core.c revision 05fda3b1abc23d832144e9497fb218870927d645
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/regulator/consumer.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34
35#define rdev_err(rdev, fmt, ...)					\
36	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37#define rdev_warn(rdev, fmt, ...)					\
38	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_info(rdev, fmt, ...)					\
40	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_dbg(rdev, fmt, ...)					\
42	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44static DEFINE_MUTEX(regulator_list_mutex);
45static LIST_HEAD(regulator_list);
46static LIST_HEAD(regulator_map_list);
47static int has_full_constraints;
48static bool board_wants_dummy_regulator;
49
50/*
51 * struct regulator_map
52 *
53 * Used to provide symbolic supply names to devices.
54 */
55struct regulator_map {
56	struct list_head list;
57	const char *dev_name;   /* The dev_name() for the consumer */
58	const char *supply;
59	struct regulator_dev *regulator;
60};
61
62/*
63 * struct regulator
64 *
65 * One for each consumer device.
66 */
67struct regulator {
68	struct device *dev;
69	struct list_head list;
70	int uA_load;
71	int min_uV;
72	int max_uV;
73	char *supply_name;
74	struct device_attribute dev_attr;
75	struct regulator_dev *rdev;
76};
77
78static int _regulator_is_enabled(struct regulator_dev *rdev);
79static int _regulator_disable(struct regulator_dev *rdev,
80		struct regulator_dev **supply_rdev_ptr);
81static int _regulator_get_voltage(struct regulator_dev *rdev);
82static int _regulator_get_current_limit(struct regulator_dev *rdev);
83static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84static void _notifier_call_chain(struct regulator_dev *rdev,
85				  unsigned long event, void *data);
86
87static const char *rdev_get_name(struct regulator_dev *rdev)
88{
89	if (rdev->constraints && rdev->constraints->name)
90		return rdev->constraints->name;
91	else if (rdev->desc->name)
92		return rdev->desc->name;
93	else
94		return "";
95}
96
97/* gets the regulator for a given consumer device */
98static struct regulator *get_device_regulator(struct device *dev)
99{
100	struct regulator *regulator = NULL;
101	struct regulator_dev *rdev;
102
103	mutex_lock(&regulator_list_mutex);
104	list_for_each_entry(rdev, &regulator_list, list) {
105		mutex_lock(&rdev->mutex);
106		list_for_each_entry(regulator, &rdev->consumer_list, list) {
107			if (regulator->dev == dev) {
108				mutex_unlock(&rdev->mutex);
109				mutex_unlock(&regulator_list_mutex);
110				return regulator;
111			}
112		}
113		mutex_unlock(&rdev->mutex);
114	}
115	mutex_unlock(&regulator_list_mutex);
116	return NULL;
117}
118
119/* Platform voltage constraint check */
120static int regulator_check_voltage(struct regulator_dev *rdev,
121				   int *min_uV, int *max_uV)
122{
123	BUG_ON(*min_uV > *max_uV);
124
125	if (!rdev->constraints) {
126		rdev_err(rdev, "no constraints\n");
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130		rdev_err(rdev, "operation not allowed\n");
131		return -EPERM;
132	}
133
134	if (*max_uV > rdev->constraints->max_uV)
135		*max_uV = rdev->constraints->max_uV;
136	if (*min_uV < rdev->constraints->min_uV)
137		*min_uV = rdev->constraints->min_uV;
138
139	if (*min_uV > *max_uV)
140		return -EINVAL;
141
142	return 0;
143}
144
145/* Make sure we select a voltage that suits the needs of all
146 * regulator consumers
147 */
148static int regulator_check_consumers(struct regulator_dev *rdev,
149				     int *min_uV, int *max_uV)
150{
151	struct regulator *regulator;
152
153	list_for_each_entry(regulator, &rdev->consumer_list, list) {
154		if (*max_uV > regulator->max_uV)
155			*max_uV = regulator->max_uV;
156		if (*min_uV < regulator->min_uV)
157			*min_uV = regulator->min_uV;
158	}
159
160	if (*min_uV > *max_uV)
161		return -EINVAL;
162
163	return 0;
164}
165
166/* current constraint check */
167static int regulator_check_current_limit(struct regulator_dev *rdev,
168					int *min_uA, int *max_uA)
169{
170	BUG_ON(*min_uA > *max_uA);
171
172	if (!rdev->constraints) {
173		rdev_err(rdev, "no constraints\n");
174		return -ENODEV;
175	}
176	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177		rdev_err(rdev, "operation not allowed\n");
178		return -EPERM;
179	}
180
181	if (*max_uA > rdev->constraints->max_uA)
182		*max_uA = rdev->constraints->max_uA;
183	if (*min_uA < rdev->constraints->min_uA)
184		*min_uA = rdev->constraints->min_uA;
185
186	if (*min_uA > *max_uA)
187		return -EINVAL;
188
189	return 0;
190}
191
192/* operating mode constraint check */
193static int regulator_check_mode(struct regulator_dev *rdev, int mode)
194{
195	switch (mode) {
196	case REGULATOR_MODE_FAST:
197	case REGULATOR_MODE_NORMAL:
198	case REGULATOR_MODE_IDLE:
199	case REGULATOR_MODE_STANDBY:
200		break;
201	default:
202		return -EINVAL;
203	}
204
205	if (!rdev->constraints) {
206		rdev_err(rdev, "no constraints\n");
207		return -ENODEV;
208	}
209	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210		rdev_err(rdev, "operation not allowed\n");
211		return -EPERM;
212	}
213	if (!(rdev->constraints->valid_modes_mask & mode)) {
214		rdev_err(rdev, "invalid mode %x\n", mode);
215		return -EINVAL;
216	}
217	return 0;
218}
219
220/* dynamic regulator mode switching constraint check */
221static int regulator_check_drms(struct regulator_dev *rdev)
222{
223	if (!rdev->constraints) {
224		rdev_err(rdev, "no constraints\n");
225		return -ENODEV;
226	}
227	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228		rdev_err(rdev, "operation not allowed\n");
229		return -EPERM;
230	}
231	return 0;
232}
233
234static ssize_t device_requested_uA_show(struct device *dev,
235			     struct device_attribute *attr, char *buf)
236{
237	struct regulator *regulator;
238
239	regulator = get_device_regulator(dev);
240	if (regulator == NULL)
241		return 0;
242
243	return sprintf(buf, "%d\n", regulator->uA_load);
244}
245
246static ssize_t regulator_uV_show(struct device *dev,
247				struct device_attribute *attr, char *buf)
248{
249	struct regulator_dev *rdev = dev_get_drvdata(dev);
250	ssize_t ret;
251
252	mutex_lock(&rdev->mutex);
253	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254	mutex_unlock(&rdev->mutex);
255
256	return ret;
257}
258static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259
260static ssize_t regulator_uA_show(struct device *dev,
261				struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
266}
267static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268
269static ssize_t regulator_name_show(struct device *dev,
270			     struct device_attribute *attr, char *buf)
271{
272	struct regulator_dev *rdev = dev_get_drvdata(dev);
273
274	return sprintf(buf, "%s\n", rdev_get_name(rdev));
275}
276
277static ssize_t regulator_print_opmode(char *buf, int mode)
278{
279	switch (mode) {
280	case REGULATOR_MODE_FAST:
281		return sprintf(buf, "fast\n");
282	case REGULATOR_MODE_NORMAL:
283		return sprintf(buf, "normal\n");
284	case REGULATOR_MODE_IDLE:
285		return sprintf(buf, "idle\n");
286	case REGULATOR_MODE_STANDBY:
287		return sprintf(buf, "standby\n");
288	}
289	return sprintf(buf, "unknown\n");
290}
291
292static ssize_t regulator_opmode_show(struct device *dev,
293				    struct device_attribute *attr, char *buf)
294{
295	struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
298}
299static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
300
301static ssize_t regulator_print_state(char *buf, int state)
302{
303	if (state > 0)
304		return sprintf(buf, "enabled\n");
305	else if (state == 0)
306		return sprintf(buf, "disabled\n");
307	else
308		return sprintf(buf, "unknown\n");
309}
310
311static ssize_t regulator_state_show(struct device *dev,
312				   struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
324
325static ssize_t regulator_status_show(struct device *dev,
326				   struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329	int status;
330	char *label;
331
332	status = rdev->desc->ops->get_status(rdev);
333	if (status < 0)
334		return status;
335
336	switch (status) {
337	case REGULATOR_STATUS_OFF:
338		label = "off";
339		break;
340	case REGULATOR_STATUS_ON:
341		label = "on";
342		break;
343	case REGULATOR_STATUS_ERROR:
344		label = "error";
345		break;
346	case REGULATOR_STATUS_FAST:
347		label = "fast";
348		break;
349	case REGULATOR_STATUS_NORMAL:
350		label = "normal";
351		break;
352	case REGULATOR_STATUS_IDLE:
353		label = "idle";
354		break;
355	case REGULATOR_STATUS_STANDBY:
356		label = "standby";
357		break;
358	default:
359		return -ERANGE;
360	}
361
362	return sprintf(buf, "%s\n", label);
363}
364static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
365
366static ssize_t regulator_min_uA_show(struct device *dev,
367				    struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "constraint not defined\n");
373
374	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
375}
376static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377
378static ssize_t regulator_max_uA_show(struct device *dev,
379				    struct device_attribute *attr, char *buf)
380{
381	struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383	if (!rdev->constraints)
384		return sprintf(buf, "constraint not defined\n");
385
386	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
387}
388static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389
390static ssize_t regulator_min_uV_show(struct device *dev,
391				    struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394
395	if (!rdev->constraints)
396		return sprintf(buf, "constraint not defined\n");
397
398	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
399}
400static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401
402static ssize_t regulator_max_uV_show(struct device *dev,
403				    struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407	if (!rdev->constraints)
408		return sprintf(buf, "constraint not defined\n");
409
410	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
411}
412static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413
414static ssize_t regulator_total_uA_show(struct device *dev,
415				      struct device_attribute *attr, char *buf)
416{
417	struct regulator_dev *rdev = dev_get_drvdata(dev);
418	struct regulator *regulator;
419	int uA = 0;
420
421	mutex_lock(&rdev->mutex);
422	list_for_each_entry(regulator, &rdev->consumer_list, list)
423		uA += regulator->uA_load;
424	mutex_unlock(&rdev->mutex);
425	return sprintf(buf, "%d\n", uA);
426}
427static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428
429static ssize_t regulator_num_users_show(struct device *dev,
430				      struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433	return sprintf(buf, "%d\n", rdev->use_count);
434}
435
436static ssize_t regulator_type_show(struct device *dev,
437				  struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	switch (rdev->desc->type) {
442	case REGULATOR_VOLTAGE:
443		return sprintf(buf, "voltage\n");
444	case REGULATOR_CURRENT:
445		return sprintf(buf, "current\n");
446	}
447	return sprintf(buf, "unknown\n");
448}
449
450static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
456}
457static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458		regulator_suspend_mem_uV_show, NULL);
459
460static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461				struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
466}
467static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468		regulator_suspend_disk_uV_show, NULL);
469
470static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
476}
477static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478		regulator_suspend_standby_uV_show, NULL);
479
480static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481				struct device_attribute *attr, char *buf)
482{
483	struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485	return regulator_print_opmode(buf,
486		rdev->constraints->state_mem.mode);
487}
488static DEVICE_ATTR(suspend_mem_mode, 0444,
489		regulator_suspend_mem_mode_show, NULL);
490
491static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492				struct device_attribute *attr, char *buf)
493{
494	struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496	return regulator_print_opmode(buf,
497		rdev->constraints->state_disk.mode);
498}
499static DEVICE_ATTR(suspend_disk_mode, 0444,
500		regulator_suspend_disk_mode_show, NULL);
501
502static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503				struct device_attribute *attr, char *buf)
504{
505	struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507	return regulator_print_opmode(buf,
508		rdev->constraints->state_standby.mode);
509}
510static DEVICE_ATTR(suspend_standby_mode, 0444,
511		regulator_suspend_standby_mode_show, NULL);
512
513static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514				   struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return regulator_print_state(buf,
519			rdev->constraints->state_mem.enabled);
520}
521static DEVICE_ATTR(suspend_mem_state, 0444,
522		regulator_suspend_mem_state_show, NULL);
523
524static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525				   struct device_attribute *attr, char *buf)
526{
527	struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529	return regulator_print_state(buf,
530			rdev->constraints->state_disk.enabled);
531}
532static DEVICE_ATTR(suspend_disk_state, 0444,
533		regulator_suspend_disk_state_show, NULL);
534
535static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536				   struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return regulator_print_state(buf,
541			rdev->constraints->state_standby.enabled);
542}
543static DEVICE_ATTR(suspend_standby_state, 0444,
544		regulator_suspend_standby_state_show, NULL);
545
546
547/*
548 * These are the only attributes are present for all regulators.
549 * Other attributes are a function of regulator functionality.
550 */
551static struct device_attribute regulator_dev_attrs[] = {
552	__ATTR(name, 0444, regulator_name_show, NULL),
553	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
554	__ATTR(type, 0444, regulator_type_show, NULL),
555	__ATTR_NULL,
556};
557
558static void regulator_dev_release(struct device *dev)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561	kfree(rdev);
562}
563
564static struct class regulator_class = {
565	.name = "regulator",
566	.dev_release = regulator_dev_release,
567	.dev_attrs = regulator_dev_attrs,
568};
569
570/* Calculate the new optimum regulator operating mode based on the new total
571 * consumer load. All locks held by caller */
572static void drms_uA_update(struct regulator_dev *rdev)
573{
574	struct regulator *sibling;
575	int current_uA = 0, output_uV, input_uV, err;
576	unsigned int mode;
577
578	err = regulator_check_drms(rdev);
579	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
581		return;
582
583	/* get output voltage */
584	output_uV = rdev->desc->ops->get_voltage(rdev);
585	if (output_uV <= 0)
586		return;
587
588	/* get input voltage */
589	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
590		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
591	else
592		input_uV = rdev->constraints->input_uV;
593	if (input_uV <= 0)
594		return;
595
596	/* calc total requested load */
597	list_for_each_entry(sibling, &rdev->consumer_list, list)
598		current_uA += sibling->uA_load;
599
600	/* now get the optimum mode for our new total regulator load */
601	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
602						  output_uV, current_uA);
603
604	/* check the new mode is allowed */
605	err = regulator_check_mode(rdev, mode);
606	if (err == 0)
607		rdev->desc->ops->set_mode(rdev, mode);
608}
609
610static int suspend_set_state(struct regulator_dev *rdev,
611	struct regulator_state *rstate)
612{
613	int ret = 0;
614	bool can_set_state;
615
616	can_set_state = rdev->desc->ops->set_suspend_enable &&
617		rdev->desc->ops->set_suspend_disable;
618
619	/* If we have no suspend mode configration don't set anything;
620	 * only warn if the driver actually makes the suspend mode
621	 * configurable.
622	 */
623	if (!rstate->enabled && !rstate->disabled) {
624		if (can_set_state)
625			rdev_warn(rdev, "No configuration\n");
626		return 0;
627	}
628
629	if (rstate->enabled && rstate->disabled) {
630		rdev_err(rdev, "invalid configuration\n");
631		return -EINVAL;
632	}
633
634	if (!can_set_state) {
635		rdev_err(rdev, "no way to set suspend state\n");
636		return -EINVAL;
637	}
638
639	if (rstate->enabled)
640		ret = rdev->desc->ops->set_suspend_enable(rdev);
641	else
642		ret = rdev->desc->ops->set_suspend_disable(rdev);
643	if (ret < 0) {
644		rdev_err(rdev, "failed to enabled/disable\n");
645		return ret;
646	}
647
648	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
649		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
650		if (ret < 0) {
651			rdev_err(rdev, "failed to set voltage\n");
652			return ret;
653		}
654	}
655
656	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
657		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
658		if (ret < 0) {
659			rdev_err(rdev, "failed to set mode\n");
660			return ret;
661		}
662	}
663	return ret;
664}
665
666/* locks held by caller */
667static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
668{
669	if (!rdev->constraints)
670		return -EINVAL;
671
672	switch (state) {
673	case PM_SUSPEND_STANDBY:
674		return suspend_set_state(rdev,
675			&rdev->constraints->state_standby);
676	case PM_SUSPEND_MEM:
677		return suspend_set_state(rdev,
678			&rdev->constraints->state_mem);
679	case PM_SUSPEND_MAX:
680		return suspend_set_state(rdev,
681			&rdev->constraints->state_disk);
682	default:
683		return -EINVAL;
684	}
685}
686
687static void print_constraints(struct regulator_dev *rdev)
688{
689	struct regulation_constraints *constraints = rdev->constraints;
690	char buf[80] = "";
691	int count = 0;
692	int ret;
693
694	if (constraints->min_uV && constraints->max_uV) {
695		if (constraints->min_uV == constraints->max_uV)
696			count += sprintf(buf + count, "%d mV ",
697					 constraints->min_uV / 1000);
698		else
699			count += sprintf(buf + count, "%d <--> %d mV ",
700					 constraints->min_uV / 1000,
701					 constraints->max_uV / 1000);
702	}
703
704	if (!constraints->min_uV ||
705	    constraints->min_uV != constraints->max_uV) {
706		ret = _regulator_get_voltage(rdev);
707		if (ret > 0)
708			count += sprintf(buf + count, "at %d mV ", ret / 1000);
709	}
710
711	if (constraints->min_uA && constraints->max_uA) {
712		if (constraints->min_uA == constraints->max_uA)
713			count += sprintf(buf + count, "%d mA ",
714					 constraints->min_uA / 1000);
715		else
716			count += sprintf(buf + count, "%d <--> %d mA ",
717					 constraints->min_uA / 1000,
718					 constraints->max_uA / 1000);
719	}
720
721	if (!constraints->min_uA ||
722	    constraints->min_uA != constraints->max_uA) {
723		ret = _regulator_get_current_limit(rdev);
724		if (ret > 0)
725			count += sprintf(buf + count, "at %d mA ", ret / 1000);
726	}
727
728	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
729		count += sprintf(buf + count, "fast ");
730	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
731		count += sprintf(buf + count, "normal ");
732	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
733		count += sprintf(buf + count, "idle ");
734	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
735		count += sprintf(buf + count, "standby");
736
737	rdev_info(rdev, "regulator: %s\n", buf);
738}
739
740static int machine_constraints_voltage(struct regulator_dev *rdev,
741	struct regulation_constraints *constraints)
742{
743	struct regulator_ops *ops = rdev->desc->ops;
744	int ret;
745	unsigned selector;
746
747	/* do we need to apply the constraint voltage */
748	if (rdev->constraints->apply_uV &&
749		rdev->constraints->min_uV == rdev->constraints->max_uV &&
750		ops->set_voltage) {
751		ret = ops->set_voltage(rdev,
752				       rdev->constraints->min_uV,
753				       rdev->constraints->max_uV,
754				       &selector);
755			if (ret < 0) {
756				rdev_err(rdev, "failed to apply %duV constraint\n",
757					 rdev->constraints->min_uV);
758				rdev->constraints = NULL;
759				return ret;
760			}
761	}
762
763	/* constrain machine-level voltage specs to fit
764	 * the actual range supported by this regulator.
765	 */
766	if (ops->list_voltage && rdev->desc->n_voltages) {
767		int	count = rdev->desc->n_voltages;
768		int	i;
769		int	min_uV = INT_MAX;
770		int	max_uV = INT_MIN;
771		int	cmin = constraints->min_uV;
772		int	cmax = constraints->max_uV;
773
774		/* it's safe to autoconfigure fixed-voltage supplies
775		   and the constraints are used by list_voltage. */
776		if (count == 1 && !cmin) {
777			cmin = 1;
778			cmax = INT_MAX;
779			constraints->min_uV = cmin;
780			constraints->max_uV = cmax;
781		}
782
783		/* voltage constraints are optional */
784		if ((cmin == 0) && (cmax == 0))
785			return 0;
786
787		/* else require explicit machine-level constraints */
788		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
789			rdev_err(rdev, "invalid voltage constraints\n");
790			return -EINVAL;
791		}
792
793		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
794		for (i = 0; i < count; i++) {
795			int	value;
796
797			value = ops->list_voltage(rdev, i);
798			if (value <= 0)
799				continue;
800
801			/* maybe adjust [min_uV..max_uV] */
802			if (value >= cmin && value < min_uV)
803				min_uV = value;
804			if (value <= cmax && value > max_uV)
805				max_uV = value;
806		}
807
808		/* final: [min_uV..max_uV] valid iff constraints valid */
809		if (max_uV < min_uV) {
810			rdev_err(rdev, "unsupportable voltage constraints\n");
811			return -EINVAL;
812		}
813
814		/* use regulator's subset of machine constraints */
815		if (constraints->min_uV < min_uV) {
816			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
817				 constraints->min_uV, min_uV);
818			constraints->min_uV = min_uV;
819		}
820		if (constraints->max_uV > max_uV) {
821			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
822				 constraints->max_uV, max_uV);
823			constraints->max_uV = max_uV;
824		}
825	}
826
827	return 0;
828}
829
830/**
831 * set_machine_constraints - sets regulator constraints
832 * @rdev: regulator source
833 * @constraints: constraints to apply
834 *
835 * Allows platform initialisation code to define and constrain
836 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
837 * Constraints *must* be set by platform code in order for some
838 * regulator operations to proceed i.e. set_voltage, set_current_limit,
839 * set_mode.
840 */
841static int set_machine_constraints(struct regulator_dev *rdev,
842	const struct regulation_constraints *constraints)
843{
844	int ret = 0;
845	struct regulator_ops *ops = rdev->desc->ops;
846
847	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
848				    GFP_KERNEL);
849	if (!rdev->constraints)
850		return -ENOMEM;
851
852	ret = machine_constraints_voltage(rdev, rdev->constraints);
853	if (ret != 0)
854		goto out;
855
856	/* do we need to setup our suspend state */
857	if (constraints->initial_state) {
858		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
859		if (ret < 0) {
860			rdev_err(rdev, "failed to set suspend state\n");
861			rdev->constraints = NULL;
862			goto out;
863		}
864	}
865
866	if (constraints->initial_mode) {
867		if (!ops->set_mode) {
868			rdev_err(rdev, "no set_mode operation\n");
869			ret = -EINVAL;
870			goto out;
871		}
872
873		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
874		if (ret < 0) {
875			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
876			goto out;
877		}
878	}
879
880	/* If the constraints say the regulator should be on at this point
881	 * and we have control then make sure it is enabled.
882	 */
883	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
884	    ops->enable) {
885		ret = ops->enable(rdev);
886		if (ret < 0) {
887			rdev_err(rdev, "failed to enable\n");
888			rdev->constraints = NULL;
889			goto out;
890		}
891	}
892
893	print_constraints(rdev);
894out:
895	return ret;
896}
897
898/**
899 * set_supply - set regulator supply regulator
900 * @rdev: regulator name
901 * @supply_rdev: supply regulator name
902 *
903 * Called by platform initialisation code to set the supply regulator for this
904 * regulator. This ensures that a regulators supply will also be enabled by the
905 * core if it's child is enabled.
906 */
907static int set_supply(struct regulator_dev *rdev,
908	struct regulator_dev *supply_rdev)
909{
910	int err;
911
912	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
913				"supply");
914	if (err) {
915		rdev_err(rdev, "could not add device link %s err %d\n",
916			 supply_rdev->dev.kobj.name, err);
917		       goto out;
918	}
919	rdev->supply = supply_rdev;
920	list_add(&rdev->slist, &supply_rdev->supply_list);
921out:
922	return err;
923}
924
925/**
926 * set_consumer_device_supply - Bind a regulator to a symbolic supply
927 * @rdev:         regulator source
928 * @consumer_dev: device the supply applies to
929 * @consumer_dev_name: dev_name() string for device supply applies to
930 * @supply:       symbolic name for supply
931 *
932 * Allows platform initialisation code to map physical regulator
933 * sources to symbolic names for supplies for use by devices.  Devices
934 * should use these symbolic names to request regulators, avoiding the
935 * need to provide board-specific regulator names as platform data.
936 *
937 * Only one of consumer_dev and consumer_dev_name may be specified.
938 */
939static int set_consumer_device_supply(struct regulator_dev *rdev,
940	struct device *consumer_dev, const char *consumer_dev_name,
941	const char *supply)
942{
943	struct regulator_map *node;
944	int has_dev;
945
946	if (consumer_dev && consumer_dev_name)
947		return -EINVAL;
948
949	if (!consumer_dev_name && consumer_dev)
950		consumer_dev_name = dev_name(consumer_dev);
951
952	if (supply == NULL)
953		return -EINVAL;
954
955	if (consumer_dev_name != NULL)
956		has_dev = 1;
957	else
958		has_dev = 0;
959
960	list_for_each_entry(node, &regulator_map_list, list) {
961		if (node->dev_name && consumer_dev_name) {
962			if (strcmp(node->dev_name, consumer_dev_name) != 0)
963				continue;
964		} else if (node->dev_name || consumer_dev_name) {
965			continue;
966		}
967
968		if (strcmp(node->supply, supply) != 0)
969			continue;
970
971		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
972			dev_name(&node->regulator->dev),
973			node->regulator->desc->name,
974			supply,
975			dev_name(&rdev->dev), rdev_get_name(rdev));
976		return -EBUSY;
977	}
978
979	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
980	if (node == NULL)
981		return -ENOMEM;
982
983	node->regulator = rdev;
984	node->supply = supply;
985
986	if (has_dev) {
987		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
988		if (node->dev_name == NULL) {
989			kfree(node);
990			return -ENOMEM;
991		}
992	}
993
994	list_add(&node->list, &regulator_map_list);
995	return 0;
996}
997
998static void unset_regulator_supplies(struct regulator_dev *rdev)
999{
1000	struct regulator_map *node, *n;
1001
1002	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1003		if (rdev == node->regulator) {
1004			list_del(&node->list);
1005			kfree(node->dev_name);
1006			kfree(node);
1007		}
1008	}
1009}
1010
1011#define REG_STR_SIZE	32
1012
1013static struct regulator *create_regulator(struct regulator_dev *rdev,
1014					  struct device *dev,
1015					  const char *supply_name)
1016{
1017	struct regulator *regulator;
1018	char buf[REG_STR_SIZE];
1019	int err, size;
1020
1021	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1022	if (regulator == NULL)
1023		return NULL;
1024
1025	mutex_lock(&rdev->mutex);
1026	regulator->rdev = rdev;
1027	list_add(&regulator->list, &rdev->consumer_list);
1028
1029	if (dev) {
1030		/* create a 'requested_microamps_name' sysfs entry */
1031		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1032			supply_name);
1033		if (size >= REG_STR_SIZE)
1034			goto overflow_err;
1035
1036		regulator->dev = dev;
1037		sysfs_attr_init(&regulator->dev_attr.attr);
1038		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1039		if (regulator->dev_attr.attr.name == NULL)
1040			goto attr_name_err;
1041
1042		regulator->dev_attr.attr.mode = 0444;
1043		regulator->dev_attr.show = device_requested_uA_show;
1044		err = device_create_file(dev, &regulator->dev_attr);
1045		if (err < 0) {
1046			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1047			goto attr_name_err;
1048		}
1049
1050		/* also add a link to the device sysfs entry */
1051		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1052				 dev->kobj.name, supply_name);
1053		if (size >= REG_STR_SIZE)
1054			goto attr_err;
1055
1056		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1057		if (regulator->supply_name == NULL)
1058			goto attr_err;
1059
1060		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1061					buf);
1062		if (err) {
1063			rdev_warn(rdev, "could not add device link %s err %d\n",
1064				  dev->kobj.name, err);
1065			goto link_name_err;
1066		}
1067	}
1068	mutex_unlock(&rdev->mutex);
1069	return regulator;
1070link_name_err:
1071	kfree(regulator->supply_name);
1072attr_err:
1073	device_remove_file(regulator->dev, &regulator->dev_attr);
1074attr_name_err:
1075	kfree(regulator->dev_attr.attr.name);
1076overflow_err:
1077	list_del(&regulator->list);
1078	kfree(regulator);
1079	mutex_unlock(&rdev->mutex);
1080	return NULL;
1081}
1082
1083static int _regulator_get_enable_time(struct regulator_dev *rdev)
1084{
1085	if (!rdev->desc->ops->enable_time)
1086		return 0;
1087	return rdev->desc->ops->enable_time(rdev);
1088}
1089
1090/* Internal regulator request function */
1091static struct regulator *_regulator_get(struct device *dev, const char *id,
1092					int exclusive)
1093{
1094	struct regulator_dev *rdev;
1095	struct regulator_map *map;
1096	struct regulator *regulator = ERR_PTR(-ENODEV);
1097	const char *devname = NULL;
1098	int ret;
1099
1100	if (id == NULL) {
1101		pr_err("get() with no identifier\n");
1102		return regulator;
1103	}
1104
1105	if (dev)
1106		devname = dev_name(dev);
1107
1108	mutex_lock(&regulator_list_mutex);
1109
1110	list_for_each_entry(map, &regulator_map_list, list) {
1111		/* If the mapping has a device set up it must match */
1112		if (map->dev_name &&
1113		    (!devname || strcmp(map->dev_name, devname)))
1114			continue;
1115
1116		if (strcmp(map->supply, id) == 0) {
1117			rdev = map->regulator;
1118			goto found;
1119		}
1120	}
1121
1122	if (board_wants_dummy_regulator) {
1123		rdev = dummy_regulator_rdev;
1124		goto found;
1125	}
1126
1127#ifdef CONFIG_REGULATOR_DUMMY
1128	if (!devname)
1129		devname = "deviceless";
1130
1131	/* If the board didn't flag that it was fully constrained then
1132	 * substitute in a dummy regulator so consumers can continue.
1133	 */
1134	if (!has_full_constraints) {
1135		pr_warn("%s supply %s not found, using dummy regulator\n",
1136			devname, id);
1137		rdev = dummy_regulator_rdev;
1138		goto found;
1139	}
1140#endif
1141
1142	mutex_unlock(&regulator_list_mutex);
1143	return regulator;
1144
1145found:
1146	if (rdev->exclusive) {
1147		regulator = ERR_PTR(-EPERM);
1148		goto out;
1149	}
1150
1151	if (exclusive && rdev->open_count) {
1152		regulator = ERR_PTR(-EBUSY);
1153		goto out;
1154	}
1155
1156	if (!try_module_get(rdev->owner))
1157		goto out;
1158
1159	regulator = create_regulator(rdev, dev, id);
1160	if (regulator == NULL) {
1161		regulator = ERR_PTR(-ENOMEM);
1162		module_put(rdev->owner);
1163	}
1164
1165	rdev->open_count++;
1166	if (exclusive) {
1167		rdev->exclusive = 1;
1168
1169		ret = _regulator_is_enabled(rdev);
1170		if (ret > 0)
1171			rdev->use_count = 1;
1172		else
1173			rdev->use_count = 0;
1174	}
1175
1176out:
1177	mutex_unlock(&regulator_list_mutex);
1178
1179	return regulator;
1180}
1181
1182/**
1183 * regulator_get - lookup and obtain a reference to a regulator.
1184 * @dev: device for regulator "consumer"
1185 * @id: Supply name or regulator ID.
1186 *
1187 * Returns a struct regulator corresponding to the regulator producer,
1188 * or IS_ERR() condition containing errno.
1189 *
1190 * Use of supply names configured via regulator_set_device_supply() is
1191 * strongly encouraged.  It is recommended that the supply name used
1192 * should match the name used for the supply and/or the relevant
1193 * device pins in the datasheet.
1194 */
1195struct regulator *regulator_get(struct device *dev, const char *id)
1196{
1197	return _regulator_get(dev, id, 0);
1198}
1199EXPORT_SYMBOL_GPL(regulator_get);
1200
1201/**
1202 * regulator_get_exclusive - obtain exclusive access to a regulator.
1203 * @dev: device for regulator "consumer"
1204 * @id: Supply name or regulator ID.
1205 *
1206 * Returns a struct regulator corresponding to the regulator producer,
1207 * or IS_ERR() condition containing errno.  Other consumers will be
1208 * unable to obtain this reference is held and the use count for the
1209 * regulator will be initialised to reflect the current state of the
1210 * regulator.
1211 *
1212 * This is intended for use by consumers which cannot tolerate shared
1213 * use of the regulator such as those which need to force the
1214 * regulator off for correct operation of the hardware they are
1215 * controlling.
1216 *
1217 * Use of supply names configured via regulator_set_device_supply() is
1218 * strongly encouraged.  It is recommended that the supply name used
1219 * should match the name used for the supply and/or the relevant
1220 * device pins in the datasheet.
1221 */
1222struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1223{
1224	return _regulator_get(dev, id, 1);
1225}
1226EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1227
1228/**
1229 * regulator_put - "free" the regulator source
1230 * @regulator: regulator source
1231 *
1232 * Note: drivers must ensure that all regulator_enable calls made on this
1233 * regulator source are balanced by regulator_disable calls prior to calling
1234 * this function.
1235 */
1236void regulator_put(struct regulator *regulator)
1237{
1238	struct regulator_dev *rdev;
1239
1240	if (regulator == NULL || IS_ERR(regulator))
1241		return;
1242
1243	mutex_lock(&regulator_list_mutex);
1244	rdev = regulator->rdev;
1245
1246	/* remove any sysfs entries */
1247	if (regulator->dev) {
1248		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1249		kfree(regulator->supply_name);
1250		device_remove_file(regulator->dev, &regulator->dev_attr);
1251		kfree(regulator->dev_attr.attr.name);
1252	}
1253	list_del(&regulator->list);
1254	kfree(regulator);
1255
1256	rdev->open_count--;
1257	rdev->exclusive = 0;
1258
1259	module_put(rdev->owner);
1260	mutex_unlock(&regulator_list_mutex);
1261}
1262EXPORT_SYMBOL_GPL(regulator_put);
1263
1264static int _regulator_can_change_status(struct regulator_dev *rdev)
1265{
1266	if (!rdev->constraints)
1267		return 0;
1268
1269	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1270		return 1;
1271	else
1272		return 0;
1273}
1274
1275/* locks held by regulator_enable() */
1276static int _regulator_enable(struct regulator_dev *rdev)
1277{
1278	int ret, delay;
1279
1280	if (rdev->use_count == 0) {
1281		/* do we need to enable the supply regulator first */
1282		if (rdev->supply) {
1283			mutex_lock(&rdev->supply->mutex);
1284			ret = _regulator_enable(rdev->supply);
1285			mutex_unlock(&rdev->supply->mutex);
1286			if (ret < 0) {
1287				rdev_err(rdev, "failed to enable: %d\n", ret);
1288				return ret;
1289			}
1290		}
1291	}
1292
1293	/* check voltage and requested load before enabling */
1294	if (rdev->constraints &&
1295	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1296		drms_uA_update(rdev);
1297
1298	if (rdev->use_count == 0) {
1299		/* The regulator may on if it's not switchable or left on */
1300		ret = _regulator_is_enabled(rdev);
1301		if (ret == -EINVAL || ret == 0) {
1302			if (!_regulator_can_change_status(rdev))
1303				return -EPERM;
1304
1305			if (!rdev->desc->ops->enable)
1306				return -EINVAL;
1307
1308			/* Query before enabling in case configuration
1309			 * dependant.  */
1310			ret = _regulator_get_enable_time(rdev);
1311			if (ret >= 0) {
1312				delay = ret;
1313			} else {
1314				rdev_warn(rdev, "enable_time() failed: %d\n",
1315					   ret);
1316				delay = 0;
1317			}
1318
1319			trace_regulator_enable(rdev_get_name(rdev));
1320
1321			/* Allow the regulator to ramp; it would be useful
1322			 * to extend this for bulk operations so that the
1323			 * regulators can ramp together.  */
1324			ret = rdev->desc->ops->enable(rdev);
1325			if (ret < 0)
1326				return ret;
1327
1328			trace_regulator_enable_delay(rdev_get_name(rdev));
1329
1330			if (delay >= 1000) {
1331				mdelay(delay / 1000);
1332				udelay(delay % 1000);
1333			} else if (delay) {
1334				udelay(delay);
1335			}
1336
1337			trace_regulator_enable_complete(rdev_get_name(rdev));
1338
1339		} else if (ret < 0) {
1340			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1341			return ret;
1342		}
1343		/* Fallthrough on positive return values - already enabled */
1344	}
1345
1346	rdev->use_count++;
1347
1348	return 0;
1349}
1350
1351/**
1352 * regulator_enable - enable regulator output
1353 * @regulator: regulator source
1354 *
1355 * Request that the regulator be enabled with the regulator output at
1356 * the predefined voltage or current value.  Calls to regulator_enable()
1357 * must be balanced with calls to regulator_disable().
1358 *
1359 * NOTE: the output value can be set by other drivers, boot loader or may be
1360 * hardwired in the regulator.
1361 */
1362int regulator_enable(struct regulator *regulator)
1363{
1364	struct regulator_dev *rdev = regulator->rdev;
1365	int ret = 0;
1366
1367	mutex_lock(&rdev->mutex);
1368	ret = _regulator_enable(rdev);
1369	mutex_unlock(&rdev->mutex);
1370	return ret;
1371}
1372EXPORT_SYMBOL_GPL(regulator_enable);
1373
1374/* locks held by regulator_disable() */
1375static int _regulator_disable(struct regulator_dev *rdev,
1376		struct regulator_dev **supply_rdev_ptr)
1377{
1378	int ret = 0;
1379	*supply_rdev_ptr = NULL;
1380
1381	if (WARN(rdev->use_count <= 0,
1382			"unbalanced disables for %s\n",
1383			rdev_get_name(rdev)))
1384		return -EIO;
1385
1386	/* are we the last user and permitted to disable ? */
1387	if (rdev->use_count == 1 &&
1388	    (rdev->constraints && !rdev->constraints->always_on)) {
1389
1390		/* we are last user */
1391		if (_regulator_can_change_status(rdev) &&
1392		    rdev->desc->ops->disable) {
1393			trace_regulator_disable(rdev_get_name(rdev));
1394
1395			ret = rdev->desc->ops->disable(rdev);
1396			if (ret < 0) {
1397				rdev_err(rdev, "failed to disable\n");
1398				return ret;
1399			}
1400
1401			trace_regulator_disable_complete(rdev_get_name(rdev));
1402
1403			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1404					     NULL);
1405		}
1406
1407		/* decrease our supplies ref count and disable if required */
1408		*supply_rdev_ptr = rdev->supply;
1409
1410		rdev->use_count = 0;
1411	} else if (rdev->use_count > 1) {
1412
1413		if (rdev->constraints &&
1414			(rdev->constraints->valid_ops_mask &
1415			REGULATOR_CHANGE_DRMS))
1416			drms_uA_update(rdev);
1417
1418		rdev->use_count--;
1419	}
1420	return ret;
1421}
1422
1423/**
1424 * regulator_disable - disable regulator output
1425 * @regulator: regulator source
1426 *
1427 * Disable the regulator output voltage or current.  Calls to
1428 * regulator_enable() must be balanced with calls to
1429 * regulator_disable().
1430 *
1431 * NOTE: this will only disable the regulator output if no other consumer
1432 * devices have it enabled, the regulator device supports disabling and
1433 * machine constraints permit this operation.
1434 */
1435int regulator_disable(struct regulator *regulator)
1436{
1437	struct regulator_dev *rdev = regulator->rdev;
1438	struct regulator_dev *supply_rdev = NULL;
1439	int ret = 0;
1440
1441	mutex_lock(&rdev->mutex);
1442	ret = _regulator_disable(rdev, &supply_rdev);
1443	mutex_unlock(&rdev->mutex);
1444
1445	/* decrease our supplies ref count and disable if required */
1446	while (supply_rdev != NULL) {
1447		rdev = supply_rdev;
1448
1449		mutex_lock(&rdev->mutex);
1450		_regulator_disable(rdev, &supply_rdev);
1451		mutex_unlock(&rdev->mutex);
1452	}
1453
1454	return ret;
1455}
1456EXPORT_SYMBOL_GPL(regulator_disable);
1457
1458/* locks held by regulator_force_disable() */
1459static int _regulator_force_disable(struct regulator_dev *rdev,
1460		struct regulator_dev **supply_rdev_ptr)
1461{
1462	int ret = 0;
1463
1464	/* force disable */
1465	if (rdev->desc->ops->disable) {
1466		/* ah well, who wants to live forever... */
1467		ret = rdev->desc->ops->disable(rdev);
1468		if (ret < 0) {
1469			rdev_err(rdev, "failed to force disable\n");
1470			return ret;
1471		}
1472		/* notify other consumers that power has been forced off */
1473		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1474			REGULATOR_EVENT_DISABLE, NULL);
1475	}
1476
1477	/* decrease our supplies ref count and disable if required */
1478	*supply_rdev_ptr = rdev->supply;
1479
1480	rdev->use_count = 0;
1481	return ret;
1482}
1483
1484/**
1485 * regulator_force_disable - force disable regulator output
1486 * @regulator: regulator source
1487 *
1488 * Forcibly disable the regulator output voltage or current.
1489 * NOTE: this *will* disable the regulator output even if other consumer
1490 * devices have it enabled. This should be used for situations when device
1491 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1492 */
1493int regulator_force_disable(struct regulator *regulator)
1494{
1495	struct regulator_dev *supply_rdev = NULL;
1496	int ret;
1497
1498	mutex_lock(&regulator->rdev->mutex);
1499	regulator->uA_load = 0;
1500	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1501	mutex_unlock(&regulator->rdev->mutex);
1502
1503	if (supply_rdev)
1504		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1505
1506	return ret;
1507}
1508EXPORT_SYMBOL_GPL(regulator_force_disable);
1509
1510static int _regulator_is_enabled(struct regulator_dev *rdev)
1511{
1512	/* If we don't know then assume that the regulator is always on */
1513	if (!rdev->desc->ops->is_enabled)
1514		return 1;
1515
1516	return rdev->desc->ops->is_enabled(rdev);
1517}
1518
1519/**
1520 * regulator_is_enabled - is the regulator output enabled
1521 * @regulator: regulator source
1522 *
1523 * Returns positive if the regulator driver backing the source/client
1524 * has requested that the device be enabled, zero if it hasn't, else a
1525 * negative errno code.
1526 *
1527 * Note that the device backing this regulator handle can have multiple
1528 * users, so it might be enabled even if regulator_enable() was never
1529 * called for this particular source.
1530 */
1531int regulator_is_enabled(struct regulator *regulator)
1532{
1533	int ret;
1534
1535	mutex_lock(&regulator->rdev->mutex);
1536	ret = _regulator_is_enabled(regulator->rdev);
1537	mutex_unlock(&regulator->rdev->mutex);
1538
1539	return ret;
1540}
1541EXPORT_SYMBOL_GPL(regulator_is_enabled);
1542
1543/**
1544 * regulator_count_voltages - count regulator_list_voltage() selectors
1545 * @regulator: regulator source
1546 *
1547 * Returns number of selectors, or negative errno.  Selectors are
1548 * numbered starting at zero, and typically correspond to bitfields
1549 * in hardware registers.
1550 */
1551int regulator_count_voltages(struct regulator *regulator)
1552{
1553	struct regulator_dev	*rdev = regulator->rdev;
1554
1555	return rdev->desc->n_voltages ? : -EINVAL;
1556}
1557EXPORT_SYMBOL_GPL(regulator_count_voltages);
1558
1559/**
1560 * regulator_list_voltage - enumerate supported voltages
1561 * @regulator: regulator source
1562 * @selector: identify voltage to list
1563 * Context: can sleep
1564 *
1565 * Returns a voltage that can be passed to @regulator_set_voltage(),
1566 * zero if this selector code can't be used on this system, or a
1567 * negative errno.
1568 */
1569int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1570{
1571	struct regulator_dev	*rdev = regulator->rdev;
1572	struct regulator_ops	*ops = rdev->desc->ops;
1573	int			ret;
1574
1575	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1576		return -EINVAL;
1577
1578	mutex_lock(&rdev->mutex);
1579	ret = ops->list_voltage(rdev, selector);
1580	mutex_unlock(&rdev->mutex);
1581
1582	if (ret > 0) {
1583		if (ret < rdev->constraints->min_uV)
1584			ret = 0;
1585		else if (ret > rdev->constraints->max_uV)
1586			ret = 0;
1587	}
1588
1589	return ret;
1590}
1591EXPORT_SYMBOL_GPL(regulator_list_voltage);
1592
1593/**
1594 * regulator_is_supported_voltage - check if a voltage range can be supported
1595 *
1596 * @regulator: Regulator to check.
1597 * @min_uV: Minimum required voltage in uV.
1598 * @max_uV: Maximum required voltage in uV.
1599 *
1600 * Returns a boolean or a negative error code.
1601 */
1602int regulator_is_supported_voltage(struct regulator *regulator,
1603				   int min_uV, int max_uV)
1604{
1605	int i, voltages, ret;
1606
1607	ret = regulator_count_voltages(regulator);
1608	if (ret < 0)
1609		return ret;
1610	voltages = ret;
1611
1612	for (i = 0; i < voltages; i++) {
1613		ret = regulator_list_voltage(regulator, i);
1614
1615		if (ret >= min_uV && ret <= max_uV)
1616			return 1;
1617	}
1618
1619	return 0;
1620}
1621
1622/**
1623 * regulator_set_voltage - set regulator output voltage
1624 * @regulator: regulator source
1625 * @min_uV: Minimum required voltage in uV
1626 * @max_uV: Maximum acceptable voltage in uV
1627 *
1628 * Sets a voltage regulator to the desired output voltage. This can be set
1629 * during any regulator state. IOW, regulator can be disabled or enabled.
1630 *
1631 * If the regulator is enabled then the voltage will change to the new value
1632 * immediately otherwise if the regulator is disabled the regulator will
1633 * output at the new voltage when enabled.
1634 *
1635 * NOTE: If the regulator is shared between several devices then the lowest
1636 * request voltage that meets the system constraints will be used.
1637 * Regulator system constraints must be set for this regulator before
1638 * calling this function otherwise this call will fail.
1639 */
1640int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1641{
1642	struct regulator_dev *rdev = regulator->rdev;
1643	int ret;
1644	unsigned selector;
1645
1646	mutex_lock(&rdev->mutex);
1647
1648	/* sanity check */
1649	if (!rdev->desc->ops->set_voltage) {
1650		ret = -EINVAL;
1651		goto out;
1652	}
1653
1654	/* constraints check */
1655	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1656	if (ret < 0)
1657		goto out;
1658	regulator->min_uV = min_uV;
1659	regulator->max_uV = max_uV;
1660
1661	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1662	if (ret < 0)
1663		goto out;
1664
1665	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1666
1667	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1668
1669	if (rdev->desc->ops->list_voltage)
1670		selector = rdev->desc->ops->list_voltage(rdev, selector);
1671	else
1672		selector = -1;
1673
1674	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1675
1676out:
1677	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1678	mutex_unlock(&rdev->mutex);
1679	return ret;
1680}
1681EXPORT_SYMBOL_GPL(regulator_set_voltage);
1682
1683static int _regulator_get_voltage(struct regulator_dev *rdev)
1684{
1685	/* sanity check */
1686	if (rdev->desc->ops->get_voltage)
1687		return rdev->desc->ops->get_voltage(rdev);
1688	else
1689		return -EINVAL;
1690}
1691
1692/**
1693 * regulator_get_voltage - get regulator output voltage
1694 * @regulator: regulator source
1695 *
1696 * This returns the current regulator voltage in uV.
1697 *
1698 * NOTE: If the regulator is disabled it will return the voltage value. This
1699 * function should not be used to determine regulator state.
1700 */
1701int regulator_get_voltage(struct regulator *regulator)
1702{
1703	int ret;
1704
1705	mutex_lock(&regulator->rdev->mutex);
1706
1707	ret = _regulator_get_voltage(regulator->rdev);
1708
1709	mutex_unlock(&regulator->rdev->mutex);
1710
1711	return ret;
1712}
1713EXPORT_SYMBOL_GPL(regulator_get_voltage);
1714
1715/**
1716 * regulator_set_current_limit - set regulator output current limit
1717 * @regulator: regulator source
1718 * @min_uA: Minimuum supported current in uA
1719 * @max_uA: Maximum supported current in uA
1720 *
1721 * Sets current sink to the desired output current. This can be set during
1722 * any regulator state. IOW, regulator can be disabled or enabled.
1723 *
1724 * If the regulator is enabled then the current will change to the new value
1725 * immediately otherwise if the regulator is disabled the regulator will
1726 * output at the new current when enabled.
1727 *
1728 * NOTE: Regulator system constraints must be set for this regulator before
1729 * calling this function otherwise this call will fail.
1730 */
1731int regulator_set_current_limit(struct regulator *regulator,
1732			       int min_uA, int max_uA)
1733{
1734	struct regulator_dev *rdev = regulator->rdev;
1735	int ret;
1736
1737	mutex_lock(&rdev->mutex);
1738
1739	/* sanity check */
1740	if (!rdev->desc->ops->set_current_limit) {
1741		ret = -EINVAL;
1742		goto out;
1743	}
1744
1745	/* constraints check */
1746	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1747	if (ret < 0)
1748		goto out;
1749
1750	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1751out:
1752	mutex_unlock(&rdev->mutex);
1753	return ret;
1754}
1755EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1756
1757static int _regulator_get_current_limit(struct regulator_dev *rdev)
1758{
1759	int ret;
1760
1761	mutex_lock(&rdev->mutex);
1762
1763	/* sanity check */
1764	if (!rdev->desc->ops->get_current_limit) {
1765		ret = -EINVAL;
1766		goto out;
1767	}
1768
1769	ret = rdev->desc->ops->get_current_limit(rdev);
1770out:
1771	mutex_unlock(&rdev->mutex);
1772	return ret;
1773}
1774
1775/**
1776 * regulator_get_current_limit - get regulator output current
1777 * @regulator: regulator source
1778 *
1779 * This returns the current supplied by the specified current sink in uA.
1780 *
1781 * NOTE: If the regulator is disabled it will return the current value. This
1782 * function should not be used to determine regulator state.
1783 */
1784int regulator_get_current_limit(struct regulator *regulator)
1785{
1786	return _regulator_get_current_limit(regulator->rdev);
1787}
1788EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1789
1790/**
1791 * regulator_set_mode - set regulator operating mode
1792 * @regulator: regulator source
1793 * @mode: operating mode - one of the REGULATOR_MODE constants
1794 *
1795 * Set regulator operating mode to increase regulator efficiency or improve
1796 * regulation performance.
1797 *
1798 * NOTE: Regulator system constraints must be set for this regulator before
1799 * calling this function otherwise this call will fail.
1800 */
1801int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1802{
1803	struct regulator_dev *rdev = regulator->rdev;
1804	int ret;
1805	int regulator_curr_mode;
1806
1807	mutex_lock(&rdev->mutex);
1808
1809	/* sanity check */
1810	if (!rdev->desc->ops->set_mode) {
1811		ret = -EINVAL;
1812		goto out;
1813	}
1814
1815	/* return if the same mode is requested */
1816	if (rdev->desc->ops->get_mode) {
1817		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1818		if (regulator_curr_mode == mode) {
1819			ret = 0;
1820			goto out;
1821		}
1822	}
1823
1824	/* constraints check */
1825	ret = regulator_check_mode(rdev, mode);
1826	if (ret < 0)
1827		goto out;
1828
1829	ret = rdev->desc->ops->set_mode(rdev, mode);
1830out:
1831	mutex_unlock(&rdev->mutex);
1832	return ret;
1833}
1834EXPORT_SYMBOL_GPL(regulator_set_mode);
1835
1836static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1837{
1838	int ret;
1839
1840	mutex_lock(&rdev->mutex);
1841
1842	/* sanity check */
1843	if (!rdev->desc->ops->get_mode) {
1844		ret = -EINVAL;
1845		goto out;
1846	}
1847
1848	ret = rdev->desc->ops->get_mode(rdev);
1849out:
1850	mutex_unlock(&rdev->mutex);
1851	return ret;
1852}
1853
1854/**
1855 * regulator_get_mode - get regulator operating mode
1856 * @regulator: regulator source
1857 *
1858 * Get the current regulator operating mode.
1859 */
1860unsigned int regulator_get_mode(struct regulator *regulator)
1861{
1862	return _regulator_get_mode(regulator->rdev);
1863}
1864EXPORT_SYMBOL_GPL(regulator_get_mode);
1865
1866/**
1867 * regulator_set_optimum_mode - set regulator optimum operating mode
1868 * @regulator: regulator source
1869 * @uA_load: load current
1870 *
1871 * Notifies the regulator core of a new device load. This is then used by
1872 * DRMS (if enabled by constraints) to set the most efficient regulator
1873 * operating mode for the new regulator loading.
1874 *
1875 * Consumer devices notify their supply regulator of the maximum power
1876 * they will require (can be taken from device datasheet in the power
1877 * consumption tables) when they change operational status and hence power
1878 * state. Examples of operational state changes that can affect power
1879 * consumption are :-
1880 *
1881 *    o Device is opened / closed.
1882 *    o Device I/O is about to begin or has just finished.
1883 *    o Device is idling in between work.
1884 *
1885 * This information is also exported via sysfs to userspace.
1886 *
1887 * DRMS will sum the total requested load on the regulator and change
1888 * to the most efficient operating mode if platform constraints allow.
1889 *
1890 * Returns the new regulator mode or error.
1891 */
1892int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1893{
1894	struct regulator_dev *rdev = regulator->rdev;
1895	struct regulator *consumer;
1896	int ret, output_uV, input_uV, total_uA_load = 0;
1897	unsigned int mode;
1898
1899	mutex_lock(&rdev->mutex);
1900
1901	regulator->uA_load = uA_load;
1902	ret = regulator_check_drms(rdev);
1903	if (ret < 0)
1904		goto out;
1905	ret = -EINVAL;
1906
1907	/* sanity check */
1908	if (!rdev->desc->ops->get_optimum_mode)
1909		goto out;
1910
1911	/* get output voltage */
1912	output_uV = rdev->desc->ops->get_voltage(rdev);
1913	if (output_uV <= 0) {
1914		rdev_err(rdev, "invalid output voltage found\n");
1915		goto out;
1916	}
1917
1918	/* get input voltage */
1919	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1920		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1921	else
1922		input_uV = rdev->constraints->input_uV;
1923	if (input_uV <= 0) {
1924		rdev_err(rdev, "invalid input voltage found\n");
1925		goto out;
1926	}
1927
1928	/* calc total requested load for this regulator */
1929	list_for_each_entry(consumer, &rdev->consumer_list, list)
1930		total_uA_load += consumer->uA_load;
1931
1932	mode = rdev->desc->ops->get_optimum_mode(rdev,
1933						 input_uV, output_uV,
1934						 total_uA_load);
1935	ret = regulator_check_mode(rdev, mode);
1936	if (ret < 0) {
1937		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1938			 total_uA_load, input_uV, output_uV);
1939		goto out;
1940	}
1941
1942	ret = rdev->desc->ops->set_mode(rdev, mode);
1943	if (ret < 0) {
1944		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1945		goto out;
1946	}
1947	ret = mode;
1948out:
1949	mutex_unlock(&rdev->mutex);
1950	return ret;
1951}
1952EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1953
1954/**
1955 * regulator_register_notifier - register regulator event notifier
1956 * @regulator: regulator source
1957 * @nb: notifier block
1958 *
1959 * Register notifier block to receive regulator events.
1960 */
1961int regulator_register_notifier(struct regulator *regulator,
1962			      struct notifier_block *nb)
1963{
1964	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1965						nb);
1966}
1967EXPORT_SYMBOL_GPL(regulator_register_notifier);
1968
1969/**
1970 * regulator_unregister_notifier - unregister regulator event notifier
1971 * @regulator: regulator source
1972 * @nb: notifier block
1973 *
1974 * Unregister regulator event notifier block.
1975 */
1976int regulator_unregister_notifier(struct regulator *regulator,
1977				struct notifier_block *nb)
1978{
1979	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1980						  nb);
1981}
1982EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1983
1984/* notify regulator consumers and downstream regulator consumers.
1985 * Note mutex must be held by caller.
1986 */
1987static void _notifier_call_chain(struct regulator_dev *rdev,
1988				  unsigned long event, void *data)
1989{
1990	struct regulator_dev *_rdev;
1991
1992	/* call rdev chain first */
1993	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1994
1995	/* now notify regulator we supply */
1996	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1997		mutex_lock(&_rdev->mutex);
1998		_notifier_call_chain(_rdev, event, data);
1999		mutex_unlock(&_rdev->mutex);
2000	}
2001}
2002
2003/**
2004 * regulator_bulk_get - get multiple regulator consumers
2005 *
2006 * @dev:           Device to supply
2007 * @num_consumers: Number of consumers to register
2008 * @consumers:     Configuration of consumers; clients are stored here.
2009 *
2010 * @return 0 on success, an errno on failure.
2011 *
2012 * This helper function allows drivers to get several regulator
2013 * consumers in one operation.  If any of the regulators cannot be
2014 * acquired then any regulators that were allocated will be freed
2015 * before returning to the caller.
2016 */
2017int regulator_bulk_get(struct device *dev, int num_consumers,
2018		       struct regulator_bulk_data *consumers)
2019{
2020	int i;
2021	int ret;
2022
2023	for (i = 0; i < num_consumers; i++)
2024		consumers[i].consumer = NULL;
2025
2026	for (i = 0; i < num_consumers; i++) {
2027		consumers[i].consumer = regulator_get(dev,
2028						      consumers[i].supply);
2029		if (IS_ERR(consumers[i].consumer)) {
2030			ret = PTR_ERR(consumers[i].consumer);
2031			dev_err(dev, "Failed to get supply '%s': %d\n",
2032				consumers[i].supply, ret);
2033			consumers[i].consumer = NULL;
2034			goto err;
2035		}
2036	}
2037
2038	return 0;
2039
2040err:
2041	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2042		regulator_put(consumers[i].consumer);
2043
2044	return ret;
2045}
2046EXPORT_SYMBOL_GPL(regulator_bulk_get);
2047
2048/**
2049 * regulator_bulk_enable - enable multiple regulator consumers
2050 *
2051 * @num_consumers: Number of consumers
2052 * @consumers:     Consumer data; clients are stored here.
2053 * @return         0 on success, an errno on failure
2054 *
2055 * This convenience API allows consumers to enable multiple regulator
2056 * clients in a single API call.  If any consumers cannot be enabled
2057 * then any others that were enabled will be disabled again prior to
2058 * return.
2059 */
2060int regulator_bulk_enable(int num_consumers,
2061			  struct regulator_bulk_data *consumers)
2062{
2063	int i;
2064	int ret;
2065
2066	for (i = 0; i < num_consumers; i++) {
2067		ret = regulator_enable(consumers[i].consumer);
2068		if (ret != 0)
2069			goto err;
2070	}
2071
2072	return 0;
2073
2074err:
2075	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2076	for (--i; i >= 0; --i)
2077		regulator_disable(consumers[i].consumer);
2078
2079	return ret;
2080}
2081EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2082
2083/**
2084 * regulator_bulk_disable - disable multiple regulator consumers
2085 *
2086 * @num_consumers: Number of consumers
2087 * @consumers:     Consumer data; clients are stored here.
2088 * @return         0 on success, an errno on failure
2089 *
2090 * This convenience API allows consumers to disable multiple regulator
2091 * clients in a single API call.  If any consumers cannot be enabled
2092 * then any others that were disabled will be disabled again prior to
2093 * return.
2094 */
2095int regulator_bulk_disable(int num_consumers,
2096			   struct regulator_bulk_data *consumers)
2097{
2098	int i;
2099	int ret;
2100
2101	for (i = 0; i < num_consumers; i++) {
2102		ret = regulator_disable(consumers[i].consumer);
2103		if (ret != 0)
2104			goto err;
2105	}
2106
2107	return 0;
2108
2109err:
2110	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2111	for (--i; i >= 0; --i)
2112		regulator_enable(consumers[i].consumer);
2113
2114	return ret;
2115}
2116EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2117
2118/**
2119 * regulator_bulk_free - free multiple regulator consumers
2120 *
2121 * @num_consumers: Number of consumers
2122 * @consumers:     Consumer data; clients are stored here.
2123 *
2124 * This convenience API allows consumers to free multiple regulator
2125 * clients in a single API call.
2126 */
2127void regulator_bulk_free(int num_consumers,
2128			 struct regulator_bulk_data *consumers)
2129{
2130	int i;
2131
2132	for (i = 0; i < num_consumers; i++) {
2133		regulator_put(consumers[i].consumer);
2134		consumers[i].consumer = NULL;
2135	}
2136}
2137EXPORT_SYMBOL_GPL(regulator_bulk_free);
2138
2139/**
2140 * regulator_notifier_call_chain - call regulator event notifier
2141 * @rdev: regulator source
2142 * @event: notifier block
2143 * @data: callback-specific data.
2144 *
2145 * Called by regulator drivers to notify clients a regulator event has
2146 * occurred. We also notify regulator clients downstream.
2147 * Note lock must be held by caller.
2148 */
2149int regulator_notifier_call_chain(struct regulator_dev *rdev,
2150				  unsigned long event, void *data)
2151{
2152	_notifier_call_chain(rdev, event, data);
2153	return NOTIFY_DONE;
2154
2155}
2156EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2157
2158/**
2159 * regulator_mode_to_status - convert a regulator mode into a status
2160 *
2161 * @mode: Mode to convert
2162 *
2163 * Convert a regulator mode into a status.
2164 */
2165int regulator_mode_to_status(unsigned int mode)
2166{
2167	switch (mode) {
2168	case REGULATOR_MODE_FAST:
2169		return REGULATOR_STATUS_FAST;
2170	case REGULATOR_MODE_NORMAL:
2171		return REGULATOR_STATUS_NORMAL;
2172	case REGULATOR_MODE_IDLE:
2173		return REGULATOR_STATUS_IDLE;
2174	case REGULATOR_STATUS_STANDBY:
2175		return REGULATOR_STATUS_STANDBY;
2176	default:
2177		return 0;
2178	}
2179}
2180EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2181
2182/*
2183 * To avoid cluttering sysfs (and memory) with useless state, only
2184 * create attributes that can be meaningfully displayed.
2185 */
2186static int add_regulator_attributes(struct regulator_dev *rdev)
2187{
2188	struct device		*dev = &rdev->dev;
2189	struct regulator_ops	*ops = rdev->desc->ops;
2190	int			status = 0;
2191
2192	/* some attributes need specific methods to be displayed */
2193	if (ops->get_voltage) {
2194		status = device_create_file(dev, &dev_attr_microvolts);
2195		if (status < 0)
2196			return status;
2197	}
2198	if (ops->get_current_limit) {
2199		status = device_create_file(dev, &dev_attr_microamps);
2200		if (status < 0)
2201			return status;
2202	}
2203	if (ops->get_mode) {
2204		status = device_create_file(dev, &dev_attr_opmode);
2205		if (status < 0)
2206			return status;
2207	}
2208	if (ops->is_enabled) {
2209		status = device_create_file(dev, &dev_attr_state);
2210		if (status < 0)
2211			return status;
2212	}
2213	if (ops->get_status) {
2214		status = device_create_file(dev, &dev_attr_status);
2215		if (status < 0)
2216			return status;
2217	}
2218
2219	/* some attributes are type-specific */
2220	if (rdev->desc->type == REGULATOR_CURRENT) {
2221		status = device_create_file(dev, &dev_attr_requested_microamps);
2222		if (status < 0)
2223			return status;
2224	}
2225
2226	/* all the other attributes exist to support constraints;
2227	 * don't show them if there are no constraints, or if the
2228	 * relevant supporting methods are missing.
2229	 */
2230	if (!rdev->constraints)
2231		return status;
2232
2233	/* constraints need specific supporting methods */
2234	if (ops->set_voltage) {
2235		status = device_create_file(dev, &dev_attr_min_microvolts);
2236		if (status < 0)
2237			return status;
2238		status = device_create_file(dev, &dev_attr_max_microvolts);
2239		if (status < 0)
2240			return status;
2241	}
2242	if (ops->set_current_limit) {
2243		status = device_create_file(dev, &dev_attr_min_microamps);
2244		if (status < 0)
2245			return status;
2246		status = device_create_file(dev, &dev_attr_max_microamps);
2247		if (status < 0)
2248			return status;
2249	}
2250
2251	/* suspend mode constraints need multiple supporting methods */
2252	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2253		return status;
2254
2255	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2256	if (status < 0)
2257		return status;
2258	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2259	if (status < 0)
2260		return status;
2261	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2262	if (status < 0)
2263		return status;
2264
2265	if (ops->set_suspend_voltage) {
2266		status = device_create_file(dev,
2267				&dev_attr_suspend_standby_microvolts);
2268		if (status < 0)
2269			return status;
2270		status = device_create_file(dev,
2271				&dev_attr_suspend_mem_microvolts);
2272		if (status < 0)
2273			return status;
2274		status = device_create_file(dev,
2275				&dev_attr_suspend_disk_microvolts);
2276		if (status < 0)
2277			return status;
2278	}
2279
2280	if (ops->set_suspend_mode) {
2281		status = device_create_file(dev,
2282				&dev_attr_suspend_standby_mode);
2283		if (status < 0)
2284			return status;
2285		status = device_create_file(dev,
2286				&dev_attr_suspend_mem_mode);
2287		if (status < 0)
2288			return status;
2289		status = device_create_file(dev,
2290				&dev_attr_suspend_disk_mode);
2291		if (status < 0)
2292			return status;
2293	}
2294
2295	return status;
2296}
2297
2298/**
2299 * regulator_register - register regulator
2300 * @regulator_desc: regulator to register
2301 * @dev: struct device for the regulator
2302 * @init_data: platform provided init data, passed through by driver
2303 * @driver_data: private regulator data
2304 *
2305 * Called by regulator drivers to register a regulator.
2306 * Returns 0 on success.
2307 */
2308struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2309	struct device *dev, const struct regulator_init_data *init_data,
2310	void *driver_data)
2311{
2312	static atomic_t regulator_no = ATOMIC_INIT(0);
2313	struct regulator_dev *rdev;
2314	int ret, i;
2315
2316	if (regulator_desc == NULL)
2317		return ERR_PTR(-EINVAL);
2318
2319	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2320		return ERR_PTR(-EINVAL);
2321
2322	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2323	    regulator_desc->type != REGULATOR_CURRENT)
2324		return ERR_PTR(-EINVAL);
2325
2326	if (!init_data)
2327		return ERR_PTR(-EINVAL);
2328
2329	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2330	if (rdev == NULL)
2331		return ERR_PTR(-ENOMEM);
2332
2333	mutex_lock(&regulator_list_mutex);
2334
2335	mutex_init(&rdev->mutex);
2336	rdev->reg_data = driver_data;
2337	rdev->owner = regulator_desc->owner;
2338	rdev->desc = regulator_desc;
2339	INIT_LIST_HEAD(&rdev->consumer_list);
2340	INIT_LIST_HEAD(&rdev->supply_list);
2341	INIT_LIST_HEAD(&rdev->list);
2342	INIT_LIST_HEAD(&rdev->slist);
2343	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2344
2345	/* preform any regulator specific init */
2346	if (init_data->regulator_init) {
2347		ret = init_data->regulator_init(rdev->reg_data);
2348		if (ret < 0)
2349			goto clean;
2350	}
2351
2352	/* register with sysfs */
2353	rdev->dev.class = &regulator_class;
2354	rdev->dev.parent = dev;
2355	dev_set_name(&rdev->dev, "regulator.%d",
2356		     atomic_inc_return(&regulator_no) - 1);
2357	ret = device_register(&rdev->dev);
2358	if (ret != 0) {
2359		put_device(&rdev->dev);
2360		goto clean;
2361	}
2362
2363	dev_set_drvdata(&rdev->dev, rdev);
2364
2365	/* set regulator constraints */
2366	ret = set_machine_constraints(rdev, &init_data->constraints);
2367	if (ret < 0)
2368		goto scrub;
2369
2370	/* add attributes supported by this regulator */
2371	ret = add_regulator_attributes(rdev);
2372	if (ret < 0)
2373		goto scrub;
2374
2375	/* set supply regulator if it exists */
2376	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2377		dev_err(dev,
2378			"Supply regulator specified by both name and dev\n");
2379		ret = -EINVAL;
2380		goto scrub;
2381	}
2382
2383	if (init_data->supply_regulator) {
2384		struct regulator_dev *r;
2385		int found = 0;
2386
2387		list_for_each_entry(r, &regulator_list, list) {
2388			if (strcmp(rdev_get_name(r),
2389				   init_data->supply_regulator) == 0) {
2390				found = 1;
2391				break;
2392			}
2393		}
2394
2395		if (!found) {
2396			dev_err(dev, "Failed to find supply %s\n",
2397				init_data->supply_regulator);
2398			ret = -ENODEV;
2399			goto scrub;
2400		}
2401
2402		ret = set_supply(rdev, r);
2403		if (ret < 0)
2404			goto scrub;
2405	}
2406
2407	if (init_data->supply_regulator_dev) {
2408		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2409		ret = set_supply(rdev,
2410			dev_get_drvdata(init_data->supply_regulator_dev));
2411		if (ret < 0)
2412			goto scrub;
2413	}
2414
2415	/* add consumers devices */
2416	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2417		ret = set_consumer_device_supply(rdev,
2418			init_data->consumer_supplies[i].dev,
2419			init_data->consumer_supplies[i].dev_name,
2420			init_data->consumer_supplies[i].supply);
2421		if (ret < 0)
2422			goto unset_supplies;
2423	}
2424
2425	list_add(&rdev->list, &regulator_list);
2426out:
2427	mutex_unlock(&regulator_list_mutex);
2428	return rdev;
2429
2430unset_supplies:
2431	unset_regulator_supplies(rdev);
2432
2433scrub:
2434	device_unregister(&rdev->dev);
2435	/* device core frees rdev */
2436	rdev = ERR_PTR(ret);
2437	goto out;
2438
2439clean:
2440	kfree(rdev);
2441	rdev = ERR_PTR(ret);
2442	goto out;
2443}
2444EXPORT_SYMBOL_GPL(regulator_register);
2445
2446/**
2447 * regulator_unregister - unregister regulator
2448 * @rdev: regulator to unregister
2449 *
2450 * Called by regulator drivers to unregister a regulator.
2451 */
2452void regulator_unregister(struct regulator_dev *rdev)
2453{
2454	if (rdev == NULL)
2455		return;
2456
2457	mutex_lock(&regulator_list_mutex);
2458	WARN_ON(rdev->open_count);
2459	unset_regulator_supplies(rdev);
2460	list_del(&rdev->list);
2461	if (rdev->supply)
2462		sysfs_remove_link(&rdev->dev.kobj, "supply");
2463	device_unregister(&rdev->dev);
2464	kfree(rdev->constraints);
2465	mutex_unlock(&regulator_list_mutex);
2466}
2467EXPORT_SYMBOL_GPL(regulator_unregister);
2468
2469/**
2470 * regulator_suspend_prepare - prepare regulators for system wide suspend
2471 * @state: system suspend state
2472 *
2473 * Configure each regulator with it's suspend operating parameters for state.
2474 * This will usually be called by machine suspend code prior to supending.
2475 */
2476int regulator_suspend_prepare(suspend_state_t state)
2477{
2478	struct regulator_dev *rdev;
2479	int ret = 0;
2480
2481	/* ON is handled by regulator active state */
2482	if (state == PM_SUSPEND_ON)
2483		return -EINVAL;
2484
2485	mutex_lock(&regulator_list_mutex);
2486	list_for_each_entry(rdev, &regulator_list, list) {
2487
2488		mutex_lock(&rdev->mutex);
2489		ret = suspend_prepare(rdev, state);
2490		mutex_unlock(&rdev->mutex);
2491
2492		if (ret < 0) {
2493			rdev_err(rdev, "failed to prepare\n");
2494			goto out;
2495		}
2496	}
2497out:
2498	mutex_unlock(&regulator_list_mutex);
2499	return ret;
2500}
2501EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2502
2503/**
2504 * regulator_has_full_constraints - the system has fully specified constraints
2505 *
2506 * Calling this function will cause the regulator API to disable all
2507 * regulators which have a zero use count and don't have an always_on
2508 * constraint in a late_initcall.
2509 *
2510 * The intention is that this will become the default behaviour in a
2511 * future kernel release so users are encouraged to use this facility
2512 * now.
2513 */
2514void regulator_has_full_constraints(void)
2515{
2516	has_full_constraints = 1;
2517}
2518EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2519
2520/**
2521 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2522 *
2523 * Calling this function will cause the regulator API to provide a
2524 * dummy regulator to consumers if no physical regulator is found,
2525 * allowing most consumers to proceed as though a regulator were
2526 * configured.  This allows systems such as those with software
2527 * controllable regulators for the CPU core only to be brought up more
2528 * readily.
2529 */
2530void regulator_use_dummy_regulator(void)
2531{
2532	board_wants_dummy_regulator = true;
2533}
2534EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2535
2536/**
2537 * rdev_get_drvdata - get rdev regulator driver data
2538 * @rdev: regulator
2539 *
2540 * Get rdev regulator driver private data. This call can be used in the
2541 * regulator driver context.
2542 */
2543void *rdev_get_drvdata(struct regulator_dev *rdev)
2544{
2545	return rdev->reg_data;
2546}
2547EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2548
2549/**
2550 * regulator_get_drvdata - get regulator driver data
2551 * @regulator: regulator
2552 *
2553 * Get regulator driver private data. This call can be used in the consumer
2554 * driver context when non API regulator specific functions need to be called.
2555 */
2556void *regulator_get_drvdata(struct regulator *regulator)
2557{
2558	return regulator->rdev->reg_data;
2559}
2560EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2561
2562/**
2563 * regulator_set_drvdata - set regulator driver data
2564 * @regulator: regulator
2565 * @data: data
2566 */
2567void regulator_set_drvdata(struct regulator *regulator, void *data)
2568{
2569	regulator->rdev->reg_data = data;
2570}
2571EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2572
2573/**
2574 * regulator_get_id - get regulator ID
2575 * @rdev: regulator
2576 */
2577int rdev_get_id(struct regulator_dev *rdev)
2578{
2579	return rdev->desc->id;
2580}
2581EXPORT_SYMBOL_GPL(rdev_get_id);
2582
2583struct device *rdev_get_dev(struct regulator_dev *rdev)
2584{
2585	return &rdev->dev;
2586}
2587EXPORT_SYMBOL_GPL(rdev_get_dev);
2588
2589void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2590{
2591	return reg_init_data->driver_data;
2592}
2593EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2594
2595static int __init regulator_init(void)
2596{
2597	int ret;
2598
2599	ret = class_register(&regulator_class);
2600
2601	regulator_dummy_init();
2602
2603	return ret;
2604}
2605
2606/* init early to allow our consumers to complete system booting */
2607core_initcall(regulator_init);
2608
2609static int __init regulator_init_complete(void)
2610{
2611	struct regulator_dev *rdev;
2612	struct regulator_ops *ops;
2613	struct regulation_constraints *c;
2614	int enabled, ret;
2615
2616	mutex_lock(&regulator_list_mutex);
2617
2618	/* If we have a full configuration then disable any regulators
2619	 * which are not in use or always_on.  This will become the
2620	 * default behaviour in the future.
2621	 */
2622	list_for_each_entry(rdev, &regulator_list, list) {
2623		ops = rdev->desc->ops;
2624		c = rdev->constraints;
2625
2626		if (!ops->disable || (c && c->always_on))
2627			continue;
2628
2629		mutex_lock(&rdev->mutex);
2630
2631		if (rdev->use_count)
2632			goto unlock;
2633
2634		/* If we can't read the status assume it's on. */
2635		if (ops->is_enabled)
2636			enabled = ops->is_enabled(rdev);
2637		else
2638			enabled = 1;
2639
2640		if (!enabled)
2641			goto unlock;
2642
2643		if (has_full_constraints) {
2644			/* We log since this may kill the system if it
2645			 * goes wrong. */
2646			rdev_info(rdev, "disabling\n");
2647			ret = ops->disable(rdev);
2648			if (ret != 0) {
2649				rdev_err(rdev, "couldn't disable: %d\n", ret);
2650			}
2651		} else {
2652			/* The intention is that in future we will
2653			 * assume that full constraints are provided
2654			 * so warn even if we aren't going to do
2655			 * anything here.
2656			 */
2657			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2658		}
2659
2660unlock:
2661		mutex_unlock(&rdev->mutex);
2662	}
2663
2664	mutex_unlock(&regulator_list_mutex);
2665
2666	return 0;
2667}
2668late_initcall(regulator_init_complete);
2669