core.c revision 13ce29f80fe3f61d3865b90244b1d1430f553e9f
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/regulator/consumer.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34
35#define rdev_err(rdev, fmt, ...)					\
36	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37#define rdev_warn(rdev, fmt, ...)					\
38	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_info(rdev, fmt, ...)					\
40	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_dbg(rdev, fmt, ...)					\
42	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44static DEFINE_MUTEX(regulator_list_mutex);
45static LIST_HEAD(regulator_list);
46static LIST_HEAD(regulator_map_list);
47static int has_full_constraints;
48static bool board_wants_dummy_regulator;
49
50/*
51 * struct regulator_map
52 *
53 * Used to provide symbolic supply names to devices.
54 */
55struct regulator_map {
56	struct list_head list;
57	const char *dev_name;   /* The dev_name() for the consumer */
58	const char *supply;
59	struct regulator_dev *regulator;
60};
61
62/*
63 * struct regulator
64 *
65 * One for each consumer device.
66 */
67struct regulator {
68	struct device *dev;
69	struct list_head list;
70	int uA_load;
71	int min_uV;
72	int max_uV;
73	char *supply_name;
74	struct device_attribute dev_attr;
75	struct regulator_dev *rdev;
76};
77
78static int _regulator_is_enabled(struct regulator_dev *rdev);
79static int _regulator_disable(struct regulator_dev *rdev,
80		struct regulator_dev **supply_rdev_ptr);
81static int _regulator_get_voltage(struct regulator_dev *rdev);
82static int _regulator_get_current_limit(struct regulator_dev *rdev);
83static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84static void _notifier_call_chain(struct regulator_dev *rdev,
85				  unsigned long event, void *data);
86static int _regulator_do_set_voltage(struct regulator_dev *rdev,
87				     int min_uV, int max_uV);
88
89static const char *rdev_get_name(struct regulator_dev *rdev)
90{
91	if (rdev->constraints && rdev->constraints->name)
92		return rdev->constraints->name;
93	else if (rdev->desc->name)
94		return rdev->desc->name;
95	else
96		return "";
97}
98
99/* gets the regulator for a given consumer device */
100static struct regulator *get_device_regulator(struct device *dev)
101{
102	struct regulator *regulator = NULL;
103	struct regulator_dev *rdev;
104
105	mutex_lock(&regulator_list_mutex);
106	list_for_each_entry(rdev, &regulator_list, list) {
107		mutex_lock(&rdev->mutex);
108		list_for_each_entry(regulator, &rdev->consumer_list, list) {
109			if (regulator->dev == dev) {
110				mutex_unlock(&rdev->mutex);
111				mutex_unlock(&regulator_list_mutex);
112				return regulator;
113			}
114		}
115		mutex_unlock(&rdev->mutex);
116	}
117	mutex_unlock(&regulator_list_mutex);
118	return NULL;
119}
120
121/* Platform voltage constraint check */
122static int regulator_check_voltage(struct regulator_dev *rdev,
123				   int *min_uV, int *max_uV)
124{
125	BUG_ON(*min_uV > *max_uV);
126
127	if (!rdev->constraints) {
128		rdev_err(rdev, "no constraints\n");
129		return -ENODEV;
130	}
131	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
132		rdev_err(rdev, "operation not allowed\n");
133		return -EPERM;
134	}
135
136	if (*max_uV > rdev->constraints->max_uV)
137		*max_uV = rdev->constraints->max_uV;
138	if (*min_uV < rdev->constraints->min_uV)
139		*min_uV = rdev->constraints->min_uV;
140
141	if (*min_uV > *max_uV)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* Make sure we select a voltage that suits the needs of all
148 * regulator consumers
149 */
150static int regulator_check_consumers(struct regulator_dev *rdev,
151				     int *min_uV, int *max_uV)
152{
153	struct regulator *regulator;
154
155	list_for_each_entry(regulator, &rdev->consumer_list, list) {
156		if (*max_uV > regulator->max_uV)
157			*max_uV = regulator->max_uV;
158		if (*min_uV < regulator->min_uV)
159			*min_uV = regulator->min_uV;
160	}
161
162	if (*min_uV > *max_uV)
163		return -EINVAL;
164
165	return 0;
166}
167
168/* current constraint check */
169static int regulator_check_current_limit(struct regulator_dev *rdev,
170					int *min_uA, int *max_uA)
171{
172	BUG_ON(*min_uA > *max_uA);
173
174	if (!rdev->constraints) {
175		rdev_err(rdev, "no constraints\n");
176		return -ENODEV;
177	}
178	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
179		rdev_err(rdev, "operation not allowed\n");
180		return -EPERM;
181	}
182
183	if (*max_uA > rdev->constraints->max_uA)
184		*max_uA = rdev->constraints->max_uA;
185	if (*min_uA < rdev->constraints->min_uA)
186		*min_uA = rdev->constraints->min_uA;
187
188	if (*min_uA > *max_uA)
189		return -EINVAL;
190
191	return 0;
192}
193
194/* operating mode constraint check */
195static int regulator_check_mode(struct regulator_dev *rdev, int mode)
196{
197	switch (mode) {
198	case REGULATOR_MODE_FAST:
199	case REGULATOR_MODE_NORMAL:
200	case REGULATOR_MODE_IDLE:
201	case REGULATOR_MODE_STANDBY:
202		break;
203	default:
204		return -EINVAL;
205	}
206
207	if (!rdev->constraints) {
208		rdev_err(rdev, "no constraints\n");
209		return -ENODEV;
210	}
211	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
212		rdev_err(rdev, "operation not allowed\n");
213		return -EPERM;
214	}
215	if (!(rdev->constraints->valid_modes_mask & mode)) {
216		rdev_err(rdev, "invalid mode %x\n", mode);
217		return -EINVAL;
218	}
219	return 0;
220}
221
222/* dynamic regulator mode switching constraint check */
223static int regulator_check_drms(struct regulator_dev *rdev)
224{
225	if (!rdev->constraints) {
226		rdev_err(rdev, "no constraints\n");
227		return -ENODEV;
228	}
229	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
230		rdev_err(rdev, "operation not allowed\n");
231		return -EPERM;
232	}
233	return 0;
234}
235
236static ssize_t device_requested_uA_show(struct device *dev,
237			     struct device_attribute *attr, char *buf)
238{
239	struct regulator *regulator;
240
241	regulator = get_device_regulator(dev);
242	if (regulator == NULL)
243		return 0;
244
245	return sprintf(buf, "%d\n", regulator->uA_load);
246}
247
248static ssize_t regulator_uV_show(struct device *dev,
249				struct device_attribute *attr, char *buf)
250{
251	struct regulator_dev *rdev = dev_get_drvdata(dev);
252	ssize_t ret;
253
254	mutex_lock(&rdev->mutex);
255	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
256	mutex_unlock(&rdev->mutex);
257
258	return ret;
259}
260static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
261
262static ssize_t regulator_uA_show(struct device *dev,
263				struct device_attribute *attr, char *buf)
264{
265	struct regulator_dev *rdev = dev_get_drvdata(dev);
266
267	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
268}
269static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
270
271static ssize_t regulator_name_show(struct device *dev,
272			     struct device_attribute *attr, char *buf)
273{
274	struct regulator_dev *rdev = dev_get_drvdata(dev);
275
276	return sprintf(buf, "%s\n", rdev_get_name(rdev));
277}
278
279static ssize_t regulator_print_opmode(char *buf, int mode)
280{
281	switch (mode) {
282	case REGULATOR_MODE_FAST:
283		return sprintf(buf, "fast\n");
284	case REGULATOR_MODE_NORMAL:
285		return sprintf(buf, "normal\n");
286	case REGULATOR_MODE_IDLE:
287		return sprintf(buf, "idle\n");
288	case REGULATOR_MODE_STANDBY:
289		return sprintf(buf, "standby\n");
290	}
291	return sprintf(buf, "unknown\n");
292}
293
294static ssize_t regulator_opmode_show(struct device *dev,
295				    struct device_attribute *attr, char *buf)
296{
297	struct regulator_dev *rdev = dev_get_drvdata(dev);
298
299	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
300}
301static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
302
303static ssize_t regulator_print_state(char *buf, int state)
304{
305	if (state > 0)
306		return sprintf(buf, "enabled\n");
307	else if (state == 0)
308		return sprintf(buf, "disabled\n");
309	else
310		return sprintf(buf, "unknown\n");
311}
312
313static ssize_t regulator_state_show(struct device *dev,
314				   struct device_attribute *attr, char *buf)
315{
316	struct regulator_dev *rdev = dev_get_drvdata(dev);
317	ssize_t ret;
318
319	mutex_lock(&rdev->mutex);
320	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
321	mutex_unlock(&rdev->mutex);
322
323	return ret;
324}
325static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
326
327static ssize_t regulator_status_show(struct device *dev,
328				   struct device_attribute *attr, char *buf)
329{
330	struct regulator_dev *rdev = dev_get_drvdata(dev);
331	int status;
332	char *label;
333
334	status = rdev->desc->ops->get_status(rdev);
335	if (status < 0)
336		return status;
337
338	switch (status) {
339	case REGULATOR_STATUS_OFF:
340		label = "off";
341		break;
342	case REGULATOR_STATUS_ON:
343		label = "on";
344		break;
345	case REGULATOR_STATUS_ERROR:
346		label = "error";
347		break;
348	case REGULATOR_STATUS_FAST:
349		label = "fast";
350		break;
351	case REGULATOR_STATUS_NORMAL:
352		label = "normal";
353		break;
354	case REGULATOR_STATUS_IDLE:
355		label = "idle";
356		break;
357	case REGULATOR_STATUS_STANDBY:
358		label = "standby";
359		break;
360	default:
361		return -ERANGE;
362	}
363
364	return sprintf(buf, "%s\n", label);
365}
366static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
367
368static ssize_t regulator_min_uA_show(struct device *dev,
369				    struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372
373	if (!rdev->constraints)
374		return sprintf(buf, "constraint not defined\n");
375
376	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
377}
378static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
379
380static ssize_t regulator_max_uA_show(struct device *dev,
381				    struct device_attribute *attr, char *buf)
382{
383	struct regulator_dev *rdev = dev_get_drvdata(dev);
384
385	if (!rdev->constraints)
386		return sprintf(buf, "constraint not defined\n");
387
388	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
389}
390static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
391
392static ssize_t regulator_min_uV_show(struct device *dev,
393				    struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396
397	if (!rdev->constraints)
398		return sprintf(buf, "constraint not defined\n");
399
400	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
401}
402static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
403
404static ssize_t regulator_max_uV_show(struct device *dev,
405				    struct device_attribute *attr, char *buf)
406{
407	struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409	if (!rdev->constraints)
410		return sprintf(buf, "constraint not defined\n");
411
412	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
413}
414static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
415
416static ssize_t regulator_total_uA_show(struct device *dev,
417				      struct device_attribute *attr, char *buf)
418{
419	struct regulator_dev *rdev = dev_get_drvdata(dev);
420	struct regulator *regulator;
421	int uA = 0;
422
423	mutex_lock(&rdev->mutex);
424	list_for_each_entry(regulator, &rdev->consumer_list, list)
425		uA += regulator->uA_load;
426	mutex_unlock(&rdev->mutex);
427	return sprintf(buf, "%d\n", uA);
428}
429static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
430
431static ssize_t regulator_num_users_show(struct device *dev,
432				      struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435	return sprintf(buf, "%d\n", rdev->use_count);
436}
437
438static ssize_t regulator_type_show(struct device *dev,
439				  struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	switch (rdev->desc->type) {
444	case REGULATOR_VOLTAGE:
445		return sprintf(buf, "voltage\n");
446	case REGULATOR_CURRENT:
447		return sprintf(buf, "current\n");
448	}
449	return sprintf(buf, "unknown\n");
450}
451
452static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
453				struct device_attribute *attr, char *buf)
454{
455	struct regulator_dev *rdev = dev_get_drvdata(dev);
456
457	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
458}
459static DEVICE_ATTR(suspend_mem_microvolts, 0444,
460		regulator_suspend_mem_uV_show, NULL);
461
462static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
463				struct device_attribute *attr, char *buf)
464{
465	struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
468}
469static DEVICE_ATTR(suspend_disk_microvolts, 0444,
470		regulator_suspend_disk_uV_show, NULL);
471
472static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
473				struct device_attribute *attr, char *buf)
474{
475	struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
478}
479static DEVICE_ATTR(suspend_standby_microvolts, 0444,
480		regulator_suspend_standby_uV_show, NULL);
481
482static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
483				struct device_attribute *attr, char *buf)
484{
485	struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487	return regulator_print_opmode(buf,
488		rdev->constraints->state_mem.mode);
489}
490static DEVICE_ATTR(suspend_mem_mode, 0444,
491		regulator_suspend_mem_mode_show, NULL);
492
493static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
494				struct device_attribute *attr, char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497
498	return regulator_print_opmode(buf,
499		rdev->constraints->state_disk.mode);
500}
501static DEVICE_ATTR(suspend_disk_mode, 0444,
502		regulator_suspend_disk_mode_show, NULL);
503
504static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
505				struct device_attribute *attr, char *buf)
506{
507	struct regulator_dev *rdev = dev_get_drvdata(dev);
508
509	return regulator_print_opmode(buf,
510		rdev->constraints->state_standby.mode);
511}
512static DEVICE_ATTR(suspend_standby_mode, 0444,
513		regulator_suspend_standby_mode_show, NULL);
514
515static ssize_t regulator_suspend_mem_state_show(struct device *dev,
516				   struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return regulator_print_state(buf,
521			rdev->constraints->state_mem.enabled);
522}
523static DEVICE_ATTR(suspend_mem_state, 0444,
524		regulator_suspend_mem_state_show, NULL);
525
526static ssize_t regulator_suspend_disk_state_show(struct device *dev,
527				   struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return regulator_print_state(buf,
532			rdev->constraints->state_disk.enabled);
533}
534static DEVICE_ATTR(suspend_disk_state, 0444,
535		regulator_suspend_disk_state_show, NULL);
536
537static ssize_t regulator_suspend_standby_state_show(struct device *dev,
538				   struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return regulator_print_state(buf,
543			rdev->constraints->state_standby.enabled);
544}
545static DEVICE_ATTR(suspend_standby_state, 0444,
546		regulator_suspend_standby_state_show, NULL);
547
548
549/*
550 * These are the only attributes are present for all regulators.
551 * Other attributes are a function of regulator functionality.
552 */
553static struct device_attribute regulator_dev_attrs[] = {
554	__ATTR(name, 0444, regulator_name_show, NULL),
555	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
556	__ATTR(type, 0444, regulator_type_show, NULL),
557	__ATTR_NULL,
558};
559
560static void regulator_dev_release(struct device *dev)
561{
562	struct regulator_dev *rdev = dev_get_drvdata(dev);
563	kfree(rdev);
564}
565
566static struct class regulator_class = {
567	.name = "regulator",
568	.dev_release = regulator_dev_release,
569	.dev_attrs = regulator_dev_attrs,
570};
571
572/* Calculate the new optimum regulator operating mode based on the new total
573 * consumer load. All locks held by caller */
574static void drms_uA_update(struct regulator_dev *rdev)
575{
576	struct regulator *sibling;
577	int current_uA = 0, output_uV, input_uV, err;
578	unsigned int mode;
579
580	err = regulator_check_drms(rdev);
581	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
582	    (!rdev->desc->ops->get_voltage &&
583	     !rdev->desc->ops->get_voltage_sel) ||
584	    !rdev->desc->ops->set_mode)
585		return;
586
587	/* get output voltage */
588	output_uV = _regulator_get_voltage(rdev);
589	if (output_uV <= 0)
590		return;
591
592	/* get input voltage */
593	input_uV = 0;
594	if (rdev->supply)
595		input_uV = _regulator_get_voltage(rdev);
596	if (input_uV <= 0)
597		input_uV = rdev->constraints->input_uV;
598	if (input_uV <= 0)
599		return;
600
601	/* calc total requested load */
602	list_for_each_entry(sibling, &rdev->consumer_list, list)
603		current_uA += sibling->uA_load;
604
605	/* now get the optimum mode for our new total regulator load */
606	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
607						  output_uV, current_uA);
608
609	/* check the new mode is allowed */
610	err = regulator_check_mode(rdev, mode);
611	if (err == 0)
612		rdev->desc->ops->set_mode(rdev, mode);
613}
614
615static int suspend_set_state(struct regulator_dev *rdev,
616	struct regulator_state *rstate)
617{
618	int ret = 0;
619	bool can_set_state;
620
621	can_set_state = rdev->desc->ops->set_suspend_enable &&
622		rdev->desc->ops->set_suspend_disable;
623
624	/* If we have no suspend mode configration don't set anything;
625	 * only warn if the driver actually makes the suspend mode
626	 * configurable.
627	 */
628	if (!rstate->enabled && !rstate->disabled) {
629		if (can_set_state)
630			rdev_warn(rdev, "No configuration\n");
631		return 0;
632	}
633
634	if (rstate->enabled && rstate->disabled) {
635		rdev_err(rdev, "invalid configuration\n");
636		return -EINVAL;
637	}
638
639	if (!can_set_state) {
640		rdev_err(rdev, "no way to set suspend state\n");
641		return -EINVAL;
642	}
643
644	if (rstate->enabled)
645		ret = rdev->desc->ops->set_suspend_enable(rdev);
646	else
647		ret = rdev->desc->ops->set_suspend_disable(rdev);
648	if (ret < 0) {
649		rdev_err(rdev, "failed to enabled/disable\n");
650		return ret;
651	}
652
653	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
654		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
655		if (ret < 0) {
656			rdev_err(rdev, "failed to set voltage\n");
657			return ret;
658		}
659	}
660
661	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
662		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
663		if (ret < 0) {
664			rdev_err(rdev, "failed to set mode\n");
665			return ret;
666		}
667	}
668	return ret;
669}
670
671/* locks held by caller */
672static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
673{
674	if (!rdev->constraints)
675		return -EINVAL;
676
677	switch (state) {
678	case PM_SUSPEND_STANDBY:
679		return suspend_set_state(rdev,
680			&rdev->constraints->state_standby);
681	case PM_SUSPEND_MEM:
682		return suspend_set_state(rdev,
683			&rdev->constraints->state_mem);
684	case PM_SUSPEND_MAX:
685		return suspend_set_state(rdev,
686			&rdev->constraints->state_disk);
687	default:
688		return -EINVAL;
689	}
690}
691
692static void print_constraints(struct regulator_dev *rdev)
693{
694	struct regulation_constraints *constraints = rdev->constraints;
695	char buf[80] = "";
696	int count = 0;
697	int ret;
698
699	if (constraints->min_uV && constraints->max_uV) {
700		if (constraints->min_uV == constraints->max_uV)
701			count += sprintf(buf + count, "%d mV ",
702					 constraints->min_uV / 1000);
703		else
704			count += sprintf(buf + count, "%d <--> %d mV ",
705					 constraints->min_uV / 1000,
706					 constraints->max_uV / 1000);
707	}
708
709	if (!constraints->min_uV ||
710	    constraints->min_uV != constraints->max_uV) {
711		ret = _regulator_get_voltage(rdev);
712		if (ret > 0)
713			count += sprintf(buf + count, "at %d mV ", ret / 1000);
714	}
715
716	if (constraints->min_uA && constraints->max_uA) {
717		if (constraints->min_uA == constraints->max_uA)
718			count += sprintf(buf + count, "%d mA ",
719					 constraints->min_uA / 1000);
720		else
721			count += sprintf(buf + count, "%d <--> %d mA ",
722					 constraints->min_uA / 1000,
723					 constraints->max_uA / 1000);
724	}
725
726	if (!constraints->min_uA ||
727	    constraints->min_uA != constraints->max_uA) {
728		ret = _regulator_get_current_limit(rdev);
729		if (ret > 0)
730			count += sprintf(buf + count, "at %d mA ", ret / 1000);
731	}
732
733	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
734		count += sprintf(buf + count, "fast ");
735	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
736		count += sprintf(buf + count, "normal ");
737	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
738		count += sprintf(buf + count, "idle ");
739	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
740		count += sprintf(buf + count, "standby");
741
742	rdev_info(rdev, "%s\n", buf);
743}
744
745static int machine_constraints_voltage(struct regulator_dev *rdev,
746	struct regulation_constraints *constraints)
747{
748	struct regulator_ops *ops = rdev->desc->ops;
749	int ret;
750
751	/* do we need to apply the constraint voltage */
752	if (rdev->constraints->apply_uV &&
753	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
754		ret = _regulator_do_set_voltage(rdev,
755						rdev->constraints->min_uV,
756						rdev->constraints->max_uV);
757		if (ret < 0) {
758			rdev_err(rdev, "failed to apply %duV constraint\n",
759				 rdev->constraints->min_uV);
760			rdev->constraints = NULL;
761			return ret;
762		}
763	}
764
765	/* constrain machine-level voltage specs to fit
766	 * the actual range supported by this regulator.
767	 */
768	if (ops->list_voltage && rdev->desc->n_voltages) {
769		int	count = rdev->desc->n_voltages;
770		int	i;
771		int	min_uV = INT_MAX;
772		int	max_uV = INT_MIN;
773		int	cmin = constraints->min_uV;
774		int	cmax = constraints->max_uV;
775
776		/* it's safe to autoconfigure fixed-voltage supplies
777		   and the constraints are used by list_voltage. */
778		if (count == 1 && !cmin) {
779			cmin = 1;
780			cmax = INT_MAX;
781			constraints->min_uV = cmin;
782			constraints->max_uV = cmax;
783		}
784
785		/* voltage constraints are optional */
786		if ((cmin == 0) && (cmax == 0))
787			return 0;
788
789		/* else require explicit machine-level constraints */
790		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
791			rdev_err(rdev, "invalid voltage constraints\n");
792			return -EINVAL;
793		}
794
795		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
796		for (i = 0; i < count; i++) {
797			int	value;
798
799			value = ops->list_voltage(rdev, i);
800			if (value <= 0)
801				continue;
802
803			/* maybe adjust [min_uV..max_uV] */
804			if (value >= cmin && value < min_uV)
805				min_uV = value;
806			if (value <= cmax && value > max_uV)
807				max_uV = value;
808		}
809
810		/* final: [min_uV..max_uV] valid iff constraints valid */
811		if (max_uV < min_uV) {
812			rdev_err(rdev, "unsupportable voltage constraints\n");
813			return -EINVAL;
814		}
815
816		/* use regulator's subset of machine constraints */
817		if (constraints->min_uV < min_uV) {
818			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
819				 constraints->min_uV, min_uV);
820			constraints->min_uV = min_uV;
821		}
822		if (constraints->max_uV > max_uV) {
823			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
824				 constraints->max_uV, max_uV);
825			constraints->max_uV = max_uV;
826		}
827	}
828
829	return 0;
830}
831
832/**
833 * set_machine_constraints - sets regulator constraints
834 * @rdev: regulator source
835 * @constraints: constraints to apply
836 *
837 * Allows platform initialisation code to define and constrain
838 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
839 * Constraints *must* be set by platform code in order for some
840 * regulator operations to proceed i.e. set_voltage, set_current_limit,
841 * set_mode.
842 */
843static int set_machine_constraints(struct regulator_dev *rdev,
844	const struct regulation_constraints *constraints)
845{
846	int ret = 0;
847	struct regulator_ops *ops = rdev->desc->ops;
848
849	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
850				    GFP_KERNEL);
851	if (!rdev->constraints)
852		return -ENOMEM;
853
854	ret = machine_constraints_voltage(rdev, rdev->constraints);
855	if (ret != 0)
856		goto out;
857
858	/* do we need to setup our suspend state */
859	if (constraints->initial_state) {
860		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
861		if (ret < 0) {
862			rdev_err(rdev, "failed to set suspend state\n");
863			rdev->constraints = NULL;
864			goto out;
865		}
866	}
867
868	if (constraints->initial_mode) {
869		if (!ops->set_mode) {
870			rdev_err(rdev, "no set_mode operation\n");
871			ret = -EINVAL;
872			goto out;
873		}
874
875		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
876		if (ret < 0) {
877			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
878			goto out;
879		}
880	}
881
882	/* If the constraints say the regulator should be on at this point
883	 * and we have control then make sure it is enabled.
884	 */
885	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
886	    ops->enable) {
887		ret = ops->enable(rdev);
888		if (ret < 0) {
889			rdev_err(rdev, "failed to enable\n");
890			rdev->constraints = NULL;
891			goto out;
892		}
893	}
894
895	print_constraints(rdev);
896out:
897	return ret;
898}
899
900/**
901 * set_supply - set regulator supply regulator
902 * @rdev: regulator name
903 * @supply_rdev: supply regulator name
904 *
905 * Called by platform initialisation code to set the supply regulator for this
906 * regulator. This ensures that a regulators supply will also be enabled by the
907 * core if it's child is enabled.
908 */
909static int set_supply(struct regulator_dev *rdev,
910	struct regulator_dev *supply_rdev)
911{
912	int err;
913
914	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
915				"supply");
916	if (err) {
917		rdev_err(rdev, "could not add device link %s err %d\n",
918			 supply_rdev->dev.kobj.name, err);
919		       goto out;
920	}
921	rdev->supply = supply_rdev;
922	list_add(&rdev->slist, &supply_rdev->supply_list);
923out:
924	return err;
925}
926
927/**
928 * set_consumer_device_supply - Bind a regulator to a symbolic supply
929 * @rdev:         regulator source
930 * @consumer_dev: device the supply applies to
931 * @consumer_dev_name: dev_name() string for device supply applies to
932 * @supply:       symbolic name for supply
933 *
934 * Allows platform initialisation code to map physical regulator
935 * sources to symbolic names for supplies for use by devices.  Devices
936 * should use these symbolic names to request regulators, avoiding the
937 * need to provide board-specific regulator names as platform data.
938 *
939 * Only one of consumer_dev and consumer_dev_name may be specified.
940 */
941static int set_consumer_device_supply(struct regulator_dev *rdev,
942	struct device *consumer_dev, const char *consumer_dev_name,
943	const char *supply)
944{
945	struct regulator_map *node;
946	int has_dev;
947
948	if (consumer_dev && consumer_dev_name)
949		return -EINVAL;
950
951	if (!consumer_dev_name && consumer_dev)
952		consumer_dev_name = dev_name(consumer_dev);
953
954	if (supply == NULL)
955		return -EINVAL;
956
957	if (consumer_dev_name != NULL)
958		has_dev = 1;
959	else
960		has_dev = 0;
961
962	list_for_each_entry(node, &regulator_map_list, list) {
963		if (node->dev_name && consumer_dev_name) {
964			if (strcmp(node->dev_name, consumer_dev_name) != 0)
965				continue;
966		} else if (node->dev_name || consumer_dev_name) {
967			continue;
968		}
969
970		if (strcmp(node->supply, supply) != 0)
971			continue;
972
973		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
974			dev_name(&node->regulator->dev),
975			node->regulator->desc->name,
976			supply,
977			dev_name(&rdev->dev), rdev_get_name(rdev));
978		return -EBUSY;
979	}
980
981	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
982	if (node == NULL)
983		return -ENOMEM;
984
985	node->regulator = rdev;
986	node->supply = supply;
987
988	if (has_dev) {
989		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
990		if (node->dev_name == NULL) {
991			kfree(node);
992			return -ENOMEM;
993		}
994	}
995
996	list_add(&node->list, &regulator_map_list);
997	return 0;
998}
999
1000static void unset_regulator_supplies(struct regulator_dev *rdev)
1001{
1002	struct regulator_map *node, *n;
1003
1004	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1005		if (rdev == node->regulator) {
1006			list_del(&node->list);
1007			kfree(node->dev_name);
1008			kfree(node);
1009		}
1010	}
1011}
1012
1013#define REG_STR_SIZE	32
1014
1015static struct regulator *create_regulator(struct regulator_dev *rdev,
1016					  struct device *dev,
1017					  const char *supply_name)
1018{
1019	struct regulator *regulator;
1020	char buf[REG_STR_SIZE];
1021	int err, size;
1022
1023	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1024	if (regulator == NULL)
1025		return NULL;
1026
1027	mutex_lock(&rdev->mutex);
1028	regulator->rdev = rdev;
1029	list_add(&regulator->list, &rdev->consumer_list);
1030
1031	if (dev) {
1032		/* create a 'requested_microamps_name' sysfs entry */
1033		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1034			supply_name);
1035		if (size >= REG_STR_SIZE)
1036			goto overflow_err;
1037
1038		regulator->dev = dev;
1039		sysfs_attr_init(&regulator->dev_attr.attr);
1040		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1041		if (regulator->dev_attr.attr.name == NULL)
1042			goto attr_name_err;
1043
1044		regulator->dev_attr.attr.mode = 0444;
1045		regulator->dev_attr.show = device_requested_uA_show;
1046		err = device_create_file(dev, &regulator->dev_attr);
1047		if (err < 0) {
1048			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1049			goto attr_name_err;
1050		}
1051
1052		/* also add a link to the device sysfs entry */
1053		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1054				 dev->kobj.name, supply_name);
1055		if (size >= REG_STR_SIZE)
1056			goto attr_err;
1057
1058		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1059		if (regulator->supply_name == NULL)
1060			goto attr_err;
1061
1062		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1063					buf);
1064		if (err) {
1065			rdev_warn(rdev, "could not add device link %s err %d\n",
1066				  dev->kobj.name, err);
1067			goto link_name_err;
1068		}
1069	}
1070	mutex_unlock(&rdev->mutex);
1071	return regulator;
1072link_name_err:
1073	kfree(regulator->supply_name);
1074attr_err:
1075	device_remove_file(regulator->dev, &regulator->dev_attr);
1076attr_name_err:
1077	kfree(regulator->dev_attr.attr.name);
1078overflow_err:
1079	list_del(&regulator->list);
1080	kfree(regulator);
1081	mutex_unlock(&rdev->mutex);
1082	return NULL;
1083}
1084
1085static int _regulator_get_enable_time(struct regulator_dev *rdev)
1086{
1087	if (!rdev->desc->ops->enable_time)
1088		return 0;
1089	return rdev->desc->ops->enable_time(rdev);
1090}
1091
1092/* Internal regulator request function */
1093static struct regulator *_regulator_get(struct device *dev, const char *id,
1094					int exclusive)
1095{
1096	struct regulator_dev *rdev;
1097	struct regulator_map *map;
1098	struct regulator *regulator = ERR_PTR(-ENODEV);
1099	const char *devname = NULL;
1100	int ret;
1101
1102	if (id == NULL) {
1103		pr_err("get() with no identifier\n");
1104		return regulator;
1105	}
1106
1107	if (dev)
1108		devname = dev_name(dev);
1109
1110	mutex_lock(&regulator_list_mutex);
1111
1112	list_for_each_entry(map, &regulator_map_list, list) {
1113		/* If the mapping has a device set up it must match */
1114		if (map->dev_name &&
1115		    (!devname || strcmp(map->dev_name, devname)))
1116			continue;
1117
1118		if (strcmp(map->supply, id) == 0) {
1119			rdev = map->regulator;
1120			goto found;
1121		}
1122	}
1123
1124	if (board_wants_dummy_regulator) {
1125		rdev = dummy_regulator_rdev;
1126		goto found;
1127	}
1128
1129#ifdef CONFIG_REGULATOR_DUMMY
1130	if (!devname)
1131		devname = "deviceless";
1132
1133	/* If the board didn't flag that it was fully constrained then
1134	 * substitute in a dummy regulator so consumers can continue.
1135	 */
1136	if (!has_full_constraints) {
1137		pr_warn("%s supply %s not found, using dummy regulator\n",
1138			devname, id);
1139		rdev = dummy_regulator_rdev;
1140		goto found;
1141	}
1142#endif
1143
1144	mutex_unlock(&regulator_list_mutex);
1145	return regulator;
1146
1147found:
1148	if (rdev->exclusive) {
1149		regulator = ERR_PTR(-EPERM);
1150		goto out;
1151	}
1152
1153	if (exclusive && rdev->open_count) {
1154		regulator = ERR_PTR(-EBUSY);
1155		goto out;
1156	}
1157
1158	if (!try_module_get(rdev->owner))
1159		goto out;
1160
1161	regulator = create_regulator(rdev, dev, id);
1162	if (regulator == NULL) {
1163		regulator = ERR_PTR(-ENOMEM);
1164		module_put(rdev->owner);
1165	}
1166
1167	rdev->open_count++;
1168	if (exclusive) {
1169		rdev->exclusive = 1;
1170
1171		ret = _regulator_is_enabled(rdev);
1172		if (ret > 0)
1173			rdev->use_count = 1;
1174		else
1175			rdev->use_count = 0;
1176	}
1177
1178out:
1179	mutex_unlock(&regulator_list_mutex);
1180
1181	return regulator;
1182}
1183
1184/**
1185 * regulator_get - lookup and obtain a reference to a regulator.
1186 * @dev: device for regulator "consumer"
1187 * @id: Supply name or regulator ID.
1188 *
1189 * Returns a struct regulator corresponding to the regulator producer,
1190 * or IS_ERR() condition containing errno.
1191 *
1192 * Use of supply names configured via regulator_set_device_supply() is
1193 * strongly encouraged.  It is recommended that the supply name used
1194 * should match the name used for the supply and/or the relevant
1195 * device pins in the datasheet.
1196 */
1197struct regulator *regulator_get(struct device *dev, const char *id)
1198{
1199	return _regulator_get(dev, id, 0);
1200}
1201EXPORT_SYMBOL_GPL(regulator_get);
1202
1203/**
1204 * regulator_get_exclusive - obtain exclusive access to a regulator.
1205 * @dev: device for regulator "consumer"
1206 * @id: Supply name or regulator ID.
1207 *
1208 * Returns a struct regulator corresponding to the regulator producer,
1209 * or IS_ERR() condition containing errno.  Other consumers will be
1210 * unable to obtain this reference is held and the use count for the
1211 * regulator will be initialised to reflect the current state of the
1212 * regulator.
1213 *
1214 * This is intended for use by consumers which cannot tolerate shared
1215 * use of the regulator such as those which need to force the
1216 * regulator off for correct operation of the hardware they are
1217 * controlling.
1218 *
1219 * Use of supply names configured via regulator_set_device_supply() is
1220 * strongly encouraged.  It is recommended that the supply name used
1221 * should match the name used for the supply and/or the relevant
1222 * device pins in the datasheet.
1223 */
1224struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1225{
1226	return _regulator_get(dev, id, 1);
1227}
1228EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1229
1230/**
1231 * regulator_put - "free" the regulator source
1232 * @regulator: regulator source
1233 *
1234 * Note: drivers must ensure that all regulator_enable calls made on this
1235 * regulator source are balanced by regulator_disable calls prior to calling
1236 * this function.
1237 */
1238void regulator_put(struct regulator *regulator)
1239{
1240	struct regulator_dev *rdev;
1241
1242	if (regulator == NULL || IS_ERR(regulator))
1243		return;
1244
1245	mutex_lock(&regulator_list_mutex);
1246	rdev = regulator->rdev;
1247
1248	/* remove any sysfs entries */
1249	if (regulator->dev) {
1250		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1251		kfree(regulator->supply_name);
1252		device_remove_file(regulator->dev, &regulator->dev_attr);
1253		kfree(regulator->dev_attr.attr.name);
1254	}
1255	list_del(&regulator->list);
1256	kfree(regulator);
1257
1258	rdev->open_count--;
1259	rdev->exclusive = 0;
1260
1261	module_put(rdev->owner);
1262	mutex_unlock(&regulator_list_mutex);
1263}
1264EXPORT_SYMBOL_GPL(regulator_put);
1265
1266static int _regulator_can_change_status(struct regulator_dev *rdev)
1267{
1268	if (!rdev->constraints)
1269		return 0;
1270
1271	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1272		return 1;
1273	else
1274		return 0;
1275}
1276
1277/* locks held by regulator_enable() */
1278static int _regulator_enable(struct regulator_dev *rdev)
1279{
1280	int ret, delay;
1281
1282	if (rdev->use_count == 0) {
1283		/* do we need to enable the supply regulator first */
1284		if (rdev->supply) {
1285			mutex_lock(&rdev->supply->mutex);
1286			ret = _regulator_enable(rdev->supply);
1287			mutex_unlock(&rdev->supply->mutex);
1288			if (ret < 0) {
1289				rdev_err(rdev, "failed to enable: %d\n", ret);
1290				return ret;
1291			}
1292		}
1293	}
1294
1295	/* check voltage and requested load before enabling */
1296	if (rdev->constraints &&
1297	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1298		drms_uA_update(rdev);
1299
1300	if (rdev->use_count == 0) {
1301		/* The regulator may on if it's not switchable or left on */
1302		ret = _regulator_is_enabled(rdev);
1303		if (ret == -EINVAL || ret == 0) {
1304			if (!_regulator_can_change_status(rdev))
1305				return -EPERM;
1306
1307			if (!rdev->desc->ops->enable)
1308				return -EINVAL;
1309
1310			/* Query before enabling in case configuration
1311			 * dependant.  */
1312			ret = _regulator_get_enable_time(rdev);
1313			if (ret >= 0) {
1314				delay = ret;
1315			} else {
1316				rdev_warn(rdev, "enable_time() failed: %d\n",
1317					   ret);
1318				delay = 0;
1319			}
1320
1321			trace_regulator_enable(rdev_get_name(rdev));
1322
1323			/* Allow the regulator to ramp; it would be useful
1324			 * to extend this for bulk operations so that the
1325			 * regulators can ramp together.  */
1326			ret = rdev->desc->ops->enable(rdev);
1327			if (ret < 0)
1328				return ret;
1329
1330			trace_regulator_enable_delay(rdev_get_name(rdev));
1331
1332			if (delay >= 1000) {
1333				mdelay(delay / 1000);
1334				udelay(delay % 1000);
1335			} else if (delay) {
1336				udelay(delay);
1337			}
1338
1339			trace_regulator_enable_complete(rdev_get_name(rdev));
1340
1341		} else if (ret < 0) {
1342			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1343			return ret;
1344		}
1345		/* Fallthrough on positive return values - already enabled */
1346	}
1347
1348	rdev->use_count++;
1349
1350	return 0;
1351}
1352
1353/**
1354 * regulator_enable - enable regulator output
1355 * @regulator: regulator source
1356 *
1357 * Request that the regulator be enabled with the regulator output at
1358 * the predefined voltage or current value.  Calls to regulator_enable()
1359 * must be balanced with calls to regulator_disable().
1360 *
1361 * NOTE: the output value can be set by other drivers, boot loader or may be
1362 * hardwired in the regulator.
1363 */
1364int regulator_enable(struct regulator *regulator)
1365{
1366	struct regulator_dev *rdev = regulator->rdev;
1367	int ret = 0;
1368
1369	mutex_lock(&rdev->mutex);
1370	ret = _regulator_enable(rdev);
1371	mutex_unlock(&rdev->mutex);
1372	return ret;
1373}
1374EXPORT_SYMBOL_GPL(regulator_enable);
1375
1376/* locks held by regulator_disable() */
1377static int _regulator_disable(struct regulator_dev *rdev,
1378		struct regulator_dev **supply_rdev_ptr)
1379{
1380	int ret = 0;
1381	*supply_rdev_ptr = NULL;
1382
1383	if (WARN(rdev->use_count <= 0,
1384		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1385		return -EIO;
1386
1387	/* are we the last user and permitted to disable ? */
1388	if (rdev->use_count == 1 &&
1389	    (rdev->constraints && !rdev->constraints->always_on)) {
1390
1391		/* we are last user */
1392		if (_regulator_can_change_status(rdev) &&
1393		    rdev->desc->ops->disable) {
1394			trace_regulator_disable(rdev_get_name(rdev));
1395
1396			ret = rdev->desc->ops->disable(rdev);
1397			if (ret < 0) {
1398				rdev_err(rdev, "failed to disable\n");
1399				return ret;
1400			}
1401
1402			trace_regulator_disable_complete(rdev_get_name(rdev));
1403
1404			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1405					     NULL);
1406		}
1407
1408		/* decrease our supplies ref count and disable if required */
1409		*supply_rdev_ptr = rdev->supply;
1410
1411		rdev->use_count = 0;
1412	} else if (rdev->use_count > 1) {
1413
1414		if (rdev->constraints &&
1415			(rdev->constraints->valid_ops_mask &
1416			REGULATOR_CHANGE_DRMS))
1417			drms_uA_update(rdev);
1418
1419		rdev->use_count--;
1420	}
1421	return ret;
1422}
1423
1424/**
1425 * regulator_disable - disable regulator output
1426 * @regulator: regulator source
1427 *
1428 * Disable the regulator output voltage or current.  Calls to
1429 * regulator_enable() must be balanced with calls to
1430 * regulator_disable().
1431 *
1432 * NOTE: this will only disable the regulator output if no other consumer
1433 * devices have it enabled, the regulator device supports disabling and
1434 * machine constraints permit this operation.
1435 */
1436int regulator_disable(struct regulator *regulator)
1437{
1438	struct regulator_dev *rdev = regulator->rdev;
1439	struct regulator_dev *supply_rdev = NULL;
1440	int ret = 0;
1441
1442	mutex_lock(&rdev->mutex);
1443	ret = _regulator_disable(rdev, &supply_rdev);
1444	mutex_unlock(&rdev->mutex);
1445
1446	/* decrease our supplies ref count and disable if required */
1447	while (supply_rdev != NULL) {
1448		rdev = supply_rdev;
1449
1450		mutex_lock(&rdev->mutex);
1451		_regulator_disable(rdev, &supply_rdev);
1452		mutex_unlock(&rdev->mutex);
1453	}
1454
1455	return ret;
1456}
1457EXPORT_SYMBOL_GPL(regulator_disable);
1458
1459/* locks held by regulator_force_disable() */
1460static int _regulator_force_disable(struct regulator_dev *rdev,
1461		struct regulator_dev **supply_rdev_ptr)
1462{
1463	int ret = 0;
1464
1465	/* force disable */
1466	if (rdev->desc->ops->disable) {
1467		/* ah well, who wants to live forever... */
1468		ret = rdev->desc->ops->disable(rdev);
1469		if (ret < 0) {
1470			rdev_err(rdev, "failed to force disable\n");
1471			return ret;
1472		}
1473		/* notify other consumers that power has been forced off */
1474		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1475			REGULATOR_EVENT_DISABLE, NULL);
1476	}
1477
1478	/* decrease our supplies ref count and disable if required */
1479	*supply_rdev_ptr = rdev->supply;
1480
1481	rdev->use_count = 0;
1482	return ret;
1483}
1484
1485/**
1486 * regulator_force_disable - force disable regulator output
1487 * @regulator: regulator source
1488 *
1489 * Forcibly disable the regulator output voltage or current.
1490 * NOTE: this *will* disable the regulator output even if other consumer
1491 * devices have it enabled. This should be used for situations when device
1492 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1493 */
1494int regulator_force_disable(struct regulator *regulator)
1495{
1496	struct regulator_dev *supply_rdev = NULL;
1497	int ret;
1498
1499	mutex_lock(&regulator->rdev->mutex);
1500	regulator->uA_load = 0;
1501	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1502	mutex_unlock(&regulator->rdev->mutex);
1503
1504	if (supply_rdev)
1505		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1506
1507	return ret;
1508}
1509EXPORT_SYMBOL_GPL(regulator_force_disable);
1510
1511static int _regulator_is_enabled(struct regulator_dev *rdev)
1512{
1513	/* If we don't know then assume that the regulator is always on */
1514	if (!rdev->desc->ops->is_enabled)
1515		return 1;
1516
1517	return rdev->desc->ops->is_enabled(rdev);
1518}
1519
1520/**
1521 * regulator_is_enabled - is the regulator output enabled
1522 * @regulator: regulator source
1523 *
1524 * Returns positive if the regulator driver backing the source/client
1525 * has requested that the device be enabled, zero if it hasn't, else a
1526 * negative errno code.
1527 *
1528 * Note that the device backing this regulator handle can have multiple
1529 * users, so it might be enabled even if regulator_enable() was never
1530 * called for this particular source.
1531 */
1532int regulator_is_enabled(struct regulator *regulator)
1533{
1534	int ret;
1535
1536	mutex_lock(&regulator->rdev->mutex);
1537	ret = _regulator_is_enabled(regulator->rdev);
1538	mutex_unlock(&regulator->rdev->mutex);
1539
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(regulator_is_enabled);
1543
1544/**
1545 * regulator_count_voltages - count regulator_list_voltage() selectors
1546 * @regulator: regulator source
1547 *
1548 * Returns number of selectors, or negative errno.  Selectors are
1549 * numbered starting at zero, and typically correspond to bitfields
1550 * in hardware registers.
1551 */
1552int regulator_count_voltages(struct regulator *regulator)
1553{
1554	struct regulator_dev	*rdev = regulator->rdev;
1555
1556	return rdev->desc->n_voltages ? : -EINVAL;
1557}
1558EXPORT_SYMBOL_GPL(regulator_count_voltages);
1559
1560/**
1561 * regulator_list_voltage - enumerate supported voltages
1562 * @regulator: regulator source
1563 * @selector: identify voltage to list
1564 * Context: can sleep
1565 *
1566 * Returns a voltage that can be passed to @regulator_set_voltage(),
1567 * zero if this selector code can't be used on this system, or a
1568 * negative errno.
1569 */
1570int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1571{
1572	struct regulator_dev	*rdev = regulator->rdev;
1573	struct regulator_ops	*ops = rdev->desc->ops;
1574	int			ret;
1575
1576	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1577		return -EINVAL;
1578
1579	mutex_lock(&rdev->mutex);
1580	ret = ops->list_voltage(rdev, selector);
1581	mutex_unlock(&rdev->mutex);
1582
1583	if (ret > 0) {
1584		if (ret < rdev->constraints->min_uV)
1585			ret = 0;
1586		else if (ret > rdev->constraints->max_uV)
1587			ret = 0;
1588	}
1589
1590	return ret;
1591}
1592EXPORT_SYMBOL_GPL(regulator_list_voltage);
1593
1594/**
1595 * regulator_is_supported_voltage - check if a voltage range can be supported
1596 *
1597 * @regulator: Regulator to check.
1598 * @min_uV: Minimum required voltage in uV.
1599 * @max_uV: Maximum required voltage in uV.
1600 *
1601 * Returns a boolean or a negative error code.
1602 */
1603int regulator_is_supported_voltage(struct regulator *regulator,
1604				   int min_uV, int max_uV)
1605{
1606	int i, voltages, ret;
1607
1608	ret = regulator_count_voltages(regulator);
1609	if (ret < 0)
1610		return ret;
1611	voltages = ret;
1612
1613	for (i = 0; i < voltages; i++) {
1614		ret = regulator_list_voltage(regulator, i);
1615
1616		if (ret >= min_uV && ret <= max_uV)
1617			return 1;
1618	}
1619
1620	return 0;
1621}
1622
1623static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1624				     int min_uV, int max_uV)
1625{
1626	int ret;
1627	unsigned int selector;
1628
1629	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1630
1631	if (rdev->desc->ops->set_voltage) {
1632		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1633						   &selector);
1634
1635		if (rdev->desc->ops->list_voltage)
1636			selector = rdev->desc->ops->list_voltage(rdev,
1637								 selector);
1638		else
1639			selector = -1;
1640	} else if (rdev->desc->ops->set_voltage_sel) {
1641		int best_val = INT_MAX;
1642		int i;
1643
1644		selector = 0;
1645
1646		/* Find the smallest voltage that falls within the specified
1647		 * range.
1648		 */
1649		for (i = 0; i < rdev->desc->n_voltages; i++) {
1650			ret = rdev->desc->ops->list_voltage(rdev, i);
1651			if (ret < 0)
1652				continue;
1653
1654			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1655				best_val = ret;
1656				selector = i;
1657			}
1658		}
1659
1660		if (best_val != INT_MAX) {
1661			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1662			selector = best_val;
1663		} else {
1664			ret = -EINVAL;
1665		}
1666	} else {
1667		ret = -EINVAL;
1668	}
1669
1670	if (ret == 0)
1671		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1672				     NULL);
1673
1674	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1675
1676	return ret;
1677}
1678
1679/**
1680 * regulator_set_voltage - set regulator output voltage
1681 * @regulator: regulator source
1682 * @min_uV: Minimum required voltage in uV
1683 * @max_uV: Maximum acceptable voltage in uV
1684 *
1685 * Sets a voltage regulator to the desired output voltage. This can be set
1686 * during any regulator state. IOW, regulator can be disabled or enabled.
1687 *
1688 * If the regulator is enabled then the voltage will change to the new value
1689 * immediately otherwise if the regulator is disabled the regulator will
1690 * output at the new voltage when enabled.
1691 *
1692 * NOTE: If the regulator is shared between several devices then the lowest
1693 * request voltage that meets the system constraints will be used.
1694 * Regulator system constraints must be set for this regulator before
1695 * calling this function otherwise this call will fail.
1696 */
1697int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1698{
1699	struct regulator_dev *rdev = regulator->rdev;
1700	int ret = 0;
1701
1702	mutex_lock(&rdev->mutex);
1703
1704	/* If we're setting the same range as last time the change
1705	 * should be a noop (some cpufreq implementations use the same
1706	 * voltage for multiple frequencies, for example).
1707	 */
1708	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1709		goto out;
1710
1711	/* sanity check */
1712	if (!rdev->desc->ops->set_voltage &&
1713	    !rdev->desc->ops->set_voltage_sel) {
1714		ret = -EINVAL;
1715		goto out;
1716	}
1717
1718	/* constraints check */
1719	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1720	if (ret < 0)
1721		goto out;
1722	regulator->min_uV = min_uV;
1723	regulator->max_uV = max_uV;
1724
1725	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1726	if (ret < 0)
1727		goto out;
1728
1729	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1730
1731out:
1732	mutex_unlock(&rdev->mutex);
1733	return ret;
1734}
1735EXPORT_SYMBOL_GPL(regulator_set_voltage);
1736
1737/**
1738 * regulator_sync_voltage - re-apply last regulator output voltage
1739 * @regulator: regulator source
1740 *
1741 * Re-apply the last configured voltage.  This is intended to be used
1742 * where some external control source the consumer is cooperating with
1743 * has caused the configured voltage to change.
1744 */
1745int regulator_sync_voltage(struct regulator *regulator)
1746{
1747	struct regulator_dev *rdev = regulator->rdev;
1748	int ret, min_uV, max_uV;
1749
1750	mutex_lock(&rdev->mutex);
1751
1752	if (!rdev->desc->ops->set_voltage &&
1753	    !rdev->desc->ops->set_voltage_sel) {
1754		ret = -EINVAL;
1755		goto out;
1756	}
1757
1758	/* This is only going to work if we've had a voltage configured. */
1759	if (!regulator->min_uV && !regulator->max_uV) {
1760		ret = -EINVAL;
1761		goto out;
1762	}
1763
1764	min_uV = regulator->min_uV;
1765	max_uV = regulator->max_uV;
1766
1767	/* This should be a paranoia check... */
1768	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1769	if (ret < 0)
1770		goto out;
1771
1772	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1773	if (ret < 0)
1774		goto out;
1775
1776	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1777
1778out:
1779	mutex_unlock(&rdev->mutex);
1780	return ret;
1781}
1782EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1783
1784static int _regulator_get_voltage(struct regulator_dev *rdev)
1785{
1786	int sel;
1787
1788	if (rdev->desc->ops->get_voltage_sel) {
1789		sel = rdev->desc->ops->get_voltage_sel(rdev);
1790		if (sel < 0)
1791			return sel;
1792		return rdev->desc->ops->list_voltage(rdev, sel);
1793	}
1794	if (rdev->desc->ops->get_voltage)
1795		return rdev->desc->ops->get_voltage(rdev);
1796	else
1797		return -EINVAL;
1798}
1799
1800/**
1801 * regulator_get_voltage - get regulator output voltage
1802 * @regulator: regulator source
1803 *
1804 * This returns the current regulator voltage in uV.
1805 *
1806 * NOTE: If the regulator is disabled it will return the voltage value. This
1807 * function should not be used to determine regulator state.
1808 */
1809int regulator_get_voltage(struct regulator *regulator)
1810{
1811	int ret;
1812
1813	mutex_lock(&regulator->rdev->mutex);
1814
1815	ret = _regulator_get_voltage(regulator->rdev);
1816
1817	mutex_unlock(&regulator->rdev->mutex);
1818
1819	return ret;
1820}
1821EXPORT_SYMBOL_GPL(regulator_get_voltage);
1822
1823/**
1824 * regulator_set_current_limit - set regulator output current limit
1825 * @regulator: regulator source
1826 * @min_uA: Minimuum supported current in uA
1827 * @max_uA: Maximum supported current in uA
1828 *
1829 * Sets current sink to the desired output current. This can be set during
1830 * any regulator state. IOW, regulator can be disabled or enabled.
1831 *
1832 * If the regulator is enabled then the current will change to the new value
1833 * immediately otherwise if the regulator is disabled the regulator will
1834 * output at the new current when enabled.
1835 *
1836 * NOTE: Regulator system constraints must be set for this regulator before
1837 * calling this function otherwise this call will fail.
1838 */
1839int regulator_set_current_limit(struct regulator *regulator,
1840			       int min_uA, int max_uA)
1841{
1842	struct regulator_dev *rdev = regulator->rdev;
1843	int ret;
1844
1845	mutex_lock(&rdev->mutex);
1846
1847	/* sanity check */
1848	if (!rdev->desc->ops->set_current_limit) {
1849		ret = -EINVAL;
1850		goto out;
1851	}
1852
1853	/* constraints check */
1854	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1855	if (ret < 0)
1856		goto out;
1857
1858	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1859out:
1860	mutex_unlock(&rdev->mutex);
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1864
1865static int _regulator_get_current_limit(struct regulator_dev *rdev)
1866{
1867	int ret;
1868
1869	mutex_lock(&rdev->mutex);
1870
1871	/* sanity check */
1872	if (!rdev->desc->ops->get_current_limit) {
1873		ret = -EINVAL;
1874		goto out;
1875	}
1876
1877	ret = rdev->desc->ops->get_current_limit(rdev);
1878out:
1879	mutex_unlock(&rdev->mutex);
1880	return ret;
1881}
1882
1883/**
1884 * regulator_get_current_limit - get regulator output current
1885 * @regulator: regulator source
1886 *
1887 * This returns the current supplied by the specified current sink in uA.
1888 *
1889 * NOTE: If the regulator is disabled it will return the current value. This
1890 * function should not be used to determine regulator state.
1891 */
1892int regulator_get_current_limit(struct regulator *regulator)
1893{
1894	return _regulator_get_current_limit(regulator->rdev);
1895}
1896EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1897
1898/**
1899 * regulator_set_mode - set regulator operating mode
1900 * @regulator: regulator source
1901 * @mode: operating mode - one of the REGULATOR_MODE constants
1902 *
1903 * Set regulator operating mode to increase regulator efficiency or improve
1904 * regulation performance.
1905 *
1906 * NOTE: Regulator system constraints must be set for this regulator before
1907 * calling this function otherwise this call will fail.
1908 */
1909int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1910{
1911	struct regulator_dev *rdev = regulator->rdev;
1912	int ret;
1913	int regulator_curr_mode;
1914
1915	mutex_lock(&rdev->mutex);
1916
1917	/* sanity check */
1918	if (!rdev->desc->ops->set_mode) {
1919		ret = -EINVAL;
1920		goto out;
1921	}
1922
1923	/* return if the same mode is requested */
1924	if (rdev->desc->ops->get_mode) {
1925		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1926		if (regulator_curr_mode == mode) {
1927			ret = 0;
1928			goto out;
1929		}
1930	}
1931
1932	/* constraints check */
1933	ret = regulator_check_mode(rdev, mode);
1934	if (ret < 0)
1935		goto out;
1936
1937	ret = rdev->desc->ops->set_mode(rdev, mode);
1938out:
1939	mutex_unlock(&rdev->mutex);
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_set_mode);
1943
1944static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1945{
1946	int ret;
1947
1948	mutex_lock(&rdev->mutex);
1949
1950	/* sanity check */
1951	if (!rdev->desc->ops->get_mode) {
1952		ret = -EINVAL;
1953		goto out;
1954	}
1955
1956	ret = rdev->desc->ops->get_mode(rdev);
1957out:
1958	mutex_unlock(&rdev->mutex);
1959	return ret;
1960}
1961
1962/**
1963 * regulator_get_mode - get regulator operating mode
1964 * @regulator: regulator source
1965 *
1966 * Get the current regulator operating mode.
1967 */
1968unsigned int regulator_get_mode(struct regulator *regulator)
1969{
1970	return _regulator_get_mode(regulator->rdev);
1971}
1972EXPORT_SYMBOL_GPL(regulator_get_mode);
1973
1974/**
1975 * regulator_set_optimum_mode - set regulator optimum operating mode
1976 * @regulator: regulator source
1977 * @uA_load: load current
1978 *
1979 * Notifies the regulator core of a new device load. This is then used by
1980 * DRMS (if enabled by constraints) to set the most efficient regulator
1981 * operating mode for the new regulator loading.
1982 *
1983 * Consumer devices notify their supply regulator of the maximum power
1984 * they will require (can be taken from device datasheet in the power
1985 * consumption tables) when they change operational status and hence power
1986 * state. Examples of operational state changes that can affect power
1987 * consumption are :-
1988 *
1989 *    o Device is opened / closed.
1990 *    o Device I/O is about to begin or has just finished.
1991 *    o Device is idling in between work.
1992 *
1993 * This information is also exported via sysfs to userspace.
1994 *
1995 * DRMS will sum the total requested load on the regulator and change
1996 * to the most efficient operating mode if platform constraints allow.
1997 *
1998 * Returns the new regulator mode or error.
1999 */
2000int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2001{
2002	struct regulator_dev *rdev = regulator->rdev;
2003	struct regulator *consumer;
2004	int ret, output_uV, input_uV, total_uA_load = 0;
2005	unsigned int mode;
2006
2007	mutex_lock(&rdev->mutex);
2008
2009	regulator->uA_load = uA_load;
2010	ret = regulator_check_drms(rdev);
2011	if (ret < 0)
2012		goto out;
2013	ret = -EINVAL;
2014
2015	/* sanity check */
2016	if (!rdev->desc->ops->get_optimum_mode)
2017		goto out;
2018
2019	/* get output voltage */
2020	output_uV = _regulator_get_voltage(rdev);
2021	if (output_uV <= 0) {
2022		rdev_err(rdev, "invalid output voltage found\n");
2023		goto out;
2024	}
2025
2026	/* get input voltage */
2027	input_uV = 0;
2028	if (rdev->supply)
2029		input_uV = _regulator_get_voltage(rdev->supply);
2030	if (input_uV <= 0)
2031		input_uV = rdev->constraints->input_uV;
2032	if (input_uV <= 0) {
2033		rdev_err(rdev, "invalid input voltage found\n");
2034		goto out;
2035	}
2036
2037	/* calc total requested load for this regulator */
2038	list_for_each_entry(consumer, &rdev->consumer_list, list)
2039		total_uA_load += consumer->uA_load;
2040
2041	mode = rdev->desc->ops->get_optimum_mode(rdev,
2042						 input_uV, output_uV,
2043						 total_uA_load);
2044	ret = regulator_check_mode(rdev, mode);
2045	if (ret < 0) {
2046		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2047			 total_uA_load, input_uV, output_uV);
2048		goto out;
2049	}
2050
2051	ret = rdev->desc->ops->set_mode(rdev, mode);
2052	if (ret < 0) {
2053		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2054		goto out;
2055	}
2056	ret = mode;
2057out:
2058	mutex_unlock(&rdev->mutex);
2059	return ret;
2060}
2061EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2062
2063/**
2064 * regulator_register_notifier - register regulator event notifier
2065 * @regulator: regulator source
2066 * @nb: notifier block
2067 *
2068 * Register notifier block to receive regulator events.
2069 */
2070int regulator_register_notifier(struct regulator *regulator,
2071			      struct notifier_block *nb)
2072{
2073	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2074						nb);
2075}
2076EXPORT_SYMBOL_GPL(regulator_register_notifier);
2077
2078/**
2079 * regulator_unregister_notifier - unregister regulator event notifier
2080 * @regulator: regulator source
2081 * @nb: notifier block
2082 *
2083 * Unregister regulator event notifier block.
2084 */
2085int regulator_unregister_notifier(struct regulator *regulator,
2086				struct notifier_block *nb)
2087{
2088	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2089						  nb);
2090}
2091EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2092
2093/* notify regulator consumers and downstream regulator consumers.
2094 * Note mutex must be held by caller.
2095 */
2096static void _notifier_call_chain(struct regulator_dev *rdev,
2097				  unsigned long event, void *data)
2098{
2099	struct regulator_dev *_rdev;
2100
2101	/* call rdev chain first */
2102	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2103
2104	/* now notify regulator we supply */
2105	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2106		mutex_lock(&_rdev->mutex);
2107		_notifier_call_chain(_rdev, event, data);
2108		mutex_unlock(&_rdev->mutex);
2109	}
2110}
2111
2112/**
2113 * regulator_bulk_get - get multiple regulator consumers
2114 *
2115 * @dev:           Device to supply
2116 * @num_consumers: Number of consumers to register
2117 * @consumers:     Configuration of consumers; clients are stored here.
2118 *
2119 * @return 0 on success, an errno on failure.
2120 *
2121 * This helper function allows drivers to get several regulator
2122 * consumers in one operation.  If any of the regulators cannot be
2123 * acquired then any regulators that were allocated will be freed
2124 * before returning to the caller.
2125 */
2126int regulator_bulk_get(struct device *dev, int num_consumers,
2127		       struct regulator_bulk_data *consumers)
2128{
2129	int i;
2130	int ret;
2131
2132	for (i = 0; i < num_consumers; i++)
2133		consumers[i].consumer = NULL;
2134
2135	for (i = 0; i < num_consumers; i++) {
2136		consumers[i].consumer = regulator_get(dev,
2137						      consumers[i].supply);
2138		if (IS_ERR(consumers[i].consumer)) {
2139			ret = PTR_ERR(consumers[i].consumer);
2140			dev_err(dev, "Failed to get supply '%s': %d\n",
2141				consumers[i].supply, ret);
2142			consumers[i].consumer = NULL;
2143			goto err;
2144		}
2145	}
2146
2147	return 0;
2148
2149err:
2150	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2151		regulator_put(consumers[i].consumer);
2152
2153	return ret;
2154}
2155EXPORT_SYMBOL_GPL(regulator_bulk_get);
2156
2157/**
2158 * regulator_bulk_enable - enable multiple regulator consumers
2159 *
2160 * @num_consumers: Number of consumers
2161 * @consumers:     Consumer data; clients are stored here.
2162 * @return         0 on success, an errno on failure
2163 *
2164 * This convenience API allows consumers to enable multiple regulator
2165 * clients in a single API call.  If any consumers cannot be enabled
2166 * then any others that were enabled will be disabled again prior to
2167 * return.
2168 */
2169int regulator_bulk_enable(int num_consumers,
2170			  struct regulator_bulk_data *consumers)
2171{
2172	int i;
2173	int ret;
2174
2175	for (i = 0; i < num_consumers; i++) {
2176		ret = regulator_enable(consumers[i].consumer);
2177		if (ret != 0)
2178			goto err;
2179	}
2180
2181	return 0;
2182
2183err:
2184	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2185	for (--i; i >= 0; --i)
2186		regulator_disable(consumers[i].consumer);
2187
2188	return ret;
2189}
2190EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2191
2192/**
2193 * regulator_bulk_disable - disable multiple regulator consumers
2194 *
2195 * @num_consumers: Number of consumers
2196 * @consumers:     Consumer data; clients are stored here.
2197 * @return         0 on success, an errno on failure
2198 *
2199 * This convenience API allows consumers to disable multiple regulator
2200 * clients in a single API call.  If any consumers cannot be enabled
2201 * then any others that were disabled will be disabled again prior to
2202 * return.
2203 */
2204int regulator_bulk_disable(int num_consumers,
2205			   struct regulator_bulk_data *consumers)
2206{
2207	int i;
2208	int ret;
2209
2210	for (i = 0; i < num_consumers; i++) {
2211		ret = regulator_disable(consumers[i].consumer);
2212		if (ret != 0)
2213			goto err;
2214	}
2215
2216	return 0;
2217
2218err:
2219	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2220	for (--i; i >= 0; --i)
2221		regulator_enable(consumers[i].consumer);
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2226
2227/**
2228 * regulator_bulk_free - free multiple regulator consumers
2229 *
2230 * @num_consumers: Number of consumers
2231 * @consumers:     Consumer data; clients are stored here.
2232 *
2233 * This convenience API allows consumers to free multiple regulator
2234 * clients in a single API call.
2235 */
2236void regulator_bulk_free(int num_consumers,
2237			 struct regulator_bulk_data *consumers)
2238{
2239	int i;
2240
2241	for (i = 0; i < num_consumers; i++) {
2242		regulator_put(consumers[i].consumer);
2243		consumers[i].consumer = NULL;
2244	}
2245}
2246EXPORT_SYMBOL_GPL(regulator_bulk_free);
2247
2248/**
2249 * regulator_notifier_call_chain - call regulator event notifier
2250 * @rdev: regulator source
2251 * @event: notifier block
2252 * @data: callback-specific data.
2253 *
2254 * Called by regulator drivers to notify clients a regulator event has
2255 * occurred. We also notify regulator clients downstream.
2256 * Note lock must be held by caller.
2257 */
2258int regulator_notifier_call_chain(struct regulator_dev *rdev,
2259				  unsigned long event, void *data)
2260{
2261	_notifier_call_chain(rdev, event, data);
2262	return NOTIFY_DONE;
2263
2264}
2265EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2266
2267/**
2268 * regulator_mode_to_status - convert a regulator mode into a status
2269 *
2270 * @mode: Mode to convert
2271 *
2272 * Convert a regulator mode into a status.
2273 */
2274int regulator_mode_to_status(unsigned int mode)
2275{
2276	switch (mode) {
2277	case REGULATOR_MODE_FAST:
2278		return REGULATOR_STATUS_FAST;
2279	case REGULATOR_MODE_NORMAL:
2280		return REGULATOR_STATUS_NORMAL;
2281	case REGULATOR_MODE_IDLE:
2282		return REGULATOR_STATUS_IDLE;
2283	case REGULATOR_STATUS_STANDBY:
2284		return REGULATOR_STATUS_STANDBY;
2285	default:
2286		return 0;
2287	}
2288}
2289EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2290
2291/*
2292 * To avoid cluttering sysfs (and memory) with useless state, only
2293 * create attributes that can be meaningfully displayed.
2294 */
2295static int add_regulator_attributes(struct regulator_dev *rdev)
2296{
2297	struct device		*dev = &rdev->dev;
2298	struct regulator_ops	*ops = rdev->desc->ops;
2299	int			status = 0;
2300
2301	/* some attributes need specific methods to be displayed */
2302	if (ops->get_voltage || ops->get_voltage_sel) {
2303		status = device_create_file(dev, &dev_attr_microvolts);
2304		if (status < 0)
2305			return status;
2306	}
2307	if (ops->get_current_limit) {
2308		status = device_create_file(dev, &dev_attr_microamps);
2309		if (status < 0)
2310			return status;
2311	}
2312	if (ops->get_mode) {
2313		status = device_create_file(dev, &dev_attr_opmode);
2314		if (status < 0)
2315			return status;
2316	}
2317	if (ops->is_enabled) {
2318		status = device_create_file(dev, &dev_attr_state);
2319		if (status < 0)
2320			return status;
2321	}
2322	if (ops->get_status) {
2323		status = device_create_file(dev, &dev_attr_status);
2324		if (status < 0)
2325			return status;
2326	}
2327
2328	/* some attributes are type-specific */
2329	if (rdev->desc->type == REGULATOR_CURRENT) {
2330		status = device_create_file(dev, &dev_attr_requested_microamps);
2331		if (status < 0)
2332			return status;
2333	}
2334
2335	/* all the other attributes exist to support constraints;
2336	 * don't show them if there are no constraints, or if the
2337	 * relevant supporting methods are missing.
2338	 */
2339	if (!rdev->constraints)
2340		return status;
2341
2342	/* constraints need specific supporting methods */
2343	if (ops->set_voltage || ops->set_voltage_sel) {
2344		status = device_create_file(dev, &dev_attr_min_microvolts);
2345		if (status < 0)
2346			return status;
2347		status = device_create_file(dev, &dev_attr_max_microvolts);
2348		if (status < 0)
2349			return status;
2350	}
2351	if (ops->set_current_limit) {
2352		status = device_create_file(dev, &dev_attr_min_microamps);
2353		if (status < 0)
2354			return status;
2355		status = device_create_file(dev, &dev_attr_max_microamps);
2356		if (status < 0)
2357			return status;
2358	}
2359
2360	/* suspend mode constraints need multiple supporting methods */
2361	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2362		return status;
2363
2364	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2365	if (status < 0)
2366		return status;
2367	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2368	if (status < 0)
2369		return status;
2370	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2371	if (status < 0)
2372		return status;
2373
2374	if (ops->set_suspend_voltage) {
2375		status = device_create_file(dev,
2376				&dev_attr_suspend_standby_microvolts);
2377		if (status < 0)
2378			return status;
2379		status = device_create_file(dev,
2380				&dev_attr_suspend_mem_microvolts);
2381		if (status < 0)
2382			return status;
2383		status = device_create_file(dev,
2384				&dev_attr_suspend_disk_microvolts);
2385		if (status < 0)
2386			return status;
2387	}
2388
2389	if (ops->set_suspend_mode) {
2390		status = device_create_file(dev,
2391				&dev_attr_suspend_standby_mode);
2392		if (status < 0)
2393			return status;
2394		status = device_create_file(dev,
2395				&dev_attr_suspend_mem_mode);
2396		if (status < 0)
2397			return status;
2398		status = device_create_file(dev,
2399				&dev_attr_suspend_disk_mode);
2400		if (status < 0)
2401			return status;
2402	}
2403
2404	return status;
2405}
2406
2407/**
2408 * regulator_register - register regulator
2409 * @regulator_desc: regulator to register
2410 * @dev: struct device for the regulator
2411 * @init_data: platform provided init data, passed through by driver
2412 * @driver_data: private regulator data
2413 *
2414 * Called by regulator drivers to register a regulator.
2415 * Returns 0 on success.
2416 */
2417struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2418	struct device *dev, const struct regulator_init_data *init_data,
2419	void *driver_data)
2420{
2421	static atomic_t regulator_no = ATOMIC_INIT(0);
2422	struct regulator_dev *rdev;
2423	int ret, i;
2424
2425	if (regulator_desc == NULL)
2426		return ERR_PTR(-EINVAL);
2427
2428	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2429		return ERR_PTR(-EINVAL);
2430
2431	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2432	    regulator_desc->type != REGULATOR_CURRENT)
2433		return ERR_PTR(-EINVAL);
2434
2435	if (!init_data)
2436		return ERR_PTR(-EINVAL);
2437
2438	/* Only one of each should be implemented */
2439	WARN_ON(regulator_desc->ops->get_voltage &&
2440		regulator_desc->ops->get_voltage_sel);
2441	WARN_ON(regulator_desc->ops->set_voltage &&
2442		regulator_desc->ops->set_voltage_sel);
2443
2444	/* If we're using selectors we must implement list_voltage. */
2445	if (regulator_desc->ops->get_voltage_sel &&
2446	    !regulator_desc->ops->list_voltage) {
2447		return ERR_PTR(-EINVAL);
2448	}
2449	if (regulator_desc->ops->set_voltage_sel &&
2450	    !regulator_desc->ops->list_voltage) {
2451		return ERR_PTR(-EINVAL);
2452	}
2453
2454	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2455	if (rdev == NULL)
2456		return ERR_PTR(-ENOMEM);
2457
2458	mutex_lock(&regulator_list_mutex);
2459
2460	mutex_init(&rdev->mutex);
2461	rdev->reg_data = driver_data;
2462	rdev->owner = regulator_desc->owner;
2463	rdev->desc = regulator_desc;
2464	INIT_LIST_HEAD(&rdev->consumer_list);
2465	INIT_LIST_HEAD(&rdev->supply_list);
2466	INIT_LIST_HEAD(&rdev->list);
2467	INIT_LIST_HEAD(&rdev->slist);
2468	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2469
2470	/* preform any regulator specific init */
2471	if (init_data->regulator_init) {
2472		ret = init_data->regulator_init(rdev->reg_data);
2473		if (ret < 0)
2474			goto clean;
2475	}
2476
2477	/* register with sysfs */
2478	rdev->dev.class = &regulator_class;
2479	rdev->dev.parent = dev;
2480	dev_set_name(&rdev->dev, "regulator.%d",
2481		     atomic_inc_return(&regulator_no) - 1);
2482	ret = device_register(&rdev->dev);
2483	if (ret != 0) {
2484		put_device(&rdev->dev);
2485		goto clean;
2486	}
2487
2488	dev_set_drvdata(&rdev->dev, rdev);
2489
2490	/* set regulator constraints */
2491	ret = set_machine_constraints(rdev, &init_data->constraints);
2492	if (ret < 0)
2493		goto scrub;
2494
2495	/* add attributes supported by this regulator */
2496	ret = add_regulator_attributes(rdev);
2497	if (ret < 0)
2498		goto scrub;
2499
2500	/* set supply regulator if it exists */
2501	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2502		dev_err(dev,
2503			"Supply regulator specified by both name and dev\n");
2504		ret = -EINVAL;
2505		goto scrub;
2506	}
2507
2508	if (init_data->supply_regulator) {
2509		struct regulator_dev *r;
2510		int found = 0;
2511
2512		list_for_each_entry(r, &regulator_list, list) {
2513			if (strcmp(rdev_get_name(r),
2514				   init_data->supply_regulator) == 0) {
2515				found = 1;
2516				break;
2517			}
2518		}
2519
2520		if (!found) {
2521			dev_err(dev, "Failed to find supply %s\n",
2522				init_data->supply_regulator);
2523			ret = -ENODEV;
2524			goto scrub;
2525		}
2526
2527		ret = set_supply(rdev, r);
2528		if (ret < 0)
2529			goto scrub;
2530	}
2531
2532	if (init_data->supply_regulator_dev) {
2533		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2534		ret = set_supply(rdev,
2535			dev_get_drvdata(init_data->supply_regulator_dev));
2536		if (ret < 0)
2537			goto scrub;
2538	}
2539
2540	/* add consumers devices */
2541	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2542		ret = set_consumer_device_supply(rdev,
2543			init_data->consumer_supplies[i].dev,
2544			init_data->consumer_supplies[i].dev_name,
2545			init_data->consumer_supplies[i].supply);
2546		if (ret < 0)
2547			goto unset_supplies;
2548	}
2549
2550	list_add(&rdev->list, &regulator_list);
2551out:
2552	mutex_unlock(&regulator_list_mutex);
2553	return rdev;
2554
2555unset_supplies:
2556	unset_regulator_supplies(rdev);
2557
2558scrub:
2559	device_unregister(&rdev->dev);
2560	/* device core frees rdev */
2561	rdev = ERR_PTR(ret);
2562	goto out;
2563
2564clean:
2565	kfree(rdev);
2566	rdev = ERR_PTR(ret);
2567	goto out;
2568}
2569EXPORT_SYMBOL_GPL(regulator_register);
2570
2571/**
2572 * regulator_unregister - unregister regulator
2573 * @rdev: regulator to unregister
2574 *
2575 * Called by regulator drivers to unregister a regulator.
2576 */
2577void regulator_unregister(struct regulator_dev *rdev)
2578{
2579	if (rdev == NULL)
2580		return;
2581
2582	mutex_lock(&regulator_list_mutex);
2583	WARN_ON(rdev->open_count);
2584	unset_regulator_supplies(rdev);
2585	list_del(&rdev->list);
2586	if (rdev->supply)
2587		sysfs_remove_link(&rdev->dev.kobj, "supply");
2588	device_unregister(&rdev->dev);
2589	kfree(rdev->constraints);
2590	mutex_unlock(&regulator_list_mutex);
2591}
2592EXPORT_SYMBOL_GPL(regulator_unregister);
2593
2594/**
2595 * regulator_suspend_prepare - prepare regulators for system wide suspend
2596 * @state: system suspend state
2597 *
2598 * Configure each regulator with it's suspend operating parameters for state.
2599 * This will usually be called by machine suspend code prior to supending.
2600 */
2601int regulator_suspend_prepare(suspend_state_t state)
2602{
2603	struct regulator_dev *rdev;
2604	int ret = 0;
2605
2606	/* ON is handled by regulator active state */
2607	if (state == PM_SUSPEND_ON)
2608		return -EINVAL;
2609
2610	mutex_lock(&regulator_list_mutex);
2611	list_for_each_entry(rdev, &regulator_list, list) {
2612
2613		mutex_lock(&rdev->mutex);
2614		ret = suspend_prepare(rdev, state);
2615		mutex_unlock(&rdev->mutex);
2616
2617		if (ret < 0) {
2618			rdev_err(rdev, "failed to prepare\n");
2619			goto out;
2620		}
2621	}
2622out:
2623	mutex_unlock(&regulator_list_mutex);
2624	return ret;
2625}
2626EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2627
2628/**
2629 * regulator_has_full_constraints - the system has fully specified constraints
2630 *
2631 * Calling this function will cause the regulator API to disable all
2632 * regulators which have a zero use count and don't have an always_on
2633 * constraint in a late_initcall.
2634 *
2635 * The intention is that this will become the default behaviour in a
2636 * future kernel release so users are encouraged to use this facility
2637 * now.
2638 */
2639void regulator_has_full_constraints(void)
2640{
2641	has_full_constraints = 1;
2642}
2643EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2644
2645/**
2646 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2647 *
2648 * Calling this function will cause the regulator API to provide a
2649 * dummy regulator to consumers if no physical regulator is found,
2650 * allowing most consumers to proceed as though a regulator were
2651 * configured.  This allows systems such as those with software
2652 * controllable regulators for the CPU core only to be brought up more
2653 * readily.
2654 */
2655void regulator_use_dummy_regulator(void)
2656{
2657	board_wants_dummy_regulator = true;
2658}
2659EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2660
2661/**
2662 * rdev_get_drvdata - get rdev regulator driver data
2663 * @rdev: regulator
2664 *
2665 * Get rdev regulator driver private data. This call can be used in the
2666 * regulator driver context.
2667 */
2668void *rdev_get_drvdata(struct regulator_dev *rdev)
2669{
2670	return rdev->reg_data;
2671}
2672EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2673
2674/**
2675 * regulator_get_drvdata - get regulator driver data
2676 * @regulator: regulator
2677 *
2678 * Get regulator driver private data. This call can be used in the consumer
2679 * driver context when non API regulator specific functions need to be called.
2680 */
2681void *regulator_get_drvdata(struct regulator *regulator)
2682{
2683	return regulator->rdev->reg_data;
2684}
2685EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2686
2687/**
2688 * regulator_set_drvdata - set regulator driver data
2689 * @regulator: regulator
2690 * @data: data
2691 */
2692void regulator_set_drvdata(struct regulator *regulator, void *data)
2693{
2694	regulator->rdev->reg_data = data;
2695}
2696EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2697
2698/**
2699 * regulator_get_id - get regulator ID
2700 * @rdev: regulator
2701 */
2702int rdev_get_id(struct regulator_dev *rdev)
2703{
2704	return rdev->desc->id;
2705}
2706EXPORT_SYMBOL_GPL(rdev_get_id);
2707
2708struct device *rdev_get_dev(struct regulator_dev *rdev)
2709{
2710	return &rdev->dev;
2711}
2712EXPORT_SYMBOL_GPL(rdev_get_dev);
2713
2714void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2715{
2716	return reg_init_data->driver_data;
2717}
2718EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2719
2720static int __init regulator_init(void)
2721{
2722	int ret;
2723
2724	ret = class_register(&regulator_class);
2725
2726	regulator_dummy_init();
2727
2728	return ret;
2729}
2730
2731/* init early to allow our consumers to complete system booting */
2732core_initcall(regulator_init);
2733
2734static int __init regulator_init_complete(void)
2735{
2736	struct regulator_dev *rdev;
2737	struct regulator_ops *ops;
2738	struct regulation_constraints *c;
2739	int enabled, ret;
2740
2741	mutex_lock(&regulator_list_mutex);
2742
2743	/* If we have a full configuration then disable any regulators
2744	 * which are not in use or always_on.  This will become the
2745	 * default behaviour in the future.
2746	 */
2747	list_for_each_entry(rdev, &regulator_list, list) {
2748		ops = rdev->desc->ops;
2749		c = rdev->constraints;
2750
2751		if (!ops->disable || (c && c->always_on))
2752			continue;
2753
2754		mutex_lock(&rdev->mutex);
2755
2756		if (rdev->use_count)
2757			goto unlock;
2758
2759		/* If we can't read the status assume it's on. */
2760		if (ops->is_enabled)
2761			enabled = ops->is_enabled(rdev);
2762		else
2763			enabled = 1;
2764
2765		if (!enabled)
2766			goto unlock;
2767
2768		if (has_full_constraints) {
2769			/* We log since this may kill the system if it
2770			 * goes wrong. */
2771			rdev_info(rdev, "disabling\n");
2772			ret = ops->disable(rdev);
2773			if (ret != 0) {
2774				rdev_err(rdev, "couldn't disable: %d\n", ret);
2775			}
2776		} else {
2777			/* The intention is that in future we will
2778			 * assume that full constraints are provided
2779			 * so warn even if we aren't going to do
2780			 * anything here.
2781			 */
2782			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2783		}
2784
2785unlock:
2786		mutex_unlock(&rdev->mutex);
2787	}
2788
2789	mutex_unlock(&regulator_list_mutex);
2790
2791	return 0;
2792}
2793late_initcall(regulator_init_complete);
2794