core.c revision 1083c39346d482b9001944d05c09191027892226
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69static const char *rdev_get_name(struct regulator_dev *rdev)
70{
71	if (rdev->constraints && rdev->constraints->name)
72		return rdev->constraints->name;
73	else if (rdev->desc->name)
74		return rdev->desc->name;
75	else
76		return "";
77}
78
79/* gets the regulator for a given consumer device */
80static struct regulator *get_device_regulator(struct device *dev)
81{
82	struct regulator *regulator = NULL;
83	struct regulator_dev *rdev;
84
85	mutex_lock(&regulator_list_mutex);
86	list_for_each_entry(rdev, &regulator_list, list) {
87		mutex_lock(&rdev->mutex);
88		list_for_each_entry(regulator, &rdev->consumer_list, list) {
89			if (regulator->dev == dev) {
90				mutex_unlock(&rdev->mutex);
91				mutex_unlock(&regulator_list_mutex);
92				return regulator;
93			}
94		}
95		mutex_unlock(&rdev->mutex);
96	}
97	mutex_unlock(&regulator_list_mutex);
98	return NULL;
99}
100
101/* Platform voltage constraint check */
102static int regulator_check_voltage(struct regulator_dev *rdev,
103				   int *min_uV, int *max_uV)
104{
105	BUG_ON(*min_uV > *max_uV);
106
107	if (!rdev->constraints) {
108		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
109		       rdev_get_name(rdev));
110		return -ENODEV;
111	}
112	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
113		printk(KERN_ERR "%s: operation not allowed for %s\n",
114		       __func__, rdev_get_name(rdev));
115		return -EPERM;
116	}
117
118	if (*max_uV > rdev->constraints->max_uV)
119		*max_uV = rdev->constraints->max_uV;
120	if (*min_uV < rdev->constraints->min_uV)
121		*min_uV = rdev->constraints->min_uV;
122
123	if (*min_uV > *max_uV)
124		return -EINVAL;
125
126	return 0;
127}
128
129/* current constraint check */
130static int regulator_check_current_limit(struct regulator_dev *rdev,
131					int *min_uA, int *max_uA)
132{
133	BUG_ON(*min_uA > *max_uA);
134
135	if (!rdev->constraints) {
136		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
137		       rdev_get_name(rdev));
138		return -ENODEV;
139	}
140	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
141		printk(KERN_ERR "%s: operation not allowed for %s\n",
142		       __func__, rdev_get_name(rdev));
143		return -EPERM;
144	}
145
146	if (*max_uA > rdev->constraints->max_uA)
147		*max_uA = rdev->constraints->max_uA;
148	if (*min_uA < rdev->constraints->min_uA)
149		*min_uA = rdev->constraints->min_uA;
150
151	if (*min_uA > *max_uA)
152		return -EINVAL;
153
154	return 0;
155}
156
157/* operating mode constraint check */
158static int regulator_check_mode(struct regulator_dev *rdev, int mode)
159{
160	switch (mode) {
161	case REGULATOR_MODE_FAST:
162	case REGULATOR_MODE_NORMAL:
163	case REGULATOR_MODE_IDLE:
164	case REGULATOR_MODE_STANDBY:
165		break;
166	default:
167		return -EINVAL;
168	}
169
170	if (!rdev->constraints) {
171		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
172		       rdev_get_name(rdev));
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
176		printk(KERN_ERR "%s: operation not allowed for %s\n",
177		       __func__, rdev_get_name(rdev));
178		return -EPERM;
179	}
180	if (!(rdev->constraints->valid_modes_mask & mode)) {
181		printk(KERN_ERR "%s: invalid mode %x for %s\n",
182		       __func__, mode, rdev_get_name(rdev));
183		return -EINVAL;
184	}
185	return 0;
186}
187
188/* dynamic regulator mode switching constraint check */
189static int regulator_check_drms(struct regulator_dev *rdev)
190{
191	if (!rdev->constraints) {
192		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
193		       rdev_get_name(rdev));
194		return -ENODEV;
195	}
196	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
197		printk(KERN_ERR "%s: operation not allowed for %s\n",
198		       __func__, rdev_get_name(rdev));
199		return -EPERM;
200	}
201	return 0;
202}
203
204static ssize_t device_requested_uA_show(struct device *dev,
205			     struct device_attribute *attr, char *buf)
206{
207	struct regulator *regulator;
208
209	regulator = get_device_regulator(dev);
210	if (regulator == NULL)
211		return 0;
212
213	return sprintf(buf, "%d\n", regulator->uA_load);
214}
215
216static ssize_t regulator_uV_show(struct device *dev,
217				struct device_attribute *attr, char *buf)
218{
219	struct regulator_dev *rdev = dev_get_drvdata(dev);
220	ssize_t ret;
221
222	mutex_lock(&rdev->mutex);
223	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
224	mutex_unlock(&rdev->mutex);
225
226	return ret;
227}
228static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
229
230static ssize_t regulator_uA_show(struct device *dev,
231				struct device_attribute *attr, char *buf)
232{
233	struct regulator_dev *rdev = dev_get_drvdata(dev);
234
235	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
236}
237static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
238
239static ssize_t regulator_name_show(struct device *dev,
240			     struct device_attribute *attr, char *buf)
241{
242	struct regulator_dev *rdev = dev_get_drvdata(dev);
243
244	return sprintf(buf, "%s\n", rdev_get_name(rdev));
245}
246
247static ssize_t regulator_print_opmode(char *buf, int mode)
248{
249	switch (mode) {
250	case REGULATOR_MODE_FAST:
251		return sprintf(buf, "fast\n");
252	case REGULATOR_MODE_NORMAL:
253		return sprintf(buf, "normal\n");
254	case REGULATOR_MODE_IDLE:
255		return sprintf(buf, "idle\n");
256	case REGULATOR_MODE_STANDBY:
257		return sprintf(buf, "standby\n");
258	}
259	return sprintf(buf, "unknown\n");
260}
261
262static ssize_t regulator_opmode_show(struct device *dev,
263				    struct device_attribute *attr, char *buf)
264{
265	struct regulator_dev *rdev = dev_get_drvdata(dev);
266
267	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
268}
269static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
270
271static ssize_t regulator_print_state(char *buf, int state)
272{
273	if (state > 0)
274		return sprintf(buf, "enabled\n");
275	else if (state == 0)
276		return sprintf(buf, "disabled\n");
277	else
278		return sprintf(buf, "unknown\n");
279}
280
281static ssize_t regulator_state_show(struct device *dev,
282				   struct device_attribute *attr, char *buf)
283{
284	struct regulator_dev *rdev = dev_get_drvdata(dev);
285	ssize_t ret;
286
287	mutex_lock(&rdev->mutex);
288	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
289	mutex_unlock(&rdev->mutex);
290
291	return ret;
292}
293static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
294
295static ssize_t regulator_status_show(struct device *dev,
296				   struct device_attribute *attr, char *buf)
297{
298	struct regulator_dev *rdev = dev_get_drvdata(dev);
299	int status;
300	char *label;
301
302	status = rdev->desc->ops->get_status(rdev);
303	if (status < 0)
304		return status;
305
306	switch (status) {
307	case REGULATOR_STATUS_OFF:
308		label = "off";
309		break;
310	case REGULATOR_STATUS_ON:
311		label = "on";
312		break;
313	case REGULATOR_STATUS_ERROR:
314		label = "error";
315		break;
316	case REGULATOR_STATUS_FAST:
317		label = "fast";
318		break;
319	case REGULATOR_STATUS_NORMAL:
320		label = "normal";
321		break;
322	case REGULATOR_STATUS_IDLE:
323		label = "idle";
324		break;
325	case REGULATOR_STATUS_STANDBY:
326		label = "standby";
327		break;
328	default:
329		return -ERANGE;
330	}
331
332	return sprintf(buf, "%s\n", label);
333}
334static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
335
336static ssize_t regulator_min_uA_show(struct device *dev,
337				    struct device_attribute *attr, char *buf)
338{
339	struct regulator_dev *rdev = dev_get_drvdata(dev);
340
341	if (!rdev->constraints)
342		return sprintf(buf, "constraint not defined\n");
343
344	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
345}
346static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
347
348static ssize_t regulator_max_uA_show(struct device *dev,
349				    struct device_attribute *attr, char *buf)
350{
351	struct regulator_dev *rdev = dev_get_drvdata(dev);
352
353	if (!rdev->constraints)
354		return sprintf(buf, "constraint not defined\n");
355
356	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
357}
358static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
359
360static ssize_t regulator_min_uV_show(struct device *dev,
361				    struct device_attribute *attr, char *buf)
362{
363	struct regulator_dev *rdev = dev_get_drvdata(dev);
364
365	if (!rdev->constraints)
366		return sprintf(buf, "constraint not defined\n");
367
368	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
369}
370static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
371
372static ssize_t regulator_max_uV_show(struct device *dev,
373				    struct device_attribute *attr, char *buf)
374{
375	struct regulator_dev *rdev = dev_get_drvdata(dev);
376
377	if (!rdev->constraints)
378		return sprintf(buf, "constraint not defined\n");
379
380	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
381}
382static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
383
384static ssize_t regulator_total_uA_show(struct device *dev,
385				      struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	struct regulator *regulator;
389	int uA = 0;
390
391	mutex_lock(&rdev->mutex);
392	list_for_each_entry(regulator, &rdev->consumer_list, list)
393	    uA += regulator->uA_load;
394	mutex_unlock(&rdev->mutex);
395	return sprintf(buf, "%d\n", uA);
396}
397static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
398
399static ssize_t regulator_num_users_show(struct device *dev,
400				      struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403	return sprintf(buf, "%d\n", rdev->use_count);
404}
405
406static ssize_t regulator_type_show(struct device *dev,
407				  struct device_attribute *attr, char *buf)
408{
409	struct regulator_dev *rdev = dev_get_drvdata(dev);
410
411	switch (rdev->desc->type) {
412	case REGULATOR_VOLTAGE:
413		return sprintf(buf, "voltage\n");
414	case REGULATOR_CURRENT:
415		return sprintf(buf, "current\n");
416	}
417	return sprintf(buf, "unknown\n");
418}
419
420static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
421				struct device_attribute *attr, char *buf)
422{
423	struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
426}
427static DEVICE_ATTR(suspend_mem_microvolts, 0444,
428		regulator_suspend_mem_uV_show, NULL);
429
430static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
431				struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
436}
437static DEVICE_ATTR(suspend_disk_microvolts, 0444,
438		regulator_suspend_disk_uV_show, NULL);
439
440static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
441				struct device_attribute *attr, char *buf)
442{
443	struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
446}
447static DEVICE_ATTR(suspend_standby_microvolts, 0444,
448		regulator_suspend_standby_uV_show, NULL);
449
450static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	return regulator_print_opmode(buf,
456		rdev->constraints->state_mem.mode);
457}
458static DEVICE_ATTR(suspend_mem_mode, 0444,
459		regulator_suspend_mem_mode_show, NULL);
460
461static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
462				struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	return regulator_print_opmode(buf,
467		rdev->constraints->state_disk.mode);
468}
469static DEVICE_ATTR(suspend_disk_mode, 0444,
470		regulator_suspend_disk_mode_show, NULL);
471
472static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
473				struct device_attribute *attr, char *buf)
474{
475	struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477	return regulator_print_opmode(buf,
478		rdev->constraints->state_standby.mode);
479}
480static DEVICE_ATTR(suspend_standby_mode, 0444,
481		regulator_suspend_standby_mode_show, NULL);
482
483static ssize_t regulator_suspend_mem_state_show(struct device *dev,
484				   struct device_attribute *attr, char *buf)
485{
486	struct regulator_dev *rdev = dev_get_drvdata(dev);
487
488	return regulator_print_state(buf,
489			rdev->constraints->state_mem.enabled);
490}
491static DEVICE_ATTR(suspend_mem_state, 0444,
492		regulator_suspend_mem_state_show, NULL);
493
494static ssize_t regulator_suspend_disk_state_show(struct device *dev,
495				   struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498
499	return regulator_print_state(buf,
500			rdev->constraints->state_disk.enabled);
501}
502static DEVICE_ATTR(suspend_disk_state, 0444,
503		regulator_suspend_disk_state_show, NULL);
504
505static ssize_t regulator_suspend_standby_state_show(struct device *dev,
506				   struct device_attribute *attr, char *buf)
507{
508	struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510	return regulator_print_state(buf,
511			rdev->constraints->state_standby.enabled);
512}
513static DEVICE_ATTR(suspend_standby_state, 0444,
514		regulator_suspend_standby_state_show, NULL);
515
516
517/*
518 * These are the only attributes are present for all regulators.
519 * Other attributes are a function of regulator functionality.
520 */
521static struct device_attribute regulator_dev_attrs[] = {
522	__ATTR(name, 0444, regulator_name_show, NULL),
523	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
524	__ATTR(type, 0444, regulator_type_show, NULL),
525	__ATTR_NULL,
526};
527
528static void regulator_dev_release(struct device *dev)
529{
530	struct regulator_dev *rdev = dev_get_drvdata(dev);
531	kfree(rdev);
532}
533
534static struct class regulator_class = {
535	.name = "regulator",
536	.dev_release = regulator_dev_release,
537	.dev_attrs = regulator_dev_attrs,
538};
539
540/* Calculate the new optimum regulator operating mode based on the new total
541 * consumer load. All locks held by caller */
542static void drms_uA_update(struct regulator_dev *rdev)
543{
544	struct regulator *sibling;
545	int current_uA = 0, output_uV, input_uV, err;
546	unsigned int mode;
547
548	err = regulator_check_drms(rdev);
549	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
550	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
551		return;
552
553	/* get output voltage */
554	output_uV = rdev->desc->ops->get_voltage(rdev);
555	if (output_uV <= 0)
556		return;
557
558	/* get input voltage */
559	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
560		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
561	else
562		input_uV = rdev->constraints->input_uV;
563	if (input_uV <= 0)
564		return;
565
566	/* calc total requested load */
567	list_for_each_entry(sibling, &rdev->consumer_list, list)
568	    current_uA += sibling->uA_load;
569
570	/* now get the optimum mode for our new total regulator load */
571	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
572						  output_uV, current_uA);
573
574	/* check the new mode is allowed */
575	err = regulator_check_mode(rdev, mode);
576	if (err == 0)
577		rdev->desc->ops->set_mode(rdev, mode);
578}
579
580static int suspend_set_state(struct regulator_dev *rdev,
581	struct regulator_state *rstate)
582{
583	int ret = 0;
584
585	/* enable & disable are mandatory for suspend control */
586	if (!rdev->desc->ops->set_suspend_enable ||
587		!rdev->desc->ops->set_suspend_disable) {
588		printk(KERN_ERR "%s: no way to set suspend state\n",
589			__func__);
590		return -EINVAL;
591	}
592
593	if (rstate->enabled)
594		ret = rdev->desc->ops->set_suspend_enable(rdev);
595	else
596		ret = rdev->desc->ops->set_suspend_disable(rdev);
597	if (ret < 0) {
598		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
599		return ret;
600	}
601
602	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
603		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
604		if (ret < 0) {
605			printk(KERN_ERR "%s: failed to set voltage\n",
606				__func__);
607			return ret;
608		}
609	}
610
611	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
612		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
613		if (ret < 0) {
614			printk(KERN_ERR "%s: failed to set mode\n", __func__);
615			return ret;
616		}
617	}
618	return ret;
619}
620
621/* locks held by caller */
622static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
623{
624	if (!rdev->constraints)
625		return -EINVAL;
626
627	switch (state) {
628	case PM_SUSPEND_STANDBY:
629		return suspend_set_state(rdev,
630			&rdev->constraints->state_standby);
631	case PM_SUSPEND_MEM:
632		return suspend_set_state(rdev,
633			&rdev->constraints->state_mem);
634	case PM_SUSPEND_MAX:
635		return suspend_set_state(rdev,
636			&rdev->constraints->state_disk);
637	default:
638		return -EINVAL;
639	}
640}
641
642static void print_constraints(struct regulator_dev *rdev)
643{
644	struct regulation_constraints *constraints = rdev->constraints;
645	char buf[80];
646	int count = 0;
647	int ret;
648
649	if (constraints->min_uV && constraints->max_uV) {
650		if (constraints->min_uV == constraints->max_uV)
651			count += sprintf(buf + count, "%d mV ",
652					 constraints->min_uV / 1000);
653		else
654			count += sprintf(buf + count, "%d <--> %d mV ",
655					 constraints->min_uV / 1000,
656					 constraints->max_uV / 1000);
657	}
658
659	if (!constraints->min_uV ||
660	    constraints->min_uV != constraints->max_uV) {
661		ret = _regulator_get_voltage(rdev);
662		if (ret > 0)
663			count += sprintf(buf + count, "at %d mV ", ret / 1000);
664	}
665
666	if (constraints->min_uA && constraints->max_uA) {
667		if (constraints->min_uA == constraints->max_uA)
668			count += sprintf(buf + count, "%d mA ",
669					 constraints->min_uA / 1000);
670		else
671			count += sprintf(buf + count, "%d <--> %d mA ",
672					 constraints->min_uA / 1000,
673					 constraints->max_uA / 1000);
674	}
675
676	if (!constraints->min_uA ||
677	    constraints->min_uA != constraints->max_uA) {
678		ret = _regulator_get_current_limit(rdev);
679		if (ret > 0)
680			count += sprintf(buf + count, "at %d uA ", ret / 1000);
681	}
682
683	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
684		count += sprintf(buf + count, "fast ");
685	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
686		count += sprintf(buf + count, "normal ");
687	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
688		count += sprintf(buf + count, "idle ");
689	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
690		count += sprintf(buf + count, "standby");
691
692	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
693}
694
695static int machine_constraints_voltage(struct regulator_dev *rdev,
696	struct regulation_constraints *constraints)
697{
698	struct regulator_ops *ops = rdev->desc->ops;
699	const char *name = rdev_get_name(rdev);
700	int ret;
701
702	/* do we need to apply the constraint voltage */
703	if (rdev->constraints->apply_uV &&
704		rdev->constraints->min_uV == rdev->constraints->max_uV &&
705		ops->set_voltage) {
706		ret = ops->set_voltage(rdev,
707			rdev->constraints->min_uV, rdev->constraints->max_uV);
708			if (ret < 0) {
709				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
710				       __func__,
711				       rdev->constraints->min_uV, name);
712				rdev->constraints = NULL;
713				return ret;
714			}
715	}
716
717	/* constrain machine-level voltage specs to fit
718	 * the actual range supported by this regulator.
719	 */
720	if (ops->list_voltage && rdev->desc->n_voltages) {
721		int	count = rdev->desc->n_voltages;
722		int	i;
723		int	min_uV = INT_MAX;
724		int	max_uV = INT_MIN;
725		int	cmin = constraints->min_uV;
726		int	cmax = constraints->max_uV;
727
728		/* it's safe to autoconfigure fixed-voltage supplies
729		   and the constraints are used by list_voltage. */
730		if (count == 1 && !cmin) {
731			cmin = 1;
732			cmax = INT_MAX;
733			constraints->min_uV = cmin;
734			constraints->max_uV = cmax;
735		}
736
737		/* voltage constraints are optional */
738		if ((cmin == 0) && (cmax == 0))
739			return 0;
740
741		/* else require explicit machine-level constraints */
742		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
743			pr_err("%s: %s '%s' voltage constraints\n",
744				       __func__, "invalid", name);
745			return -EINVAL;
746		}
747
748		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
749		for (i = 0; i < count; i++) {
750			int	value;
751
752			value = ops->list_voltage(rdev, i);
753			if (value <= 0)
754				continue;
755
756			/* maybe adjust [min_uV..max_uV] */
757			if (value >= cmin && value < min_uV)
758				min_uV = value;
759			if (value <= cmax && value > max_uV)
760				max_uV = value;
761		}
762
763		/* final: [min_uV..max_uV] valid iff constraints valid */
764		if (max_uV < min_uV) {
765			pr_err("%s: %s '%s' voltage constraints\n",
766				       __func__, "unsupportable", name);
767			return -EINVAL;
768		}
769
770		/* use regulator's subset of machine constraints */
771		if (constraints->min_uV < min_uV) {
772			pr_debug("%s: override '%s' %s, %d -> %d\n",
773				       __func__, name, "min_uV",
774					constraints->min_uV, min_uV);
775			constraints->min_uV = min_uV;
776		}
777		if (constraints->max_uV > max_uV) {
778			pr_debug("%s: override '%s' %s, %d -> %d\n",
779				       __func__, name, "max_uV",
780					constraints->max_uV, max_uV);
781			constraints->max_uV = max_uV;
782		}
783	}
784
785	return 0;
786}
787
788/**
789 * set_machine_constraints - sets regulator constraints
790 * @rdev: regulator source
791 * @constraints: constraints to apply
792 *
793 * Allows platform initialisation code to define and constrain
794 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
795 * Constraints *must* be set by platform code in order for some
796 * regulator operations to proceed i.e. set_voltage, set_current_limit,
797 * set_mode.
798 */
799static int set_machine_constraints(struct regulator_dev *rdev,
800	struct regulation_constraints *constraints)
801{
802	int ret = 0;
803	const char *name;
804	struct regulator_ops *ops = rdev->desc->ops;
805
806	rdev->constraints = constraints;
807
808	name = rdev_get_name(rdev);
809
810	ret = machine_constraints_voltage(rdev, constraints);
811	if (ret != 0)
812		goto out;
813
814	/* do we need to setup our suspend state */
815	if (constraints->initial_state) {
816		ret = suspend_prepare(rdev, constraints->initial_state);
817		if (ret < 0) {
818			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
819			       __func__, name);
820			rdev->constraints = NULL;
821			goto out;
822		}
823	}
824
825	if (constraints->initial_mode) {
826		if (!ops->set_mode) {
827			printk(KERN_ERR "%s: no set_mode operation for %s\n",
828			       __func__, name);
829			ret = -EINVAL;
830			goto out;
831		}
832
833		ret = ops->set_mode(rdev, constraints->initial_mode);
834		if (ret < 0) {
835			printk(KERN_ERR
836			       "%s: failed to set initial mode for %s: %d\n",
837			       __func__, name, ret);
838			goto out;
839		}
840	}
841
842	/* If the constraints say the regulator should be on at this point
843	 * and we have control then make sure it is enabled.
844	 */
845	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
846		ret = ops->enable(rdev);
847		if (ret < 0) {
848			printk(KERN_ERR "%s: failed to enable %s\n",
849			       __func__, name);
850			rdev->constraints = NULL;
851			goto out;
852		}
853	}
854
855	print_constraints(rdev);
856out:
857	return ret;
858}
859
860/**
861 * set_supply - set regulator supply regulator
862 * @rdev: regulator name
863 * @supply_rdev: supply regulator name
864 *
865 * Called by platform initialisation code to set the supply regulator for this
866 * regulator. This ensures that a regulators supply will also be enabled by the
867 * core if it's child is enabled.
868 */
869static int set_supply(struct regulator_dev *rdev,
870	struct regulator_dev *supply_rdev)
871{
872	int err;
873
874	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
875				"supply");
876	if (err) {
877		printk(KERN_ERR
878		       "%s: could not add device link %s err %d\n",
879		       __func__, supply_rdev->dev.kobj.name, err);
880		       goto out;
881	}
882	rdev->supply = supply_rdev;
883	list_add(&rdev->slist, &supply_rdev->supply_list);
884out:
885	return err;
886}
887
888/**
889 * set_consumer_device_supply: Bind a regulator to a symbolic supply
890 * @rdev:         regulator source
891 * @consumer_dev: device the supply applies to
892 * @consumer_dev_name: dev_name() string for device supply applies to
893 * @supply:       symbolic name for supply
894 *
895 * Allows platform initialisation code to map physical regulator
896 * sources to symbolic names for supplies for use by devices.  Devices
897 * should use these symbolic names to request regulators, avoiding the
898 * need to provide board-specific regulator names as platform data.
899 *
900 * Only one of consumer_dev and consumer_dev_name may be specified.
901 */
902static int set_consumer_device_supply(struct regulator_dev *rdev,
903	struct device *consumer_dev, const char *consumer_dev_name,
904	const char *supply)
905{
906	struct regulator_map *node;
907	int has_dev;
908
909	if (consumer_dev && consumer_dev_name)
910		return -EINVAL;
911
912	if (!consumer_dev_name && consumer_dev)
913		consumer_dev_name = dev_name(consumer_dev);
914
915	if (supply == NULL)
916		return -EINVAL;
917
918	if (consumer_dev_name != NULL)
919		has_dev = 1;
920	else
921		has_dev = 0;
922
923	list_for_each_entry(node, &regulator_map_list, list) {
924		if (consumer_dev_name != node->dev_name)
925			continue;
926		if (strcmp(node->supply, supply) != 0)
927			continue;
928
929		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
930				dev_name(&node->regulator->dev),
931				node->regulator->desc->name,
932				supply,
933				dev_name(&rdev->dev), rdev_get_name(rdev));
934		return -EBUSY;
935	}
936
937	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
938	if (node == NULL)
939		return -ENOMEM;
940
941	node->regulator = rdev;
942	node->supply = supply;
943
944	if (has_dev) {
945		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
946		if (node->dev_name == NULL) {
947			kfree(node);
948			return -ENOMEM;
949		}
950	}
951
952	list_add(&node->list, &regulator_map_list);
953	return 0;
954}
955
956static void unset_consumer_device_supply(struct regulator_dev *rdev,
957	const char *consumer_dev_name, struct device *consumer_dev)
958{
959	struct regulator_map *node, *n;
960
961	if (consumer_dev && !consumer_dev_name)
962		consumer_dev_name = dev_name(consumer_dev);
963
964	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
965		if (rdev != node->regulator)
966			continue;
967
968		if (consumer_dev_name && node->dev_name &&
969		    strcmp(consumer_dev_name, node->dev_name))
970			continue;
971
972		list_del(&node->list);
973		kfree(node->dev_name);
974		kfree(node);
975		return;
976	}
977}
978
979static void unset_regulator_supplies(struct regulator_dev *rdev)
980{
981	struct regulator_map *node, *n;
982
983	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
984		if (rdev == node->regulator) {
985			list_del(&node->list);
986			kfree(node->dev_name);
987			kfree(node);
988			return;
989		}
990	}
991}
992
993#define REG_STR_SIZE	32
994
995static struct regulator *create_regulator(struct regulator_dev *rdev,
996					  struct device *dev,
997					  const char *supply_name)
998{
999	struct regulator *regulator;
1000	char buf[REG_STR_SIZE];
1001	int err, size;
1002
1003	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1004	if (regulator == NULL)
1005		return NULL;
1006
1007	mutex_lock(&rdev->mutex);
1008	regulator->rdev = rdev;
1009	list_add(&regulator->list, &rdev->consumer_list);
1010
1011	if (dev) {
1012		/* create a 'requested_microamps_name' sysfs entry */
1013		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1014			supply_name);
1015		if (size >= REG_STR_SIZE)
1016			goto overflow_err;
1017
1018		regulator->dev = dev;
1019		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1020		if (regulator->dev_attr.attr.name == NULL)
1021			goto attr_name_err;
1022
1023		regulator->dev_attr.attr.owner = THIS_MODULE;
1024		regulator->dev_attr.attr.mode = 0444;
1025		regulator->dev_attr.show = device_requested_uA_show;
1026		err = device_create_file(dev, &regulator->dev_attr);
1027		if (err < 0) {
1028			printk(KERN_WARNING "%s: could not add regulator_dev"
1029				" load sysfs\n", __func__);
1030			goto attr_name_err;
1031		}
1032
1033		/* also add a link to the device sysfs entry */
1034		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1035				 dev->kobj.name, supply_name);
1036		if (size >= REG_STR_SIZE)
1037			goto attr_err;
1038
1039		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1040		if (regulator->supply_name == NULL)
1041			goto attr_err;
1042
1043		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1044					buf);
1045		if (err) {
1046			printk(KERN_WARNING
1047			       "%s: could not add device link %s err %d\n",
1048			       __func__, dev->kobj.name, err);
1049			device_remove_file(dev, &regulator->dev_attr);
1050			goto link_name_err;
1051		}
1052	}
1053	mutex_unlock(&rdev->mutex);
1054	return regulator;
1055link_name_err:
1056	kfree(regulator->supply_name);
1057attr_err:
1058	device_remove_file(regulator->dev, &regulator->dev_attr);
1059attr_name_err:
1060	kfree(regulator->dev_attr.attr.name);
1061overflow_err:
1062	list_del(&regulator->list);
1063	kfree(regulator);
1064	mutex_unlock(&rdev->mutex);
1065	return NULL;
1066}
1067
1068/* Internal regulator request function */
1069static struct regulator *_regulator_get(struct device *dev, const char *id,
1070					int exclusive)
1071{
1072	struct regulator_dev *rdev;
1073	struct regulator_map *map;
1074	struct regulator *regulator = ERR_PTR(-ENODEV);
1075	const char *devname = NULL;
1076	int ret;
1077
1078	if (id == NULL) {
1079		printk(KERN_ERR "regulator: get() with no identifier\n");
1080		return regulator;
1081	}
1082
1083	if (dev)
1084		devname = dev_name(dev);
1085
1086	mutex_lock(&regulator_list_mutex);
1087
1088	list_for_each_entry(map, &regulator_map_list, list) {
1089		/* If the mapping has a device set up it must match */
1090		if (map->dev_name &&
1091		    (!devname || strcmp(map->dev_name, devname)))
1092			continue;
1093
1094		if (strcmp(map->supply, id) == 0) {
1095			rdev = map->regulator;
1096			goto found;
1097		}
1098	}
1099	mutex_unlock(&regulator_list_mutex);
1100	return regulator;
1101
1102found:
1103	if (rdev->exclusive) {
1104		regulator = ERR_PTR(-EPERM);
1105		goto out;
1106	}
1107
1108	if (exclusive && rdev->open_count) {
1109		regulator = ERR_PTR(-EBUSY);
1110		goto out;
1111	}
1112
1113	if (!try_module_get(rdev->owner))
1114		goto out;
1115
1116	regulator = create_regulator(rdev, dev, id);
1117	if (regulator == NULL) {
1118		regulator = ERR_PTR(-ENOMEM);
1119		module_put(rdev->owner);
1120	}
1121
1122	rdev->open_count++;
1123	if (exclusive) {
1124		rdev->exclusive = 1;
1125
1126		ret = _regulator_is_enabled(rdev);
1127		if (ret > 0)
1128			rdev->use_count = 1;
1129		else
1130			rdev->use_count = 0;
1131	}
1132
1133out:
1134	mutex_unlock(&regulator_list_mutex);
1135
1136	return regulator;
1137}
1138
1139/**
1140 * regulator_get - lookup and obtain a reference to a regulator.
1141 * @dev: device for regulator "consumer"
1142 * @id: Supply name or regulator ID.
1143 *
1144 * Returns a struct regulator corresponding to the regulator producer,
1145 * or IS_ERR() condition containing errno.
1146 *
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged.  It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1151 */
1152struct regulator *regulator_get(struct device *dev, const char *id)
1153{
1154	return _regulator_get(dev, id, 0);
1155}
1156EXPORT_SYMBOL_GPL(regulator_get);
1157
1158/**
1159 * regulator_get_exclusive - obtain exclusive access to a regulator.
1160 * @dev: device for regulator "consumer"
1161 * @id: Supply name or regulator ID.
1162 *
1163 * Returns a struct regulator corresponding to the regulator producer,
1164 * or IS_ERR() condition containing errno.  Other consumers will be
1165 * unable to obtain this reference is held and the use count for the
1166 * regulator will be initialised to reflect the current state of the
1167 * regulator.
1168 *
1169 * This is intended for use by consumers which cannot tolerate shared
1170 * use of the regulator such as those which need to force the
1171 * regulator off for correct operation of the hardware they are
1172 * controlling.
1173 *
1174 * Use of supply names configured via regulator_set_device_supply() is
1175 * strongly encouraged.  It is recommended that the supply name used
1176 * should match the name used for the supply and/or the relevant
1177 * device pins in the datasheet.
1178 */
1179struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1180{
1181	return _regulator_get(dev, id, 1);
1182}
1183EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1184
1185/**
1186 * regulator_put - "free" the regulator source
1187 * @regulator: regulator source
1188 *
1189 * Note: drivers must ensure that all regulator_enable calls made on this
1190 * regulator source are balanced by regulator_disable calls prior to calling
1191 * this function.
1192 */
1193void regulator_put(struct regulator *regulator)
1194{
1195	struct regulator_dev *rdev;
1196
1197	if (regulator == NULL || IS_ERR(regulator))
1198		return;
1199
1200	mutex_lock(&regulator_list_mutex);
1201	rdev = regulator->rdev;
1202
1203	/* remove any sysfs entries */
1204	if (regulator->dev) {
1205		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1206		kfree(regulator->supply_name);
1207		device_remove_file(regulator->dev, &regulator->dev_attr);
1208		kfree(regulator->dev_attr.attr.name);
1209	}
1210	list_del(&regulator->list);
1211	kfree(regulator);
1212
1213	rdev->open_count--;
1214	rdev->exclusive = 0;
1215
1216	module_put(rdev->owner);
1217	mutex_unlock(&regulator_list_mutex);
1218}
1219EXPORT_SYMBOL_GPL(regulator_put);
1220
1221static int _regulator_can_change_status(struct regulator_dev *rdev)
1222{
1223	if (!rdev->constraints)
1224		return 0;
1225
1226	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1227		return 1;
1228	else
1229		return 0;
1230}
1231
1232/* locks held by regulator_enable() */
1233static int _regulator_enable(struct regulator_dev *rdev)
1234{
1235	int ret;
1236
1237	/* do we need to enable the supply regulator first */
1238	if (rdev->supply) {
1239		ret = _regulator_enable(rdev->supply);
1240		if (ret < 0) {
1241			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1242			       __func__, rdev_get_name(rdev), ret);
1243			return ret;
1244		}
1245	}
1246
1247	/* check voltage and requested load before enabling */
1248	if (rdev->constraints &&
1249	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1250		drms_uA_update(rdev);
1251
1252	if (rdev->use_count == 0) {
1253		/* The regulator may on if it's not switchable or left on */
1254		ret = _regulator_is_enabled(rdev);
1255		if (ret == -EINVAL || ret == 0) {
1256			if (!_regulator_can_change_status(rdev))
1257				return -EPERM;
1258
1259			if (rdev->desc->ops->enable) {
1260				ret = rdev->desc->ops->enable(rdev);
1261				if (ret < 0)
1262					return ret;
1263			} else {
1264				return -EINVAL;
1265			}
1266		} else if (ret < 0) {
1267			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1268			       __func__, rdev_get_name(rdev), ret);
1269			return ret;
1270		}
1271		/* Fallthrough on positive return values - already enabled */
1272	}
1273
1274	rdev->use_count++;
1275
1276	return 0;
1277}
1278
1279/**
1280 * regulator_enable - enable regulator output
1281 * @regulator: regulator source
1282 *
1283 * Request that the regulator be enabled with the regulator output at
1284 * the predefined voltage or current value.  Calls to regulator_enable()
1285 * must be balanced with calls to regulator_disable().
1286 *
1287 * NOTE: the output value can be set by other drivers, boot loader or may be
1288 * hardwired in the regulator.
1289 */
1290int regulator_enable(struct regulator *regulator)
1291{
1292	struct regulator_dev *rdev = regulator->rdev;
1293	int ret = 0;
1294
1295	mutex_lock(&rdev->mutex);
1296	ret = _regulator_enable(rdev);
1297	mutex_unlock(&rdev->mutex);
1298	return ret;
1299}
1300EXPORT_SYMBOL_GPL(regulator_enable);
1301
1302/* locks held by regulator_disable() */
1303static int _regulator_disable(struct regulator_dev *rdev)
1304{
1305	int ret = 0;
1306
1307	if (WARN(rdev->use_count <= 0,
1308			"unbalanced disables for %s\n",
1309			rdev_get_name(rdev)))
1310		return -EIO;
1311
1312	/* are we the last user and permitted to disable ? */
1313	if (rdev->use_count == 1 &&
1314	    (rdev->constraints && !rdev->constraints->always_on)) {
1315
1316		/* we are last user */
1317		if (_regulator_can_change_status(rdev) &&
1318		    rdev->desc->ops->disable) {
1319			ret = rdev->desc->ops->disable(rdev);
1320			if (ret < 0) {
1321				printk(KERN_ERR "%s: failed to disable %s\n",
1322				       __func__, rdev_get_name(rdev));
1323				return ret;
1324			}
1325		}
1326
1327		/* decrease our supplies ref count and disable if required */
1328		if (rdev->supply)
1329			_regulator_disable(rdev->supply);
1330
1331		rdev->use_count = 0;
1332	} else if (rdev->use_count > 1) {
1333
1334		if (rdev->constraints &&
1335			(rdev->constraints->valid_ops_mask &
1336			REGULATOR_CHANGE_DRMS))
1337			drms_uA_update(rdev);
1338
1339		rdev->use_count--;
1340	}
1341	return ret;
1342}
1343
1344/**
1345 * regulator_disable - disable regulator output
1346 * @regulator: regulator source
1347 *
1348 * Disable the regulator output voltage or current.  Calls to
1349 * regulator_enable() must be balanced with calls to
1350 * regulator_disable().
1351 *
1352 * NOTE: this will only disable the regulator output if no other consumer
1353 * devices have it enabled, the regulator device supports disabling and
1354 * machine constraints permit this operation.
1355 */
1356int regulator_disable(struct regulator *regulator)
1357{
1358	struct regulator_dev *rdev = regulator->rdev;
1359	int ret = 0;
1360
1361	mutex_lock(&rdev->mutex);
1362	ret = _regulator_disable(rdev);
1363	mutex_unlock(&rdev->mutex);
1364	return ret;
1365}
1366EXPORT_SYMBOL_GPL(regulator_disable);
1367
1368/* locks held by regulator_force_disable() */
1369static int _regulator_force_disable(struct regulator_dev *rdev)
1370{
1371	int ret = 0;
1372
1373	/* force disable */
1374	if (rdev->desc->ops->disable) {
1375		/* ah well, who wants to live forever... */
1376		ret = rdev->desc->ops->disable(rdev);
1377		if (ret < 0) {
1378			printk(KERN_ERR "%s: failed to force disable %s\n",
1379			       __func__, rdev_get_name(rdev));
1380			return ret;
1381		}
1382		/* notify other consumers that power has been forced off */
1383		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1384			NULL);
1385	}
1386
1387	/* decrease our supplies ref count and disable if required */
1388	if (rdev->supply)
1389		_regulator_disable(rdev->supply);
1390
1391	rdev->use_count = 0;
1392	return ret;
1393}
1394
1395/**
1396 * regulator_force_disable - force disable regulator output
1397 * @regulator: regulator source
1398 *
1399 * Forcibly disable the regulator output voltage or current.
1400 * NOTE: this *will* disable the regulator output even if other consumer
1401 * devices have it enabled. This should be used for situations when device
1402 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1403 */
1404int regulator_force_disable(struct regulator *regulator)
1405{
1406	int ret;
1407
1408	mutex_lock(&regulator->rdev->mutex);
1409	regulator->uA_load = 0;
1410	ret = _regulator_force_disable(regulator->rdev);
1411	mutex_unlock(&regulator->rdev->mutex);
1412	return ret;
1413}
1414EXPORT_SYMBOL_GPL(regulator_force_disable);
1415
1416static int _regulator_is_enabled(struct regulator_dev *rdev)
1417{
1418	/* sanity check */
1419	if (!rdev->desc->ops->is_enabled)
1420		return -EINVAL;
1421
1422	return rdev->desc->ops->is_enabled(rdev);
1423}
1424
1425/**
1426 * regulator_is_enabled - is the regulator output enabled
1427 * @regulator: regulator source
1428 *
1429 * Returns positive if the regulator driver backing the source/client
1430 * has requested that the device be enabled, zero if it hasn't, else a
1431 * negative errno code.
1432 *
1433 * Note that the device backing this regulator handle can have multiple
1434 * users, so it might be enabled even if regulator_enable() was never
1435 * called for this particular source.
1436 */
1437int regulator_is_enabled(struct regulator *regulator)
1438{
1439	int ret;
1440
1441	mutex_lock(&regulator->rdev->mutex);
1442	ret = _regulator_is_enabled(regulator->rdev);
1443	mutex_unlock(&regulator->rdev->mutex);
1444
1445	return ret;
1446}
1447EXPORT_SYMBOL_GPL(regulator_is_enabled);
1448
1449/**
1450 * regulator_count_voltages - count regulator_list_voltage() selectors
1451 * @regulator: regulator source
1452 *
1453 * Returns number of selectors, or negative errno.  Selectors are
1454 * numbered starting at zero, and typically correspond to bitfields
1455 * in hardware registers.
1456 */
1457int regulator_count_voltages(struct regulator *regulator)
1458{
1459	struct regulator_dev	*rdev = regulator->rdev;
1460
1461	return rdev->desc->n_voltages ? : -EINVAL;
1462}
1463EXPORT_SYMBOL_GPL(regulator_count_voltages);
1464
1465/**
1466 * regulator_list_voltage - enumerate supported voltages
1467 * @regulator: regulator source
1468 * @selector: identify voltage to list
1469 * Context: can sleep
1470 *
1471 * Returns a voltage that can be passed to @regulator_set_voltage(),
1472 * zero if this selector code can't be used on this sytem, or a
1473 * negative errno.
1474 */
1475int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1476{
1477	struct regulator_dev	*rdev = regulator->rdev;
1478	struct regulator_ops	*ops = rdev->desc->ops;
1479	int			ret;
1480
1481	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1482		return -EINVAL;
1483
1484	mutex_lock(&rdev->mutex);
1485	ret = ops->list_voltage(rdev, selector);
1486	mutex_unlock(&rdev->mutex);
1487
1488	if (ret > 0) {
1489		if (ret < rdev->constraints->min_uV)
1490			ret = 0;
1491		else if (ret > rdev->constraints->max_uV)
1492			ret = 0;
1493	}
1494
1495	return ret;
1496}
1497EXPORT_SYMBOL_GPL(regulator_list_voltage);
1498
1499/**
1500 * regulator_is_supported_voltage - check if a voltage range can be supported
1501 *
1502 * @regulator: Regulator to check.
1503 * @min_uV: Minimum required voltage in uV.
1504 * @max_uV: Maximum required voltage in uV.
1505 *
1506 * Returns a boolean or a negative error code.
1507 */
1508int regulator_is_supported_voltage(struct regulator *regulator,
1509				   int min_uV, int max_uV)
1510{
1511	int i, voltages, ret;
1512
1513	ret = regulator_count_voltages(regulator);
1514	if (ret < 0)
1515		return ret;
1516	voltages = ret;
1517
1518	for (i = 0; i < voltages; i++) {
1519		ret = regulator_list_voltage(regulator, i);
1520
1521		if (ret >= min_uV && ret <= max_uV)
1522			return 1;
1523	}
1524
1525	return 0;
1526}
1527
1528/**
1529 * regulator_set_voltage - set regulator output voltage
1530 * @regulator: regulator source
1531 * @min_uV: Minimum required voltage in uV
1532 * @max_uV: Maximum acceptable voltage in uV
1533 *
1534 * Sets a voltage regulator to the desired output voltage. This can be set
1535 * during any regulator state. IOW, regulator can be disabled or enabled.
1536 *
1537 * If the regulator is enabled then the voltage will change to the new value
1538 * immediately otherwise if the regulator is disabled the regulator will
1539 * output at the new voltage when enabled.
1540 *
1541 * NOTE: If the regulator is shared between several devices then the lowest
1542 * request voltage that meets the system constraints will be used.
1543 * Regulator system constraints must be set for this regulator before
1544 * calling this function otherwise this call will fail.
1545 */
1546int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1547{
1548	struct regulator_dev *rdev = regulator->rdev;
1549	int ret;
1550
1551	mutex_lock(&rdev->mutex);
1552
1553	/* sanity check */
1554	if (!rdev->desc->ops->set_voltage) {
1555		ret = -EINVAL;
1556		goto out;
1557	}
1558
1559	/* constraints check */
1560	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1561	if (ret < 0)
1562		goto out;
1563	regulator->min_uV = min_uV;
1564	regulator->max_uV = max_uV;
1565	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1566
1567out:
1568	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1569	mutex_unlock(&rdev->mutex);
1570	return ret;
1571}
1572EXPORT_SYMBOL_GPL(regulator_set_voltage);
1573
1574static int _regulator_get_voltage(struct regulator_dev *rdev)
1575{
1576	/* sanity check */
1577	if (rdev->desc->ops->get_voltage)
1578		return rdev->desc->ops->get_voltage(rdev);
1579	else
1580		return -EINVAL;
1581}
1582
1583/**
1584 * regulator_get_voltage - get regulator output voltage
1585 * @regulator: regulator source
1586 *
1587 * This returns the current regulator voltage in uV.
1588 *
1589 * NOTE: If the regulator is disabled it will return the voltage value. This
1590 * function should not be used to determine regulator state.
1591 */
1592int regulator_get_voltage(struct regulator *regulator)
1593{
1594	int ret;
1595
1596	mutex_lock(&regulator->rdev->mutex);
1597
1598	ret = _regulator_get_voltage(regulator->rdev);
1599
1600	mutex_unlock(&regulator->rdev->mutex);
1601
1602	return ret;
1603}
1604EXPORT_SYMBOL_GPL(regulator_get_voltage);
1605
1606/**
1607 * regulator_set_current_limit - set regulator output current limit
1608 * @regulator: regulator source
1609 * @min_uA: Minimuum supported current in uA
1610 * @max_uA: Maximum supported current in uA
1611 *
1612 * Sets current sink to the desired output current. This can be set during
1613 * any regulator state. IOW, regulator can be disabled or enabled.
1614 *
1615 * If the regulator is enabled then the current will change to the new value
1616 * immediately otherwise if the regulator is disabled the regulator will
1617 * output at the new current when enabled.
1618 *
1619 * NOTE: Regulator system constraints must be set for this regulator before
1620 * calling this function otherwise this call will fail.
1621 */
1622int regulator_set_current_limit(struct regulator *regulator,
1623			       int min_uA, int max_uA)
1624{
1625	struct regulator_dev *rdev = regulator->rdev;
1626	int ret;
1627
1628	mutex_lock(&rdev->mutex);
1629
1630	/* sanity check */
1631	if (!rdev->desc->ops->set_current_limit) {
1632		ret = -EINVAL;
1633		goto out;
1634	}
1635
1636	/* constraints check */
1637	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1638	if (ret < 0)
1639		goto out;
1640
1641	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1642out:
1643	mutex_unlock(&rdev->mutex);
1644	return ret;
1645}
1646EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1647
1648static int _regulator_get_current_limit(struct regulator_dev *rdev)
1649{
1650	int ret;
1651
1652	mutex_lock(&rdev->mutex);
1653
1654	/* sanity check */
1655	if (!rdev->desc->ops->get_current_limit) {
1656		ret = -EINVAL;
1657		goto out;
1658	}
1659
1660	ret = rdev->desc->ops->get_current_limit(rdev);
1661out:
1662	mutex_unlock(&rdev->mutex);
1663	return ret;
1664}
1665
1666/**
1667 * regulator_get_current_limit - get regulator output current
1668 * @regulator: regulator source
1669 *
1670 * This returns the current supplied by the specified current sink in uA.
1671 *
1672 * NOTE: If the regulator is disabled it will return the current value. This
1673 * function should not be used to determine regulator state.
1674 */
1675int regulator_get_current_limit(struct regulator *regulator)
1676{
1677	return _regulator_get_current_limit(regulator->rdev);
1678}
1679EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1680
1681/**
1682 * regulator_set_mode - set regulator operating mode
1683 * @regulator: regulator source
1684 * @mode: operating mode - one of the REGULATOR_MODE constants
1685 *
1686 * Set regulator operating mode to increase regulator efficiency or improve
1687 * regulation performance.
1688 *
1689 * NOTE: Regulator system constraints must be set for this regulator before
1690 * calling this function otherwise this call will fail.
1691 */
1692int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1693{
1694	struct regulator_dev *rdev = regulator->rdev;
1695	int ret;
1696
1697	mutex_lock(&rdev->mutex);
1698
1699	/* sanity check */
1700	if (!rdev->desc->ops->set_mode) {
1701		ret = -EINVAL;
1702		goto out;
1703	}
1704
1705	/* constraints check */
1706	ret = regulator_check_mode(rdev, mode);
1707	if (ret < 0)
1708		goto out;
1709
1710	ret = rdev->desc->ops->set_mode(rdev, mode);
1711out:
1712	mutex_unlock(&rdev->mutex);
1713	return ret;
1714}
1715EXPORT_SYMBOL_GPL(regulator_set_mode);
1716
1717static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1718{
1719	int ret;
1720
1721	mutex_lock(&rdev->mutex);
1722
1723	/* sanity check */
1724	if (!rdev->desc->ops->get_mode) {
1725		ret = -EINVAL;
1726		goto out;
1727	}
1728
1729	ret = rdev->desc->ops->get_mode(rdev);
1730out:
1731	mutex_unlock(&rdev->mutex);
1732	return ret;
1733}
1734
1735/**
1736 * regulator_get_mode - get regulator operating mode
1737 * @regulator: regulator source
1738 *
1739 * Get the current regulator operating mode.
1740 */
1741unsigned int regulator_get_mode(struct regulator *regulator)
1742{
1743	return _regulator_get_mode(regulator->rdev);
1744}
1745EXPORT_SYMBOL_GPL(regulator_get_mode);
1746
1747/**
1748 * regulator_set_optimum_mode - set regulator optimum operating mode
1749 * @regulator: regulator source
1750 * @uA_load: load current
1751 *
1752 * Notifies the regulator core of a new device load. This is then used by
1753 * DRMS (if enabled by constraints) to set the most efficient regulator
1754 * operating mode for the new regulator loading.
1755 *
1756 * Consumer devices notify their supply regulator of the maximum power
1757 * they will require (can be taken from device datasheet in the power
1758 * consumption tables) when they change operational status and hence power
1759 * state. Examples of operational state changes that can affect power
1760 * consumption are :-
1761 *
1762 *    o Device is opened / closed.
1763 *    o Device I/O is about to begin or has just finished.
1764 *    o Device is idling in between work.
1765 *
1766 * This information is also exported via sysfs to userspace.
1767 *
1768 * DRMS will sum the total requested load on the regulator and change
1769 * to the most efficient operating mode if platform constraints allow.
1770 *
1771 * Returns the new regulator mode or error.
1772 */
1773int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1774{
1775	struct regulator_dev *rdev = regulator->rdev;
1776	struct regulator *consumer;
1777	int ret, output_uV, input_uV, total_uA_load = 0;
1778	unsigned int mode;
1779
1780	mutex_lock(&rdev->mutex);
1781
1782	regulator->uA_load = uA_load;
1783	ret = regulator_check_drms(rdev);
1784	if (ret < 0)
1785		goto out;
1786	ret = -EINVAL;
1787
1788	/* sanity check */
1789	if (!rdev->desc->ops->get_optimum_mode)
1790		goto out;
1791
1792	/* get output voltage */
1793	output_uV = rdev->desc->ops->get_voltage(rdev);
1794	if (output_uV <= 0) {
1795		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1796			__func__, rdev_get_name(rdev));
1797		goto out;
1798	}
1799
1800	/* get input voltage */
1801	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1802		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1803	else
1804		input_uV = rdev->constraints->input_uV;
1805	if (input_uV <= 0) {
1806		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1807			__func__, rdev_get_name(rdev));
1808		goto out;
1809	}
1810
1811	/* calc total requested load for this regulator */
1812	list_for_each_entry(consumer, &rdev->consumer_list, list)
1813	    total_uA_load += consumer->uA_load;
1814
1815	mode = rdev->desc->ops->get_optimum_mode(rdev,
1816						 input_uV, output_uV,
1817						 total_uA_load);
1818	ret = regulator_check_mode(rdev, mode);
1819	if (ret < 0) {
1820		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1821			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1822			total_uA_load, input_uV, output_uV);
1823		goto out;
1824	}
1825
1826	ret = rdev->desc->ops->set_mode(rdev, mode);
1827	if (ret < 0) {
1828		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1829			__func__, mode, rdev_get_name(rdev));
1830		goto out;
1831	}
1832	ret = mode;
1833out:
1834	mutex_unlock(&rdev->mutex);
1835	return ret;
1836}
1837EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1838
1839/**
1840 * regulator_register_notifier - register regulator event notifier
1841 * @regulator: regulator source
1842 * @nb: notifier block
1843 *
1844 * Register notifier block to receive regulator events.
1845 */
1846int regulator_register_notifier(struct regulator *regulator,
1847			      struct notifier_block *nb)
1848{
1849	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1850						nb);
1851}
1852EXPORT_SYMBOL_GPL(regulator_register_notifier);
1853
1854/**
1855 * regulator_unregister_notifier - unregister regulator event notifier
1856 * @regulator: regulator source
1857 * @nb: notifier block
1858 *
1859 * Unregister regulator event notifier block.
1860 */
1861int regulator_unregister_notifier(struct regulator *regulator,
1862				struct notifier_block *nb)
1863{
1864	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1865						  nb);
1866}
1867EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1868
1869/* notify regulator consumers and downstream regulator consumers.
1870 * Note mutex must be held by caller.
1871 */
1872static void _notifier_call_chain(struct regulator_dev *rdev,
1873				  unsigned long event, void *data)
1874{
1875	struct regulator_dev *_rdev;
1876
1877	/* call rdev chain first */
1878	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1879
1880	/* now notify regulator we supply */
1881	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1882	  mutex_lock(&_rdev->mutex);
1883	  _notifier_call_chain(_rdev, event, data);
1884	  mutex_unlock(&_rdev->mutex);
1885	}
1886}
1887
1888/**
1889 * regulator_bulk_get - get multiple regulator consumers
1890 *
1891 * @dev:           Device to supply
1892 * @num_consumers: Number of consumers to register
1893 * @consumers:     Configuration of consumers; clients are stored here.
1894 *
1895 * @return 0 on success, an errno on failure.
1896 *
1897 * This helper function allows drivers to get several regulator
1898 * consumers in one operation.  If any of the regulators cannot be
1899 * acquired then any regulators that were allocated will be freed
1900 * before returning to the caller.
1901 */
1902int regulator_bulk_get(struct device *dev, int num_consumers,
1903		       struct regulator_bulk_data *consumers)
1904{
1905	int i;
1906	int ret;
1907
1908	for (i = 0; i < num_consumers; i++)
1909		consumers[i].consumer = NULL;
1910
1911	for (i = 0; i < num_consumers; i++) {
1912		consumers[i].consumer = regulator_get(dev,
1913						      consumers[i].supply);
1914		if (IS_ERR(consumers[i].consumer)) {
1915			ret = PTR_ERR(consumers[i].consumer);
1916			dev_err(dev, "Failed to get supply '%s': %d\n",
1917				consumers[i].supply, ret);
1918			consumers[i].consumer = NULL;
1919			goto err;
1920		}
1921	}
1922
1923	return 0;
1924
1925err:
1926	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1927		regulator_put(consumers[i].consumer);
1928
1929	return ret;
1930}
1931EXPORT_SYMBOL_GPL(regulator_bulk_get);
1932
1933/**
1934 * regulator_bulk_enable - enable multiple regulator consumers
1935 *
1936 * @num_consumers: Number of consumers
1937 * @consumers:     Consumer data; clients are stored here.
1938 * @return         0 on success, an errno on failure
1939 *
1940 * This convenience API allows consumers to enable multiple regulator
1941 * clients in a single API call.  If any consumers cannot be enabled
1942 * then any others that were enabled will be disabled again prior to
1943 * return.
1944 */
1945int regulator_bulk_enable(int num_consumers,
1946			  struct regulator_bulk_data *consumers)
1947{
1948	int i;
1949	int ret;
1950
1951	for (i = 0; i < num_consumers; i++) {
1952		ret = regulator_enable(consumers[i].consumer);
1953		if (ret != 0)
1954			goto err;
1955	}
1956
1957	return 0;
1958
1959err:
1960	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1961	for (i = 0; i < num_consumers; i++)
1962		regulator_disable(consumers[i].consumer);
1963
1964	return ret;
1965}
1966EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1967
1968/**
1969 * regulator_bulk_disable - disable multiple regulator consumers
1970 *
1971 * @num_consumers: Number of consumers
1972 * @consumers:     Consumer data; clients are stored here.
1973 * @return         0 on success, an errno on failure
1974 *
1975 * This convenience API allows consumers to disable multiple regulator
1976 * clients in a single API call.  If any consumers cannot be enabled
1977 * then any others that were disabled will be disabled again prior to
1978 * return.
1979 */
1980int regulator_bulk_disable(int num_consumers,
1981			   struct regulator_bulk_data *consumers)
1982{
1983	int i;
1984	int ret;
1985
1986	for (i = 0; i < num_consumers; i++) {
1987		ret = regulator_disable(consumers[i].consumer);
1988		if (ret != 0)
1989			goto err;
1990	}
1991
1992	return 0;
1993
1994err:
1995	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
1996	       ret);
1997	for (i = 0; i < num_consumers; i++)
1998		regulator_enable(consumers[i].consumer);
1999
2000	return ret;
2001}
2002EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2003
2004/**
2005 * regulator_bulk_free - free multiple regulator consumers
2006 *
2007 * @num_consumers: Number of consumers
2008 * @consumers:     Consumer data; clients are stored here.
2009 *
2010 * This convenience API allows consumers to free multiple regulator
2011 * clients in a single API call.
2012 */
2013void regulator_bulk_free(int num_consumers,
2014			 struct regulator_bulk_data *consumers)
2015{
2016	int i;
2017
2018	for (i = 0; i < num_consumers; i++) {
2019		regulator_put(consumers[i].consumer);
2020		consumers[i].consumer = NULL;
2021	}
2022}
2023EXPORT_SYMBOL_GPL(regulator_bulk_free);
2024
2025/**
2026 * regulator_notifier_call_chain - call regulator event notifier
2027 * @rdev: regulator source
2028 * @event: notifier block
2029 * @data: callback-specific data.
2030 *
2031 * Called by regulator drivers to notify clients a regulator event has
2032 * occurred. We also notify regulator clients downstream.
2033 * Note lock must be held by caller.
2034 */
2035int regulator_notifier_call_chain(struct regulator_dev *rdev,
2036				  unsigned long event, void *data)
2037{
2038	_notifier_call_chain(rdev, event, data);
2039	return NOTIFY_DONE;
2040
2041}
2042EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2043
2044/**
2045 * regulator_mode_to_status - convert a regulator mode into a status
2046 *
2047 * @mode: Mode to convert
2048 *
2049 * Convert a regulator mode into a status.
2050 */
2051int regulator_mode_to_status(unsigned int mode)
2052{
2053	switch (mode) {
2054	case REGULATOR_MODE_FAST:
2055		return REGULATOR_STATUS_FAST;
2056	case REGULATOR_MODE_NORMAL:
2057		return REGULATOR_STATUS_NORMAL;
2058	case REGULATOR_MODE_IDLE:
2059		return REGULATOR_STATUS_IDLE;
2060	case REGULATOR_STATUS_STANDBY:
2061		return REGULATOR_STATUS_STANDBY;
2062	default:
2063		return 0;
2064	}
2065}
2066EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2067
2068/*
2069 * To avoid cluttering sysfs (and memory) with useless state, only
2070 * create attributes that can be meaningfully displayed.
2071 */
2072static int add_regulator_attributes(struct regulator_dev *rdev)
2073{
2074	struct device		*dev = &rdev->dev;
2075	struct regulator_ops	*ops = rdev->desc->ops;
2076	int			status = 0;
2077
2078	/* some attributes need specific methods to be displayed */
2079	if (ops->get_voltage) {
2080		status = device_create_file(dev, &dev_attr_microvolts);
2081		if (status < 0)
2082			return status;
2083	}
2084	if (ops->get_current_limit) {
2085		status = device_create_file(dev, &dev_attr_microamps);
2086		if (status < 0)
2087			return status;
2088	}
2089	if (ops->get_mode) {
2090		status = device_create_file(dev, &dev_attr_opmode);
2091		if (status < 0)
2092			return status;
2093	}
2094	if (ops->is_enabled) {
2095		status = device_create_file(dev, &dev_attr_state);
2096		if (status < 0)
2097			return status;
2098	}
2099	if (ops->get_status) {
2100		status = device_create_file(dev, &dev_attr_status);
2101		if (status < 0)
2102			return status;
2103	}
2104
2105	/* some attributes are type-specific */
2106	if (rdev->desc->type == REGULATOR_CURRENT) {
2107		status = device_create_file(dev, &dev_attr_requested_microamps);
2108		if (status < 0)
2109			return status;
2110	}
2111
2112	/* all the other attributes exist to support constraints;
2113	 * don't show them if there are no constraints, or if the
2114	 * relevant supporting methods are missing.
2115	 */
2116	if (!rdev->constraints)
2117		return status;
2118
2119	/* constraints need specific supporting methods */
2120	if (ops->set_voltage) {
2121		status = device_create_file(dev, &dev_attr_min_microvolts);
2122		if (status < 0)
2123			return status;
2124		status = device_create_file(dev, &dev_attr_max_microvolts);
2125		if (status < 0)
2126			return status;
2127	}
2128	if (ops->set_current_limit) {
2129		status = device_create_file(dev, &dev_attr_min_microamps);
2130		if (status < 0)
2131			return status;
2132		status = device_create_file(dev, &dev_attr_max_microamps);
2133		if (status < 0)
2134			return status;
2135	}
2136
2137	/* suspend mode constraints need multiple supporting methods */
2138	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2139		return status;
2140
2141	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2142	if (status < 0)
2143		return status;
2144	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2145	if (status < 0)
2146		return status;
2147	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2148	if (status < 0)
2149		return status;
2150
2151	if (ops->set_suspend_voltage) {
2152		status = device_create_file(dev,
2153				&dev_attr_suspend_standby_microvolts);
2154		if (status < 0)
2155			return status;
2156		status = device_create_file(dev,
2157				&dev_attr_suspend_mem_microvolts);
2158		if (status < 0)
2159			return status;
2160		status = device_create_file(dev,
2161				&dev_attr_suspend_disk_microvolts);
2162		if (status < 0)
2163			return status;
2164	}
2165
2166	if (ops->set_suspend_mode) {
2167		status = device_create_file(dev,
2168				&dev_attr_suspend_standby_mode);
2169		if (status < 0)
2170			return status;
2171		status = device_create_file(dev,
2172				&dev_attr_suspend_mem_mode);
2173		if (status < 0)
2174			return status;
2175		status = device_create_file(dev,
2176				&dev_attr_suspend_disk_mode);
2177		if (status < 0)
2178			return status;
2179	}
2180
2181	return status;
2182}
2183
2184/**
2185 * regulator_register - register regulator
2186 * @regulator_desc: regulator to register
2187 * @dev: struct device for the regulator
2188 * @init_data: platform provided init data, passed through by driver
2189 * @driver_data: private regulator data
2190 *
2191 * Called by regulator drivers to register a regulator.
2192 * Returns 0 on success.
2193 */
2194struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2195	struct device *dev, struct regulator_init_data *init_data,
2196	void *driver_data)
2197{
2198	static atomic_t regulator_no = ATOMIC_INIT(0);
2199	struct regulator_dev *rdev;
2200	int ret, i;
2201
2202	if (regulator_desc == NULL)
2203		return ERR_PTR(-EINVAL);
2204
2205	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2206		return ERR_PTR(-EINVAL);
2207
2208	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2209	    regulator_desc->type != REGULATOR_CURRENT)
2210		return ERR_PTR(-EINVAL);
2211
2212	if (!init_data)
2213		return ERR_PTR(-EINVAL);
2214
2215	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2216	if (rdev == NULL)
2217		return ERR_PTR(-ENOMEM);
2218
2219	mutex_lock(&regulator_list_mutex);
2220
2221	mutex_init(&rdev->mutex);
2222	rdev->reg_data = driver_data;
2223	rdev->owner = regulator_desc->owner;
2224	rdev->desc = regulator_desc;
2225	INIT_LIST_HEAD(&rdev->consumer_list);
2226	INIT_LIST_HEAD(&rdev->supply_list);
2227	INIT_LIST_HEAD(&rdev->list);
2228	INIT_LIST_HEAD(&rdev->slist);
2229	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2230
2231	/* preform any regulator specific init */
2232	if (init_data->regulator_init) {
2233		ret = init_data->regulator_init(rdev->reg_data);
2234		if (ret < 0)
2235			goto clean;
2236	}
2237
2238	/* register with sysfs */
2239	rdev->dev.class = &regulator_class;
2240	rdev->dev.parent = dev;
2241	dev_set_name(&rdev->dev, "regulator.%d",
2242		     atomic_inc_return(&regulator_no) - 1);
2243	ret = device_register(&rdev->dev);
2244	if (ret != 0)
2245		goto clean;
2246
2247	dev_set_drvdata(&rdev->dev, rdev);
2248
2249	/* set regulator constraints */
2250	ret = set_machine_constraints(rdev, &init_data->constraints);
2251	if (ret < 0)
2252		goto scrub;
2253
2254	/* add attributes supported by this regulator */
2255	ret = add_regulator_attributes(rdev);
2256	if (ret < 0)
2257		goto scrub;
2258
2259	/* set supply regulator if it exists */
2260	if (init_data->supply_regulator_dev) {
2261		ret = set_supply(rdev,
2262			dev_get_drvdata(init_data->supply_regulator_dev));
2263		if (ret < 0)
2264			goto scrub;
2265	}
2266
2267	/* add consumers devices */
2268	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2269		ret = set_consumer_device_supply(rdev,
2270			init_data->consumer_supplies[i].dev,
2271			init_data->consumer_supplies[i].dev_name,
2272			init_data->consumer_supplies[i].supply);
2273		if (ret < 0) {
2274			for (--i; i >= 0; i--)
2275				unset_consumer_device_supply(rdev,
2276				    init_data->consumer_supplies[i].dev_name,
2277				    init_data->consumer_supplies[i].dev);
2278			goto scrub;
2279		}
2280	}
2281
2282	list_add(&rdev->list, &regulator_list);
2283out:
2284	mutex_unlock(&regulator_list_mutex);
2285	return rdev;
2286
2287scrub:
2288	device_unregister(&rdev->dev);
2289	/* device core frees rdev */
2290	rdev = ERR_PTR(ret);
2291	goto out;
2292
2293clean:
2294	kfree(rdev);
2295	rdev = ERR_PTR(ret);
2296	goto out;
2297}
2298EXPORT_SYMBOL_GPL(regulator_register);
2299
2300/**
2301 * regulator_unregister - unregister regulator
2302 * @rdev: regulator to unregister
2303 *
2304 * Called by regulator drivers to unregister a regulator.
2305 */
2306void regulator_unregister(struct regulator_dev *rdev)
2307{
2308	if (rdev == NULL)
2309		return;
2310
2311	mutex_lock(&regulator_list_mutex);
2312	WARN_ON(rdev->open_count);
2313	unset_regulator_supplies(rdev);
2314	list_del(&rdev->list);
2315	if (rdev->supply)
2316		sysfs_remove_link(&rdev->dev.kobj, "supply");
2317	device_unregister(&rdev->dev);
2318	mutex_unlock(&regulator_list_mutex);
2319}
2320EXPORT_SYMBOL_GPL(regulator_unregister);
2321
2322/**
2323 * regulator_suspend_prepare - prepare regulators for system wide suspend
2324 * @state: system suspend state
2325 *
2326 * Configure each regulator with it's suspend operating parameters for state.
2327 * This will usually be called by machine suspend code prior to supending.
2328 */
2329int regulator_suspend_prepare(suspend_state_t state)
2330{
2331	struct regulator_dev *rdev;
2332	int ret = 0;
2333
2334	/* ON is handled by regulator active state */
2335	if (state == PM_SUSPEND_ON)
2336		return -EINVAL;
2337
2338	mutex_lock(&regulator_list_mutex);
2339	list_for_each_entry(rdev, &regulator_list, list) {
2340
2341		mutex_lock(&rdev->mutex);
2342		ret = suspend_prepare(rdev, state);
2343		mutex_unlock(&rdev->mutex);
2344
2345		if (ret < 0) {
2346			printk(KERN_ERR "%s: failed to prepare %s\n",
2347				__func__, rdev_get_name(rdev));
2348			goto out;
2349		}
2350	}
2351out:
2352	mutex_unlock(&regulator_list_mutex);
2353	return ret;
2354}
2355EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2356
2357/**
2358 * regulator_has_full_constraints - the system has fully specified constraints
2359 *
2360 * Calling this function will cause the regulator API to disable all
2361 * regulators which have a zero use count and don't have an always_on
2362 * constraint in a late_initcall.
2363 *
2364 * The intention is that this will become the default behaviour in a
2365 * future kernel release so users are encouraged to use this facility
2366 * now.
2367 */
2368void regulator_has_full_constraints(void)
2369{
2370	has_full_constraints = 1;
2371}
2372EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2373
2374/**
2375 * rdev_get_drvdata - get rdev regulator driver data
2376 * @rdev: regulator
2377 *
2378 * Get rdev regulator driver private data. This call can be used in the
2379 * regulator driver context.
2380 */
2381void *rdev_get_drvdata(struct regulator_dev *rdev)
2382{
2383	return rdev->reg_data;
2384}
2385EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2386
2387/**
2388 * regulator_get_drvdata - get regulator driver data
2389 * @regulator: regulator
2390 *
2391 * Get regulator driver private data. This call can be used in the consumer
2392 * driver context when non API regulator specific functions need to be called.
2393 */
2394void *regulator_get_drvdata(struct regulator *regulator)
2395{
2396	return regulator->rdev->reg_data;
2397}
2398EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2399
2400/**
2401 * regulator_set_drvdata - set regulator driver data
2402 * @regulator: regulator
2403 * @data: data
2404 */
2405void regulator_set_drvdata(struct regulator *regulator, void *data)
2406{
2407	regulator->rdev->reg_data = data;
2408}
2409EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2410
2411/**
2412 * regulator_get_id - get regulator ID
2413 * @rdev: regulator
2414 */
2415int rdev_get_id(struct regulator_dev *rdev)
2416{
2417	return rdev->desc->id;
2418}
2419EXPORT_SYMBOL_GPL(rdev_get_id);
2420
2421struct device *rdev_get_dev(struct regulator_dev *rdev)
2422{
2423	return &rdev->dev;
2424}
2425EXPORT_SYMBOL_GPL(rdev_get_dev);
2426
2427void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2428{
2429	return reg_init_data->driver_data;
2430}
2431EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2432
2433static int __init regulator_init(void)
2434{
2435	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2436	return class_register(&regulator_class);
2437}
2438
2439/* init early to allow our consumers to complete system booting */
2440core_initcall(regulator_init);
2441
2442static int __init regulator_init_complete(void)
2443{
2444	struct regulator_dev *rdev;
2445	struct regulator_ops *ops;
2446	struct regulation_constraints *c;
2447	int enabled, ret;
2448	const char *name;
2449
2450	mutex_lock(&regulator_list_mutex);
2451
2452	/* If we have a full configuration then disable any regulators
2453	 * which are not in use or always_on.  This will become the
2454	 * default behaviour in the future.
2455	 */
2456	list_for_each_entry(rdev, &regulator_list, list) {
2457		ops = rdev->desc->ops;
2458		c = rdev->constraints;
2459
2460		name = rdev_get_name(rdev);
2461
2462		if (!ops->disable || (c && c->always_on))
2463			continue;
2464
2465		mutex_lock(&rdev->mutex);
2466
2467		if (rdev->use_count)
2468			goto unlock;
2469
2470		/* If we can't read the status assume it's on. */
2471		if (ops->is_enabled)
2472			enabled = ops->is_enabled(rdev);
2473		else
2474			enabled = 1;
2475
2476		if (!enabled)
2477			goto unlock;
2478
2479		if (has_full_constraints) {
2480			/* We log since this may kill the system if it
2481			 * goes wrong. */
2482			printk(KERN_INFO "%s: disabling %s\n",
2483			       __func__, name);
2484			ret = ops->disable(rdev);
2485			if (ret != 0) {
2486				printk(KERN_ERR
2487				       "%s: couldn't disable %s: %d\n",
2488				       __func__, name, ret);
2489			}
2490		} else {
2491			/* The intention is that in future we will
2492			 * assume that full constraints are provided
2493			 * so warn even if we aren't going to do
2494			 * anything here.
2495			 */
2496			printk(KERN_WARNING
2497			       "%s: incomplete constraints, leaving %s on\n",
2498			       __func__, name);
2499		}
2500
2501unlock:
2502		mutex_unlock(&rdev->mutex);
2503	}
2504
2505	mutex_unlock(&regulator_list_mutex);
2506
2507	return 0;
2508}
2509late_initcall(regulator_init_complete);
2510