core.c revision 0781719bd6614e60dd5fff1b5cd45dbce2f7dd2d
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122static bool have_full_constraints(void)
123{
124	return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		ret = _regulator_do_set_voltage(rdev,
848						rdev->constraints->min_uV,
849						rdev->constraints->max_uV);
850		if (ret < 0) {
851			rdev_err(rdev, "failed to apply %duV constraint\n",
852				 rdev->constraints->min_uV);
853			return ret;
854		}
855	}
856
857	/* constrain machine-level voltage specs to fit
858	 * the actual range supported by this regulator.
859	 */
860	if (ops->list_voltage && rdev->desc->n_voltages) {
861		int	count = rdev->desc->n_voltages;
862		int	i;
863		int	min_uV = INT_MAX;
864		int	max_uV = INT_MIN;
865		int	cmin = constraints->min_uV;
866		int	cmax = constraints->max_uV;
867
868		/* it's safe to autoconfigure fixed-voltage supplies
869		   and the constraints are used by list_voltage. */
870		if (count == 1 && !cmin) {
871			cmin = 1;
872			cmax = INT_MAX;
873			constraints->min_uV = cmin;
874			constraints->max_uV = cmax;
875		}
876
877		/* voltage constraints are optional */
878		if ((cmin == 0) && (cmax == 0))
879			return 0;
880
881		/* else require explicit machine-level constraints */
882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883			rdev_err(rdev, "invalid voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888		for (i = 0; i < count; i++) {
889			int	value;
890
891			value = ops->list_voltage(rdev, i);
892			if (value <= 0)
893				continue;
894
895			/* maybe adjust [min_uV..max_uV] */
896			if (value >= cmin && value < min_uV)
897				min_uV = value;
898			if (value <= cmax && value > max_uV)
899				max_uV = value;
900		}
901
902		/* final: [min_uV..max_uV] valid iff constraints valid */
903		if (max_uV < min_uV) {
904			rdev_err(rdev,
905				 "unsupportable voltage constraints %u-%uuV\n",
906				 min_uV, max_uV);
907			return -EINVAL;
908		}
909
910		/* use regulator's subset of machine constraints */
911		if (constraints->min_uV < min_uV) {
912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913				 constraints->min_uV, min_uV);
914			constraints->min_uV = min_uV;
915		}
916		if (constraints->max_uV > max_uV) {
917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918				 constraints->max_uV, max_uV);
919			constraints->max_uV = max_uV;
920		}
921	}
922
923	return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927	struct regulation_constraints *constraints)
928{
929	struct regulator_ops *ops = rdev->desc->ops;
930	int ret;
931
932	if (!constraints->min_uA && !constraints->max_uA)
933		return 0;
934
935	if (constraints->min_uA > constraints->max_uA) {
936		rdev_err(rdev, "Invalid current constraints\n");
937		return -EINVAL;
938	}
939
940	if (!ops->set_current_limit || !ops->get_current_limit) {
941		rdev_warn(rdev, "Operation of current configuration missing\n");
942		return 0;
943	}
944
945	/* Set regulator current in constraints range */
946	ret = ops->set_current_limit(rdev, constraints->min_uA,
947			constraints->max_uA);
948	if (ret < 0) {
949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950		return ret;
951	}
952
953	return 0;
954}
955
956/**
957 * set_machine_constraints - sets regulator constraints
958 * @rdev: regulator source
959 * @constraints: constraints to apply
960 *
961 * Allows platform initialisation code to define and constrain
962 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
963 * Constraints *must* be set by platform code in order for some
964 * regulator operations to proceed i.e. set_voltage, set_current_limit,
965 * set_mode.
966 */
967static int set_machine_constraints(struct regulator_dev *rdev,
968	const struct regulation_constraints *constraints)
969{
970	int ret = 0;
971	struct regulator_ops *ops = rdev->desc->ops;
972
973	if (constraints)
974		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975					    GFP_KERNEL);
976	else
977		rdev->constraints = kzalloc(sizeof(*constraints),
978					    GFP_KERNEL);
979	if (!rdev->constraints)
980		return -ENOMEM;
981
982	ret = machine_constraints_voltage(rdev, rdev->constraints);
983	if (ret != 0)
984		goto out;
985
986	ret = machine_constraints_current(rdev, rdev->constraints);
987	if (ret != 0)
988		goto out;
989
990	/* do we need to setup our suspend state */
991	if (rdev->constraints->initial_state) {
992		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993		if (ret < 0) {
994			rdev_err(rdev, "failed to set suspend state\n");
995			goto out;
996		}
997	}
998
999	if (rdev->constraints->initial_mode) {
1000		if (!ops->set_mode) {
1001			rdev_err(rdev, "no set_mode operation\n");
1002			ret = -EINVAL;
1003			goto out;
1004		}
1005
1006		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007		if (ret < 0) {
1008			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009			goto out;
1010		}
1011	}
1012
1013	/* If the constraints say the regulator should be on at this point
1014	 * and we have control then make sure it is enabled.
1015	 */
1016	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017	    ops->enable) {
1018		ret = ops->enable(rdev);
1019		if (ret < 0) {
1020			rdev_err(rdev, "failed to enable\n");
1021			goto out;
1022		}
1023	}
1024
1025	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026		&& ops->set_ramp_delay) {
1027		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028		if (ret < 0) {
1029			rdev_err(rdev, "failed to set ramp_delay\n");
1030			goto out;
1031		}
1032	}
1033
1034	print_constraints(rdev);
1035	return 0;
1036out:
1037	kfree(rdev->constraints);
1038	rdev->constraints = NULL;
1039	return ret;
1040}
1041
1042/**
1043 * set_supply - set regulator supply regulator
1044 * @rdev: regulator name
1045 * @supply_rdev: supply regulator name
1046 *
1047 * Called by platform initialisation code to set the supply regulator for this
1048 * regulator. This ensures that a regulators supply will also be enabled by the
1049 * core if it's child is enabled.
1050 */
1051static int set_supply(struct regulator_dev *rdev,
1052		      struct regulator_dev *supply_rdev)
1053{
1054	int err;
1055
1056	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057
1058	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059	if (rdev->supply == NULL) {
1060		err = -ENOMEM;
1061		return err;
1062	}
1063	supply_rdev->open_count++;
1064
1065	return 0;
1066}
1067
1068/**
1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070 * @rdev:         regulator source
1071 * @consumer_dev_name: dev_name() string for device supply applies to
1072 * @supply:       symbolic name for supply
1073 *
1074 * Allows platform initialisation code to map physical regulator
1075 * sources to symbolic names for supplies for use by devices.  Devices
1076 * should use these symbolic names to request regulators, avoiding the
1077 * need to provide board-specific regulator names as platform data.
1078 */
1079static int set_consumer_device_supply(struct regulator_dev *rdev,
1080				      const char *consumer_dev_name,
1081				      const char *supply)
1082{
1083	struct regulator_map *node;
1084	int has_dev;
1085
1086	if (supply == NULL)
1087		return -EINVAL;
1088
1089	if (consumer_dev_name != NULL)
1090		has_dev = 1;
1091	else
1092		has_dev = 0;
1093
1094	list_for_each_entry(node, &regulator_map_list, list) {
1095		if (node->dev_name && consumer_dev_name) {
1096			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097				continue;
1098		} else if (node->dev_name || consumer_dev_name) {
1099			continue;
1100		}
1101
1102		if (strcmp(node->supply, supply) != 0)
1103			continue;
1104
1105		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106			 consumer_dev_name,
1107			 dev_name(&node->regulator->dev),
1108			 node->regulator->desc->name,
1109			 supply,
1110			 dev_name(&rdev->dev), rdev_get_name(rdev));
1111		return -EBUSY;
1112	}
1113
1114	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115	if (node == NULL)
1116		return -ENOMEM;
1117
1118	node->regulator = rdev;
1119	node->supply = supply;
1120
1121	if (has_dev) {
1122		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123		if (node->dev_name == NULL) {
1124			kfree(node);
1125			return -ENOMEM;
1126		}
1127	}
1128
1129	list_add(&node->list, &regulator_map_list);
1130	return 0;
1131}
1132
1133static void unset_regulator_supplies(struct regulator_dev *rdev)
1134{
1135	struct regulator_map *node, *n;
1136
1137	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138		if (rdev == node->regulator) {
1139			list_del(&node->list);
1140			kfree(node->dev_name);
1141			kfree(node);
1142		}
1143	}
1144}
1145
1146#define REG_STR_SIZE	64
1147
1148static struct regulator *create_regulator(struct regulator_dev *rdev,
1149					  struct device *dev,
1150					  const char *supply_name)
1151{
1152	struct regulator *regulator;
1153	char buf[REG_STR_SIZE];
1154	int err, size;
1155
1156	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157	if (regulator == NULL)
1158		return NULL;
1159
1160	mutex_lock(&rdev->mutex);
1161	regulator->rdev = rdev;
1162	list_add(&regulator->list, &rdev->consumer_list);
1163
1164	if (dev) {
1165		regulator->dev = dev;
1166
1167		/* Add a link to the device sysfs entry */
1168		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169				 dev->kobj.name, supply_name);
1170		if (size >= REG_STR_SIZE)
1171			goto overflow_err;
1172
1173		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174		if (regulator->supply_name == NULL)
1175			goto overflow_err;
1176
1177		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178					buf);
1179		if (err) {
1180			rdev_warn(rdev, "could not add device link %s err %d\n",
1181				  dev->kobj.name, err);
1182			/* non-fatal */
1183		}
1184	} else {
1185		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186		if (regulator->supply_name == NULL)
1187			goto overflow_err;
1188	}
1189
1190	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191						rdev->debugfs);
1192	if (!regulator->debugfs) {
1193		rdev_warn(rdev, "Failed to create debugfs directory\n");
1194	} else {
1195		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196				   &regulator->uA_load);
1197		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198				   &regulator->min_uV);
1199		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200				   &regulator->max_uV);
1201	}
1202
1203	/*
1204	 * Check now if the regulator is an always on regulator - if
1205	 * it is then we don't need to do nearly so much work for
1206	 * enable/disable calls.
1207	 */
1208	if (!_regulator_can_change_status(rdev) &&
1209	    _regulator_is_enabled(rdev))
1210		regulator->always_on = true;
1211
1212	mutex_unlock(&rdev->mutex);
1213	return regulator;
1214overflow_err:
1215	list_del(&regulator->list);
1216	kfree(regulator);
1217	mutex_unlock(&rdev->mutex);
1218	return NULL;
1219}
1220
1221static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222{
1223	if (rdev->constraints && rdev->constraints->enable_time)
1224		return rdev->constraints->enable_time;
1225	if (!rdev->desc->ops->enable_time)
1226		return rdev->desc->enable_time;
1227	return rdev->desc->ops->enable_time(rdev);
1228}
1229
1230static struct regulator_supply_alias *regulator_find_supply_alias(
1231		struct device *dev, const char *supply)
1232{
1233	struct regulator_supply_alias *map;
1234
1235	list_for_each_entry(map, &regulator_supply_alias_list, list)
1236		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237			return map;
1238
1239	return NULL;
1240}
1241
1242static void regulator_supply_alias(struct device **dev, const char **supply)
1243{
1244	struct regulator_supply_alias *map;
1245
1246	map = regulator_find_supply_alias(*dev, *supply);
1247	if (map) {
1248		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249				*supply, map->alias_supply,
1250				dev_name(map->alias_dev));
1251		*dev = map->alias_dev;
1252		*supply = map->alias_supply;
1253	}
1254}
1255
1256static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257						  const char *supply,
1258						  int *ret)
1259{
1260	struct regulator_dev *r;
1261	struct device_node *node;
1262	struct regulator_map *map;
1263	const char *devname = NULL;
1264
1265	regulator_supply_alias(&dev, &supply);
1266
1267	/* first do a dt based lookup */
1268	if (dev && dev->of_node) {
1269		node = of_get_regulator(dev, supply);
1270		if (node) {
1271			list_for_each_entry(r, &regulator_list, list)
1272				if (r->dev.parent &&
1273					node == r->dev.of_node)
1274					return r;
1275		} else {
1276			/*
1277			 * If we couldn't even get the node then it's
1278			 * not just that the device didn't register
1279			 * yet, there's no node and we'll never
1280			 * succeed.
1281			 */
1282			*ret = -ENODEV;
1283		}
1284	}
1285
1286	/* if not found, try doing it non-dt way */
1287	if (dev)
1288		devname = dev_name(dev);
1289
1290	list_for_each_entry(r, &regulator_list, list)
1291		if (strcmp(rdev_get_name(r), supply) == 0)
1292			return r;
1293
1294	list_for_each_entry(map, &regulator_map_list, list) {
1295		/* If the mapping has a device set up it must match */
1296		if (map->dev_name &&
1297		    (!devname || strcmp(map->dev_name, devname)))
1298			continue;
1299
1300		if (strcmp(map->supply, supply) == 0)
1301			return map->regulator;
1302	}
1303
1304
1305	return NULL;
1306}
1307
1308/* Internal regulator request function */
1309static struct regulator *_regulator_get(struct device *dev, const char *id,
1310					bool exclusive, bool allow_dummy)
1311{
1312	struct regulator_dev *rdev;
1313	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1314	const char *devname = NULL;
1315	int ret = -EPROBE_DEFER;
1316
1317	if (id == NULL) {
1318		pr_err("get() with no identifier\n");
1319		return ERR_PTR(-EINVAL);
1320	}
1321
1322	if (dev)
1323		devname = dev_name(dev);
1324
1325	mutex_lock(&regulator_list_mutex);
1326
1327	rdev = regulator_dev_lookup(dev, id, &ret);
1328	if (rdev)
1329		goto found;
1330
1331	regulator = ERR_PTR(ret);
1332
1333	/*
1334	 * If we have return value from dev_lookup fail, we do not expect to
1335	 * succeed, so, quit with appropriate error value
1336	 */
1337	if (ret && ret != -ENODEV) {
1338		goto out;
1339	}
1340
1341	if (!devname)
1342		devname = "deviceless";
1343
1344	/*
1345	 * Assume that a regulator is physically present and enabled
1346	 * even if it isn't hooked up and just provide a dummy.
1347	 */
1348	if (have_full_constraints() && allow_dummy) {
1349		pr_warn("%s supply %s not found, using dummy regulator\n",
1350			devname, id);
1351
1352		rdev = dummy_regulator_rdev;
1353		goto found;
1354	/* Don't log an error when called from regulator_get_optional() */
1355	} else if (!have_full_constraints() || exclusive) {
1356		dev_err(dev, "dummy supplies not allowed\n");
1357	}
1358
1359	mutex_unlock(&regulator_list_mutex);
1360	return regulator;
1361
1362found:
1363	if (rdev->exclusive) {
1364		regulator = ERR_PTR(-EPERM);
1365		goto out;
1366	}
1367
1368	if (exclusive && rdev->open_count) {
1369		regulator = ERR_PTR(-EBUSY);
1370		goto out;
1371	}
1372
1373	if (!try_module_get(rdev->owner))
1374		goto out;
1375
1376	regulator = create_regulator(rdev, dev, id);
1377	if (regulator == NULL) {
1378		regulator = ERR_PTR(-ENOMEM);
1379		module_put(rdev->owner);
1380		goto out;
1381	}
1382
1383	rdev->open_count++;
1384	if (exclusive) {
1385		rdev->exclusive = 1;
1386
1387		ret = _regulator_is_enabled(rdev);
1388		if (ret > 0)
1389			rdev->use_count = 1;
1390		else
1391			rdev->use_count = 0;
1392	}
1393
1394out:
1395	mutex_unlock(&regulator_list_mutex);
1396
1397	return regulator;
1398}
1399
1400/**
1401 * regulator_get - lookup and obtain a reference to a regulator.
1402 * @dev: device for regulator "consumer"
1403 * @id: Supply name or regulator ID.
1404 *
1405 * Returns a struct regulator corresponding to the regulator producer,
1406 * or IS_ERR() condition containing errno.
1407 *
1408 * Use of supply names configured via regulator_set_device_supply() is
1409 * strongly encouraged.  It is recommended that the supply name used
1410 * should match the name used for the supply and/or the relevant
1411 * device pins in the datasheet.
1412 */
1413struct regulator *regulator_get(struct device *dev, const char *id)
1414{
1415	return _regulator_get(dev, id, false, true);
1416}
1417EXPORT_SYMBOL_GPL(regulator_get);
1418
1419/**
1420 * regulator_get_exclusive - obtain exclusive access to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.  Other consumers will be
1426 * unable to obtain this reference is held and the use count for the
1427 * regulator will be initialised to reflect the current state of the
1428 * regulator.
1429 *
1430 * This is intended for use by consumers which cannot tolerate shared
1431 * use of the regulator such as those which need to force the
1432 * regulator off for correct operation of the hardware they are
1433 * controlling.
1434 *
1435 * Use of supply names configured via regulator_set_device_supply() is
1436 * strongly encouraged.  It is recommended that the supply name used
1437 * should match the name used for the supply and/or the relevant
1438 * device pins in the datasheet.
1439 */
1440struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1441{
1442	return _regulator_get(dev, id, true, false);
1443}
1444EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1445
1446/**
1447 * regulator_get_optional - obtain optional access to a regulator.
1448 * @dev: device for regulator "consumer"
1449 * @id: Supply name or regulator ID.
1450 *
1451 * Returns a struct regulator corresponding to the regulator producer,
1452 * or IS_ERR() condition containing errno.  Other consumers will be
1453 * unable to obtain this reference is held and the use count for the
1454 * regulator will be initialised to reflect the current state of the
1455 * regulator.
1456 *
1457 * This is intended for use by consumers for devices which can have
1458 * some supplies unconnected in normal use, such as some MMC devices.
1459 * It can allow the regulator core to provide stub supplies for other
1460 * supplies requested using normal regulator_get() calls without
1461 * disrupting the operation of drivers that can handle absent
1462 * supplies.
1463 *
1464 * Use of supply names configured via regulator_set_device_supply() is
1465 * strongly encouraged.  It is recommended that the supply name used
1466 * should match the name used for the supply and/or the relevant
1467 * device pins in the datasheet.
1468 */
1469struct regulator *regulator_get_optional(struct device *dev, const char *id)
1470{
1471	return _regulator_get(dev, id, false, false);
1472}
1473EXPORT_SYMBOL_GPL(regulator_get_optional);
1474
1475/* Locks held by regulator_put() */
1476static void _regulator_put(struct regulator *regulator)
1477{
1478	struct regulator_dev *rdev;
1479
1480	if (regulator == NULL || IS_ERR(regulator))
1481		return;
1482
1483	rdev = regulator->rdev;
1484
1485	debugfs_remove_recursive(regulator->debugfs);
1486
1487	/* remove any sysfs entries */
1488	if (regulator->dev)
1489		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1490	kfree(regulator->supply_name);
1491	list_del(&regulator->list);
1492	kfree(regulator);
1493
1494	rdev->open_count--;
1495	rdev->exclusive = 0;
1496
1497	module_put(rdev->owner);
1498}
1499
1500/**
1501 * regulator_put - "free" the regulator source
1502 * @regulator: regulator source
1503 *
1504 * Note: drivers must ensure that all regulator_enable calls made on this
1505 * regulator source are balanced by regulator_disable calls prior to calling
1506 * this function.
1507 */
1508void regulator_put(struct regulator *regulator)
1509{
1510	mutex_lock(&regulator_list_mutex);
1511	_regulator_put(regulator);
1512	mutex_unlock(&regulator_list_mutex);
1513}
1514EXPORT_SYMBOL_GPL(regulator_put);
1515
1516/**
1517 * regulator_register_supply_alias - Provide device alias for supply lookup
1518 *
1519 * @dev: device that will be given as the regulator "consumer"
1520 * @id: Supply name or regulator ID
1521 * @alias_dev: device that should be used to lookup the supply
1522 * @alias_id: Supply name or regulator ID that should be used to lookup the
1523 * supply
1524 *
1525 * All lookups for id on dev will instead be conducted for alias_id on
1526 * alias_dev.
1527 */
1528int regulator_register_supply_alias(struct device *dev, const char *id,
1529				    struct device *alias_dev,
1530				    const char *alias_id)
1531{
1532	struct regulator_supply_alias *map;
1533
1534	map = regulator_find_supply_alias(dev, id);
1535	if (map)
1536		return -EEXIST;
1537
1538	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1539	if (!map)
1540		return -ENOMEM;
1541
1542	map->src_dev = dev;
1543	map->src_supply = id;
1544	map->alias_dev = alias_dev;
1545	map->alias_supply = alias_id;
1546
1547	list_add(&map->list, &regulator_supply_alias_list);
1548
1549	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1550		id, dev_name(dev), alias_id, dev_name(alias_dev));
1551
1552	return 0;
1553}
1554EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1555
1556/**
1557 * regulator_unregister_supply_alias - Remove device alias
1558 *
1559 * @dev: device that will be given as the regulator "consumer"
1560 * @id: Supply name or regulator ID
1561 *
1562 * Remove a lookup alias if one exists for id on dev.
1563 */
1564void regulator_unregister_supply_alias(struct device *dev, const char *id)
1565{
1566	struct regulator_supply_alias *map;
1567
1568	map = regulator_find_supply_alias(dev, id);
1569	if (map) {
1570		list_del(&map->list);
1571		kfree(map);
1572	}
1573}
1574EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1575
1576/**
1577 * regulator_bulk_register_supply_alias - register multiple aliases
1578 *
1579 * @dev: device that will be given as the regulator "consumer"
1580 * @id: List of supply names or regulator IDs
1581 * @alias_dev: device that should be used to lookup the supply
1582 * @alias_id: List of supply names or regulator IDs that should be used to
1583 * lookup the supply
1584 * @num_id: Number of aliases to register
1585 *
1586 * @return 0 on success, an errno on failure.
1587 *
1588 * This helper function allows drivers to register several supply
1589 * aliases in one operation.  If any of the aliases cannot be
1590 * registered any aliases that were registered will be removed
1591 * before returning to the caller.
1592 */
1593int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1594					 struct device *alias_dev,
1595					 const char **alias_id,
1596					 int num_id)
1597{
1598	int i;
1599	int ret;
1600
1601	for (i = 0; i < num_id; ++i) {
1602		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1603						      alias_id[i]);
1604		if (ret < 0)
1605			goto err;
1606	}
1607
1608	return 0;
1609
1610err:
1611	dev_err(dev,
1612		"Failed to create supply alias %s,%s -> %s,%s\n",
1613		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1614
1615	while (--i >= 0)
1616		regulator_unregister_supply_alias(dev, id[i]);
1617
1618	return ret;
1619}
1620EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1621
1622/**
1623 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1624 *
1625 * @dev: device that will be given as the regulator "consumer"
1626 * @id: List of supply names or regulator IDs
1627 * @num_id: Number of aliases to unregister
1628 *
1629 * This helper function allows drivers to unregister several supply
1630 * aliases in one operation.
1631 */
1632void regulator_bulk_unregister_supply_alias(struct device *dev,
1633					    const char **id,
1634					    int num_id)
1635{
1636	int i;
1637
1638	for (i = 0; i < num_id; ++i)
1639		regulator_unregister_supply_alias(dev, id[i]);
1640}
1641EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1642
1643
1644/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1645static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1646				const struct regulator_config *config)
1647{
1648	struct regulator_enable_gpio *pin;
1649	int ret;
1650
1651	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1652		if (pin->gpio == config->ena_gpio) {
1653			rdev_dbg(rdev, "GPIO %d is already used\n",
1654				config->ena_gpio);
1655			goto update_ena_gpio_to_rdev;
1656		}
1657	}
1658
1659	ret = gpio_request_one(config->ena_gpio,
1660				GPIOF_DIR_OUT | config->ena_gpio_flags,
1661				rdev_get_name(rdev));
1662	if (ret)
1663		return ret;
1664
1665	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1666	if (pin == NULL) {
1667		gpio_free(config->ena_gpio);
1668		return -ENOMEM;
1669	}
1670
1671	pin->gpio = config->ena_gpio;
1672	pin->ena_gpio_invert = config->ena_gpio_invert;
1673	list_add(&pin->list, &regulator_ena_gpio_list);
1674
1675update_ena_gpio_to_rdev:
1676	pin->request_count++;
1677	rdev->ena_pin = pin;
1678	return 0;
1679}
1680
1681static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1682{
1683	struct regulator_enable_gpio *pin, *n;
1684
1685	if (!rdev->ena_pin)
1686		return;
1687
1688	/* Free the GPIO only in case of no use */
1689	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1690		if (pin->gpio == rdev->ena_pin->gpio) {
1691			if (pin->request_count <= 1) {
1692				pin->request_count = 0;
1693				gpio_free(pin->gpio);
1694				list_del(&pin->list);
1695				kfree(pin);
1696			} else {
1697				pin->request_count--;
1698			}
1699		}
1700	}
1701}
1702
1703/**
1704 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1705 * @rdev: regulator_dev structure
1706 * @enable: enable GPIO at initial use?
1707 *
1708 * GPIO is enabled in case of initial use. (enable_count is 0)
1709 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1710 */
1711static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1712{
1713	struct regulator_enable_gpio *pin = rdev->ena_pin;
1714
1715	if (!pin)
1716		return -EINVAL;
1717
1718	if (enable) {
1719		/* Enable GPIO at initial use */
1720		if (pin->enable_count == 0)
1721			gpio_set_value_cansleep(pin->gpio,
1722						!pin->ena_gpio_invert);
1723
1724		pin->enable_count++;
1725	} else {
1726		if (pin->enable_count > 1) {
1727			pin->enable_count--;
1728			return 0;
1729		}
1730
1731		/* Disable GPIO if not used */
1732		if (pin->enable_count <= 1) {
1733			gpio_set_value_cansleep(pin->gpio,
1734						pin->ena_gpio_invert);
1735			pin->enable_count = 0;
1736		}
1737	}
1738
1739	return 0;
1740}
1741
1742static int _regulator_do_enable(struct regulator_dev *rdev)
1743{
1744	int ret, delay;
1745
1746	/* Query before enabling in case configuration dependent.  */
1747	ret = _regulator_get_enable_time(rdev);
1748	if (ret >= 0) {
1749		delay = ret;
1750	} else {
1751		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1752		delay = 0;
1753	}
1754
1755	trace_regulator_enable(rdev_get_name(rdev));
1756
1757	if (rdev->ena_pin) {
1758		ret = regulator_ena_gpio_ctrl(rdev, true);
1759		if (ret < 0)
1760			return ret;
1761		rdev->ena_gpio_state = 1;
1762	} else if (rdev->desc->ops->enable) {
1763		ret = rdev->desc->ops->enable(rdev);
1764		if (ret < 0)
1765			return ret;
1766	} else {
1767		return -EINVAL;
1768	}
1769
1770	/* Allow the regulator to ramp; it would be useful to extend
1771	 * this for bulk operations so that the regulators can ramp
1772	 * together.  */
1773	trace_regulator_enable_delay(rdev_get_name(rdev));
1774
1775	/*
1776	 * Delay for the requested amount of time as per the guidelines in:
1777	 *
1778	 *     Documentation/timers/timers-howto.txt
1779	 *
1780	 * The assumption here is that regulators will never be enabled in
1781	 * atomic context and therefore sleeping functions can be used.
1782	 */
1783	if (delay) {
1784		unsigned int ms = delay / 1000;
1785		unsigned int us = delay % 1000;
1786
1787		if (ms > 0) {
1788			/*
1789			 * For small enough values, handle super-millisecond
1790			 * delays in the usleep_range() call below.
1791			 */
1792			if (ms < 20)
1793				us += ms * 1000;
1794			else
1795				msleep(ms);
1796		}
1797
1798		/*
1799		 * Give the scheduler some room to coalesce with any other
1800		 * wakeup sources. For delays shorter than 10 us, don't even
1801		 * bother setting up high-resolution timers and just busy-
1802		 * loop.
1803		 */
1804		if (us >= 10)
1805			usleep_range(us, us + 100);
1806		else
1807			udelay(us);
1808	}
1809
1810	trace_regulator_enable_complete(rdev_get_name(rdev));
1811
1812	return 0;
1813}
1814
1815/* locks held by regulator_enable() */
1816static int _regulator_enable(struct regulator_dev *rdev)
1817{
1818	int ret;
1819
1820	/* check voltage and requested load before enabling */
1821	if (rdev->constraints &&
1822	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1823		drms_uA_update(rdev);
1824
1825	if (rdev->use_count == 0) {
1826		/* The regulator may on if it's not switchable or left on */
1827		ret = _regulator_is_enabled(rdev);
1828		if (ret == -EINVAL || ret == 0) {
1829			if (!_regulator_can_change_status(rdev))
1830				return -EPERM;
1831
1832			ret = _regulator_do_enable(rdev);
1833			if (ret < 0)
1834				return ret;
1835
1836		} else if (ret < 0) {
1837			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1838			return ret;
1839		}
1840		/* Fallthrough on positive return values - already enabled */
1841	}
1842
1843	rdev->use_count++;
1844
1845	return 0;
1846}
1847
1848/**
1849 * regulator_enable - enable regulator output
1850 * @regulator: regulator source
1851 *
1852 * Request that the regulator be enabled with the regulator output at
1853 * the predefined voltage or current value.  Calls to regulator_enable()
1854 * must be balanced with calls to regulator_disable().
1855 *
1856 * NOTE: the output value can be set by other drivers, boot loader or may be
1857 * hardwired in the regulator.
1858 */
1859int regulator_enable(struct regulator *regulator)
1860{
1861	struct regulator_dev *rdev = regulator->rdev;
1862	int ret = 0;
1863
1864	if (regulator->always_on)
1865		return 0;
1866
1867	if (rdev->supply) {
1868		ret = regulator_enable(rdev->supply);
1869		if (ret != 0)
1870			return ret;
1871	}
1872
1873	mutex_lock(&rdev->mutex);
1874	ret = _regulator_enable(rdev);
1875	mutex_unlock(&rdev->mutex);
1876
1877	if (ret != 0 && rdev->supply)
1878		regulator_disable(rdev->supply);
1879
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regulator_enable);
1883
1884static int _regulator_do_disable(struct regulator_dev *rdev)
1885{
1886	int ret;
1887
1888	trace_regulator_disable(rdev_get_name(rdev));
1889
1890	if (rdev->ena_pin) {
1891		ret = regulator_ena_gpio_ctrl(rdev, false);
1892		if (ret < 0)
1893			return ret;
1894		rdev->ena_gpio_state = 0;
1895
1896	} else if (rdev->desc->ops->disable) {
1897		ret = rdev->desc->ops->disable(rdev);
1898		if (ret != 0)
1899			return ret;
1900	}
1901
1902	trace_regulator_disable_complete(rdev_get_name(rdev));
1903
1904	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1905			     NULL);
1906	return 0;
1907}
1908
1909/* locks held by regulator_disable() */
1910static int _regulator_disable(struct regulator_dev *rdev)
1911{
1912	int ret = 0;
1913
1914	if (WARN(rdev->use_count <= 0,
1915		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1916		return -EIO;
1917
1918	/* are we the last user and permitted to disable ? */
1919	if (rdev->use_count == 1 &&
1920	    (rdev->constraints && !rdev->constraints->always_on)) {
1921
1922		/* we are last user */
1923		if (_regulator_can_change_status(rdev)) {
1924			ret = _regulator_do_disable(rdev);
1925			if (ret < 0) {
1926				rdev_err(rdev, "failed to disable\n");
1927				return ret;
1928			}
1929		}
1930
1931		rdev->use_count = 0;
1932	} else if (rdev->use_count > 1) {
1933
1934		if (rdev->constraints &&
1935			(rdev->constraints->valid_ops_mask &
1936			REGULATOR_CHANGE_DRMS))
1937			drms_uA_update(rdev);
1938
1939		rdev->use_count--;
1940	}
1941
1942	return ret;
1943}
1944
1945/**
1946 * regulator_disable - disable regulator output
1947 * @regulator: regulator source
1948 *
1949 * Disable the regulator output voltage or current.  Calls to
1950 * regulator_enable() must be balanced with calls to
1951 * regulator_disable().
1952 *
1953 * NOTE: this will only disable the regulator output if no other consumer
1954 * devices have it enabled, the regulator device supports disabling and
1955 * machine constraints permit this operation.
1956 */
1957int regulator_disable(struct regulator *regulator)
1958{
1959	struct regulator_dev *rdev = regulator->rdev;
1960	int ret = 0;
1961
1962	if (regulator->always_on)
1963		return 0;
1964
1965	mutex_lock(&rdev->mutex);
1966	ret = _regulator_disable(rdev);
1967	mutex_unlock(&rdev->mutex);
1968
1969	if (ret == 0 && rdev->supply)
1970		regulator_disable(rdev->supply);
1971
1972	return ret;
1973}
1974EXPORT_SYMBOL_GPL(regulator_disable);
1975
1976/* locks held by regulator_force_disable() */
1977static int _regulator_force_disable(struct regulator_dev *rdev)
1978{
1979	int ret = 0;
1980
1981	/* force disable */
1982	if (rdev->desc->ops->disable) {
1983		/* ah well, who wants to live forever... */
1984		ret = rdev->desc->ops->disable(rdev);
1985		if (ret < 0) {
1986			rdev_err(rdev, "failed to force disable\n");
1987			return ret;
1988		}
1989		/* notify other consumers that power has been forced off */
1990		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1991			REGULATOR_EVENT_DISABLE, NULL);
1992	}
1993
1994	return ret;
1995}
1996
1997/**
1998 * regulator_force_disable - force disable regulator output
1999 * @regulator: regulator source
2000 *
2001 * Forcibly disable the regulator output voltage or current.
2002 * NOTE: this *will* disable the regulator output even if other consumer
2003 * devices have it enabled. This should be used for situations when device
2004 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2005 */
2006int regulator_force_disable(struct regulator *regulator)
2007{
2008	struct regulator_dev *rdev = regulator->rdev;
2009	int ret;
2010
2011	mutex_lock(&rdev->mutex);
2012	regulator->uA_load = 0;
2013	ret = _regulator_force_disable(regulator->rdev);
2014	mutex_unlock(&rdev->mutex);
2015
2016	if (rdev->supply)
2017		while (rdev->open_count--)
2018			regulator_disable(rdev->supply);
2019
2020	return ret;
2021}
2022EXPORT_SYMBOL_GPL(regulator_force_disable);
2023
2024static void regulator_disable_work(struct work_struct *work)
2025{
2026	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2027						  disable_work.work);
2028	int count, i, ret;
2029
2030	mutex_lock(&rdev->mutex);
2031
2032	BUG_ON(!rdev->deferred_disables);
2033
2034	count = rdev->deferred_disables;
2035	rdev->deferred_disables = 0;
2036
2037	for (i = 0; i < count; i++) {
2038		ret = _regulator_disable(rdev);
2039		if (ret != 0)
2040			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2041	}
2042
2043	mutex_unlock(&rdev->mutex);
2044
2045	if (rdev->supply) {
2046		for (i = 0; i < count; i++) {
2047			ret = regulator_disable(rdev->supply);
2048			if (ret != 0) {
2049				rdev_err(rdev,
2050					 "Supply disable failed: %d\n", ret);
2051			}
2052		}
2053	}
2054}
2055
2056/**
2057 * regulator_disable_deferred - disable regulator output with delay
2058 * @regulator: regulator source
2059 * @ms: miliseconds until the regulator is disabled
2060 *
2061 * Execute regulator_disable() on the regulator after a delay.  This
2062 * is intended for use with devices that require some time to quiesce.
2063 *
2064 * NOTE: this will only disable the regulator output if no other consumer
2065 * devices have it enabled, the regulator device supports disabling and
2066 * machine constraints permit this operation.
2067 */
2068int regulator_disable_deferred(struct regulator *regulator, int ms)
2069{
2070	struct regulator_dev *rdev = regulator->rdev;
2071	int ret;
2072
2073	if (regulator->always_on)
2074		return 0;
2075
2076	if (!ms)
2077		return regulator_disable(regulator);
2078
2079	mutex_lock(&rdev->mutex);
2080	rdev->deferred_disables++;
2081	mutex_unlock(&rdev->mutex);
2082
2083	ret = queue_delayed_work(system_power_efficient_wq,
2084				 &rdev->disable_work,
2085				 msecs_to_jiffies(ms));
2086	if (ret < 0)
2087		return ret;
2088	else
2089		return 0;
2090}
2091EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2092
2093static int _regulator_is_enabled(struct regulator_dev *rdev)
2094{
2095	/* A GPIO control always takes precedence */
2096	if (rdev->ena_pin)
2097		return rdev->ena_gpio_state;
2098
2099	/* If we don't know then assume that the regulator is always on */
2100	if (!rdev->desc->ops->is_enabled)
2101		return 1;
2102
2103	return rdev->desc->ops->is_enabled(rdev);
2104}
2105
2106/**
2107 * regulator_is_enabled - is the regulator output enabled
2108 * @regulator: regulator source
2109 *
2110 * Returns positive if the regulator driver backing the source/client
2111 * has requested that the device be enabled, zero if it hasn't, else a
2112 * negative errno code.
2113 *
2114 * Note that the device backing this regulator handle can have multiple
2115 * users, so it might be enabled even if regulator_enable() was never
2116 * called for this particular source.
2117 */
2118int regulator_is_enabled(struct regulator *regulator)
2119{
2120	int ret;
2121
2122	if (regulator->always_on)
2123		return 1;
2124
2125	mutex_lock(&regulator->rdev->mutex);
2126	ret = _regulator_is_enabled(regulator->rdev);
2127	mutex_unlock(&regulator->rdev->mutex);
2128
2129	return ret;
2130}
2131EXPORT_SYMBOL_GPL(regulator_is_enabled);
2132
2133/**
2134 * regulator_can_change_voltage - check if regulator can change voltage
2135 * @regulator: regulator source
2136 *
2137 * Returns positive if the regulator driver backing the source/client
2138 * can change its voltage, false otherwise. Usefull for detecting fixed
2139 * or dummy regulators and disabling voltage change logic in the client
2140 * driver.
2141 */
2142int regulator_can_change_voltage(struct regulator *regulator)
2143{
2144	struct regulator_dev	*rdev = regulator->rdev;
2145
2146	if (rdev->constraints &&
2147	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2148		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2149			return 1;
2150
2151		if (rdev->desc->continuous_voltage_range &&
2152		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2153		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2154			return 1;
2155	}
2156
2157	return 0;
2158}
2159EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2160
2161/**
2162 * regulator_count_voltages - count regulator_list_voltage() selectors
2163 * @regulator: regulator source
2164 *
2165 * Returns number of selectors, or negative errno.  Selectors are
2166 * numbered starting at zero, and typically correspond to bitfields
2167 * in hardware registers.
2168 */
2169int regulator_count_voltages(struct regulator *regulator)
2170{
2171	struct regulator_dev	*rdev = regulator->rdev;
2172
2173	return rdev->desc->n_voltages ? : -EINVAL;
2174}
2175EXPORT_SYMBOL_GPL(regulator_count_voltages);
2176
2177/**
2178 * regulator_list_voltage - enumerate supported voltages
2179 * @regulator: regulator source
2180 * @selector: identify voltage to list
2181 * Context: can sleep
2182 *
2183 * Returns a voltage that can be passed to @regulator_set_voltage(),
2184 * zero if this selector code can't be used on this system, or a
2185 * negative errno.
2186 */
2187int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2188{
2189	struct regulator_dev	*rdev = regulator->rdev;
2190	struct regulator_ops	*ops = rdev->desc->ops;
2191	int			ret;
2192
2193	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2194		return rdev->desc->fixed_uV;
2195
2196	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2197		return -EINVAL;
2198
2199	mutex_lock(&rdev->mutex);
2200	ret = ops->list_voltage(rdev, selector);
2201	mutex_unlock(&rdev->mutex);
2202
2203	if (ret > 0) {
2204		if (ret < rdev->constraints->min_uV)
2205			ret = 0;
2206		else if (ret > rdev->constraints->max_uV)
2207			ret = 0;
2208	}
2209
2210	return ret;
2211}
2212EXPORT_SYMBOL_GPL(regulator_list_voltage);
2213
2214/**
2215 * regulator_get_linear_step - return the voltage step size between VSEL values
2216 * @regulator: regulator source
2217 *
2218 * Returns the voltage step size between VSEL values for linear
2219 * regulators, or return 0 if the regulator isn't a linear regulator.
2220 */
2221unsigned int regulator_get_linear_step(struct regulator *regulator)
2222{
2223	struct regulator_dev *rdev = regulator->rdev;
2224
2225	return rdev->desc->uV_step;
2226}
2227EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2228
2229/**
2230 * regulator_is_supported_voltage - check if a voltage range can be supported
2231 *
2232 * @regulator: Regulator to check.
2233 * @min_uV: Minimum required voltage in uV.
2234 * @max_uV: Maximum required voltage in uV.
2235 *
2236 * Returns a boolean or a negative error code.
2237 */
2238int regulator_is_supported_voltage(struct regulator *regulator,
2239				   int min_uV, int max_uV)
2240{
2241	struct regulator_dev *rdev = regulator->rdev;
2242	int i, voltages, ret;
2243
2244	/* If we can't change voltage check the current voltage */
2245	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2246		ret = regulator_get_voltage(regulator);
2247		if (ret >= 0)
2248			return (min_uV <= ret && ret <= max_uV);
2249		else
2250			return ret;
2251	}
2252
2253	/* Any voltage within constrains range is fine? */
2254	if (rdev->desc->continuous_voltage_range)
2255		return min_uV >= rdev->constraints->min_uV &&
2256				max_uV <= rdev->constraints->max_uV;
2257
2258	ret = regulator_count_voltages(regulator);
2259	if (ret < 0)
2260		return ret;
2261	voltages = ret;
2262
2263	for (i = 0; i < voltages; i++) {
2264		ret = regulator_list_voltage(regulator, i);
2265
2266		if (ret >= min_uV && ret <= max_uV)
2267			return 1;
2268	}
2269
2270	return 0;
2271}
2272EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2273
2274static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2275				     int min_uV, int max_uV)
2276{
2277	int ret;
2278	int delay = 0;
2279	int best_val = 0;
2280	unsigned int selector;
2281	int old_selector = -1;
2282
2283	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2284
2285	min_uV += rdev->constraints->uV_offset;
2286	max_uV += rdev->constraints->uV_offset;
2287
2288	/*
2289	 * If we can't obtain the old selector there is not enough
2290	 * info to call set_voltage_time_sel().
2291	 */
2292	if (_regulator_is_enabled(rdev) &&
2293	    rdev->desc->ops->set_voltage_time_sel &&
2294	    rdev->desc->ops->get_voltage_sel) {
2295		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2296		if (old_selector < 0)
2297			return old_selector;
2298	}
2299
2300	if (rdev->desc->ops->set_voltage) {
2301		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2302						   &selector);
2303
2304		if (ret >= 0) {
2305			if (rdev->desc->ops->list_voltage)
2306				best_val = rdev->desc->ops->list_voltage(rdev,
2307									 selector);
2308			else
2309				best_val = _regulator_get_voltage(rdev);
2310		}
2311
2312	} else if (rdev->desc->ops->set_voltage_sel) {
2313		if (rdev->desc->ops->map_voltage) {
2314			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2315							   max_uV);
2316		} else {
2317			if (rdev->desc->ops->list_voltage ==
2318			    regulator_list_voltage_linear)
2319				ret = regulator_map_voltage_linear(rdev,
2320								min_uV, max_uV);
2321			else
2322				ret = regulator_map_voltage_iterate(rdev,
2323								min_uV, max_uV);
2324		}
2325
2326		if (ret >= 0) {
2327			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2328			if (min_uV <= best_val && max_uV >= best_val) {
2329				selector = ret;
2330				if (old_selector == selector)
2331					ret = 0;
2332				else
2333					ret = rdev->desc->ops->set_voltage_sel(
2334								rdev, ret);
2335			} else {
2336				ret = -EINVAL;
2337			}
2338		}
2339	} else {
2340		ret = -EINVAL;
2341	}
2342
2343	/* Call set_voltage_time_sel if successfully obtained old_selector */
2344	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2345		&& old_selector != selector) {
2346
2347		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2348						old_selector, selector);
2349		if (delay < 0) {
2350			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2351				  delay);
2352			delay = 0;
2353		}
2354
2355		/* Insert any necessary delays */
2356		if (delay >= 1000) {
2357			mdelay(delay / 1000);
2358			udelay(delay % 1000);
2359		} else if (delay) {
2360			udelay(delay);
2361		}
2362	}
2363
2364	if (ret == 0 && best_val >= 0) {
2365		unsigned long data = best_val;
2366
2367		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2368				     (void *)data);
2369	}
2370
2371	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2372
2373	return ret;
2374}
2375
2376/**
2377 * regulator_set_voltage - set regulator output voltage
2378 * @regulator: regulator source
2379 * @min_uV: Minimum required voltage in uV
2380 * @max_uV: Maximum acceptable voltage in uV
2381 *
2382 * Sets a voltage regulator to the desired output voltage. This can be set
2383 * during any regulator state. IOW, regulator can be disabled or enabled.
2384 *
2385 * If the regulator is enabled then the voltage will change to the new value
2386 * immediately otherwise if the regulator is disabled the regulator will
2387 * output at the new voltage when enabled.
2388 *
2389 * NOTE: If the regulator is shared between several devices then the lowest
2390 * request voltage that meets the system constraints will be used.
2391 * Regulator system constraints must be set for this regulator before
2392 * calling this function otherwise this call will fail.
2393 */
2394int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2395{
2396	struct regulator_dev *rdev = regulator->rdev;
2397	int ret = 0;
2398	int old_min_uV, old_max_uV;
2399
2400	mutex_lock(&rdev->mutex);
2401
2402	/* If we're setting the same range as last time the change
2403	 * should be a noop (some cpufreq implementations use the same
2404	 * voltage for multiple frequencies, for example).
2405	 */
2406	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2407		goto out;
2408
2409	/* sanity check */
2410	if (!rdev->desc->ops->set_voltage &&
2411	    !rdev->desc->ops->set_voltage_sel) {
2412		ret = -EINVAL;
2413		goto out;
2414	}
2415
2416	/* constraints check */
2417	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2418	if (ret < 0)
2419		goto out;
2420
2421	/* restore original values in case of error */
2422	old_min_uV = regulator->min_uV;
2423	old_max_uV = regulator->max_uV;
2424	regulator->min_uV = min_uV;
2425	regulator->max_uV = max_uV;
2426
2427	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2428	if (ret < 0)
2429		goto out2;
2430
2431	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2432	if (ret < 0)
2433		goto out2;
2434
2435out:
2436	mutex_unlock(&rdev->mutex);
2437	return ret;
2438out2:
2439	regulator->min_uV = old_min_uV;
2440	regulator->max_uV = old_max_uV;
2441	mutex_unlock(&rdev->mutex);
2442	return ret;
2443}
2444EXPORT_SYMBOL_GPL(regulator_set_voltage);
2445
2446/**
2447 * regulator_set_voltage_time - get raise/fall time
2448 * @regulator: regulator source
2449 * @old_uV: starting voltage in microvolts
2450 * @new_uV: target voltage in microvolts
2451 *
2452 * Provided with the starting and ending voltage, this function attempts to
2453 * calculate the time in microseconds required to rise or fall to this new
2454 * voltage.
2455 */
2456int regulator_set_voltage_time(struct regulator *regulator,
2457			       int old_uV, int new_uV)
2458{
2459	struct regulator_dev	*rdev = regulator->rdev;
2460	struct regulator_ops	*ops = rdev->desc->ops;
2461	int old_sel = -1;
2462	int new_sel = -1;
2463	int voltage;
2464	int i;
2465
2466	/* Currently requires operations to do this */
2467	if (!ops->list_voltage || !ops->set_voltage_time_sel
2468	    || !rdev->desc->n_voltages)
2469		return -EINVAL;
2470
2471	for (i = 0; i < rdev->desc->n_voltages; i++) {
2472		/* We only look for exact voltage matches here */
2473		voltage = regulator_list_voltage(regulator, i);
2474		if (voltage < 0)
2475			return -EINVAL;
2476		if (voltage == 0)
2477			continue;
2478		if (voltage == old_uV)
2479			old_sel = i;
2480		if (voltage == new_uV)
2481			new_sel = i;
2482	}
2483
2484	if (old_sel < 0 || new_sel < 0)
2485		return -EINVAL;
2486
2487	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2488}
2489EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2490
2491/**
2492 * regulator_set_voltage_time_sel - get raise/fall time
2493 * @rdev: regulator source device
2494 * @old_selector: selector for starting voltage
2495 * @new_selector: selector for target voltage
2496 *
2497 * Provided with the starting and target voltage selectors, this function
2498 * returns time in microseconds required to rise or fall to this new voltage
2499 *
2500 * Drivers providing ramp_delay in regulation_constraints can use this as their
2501 * set_voltage_time_sel() operation.
2502 */
2503int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2504				   unsigned int old_selector,
2505				   unsigned int new_selector)
2506{
2507	unsigned int ramp_delay = 0;
2508	int old_volt, new_volt;
2509
2510	if (rdev->constraints->ramp_delay)
2511		ramp_delay = rdev->constraints->ramp_delay;
2512	else if (rdev->desc->ramp_delay)
2513		ramp_delay = rdev->desc->ramp_delay;
2514
2515	if (ramp_delay == 0) {
2516		rdev_warn(rdev, "ramp_delay not set\n");
2517		return 0;
2518	}
2519
2520	/* sanity check */
2521	if (!rdev->desc->ops->list_voltage)
2522		return -EINVAL;
2523
2524	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2525	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2526
2527	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2528}
2529EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2530
2531/**
2532 * regulator_sync_voltage - re-apply last regulator output voltage
2533 * @regulator: regulator source
2534 *
2535 * Re-apply the last configured voltage.  This is intended to be used
2536 * where some external control source the consumer is cooperating with
2537 * has caused the configured voltage to change.
2538 */
2539int regulator_sync_voltage(struct regulator *regulator)
2540{
2541	struct regulator_dev *rdev = regulator->rdev;
2542	int ret, min_uV, max_uV;
2543
2544	mutex_lock(&rdev->mutex);
2545
2546	if (!rdev->desc->ops->set_voltage &&
2547	    !rdev->desc->ops->set_voltage_sel) {
2548		ret = -EINVAL;
2549		goto out;
2550	}
2551
2552	/* This is only going to work if we've had a voltage configured. */
2553	if (!regulator->min_uV && !regulator->max_uV) {
2554		ret = -EINVAL;
2555		goto out;
2556	}
2557
2558	min_uV = regulator->min_uV;
2559	max_uV = regulator->max_uV;
2560
2561	/* This should be a paranoia check... */
2562	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2563	if (ret < 0)
2564		goto out;
2565
2566	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2567	if (ret < 0)
2568		goto out;
2569
2570	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2571
2572out:
2573	mutex_unlock(&rdev->mutex);
2574	return ret;
2575}
2576EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2577
2578static int _regulator_get_voltage(struct regulator_dev *rdev)
2579{
2580	int sel, ret;
2581
2582	if (rdev->desc->ops->get_voltage_sel) {
2583		sel = rdev->desc->ops->get_voltage_sel(rdev);
2584		if (sel < 0)
2585			return sel;
2586		ret = rdev->desc->ops->list_voltage(rdev, sel);
2587	} else if (rdev->desc->ops->get_voltage) {
2588		ret = rdev->desc->ops->get_voltage(rdev);
2589	} else if (rdev->desc->ops->list_voltage) {
2590		ret = rdev->desc->ops->list_voltage(rdev, 0);
2591	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2592		ret = rdev->desc->fixed_uV;
2593	} else {
2594		return -EINVAL;
2595	}
2596
2597	if (ret < 0)
2598		return ret;
2599	return ret - rdev->constraints->uV_offset;
2600}
2601
2602/**
2603 * regulator_get_voltage - get regulator output voltage
2604 * @regulator: regulator source
2605 *
2606 * This returns the current regulator voltage in uV.
2607 *
2608 * NOTE: If the regulator is disabled it will return the voltage value. This
2609 * function should not be used to determine regulator state.
2610 */
2611int regulator_get_voltage(struct regulator *regulator)
2612{
2613	int ret;
2614
2615	mutex_lock(&regulator->rdev->mutex);
2616
2617	ret = _regulator_get_voltage(regulator->rdev);
2618
2619	mutex_unlock(&regulator->rdev->mutex);
2620
2621	return ret;
2622}
2623EXPORT_SYMBOL_GPL(regulator_get_voltage);
2624
2625/**
2626 * regulator_set_current_limit - set regulator output current limit
2627 * @regulator: regulator source
2628 * @min_uA: Minimum supported current in uA
2629 * @max_uA: Maximum supported current in uA
2630 *
2631 * Sets current sink to the desired output current. This can be set during
2632 * any regulator state. IOW, regulator can be disabled or enabled.
2633 *
2634 * If the regulator is enabled then the current will change to the new value
2635 * immediately otherwise if the regulator is disabled the regulator will
2636 * output at the new current when enabled.
2637 *
2638 * NOTE: Regulator system constraints must be set for this regulator before
2639 * calling this function otherwise this call will fail.
2640 */
2641int regulator_set_current_limit(struct regulator *regulator,
2642			       int min_uA, int max_uA)
2643{
2644	struct regulator_dev *rdev = regulator->rdev;
2645	int ret;
2646
2647	mutex_lock(&rdev->mutex);
2648
2649	/* sanity check */
2650	if (!rdev->desc->ops->set_current_limit) {
2651		ret = -EINVAL;
2652		goto out;
2653	}
2654
2655	/* constraints check */
2656	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2657	if (ret < 0)
2658		goto out;
2659
2660	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2661out:
2662	mutex_unlock(&rdev->mutex);
2663	return ret;
2664}
2665EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2666
2667static int _regulator_get_current_limit(struct regulator_dev *rdev)
2668{
2669	int ret;
2670
2671	mutex_lock(&rdev->mutex);
2672
2673	/* sanity check */
2674	if (!rdev->desc->ops->get_current_limit) {
2675		ret = -EINVAL;
2676		goto out;
2677	}
2678
2679	ret = rdev->desc->ops->get_current_limit(rdev);
2680out:
2681	mutex_unlock(&rdev->mutex);
2682	return ret;
2683}
2684
2685/**
2686 * regulator_get_current_limit - get regulator output current
2687 * @regulator: regulator source
2688 *
2689 * This returns the current supplied by the specified current sink in uA.
2690 *
2691 * NOTE: If the regulator is disabled it will return the current value. This
2692 * function should not be used to determine regulator state.
2693 */
2694int regulator_get_current_limit(struct regulator *regulator)
2695{
2696	return _regulator_get_current_limit(regulator->rdev);
2697}
2698EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2699
2700/**
2701 * regulator_set_mode - set regulator operating mode
2702 * @regulator: regulator source
2703 * @mode: operating mode - one of the REGULATOR_MODE constants
2704 *
2705 * Set regulator operating mode to increase regulator efficiency or improve
2706 * regulation performance.
2707 *
2708 * NOTE: Regulator system constraints must be set for this regulator before
2709 * calling this function otherwise this call will fail.
2710 */
2711int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2712{
2713	struct regulator_dev *rdev = regulator->rdev;
2714	int ret;
2715	int regulator_curr_mode;
2716
2717	mutex_lock(&rdev->mutex);
2718
2719	/* sanity check */
2720	if (!rdev->desc->ops->set_mode) {
2721		ret = -EINVAL;
2722		goto out;
2723	}
2724
2725	/* return if the same mode is requested */
2726	if (rdev->desc->ops->get_mode) {
2727		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2728		if (regulator_curr_mode == mode) {
2729			ret = 0;
2730			goto out;
2731		}
2732	}
2733
2734	/* constraints check */
2735	ret = regulator_mode_constrain(rdev, &mode);
2736	if (ret < 0)
2737		goto out;
2738
2739	ret = rdev->desc->ops->set_mode(rdev, mode);
2740out:
2741	mutex_unlock(&rdev->mutex);
2742	return ret;
2743}
2744EXPORT_SYMBOL_GPL(regulator_set_mode);
2745
2746static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2747{
2748	int ret;
2749
2750	mutex_lock(&rdev->mutex);
2751
2752	/* sanity check */
2753	if (!rdev->desc->ops->get_mode) {
2754		ret = -EINVAL;
2755		goto out;
2756	}
2757
2758	ret = rdev->desc->ops->get_mode(rdev);
2759out:
2760	mutex_unlock(&rdev->mutex);
2761	return ret;
2762}
2763
2764/**
2765 * regulator_get_mode - get regulator operating mode
2766 * @regulator: regulator source
2767 *
2768 * Get the current regulator operating mode.
2769 */
2770unsigned int regulator_get_mode(struct regulator *regulator)
2771{
2772	return _regulator_get_mode(regulator->rdev);
2773}
2774EXPORT_SYMBOL_GPL(regulator_get_mode);
2775
2776/**
2777 * regulator_set_optimum_mode - set regulator optimum operating mode
2778 * @regulator: regulator source
2779 * @uA_load: load current
2780 *
2781 * Notifies the regulator core of a new device load. This is then used by
2782 * DRMS (if enabled by constraints) to set the most efficient regulator
2783 * operating mode for the new regulator loading.
2784 *
2785 * Consumer devices notify their supply regulator of the maximum power
2786 * they will require (can be taken from device datasheet in the power
2787 * consumption tables) when they change operational status and hence power
2788 * state. Examples of operational state changes that can affect power
2789 * consumption are :-
2790 *
2791 *    o Device is opened / closed.
2792 *    o Device I/O is about to begin or has just finished.
2793 *    o Device is idling in between work.
2794 *
2795 * This information is also exported via sysfs to userspace.
2796 *
2797 * DRMS will sum the total requested load on the regulator and change
2798 * to the most efficient operating mode if platform constraints allow.
2799 *
2800 * Returns the new regulator mode or error.
2801 */
2802int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2803{
2804	struct regulator_dev *rdev = regulator->rdev;
2805	struct regulator *consumer;
2806	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2807	unsigned int mode;
2808
2809	if (rdev->supply)
2810		input_uV = regulator_get_voltage(rdev->supply);
2811
2812	mutex_lock(&rdev->mutex);
2813
2814	/*
2815	 * first check to see if we can set modes at all, otherwise just
2816	 * tell the consumer everything is OK.
2817	 */
2818	regulator->uA_load = uA_load;
2819	ret = regulator_check_drms(rdev);
2820	if (ret < 0) {
2821		ret = 0;
2822		goto out;
2823	}
2824
2825	if (!rdev->desc->ops->get_optimum_mode)
2826		goto out;
2827
2828	/*
2829	 * we can actually do this so any errors are indicators of
2830	 * potential real failure.
2831	 */
2832	ret = -EINVAL;
2833
2834	if (!rdev->desc->ops->set_mode)
2835		goto out;
2836
2837	/* get output voltage */
2838	output_uV = _regulator_get_voltage(rdev);
2839	if (output_uV <= 0) {
2840		rdev_err(rdev, "invalid output voltage found\n");
2841		goto out;
2842	}
2843
2844	/* No supply? Use constraint voltage */
2845	if (input_uV <= 0)
2846		input_uV = rdev->constraints->input_uV;
2847	if (input_uV <= 0) {
2848		rdev_err(rdev, "invalid input voltage found\n");
2849		goto out;
2850	}
2851
2852	/* calc total requested load for this regulator */
2853	list_for_each_entry(consumer, &rdev->consumer_list, list)
2854		total_uA_load += consumer->uA_load;
2855
2856	mode = rdev->desc->ops->get_optimum_mode(rdev,
2857						 input_uV, output_uV,
2858						 total_uA_load);
2859	ret = regulator_mode_constrain(rdev, &mode);
2860	if (ret < 0) {
2861		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2862			 total_uA_load, input_uV, output_uV);
2863		goto out;
2864	}
2865
2866	ret = rdev->desc->ops->set_mode(rdev, mode);
2867	if (ret < 0) {
2868		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2869		goto out;
2870	}
2871	ret = mode;
2872out:
2873	mutex_unlock(&rdev->mutex);
2874	return ret;
2875}
2876EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2877
2878/**
2879 * regulator_allow_bypass - allow the regulator to go into bypass mode
2880 *
2881 * @regulator: Regulator to configure
2882 * @enable: enable or disable bypass mode
2883 *
2884 * Allow the regulator to go into bypass mode if all other consumers
2885 * for the regulator also enable bypass mode and the machine
2886 * constraints allow this.  Bypass mode means that the regulator is
2887 * simply passing the input directly to the output with no regulation.
2888 */
2889int regulator_allow_bypass(struct regulator *regulator, bool enable)
2890{
2891	struct regulator_dev *rdev = regulator->rdev;
2892	int ret = 0;
2893
2894	if (!rdev->desc->ops->set_bypass)
2895		return 0;
2896
2897	if (rdev->constraints &&
2898	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2899		return 0;
2900
2901	mutex_lock(&rdev->mutex);
2902
2903	if (enable && !regulator->bypass) {
2904		rdev->bypass_count++;
2905
2906		if (rdev->bypass_count == rdev->open_count) {
2907			ret = rdev->desc->ops->set_bypass(rdev, enable);
2908			if (ret != 0)
2909				rdev->bypass_count--;
2910		}
2911
2912	} else if (!enable && regulator->bypass) {
2913		rdev->bypass_count--;
2914
2915		if (rdev->bypass_count != rdev->open_count) {
2916			ret = rdev->desc->ops->set_bypass(rdev, enable);
2917			if (ret != 0)
2918				rdev->bypass_count++;
2919		}
2920	}
2921
2922	if (ret == 0)
2923		regulator->bypass = enable;
2924
2925	mutex_unlock(&rdev->mutex);
2926
2927	return ret;
2928}
2929EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2930
2931/**
2932 * regulator_register_notifier - register regulator event notifier
2933 * @regulator: regulator source
2934 * @nb: notifier block
2935 *
2936 * Register notifier block to receive regulator events.
2937 */
2938int regulator_register_notifier(struct regulator *regulator,
2939			      struct notifier_block *nb)
2940{
2941	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2942						nb);
2943}
2944EXPORT_SYMBOL_GPL(regulator_register_notifier);
2945
2946/**
2947 * regulator_unregister_notifier - unregister regulator event notifier
2948 * @regulator: regulator source
2949 * @nb: notifier block
2950 *
2951 * Unregister regulator event notifier block.
2952 */
2953int regulator_unregister_notifier(struct regulator *regulator,
2954				struct notifier_block *nb)
2955{
2956	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2957						  nb);
2958}
2959EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2960
2961/* notify regulator consumers and downstream regulator consumers.
2962 * Note mutex must be held by caller.
2963 */
2964static void _notifier_call_chain(struct regulator_dev *rdev,
2965				  unsigned long event, void *data)
2966{
2967	/* call rdev chain first */
2968	blocking_notifier_call_chain(&rdev->notifier, event, data);
2969}
2970
2971/**
2972 * regulator_bulk_get - get multiple regulator consumers
2973 *
2974 * @dev:           Device to supply
2975 * @num_consumers: Number of consumers to register
2976 * @consumers:     Configuration of consumers; clients are stored here.
2977 *
2978 * @return 0 on success, an errno on failure.
2979 *
2980 * This helper function allows drivers to get several regulator
2981 * consumers in one operation.  If any of the regulators cannot be
2982 * acquired then any regulators that were allocated will be freed
2983 * before returning to the caller.
2984 */
2985int regulator_bulk_get(struct device *dev, int num_consumers,
2986		       struct regulator_bulk_data *consumers)
2987{
2988	int i;
2989	int ret;
2990
2991	for (i = 0; i < num_consumers; i++)
2992		consumers[i].consumer = NULL;
2993
2994	for (i = 0; i < num_consumers; i++) {
2995		consumers[i].consumer = regulator_get(dev,
2996						      consumers[i].supply);
2997		if (IS_ERR(consumers[i].consumer)) {
2998			ret = PTR_ERR(consumers[i].consumer);
2999			dev_err(dev, "Failed to get supply '%s': %d\n",
3000				consumers[i].supply, ret);
3001			consumers[i].consumer = NULL;
3002			goto err;
3003		}
3004	}
3005
3006	return 0;
3007
3008err:
3009	while (--i >= 0)
3010		regulator_put(consumers[i].consumer);
3011
3012	return ret;
3013}
3014EXPORT_SYMBOL_GPL(regulator_bulk_get);
3015
3016static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3017{
3018	struct regulator_bulk_data *bulk = data;
3019
3020	bulk->ret = regulator_enable(bulk->consumer);
3021}
3022
3023/**
3024 * regulator_bulk_enable - enable multiple regulator consumers
3025 *
3026 * @num_consumers: Number of consumers
3027 * @consumers:     Consumer data; clients are stored here.
3028 * @return         0 on success, an errno on failure
3029 *
3030 * This convenience API allows consumers to enable multiple regulator
3031 * clients in a single API call.  If any consumers cannot be enabled
3032 * then any others that were enabled will be disabled again prior to
3033 * return.
3034 */
3035int regulator_bulk_enable(int num_consumers,
3036			  struct regulator_bulk_data *consumers)
3037{
3038	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3039	int i;
3040	int ret = 0;
3041
3042	for (i = 0; i < num_consumers; i++) {
3043		if (consumers[i].consumer->always_on)
3044			consumers[i].ret = 0;
3045		else
3046			async_schedule_domain(regulator_bulk_enable_async,
3047					      &consumers[i], &async_domain);
3048	}
3049
3050	async_synchronize_full_domain(&async_domain);
3051
3052	/* If any consumer failed we need to unwind any that succeeded */
3053	for (i = 0; i < num_consumers; i++) {
3054		if (consumers[i].ret != 0) {
3055			ret = consumers[i].ret;
3056			goto err;
3057		}
3058	}
3059
3060	return 0;
3061
3062err:
3063	for (i = 0; i < num_consumers; i++) {
3064		if (consumers[i].ret < 0)
3065			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3066			       consumers[i].ret);
3067		else
3068			regulator_disable(consumers[i].consumer);
3069	}
3070
3071	return ret;
3072}
3073EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3074
3075/**
3076 * regulator_bulk_disable - disable multiple regulator consumers
3077 *
3078 * @num_consumers: Number of consumers
3079 * @consumers:     Consumer data; clients are stored here.
3080 * @return         0 on success, an errno on failure
3081 *
3082 * This convenience API allows consumers to disable multiple regulator
3083 * clients in a single API call.  If any consumers cannot be disabled
3084 * then any others that were disabled will be enabled again prior to
3085 * return.
3086 */
3087int regulator_bulk_disable(int num_consumers,
3088			   struct regulator_bulk_data *consumers)
3089{
3090	int i;
3091	int ret, r;
3092
3093	for (i = num_consumers - 1; i >= 0; --i) {
3094		ret = regulator_disable(consumers[i].consumer);
3095		if (ret != 0)
3096			goto err;
3097	}
3098
3099	return 0;
3100
3101err:
3102	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3103	for (++i; i < num_consumers; ++i) {
3104		r = regulator_enable(consumers[i].consumer);
3105		if (r != 0)
3106			pr_err("Failed to reename %s: %d\n",
3107			       consumers[i].supply, r);
3108	}
3109
3110	return ret;
3111}
3112EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3113
3114/**
3115 * regulator_bulk_force_disable - force disable multiple regulator consumers
3116 *
3117 * @num_consumers: Number of consumers
3118 * @consumers:     Consumer data; clients are stored here.
3119 * @return         0 on success, an errno on failure
3120 *
3121 * This convenience API allows consumers to forcibly disable multiple regulator
3122 * clients in a single API call.
3123 * NOTE: This should be used for situations when device damage will
3124 * likely occur if the regulators are not disabled (e.g. over temp).
3125 * Although regulator_force_disable function call for some consumers can
3126 * return error numbers, the function is called for all consumers.
3127 */
3128int regulator_bulk_force_disable(int num_consumers,
3129			   struct regulator_bulk_data *consumers)
3130{
3131	int i;
3132	int ret;
3133
3134	for (i = 0; i < num_consumers; i++)
3135		consumers[i].ret =
3136			    regulator_force_disable(consumers[i].consumer);
3137
3138	for (i = 0; i < num_consumers; i++) {
3139		if (consumers[i].ret != 0) {
3140			ret = consumers[i].ret;
3141			goto out;
3142		}
3143	}
3144
3145	return 0;
3146out:
3147	return ret;
3148}
3149EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3150
3151/**
3152 * regulator_bulk_free - free multiple regulator consumers
3153 *
3154 * @num_consumers: Number of consumers
3155 * @consumers:     Consumer data; clients are stored here.
3156 *
3157 * This convenience API allows consumers to free multiple regulator
3158 * clients in a single API call.
3159 */
3160void regulator_bulk_free(int num_consumers,
3161			 struct regulator_bulk_data *consumers)
3162{
3163	int i;
3164
3165	for (i = 0; i < num_consumers; i++) {
3166		regulator_put(consumers[i].consumer);
3167		consumers[i].consumer = NULL;
3168	}
3169}
3170EXPORT_SYMBOL_GPL(regulator_bulk_free);
3171
3172/**
3173 * regulator_notifier_call_chain - call regulator event notifier
3174 * @rdev: regulator source
3175 * @event: notifier block
3176 * @data: callback-specific data.
3177 *
3178 * Called by regulator drivers to notify clients a regulator event has
3179 * occurred. We also notify regulator clients downstream.
3180 * Note lock must be held by caller.
3181 */
3182int regulator_notifier_call_chain(struct regulator_dev *rdev,
3183				  unsigned long event, void *data)
3184{
3185	_notifier_call_chain(rdev, event, data);
3186	return NOTIFY_DONE;
3187
3188}
3189EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3190
3191/**
3192 * regulator_mode_to_status - convert a regulator mode into a status
3193 *
3194 * @mode: Mode to convert
3195 *
3196 * Convert a regulator mode into a status.
3197 */
3198int regulator_mode_to_status(unsigned int mode)
3199{
3200	switch (mode) {
3201	case REGULATOR_MODE_FAST:
3202		return REGULATOR_STATUS_FAST;
3203	case REGULATOR_MODE_NORMAL:
3204		return REGULATOR_STATUS_NORMAL;
3205	case REGULATOR_MODE_IDLE:
3206		return REGULATOR_STATUS_IDLE;
3207	case REGULATOR_MODE_STANDBY:
3208		return REGULATOR_STATUS_STANDBY;
3209	default:
3210		return REGULATOR_STATUS_UNDEFINED;
3211	}
3212}
3213EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3214
3215/*
3216 * To avoid cluttering sysfs (and memory) with useless state, only
3217 * create attributes that can be meaningfully displayed.
3218 */
3219static int add_regulator_attributes(struct regulator_dev *rdev)
3220{
3221	struct device		*dev = &rdev->dev;
3222	struct regulator_ops	*ops = rdev->desc->ops;
3223	int			status = 0;
3224
3225	/* some attributes need specific methods to be displayed */
3226	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3227	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3228	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3229		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3230		status = device_create_file(dev, &dev_attr_microvolts);
3231		if (status < 0)
3232			return status;
3233	}
3234	if (ops->get_current_limit) {
3235		status = device_create_file(dev, &dev_attr_microamps);
3236		if (status < 0)
3237			return status;
3238	}
3239	if (ops->get_mode) {
3240		status = device_create_file(dev, &dev_attr_opmode);
3241		if (status < 0)
3242			return status;
3243	}
3244	if (rdev->ena_pin || ops->is_enabled) {
3245		status = device_create_file(dev, &dev_attr_state);
3246		if (status < 0)
3247			return status;
3248	}
3249	if (ops->get_status) {
3250		status = device_create_file(dev, &dev_attr_status);
3251		if (status < 0)
3252			return status;
3253	}
3254	if (ops->get_bypass) {
3255		status = device_create_file(dev, &dev_attr_bypass);
3256		if (status < 0)
3257			return status;
3258	}
3259
3260	/* some attributes are type-specific */
3261	if (rdev->desc->type == REGULATOR_CURRENT) {
3262		status = device_create_file(dev, &dev_attr_requested_microamps);
3263		if (status < 0)
3264			return status;
3265	}
3266
3267	/* all the other attributes exist to support constraints;
3268	 * don't show them if there are no constraints, or if the
3269	 * relevant supporting methods are missing.
3270	 */
3271	if (!rdev->constraints)
3272		return status;
3273
3274	/* constraints need specific supporting methods */
3275	if (ops->set_voltage || ops->set_voltage_sel) {
3276		status = device_create_file(dev, &dev_attr_min_microvolts);
3277		if (status < 0)
3278			return status;
3279		status = device_create_file(dev, &dev_attr_max_microvolts);
3280		if (status < 0)
3281			return status;
3282	}
3283	if (ops->set_current_limit) {
3284		status = device_create_file(dev, &dev_attr_min_microamps);
3285		if (status < 0)
3286			return status;
3287		status = device_create_file(dev, &dev_attr_max_microamps);
3288		if (status < 0)
3289			return status;
3290	}
3291
3292	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3293	if (status < 0)
3294		return status;
3295	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3296	if (status < 0)
3297		return status;
3298	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3299	if (status < 0)
3300		return status;
3301
3302	if (ops->set_suspend_voltage) {
3303		status = device_create_file(dev,
3304				&dev_attr_suspend_standby_microvolts);
3305		if (status < 0)
3306			return status;
3307		status = device_create_file(dev,
3308				&dev_attr_suspend_mem_microvolts);
3309		if (status < 0)
3310			return status;
3311		status = device_create_file(dev,
3312				&dev_attr_suspend_disk_microvolts);
3313		if (status < 0)
3314			return status;
3315	}
3316
3317	if (ops->set_suspend_mode) {
3318		status = device_create_file(dev,
3319				&dev_attr_suspend_standby_mode);
3320		if (status < 0)
3321			return status;
3322		status = device_create_file(dev,
3323				&dev_attr_suspend_mem_mode);
3324		if (status < 0)
3325			return status;
3326		status = device_create_file(dev,
3327				&dev_attr_suspend_disk_mode);
3328		if (status < 0)
3329			return status;
3330	}
3331
3332	return status;
3333}
3334
3335static void rdev_init_debugfs(struct regulator_dev *rdev)
3336{
3337	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3338	if (!rdev->debugfs) {
3339		rdev_warn(rdev, "Failed to create debugfs directory\n");
3340		return;
3341	}
3342
3343	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3344			   &rdev->use_count);
3345	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3346			   &rdev->open_count);
3347	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3348			   &rdev->bypass_count);
3349}
3350
3351/**
3352 * regulator_register - register regulator
3353 * @regulator_desc: regulator to register
3354 * @config: runtime configuration for regulator
3355 *
3356 * Called by regulator drivers to register a regulator.
3357 * Returns a valid pointer to struct regulator_dev on success
3358 * or an ERR_PTR() on error.
3359 */
3360struct regulator_dev *
3361regulator_register(const struct regulator_desc *regulator_desc,
3362		   const struct regulator_config *config)
3363{
3364	const struct regulation_constraints *constraints = NULL;
3365	const struct regulator_init_data *init_data;
3366	static atomic_t regulator_no = ATOMIC_INIT(0);
3367	struct regulator_dev *rdev;
3368	struct device *dev;
3369	int ret, i;
3370	const char *supply = NULL;
3371
3372	if (regulator_desc == NULL || config == NULL)
3373		return ERR_PTR(-EINVAL);
3374
3375	dev = config->dev;
3376	WARN_ON(!dev);
3377
3378	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3379		return ERR_PTR(-EINVAL);
3380
3381	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3382	    regulator_desc->type != REGULATOR_CURRENT)
3383		return ERR_PTR(-EINVAL);
3384
3385	/* Only one of each should be implemented */
3386	WARN_ON(regulator_desc->ops->get_voltage &&
3387		regulator_desc->ops->get_voltage_sel);
3388	WARN_ON(regulator_desc->ops->set_voltage &&
3389		regulator_desc->ops->set_voltage_sel);
3390
3391	/* If we're using selectors we must implement list_voltage. */
3392	if (regulator_desc->ops->get_voltage_sel &&
3393	    !regulator_desc->ops->list_voltage) {
3394		return ERR_PTR(-EINVAL);
3395	}
3396	if (regulator_desc->ops->set_voltage_sel &&
3397	    !regulator_desc->ops->list_voltage) {
3398		return ERR_PTR(-EINVAL);
3399	}
3400
3401	init_data = config->init_data;
3402
3403	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3404	if (rdev == NULL)
3405		return ERR_PTR(-ENOMEM);
3406
3407	mutex_lock(&regulator_list_mutex);
3408
3409	mutex_init(&rdev->mutex);
3410	rdev->reg_data = config->driver_data;
3411	rdev->owner = regulator_desc->owner;
3412	rdev->desc = regulator_desc;
3413	if (config->regmap)
3414		rdev->regmap = config->regmap;
3415	else if (dev_get_regmap(dev, NULL))
3416		rdev->regmap = dev_get_regmap(dev, NULL);
3417	else if (dev->parent)
3418		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3419	INIT_LIST_HEAD(&rdev->consumer_list);
3420	INIT_LIST_HEAD(&rdev->list);
3421	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3422	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3423
3424	/* preform any regulator specific init */
3425	if (init_data && init_data->regulator_init) {
3426		ret = init_data->regulator_init(rdev->reg_data);
3427		if (ret < 0)
3428			goto clean;
3429	}
3430
3431	/* register with sysfs */
3432	rdev->dev.class = &regulator_class;
3433	rdev->dev.of_node = config->of_node;
3434	rdev->dev.parent = dev;
3435	dev_set_name(&rdev->dev, "regulator.%d",
3436		     atomic_inc_return(&regulator_no) - 1);
3437	ret = device_register(&rdev->dev);
3438	if (ret != 0) {
3439		put_device(&rdev->dev);
3440		goto clean;
3441	}
3442
3443	dev_set_drvdata(&rdev->dev, rdev);
3444
3445	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3446		ret = regulator_ena_gpio_request(rdev, config);
3447		if (ret != 0) {
3448			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3449				 config->ena_gpio, ret);
3450			goto wash;
3451		}
3452
3453		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3454			rdev->ena_gpio_state = 1;
3455
3456		if (config->ena_gpio_invert)
3457			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3458	}
3459
3460	/* set regulator constraints */
3461	if (init_data)
3462		constraints = &init_data->constraints;
3463
3464	ret = set_machine_constraints(rdev, constraints);
3465	if (ret < 0)
3466		goto scrub;
3467
3468	/* add attributes supported by this regulator */
3469	ret = add_regulator_attributes(rdev);
3470	if (ret < 0)
3471		goto scrub;
3472
3473	if (init_data && init_data->supply_regulator)
3474		supply = init_data->supply_regulator;
3475	else if (regulator_desc->supply_name)
3476		supply = regulator_desc->supply_name;
3477
3478	if (supply) {
3479		struct regulator_dev *r;
3480
3481		r = regulator_dev_lookup(dev, supply, &ret);
3482
3483		if (ret == -ENODEV) {
3484			/*
3485			 * No supply was specified for this regulator and
3486			 * there will never be one.
3487			 */
3488			ret = 0;
3489			goto add_dev;
3490		} else if (!r) {
3491			dev_err(dev, "Failed to find supply %s\n", supply);
3492			ret = -EPROBE_DEFER;
3493			goto scrub;
3494		}
3495
3496		ret = set_supply(rdev, r);
3497		if (ret < 0)
3498			goto scrub;
3499
3500		/* Enable supply if rail is enabled */
3501		if (_regulator_is_enabled(rdev)) {
3502			ret = regulator_enable(rdev->supply);
3503			if (ret < 0)
3504				goto scrub;
3505		}
3506	}
3507
3508add_dev:
3509	/* add consumers devices */
3510	if (init_data) {
3511		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3512			ret = set_consumer_device_supply(rdev,
3513				init_data->consumer_supplies[i].dev_name,
3514				init_data->consumer_supplies[i].supply);
3515			if (ret < 0) {
3516				dev_err(dev, "Failed to set supply %s\n",
3517					init_data->consumer_supplies[i].supply);
3518				goto unset_supplies;
3519			}
3520		}
3521	}
3522
3523	list_add(&rdev->list, &regulator_list);
3524
3525	rdev_init_debugfs(rdev);
3526out:
3527	mutex_unlock(&regulator_list_mutex);
3528	return rdev;
3529
3530unset_supplies:
3531	unset_regulator_supplies(rdev);
3532
3533scrub:
3534	if (rdev->supply)
3535		_regulator_put(rdev->supply);
3536	regulator_ena_gpio_free(rdev);
3537	kfree(rdev->constraints);
3538wash:
3539	device_unregister(&rdev->dev);
3540	/* device core frees rdev */
3541	rdev = ERR_PTR(ret);
3542	goto out;
3543
3544clean:
3545	kfree(rdev);
3546	rdev = ERR_PTR(ret);
3547	goto out;
3548}
3549EXPORT_SYMBOL_GPL(regulator_register);
3550
3551/**
3552 * regulator_unregister - unregister regulator
3553 * @rdev: regulator to unregister
3554 *
3555 * Called by regulator drivers to unregister a regulator.
3556 */
3557void regulator_unregister(struct regulator_dev *rdev)
3558{
3559	if (rdev == NULL)
3560		return;
3561
3562	if (rdev->supply) {
3563		while (rdev->use_count--)
3564			regulator_disable(rdev->supply);
3565		regulator_put(rdev->supply);
3566	}
3567	mutex_lock(&regulator_list_mutex);
3568	debugfs_remove_recursive(rdev->debugfs);
3569	flush_work(&rdev->disable_work.work);
3570	WARN_ON(rdev->open_count);
3571	unset_regulator_supplies(rdev);
3572	list_del(&rdev->list);
3573	kfree(rdev->constraints);
3574	regulator_ena_gpio_free(rdev);
3575	device_unregister(&rdev->dev);
3576	mutex_unlock(&regulator_list_mutex);
3577}
3578EXPORT_SYMBOL_GPL(regulator_unregister);
3579
3580/**
3581 * regulator_suspend_prepare - prepare regulators for system wide suspend
3582 * @state: system suspend state
3583 *
3584 * Configure each regulator with it's suspend operating parameters for state.
3585 * This will usually be called by machine suspend code prior to supending.
3586 */
3587int regulator_suspend_prepare(suspend_state_t state)
3588{
3589	struct regulator_dev *rdev;
3590	int ret = 0;
3591
3592	/* ON is handled by regulator active state */
3593	if (state == PM_SUSPEND_ON)
3594		return -EINVAL;
3595
3596	mutex_lock(&regulator_list_mutex);
3597	list_for_each_entry(rdev, &regulator_list, list) {
3598
3599		mutex_lock(&rdev->mutex);
3600		ret = suspend_prepare(rdev, state);
3601		mutex_unlock(&rdev->mutex);
3602
3603		if (ret < 0) {
3604			rdev_err(rdev, "failed to prepare\n");
3605			goto out;
3606		}
3607	}
3608out:
3609	mutex_unlock(&regulator_list_mutex);
3610	return ret;
3611}
3612EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3613
3614/**
3615 * regulator_suspend_finish - resume regulators from system wide suspend
3616 *
3617 * Turn on regulators that might be turned off by regulator_suspend_prepare
3618 * and that should be turned on according to the regulators properties.
3619 */
3620int regulator_suspend_finish(void)
3621{
3622	struct regulator_dev *rdev;
3623	int ret = 0, error;
3624
3625	mutex_lock(&regulator_list_mutex);
3626	list_for_each_entry(rdev, &regulator_list, list) {
3627		struct regulator_ops *ops = rdev->desc->ops;
3628
3629		mutex_lock(&rdev->mutex);
3630		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3631				ops->enable) {
3632			error = ops->enable(rdev);
3633			if (error)
3634				ret = error;
3635		} else {
3636			if (!have_full_constraints())
3637				goto unlock;
3638			if (!ops->disable)
3639				goto unlock;
3640			if (!_regulator_is_enabled(rdev))
3641				goto unlock;
3642
3643			error = ops->disable(rdev);
3644			if (error)
3645				ret = error;
3646		}
3647unlock:
3648		mutex_unlock(&rdev->mutex);
3649	}
3650	mutex_unlock(&regulator_list_mutex);
3651	return ret;
3652}
3653EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3654
3655/**
3656 * regulator_has_full_constraints - the system has fully specified constraints
3657 *
3658 * Calling this function will cause the regulator API to disable all
3659 * regulators which have a zero use count and don't have an always_on
3660 * constraint in a late_initcall.
3661 *
3662 * The intention is that this will become the default behaviour in a
3663 * future kernel release so users are encouraged to use this facility
3664 * now.
3665 */
3666void regulator_has_full_constraints(void)
3667{
3668	has_full_constraints = 1;
3669}
3670EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3671
3672/**
3673 * rdev_get_drvdata - get rdev regulator driver data
3674 * @rdev: regulator
3675 *
3676 * Get rdev regulator driver private data. This call can be used in the
3677 * regulator driver context.
3678 */
3679void *rdev_get_drvdata(struct regulator_dev *rdev)
3680{
3681	return rdev->reg_data;
3682}
3683EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3684
3685/**
3686 * regulator_get_drvdata - get regulator driver data
3687 * @regulator: regulator
3688 *
3689 * Get regulator driver private data. This call can be used in the consumer
3690 * driver context when non API regulator specific functions need to be called.
3691 */
3692void *regulator_get_drvdata(struct regulator *regulator)
3693{
3694	return regulator->rdev->reg_data;
3695}
3696EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3697
3698/**
3699 * regulator_set_drvdata - set regulator driver data
3700 * @regulator: regulator
3701 * @data: data
3702 */
3703void regulator_set_drvdata(struct regulator *regulator, void *data)
3704{
3705	regulator->rdev->reg_data = data;
3706}
3707EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3708
3709/**
3710 * regulator_get_id - get regulator ID
3711 * @rdev: regulator
3712 */
3713int rdev_get_id(struct regulator_dev *rdev)
3714{
3715	return rdev->desc->id;
3716}
3717EXPORT_SYMBOL_GPL(rdev_get_id);
3718
3719struct device *rdev_get_dev(struct regulator_dev *rdev)
3720{
3721	return &rdev->dev;
3722}
3723EXPORT_SYMBOL_GPL(rdev_get_dev);
3724
3725void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3726{
3727	return reg_init_data->driver_data;
3728}
3729EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3730
3731#ifdef CONFIG_DEBUG_FS
3732static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3733				    size_t count, loff_t *ppos)
3734{
3735	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3736	ssize_t len, ret = 0;
3737	struct regulator_map *map;
3738
3739	if (!buf)
3740		return -ENOMEM;
3741
3742	list_for_each_entry(map, &regulator_map_list, list) {
3743		len = snprintf(buf + ret, PAGE_SIZE - ret,
3744			       "%s -> %s.%s\n",
3745			       rdev_get_name(map->regulator), map->dev_name,
3746			       map->supply);
3747		if (len >= 0)
3748			ret += len;
3749		if (ret > PAGE_SIZE) {
3750			ret = PAGE_SIZE;
3751			break;
3752		}
3753	}
3754
3755	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3756
3757	kfree(buf);
3758
3759	return ret;
3760}
3761#endif
3762
3763static const struct file_operations supply_map_fops = {
3764#ifdef CONFIG_DEBUG_FS
3765	.read = supply_map_read_file,
3766	.llseek = default_llseek,
3767#endif
3768};
3769
3770static int __init regulator_init(void)
3771{
3772	int ret;
3773
3774	ret = class_register(&regulator_class);
3775
3776	debugfs_root = debugfs_create_dir("regulator", NULL);
3777	if (!debugfs_root)
3778		pr_warn("regulator: Failed to create debugfs directory\n");
3779
3780	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3781			    &supply_map_fops);
3782
3783	regulator_dummy_init();
3784
3785	return ret;
3786}
3787
3788/* init early to allow our consumers to complete system booting */
3789core_initcall(regulator_init);
3790
3791static int __init regulator_init_complete(void)
3792{
3793	struct regulator_dev *rdev;
3794	struct regulator_ops *ops;
3795	struct regulation_constraints *c;
3796	int enabled, ret;
3797
3798	/*
3799	 * Since DT doesn't provide an idiomatic mechanism for
3800	 * enabling full constraints and since it's much more natural
3801	 * with DT to provide them just assume that a DT enabled
3802	 * system has full constraints.
3803	 */
3804	if (of_have_populated_dt())
3805		has_full_constraints = true;
3806
3807	mutex_lock(&regulator_list_mutex);
3808
3809	/* If we have a full configuration then disable any regulators
3810	 * which are not in use or always_on.  This will become the
3811	 * default behaviour in the future.
3812	 */
3813	list_for_each_entry(rdev, &regulator_list, list) {
3814		ops = rdev->desc->ops;
3815		c = rdev->constraints;
3816
3817		if (!ops->disable || (c && c->always_on))
3818			continue;
3819
3820		mutex_lock(&rdev->mutex);
3821
3822		if (rdev->use_count)
3823			goto unlock;
3824
3825		/* If we can't read the status assume it's on. */
3826		if (ops->is_enabled)
3827			enabled = ops->is_enabled(rdev);
3828		else
3829			enabled = 1;
3830
3831		if (!enabled)
3832			goto unlock;
3833
3834		if (have_full_constraints()) {
3835			/* We log since this may kill the system if it
3836			 * goes wrong. */
3837			rdev_info(rdev, "disabling\n");
3838			ret = ops->disable(rdev);
3839			if (ret != 0) {
3840				rdev_err(rdev, "couldn't disable: %d\n", ret);
3841			}
3842		} else {
3843			/* The intention is that in future we will
3844			 * assume that full constraints are provided
3845			 * so warn even if we aren't going to do
3846			 * anything here.
3847			 */
3848			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3849		}
3850
3851unlock:
3852		mutex_unlock(&rdev->mutex);
3853	}
3854
3855	mutex_unlock(&regulator_list_mutex);
3856
3857	return 0;
3858}
3859late_initcall(regulator_init_complete);
3860