = max_uV;
2525
2526	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2527	if (ret < 0)
2528		goto out2;
2529
2530	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2531	if (ret < 0)
2532		goto out2;
2533
2534out:
2535	mutex_unlock(&rdev->mutex);
2536	return ret;
2537out2:
2538	regulator->min_uV = old_min_uV;
2539	regulator->max_uV = old_max_uV;
2540	mutex_unlock(&rdev->mutex);
2541	return ret;
2542}
2543EXPORT_SYMBOL_GPL(regulator_set_voltage);
2544
2545/**
2546 * regulator_set_voltage_time - get raise/fall time
2547 * @regulator: regulator source
2548 * @old_uV: starting voltage in microvolts
2549 * @new_uV: target voltage in microvolts
2550 *
2551 * Provided with the starting and ending voltage, this function attempts to
2552 * calculate the time in microseconds required to rise or fall to this new
2553 * voltage.
2554 */
2555int regulator_set_voltage_time(struct regulator *regulator,
2556			       int old_uV, int new_uV)
2557{
2558	struct regulator_dev	*rdev = regulator->rdev;
2559	struct regulator_ops	*ops = rdev->desc->ops;
2560	int old_sel = -1;
2561	int new_sel = -1;
2562	int voltage;
2563	int i;
2564
2565	/* Currently requires operations to do this */
2566	if (!ops->list_voltage || !ops->set_voltage_time_sel
2567	    || !rdev->desc->n_voltages)
2568		return -EINVAL;
2569
2570	for (i = 0; i < rdev->desc->n_voltages; i++) {
2571		/* We only look for exact voltage matches here */
2572		voltage = regulator_list_voltage(regulator, i);
2573		if (voltage < 0)
2574			return -EINVAL;
2575		if (voltage == 0)
2576			continue;
2577		if (voltage == old_uV)
2578			old_sel = i;
2579		if (voltage == new_uV)
2580			new_sel = i;
2581	}
2582
2583	if (old_sel < 0 || new_sel < 0)
2584		return -EINVAL;
2585
2586	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2587}
2588EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2589
2590/**
2591 * regulator_set_voltage_time_sel - get raise/fall time
2592 * @rdev: regulator source device
2593 * @old_selector: selector for starting voltage
2594 * @new_selector: selector for target voltage
2595 *
2596 * Provided with the starting and target voltage selectors, this function
2597 * returns time in microseconds required to rise or fall to this new voltage
2598 *
2599 * Drivers providing ramp_delay in regulation_constraints can use this as their
2600 * set_voltage_time_sel() operation.
2601 */
2602int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2603				   unsigned int old_selector,
2604				   unsigned int new_selector)
2605{
2606	unsigned int ramp_delay = 0;
2607	int old_volt, new_volt;
2608
2609	if (rdev->constraints->ramp_delay)
2610		ramp_delay = rdev->constraints->ramp_delay;
2611	else if (rdev->desc->ramp_delay)
2612		ramp_delay = rdev->desc->ramp_delay;
2613
2614	if (ramp_delay == 0) {
2615		rdev_warn(rdev, "ramp_delay not set\n");
2616		return 0;
2617	}
2618
2619	/* sanity check */
2620	if (!rdev->desc->ops->list_voltage)
2621		return -EINVAL;
2622
2623	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2624	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2625
2626	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2627}
2628EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2629
2630/**
2631 * regulator_sync_voltage - re-apply last regulator output voltage
2632 * @regulator: regulator source
2633 *
2634 * Re-apply the last configured voltage.  This is intended to be used
2635 * where some external control source the consumer is cooperating with
2636 * has caused the configured voltage to change.
2637 */
2638int regulator_sync_voltage(struct regulator *regulator)
2639{
2640	struct regulator_dev *rdev = regulator->rdev;
2641	int ret, min_uV, max_uV;
2642
2643	mutex_lock(&rdev->mutex);
2644
2645	if (!rdev->desc->ops->set_voltage &&
2646	    !rdev->desc->ops->set_voltage_sel) {
2647		ret = -EINVAL;
2648		goto out;
2649	}
2650
2651	/* This is only going to work if we've had a voltage configured. */
2652	if (!regulator->min_uV && !regulator->max_uV) {
2653		ret = -EINVAL;
2654		goto out;
2655	}
2656
2657	min_uV = regulator->min_uV;
2658	max_uV = regulator->max_uV;
2659
2660	/* This should be a paranoia check... */
2661	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2662	if (ret < 0)
2663		goto out;
2664
2665	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2666	if (ret < 0)
2667		goto out;
2668
2669	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2670
2671out:
2672	mutex_unlock(&rdev->mutex);
2673	return ret;
2674}
2675EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2676
2677static int _regulator_get_voltage(struct regulator_dev *rdev)
2678{
2679	int sel, ret;
2680
2681	if (rdev->desc->ops->get_voltage_sel) {
2682		sel = rdev->desc->ops->get_voltage_sel(rdev);
2683		if (sel < 0)
2684			return sel;
2685		ret = rdev->desc->ops->list_voltage(rdev, sel);
2686	} else if (rdev->desc->ops->get_voltage) {
2687		ret = rdev->desc->ops->get_voltage(rdev);
2688	} else if (rdev->desc->ops->list_voltage) {
2689		ret = rdev->desc->ops->list_voltage(rdev, 0);
2690	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2691		ret = rdev->desc->fixed_uV;
2692	} else {
2693		return -EINVAL;
2694	}
2695
2696	if (ret < 0)
2697		return ret;
2698	return ret - rdev->constraints->uV_offset;
2699}
2700
2701/**
2702 * regulator_get_voltage - get regulator output voltage
2703 * @regulator: regulator source
2704 *
2705 * This returns the current regulator voltage in uV.
2706 *
2707 * NOTE: If the regulator is disabled it will return the voltage value. This
2708 * function should not be used to determine regulator state.
2709 */
2710int regulator_get_voltage(struct regulator *regulator)
2711{
2712	int ret;
2713
2714	mutex_lock(&regulator->rdev->mutex);
2715
2716	ret = _regulator_get_voltage(regulator->rdev);
2717
2718	mutex_unlock(&regulator->rdev->mutex);
2719
2720	return ret;
2721}
2722EXPORT_SYMBOL_GPL(regulator_get_voltage);
2723
2724/**
2725 * regulator_set_current_limit - set regulator output current limit
2726 * @regulator: regulator source
2727 * @min_uA: Minimum supported current in uA
2728 * @max_uA: Maximum supported current in uA
2729 *
2730 * Sets current sink to the desired output current. This can be set during
2731 * any regulator state. IOW, regulator can be disabled or enabled.
2732 *
2733 * If the regulator is enabled then the current will change to the new value
2734 * immediately otherwise if the regulator is disabled the regulator will
2735 * output at the new current when enabled.
2736 *
2737 * NOTE: Regulator system constraints must be set for this regulator before
2738 * calling this function otherwise this call will fail.
2739 */
2740int regulator_set_current_limit(struct regulator *regulator,
2741			       int min_uA, int max_uA)
2742{
2743	struct regulator_dev *rdev = regulator->rdev;
2744	int ret;
2745
2746	mutex_lock(&rdev->mutex);
2747
2748	/* sanity check */
2749	if (!rdev->desc->ops->set_current_limit) {
2750		ret = -EINVAL;
2751		goto out;
2752	}
2753
2754	/* constraints check */
2755	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2756	if (ret < 0)
2757		goto out;
2758
2759	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2760out:
2761	mutex_unlock(&rdev->mutex);
2762	return ret;
2763}
2764EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2765
2766static int _regulator_get_current_limit(struct regulator_dev *rdev)
2767{
2768	int ret;
2769
2770	mutex_lock(&rdev->mutex);
2771
2772	/* sanity check */
2773	if (!rdev->desc->ops->get_current_limit) {
2774		ret = -EINVAL;
2775		goto out;
2776	}
2777
2778	ret = rdev->desc->ops->get_current_limit(rdev);
2779out:
2780	mutex_unlock(&rdev->mutex);
2781	return ret;
2782}
2783
2784/**
2785 * regulator_get_current_limit - get regulator output current
2786 * @regulator: regulator source
2787 *
2788 * This returns the current supplied by the specified current sink in uA.
2789 *
2790 * NOTE: If the regulator is disabled it will return the current value. This
2791 * function should not be used to determine regulator state.
2792 */
2793int regulator_get_current_limit(struct regulator *regulator)
2794{
2795	return _regulator_get_current_limit(regulator->rdev);
2796}
2797EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2798
2799/**
2800 * regulator_set_mode - set regulator operating mode
2801 * @regulator: regulator source
2802 * @mode: operating mode - one of the REGULATOR_MODE constants
2803 *
2804 * Set regulator operating mode to increase regulator efficiency or improve
2805 * regulation performance.
2806 *
2807 * NOTE: Regulator system constraints must be set for this regulator before
2808 * calling this function otherwise this call will fail.
2809 */
2810int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2811{
2812	struct regulator_dev *rdev = regulator->rdev;
2813	int ret;
2814	int regulator_curr_mode;
2815
2816	mutex_lock(&rdev->mutex);
2817
2818	/* sanity check */
2819	if (!rdev->desc->ops->set_mode) {
2820		ret = -EINVAL;
2821		goto out;
2822	}
2823
2824	/* return if the same mode is requested */
2825	if (rdev->desc->ops->get_mode) {
2826		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2827		if (regulator_curr_mode == mode) {
2828			ret = 0;
2829			goto out;
2830		}
2831	}
2832
2833	/* constraints check */
2834	ret = regulator_mode_constrain(rdev, &mode);
2835	if (ret < 0)
2836		goto out;
2837
2838	ret = rdev->desc->ops->set_mode(rdev, mode);
2839out:
2840	mutex_unlock(&rdev->mutex);
2841	return ret;
2842}
2843EXPORT_SYMBOL_GPL(regulator_set_mode);
2844
2845static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2846{
2847	int ret;
2848
2849	mutex_lock(&rdev->mutex);
2850
2851	/* sanity check */
2852	if (!rdev->desc->ops->get_mode) {
2853		ret = -EINVAL;
2854		goto out;
2855	}
2856
2857	ret = rdev->desc->ops->get_mode(rdev);
2858out:
2859	mutex_unlock(&rdev->mutex);
2860	return ret;
2861}
2862
2863/**
2864 * regulator_get_mode - get regulator operating mode
2865 * @regulator: regulator source
2866 *
2867 * Get the current regulator operating mode.
2868 */
2869unsigned int regulator_get_mode(struct regulator *regulator)
2870{
2871	return _regulator_get_mode(regulator->rdev);
2872}
2873EXPORT_SYMBOL_GPL(regulator_get_mode);
2874
2875/**
2876 * regulator_set_optimum_mode - set regulator optimum operating mode
2877 * @regulator: regulator source
2878 * @uA_load: load current
2879 *
2880 * Notifies the regulator core of a new device load. This is then used by
2881 * DRMS (if enabled by constraints) to set the most efficient regulator
2882 * operating mode for the new regulator loading.
2883 *
2884 * Consumer devices notify their supply regulator of the maximum power
2885 * they will require (can be taken from device datasheet in the power
2886 * consumption tables) when they change operational status and hence power
2887 * state. Examples of operational state changes that can affect power
2888 * consumption are :-
2889 *
2890 *    o Device is opened / closed.
2891 *    o Device I/O is about to begin or has just finished.
2892 *    o Device is idling in between work.
2893 *
2894 * This information is also exported via sysfs to userspace.
2895 *
2896 * DRMS will sum the total requested load on the regulator and change
2897 * to the most efficient operating mode if platform constraints allow.
2898 *
2899 * Returns the new regulator mode or error.
2900 */
2901int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2902{
2903	struct regulator_dev *rdev = regulator->rdev;
2904	struct regulator *consumer;
2905	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2906	unsigned int mode;
2907
2908	if (rdev->supply)
2909		input_uV = regulator_get_voltage(rdev->supply);
2910
2911	mutex_lock(&rdev->mutex);
2912
2913	/*
2914	 * first check to see if we can set modes at all, otherwise just
2915	 * tell the consumer everything is OK.
2916	 */
2917	regulator->uA_load = uA_load;
2918	ret = regulator_check_drms(rdev);
2919	if (ret < 0) {
2920		ret = 0;
2921		goto out;
2922	}
2923
2924	if (!rdev->desc->ops->get_optimum_mode)
2925		goto out;
2926
2927	/*
2928	 * we can actually do this so any errors are indicators of
2929	 * potential real failure.
2930	 */
2931	ret = -EINVAL;
2932
2933	if (!rdev->desc->ops->set_mode)
2934		goto out;
2935
2936	/* get output voltage */
2937	output_uV = _regulator_get_voltage(rdev);
2938	if (output_uV <= 0) {
2939		rdev_err(rdev, "invalid output voltage found\n");
2940		goto out;
2941	}
2942
2943	/* No supply? Use constraint voltage */
2944	if (input_uV <= 0)
2945		input_uV = rdev->constraints->input_uV;
2946	if (input_uV <= 0) {
2947		rdev_err(rdev, "invalid input voltage found\n");
2948		goto out;
2949	}
2950
2951	/* calc total requested load for this regulator */
2952	list_for_each_entry(consumer, &rdev->consumer_list, list)
2953		total_uA_load += consumer->uA_load;
2954
2955	mode = rdev->desc->ops->get_optimum_mode(rdev,
2956						 input_uV, output_uV,
2957						 total_uA_load);
2958	ret = regulator_mode_constrain(rdev, &mode);
2959	if (ret < 0) {
2960		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2961			 total_uA_load, input_uV, output_uV);
2962		goto out;
2963	}
2964
2965	ret = rdev->desc->ops->set_mode(rdev, mode);
2966	if (ret < 0) {
2967		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2968		goto out;
2969	}
2970	ret = mode;
2971out:
2972	mutex_unlock(&rdev->mutex);
2973	return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2976
2977/**
2978 * regulator_allow_bypass - allow the regulator to go into bypass mode
2979 *
2980 * @regulator: Regulator to configure
2981 * @enable: enable or disable bypass mode
2982 *
2983 * Allow the regulator to go into bypass mode if all other consumers
2984 * for the regulator also enable bypass mode and the machine
2985 * constraints allow this.  Bypass mode means that the regulator is
2986 * simply passing the input directly to the output with no regulation.
2987 */
2988int regulator_allow_bypass(struct regulator *regulator, bool enable)
2989{
2990	struct regulator_dev *rdev = regulator->rdev;
2991	int ret = 0;
2992
2993	if (!rdev->desc->ops->set_bypass)
2994		return 0;
2995
2996	if (rdev->constraints &&
2997	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2998		return 0;
2999
3000	mutex_lock(&rdev->mutex);
3001
3002	if (enable && !regulator->bypass) {
3003		rdev->bypass_count++;
3004
3005		if (rdev->bypass_count == rdev->open_count) {
3006			ret = rdev->desc->ops->set_bypass(rdev, enable);
3007			if (ret != 0)
3008				rdev->bypass_count--;
3009		}
3010
3011	} else if (!enable && regulator->bypass) {
3012		rdev->bypass_count--;
3013
3014		if (rdev->bypass_count != rdev->open_count) {
3015			ret = rdev->desc->ops->set_bypass(rdev, enable);
3016			if (ret != 0)
3017				rdev->bypass_count++;
3018		}
3019	}
3020
3021	if (ret == 0)
3022		regulator->bypass = enable;
3023
3024	mutex_unlock(&rdev->mutex);
3025
3026	return ret;
3027}
3028EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3029
3030/**
3031 * regulator_register_notifier - register regulator event notifier
3032 * @regulator: regulator source
3033 * @nb: notifier block
3034 *
3035 * Register notifier block to receive regulator events.
3036 */
3037int regulator_register_notifier(struct regulator *regulator,
3038			      struct notifier_block *nb)
3039{
3040	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3041						nb);
3042}
3043EXPORT_SYMBOL_GPL(regulator_register_notifier);
3044
3045/**
3046 * regulator_unregister_notifier - unregister regulator event notifier
3047 * @regulator: regulator source
3048 * @nb: notifier block
3049 *
3050 * Unregister regulator event notifier block.
3051 */
3052int regulator_unregister_notifier(struct regulator *regulator,
3053				struct notifier_block *nb)
3054{
3055	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3056						  nb);
3057}
3058EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3059
3060/* notify regulator consumers and downstream regulator consumers.
3061 * Note mutex must be held by caller.
3062 */
3063static void _notifier_call_chain(struct regulator_dev *rdev,
3064				  unsigned long event, void *data)
3065{
3066	/* call rdev chain first */
3067	blocking_notifier_call_chain(&rdev->notifier, event, data);
3068}
3069
3070/**
3071 * regulator_bulk_get - get multiple regulator consumers
3072 *
3073 * @dev:           Device to supply
3074 * @num_consumers: Number of consumers to register
3075 * @consumers:     Configuration of consumers; clients are stored here.
3076 *
3077 * @return 0 on success, an errno on failure.
3078 *
3079 * This helper function allows drivers to get several regulator
3080 * consumers in one operation.  If any of the regulators cannot be
3081 * acquired then any regulators that were allocated will be freed
3082 * before returning to the caller.
3083 */
3084int regulator_bulk_get(struct device *dev, int num_consumers,
3085		       struct regulator_bulk_data *consumers)
3086{
3087	int i;
3088	int ret;
3089
3090	for (i = 0; i < num_consumers; i++)
3091		consumers[i].consumer = NULL;
3092
3093	for (i = 0; i < num_consumers; i++) {
3094		consumers[i].consumer = regulator_get(dev,
3095						      consumers[i].supply);
3096		if (IS_ERR(consumers[i].consumer)) {
3097			ret = PTR_ERR(consumers[i].consumer);
3098			dev_err(dev, "Failed to get supply '%s': %d\n",
3099				consumers[i].supply, ret);
3100			consumers[i].consumer = NULL;
3101			goto err;
3102		}
3103	}
3104
3105	return 0;
3106
3107err:
3108	while (--i >= 0)
3109		regulator_put(consumers[i].consumer);
3110
3111	return ret;
3112}
3113EXPORT_SYMBOL_GPL(regulator_bulk_get);
3114
3115static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3116{
3117	struct regulator_bulk_data *bulk = data;
3118
3119	bulk->ret = regulator_enable(bulk->consumer);
3120}
3121
3122/**
3123 * regulator_bulk_enable - enable multiple regulator consumers
3124 *
3125 * @num_consumers: Number of consumers
3126 * @consumers:     Consumer data; clients are stored here.
3127 * @return         0 on success, an errno on failure
3128 *
3129 * This convenience API allows consumers to enable multiple regulator
3130 * clients in a single API call.  If any consumers cannot be enabled
3131 * then any others that were enabled will be disabled again prior to
3132 * return.
3133 */
3134int regulator_bulk_enable(int num_consumers,
3135			  struct regulator_bulk_data *consumers)
3136{
3137	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3138	int i;
3139	int ret = 0;
3140
3141	for (i = 0; i < num_consumers; i++) {
3142		if (consumers[i].consumer->always_on)
3143			consumers[i].ret = 0;
3144		else
3145			async_schedule_domain(regulator_bulk_enable_async,
3146					      &consumers[i], &async_domain);
3147	}
3148
3149	async_synchronize_full_domain(&async_domain);
3150
3151	/* If any consumer failed we need to unwind any that succeeded */
3152	for (i = 0; i < num_consumers; i++) {
3153		if (consumers[i].ret != 0) {
3154			ret = consumers[i].ret;
3155			goto err;
3156		}
3157	}
3158
3159	return 0;
3160
3161err:
3162	for (i = 0; i < num_consumers; i++) {
3163		if (consumers[i].ret < 0)
3164			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3165			       consumers[i].ret);
3166		else
3167			regulator_disable(consumers[i].consumer);
3168	}
3169
3170	return ret;
3171}
3172EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3173
3174/**
3175 * regulator_bulk_disable - disable multiple regulator consumers
3176 *
3177 * @num_consumers: Number of consumers
3178 * @consumers:     Consumer data; clients are stored here.
3179 * @return         0 on success, an errno on failure
3180 *
3181 * This convenience API allows consumers to disable multiple regulator
3182 * clients in a single API call.  If any consumers cannot be disabled
3183 * then any others that were disabled will be enabled again prior to
3184 * return.
3185 */
3186int regulator_bulk_disable(int num_consumers,
3187			   struct regulator_bulk_data *consumers)
3188{
3189	int i;
3190	int ret, r;
3191
3192	for (i = num_consumers - 1; i >= 0; --i) {
3193		ret = regulator_disable(consumers[i].consumer);
3194		if (ret != 0)
3195			goto err;
3196	}
3197
3198	return 0;
3199
3200err:
3201	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3202	for (++i; i < num_consumers; ++i) {
3203		r = regulator_enable(consumers[i].consumer);
3204		if (r != 0)
3205			pr_err("Failed to reename %s: %d\n",
3206			       consumers[i].supply, r);
3207	}
3208
3209	return ret;
3210}
3211EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3212
3213/**
3214 * regulator_bulk_force_disable - force disable multiple regulator consumers
3215 *
3216 * @num_consumers: Number of consumers
3217 * @consumers:     Consumer data; clients are stored here.
3218 * @return         0 on success, an errno on failure
3219 *
3220 * This convenience API allows consumers to forcibly disable multiple regulator
3221 * clients in a single API call.
3222 * NOTE: This should be used for situations when device damage will
3223 * likely occur if the regulators are not disabled (e.g. over temp).
3224 * Although regulator_force_disable function call for some consumers can
3225 * return error numbers, the function is called for all consumers.
3226 */
3227int regulator_bulk_force_disable(int num_consumers,
3228			   struct regulator_bulk_data *consumers)
3229{
3230	int i;
3231	int ret;
3232
3233	for (i = 0; i < num_consumers; i++)
3234		consumers[i].ret =
3235			    regulator_force_disable(consumers[i].consumer);
3236
3237	for (i = 0; i < num_consumers; i++) {
3238		if (consumers[i].ret != 0) {
3239			ret = consumers[i].ret;
3240			goto out;
3241		}
3242	}
3243
3244	return 0;
3245out:
3246	return ret;
3247}
3248EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3249
3250/**
3251 * regulator_bulk_free - free multiple regulator consumers
3252 *
3253 * @num_consumers: Number of consumers
3254 * @consumers:     Consumer data; clients are stored here.
3255 *
3256 * This convenience API allows consumers to free multiple regulator
3257 * clients in a single API call.
3258 */
3259void regulator_bulk_free(int num_consumers,
3260			 struct regulator_bulk_data *consumers)
3261{
3262	int i;
3263
3264	for (i = 0; i < num_consumers; i++) {
3265		regulator_put(consumers[i].consumer);
3266		consumers[i].consumer = NULL;
3267	}
3268}
3269EXPORT_SYMBOL_GPL(regulator_bulk_free);
3270
3271/**
3272 * regulator_notifier_call_chain - call regulator event notifier
3273 * @rdev: regulator source
3274 * @event: notifier block
3275 * @data: callback-specific data.
3276 *
3277 * Called by regulator drivers to notify clients a regulator event has
3278 * occurred. We also notify regulator clients downstream.
3279 * Note lock must be held by caller.
3280 */
3281int regulator_notifier_call_chain(struct regulator_dev *rdev,
3282				  unsigned long event, void *data)
3283{
3284	_notifier_call_chain(rdev, event, data);
3285	return NOTIFY_DONE;
3286
3287}
3288EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3289
3290/**
3291 * regulator_mode_to_status - convert a regulator mode into a status
3292 *
3293 * @mode: Mode to convert
3294 *
3295 * Convert a regulator mode into a status.
3296 */
3297int regulator_mode_to_status(unsigned int mode)
3298{
3299	switch (mode) {
3300	case REGULATOR_MODE_FAST:
3301		return REGULATOR_STATUS_FAST;
3302	case REGULATOR_MODE_NORMAL:
3303		return REGULATOR_STATUS_NORMAL;
3304	case REGULATOR_MODE_IDLE:
3305		return REGULATOR_STATUS_IDLE;
3306	case REGULATOR_MODE_STANDBY:
3307		return REGULATOR_STATUS_STANDBY;
3308	default:
3309		return REGULATOR_STATUS_UNDEFINED;
3310	}
3311}
3312EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3313
3314/*
3315 * To avoid cluttering sysfs (and memory) with useless state, only
3316 * create attributes that can be meaningfully displayed.
3317 */
3318static int add_regulator_attributes(struct regulator_dev *rdev)
3319{
3320	struct device		*dev = &rdev->dev;
3321	struct regulator_ops	*ops = rdev->desc->ops;
3322	int			status = 0;
3323
3324	/* some attributes need specific methods to be displayed */
3325	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3326	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3327	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3328		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3329		status = device_create_file(dev, &dev_attr_microvolts);
3330		if (status < 0)
3331			return status;
3332	}
3333	if (ops->get_current_limit) {
3334		status = device_create_file(dev, &dev_attr_microamps);
3335		if (status < 0)
3336			return status;
3337	}
3338	if (ops->get_mode) {
3339		status = device_create_file(dev, &dev_attr_opmode);
3340		if (status < 0)
3341			return status;
3342	}
3343	if (rdev->ena_pin || ops->is_enabled) {
3344		status = device_create_file(dev, &dev_attr_state);
3345		if (status < 0)
3346			return status;
3347	}
3348	if (ops->get_status) {
3349		status = device_create_file(dev, &dev_attr_status);
3350		if (status < 0)
3351			return status;
3352	}
3353	if (ops->get_bypass) {
3354		status = device_create_file(dev, &dev_attr_bypass);
3355		if (status < 0)
3356			return status;
3357	}
3358
3359	/* some attributes are type-specific */
3360	if (rdev->desc->type == REGULATOR_CURRENT) {
3361		status = device_create_file(dev, &dev_attr_requested_microamps);
3362		if (status < 0)
3363			return status;
3364	}
3365
3366	/* all the other attributes exist to support constraints;
3367	 * don't show them if there are no constraints, or if the
3368	 * relevant supporting methods are missing.
3369	 */
3370	if (!rdev->constraints)
3371		return status;
3372
3373	/* constraints need specific supporting methods */
3374	if (ops->set_voltage || ops->set_voltage_sel) {
3375		status = device_create_file(dev, &dev_attr_min_microvolts);
3376		if (status < 0)
3377			return status;
3378		status = device_create_file(dev, &dev_attr_max_microvolts);
3379		if (status < 0)
3380			return status;
3381	}
3382	if (ops->set_current_limit) {
3383		status = device_create_file(dev, &dev_attr_min_microamps);
3384		if (status < 0)
3385			return status;
3386		status = device_create_file(dev, &dev_attr_max_microamps);
3387		if (status < 0)
3388			return status;
3389	}
3390
3391	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3392	if (status < 0)
3393		return status;
3394	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3395	if (status < 0)
3396		return status;
3397	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3398	if (status < 0)
3399		return status;
3400
3401	if (ops->set_suspend_voltage) {
3402		status = device_create_file(dev,
3403				&dev_attr_suspend_standby_microvolts);
3404		if (status < 0)
3405			return status;
3406		status = device_create_file(dev,
3407				&dev_attr_suspend_mem_microvolts);
3408		if (status < 0)
3409			return status;
3410		status = device_create_file(dev,
3411				&dev_attr_suspend_disk_microvolts);
3412		if (status < 0)
3413			return status;
3414	}
3415
3416	if (ops->set_suspend_mode) {
3417		status = device_create_file(dev,
3418				&dev_attr_suspend_standby_mode);
3419		if (status < 0)
3420			return status;
3421		status = device_create_file(dev,
3422				&dev_attr_suspend_mem_mode);
3423		if (status < 0)
3424			return status;
3425		status = device_create_file(dev,
3426				&dev_attr_suspend_disk_mode);
3427		if (status < 0)
3428			return status;
3429	}
3430
3431	return status;
3432}
3433
3434static void rdev_init_debugfs(struct regulator_dev *rdev)
3435{
3436	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3437	if (!rdev->debugfs) {
3438		rdev_warn(rdev, "Failed to create debugfs directory\n");
3439		return;
3440	}
3441
3442	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3443			   &rdev->use_count);
3444	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3445			   &rdev->open_count);
3446	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3447			   &rdev->bypass_count);
3448}
3449
3450/**
3451 * regulator_register - register regulator
3452 * @regulator_desc: regulator to register
3453 * @config: runtime configuration for regulator
3454 *
3455 * Called by regulator drivers to register a regulator.
3456 * Returns a valid pointer to struct regulator_dev on success
3457 * or an ERR_PTR() on error.
3458 */
3459struct regulator_dev *
3460regulator_register(const struct regulator_desc *regulator_desc,
3461		   const struct regulator_config *config)
3462{
3463	const struct regulation_constraints *constraints = NULL;
3464	const struct regulator_init_data *init_data;
3465	static atomic_t regulator_no = ATOMIC_INIT(0);
3466	struct regulator_dev *rdev;
3467	struct device *dev;
3468	int ret, i;
3469	const char *supply = NULL;
3470
3471	if (regulator_desc == NULL || config == NULL)
3472		return ERR_PTR(-EINVAL);
3473
3474	dev = config->dev;
3475	WARN_ON(!dev);
3476
3477	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3478		return ERR_PTR(-EINVAL);
3479
3480	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3481	    regulator_desc->type != REGULATOR_CURRENT)
3482		return ERR_PTR(-EINVAL);
3483
3484	/* Only one of each should be implemented */
3485	WARN_ON(regulator_desc->ops->get_voltage &&
3486		regulator_desc->ops->get_voltage_sel);
3487	WARN_ON(regulator_desc->ops->set_voltage &&
3488		regulator_desc->ops->set_voltage_sel);
3489
3490	/* If we're using selectors we must implement list_voltage. */
3491	if (regulator_desc->ops->get_voltage_sel &&
3492	    !regulator_desc->ops->list_voltage) {
3493		return ERR_PTR(-EINVAL);
3494	}
3495	if (regulator_desc->ops->set_voltage_sel &&
3496	    !regulator_desc->ops->list_voltage) {
3497		return ERR_PTR(-EINVAL);
3498	}
3499
3500	init_data = config->init_data;
3501
3502	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3503	if (rdev == NULL)
3504		return ERR_PTR(-ENOMEM);
3505
3506	mutex_lock(&regulator_list_mutex);
3507
3508	mutex_init(&rdev->mutex);
3509	rdev->reg_data = config->driver_data;
3510	rdev->owner = regulator_desc->owner;
3511	rdev->desc = regulator_desc;
3512	if (config->regmap)
3513		rdev->regmap = config->regmap;
3514	else if (dev_get_regmap(dev, NULL))
3515		rdev->regmap = dev_get_regmap(dev, NULL);
3516	else if (dev->parent)
3517		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3518	INIT_LIST_HEAD(&rdev->consumer_list);
3519	INIT_LIST_HEAD(&rdev->list);
3520	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3521	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3522
3523	/* preform any regulator specific init */
3524	if (init_data && init_data->regulator_init) {
3525		ret = init_data->regulator_init(rdev->reg_data);
3526		if (ret < 0)
3527			goto clean;
3528	}
3529
3530	/* register with sysfs */
3531	rdev->dev.class = &regulator_class;
3532	rdev->dev.of_node = of_node_get(config->of_node);
3533	rdev->dev.parent = dev;
3534	dev_set_name(&rdev->dev, "regulator.%d",
3535		     atomic_inc_return(&regulator_no) - 1);
3536	ret = device_register(&rdev->dev);
3537	if (ret != 0) {
3538		put_device(&rdev->dev);
3539		goto clean;
3540	}
3541
3542	dev_set_drvdata(&rdev->dev, rdev);
3543
3544	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3545		ret = regulator_ena_gpio_request(rdev, config);
3546		if (ret != 0) {
3547			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3548				 config->ena_gpio, ret);
3549			goto wash;
3550		}
3551
3552		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3553			rdev->ena_gpio_state = 1;
3554
3555		if (config->ena_gpio_invert)
3556			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3557	}
3558
3559	/* set regulator constraints */
3560	if (init_data)
3561		constraints = &init_data->constraints;
3562
3563	ret = set_machine_constraints(rdev, constraints);
3564	if (ret < 0)
3565		goto scrub;
3566
3567	/* add attributes supported by this regulator */
3568	ret = add_regulator_attributes(rdev);
3569	if (ret < 0)
3570		goto scrub;
3571
3572	if (init_data && init_data->supply_regulator)
3573		supply = init_data->supply_regulator;
3574	else if (regulator_desc->supply_name)
3575		supply = regulator_desc->supply_name;
3576
3577	if (supply) {
3578		struct regulator_dev *r;
3579
3580		r = regulator_dev_lookup(dev, supply, &ret);
3581
3582		if (ret == -ENODEV) {
3583			/*
3584			 * No supply was specified for this regulator and
3585			 * there will never be one.
3586			 */
3587			ret = 0;
3588			goto add_dev;
3589		} else if (!r) {
3590			dev_err(dev, "Failed to find supply %s\n", supply);
3591			ret = -EPROBE_DEFER;
3592			goto scrub;
3593		}
3594
3595		ret = set_supply(rdev, r);
3596		if (ret < 0)
3597			goto scrub;
3598
3599		/* Enable supply if rail is enabled */
3600		if (_regulator_is_enabled(rdev)) {
3601			ret = regulator_enable(rdev->supply);
3602			if (ret < 0)
3603				goto scrub;
3604		}
3605	}
3606
3607add_dev:
3608	/* add consumers devices */
3609	if (init_data) {
3610		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3611			ret = set_consumer_device_supply(rdev,
3612				init_data->consumer_supplies[i].dev_name,
3613				init_data->consumer_supplies[i].supply);
3614			if (ret < 0) {
3615				dev_err(dev, "Failed to set supply %s\n",
3616					init_data->consumer_supplies[i].supply);
3617				goto unset_supplies;
3618			}
3619		}
3620	}
3621
3622	list_add(&rdev->list, &regulator_list);
3623
3624	rdev_init_debugfs(rdev);
3625out:
3626	mutex_unlock(&regulator_list_mutex);
3627	return rdev;
3628
3629unset_supplies:
3630	unset_regulator_supplies(rdev);
3631
3632scrub:
3633	if (rdev->supply)
3634		_regulator_put(rdev->supply);
3635	regulator_ena_gpio_free(rdev);
3636	kfree(rdev->constraints);
3637wash:
3638	device_unregister(&rdev->dev);
3639	/* device core frees rdev */
3640	rdev = ERR_PTR(ret);
3641	goto out;
3642
3643clean:
3644	kfree(rdev);
3645	rdev = ERR_PTR(ret);
3646	goto out;
3647}
3648EXPORT_SYMBOL_GPL(regulator_register);
3649
3650/**
3651 * regulator_unregister - unregister regulator
3652 * @rdev: regulator to unregister
3653 *
3654 * Called by regulator drivers to unregister a regulator.
3655 */
3656void regulator_unregister(struct regulator_dev *rdev)
3657{
3658	if (rdev == NULL)
3659		return;
3660
3661	if (rdev->supply) {
3662		while (rdev->use_count--)
3663			regulator_disable(rdev->supply);
3664		regulator_put(rdev->supply);
3665	}
3666	mutex_lock(&regulator_list_mutex);
3667	debugfs_remove_recursive(rdev->debugfs);
3668	flush_work(&rdev->disable_work.work);
3669	WARN_ON(rdev->open_count);
3670	unset_regulator_supplies(rdev);
3671	list_del(&rdev->list);
3672	kfree(rdev->constraints);
3673	regulator_ena_gpio_free(rdev);
3674	of_node_put(rdev->dev.of_node);
3675	device_unregister(&rdev->dev);
3676	mutex_unlock(&regulator_list_mutex);
3677}
3678EXPORT_SYMBOL_GPL(regulator_unregister);
3679
3680/**
3681 * regulator_suspend_prepare - prepare regulators for system wide suspend
3682 * @state: system suspend state
3683 *
3684 * Configure each regulator with it's suspend operating parameters for state.
3685 * This will usually be called by machine suspend code prior to supending.
3686 */
3687int regulator_suspend_prepare(suspend_state_t state)
3688{
3689	struct regulator_dev *rdev;
3690	int ret = 0;
3691
3692	/* ON is handled by regulator active state */
3693	if (state == PM_SUSPEND_ON)
3694		return -EINVAL;
3695
3696	mutex_lock(&regulator_list_mutex);
3697	list_for_each_entry(rdev, &regulator_list, list) {
3698
3699		mutex_lock(&rdev->mutex);
3700		ret = suspend_prepare(rdev, state);
3701		mutex_unlock(&rdev->mutex);
3702
3703		if (ret < 0) {
3704			rdev_err(rdev, "failed to prepare\n");
3705			goto out;
3706		}
3707	}
3708out:
3709	mutex_unlock(&regulator_list_mutex);
3710	return ret;
3711}
3712EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3713
3714/**
3715 * regulator_suspend_finish - resume regulators from system wide suspend
3716 *
3717 * Turn on regulators that might be turned off by regulator_suspend_prepare
3718 * and that should be turned on according to the regulators properties.
3719 */
3720int regulator_suspend_finish(void)
3721{
3722	struct regulator_dev *rdev;
3723	int ret = 0, error;
3724
3725	mutex_lock(&regulator_list_mutex);
3726	list_for_each_entry(rdev, &regulator_list, list) {
3727		mutex_lock(&rdev->mutex);
3728		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3729			error = _regulator_do_enable(rdev);
3730			if (error)
3731				ret = error;
3732		} else {
3733			if (!have_full_constraints())
3734				goto unlock;
3735			if (!_regulator_is_enabled(rdev))
3736				goto unlock;
3737
3738			error = _regulator_do_disable(rdev);
3739			if (error)
3740				ret = error;
3741		}
3742unlock:
3743		mutex_unlock(&rdev->mutex);
3744	}
3745	mutex_unlock(&regulator_list_mutex);
3746	return ret;
3747}
3748EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3749
3750/**
3751 * regulator_has_full_constraints - the system has fully specified constraints
3752 *
3753 * Calling this function will cause the regulator API to disable all
3754 * regulators which have a zero use count and don't have an always_on
3755 * constraint in a late_initcall.
3756 *
3757 * The intention is that this will become the default behaviour in a
3758 * future kernel release so users are encouraged to use this facility
3759 * now.
3760 */
3761void regulator_has_full_constraints(void)
3762{
3763	has_full_constraints = 1;
3764}
3765EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3766
3767/**
3768 * rdev_get_drvdata - get rdev regulator driver data
3769 * @rdev: regulator
3770 *
3771 * Get rdev regulator driver private data. This call can be used in the
3772 * regulator driver context.
3773 */
3774void *rdev_get_drvdata(struct regulator_dev *rdev)
3775{
3776	return rdev->reg_data;
3777}
3778EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3779
3780/**
3781 * regulator_get_drvdata - get regulator driver data
3782 * @regulator: regulator
3783 *
3784 * Get regulator driver private data. This call can be used in the consumer
3785 * driver context when non API regulator specific functions need to be called.
3786 */
3787void *regulator_get_drvdata(struct regulator *regulator)
3788{
3789	return regulator->rdev->reg_data;
3790}
3791EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3792
3793/**
3794 * regulator_set_drvdata - set regulator driver data
3795 * @regulator: regulator
3796 * @data: data
3797 */
3798void regulator_set_drvdata(struct regulator *regulator, void *data)
3799{
3800	regulator->rdev->reg_data = data;
3801}
3802EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3803
3804/**
3805 * regulator_get_id - get regulator ID
3806 * @rdev: regulator
3807 */
3808int rdev_get_id(struct regulator_dev *rdev)
3809{
3810	return rdev->desc->id;
3811}
3812EXPORT_SYMBOL_GPL(rdev_get_id);
3813
3814struct device *rdev_get_dev(struct regulator_dev *rdev)
3815{
3816	return &rdev->dev;
3817}
3818EXPORT_SYMBOL_GPL(rdev_get_dev);
3819
3820void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3821{
3822	return reg_init_data->driver_data;
3823}
3824EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3825
3826#ifdef CONFIG_DEBUG_FS
3827static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3828				    size_t count, loff_t *ppos)
3829{
3830	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3831	ssize_t len, ret = 0;
3832	struct regulator_map *map;
3833
3834	if (!buf)
3835		return -ENOMEM;
3836
3837	list_for_each_entry(map, &regulator_map_list, list) {
3838		len = snprintf(buf + ret, PAGE_SIZE - ret,
3839			       "%s -> %s.%s\n",
3840			       rdev_get_name(map->regulator), map->dev_name,
3841			       map->supply);
3842		if (len >= 0)
3843			ret += len;
3844		if (ret > PAGE_SIZE) {
3845			ret = PAGE_SIZE;
3846			break;
3847		}
3848	}
3849
3850	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3851
3852	kfree(buf);
3853
3854	return ret;
3855}
3856#endif
3857
3858static const struct file_operations supply_map_fops = {
3859#ifdef CONFIG_DEBUG_FS
3860	.read = supply_map_read_file,
3861	.llseek = default_llseek,
3862#endif
3863};
3864
3865static int __init regulator_init(void)
3866{
3867	int ret;
3868
3869	ret = class_register(&regulator_class);
3870
3871	debugfs_root = debugfs_create_dir("regulator", NULL);
3872	if (!debugfs_root)
3873		pr_warn("regulator: Failed to create debugfs directory\n");
3874
3875	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3876			    &supply_map_fops);
3877
3878	regulator_dummy_init();
3879
3880	return ret;
3881}
3882
3883/* init early to allow our consumers to complete system booting */
3884core_initcall(regulator_init);
3885
3886static int __init regulator_init_complete(void)
3887{
3888	struct regulator_dev *rdev;
3889	struct regulator_ops *ops;
3890	struct regulation_constraints *c;
3891	int enabled, ret;
3892
3893	/*
3894	 * Since DT doesn't provide an idiomatic mechanism for
3895	 * enabling full constraints and since it's much more natural
3896	 * with DT to provide them just assume that a DT enabled
3897	 * system has full constraints.
3898	 */
3899	if (of_have_populated_dt())
3900		has_full_constraints = true;
3901
3902	mutex_lock(&regulator_list_mutex);
3903
3904	/* If we have a full configuration then disable any regulators
3905	 * we have permission to change the status for and which are
3906	 * not in use or always_on.  This is effectively the default
3907	 * for DT and ACPI as they have full constraints.
3908	 */
3909	list_for_each_entry(rdev, &regulator_list, list) {
3910		ops = rdev->desc->ops;
3911		c = rdev->constraints;
3912
3913		if (c && c->always_on)
3914			continue;
3915
3916		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3917			continue;
3918
3919		mutex_lock(&rdev->mutex);
3920
3921		if (rdev->use_count)
3922			goto unlock;
3923
3924		/* If we can't read the status assume it's on. */
3925		if (ops->is_enabled)
3926			enabled = ops->is_enabled(rdev);
3927		else
3928			enabled = 1;
3929
3930		if (!enabled)
3931			goto unlock;
3932
3933		if (have_full_constraints()) {
3934			/* We log since this may kill the system if it
3935			 * goes wrong. */
3936			rdev_info(rdev, "disabling\n");
3937			ret = _regulator_do_disable(rdev);
3938			if (ret != 0)
3939				rdev_err(rdev, "couldn't disable: %d\n", ret);
3940		} else {
3941			/* The intention is that in future we will
3942			 * assume that full constraints are provided
3943			 * so warn even if we aren't going to do
3944			 * anything here.
3945			 */
3946			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3947		}
3948
3949unlock:
3950		mutex_unlock(&rdev->mutex);
3951	}
3952
3953	mutex_unlock(&regulator_list_mutex);
3954
3955	return 0;
3956}
3957late_initcall_sync(regulator_init_complete);
3958