core.c revision 0527100fd11d9710c7e153d791da78824b7b46fa
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/*
33 * struct regulator_dev
34 *
35 * Voltage / Current regulator class device. One for each regulator.
36 */
37struct regulator_dev {
38	struct regulator_desc *desc;
39	int use_count;
40
41	/* lists we belong to */
42	struct list_head list; /* list of all regulators */
43	struct list_head slist; /* list of supplied regulators */
44
45	/* lists we own */
46	struct list_head consumer_list; /* consumers we supply */
47	struct list_head supply_list; /* regulators we supply */
48
49	struct blocking_notifier_head notifier;
50	struct mutex mutex; /* consumer lock */
51	struct module *owner;
52	struct device dev;
53	struct regulation_constraints *constraints;
54	struct regulator_dev *supply;	/* for tree */
55
56	void *reg_data;		/* regulator_dev data */
57};
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	struct device *dev;
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	int enabled; /* count of client enables */
83	char *supply_name;
84	struct device_attribute dev_attr;
85	struct regulator_dev *rdev;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95
96/* gets the regulator for a given consumer device */
97static struct regulator *get_device_regulator(struct device *dev)
98{
99	struct regulator *regulator = NULL;
100	struct regulator_dev *rdev;
101
102	mutex_lock(&regulator_list_mutex);
103	list_for_each_entry(rdev, &regulator_list, list) {
104		mutex_lock(&rdev->mutex);
105		list_for_each_entry(regulator, &rdev->consumer_list, list) {
106			if (regulator->dev == dev) {
107				mutex_unlock(&rdev->mutex);
108				mutex_unlock(&regulator_list_mutex);
109				return regulator;
110			}
111		}
112		mutex_unlock(&rdev->mutex);
113	}
114	mutex_unlock(&regulator_list_mutex);
115	return NULL;
116}
117
118/* Platform voltage constraint check */
119static int regulator_check_voltage(struct regulator_dev *rdev,
120				   int *min_uV, int *max_uV)
121{
122	BUG_ON(*min_uV > *max_uV);
123
124	if (!rdev->constraints) {
125		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126		       rdev->desc->name);
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130		printk(KERN_ERR "%s: operation not allowed for %s\n",
131		       __func__, rdev->desc->name);
132		return -EPERM;
133	}
134
135	if (*max_uV > rdev->constraints->max_uV)
136		*max_uV = rdev->constraints->max_uV;
137	if (*min_uV < rdev->constraints->min_uV)
138		*min_uV = rdev->constraints->min_uV;
139
140	if (*min_uV > *max_uV)
141		return -EINVAL;
142
143	return 0;
144}
145
146/* current constraint check */
147static int regulator_check_current_limit(struct regulator_dev *rdev,
148					int *min_uA, int *max_uA)
149{
150	BUG_ON(*min_uA > *max_uA);
151
152	if (!rdev->constraints) {
153		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154		       rdev->desc->name);
155		return -ENODEV;
156	}
157	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158		printk(KERN_ERR "%s: operation not allowed for %s\n",
159		       __func__, rdev->desc->name);
160		return -EPERM;
161	}
162
163	if (*max_uA > rdev->constraints->max_uA)
164		*max_uA = rdev->constraints->max_uA;
165	if (*min_uA < rdev->constraints->min_uA)
166		*min_uA = rdev->constraints->min_uA;
167
168	if (*min_uA > *max_uA)
169		return -EINVAL;
170
171	return 0;
172}
173
174/* operating mode constraint check */
175static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176{
177	switch (mode) {
178	case REGULATOR_MODE_FAST:
179	case REGULATOR_MODE_NORMAL:
180	case REGULATOR_MODE_IDLE:
181	case REGULATOR_MODE_STANDBY:
182		break;
183	default:
184		return -EINVAL;
185	}
186
187	if (!rdev->constraints) {
188		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
189		       rdev->desc->name);
190		return -ENODEV;
191	}
192	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
193		printk(KERN_ERR "%s: operation not allowed for %s\n",
194		       __func__, rdev->desc->name);
195		return -EPERM;
196	}
197	if (!(rdev->constraints->valid_modes_mask & mode)) {
198		printk(KERN_ERR "%s: invalid mode %x for %s\n",
199		       __func__, mode, rdev->desc->name);
200		return -EINVAL;
201	}
202	return 0;
203}
204
205/* dynamic regulator mode switching constraint check */
206static int regulator_check_drms(struct regulator_dev *rdev)
207{
208	if (!rdev->constraints) {
209		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
210		       rdev->desc->name);
211		return -ENODEV;
212	}
213	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
214		printk(KERN_ERR "%s: operation not allowed for %s\n",
215		       __func__, rdev->desc->name);
216		return -EPERM;
217	}
218	return 0;
219}
220
221static ssize_t device_requested_uA_show(struct device *dev,
222			     struct device_attribute *attr, char *buf)
223{
224	struct regulator *regulator;
225
226	regulator = get_device_regulator(dev);
227	if (regulator == NULL)
228		return 0;
229
230	return sprintf(buf, "%d\n", regulator->uA_load);
231}
232
233static ssize_t regulator_uV_show(struct device *dev,
234				struct device_attribute *attr, char *buf)
235{
236	struct regulator_dev *rdev = dev_get_drvdata(dev);
237	ssize_t ret;
238
239	mutex_lock(&rdev->mutex);
240	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
241	mutex_unlock(&rdev->mutex);
242
243	return ret;
244}
245static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
246
247static ssize_t regulator_uA_show(struct device *dev,
248				struct device_attribute *attr, char *buf)
249{
250	struct regulator_dev *rdev = dev_get_drvdata(dev);
251
252	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
253}
254static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
255
256static ssize_t regulator_name_show(struct device *dev,
257			     struct device_attribute *attr, char *buf)
258{
259	struct regulator_dev *rdev = dev_get_drvdata(dev);
260	const char *name;
261
262	if (rdev->constraints->name)
263		name = rdev->constraints->name;
264	else if (rdev->desc->name)
265		name = rdev->desc->name;
266	else
267		name = "";
268
269	return sprintf(buf, "%s\n", name);
270}
271
272static ssize_t regulator_print_opmode(char *buf, int mode)
273{
274	switch (mode) {
275	case REGULATOR_MODE_FAST:
276		return sprintf(buf, "fast\n");
277	case REGULATOR_MODE_NORMAL:
278		return sprintf(buf, "normal\n");
279	case REGULATOR_MODE_IDLE:
280		return sprintf(buf, "idle\n");
281	case REGULATOR_MODE_STANDBY:
282		return sprintf(buf, "standby\n");
283	}
284	return sprintf(buf, "unknown\n");
285}
286
287static ssize_t regulator_opmode_show(struct device *dev,
288				    struct device_attribute *attr, char *buf)
289{
290	struct regulator_dev *rdev = dev_get_drvdata(dev);
291
292	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
293}
294static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
295
296static ssize_t regulator_print_state(char *buf, int state)
297{
298	if (state > 0)
299		return sprintf(buf, "enabled\n");
300	else if (state == 0)
301		return sprintf(buf, "disabled\n");
302	else
303		return sprintf(buf, "unknown\n");
304}
305
306static ssize_t regulator_state_show(struct device *dev,
307				   struct device_attribute *attr, char *buf)
308{
309	struct regulator_dev *rdev = dev_get_drvdata(dev);
310
311	return regulator_print_state(buf, _regulator_is_enabled(rdev));
312}
313static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
314
315static ssize_t regulator_status_show(struct device *dev,
316				   struct device_attribute *attr, char *buf)
317{
318	struct regulator_dev *rdev = dev_get_drvdata(dev);
319	int status;
320	char *label;
321
322	status = rdev->desc->ops->get_status(rdev);
323	if (status < 0)
324		return status;
325
326	switch (status) {
327	case REGULATOR_STATUS_OFF:
328		label = "off";
329		break;
330	case REGULATOR_STATUS_ON:
331		label = "on";
332		break;
333	case REGULATOR_STATUS_ERROR:
334		label = "error";
335		break;
336	case REGULATOR_STATUS_FAST:
337		label = "fast";
338		break;
339	case REGULATOR_STATUS_NORMAL:
340		label = "normal";
341		break;
342	case REGULATOR_STATUS_IDLE:
343		label = "idle";
344		break;
345	case REGULATOR_STATUS_STANDBY:
346		label = "standby";
347		break;
348	default:
349		return -ERANGE;
350	}
351
352	return sprintf(buf, "%s\n", label);
353}
354static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
355
356static ssize_t regulator_min_uA_show(struct device *dev,
357				    struct device_attribute *attr, char *buf)
358{
359	struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361	if (!rdev->constraints)
362		return sprintf(buf, "constraint not defined\n");
363
364	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
365}
366static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
367
368static ssize_t regulator_max_uA_show(struct device *dev,
369				    struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372
373	if (!rdev->constraints)
374		return sprintf(buf, "constraint not defined\n");
375
376	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
377}
378static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
379
380static ssize_t regulator_min_uV_show(struct device *dev,
381				    struct device_attribute *attr, char *buf)
382{
383	struct regulator_dev *rdev = dev_get_drvdata(dev);
384
385	if (!rdev->constraints)
386		return sprintf(buf, "constraint not defined\n");
387
388	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
389}
390static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
391
392static ssize_t regulator_max_uV_show(struct device *dev,
393				    struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396
397	if (!rdev->constraints)
398		return sprintf(buf, "constraint not defined\n");
399
400	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
401}
402static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
403
404static ssize_t regulator_total_uA_show(struct device *dev,
405				      struct device_attribute *attr, char *buf)
406{
407	struct regulator_dev *rdev = dev_get_drvdata(dev);
408	struct regulator *regulator;
409	int uA = 0;
410
411	mutex_lock(&rdev->mutex);
412	list_for_each_entry(regulator, &rdev->consumer_list, list)
413	    uA += regulator->uA_load;
414	mutex_unlock(&rdev->mutex);
415	return sprintf(buf, "%d\n", uA);
416}
417static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
418
419static ssize_t regulator_num_users_show(struct device *dev,
420				      struct device_attribute *attr, char *buf)
421{
422	struct regulator_dev *rdev = dev_get_drvdata(dev);
423	return sprintf(buf, "%d\n", rdev->use_count);
424}
425
426static ssize_t regulator_type_show(struct device *dev,
427				  struct device_attribute *attr, char *buf)
428{
429	struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431	switch (rdev->desc->type) {
432	case REGULATOR_VOLTAGE:
433		return sprintf(buf, "voltage\n");
434	case REGULATOR_CURRENT:
435		return sprintf(buf, "current\n");
436	}
437	return sprintf(buf, "unknown\n");
438}
439
440static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
441				struct device_attribute *attr, char *buf)
442{
443	struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
446}
447static DEVICE_ATTR(suspend_mem_microvolts, 0444,
448		regulator_suspend_mem_uV_show, NULL);
449
450static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
456}
457static DEVICE_ATTR(suspend_disk_microvolts, 0444,
458		regulator_suspend_disk_uV_show, NULL);
459
460static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
461				struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
466}
467static DEVICE_ATTR(suspend_standby_microvolts, 0444,
468		regulator_suspend_standby_uV_show, NULL);
469
470static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return regulator_print_opmode(buf,
476		rdev->constraints->state_mem.mode);
477}
478static DEVICE_ATTR(suspend_mem_mode, 0444,
479		regulator_suspend_mem_mode_show, NULL);
480
481static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
482				struct device_attribute *attr, char *buf)
483{
484	struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486	return regulator_print_opmode(buf,
487		rdev->constraints->state_disk.mode);
488}
489static DEVICE_ATTR(suspend_disk_mode, 0444,
490		regulator_suspend_disk_mode_show, NULL);
491
492static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
493				struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497	return regulator_print_opmode(buf,
498		rdev->constraints->state_standby.mode);
499}
500static DEVICE_ATTR(suspend_standby_mode, 0444,
501		regulator_suspend_standby_mode_show, NULL);
502
503static ssize_t regulator_suspend_mem_state_show(struct device *dev,
504				   struct device_attribute *attr, char *buf)
505{
506	struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508	return regulator_print_state(buf,
509			rdev->constraints->state_mem.enabled);
510}
511static DEVICE_ATTR(suspend_mem_state, 0444,
512		regulator_suspend_mem_state_show, NULL);
513
514static ssize_t regulator_suspend_disk_state_show(struct device *dev,
515				   struct device_attribute *attr, char *buf)
516{
517	struct regulator_dev *rdev = dev_get_drvdata(dev);
518
519	return regulator_print_state(buf,
520			rdev->constraints->state_disk.enabled);
521}
522static DEVICE_ATTR(suspend_disk_state, 0444,
523		regulator_suspend_disk_state_show, NULL);
524
525static ssize_t regulator_suspend_standby_state_show(struct device *dev,
526				   struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return regulator_print_state(buf,
531			rdev->constraints->state_standby.enabled);
532}
533static DEVICE_ATTR(suspend_standby_state, 0444,
534		regulator_suspend_standby_state_show, NULL);
535
536
537/*
538 * These are the only attributes are present for all regulators.
539 * Other attributes are a function of regulator functionality.
540 */
541static struct device_attribute regulator_dev_attrs[] = {
542	__ATTR(name, 0444, regulator_name_show, NULL),
543	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
544	__ATTR(type, 0444, regulator_type_show, NULL),
545	__ATTR_NULL,
546};
547
548static void regulator_dev_release(struct device *dev)
549{
550	struct regulator_dev *rdev = dev_get_drvdata(dev);
551	kfree(rdev);
552}
553
554static struct class regulator_class = {
555	.name = "regulator",
556	.dev_release = regulator_dev_release,
557	.dev_attrs = regulator_dev_attrs,
558};
559
560/* Calculate the new optimum regulator operating mode based on the new total
561 * consumer load. All locks held by caller */
562static void drms_uA_update(struct regulator_dev *rdev)
563{
564	struct regulator *sibling;
565	int current_uA = 0, output_uV, input_uV, err;
566	unsigned int mode;
567
568	err = regulator_check_drms(rdev);
569	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
570	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
571	return;
572
573	/* get output voltage */
574	output_uV = rdev->desc->ops->get_voltage(rdev);
575	if (output_uV <= 0)
576		return;
577
578	/* get input voltage */
579	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
580		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
581	else
582		input_uV = rdev->constraints->input_uV;
583	if (input_uV <= 0)
584		return;
585
586	/* calc total requested load */
587	list_for_each_entry(sibling, &rdev->consumer_list, list)
588	    current_uA += sibling->uA_load;
589
590	/* now get the optimum mode for our new total regulator load */
591	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
592						  output_uV, current_uA);
593
594	/* check the new mode is allowed */
595	err = regulator_check_mode(rdev, mode);
596	if (err == 0)
597		rdev->desc->ops->set_mode(rdev, mode);
598}
599
600static int suspend_set_state(struct regulator_dev *rdev,
601	struct regulator_state *rstate)
602{
603	int ret = 0;
604
605	/* enable & disable are mandatory for suspend control */
606	if (!rdev->desc->ops->set_suspend_enable ||
607		!rdev->desc->ops->set_suspend_disable) {
608		printk(KERN_ERR "%s: no way to set suspend state\n",
609			__func__);
610		return -EINVAL;
611	}
612
613	if (rstate->enabled)
614		ret = rdev->desc->ops->set_suspend_enable(rdev);
615	else
616		ret = rdev->desc->ops->set_suspend_disable(rdev);
617	if (ret < 0) {
618		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
619		return ret;
620	}
621
622	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
623		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
624		if (ret < 0) {
625			printk(KERN_ERR "%s: failed to set voltage\n",
626				__func__);
627			return ret;
628		}
629	}
630
631	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
632		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
633		if (ret < 0) {
634			printk(KERN_ERR "%s: failed to set mode\n", __func__);
635			return ret;
636		}
637	}
638	return ret;
639}
640
641/* locks held by caller */
642static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
643{
644	if (!rdev->constraints)
645		return -EINVAL;
646
647	switch (state) {
648	case PM_SUSPEND_STANDBY:
649		return suspend_set_state(rdev,
650			&rdev->constraints->state_standby);
651	case PM_SUSPEND_MEM:
652		return suspend_set_state(rdev,
653			&rdev->constraints->state_mem);
654	case PM_SUSPEND_MAX:
655		return suspend_set_state(rdev,
656			&rdev->constraints->state_disk);
657	default:
658		return -EINVAL;
659	}
660}
661
662static void print_constraints(struct regulator_dev *rdev)
663{
664	struct regulation_constraints *constraints = rdev->constraints;
665	char buf[80];
666	int count;
667
668	if (rdev->desc->type == REGULATOR_VOLTAGE) {
669		if (constraints->min_uV == constraints->max_uV)
670			count = sprintf(buf, "%d mV ",
671					constraints->min_uV / 1000);
672		else
673			count = sprintf(buf, "%d <--> %d mV ",
674					constraints->min_uV / 1000,
675					constraints->max_uV / 1000);
676	} else {
677		if (constraints->min_uA == constraints->max_uA)
678			count = sprintf(buf, "%d mA ",
679					constraints->min_uA / 1000);
680		else
681			count = sprintf(buf, "%d <--> %d mA ",
682					constraints->min_uA / 1000,
683					constraints->max_uA / 1000);
684	}
685	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
686		count += sprintf(buf + count, "fast ");
687	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
688		count += sprintf(buf + count, "normal ");
689	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
690		count += sprintf(buf + count, "idle ");
691	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
692		count += sprintf(buf + count, "standby");
693
694	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
695}
696
697/**
698 * set_machine_constraints - sets regulator constraints
699 * @rdev: regulator source
700 * @constraints: constraints to apply
701 *
702 * Allows platform initialisation code to define and constrain
703 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
704 * Constraints *must* be set by platform code in order for some
705 * regulator operations to proceed i.e. set_voltage, set_current_limit,
706 * set_mode.
707 */
708static int set_machine_constraints(struct regulator_dev *rdev,
709	struct regulation_constraints *constraints)
710{
711	int ret = 0;
712	const char *name;
713	struct regulator_ops *ops = rdev->desc->ops;
714
715	if (constraints->name)
716		name = constraints->name;
717	else if (rdev->desc->name)
718		name = rdev->desc->name;
719	else
720		name = "regulator";
721
722	rdev->constraints = constraints;
723
724	/* do we need to apply the constraint voltage */
725	if (rdev->constraints->apply_uV &&
726		rdev->constraints->min_uV == rdev->constraints->max_uV &&
727		ops->set_voltage) {
728		ret = ops->set_voltage(rdev,
729			rdev->constraints->min_uV, rdev->constraints->max_uV);
730			if (ret < 0) {
731				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
732				       __func__,
733				       rdev->constraints->min_uV, name);
734				rdev->constraints = NULL;
735				goto out;
736			}
737	}
738
739	/* are we enabled at boot time by firmware / bootloader */
740	if (rdev->constraints->boot_on)
741		rdev->use_count = 1;
742
743	/* do we need to setup our suspend state */
744	if (constraints->initial_state) {
745		ret = suspend_prepare(rdev, constraints->initial_state);
746		if (ret < 0) {
747			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
748			       __func__, name);
749			rdev->constraints = NULL;
750			goto out;
751		}
752	}
753
754	/* if always_on is set then turn the regulator on if it's not
755	 * already on. */
756	if (constraints->always_on && ops->enable &&
757	    ((ops->is_enabled && !ops->is_enabled(rdev)) ||
758	     (!ops->is_enabled && !constraints->boot_on))) {
759		ret = ops->enable(rdev);
760		if (ret < 0) {
761			printk(KERN_ERR "%s: failed to enable %s\n",
762			       __func__, name);
763			rdev->constraints = NULL;
764			goto out;
765		}
766	}
767
768	print_constraints(rdev);
769out:
770	return ret;
771}
772
773/**
774 * set_supply - set regulator supply regulator
775 * @rdev: regulator name
776 * @supply_rdev: supply regulator name
777 *
778 * Called by platform initialisation code to set the supply regulator for this
779 * regulator. This ensures that a regulators supply will also be enabled by the
780 * core if it's child is enabled.
781 */
782static int set_supply(struct regulator_dev *rdev,
783	struct regulator_dev *supply_rdev)
784{
785	int err;
786
787	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
788				"supply");
789	if (err) {
790		printk(KERN_ERR
791		       "%s: could not add device link %s err %d\n",
792		       __func__, supply_rdev->dev.kobj.name, err);
793		       goto out;
794	}
795	rdev->supply = supply_rdev;
796	list_add(&rdev->slist, &supply_rdev->supply_list);
797out:
798	return err;
799}
800
801/**
802 * set_consumer_device_supply: Bind a regulator to a symbolic supply
803 * @rdev:         regulator source
804 * @consumer_dev: device the supply applies to
805 * @supply:       symbolic name for supply
806 *
807 * Allows platform initialisation code to map physical regulator
808 * sources to symbolic names for supplies for use by devices.  Devices
809 * should use these symbolic names to request regulators, avoiding the
810 * need to provide board-specific regulator names as platform data.
811 */
812static int set_consumer_device_supply(struct regulator_dev *rdev,
813	struct device *consumer_dev, const char *supply)
814{
815	struct regulator_map *node;
816
817	if (supply == NULL)
818		return -EINVAL;
819
820	list_for_each_entry(node, &regulator_map_list, list) {
821		if (consumer_dev != node->dev)
822			continue;
823		if (strcmp(node->supply, supply) != 0)
824			continue;
825
826		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
827				dev_name(&node->regulator->dev),
828				node->regulator->desc->name,
829				supply,
830				dev_name(&rdev->dev), rdev->desc->name);
831		return -EBUSY;
832	}
833
834	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
835	if (node == NULL)
836		return -ENOMEM;
837
838	node->regulator = rdev;
839	node->dev = consumer_dev;
840	node->supply = supply;
841
842	list_add(&node->list, &regulator_map_list);
843	return 0;
844}
845
846static void unset_consumer_device_supply(struct regulator_dev *rdev,
847	struct device *consumer_dev)
848{
849	struct regulator_map *node, *n;
850
851	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
852		if (rdev == node->regulator &&
853			consumer_dev == node->dev) {
854			list_del(&node->list);
855			kfree(node);
856			return;
857		}
858	}
859}
860
861#define REG_STR_SIZE	32
862
863static struct regulator *create_regulator(struct regulator_dev *rdev,
864					  struct device *dev,
865					  const char *supply_name)
866{
867	struct regulator *regulator;
868	char buf[REG_STR_SIZE];
869	int err, size;
870
871	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
872	if (regulator == NULL)
873		return NULL;
874
875	mutex_lock(&rdev->mutex);
876	regulator->rdev = rdev;
877	list_add(&regulator->list, &rdev->consumer_list);
878
879	if (dev) {
880		/* create a 'requested_microamps_name' sysfs entry */
881		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
882			supply_name);
883		if (size >= REG_STR_SIZE)
884			goto overflow_err;
885
886		regulator->dev = dev;
887		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
888		if (regulator->dev_attr.attr.name == NULL)
889			goto attr_name_err;
890
891		regulator->dev_attr.attr.owner = THIS_MODULE;
892		regulator->dev_attr.attr.mode = 0444;
893		regulator->dev_attr.show = device_requested_uA_show;
894		err = device_create_file(dev, &regulator->dev_attr);
895		if (err < 0) {
896			printk(KERN_WARNING "%s: could not add regulator_dev"
897				" load sysfs\n", __func__);
898			goto attr_name_err;
899		}
900
901		/* also add a link to the device sysfs entry */
902		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
903				 dev->kobj.name, supply_name);
904		if (size >= REG_STR_SIZE)
905			goto attr_err;
906
907		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
908		if (regulator->supply_name == NULL)
909			goto attr_err;
910
911		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
912					buf);
913		if (err) {
914			printk(KERN_WARNING
915			       "%s: could not add device link %s err %d\n",
916			       __func__, dev->kobj.name, err);
917			device_remove_file(dev, &regulator->dev_attr);
918			goto link_name_err;
919		}
920	}
921	mutex_unlock(&rdev->mutex);
922	return regulator;
923link_name_err:
924	kfree(regulator->supply_name);
925attr_err:
926	device_remove_file(regulator->dev, &regulator->dev_attr);
927attr_name_err:
928	kfree(regulator->dev_attr.attr.name);
929overflow_err:
930	list_del(&regulator->list);
931	kfree(regulator);
932	mutex_unlock(&rdev->mutex);
933	return NULL;
934}
935
936/**
937 * regulator_get - lookup and obtain a reference to a regulator.
938 * @dev: device for regulator "consumer"
939 * @id: Supply name or regulator ID.
940 *
941 * Returns a struct regulator corresponding to the regulator producer,
942 * or IS_ERR() condition containing errno.  Use of supply names
943 * configured via regulator_set_device_supply() is strongly
944 * encouraged.
945 */
946struct regulator *regulator_get(struct device *dev, const char *id)
947{
948	struct regulator_dev *rdev;
949	struct regulator_map *map;
950	struct regulator *regulator = ERR_PTR(-ENODEV);
951
952	if (id == NULL) {
953		printk(KERN_ERR "regulator: get() with no identifier\n");
954		return regulator;
955	}
956
957	mutex_lock(&regulator_list_mutex);
958
959	list_for_each_entry(map, &regulator_map_list, list) {
960		if (dev == map->dev &&
961		    strcmp(map->supply, id) == 0) {
962			rdev = map->regulator;
963			goto found;
964		}
965	}
966	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
967	       id);
968	mutex_unlock(&regulator_list_mutex);
969	return regulator;
970
971found:
972	if (!try_module_get(rdev->owner))
973		goto out;
974
975	regulator = create_regulator(rdev, dev, id);
976	if (regulator == NULL) {
977		regulator = ERR_PTR(-ENOMEM);
978		module_put(rdev->owner);
979	}
980
981out:
982	mutex_unlock(&regulator_list_mutex);
983	return regulator;
984}
985EXPORT_SYMBOL_GPL(regulator_get);
986
987/**
988 * regulator_put - "free" the regulator source
989 * @regulator: regulator source
990 *
991 * Note: drivers must ensure that all regulator_enable calls made on this
992 * regulator source are balanced by regulator_disable calls prior to calling
993 * this function.
994 */
995void regulator_put(struct regulator *regulator)
996{
997	struct regulator_dev *rdev;
998
999	if (regulator == NULL || IS_ERR(regulator))
1000		return;
1001
1002	mutex_lock(&regulator_list_mutex);
1003	rdev = regulator->rdev;
1004
1005	if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
1006			       regulator->supply_name))
1007		_regulator_disable(rdev);
1008
1009	/* remove any sysfs entries */
1010	if (regulator->dev) {
1011		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1012		kfree(regulator->supply_name);
1013		device_remove_file(regulator->dev, &regulator->dev_attr);
1014		kfree(regulator->dev_attr.attr.name);
1015	}
1016	list_del(&regulator->list);
1017	kfree(regulator);
1018
1019	module_put(rdev->owner);
1020	mutex_unlock(&regulator_list_mutex);
1021}
1022EXPORT_SYMBOL_GPL(regulator_put);
1023
1024/* locks held by regulator_enable() */
1025static int _regulator_enable(struct regulator_dev *rdev)
1026{
1027	int ret = -EINVAL;
1028
1029	if (!rdev->constraints) {
1030		printk(KERN_ERR "%s: %s has no constraints\n",
1031		       __func__, rdev->desc->name);
1032		return ret;
1033	}
1034
1035	/* do we need to enable the supply regulator first */
1036	if (rdev->supply) {
1037		ret = _regulator_enable(rdev->supply);
1038		if (ret < 0) {
1039			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1040			       __func__, rdev->desc->name, ret);
1041			return ret;
1042		}
1043	}
1044
1045	/* check voltage and requested load before enabling */
1046	if (rdev->desc->ops->enable) {
1047
1048		if (rdev->constraints &&
1049			(rdev->constraints->valid_ops_mask &
1050			REGULATOR_CHANGE_DRMS))
1051			drms_uA_update(rdev);
1052
1053		ret = rdev->desc->ops->enable(rdev);
1054		if (ret < 0) {
1055			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1056			       __func__, rdev->desc->name, ret);
1057			return ret;
1058		}
1059		rdev->use_count++;
1060		return ret;
1061	}
1062
1063	return ret;
1064}
1065
1066/**
1067 * regulator_enable - enable regulator output
1068 * @regulator: regulator source
1069 *
1070 * Request that the regulator be enabled with the regulator output at
1071 * the predefined voltage or current value.  Calls to regulator_enable()
1072 * must be balanced with calls to regulator_disable().
1073 *
1074 * NOTE: the output value can be set by other drivers, boot loader or may be
1075 * hardwired in the regulator.
1076 */
1077int regulator_enable(struct regulator *regulator)
1078{
1079	struct regulator_dev *rdev = regulator->rdev;
1080	int ret = 0;
1081
1082	mutex_lock(&rdev->mutex);
1083	if (regulator->enabled == 0)
1084		ret = _regulator_enable(rdev);
1085	else if (regulator->enabled < 0)
1086		ret = -EIO;
1087	if (ret == 0)
1088		regulator->enabled++;
1089	mutex_unlock(&rdev->mutex);
1090	return ret;
1091}
1092EXPORT_SYMBOL_GPL(regulator_enable);
1093
1094/* locks held by regulator_disable() */
1095static int _regulator_disable(struct regulator_dev *rdev)
1096{
1097	int ret = 0;
1098
1099	/* are we the last user and permitted to disable ? */
1100	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1101
1102		/* we are last user */
1103		if (rdev->desc->ops->disable) {
1104			ret = rdev->desc->ops->disable(rdev);
1105			if (ret < 0) {
1106				printk(KERN_ERR "%s: failed to disable %s\n",
1107				       __func__, rdev->desc->name);
1108				return ret;
1109			}
1110		}
1111
1112		/* decrease our supplies ref count and disable if required */
1113		if (rdev->supply)
1114			_regulator_disable(rdev->supply);
1115
1116		rdev->use_count = 0;
1117	} else if (rdev->use_count > 1) {
1118
1119		if (rdev->constraints &&
1120			(rdev->constraints->valid_ops_mask &
1121			REGULATOR_CHANGE_DRMS))
1122			drms_uA_update(rdev);
1123
1124		rdev->use_count--;
1125	}
1126	return ret;
1127}
1128
1129/**
1130 * regulator_disable - disable regulator output
1131 * @regulator: regulator source
1132 *
1133 * Disable the regulator output voltage or current.  Calls to
1134 * regulator_enable() must be balanced with calls to
1135 * regulator_disable().
1136 *
1137 * NOTE: this will only disable the regulator output if no other consumer
1138 * devices have it enabled, the regulator device supports disabling and
1139 * machine constraints permit this operation.
1140 */
1141int regulator_disable(struct regulator *regulator)
1142{
1143	struct regulator_dev *rdev = regulator->rdev;
1144	int ret = 0;
1145
1146	mutex_lock(&rdev->mutex);
1147	if (regulator->enabled == 1) {
1148		ret = _regulator_disable(rdev);
1149		if (ret == 0)
1150			regulator->uA_load = 0;
1151	} else if (WARN(regulator->enabled <= 0,
1152			"unbalanced disables for supply %s\n",
1153			regulator->supply_name))
1154		ret = -EIO;
1155	if (ret == 0)
1156		regulator->enabled--;
1157	mutex_unlock(&rdev->mutex);
1158	return ret;
1159}
1160EXPORT_SYMBOL_GPL(regulator_disable);
1161
1162/* locks held by regulator_force_disable() */
1163static int _regulator_force_disable(struct regulator_dev *rdev)
1164{
1165	int ret = 0;
1166
1167	/* force disable */
1168	if (rdev->desc->ops->disable) {
1169		/* ah well, who wants to live forever... */
1170		ret = rdev->desc->ops->disable(rdev);
1171		if (ret < 0) {
1172			printk(KERN_ERR "%s: failed to force disable %s\n",
1173			       __func__, rdev->desc->name);
1174			return ret;
1175		}
1176		/* notify other consumers that power has been forced off */
1177		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1178			NULL);
1179	}
1180
1181	/* decrease our supplies ref count and disable if required */
1182	if (rdev->supply)
1183		_regulator_disable(rdev->supply);
1184
1185	rdev->use_count = 0;
1186	return ret;
1187}
1188
1189/**
1190 * regulator_force_disable - force disable regulator output
1191 * @regulator: regulator source
1192 *
1193 * Forcibly disable the regulator output voltage or current.
1194 * NOTE: this *will* disable the regulator output even if other consumer
1195 * devices have it enabled. This should be used for situations when device
1196 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1197 */
1198int regulator_force_disable(struct regulator *regulator)
1199{
1200	int ret;
1201
1202	mutex_lock(&regulator->rdev->mutex);
1203	regulator->enabled = 0;
1204	regulator->uA_load = 0;
1205	ret = _regulator_force_disable(regulator->rdev);
1206	mutex_unlock(&regulator->rdev->mutex);
1207	return ret;
1208}
1209EXPORT_SYMBOL_GPL(regulator_force_disable);
1210
1211static int _regulator_is_enabled(struct regulator_dev *rdev)
1212{
1213	int ret;
1214
1215	mutex_lock(&rdev->mutex);
1216
1217	/* sanity check */
1218	if (!rdev->desc->ops->is_enabled) {
1219		ret = -EINVAL;
1220		goto out;
1221	}
1222
1223	ret = rdev->desc->ops->is_enabled(rdev);
1224out:
1225	mutex_unlock(&rdev->mutex);
1226	return ret;
1227}
1228
1229/**
1230 * regulator_is_enabled - is the regulator output enabled
1231 * @regulator: regulator source
1232 *
1233 * Returns positive if the regulator driver backing the source/client
1234 * has requested that the device be enabled, zero if it hasn't, else a
1235 * negative errno code.
1236 *
1237 * Note that the device backing this regulator handle can have multiple
1238 * users, so it might be enabled even if regulator_enable() was never
1239 * called for this particular source.
1240 */
1241int regulator_is_enabled(struct regulator *regulator)
1242{
1243	return _regulator_is_enabled(regulator->rdev);
1244}
1245EXPORT_SYMBOL_GPL(regulator_is_enabled);
1246
1247/**
1248 * regulator_set_voltage - set regulator output voltage
1249 * @regulator: regulator source
1250 * @min_uV: Minimum required voltage in uV
1251 * @max_uV: Maximum acceptable voltage in uV
1252 *
1253 * Sets a voltage regulator to the desired output voltage. This can be set
1254 * during any regulator state. IOW, regulator can be disabled or enabled.
1255 *
1256 * If the regulator is enabled then the voltage will change to the new value
1257 * immediately otherwise if the regulator is disabled the regulator will
1258 * output at the new voltage when enabled.
1259 *
1260 * NOTE: If the regulator is shared between several devices then the lowest
1261 * request voltage that meets the system constraints will be used.
1262 * Regulator system constraints must be set for this regulator before
1263 * calling this function otherwise this call will fail.
1264 */
1265int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1266{
1267	struct regulator_dev *rdev = regulator->rdev;
1268	int ret;
1269
1270	mutex_lock(&rdev->mutex);
1271
1272	/* sanity check */
1273	if (!rdev->desc->ops->set_voltage) {
1274		ret = -EINVAL;
1275		goto out;
1276	}
1277
1278	/* constraints check */
1279	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1280	if (ret < 0)
1281		goto out;
1282	regulator->min_uV = min_uV;
1283	regulator->max_uV = max_uV;
1284	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1285
1286out:
1287	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1288	mutex_unlock(&rdev->mutex);
1289	return ret;
1290}
1291EXPORT_SYMBOL_GPL(regulator_set_voltage);
1292
1293static int _regulator_get_voltage(struct regulator_dev *rdev)
1294{
1295	/* sanity check */
1296	if (rdev->desc->ops->get_voltage)
1297		return rdev->desc->ops->get_voltage(rdev);
1298	else
1299		return -EINVAL;
1300}
1301
1302/**
1303 * regulator_get_voltage - get regulator output voltage
1304 * @regulator: regulator source
1305 *
1306 * This returns the current regulator voltage in uV.
1307 *
1308 * NOTE: If the regulator is disabled it will return the voltage value. This
1309 * function should not be used to determine regulator state.
1310 */
1311int regulator_get_voltage(struct regulator *regulator)
1312{
1313	int ret;
1314
1315	mutex_lock(&regulator->rdev->mutex);
1316
1317	ret = _regulator_get_voltage(regulator->rdev);
1318
1319	mutex_unlock(&regulator->rdev->mutex);
1320
1321	return ret;
1322}
1323EXPORT_SYMBOL_GPL(regulator_get_voltage);
1324
1325/**
1326 * regulator_set_current_limit - set regulator output current limit
1327 * @regulator: regulator source
1328 * @min_uA: Minimuum supported current in uA
1329 * @max_uA: Maximum supported current in uA
1330 *
1331 * Sets current sink to the desired output current. This can be set during
1332 * any regulator state. IOW, regulator can be disabled or enabled.
1333 *
1334 * If the regulator is enabled then the current will change to the new value
1335 * immediately otherwise if the regulator is disabled the regulator will
1336 * output at the new current when enabled.
1337 *
1338 * NOTE: Regulator system constraints must be set for this regulator before
1339 * calling this function otherwise this call will fail.
1340 */
1341int regulator_set_current_limit(struct regulator *regulator,
1342			       int min_uA, int max_uA)
1343{
1344	struct regulator_dev *rdev = regulator->rdev;
1345	int ret;
1346
1347	mutex_lock(&rdev->mutex);
1348
1349	/* sanity check */
1350	if (!rdev->desc->ops->set_current_limit) {
1351		ret = -EINVAL;
1352		goto out;
1353	}
1354
1355	/* constraints check */
1356	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1357	if (ret < 0)
1358		goto out;
1359
1360	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1361out:
1362	mutex_unlock(&rdev->mutex);
1363	return ret;
1364}
1365EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1366
1367static int _regulator_get_current_limit(struct regulator_dev *rdev)
1368{
1369	int ret;
1370
1371	mutex_lock(&rdev->mutex);
1372
1373	/* sanity check */
1374	if (!rdev->desc->ops->get_current_limit) {
1375		ret = -EINVAL;
1376		goto out;
1377	}
1378
1379	ret = rdev->desc->ops->get_current_limit(rdev);
1380out:
1381	mutex_unlock(&rdev->mutex);
1382	return ret;
1383}
1384
1385/**
1386 * regulator_get_current_limit - get regulator output current
1387 * @regulator: regulator source
1388 *
1389 * This returns the current supplied by the specified current sink in uA.
1390 *
1391 * NOTE: If the regulator is disabled it will return the current value. This
1392 * function should not be used to determine regulator state.
1393 */
1394int regulator_get_current_limit(struct regulator *regulator)
1395{
1396	return _regulator_get_current_limit(regulator->rdev);
1397}
1398EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1399
1400/**
1401 * regulator_set_mode - set regulator operating mode
1402 * @regulator: regulator source
1403 * @mode: operating mode - one of the REGULATOR_MODE constants
1404 *
1405 * Set regulator operating mode to increase regulator efficiency or improve
1406 * regulation performance.
1407 *
1408 * NOTE: Regulator system constraints must be set for this regulator before
1409 * calling this function otherwise this call will fail.
1410 */
1411int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1412{
1413	struct regulator_dev *rdev = regulator->rdev;
1414	int ret;
1415
1416	mutex_lock(&rdev->mutex);
1417
1418	/* sanity check */
1419	if (!rdev->desc->ops->set_mode) {
1420		ret = -EINVAL;
1421		goto out;
1422	}
1423
1424	/* constraints check */
1425	ret = regulator_check_mode(rdev, mode);
1426	if (ret < 0)
1427		goto out;
1428
1429	ret = rdev->desc->ops->set_mode(rdev, mode);
1430out:
1431	mutex_unlock(&rdev->mutex);
1432	return ret;
1433}
1434EXPORT_SYMBOL_GPL(regulator_set_mode);
1435
1436static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1437{
1438	int ret;
1439
1440	mutex_lock(&rdev->mutex);
1441
1442	/* sanity check */
1443	if (!rdev->desc->ops->get_mode) {
1444		ret = -EINVAL;
1445		goto out;
1446	}
1447
1448	ret = rdev->desc->ops->get_mode(rdev);
1449out:
1450	mutex_unlock(&rdev->mutex);
1451	return ret;
1452}
1453
1454/**
1455 * regulator_get_mode - get regulator operating mode
1456 * @regulator: regulator source
1457 *
1458 * Get the current regulator operating mode.
1459 */
1460unsigned int regulator_get_mode(struct regulator *regulator)
1461{
1462	return _regulator_get_mode(regulator->rdev);
1463}
1464EXPORT_SYMBOL_GPL(regulator_get_mode);
1465
1466/**
1467 * regulator_set_optimum_mode - set regulator optimum operating mode
1468 * @regulator: regulator source
1469 * @uA_load: load current
1470 *
1471 * Notifies the regulator core of a new device load. This is then used by
1472 * DRMS (if enabled by constraints) to set the most efficient regulator
1473 * operating mode for the new regulator loading.
1474 *
1475 * Consumer devices notify their supply regulator of the maximum power
1476 * they will require (can be taken from device datasheet in the power
1477 * consumption tables) when they change operational status and hence power
1478 * state. Examples of operational state changes that can affect power
1479 * consumption are :-
1480 *
1481 *    o Device is opened / closed.
1482 *    o Device I/O is about to begin or has just finished.
1483 *    o Device is idling in between work.
1484 *
1485 * This information is also exported via sysfs to userspace.
1486 *
1487 * DRMS will sum the total requested load on the regulator and change
1488 * to the most efficient operating mode if platform constraints allow.
1489 *
1490 * Returns the new regulator mode or error.
1491 */
1492int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1493{
1494	struct regulator_dev *rdev = regulator->rdev;
1495	struct regulator *consumer;
1496	int ret, output_uV, input_uV, total_uA_load = 0;
1497	unsigned int mode;
1498
1499	mutex_lock(&rdev->mutex);
1500
1501	regulator->uA_load = uA_load;
1502	ret = regulator_check_drms(rdev);
1503	if (ret < 0)
1504		goto out;
1505	ret = -EINVAL;
1506
1507	/* sanity check */
1508	if (!rdev->desc->ops->get_optimum_mode)
1509		goto out;
1510
1511	/* get output voltage */
1512	output_uV = rdev->desc->ops->get_voltage(rdev);
1513	if (output_uV <= 0) {
1514		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1515			__func__, rdev->desc->name);
1516		goto out;
1517	}
1518
1519	/* get input voltage */
1520	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1521		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1522	else
1523		input_uV = rdev->constraints->input_uV;
1524	if (input_uV <= 0) {
1525		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1526			__func__, rdev->desc->name);
1527		goto out;
1528	}
1529
1530	/* calc total requested load for this regulator */
1531	list_for_each_entry(consumer, &rdev->consumer_list, list)
1532	    total_uA_load += consumer->uA_load;
1533
1534	mode = rdev->desc->ops->get_optimum_mode(rdev,
1535						 input_uV, output_uV,
1536						 total_uA_load);
1537	ret = regulator_check_mode(rdev, mode);
1538	if (ret < 0) {
1539		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1540			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1541			total_uA_load, input_uV, output_uV);
1542		goto out;
1543	}
1544
1545	ret = rdev->desc->ops->set_mode(rdev, mode);
1546	if (ret < 0) {
1547		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1548			__func__, mode, rdev->desc->name);
1549		goto out;
1550	}
1551	ret = mode;
1552out:
1553	mutex_unlock(&rdev->mutex);
1554	return ret;
1555}
1556EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1557
1558/**
1559 * regulator_register_notifier - register regulator event notifier
1560 * @regulator: regulator source
1561 * @nb: notifier block
1562 *
1563 * Register notifier block to receive regulator events.
1564 */
1565int regulator_register_notifier(struct regulator *regulator,
1566			      struct notifier_block *nb)
1567{
1568	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1569						nb);
1570}
1571EXPORT_SYMBOL_GPL(regulator_register_notifier);
1572
1573/**
1574 * regulator_unregister_notifier - unregister regulator event notifier
1575 * @regulator: regulator source
1576 * @nb: notifier block
1577 *
1578 * Unregister regulator event notifier block.
1579 */
1580int regulator_unregister_notifier(struct regulator *regulator,
1581				struct notifier_block *nb)
1582{
1583	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1584						  nb);
1585}
1586EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1587
1588/* notify regulator consumers and downstream regulator consumers.
1589 * Note mutex must be held by caller.
1590 */
1591static void _notifier_call_chain(struct regulator_dev *rdev,
1592				  unsigned long event, void *data)
1593{
1594	struct regulator_dev *_rdev;
1595
1596	/* call rdev chain first */
1597	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1598
1599	/* now notify regulator we supply */
1600	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1601	  mutex_lock(&_rdev->mutex);
1602	  _notifier_call_chain(_rdev, event, data);
1603	  mutex_unlock(&_rdev->mutex);
1604	}
1605}
1606
1607/**
1608 * regulator_bulk_get - get multiple regulator consumers
1609 *
1610 * @dev:           Device to supply
1611 * @num_consumers: Number of consumers to register
1612 * @consumers:     Configuration of consumers; clients are stored here.
1613 *
1614 * @return 0 on success, an errno on failure.
1615 *
1616 * This helper function allows drivers to get several regulator
1617 * consumers in one operation.  If any of the regulators cannot be
1618 * acquired then any regulators that were allocated will be freed
1619 * before returning to the caller.
1620 */
1621int regulator_bulk_get(struct device *dev, int num_consumers,
1622		       struct regulator_bulk_data *consumers)
1623{
1624	int i;
1625	int ret;
1626
1627	for (i = 0; i < num_consumers; i++)
1628		consumers[i].consumer = NULL;
1629
1630	for (i = 0; i < num_consumers; i++) {
1631		consumers[i].consumer = regulator_get(dev,
1632						      consumers[i].supply);
1633		if (IS_ERR(consumers[i].consumer)) {
1634			dev_err(dev, "Failed to get supply '%s'\n",
1635				consumers[i].supply);
1636			ret = PTR_ERR(consumers[i].consumer);
1637			consumers[i].consumer = NULL;
1638			goto err;
1639		}
1640	}
1641
1642	return 0;
1643
1644err:
1645	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1646		regulator_put(consumers[i].consumer);
1647
1648	return ret;
1649}
1650EXPORT_SYMBOL_GPL(regulator_bulk_get);
1651
1652/**
1653 * regulator_bulk_enable - enable multiple regulator consumers
1654 *
1655 * @num_consumers: Number of consumers
1656 * @consumers:     Consumer data; clients are stored here.
1657 * @return         0 on success, an errno on failure
1658 *
1659 * This convenience API allows consumers to enable multiple regulator
1660 * clients in a single API call.  If any consumers cannot be enabled
1661 * then any others that were enabled will be disabled again prior to
1662 * return.
1663 */
1664int regulator_bulk_enable(int num_consumers,
1665			  struct regulator_bulk_data *consumers)
1666{
1667	int i;
1668	int ret;
1669
1670	for (i = 0; i < num_consumers; i++) {
1671		ret = regulator_enable(consumers[i].consumer);
1672		if (ret != 0)
1673			goto err;
1674	}
1675
1676	return 0;
1677
1678err:
1679	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1680	for (i = 0; i < num_consumers; i++)
1681		regulator_disable(consumers[i].consumer);
1682
1683	return ret;
1684}
1685EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1686
1687/**
1688 * regulator_bulk_disable - disable multiple regulator consumers
1689 *
1690 * @num_consumers: Number of consumers
1691 * @consumers:     Consumer data; clients are stored here.
1692 * @return         0 on success, an errno on failure
1693 *
1694 * This convenience API allows consumers to disable multiple regulator
1695 * clients in a single API call.  If any consumers cannot be enabled
1696 * then any others that were disabled will be disabled again prior to
1697 * return.
1698 */
1699int regulator_bulk_disable(int num_consumers,
1700			   struct regulator_bulk_data *consumers)
1701{
1702	int i;
1703	int ret;
1704
1705	for (i = 0; i < num_consumers; i++) {
1706		ret = regulator_disable(consumers[i].consumer);
1707		if (ret != 0)
1708			goto err;
1709	}
1710
1711	return 0;
1712
1713err:
1714	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1715	for (i = 0; i < num_consumers; i++)
1716		regulator_enable(consumers[i].consumer);
1717
1718	return ret;
1719}
1720EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1721
1722/**
1723 * regulator_bulk_free - free multiple regulator consumers
1724 *
1725 * @num_consumers: Number of consumers
1726 * @consumers:     Consumer data; clients are stored here.
1727 *
1728 * This convenience API allows consumers to free multiple regulator
1729 * clients in a single API call.
1730 */
1731void regulator_bulk_free(int num_consumers,
1732			 struct regulator_bulk_data *consumers)
1733{
1734	int i;
1735
1736	for (i = 0; i < num_consumers; i++) {
1737		regulator_put(consumers[i].consumer);
1738		consumers[i].consumer = NULL;
1739	}
1740}
1741EXPORT_SYMBOL_GPL(regulator_bulk_free);
1742
1743/**
1744 * regulator_notifier_call_chain - call regulator event notifier
1745 * @rdev: regulator source
1746 * @event: notifier block
1747 * @data: callback-specific data.
1748 *
1749 * Called by regulator drivers to notify clients a regulator event has
1750 * occurred. We also notify regulator clients downstream.
1751 * Note lock must be held by caller.
1752 */
1753int regulator_notifier_call_chain(struct regulator_dev *rdev,
1754				  unsigned long event, void *data)
1755{
1756	_notifier_call_chain(rdev, event, data);
1757	return NOTIFY_DONE;
1758
1759}
1760EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1761
1762/*
1763 * To avoid cluttering sysfs (and memory) with useless state, only
1764 * create attributes that can be meaningfully displayed.
1765 */
1766static int add_regulator_attributes(struct regulator_dev *rdev)
1767{
1768	struct device		*dev = &rdev->dev;
1769	struct regulator_ops	*ops = rdev->desc->ops;
1770	int			status = 0;
1771
1772	/* some attributes need specific methods to be displayed */
1773	if (ops->get_voltage) {
1774		status = device_create_file(dev, &dev_attr_microvolts);
1775		if (status < 0)
1776			return status;
1777	}
1778	if (ops->get_current_limit) {
1779		status = device_create_file(dev, &dev_attr_microamps);
1780		if (status < 0)
1781			return status;
1782	}
1783	if (ops->get_mode) {
1784		status = device_create_file(dev, &dev_attr_opmode);
1785		if (status < 0)
1786			return status;
1787	}
1788	if (ops->is_enabled) {
1789		status = device_create_file(dev, &dev_attr_state);
1790		if (status < 0)
1791			return status;
1792	}
1793	if (ops->get_status) {
1794		status = device_create_file(dev, &dev_attr_status);
1795		if (status < 0)
1796			return status;
1797	}
1798
1799	/* some attributes are type-specific */
1800	if (rdev->desc->type == REGULATOR_CURRENT) {
1801		status = device_create_file(dev, &dev_attr_requested_microamps);
1802		if (status < 0)
1803			return status;
1804	}
1805
1806	/* all the other attributes exist to support constraints;
1807	 * don't show them if there are no constraints, or if the
1808	 * relevant supporting methods are missing.
1809	 */
1810	if (!rdev->constraints)
1811		return status;
1812
1813	/* constraints need specific supporting methods */
1814	if (ops->set_voltage) {
1815		status = device_create_file(dev, &dev_attr_min_microvolts);
1816		if (status < 0)
1817			return status;
1818		status = device_create_file(dev, &dev_attr_max_microvolts);
1819		if (status < 0)
1820			return status;
1821	}
1822	if (ops->set_current_limit) {
1823		status = device_create_file(dev, &dev_attr_min_microamps);
1824		if (status < 0)
1825			return status;
1826		status = device_create_file(dev, &dev_attr_max_microamps);
1827		if (status < 0)
1828			return status;
1829	}
1830
1831	/* suspend mode constraints need multiple supporting methods */
1832	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1833		return status;
1834
1835	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1836	if (status < 0)
1837		return status;
1838	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1839	if (status < 0)
1840		return status;
1841	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1842	if (status < 0)
1843		return status;
1844
1845	if (ops->set_suspend_voltage) {
1846		status = device_create_file(dev,
1847				&dev_attr_suspend_standby_microvolts);
1848		if (status < 0)
1849			return status;
1850		status = device_create_file(dev,
1851				&dev_attr_suspend_mem_microvolts);
1852		if (status < 0)
1853			return status;
1854		status = device_create_file(dev,
1855				&dev_attr_suspend_disk_microvolts);
1856		if (status < 0)
1857			return status;
1858	}
1859
1860	if (ops->set_suspend_mode) {
1861		status = device_create_file(dev,
1862				&dev_attr_suspend_standby_mode);
1863		if (status < 0)
1864			return status;
1865		status = device_create_file(dev,
1866				&dev_attr_suspend_mem_mode);
1867		if (status < 0)
1868			return status;
1869		status = device_create_file(dev,
1870				&dev_attr_suspend_disk_mode);
1871		if (status < 0)
1872			return status;
1873	}
1874
1875	return status;
1876}
1877
1878/**
1879 * regulator_register - register regulator
1880 * @regulator_desc: regulator to register
1881 * @dev: struct device for the regulator
1882 * @init_data: platform provided init data, passed through by driver
1883 * @driver_data: private regulator data
1884 *
1885 * Called by regulator drivers to register a regulator.
1886 * Returns 0 on success.
1887 */
1888struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1889	struct device *dev, struct regulator_init_data *init_data,
1890	void *driver_data)
1891{
1892	static atomic_t regulator_no = ATOMIC_INIT(0);
1893	struct regulator_dev *rdev;
1894	int ret, i;
1895
1896	if (regulator_desc == NULL)
1897		return ERR_PTR(-EINVAL);
1898
1899	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1900		return ERR_PTR(-EINVAL);
1901
1902	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1903	    !regulator_desc->type == REGULATOR_CURRENT)
1904		return ERR_PTR(-EINVAL);
1905
1906	if (!init_data)
1907		return ERR_PTR(-EINVAL);
1908
1909	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1910	if (rdev == NULL)
1911		return ERR_PTR(-ENOMEM);
1912
1913	mutex_lock(&regulator_list_mutex);
1914
1915	mutex_init(&rdev->mutex);
1916	rdev->reg_data = driver_data;
1917	rdev->owner = regulator_desc->owner;
1918	rdev->desc = regulator_desc;
1919	INIT_LIST_HEAD(&rdev->consumer_list);
1920	INIT_LIST_HEAD(&rdev->supply_list);
1921	INIT_LIST_HEAD(&rdev->list);
1922	INIT_LIST_HEAD(&rdev->slist);
1923	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1924
1925	/* preform any regulator specific init */
1926	if (init_data->regulator_init) {
1927		ret = init_data->regulator_init(rdev->reg_data);
1928		if (ret < 0)
1929			goto clean;
1930	}
1931
1932	/* register with sysfs */
1933	rdev->dev.class = &regulator_class;
1934	rdev->dev.parent = dev;
1935	dev_set_name(&rdev->dev, "regulator.%d",
1936		     atomic_inc_return(&regulator_no) - 1);
1937	ret = device_register(&rdev->dev);
1938	if (ret != 0)
1939		goto clean;
1940
1941	dev_set_drvdata(&rdev->dev, rdev);
1942
1943	/* set regulator constraints */
1944	ret = set_machine_constraints(rdev, &init_data->constraints);
1945	if (ret < 0)
1946		goto scrub;
1947
1948	/* add attributes supported by this regulator */
1949	ret = add_regulator_attributes(rdev);
1950	if (ret < 0)
1951		goto scrub;
1952
1953	/* set supply regulator if it exists */
1954	if (init_data->supply_regulator_dev) {
1955		ret = set_supply(rdev,
1956			dev_get_drvdata(init_data->supply_regulator_dev));
1957		if (ret < 0)
1958			goto scrub;
1959	}
1960
1961	/* add consumers devices */
1962	for (i = 0; i < init_data->num_consumer_supplies; i++) {
1963		ret = set_consumer_device_supply(rdev,
1964			init_data->consumer_supplies[i].dev,
1965			init_data->consumer_supplies[i].supply);
1966		if (ret < 0) {
1967			for (--i; i >= 0; i--)
1968				unset_consumer_device_supply(rdev,
1969					init_data->consumer_supplies[i].dev);
1970			goto scrub;
1971		}
1972	}
1973
1974	list_add(&rdev->list, &regulator_list);
1975out:
1976	mutex_unlock(&regulator_list_mutex);
1977	return rdev;
1978
1979scrub:
1980	device_unregister(&rdev->dev);
1981clean:
1982	kfree(rdev);
1983	rdev = ERR_PTR(ret);
1984	goto out;
1985}
1986EXPORT_SYMBOL_GPL(regulator_register);
1987
1988/**
1989 * regulator_unregister - unregister regulator
1990 * @rdev: regulator to unregister
1991 *
1992 * Called by regulator drivers to unregister a regulator.
1993 */
1994void regulator_unregister(struct regulator_dev *rdev)
1995{
1996	if (rdev == NULL)
1997		return;
1998
1999	mutex_lock(&regulator_list_mutex);
2000	list_del(&rdev->list);
2001	if (rdev->supply)
2002		sysfs_remove_link(&rdev->dev.kobj, "supply");
2003	device_unregister(&rdev->dev);
2004	mutex_unlock(&regulator_list_mutex);
2005}
2006EXPORT_SYMBOL_GPL(regulator_unregister);
2007
2008/**
2009 * regulator_suspend_prepare - prepare regulators for system wide suspend
2010 * @state: system suspend state
2011 *
2012 * Configure each regulator with it's suspend operating parameters for state.
2013 * This will usually be called by machine suspend code prior to supending.
2014 */
2015int regulator_suspend_prepare(suspend_state_t state)
2016{
2017	struct regulator_dev *rdev;
2018	int ret = 0;
2019
2020	/* ON is handled by regulator active state */
2021	if (state == PM_SUSPEND_ON)
2022		return -EINVAL;
2023
2024	mutex_lock(&regulator_list_mutex);
2025	list_for_each_entry(rdev, &regulator_list, list) {
2026
2027		mutex_lock(&rdev->mutex);
2028		ret = suspend_prepare(rdev, state);
2029		mutex_unlock(&rdev->mutex);
2030
2031		if (ret < 0) {
2032			printk(KERN_ERR "%s: failed to prepare %s\n",
2033				__func__, rdev->desc->name);
2034			goto out;
2035		}
2036	}
2037out:
2038	mutex_unlock(&regulator_list_mutex);
2039	return ret;
2040}
2041EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2042
2043/**
2044 * rdev_get_drvdata - get rdev regulator driver data
2045 * @rdev: regulator
2046 *
2047 * Get rdev regulator driver private data. This call can be used in the
2048 * regulator driver context.
2049 */
2050void *rdev_get_drvdata(struct regulator_dev *rdev)
2051{
2052	return rdev->reg_data;
2053}
2054EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2055
2056/**
2057 * regulator_get_drvdata - get regulator driver data
2058 * @regulator: regulator
2059 *
2060 * Get regulator driver private data. This call can be used in the consumer
2061 * driver context when non API regulator specific functions need to be called.
2062 */
2063void *regulator_get_drvdata(struct regulator *regulator)
2064{
2065	return regulator->rdev->reg_data;
2066}
2067EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2068
2069/**
2070 * regulator_set_drvdata - set regulator driver data
2071 * @regulator: regulator
2072 * @data: data
2073 */
2074void regulator_set_drvdata(struct regulator *regulator, void *data)
2075{
2076	regulator->rdev->reg_data = data;
2077}
2078EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2079
2080/**
2081 * regulator_get_id - get regulator ID
2082 * @rdev: regulator
2083 */
2084int rdev_get_id(struct regulator_dev *rdev)
2085{
2086	return rdev->desc->id;
2087}
2088EXPORT_SYMBOL_GPL(rdev_get_id);
2089
2090struct device *rdev_get_dev(struct regulator_dev *rdev)
2091{
2092	return &rdev->dev;
2093}
2094EXPORT_SYMBOL_GPL(rdev_get_dev);
2095
2096void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2097{
2098	return reg_init_data->driver_data;
2099}
2100EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2101
2102static int __init regulator_init(void)
2103{
2104	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2105	return class_register(&regulator_class);
2106}
2107
2108/* init early to allow our consumers to complete system booting */
2109core_initcall(regulator_init);
2110