core.c revision 1a6958e79f9e191c89fe0c13f7452b0bd8097050
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_crit(rdev, fmt, ...)					\
38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_err(rdev, fmt, ...)					\
40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_warn(rdev, fmt, ...)					\
42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_info(rdev, fmt, ...)					\
44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_dbg(rdev, fmt, ...)					\
46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48static DEFINE_MUTEX(regulator_list_mutex);
49static LIST_HEAD(regulator_list);
50static LIST_HEAD(regulator_map_list);
51static bool has_full_constraints;
52static bool board_wants_dummy_regulator;
53
54#ifdef CONFIG_DEBUG_FS
55static struct dentry *debugfs_root;
56#endif
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	int uA_load;
79	int min_uV;
80	int max_uV;
81	char *supply_name;
82	struct device_attribute dev_attr;
83	struct regulator_dev *rdev;
84#ifdef CONFIG_DEBUG_FS
85	struct dentry *debugfs;
86#endif
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95				  unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97				     int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99					  struct device *dev,
100					  const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104	if (rdev->constraints && rdev->constraints->name)
105		return rdev->constraints->name;
106	else if (rdev->desc->name)
107		return rdev->desc->name;
108	else
109		return "";
110}
111
112/* gets the regulator for a given consumer device */
113static struct regulator *get_device_regulator(struct device *dev)
114{
115	struct regulator *regulator = NULL;
116	struct regulator_dev *rdev;
117
118	mutex_lock(&regulator_list_mutex);
119	list_for_each_entry(rdev, &regulator_list, list) {
120		mutex_lock(&rdev->mutex);
121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
122			if (regulator->dev == dev) {
123				mutex_unlock(&rdev->mutex);
124				mutex_unlock(&regulator_list_mutex);
125				return regulator;
126			}
127		}
128		mutex_unlock(&rdev->mutex);
129	}
130	mutex_unlock(&regulator_list_mutex);
131	return NULL;
132}
133
134/* Platform voltage constraint check */
135static int regulator_check_voltage(struct regulator_dev *rdev,
136				   int *min_uV, int *max_uV)
137{
138	BUG_ON(*min_uV > *max_uV);
139
140	if (!rdev->constraints) {
141		rdev_err(rdev, "no constraints\n");
142		return -ENODEV;
143	}
144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145		rdev_err(rdev, "operation not allowed\n");
146		return -EPERM;
147	}
148
149	if (*max_uV > rdev->constraints->max_uV)
150		*max_uV = rdev->constraints->max_uV;
151	if (*min_uV < rdev->constraints->min_uV)
152		*min_uV = rdev->constraints->min_uV;
153
154	if (*min_uV > *max_uV) {
155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156			 min_uV, max_uV);
157		return -EINVAL;
158	}
159
160	return 0;
161}
162
163/* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
165 */
166static int regulator_check_consumers(struct regulator_dev *rdev,
167				     int *min_uV, int *max_uV)
168{
169	struct regulator *regulator;
170
171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
172		/*
173		 * Assume consumers that didn't say anything are OK
174		 * with anything in the constraint range.
175		 */
176		if (!regulator->min_uV && !regulator->max_uV)
177			continue;
178
179		if (*max_uV > regulator->max_uV)
180			*max_uV = regulator->max_uV;
181		if (*min_uV < regulator->min_uV)
182			*min_uV = regulator->min_uV;
183	}
184
185	if (*min_uV > *max_uV)
186		return -EINVAL;
187
188	return 0;
189}
190
191/* current constraint check */
192static int regulator_check_current_limit(struct regulator_dev *rdev,
193					int *min_uA, int *max_uA)
194{
195	BUG_ON(*min_uA > *max_uA);
196
197	if (!rdev->constraints) {
198		rdev_err(rdev, "no constraints\n");
199		return -ENODEV;
200	}
201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202		rdev_err(rdev, "operation not allowed\n");
203		return -EPERM;
204	}
205
206	if (*max_uA > rdev->constraints->max_uA)
207		*max_uA = rdev->constraints->max_uA;
208	if (*min_uA < rdev->constraints->min_uA)
209		*min_uA = rdev->constraints->min_uA;
210
211	if (*min_uA > *max_uA) {
212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213			 min_uA, max_uA);
214		return -EINVAL;
215	}
216
217	return 0;
218}
219
220/* operating mode constraint check */
221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222{
223	switch (*mode) {
224	case REGULATOR_MODE_FAST:
225	case REGULATOR_MODE_NORMAL:
226	case REGULATOR_MODE_IDLE:
227	case REGULATOR_MODE_STANDBY:
228		break;
229	default:
230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
231		return -EINVAL;
232	}
233
234	if (!rdev->constraints) {
235		rdev_err(rdev, "no constraints\n");
236		return -ENODEV;
237	}
238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239		rdev_err(rdev, "operation not allowed\n");
240		return -EPERM;
241	}
242
243	/* The modes are bitmasks, the most power hungry modes having
244	 * the lowest values. If the requested mode isn't supported
245	 * try higher modes. */
246	while (*mode) {
247		if (rdev->constraints->valid_modes_mask & *mode)
248			return 0;
249		*mode /= 2;
250	}
251
252	return -EINVAL;
253}
254
255/* dynamic regulator mode switching constraint check */
256static int regulator_check_drms(struct regulator_dev *rdev)
257{
258	if (!rdev->constraints) {
259		rdev_err(rdev, "no constraints\n");
260		return -ENODEV;
261	}
262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263		rdev_err(rdev, "operation not allowed\n");
264		return -EPERM;
265	}
266	return 0;
267}
268
269static ssize_t device_requested_uA_show(struct device *dev,
270			     struct device_attribute *attr, char *buf)
271{
272	struct regulator *regulator;
273
274	regulator = get_device_regulator(dev);
275	if (regulator == NULL)
276		return 0;
277
278	return sprintf(buf, "%d\n", regulator->uA_load);
279}
280
281static ssize_t regulator_uV_show(struct device *dev,
282				struct device_attribute *attr, char *buf)
283{
284	struct regulator_dev *rdev = dev_get_drvdata(dev);
285	ssize_t ret;
286
287	mutex_lock(&rdev->mutex);
288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289	mutex_unlock(&rdev->mutex);
290
291	return ret;
292}
293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294
295static ssize_t regulator_uA_show(struct device *dev,
296				struct device_attribute *attr, char *buf)
297{
298	struct regulator_dev *rdev = dev_get_drvdata(dev);
299
300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301}
302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303
304static ssize_t regulator_name_show(struct device *dev,
305			     struct device_attribute *attr, char *buf)
306{
307	struct regulator_dev *rdev = dev_get_drvdata(dev);
308
309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
310}
311
312static ssize_t regulator_print_opmode(char *buf, int mode)
313{
314	switch (mode) {
315	case REGULATOR_MODE_FAST:
316		return sprintf(buf, "fast\n");
317	case REGULATOR_MODE_NORMAL:
318		return sprintf(buf, "normal\n");
319	case REGULATOR_MODE_IDLE:
320		return sprintf(buf, "idle\n");
321	case REGULATOR_MODE_STANDBY:
322		return sprintf(buf, "standby\n");
323	}
324	return sprintf(buf, "unknown\n");
325}
326
327static ssize_t regulator_opmode_show(struct device *dev,
328				    struct device_attribute *attr, char *buf)
329{
330	struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333}
334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335
336static ssize_t regulator_print_state(char *buf, int state)
337{
338	if (state > 0)
339		return sprintf(buf, "enabled\n");
340	else if (state == 0)
341		return sprintf(buf, "disabled\n");
342	else
343		return sprintf(buf, "unknown\n");
344}
345
346static ssize_t regulator_state_show(struct device *dev,
347				   struct device_attribute *attr, char *buf)
348{
349	struct regulator_dev *rdev = dev_get_drvdata(dev);
350	ssize_t ret;
351
352	mutex_lock(&rdev->mutex);
353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354	mutex_unlock(&rdev->mutex);
355
356	return ret;
357}
358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359
360static ssize_t regulator_status_show(struct device *dev,
361				   struct device_attribute *attr, char *buf)
362{
363	struct regulator_dev *rdev = dev_get_drvdata(dev);
364	int status;
365	char *label;
366
367	status = rdev->desc->ops->get_status(rdev);
368	if (status < 0)
369		return status;
370
371	switch (status) {
372	case REGULATOR_STATUS_OFF:
373		label = "off";
374		break;
375	case REGULATOR_STATUS_ON:
376		label = "on";
377		break;
378	case REGULATOR_STATUS_ERROR:
379		label = "error";
380		break;
381	case REGULATOR_STATUS_FAST:
382		label = "fast";
383		break;
384	case REGULATOR_STATUS_NORMAL:
385		label = "normal";
386		break;
387	case REGULATOR_STATUS_IDLE:
388		label = "idle";
389		break;
390	case REGULATOR_STATUS_STANDBY:
391		label = "standby";
392		break;
393	default:
394		return -ERANGE;
395	}
396
397	return sprintf(buf, "%s\n", label);
398}
399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400
401static ssize_t regulator_min_uA_show(struct device *dev,
402				    struct device_attribute *attr, char *buf)
403{
404	struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406	if (!rdev->constraints)
407		return sprintf(buf, "constraint not defined\n");
408
409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410}
411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412
413static ssize_t regulator_max_uA_show(struct device *dev,
414				    struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	if (!rdev->constraints)
419		return sprintf(buf, "constraint not defined\n");
420
421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422}
423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424
425static ssize_t regulator_min_uV_show(struct device *dev,
426				    struct device_attribute *attr, char *buf)
427{
428	struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430	if (!rdev->constraints)
431		return sprintf(buf, "constraint not defined\n");
432
433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434}
435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436
437static ssize_t regulator_max_uV_show(struct device *dev,
438				    struct device_attribute *attr, char *buf)
439{
440	struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442	if (!rdev->constraints)
443		return sprintf(buf, "constraint not defined\n");
444
445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446}
447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448
449static ssize_t regulator_total_uA_show(struct device *dev,
450				      struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453	struct regulator *regulator;
454	int uA = 0;
455
456	mutex_lock(&rdev->mutex);
457	list_for_each_entry(regulator, &rdev->consumer_list, list)
458		uA += regulator->uA_load;
459	mutex_unlock(&rdev->mutex);
460	return sprintf(buf, "%d\n", uA);
461}
462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463
464static ssize_t regulator_num_users_show(struct device *dev,
465				      struct device_attribute *attr, char *buf)
466{
467	struct regulator_dev *rdev = dev_get_drvdata(dev);
468	return sprintf(buf, "%d\n", rdev->use_count);
469}
470
471static ssize_t regulator_type_show(struct device *dev,
472				  struct device_attribute *attr, char *buf)
473{
474	struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476	switch (rdev->desc->type) {
477	case REGULATOR_VOLTAGE:
478		return sprintf(buf, "voltage\n");
479	case REGULATOR_CURRENT:
480		return sprintf(buf, "current\n");
481	}
482	return sprintf(buf, "unknown\n");
483}
484
485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486				struct device_attribute *attr, char *buf)
487{
488	struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491}
492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493		regulator_suspend_mem_uV_show, NULL);
494
495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496				struct device_attribute *attr, char *buf)
497{
498	struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501}
502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503		regulator_suspend_disk_uV_show, NULL);
504
505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506				struct device_attribute *attr, char *buf)
507{
508	struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511}
512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513		regulator_suspend_standby_uV_show, NULL);
514
515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return regulator_print_opmode(buf,
521		rdev->constraints->state_mem.mode);
522}
523static DEVICE_ATTR(suspend_mem_mode, 0444,
524		regulator_suspend_mem_mode_show, NULL);
525
526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return regulator_print_opmode(buf,
532		rdev->constraints->state_disk.mode);
533}
534static DEVICE_ATTR(suspend_disk_mode, 0444,
535		regulator_suspend_disk_mode_show, NULL);
536
537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538				struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return regulator_print_opmode(buf,
543		rdev->constraints->state_standby.mode);
544}
545static DEVICE_ATTR(suspend_standby_mode, 0444,
546		regulator_suspend_standby_mode_show, NULL);
547
548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549				   struct device_attribute *attr, char *buf)
550{
551	struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553	return regulator_print_state(buf,
554			rdev->constraints->state_mem.enabled);
555}
556static DEVICE_ATTR(suspend_mem_state, 0444,
557		regulator_suspend_mem_state_show, NULL);
558
559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560				   struct device_attribute *attr, char *buf)
561{
562	struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564	return regulator_print_state(buf,
565			rdev->constraints->state_disk.enabled);
566}
567static DEVICE_ATTR(suspend_disk_state, 0444,
568		regulator_suspend_disk_state_show, NULL);
569
570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571				   struct device_attribute *attr, char *buf)
572{
573	struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575	return regulator_print_state(buf,
576			rdev->constraints->state_standby.enabled);
577}
578static DEVICE_ATTR(suspend_standby_state, 0444,
579		regulator_suspend_standby_state_show, NULL);
580
581
582/*
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
585 */
586static struct device_attribute regulator_dev_attrs[] = {
587	__ATTR(name, 0444, regulator_name_show, NULL),
588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
589	__ATTR(type, 0444, regulator_type_show, NULL),
590	__ATTR_NULL,
591};
592
593static void regulator_dev_release(struct device *dev)
594{
595	struct regulator_dev *rdev = dev_get_drvdata(dev);
596	kfree(rdev);
597}
598
599static struct class regulator_class = {
600	.name = "regulator",
601	.dev_release = regulator_dev_release,
602	.dev_attrs = regulator_dev_attrs,
603};
604
605/* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607static void drms_uA_update(struct regulator_dev *rdev)
608{
609	struct regulator *sibling;
610	int current_uA = 0, output_uV, input_uV, err;
611	unsigned int mode;
612
613	err = regulator_check_drms(rdev);
614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615	    (!rdev->desc->ops->get_voltage &&
616	     !rdev->desc->ops->get_voltage_sel) ||
617	    !rdev->desc->ops->set_mode)
618		return;
619
620	/* get output voltage */
621	output_uV = _regulator_get_voltage(rdev);
622	if (output_uV <= 0)
623		return;
624
625	/* get input voltage */
626	input_uV = 0;
627	if (rdev->supply)
628		input_uV = _regulator_get_voltage(rdev);
629	if (input_uV <= 0)
630		input_uV = rdev->constraints->input_uV;
631	if (input_uV <= 0)
632		return;
633
634	/* calc total requested load */
635	list_for_each_entry(sibling, &rdev->consumer_list, list)
636		current_uA += sibling->uA_load;
637
638	/* now get the optimum mode for our new total regulator load */
639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640						  output_uV, current_uA);
641
642	/* check the new mode is allowed */
643	err = regulator_mode_constrain(rdev, &mode);
644	if (err == 0)
645		rdev->desc->ops->set_mode(rdev, mode);
646}
647
648static int suspend_set_state(struct regulator_dev *rdev,
649	struct regulator_state *rstate)
650{
651	int ret = 0;
652	bool can_set_state;
653
654	can_set_state = rdev->desc->ops->set_suspend_enable &&
655		rdev->desc->ops->set_suspend_disable;
656
657	/* If we have no suspend mode configration don't set anything;
658	 * only warn if the driver actually makes the suspend mode
659	 * configurable.
660	 */
661	if (!rstate->enabled && !rstate->disabled) {
662		if (can_set_state)
663			rdev_warn(rdev, "No configuration\n");
664		return 0;
665	}
666
667	if (rstate->enabled && rstate->disabled) {
668		rdev_err(rdev, "invalid configuration\n");
669		return -EINVAL;
670	}
671
672	if (!can_set_state) {
673		rdev_err(rdev, "no way to set suspend state\n");
674		return -EINVAL;
675	}
676
677	if (rstate->enabled)
678		ret = rdev->desc->ops->set_suspend_enable(rdev);
679	else
680		ret = rdev->desc->ops->set_suspend_disable(rdev);
681	if (ret < 0) {
682		rdev_err(rdev, "failed to enabled/disable\n");
683		return ret;
684	}
685
686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688		if (ret < 0) {
689			rdev_err(rdev, "failed to set voltage\n");
690			return ret;
691		}
692	}
693
694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696		if (ret < 0) {
697			rdev_err(rdev, "failed to set mode\n");
698			return ret;
699		}
700	}
701	return ret;
702}
703
704/* locks held by caller */
705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706{
707	if (!rdev->constraints)
708		return -EINVAL;
709
710	switch (state) {
711	case PM_SUSPEND_STANDBY:
712		return suspend_set_state(rdev,
713			&rdev->constraints->state_standby);
714	case PM_SUSPEND_MEM:
715		return suspend_set_state(rdev,
716			&rdev->constraints->state_mem);
717	case PM_SUSPEND_MAX:
718		return suspend_set_state(rdev,
719			&rdev->constraints->state_disk);
720	default:
721		return -EINVAL;
722	}
723}
724
725static void print_constraints(struct regulator_dev *rdev)
726{
727	struct regulation_constraints *constraints = rdev->constraints;
728	char buf[80] = "";
729	int count = 0;
730	int ret;
731
732	if (constraints->min_uV && constraints->max_uV) {
733		if (constraints->min_uV == constraints->max_uV)
734			count += sprintf(buf + count, "%d mV ",
735					 constraints->min_uV / 1000);
736		else
737			count += sprintf(buf + count, "%d <--> %d mV ",
738					 constraints->min_uV / 1000,
739					 constraints->max_uV / 1000);
740	}
741
742	if (!constraints->min_uV ||
743	    constraints->min_uV != constraints->max_uV) {
744		ret = _regulator_get_voltage(rdev);
745		if (ret > 0)
746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
747	}
748
749	if (constraints->uV_offset)
750		count += sprintf(buf, "%dmV offset ",
751				 constraints->uV_offset / 1000);
752
753	if (constraints->min_uA && constraints->max_uA) {
754		if (constraints->min_uA == constraints->max_uA)
755			count += sprintf(buf + count, "%d mA ",
756					 constraints->min_uA / 1000);
757		else
758			count += sprintf(buf + count, "%d <--> %d mA ",
759					 constraints->min_uA / 1000,
760					 constraints->max_uA / 1000);
761	}
762
763	if (!constraints->min_uA ||
764	    constraints->min_uA != constraints->max_uA) {
765		ret = _regulator_get_current_limit(rdev);
766		if (ret > 0)
767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
768	}
769
770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771		count += sprintf(buf + count, "fast ");
772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773		count += sprintf(buf + count, "normal ");
774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775		count += sprintf(buf + count, "idle ");
776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777		count += sprintf(buf + count, "standby");
778
779	rdev_info(rdev, "%s\n", buf);
780}
781
782static int machine_constraints_voltage(struct regulator_dev *rdev,
783	struct regulation_constraints *constraints)
784{
785	struct regulator_ops *ops = rdev->desc->ops;
786	int ret;
787
788	/* do we need to apply the constraint voltage */
789	if (rdev->constraints->apply_uV &&
790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
791		ret = _regulator_do_set_voltage(rdev,
792						rdev->constraints->min_uV,
793						rdev->constraints->max_uV);
794		if (ret < 0) {
795			rdev_err(rdev, "failed to apply %duV constraint\n",
796				 rdev->constraints->min_uV);
797			return ret;
798		}
799	}
800
801	/* constrain machine-level voltage specs to fit
802	 * the actual range supported by this regulator.
803	 */
804	if (ops->list_voltage && rdev->desc->n_voltages) {
805		int	count = rdev->desc->n_voltages;
806		int	i;
807		int	min_uV = INT_MAX;
808		int	max_uV = INT_MIN;
809		int	cmin = constraints->min_uV;
810		int	cmax = constraints->max_uV;
811
812		/* it's safe to autoconfigure fixed-voltage supplies
813		   and the constraints are used by list_voltage. */
814		if (count == 1 && !cmin) {
815			cmin = 1;
816			cmax = INT_MAX;
817			constraints->min_uV = cmin;
818			constraints->max_uV = cmax;
819		}
820
821		/* voltage constraints are optional */
822		if ((cmin == 0) && (cmax == 0))
823			return 0;
824
825		/* else require explicit machine-level constraints */
826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827			rdev_err(rdev, "invalid voltage constraints\n");
828			return -EINVAL;
829		}
830
831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832		for (i = 0; i < count; i++) {
833			int	value;
834
835			value = ops->list_voltage(rdev, i);
836			if (value <= 0)
837				continue;
838
839			/* maybe adjust [min_uV..max_uV] */
840			if (value >= cmin && value < min_uV)
841				min_uV = value;
842			if (value <= cmax && value > max_uV)
843				max_uV = value;
844		}
845
846		/* final: [min_uV..max_uV] valid iff constraints valid */
847		if (max_uV < min_uV) {
848			rdev_err(rdev, "unsupportable voltage constraints\n");
849			return -EINVAL;
850		}
851
852		/* use regulator's subset of machine constraints */
853		if (constraints->min_uV < min_uV) {
854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855				 constraints->min_uV, min_uV);
856			constraints->min_uV = min_uV;
857		}
858		if (constraints->max_uV > max_uV) {
859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860				 constraints->max_uV, max_uV);
861			constraints->max_uV = max_uV;
862		}
863	}
864
865	return 0;
866}
867
868/**
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
872 *
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
877 * set_mode.
878 */
879static int set_machine_constraints(struct regulator_dev *rdev,
880	const struct regulation_constraints *constraints)
881{
882	int ret = 0;
883	struct regulator_ops *ops = rdev->desc->ops;
884
885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886				    GFP_KERNEL);
887	if (!rdev->constraints)
888		return -ENOMEM;
889
890	ret = machine_constraints_voltage(rdev, rdev->constraints);
891	if (ret != 0)
892		goto out;
893
894	/* do we need to setup our suspend state */
895	if (constraints->initial_state) {
896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897		if (ret < 0) {
898			rdev_err(rdev, "failed to set suspend state\n");
899			goto out;
900		}
901	}
902
903	if (constraints->initial_mode) {
904		if (!ops->set_mode) {
905			rdev_err(rdev, "no set_mode operation\n");
906			ret = -EINVAL;
907			goto out;
908		}
909
910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911		if (ret < 0) {
912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913			goto out;
914		}
915	}
916
917	/* If the constraints say the regulator should be on at this point
918	 * and we have control then make sure it is enabled.
919	 */
920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921	    ops->enable) {
922		ret = ops->enable(rdev);
923		if (ret < 0) {
924			rdev_err(rdev, "failed to enable\n");
925			goto out;
926		}
927	}
928
929	print_constraints(rdev);
930	return 0;
931out:
932	kfree(rdev->constraints);
933	rdev->constraints = NULL;
934	return ret;
935}
936
937/**
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
941 *
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
945 */
946static int set_supply(struct regulator_dev *rdev,
947		      struct regulator_dev *supply_rdev)
948{
949	int err;
950
951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952
953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954	if (IS_ERR(rdev->supply)) {
955		err = PTR_ERR(rdev->supply);
956		rdev->supply = NULL;
957		return err;
958	}
959
960	return 0;
961}
962
963/**
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev:         regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply:       symbolic name for supply
969 *
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices.  Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
974 *
975 * Only one of consumer_dev and consumer_dev_name may be specified.
976 */
977static int set_consumer_device_supply(struct regulator_dev *rdev,
978	struct device *consumer_dev, const char *consumer_dev_name,
979	const char *supply)
980{
981	struct regulator_map *node;
982	int has_dev;
983
984	if (consumer_dev && consumer_dev_name)
985		return -EINVAL;
986
987	if (!consumer_dev_name && consumer_dev)
988		consumer_dev_name = dev_name(consumer_dev);
989
990	if (supply == NULL)
991		return -EINVAL;
992
993	if (consumer_dev_name != NULL)
994		has_dev = 1;
995	else
996		has_dev = 0;
997
998	list_for_each_entry(node, &regulator_map_list, list) {
999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
1014		return -EBUSY;
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
1061		return NULL;
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
1125	}
1126#endif
1127
1128	mutex_unlock(&rdev->mutex);
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
1163	}
1164
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
1169
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
1179		}
1180	}
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
1185	}
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188	if (!devname)
1189		devname = "deviceless";
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
1197		rdev = dummy_regulator_rdev;
1198		goto found;
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
1218
1219	regulator = create_regulator(rdev, dev, id);
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
1222		module_put(rdev->owner);
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
1233			rdev->use_count = 0;
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1295 */
1296void regulator_put(struct regulator *regulator)
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
1304	rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
1322
1323	module_put(rdev->owner);
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
1329{
1330	if (!rdev->constraints)
1331		return 0;
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
1335	else
1336		return 0;
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342	int ret, delay;
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
1354				return -EPERM;
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
1398
1399	return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
1417
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438	int ret = 0;
1439
1440	if (WARN(rdev->use_count <= 0,
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
1456				return ret;
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
1523	}
1524
1525	return ret;
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
1580	mutex_lock(&regulator->rdev->mutex);
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
1619
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621		return -EINVAL;
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
1650	int i, voltages, ret;
1651
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
1672	unsigned int selector;
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
1691
1692		selector = 0;
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
1705			}
1706		}
1707
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
1722		}
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747
1748	return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
1773
1774	mutex_lock(&rdev->mutex);
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
1782
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
1805	return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
2149
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
2186	}
2187	ret = mode;
2188out:
2189	mutex_unlock(&rdev->mutex);
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
2544
2545	return status;
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
2556	}
2557
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
2580	struct regulator_dev *rdev;
2581	int ret, i;
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
2585
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
2610	}
2611
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
2615
2616	mutex_lock(&regulator_list_mutex);
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
2648	if (ret < 0)
2649		goto scrub;
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
2655
2656	if (init_data->supply_regulator) {
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
2672			goto scrub;
2673		}
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
2678	}
2679
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
2690		}
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
2694
2695	rdev_init_debugfs(rdev);
2696out:
2697	mutex_unlock(&regulator_list_mutex);
2698	return rdev;
2699
2700unset_supplies:
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
2704	kfree(rdev->constraints);
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
2739	mutex_unlock(&regulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
2769		}
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
2923
2924	regulator_dummy_init();
2925
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
2939	mutex_lock(&regulator_list_mutex);
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
2951
2952		mutex_lock(&rdev->mutex);
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
2992