core.c revision 1bf5a1f86a328122714680cd59951074b4f31e07
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/regulator/consumer.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34
35#define rdev_err(rdev, fmt, ...)					\
36	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37#define rdev_warn(rdev, fmt, ...)					\
38	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_info(rdev, fmt, ...)					\
40	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_dbg(rdev, fmt, ...)					\
42	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44static DEFINE_MUTEX(regulator_list_mutex);
45static LIST_HEAD(regulator_list);
46static LIST_HEAD(regulator_map_list);
47static int has_full_constraints;
48static bool board_wants_dummy_regulator;
49
50/*
51 * struct regulator_map
52 *
53 * Used to provide symbolic supply names to devices.
54 */
55struct regulator_map {
56	struct list_head list;
57	const char *dev_name;   /* The dev_name() for the consumer */
58	const char *supply;
59	struct regulator_dev *regulator;
60};
61
62/*
63 * struct regulator
64 *
65 * One for each consumer device.
66 */
67struct regulator {
68	struct device *dev;
69	struct list_head list;
70	int uA_load;
71	int min_uV;
72	int max_uV;
73	char *supply_name;
74	struct device_attribute dev_attr;
75	struct regulator_dev *rdev;
76};
77
78static int _regulator_is_enabled(struct regulator_dev *rdev);
79static int _regulator_disable(struct regulator_dev *rdev,
80		struct regulator_dev **supply_rdev_ptr);
81static int _regulator_get_voltage(struct regulator_dev *rdev);
82static int _regulator_get_current_limit(struct regulator_dev *rdev);
83static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84static void _notifier_call_chain(struct regulator_dev *rdev,
85				  unsigned long event, void *data);
86
87static const char *rdev_get_name(struct regulator_dev *rdev)
88{
89	if (rdev->constraints && rdev->constraints->name)
90		return rdev->constraints->name;
91	else if (rdev->desc->name)
92		return rdev->desc->name;
93	else
94		return "";
95}
96
97/* gets the regulator for a given consumer device */
98static struct regulator *get_device_regulator(struct device *dev)
99{
100	struct regulator *regulator = NULL;
101	struct regulator_dev *rdev;
102
103	mutex_lock(&regulator_list_mutex);
104	list_for_each_entry(rdev, &regulator_list, list) {
105		mutex_lock(&rdev->mutex);
106		list_for_each_entry(regulator, &rdev->consumer_list, list) {
107			if (regulator->dev == dev) {
108				mutex_unlock(&rdev->mutex);
109				mutex_unlock(&regulator_list_mutex);
110				return regulator;
111			}
112		}
113		mutex_unlock(&rdev->mutex);
114	}
115	mutex_unlock(&regulator_list_mutex);
116	return NULL;
117}
118
119/* Platform voltage constraint check */
120static int regulator_check_voltage(struct regulator_dev *rdev,
121				   int *min_uV, int *max_uV)
122{
123	BUG_ON(*min_uV > *max_uV);
124
125	if (!rdev->constraints) {
126		rdev_err(rdev, "no constraints\n");
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130		rdev_err(rdev, "operation not allowed\n");
131		return -EPERM;
132	}
133
134	if (*max_uV > rdev->constraints->max_uV)
135		*max_uV = rdev->constraints->max_uV;
136	if (*min_uV < rdev->constraints->min_uV)
137		*min_uV = rdev->constraints->min_uV;
138
139	if (*min_uV > *max_uV)
140		return -EINVAL;
141
142	return 0;
143}
144
145/* Make sure we select a voltage that suits the needs of all
146 * regulator consumers
147 */
148static int regulator_check_consumers(struct regulator_dev *rdev,
149				     int *min_uV, int *max_uV)
150{
151	struct regulator *regulator;
152
153	list_for_each_entry(regulator, &rdev->consumer_list, list) {
154		if (*max_uV > regulator->max_uV)
155			*max_uV = regulator->max_uV;
156		if (*min_uV < regulator->min_uV)
157			*min_uV = regulator->min_uV;
158	}
159
160	if (*min_uV > *max_uV)
161		return -EINVAL;
162
163	return 0;
164}
165
166/* current constraint check */
167static int regulator_check_current_limit(struct regulator_dev *rdev,
168					int *min_uA, int *max_uA)
169{
170	BUG_ON(*min_uA > *max_uA);
171
172	if (!rdev->constraints) {
173		rdev_err(rdev, "no constraints\n");
174		return -ENODEV;
175	}
176	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177		rdev_err(rdev, "operation not allowed\n");
178		return -EPERM;
179	}
180
181	if (*max_uA > rdev->constraints->max_uA)
182		*max_uA = rdev->constraints->max_uA;
183	if (*min_uA < rdev->constraints->min_uA)
184		*min_uA = rdev->constraints->min_uA;
185
186	if (*min_uA > *max_uA)
187		return -EINVAL;
188
189	return 0;
190}
191
192/* operating mode constraint check */
193static int regulator_check_mode(struct regulator_dev *rdev, int mode)
194{
195	switch (mode) {
196	case REGULATOR_MODE_FAST:
197	case REGULATOR_MODE_NORMAL:
198	case REGULATOR_MODE_IDLE:
199	case REGULATOR_MODE_STANDBY:
200		break;
201	default:
202		return -EINVAL;
203	}
204
205	if (!rdev->constraints) {
206		rdev_err(rdev, "no constraints\n");
207		return -ENODEV;
208	}
209	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210		rdev_err(rdev, "operation not allowed\n");
211		return -EPERM;
212	}
213	if (!(rdev->constraints->valid_modes_mask & mode)) {
214		rdev_err(rdev, "invalid mode %x\n", mode);
215		return -EINVAL;
216	}
217	return 0;
218}
219
220/* dynamic regulator mode switching constraint check */
221static int regulator_check_drms(struct regulator_dev *rdev)
222{
223	if (!rdev->constraints) {
224		rdev_err(rdev, "no constraints\n");
225		return -ENODEV;
226	}
227	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228		rdev_err(rdev, "operation not allowed\n");
229		return -EPERM;
230	}
231	return 0;
232}
233
234static ssize_t device_requested_uA_show(struct device *dev,
235			     struct device_attribute *attr, char *buf)
236{
237	struct regulator *regulator;
238
239	regulator = get_device_regulator(dev);
240	if (regulator == NULL)
241		return 0;
242
243	return sprintf(buf, "%d\n", regulator->uA_load);
244}
245
246static ssize_t regulator_uV_show(struct device *dev,
247				struct device_attribute *attr, char *buf)
248{
249	struct regulator_dev *rdev = dev_get_drvdata(dev);
250	ssize_t ret;
251
252	mutex_lock(&rdev->mutex);
253	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254	mutex_unlock(&rdev->mutex);
255
256	return ret;
257}
258static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259
260static ssize_t regulator_uA_show(struct device *dev,
261				struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
266}
267static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268
269static ssize_t regulator_name_show(struct device *dev,
270			     struct device_attribute *attr, char *buf)
271{
272	struct regulator_dev *rdev = dev_get_drvdata(dev);
273
274	return sprintf(buf, "%s\n", rdev_get_name(rdev));
275}
276
277static ssize_t regulator_print_opmode(char *buf, int mode)
278{
279	switch (mode) {
280	case REGULATOR_MODE_FAST:
281		return sprintf(buf, "fast\n");
282	case REGULATOR_MODE_NORMAL:
283		return sprintf(buf, "normal\n");
284	case REGULATOR_MODE_IDLE:
285		return sprintf(buf, "idle\n");
286	case REGULATOR_MODE_STANDBY:
287		return sprintf(buf, "standby\n");
288	}
289	return sprintf(buf, "unknown\n");
290}
291
292static ssize_t regulator_opmode_show(struct device *dev,
293				    struct device_attribute *attr, char *buf)
294{
295	struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
298}
299static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
300
301static ssize_t regulator_print_state(char *buf, int state)
302{
303	if (state > 0)
304		return sprintf(buf, "enabled\n");
305	else if (state == 0)
306		return sprintf(buf, "disabled\n");
307	else
308		return sprintf(buf, "unknown\n");
309}
310
311static ssize_t regulator_state_show(struct device *dev,
312				   struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
324
325static ssize_t regulator_status_show(struct device *dev,
326				   struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329	int status;
330	char *label;
331
332	status = rdev->desc->ops->get_status(rdev);
333	if (status < 0)
334		return status;
335
336	switch (status) {
337	case REGULATOR_STATUS_OFF:
338		label = "off";
339		break;
340	case REGULATOR_STATUS_ON:
341		label = "on";
342		break;
343	case REGULATOR_STATUS_ERROR:
344		label = "error";
345		break;
346	case REGULATOR_STATUS_FAST:
347		label = "fast";
348		break;
349	case REGULATOR_STATUS_NORMAL:
350		label = "normal";
351		break;
352	case REGULATOR_STATUS_IDLE:
353		label = "idle";
354		break;
355	case REGULATOR_STATUS_STANDBY:
356		label = "standby";
357		break;
358	default:
359		return -ERANGE;
360	}
361
362	return sprintf(buf, "%s\n", label);
363}
364static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
365
366static ssize_t regulator_min_uA_show(struct device *dev,
367				    struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "constraint not defined\n");
373
374	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
375}
376static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377
378static ssize_t regulator_max_uA_show(struct device *dev,
379				    struct device_attribute *attr, char *buf)
380{
381	struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383	if (!rdev->constraints)
384		return sprintf(buf, "constraint not defined\n");
385
386	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
387}
388static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389
390static ssize_t regulator_min_uV_show(struct device *dev,
391				    struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394
395	if (!rdev->constraints)
396		return sprintf(buf, "constraint not defined\n");
397
398	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
399}
400static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401
402static ssize_t regulator_max_uV_show(struct device *dev,
403				    struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407	if (!rdev->constraints)
408		return sprintf(buf, "constraint not defined\n");
409
410	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
411}
412static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413
414static ssize_t regulator_total_uA_show(struct device *dev,
415				      struct device_attribute *attr, char *buf)
416{
417	struct regulator_dev *rdev = dev_get_drvdata(dev);
418	struct regulator *regulator;
419	int uA = 0;
420
421	mutex_lock(&rdev->mutex);
422	list_for_each_entry(regulator, &rdev->consumer_list, list)
423		uA += regulator->uA_load;
424	mutex_unlock(&rdev->mutex);
425	return sprintf(buf, "%d\n", uA);
426}
427static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428
429static ssize_t regulator_num_users_show(struct device *dev,
430				      struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433	return sprintf(buf, "%d\n", rdev->use_count);
434}
435
436static ssize_t regulator_type_show(struct device *dev,
437				  struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	switch (rdev->desc->type) {
442	case REGULATOR_VOLTAGE:
443		return sprintf(buf, "voltage\n");
444	case REGULATOR_CURRENT:
445		return sprintf(buf, "current\n");
446	}
447	return sprintf(buf, "unknown\n");
448}
449
450static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
456}
457static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458		regulator_suspend_mem_uV_show, NULL);
459
460static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461				struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
466}
467static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468		regulator_suspend_disk_uV_show, NULL);
469
470static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
476}
477static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478		regulator_suspend_standby_uV_show, NULL);
479
480static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481				struct device_attribute *attr, char *buf)
482{
483	struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485	return regulator_print_opmode(buf,
486		rdev->constraints->state_mem.mode);
487}
488static DEVICE_ATTR(suspend_mem_mode, 0444,
489		regulator_suspend_mem_mode_show, NULL);
490
491static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492				struct device_attribute *attr, char *buf)
493{
494	struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496	return regulator_print_opmode(buf,
497		rdev->constraints->state_disk.mode);
498}
499static DEVICE_ATTR(suspend_disk_mode, 0444,
500		regulator_suspend_disk_mode_show, NULL);
501
502static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503				struct device_attribute *attr, char *buf)
504{
505	struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507	return regulator_print_opmode(buf,
508		rdev->constraints->state_standby.mode);
509}
510static DEVICE_ATTR(suspend_standby_mode, 0444,
511		regulator_suspend_standby_mode_show, NULL);
512
513static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514				   struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return regulator_print_state(buf,
519			rdev->constraints->state_mem.enabled);
520}
521static DEVICE_ATTR(suspend_mem_state, 0444,
522		regulator_suspend_mem_state_show, NULL);
523
524static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525				   struct device_attribute *attr, char *buf)
526{
527	struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529	return regulator_print_state(buf,
530			rdev->constraints->state_disk.enabled);
531}
532static DEVICE_ATTR(suspend_disk_state, 0444,
533		regulator_suspend_disk_state_show, NULL);
534
535static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536				   struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return regulator_print_state(buf,
541			rdev->constraints->state_standby.enabled);
542}
543static DEVICE_ATTR(suspend_standby_state, 0444,
544		regulator_suspend_standby_state_show, NULL);
545
546
547/*
548 * These are the only attributes are present for all regulators.
549 * Other attributes are a function of regulator functionality.
550 */
551static struct device_attribute regulator_dev_attrs[] = {
552	__ATTR(name, 0444, regulator_name_show, NULL),
553	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
554	__ATTR(type, 0444, regulator_type_show, NULL),
555	__ATTR_NULL,
556};
557
558static void regulator_dev_release(struct device *dev)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561	kfree(rdev);
562}
563
564static struct class regulator_class = {
565	.name = "regulator",
566	.dev_release = regulator_dev_release,
567	.dev_attrs = regulator_dev_attrs,
568};
569
570/* Calculate the new optimum regulator operating mode based on the new total
571 * consumer load. All locks held by caller */
572static void drms_uA_update(struct regulator_dev *rdev)
573{
574	struct regulator *sibling;
575	int current_uA = 0, output_uV, input_uV, err;
576	unsigned int mode;
577
578	err = regulator_check_drms(rdev);
579	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
581		return;
582
583	/* get output voltage */
584	output_uV = _regulator_get_voltage(rdev);
585	if (output_uV <= 0)
586		return;
587
588	/* get input voltage */
589	input_uV = 0;
590	if (rdev->supply)
591		input_uV = _regulator_get_voltage(rdev);
592	if (input_uV <= 0)
593		input_uV = rdev->constraints->input_uV;
594	if (input_uV <= 0)
595		return;
596
597	/* calc total requested load */
598	list_for_each_entry(sibling, &rdev->consumer_list, list)
599		current_uA += sibling->uA_load;
600
601	/* now get the optimum mode for our new total regulator load */
602	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
603						  output_uV, current_uA);
604
605	/* check the new mode is allowed */
606	err = regulator_check_mode(rdev, mode);
607	if (err == 0)
608		rdev->desc->ops->set_mode(rdev, mode);
609}
610
611static int suspend_set_state(struct regulator_dev *rdev,
612	struct regulator_state *rstate)
613{
614	int ret = 0;
615	bool can_set_state;
616
617	can_set_state = rdev->desc->ops->set_suspend_enable &&
618		rdev->desc->ops->set_suspend_disable;
619
620	/* If we have no suspend mode configration don't set anything;
621	 * only warn if the driver actually makes the suspend mode
622	 * configurable.
623	 */
624	if (!rstate->enabled && !rstate->disabled) {
625		if (can_set_state)
626			rdev_warn(rdev, "No configuration\n");
627		return 0;
628	}
629
630	if (rstate->enabled && rstate->disabled) {
631		rdev_err(rdev, "invalid configuration\n");
632		return -EINVAL;
633	}
634
635	if (!can_set_state) {
636		rdev_err(rdev, "no way to set suspend state\n");
637		return -EINVAL;
638	}
639
640	if (rstate->enabled)
641		ret = rdev->desc->ops->set_suspend_enable(rdev);
642	else
643		ret = rdev->desc->ops->set_suspend_disable(rdev);
644	if (ret < 0) {
645		rdev_err(rdev, "failed to enabled/disable\n");
646		return ret;
647	}
648
649	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
650		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
651		if (ret < 0) {
652			rdev_err(rdev, "failed to set voltage\n");
653			return ret;
654		}
655	}
656
657	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
658		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
659		if (ret < 0) {
660			rdev_err(rdev, "failed to set mode\n");
661			return ret;
662		}
663	}
664	return ret;
665}
666
667/* locks held by caller */
668static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
669{
670	if (!rdev->constraints)
671		return -EINVAL;
672
673	switch (state) {
674	case PM_SUSPEND_STANDBY:
675		return suspend_set_state(rdev,
676			&rdev->constraints->state_standby);
677	case PM_SUSPEND_MEM:
678		return suspend_set_state(rdev,
679			&rdev->constraints->state_mem);
680	case PM_SUSPEND_MAX:
681		return suspend_set_state(rdev,
682			&rdev->constraints->state_disk);
683	default:
684		return -EINVAL;
685	}
686}
687
688static void print_constraints(struct regulator_dev *rdev)
689{
690	struct regulation_constraints *constraints = rdev->constraints;
691	char buf[80] = "";
692	int count = 0;
693	int ret;
694
695	if (constraints->min_uV && constraints->max_uV) {
696		if (constraints->min_uV == constraints->max_uV)
697			count += sprintf(buf + count, "%d mV ",
698					 constraints->min_uV / 1000);
699		else
700			count += sprintf(buf + count, "%d <--> %d mV ",
701					 constraints->min_uV / 1000,
702					 constraints->max_uV / 1000);
703	}
704
705	if (!constraints->min_uV ||
706	    constraints->min_uV != constraints->max_uV) {
707		ret = _regulator_get_voltage(rdev);
708		if (ret > 0)
709			count += sprintf(buf + count, "at %d mV ", ret / 1000);
710	}
711
712	if (constraints->min_uA && constraints->max_uA) {
713		if (constraints->min_uA == constraints->max_uA)
714			count += sprintf(buf + count, "%d mA ",
715					 constraints->min_uA / 1000);
716		else
717			count += sprintf(buf + count, "%d <--> %d mA ",
718					 constraints->min_uA / 1000,
719					 constraints->max_uA / 1000);
720	}
721
722	if (!constraints->min_uA ||
723	    constraints->min_uA != constraints->max_uA) {
724		ret = _regulator_get_current_limit(rdev);
725		if (ret > 0)
726			count += sprintf(buf + count, "at %d mA ", ret / 1000);
727	}
728
729	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
730		count += sprintf(buf + count, "fast ");
731	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
732		count += sprintf(buf + count, "normal ");
733	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
734		count += sprintf(buf + count, "idle ");
735	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
736		count += sprintf(buf + count, "standby");
737
738	rdev_info(rdev, "regulator: %s\n", buf);
739}
740
741static int machine_constraints_voltage(struct regulator_dev *rdev,
742	struct regulation_constraints *constraints)
743{
744	struct regulator_ops *ops = rdev->desc->ops;
745	int ret;
746	unsigned selector;
747
748	/* do we need to apply the constraint voltage */
749	if (rdev->constraints->apply_uV &&
750		rdev->constraints->min_uV == rdev->constraints->max_uV &&
751		ops->set_voltage) {
752		ret = ops->set_voltage(rdev,
753				       rdev->constraints->min_uV,
754				       rdev->constraints->max_uV,
755				       &selector);
756			if (ret < 0) {
757				rdev_err(rdev, "failed to apply %duV constraint\n",
758					 rdev->constraints->min_uV);
759				rdev->constraints = NULL;
760				return ret;
761			}
762	}
763
764	/* constrain machine-level voltage specs to fit
765	 * the actual range supported by this regulator.
766	 */
767	if (ops->list_voltage && rdev->desc->n_voltages) {
768		int	count = rdev->desc->n_voltages;
769		int	i;
770		int	min_uV = INT_MAX;
771		int	max_uV = INT_MIN;
772		int	cmin = constraints->min_uV;
773		int	cmax = constraints->max_uV;
774
775		/* it's safe to autoconfigure fixed-voltage supplies
776		   and the constraints are used by list_voltage. */
777		if (count == 1 && !cmin) {
778			cmin = 1;
779			cmax = INT_MAX;
780			constraints->min_uV = cmin;
781			constraints->max_uV = cmax;
782		}
783
784		/* voltage constraints are optional */
785		if ((cmin == 0) && (cmax == 0))
786			return 0;
787
788		/* else require explicit machine-level constraints */
789		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
790			rdev_err(rdev, "invalid voltage constraints\n");
791			return -EINVAL;
792		}
793
794		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
795		for (i = 0; i < count; i++) {
796			int	value;
797
798			value = ops->list_voltage(rdev, i);
799			if (value <= 0)
800				continue;
801
802			/* maybe adjust [min_uV..max_uV] */
803			if (value >= cmin && value < min_uV)
804				min_uV = value;
805			if (value <= cmax && value > max_uV)
806				max_uV = value;
807		}
808
809		/* final: [min_uV..max_uV] valid iff constraints valid */
810		if (max_uV < min_uV) {
811			rdev_err(rdev, "unsupportable voltage constraints\n");
812			return -EINVAL;
813		}
814
815		/* use regulator's subset of machine constraints */
816		if (constraints->min_uV < min_uV) {
817			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
818				 constraints->min_uV, min_uV);
819			constraints->min_uV = min_uV;
820		}
821		if (constraints->max_uV > max_uV) {
822			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
823				 constraints->max_uV, max_uV);
824			constraints->max_uV = max_uV;
825		}
826	}
827
828	return 0;
829}
830
831/**
832 * set_machine_constraints - sets regulator constraints
833 * @rdev: regulator source
834 * @constraints: constraints to apply
835 *
836 * Allows platform initialisation code to define and constrain
837 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
838 * Constraints *must* be set by platform code in order for some
839 * regulator operations to proceed i.e. set_voltage, set_current_limit,
840 * set_mode.
841 */
842static int set_machine_constraints(struct regulator_dev *rdev,
843	const struct regulation_constraints *constraints)
844{
845	int ret = 0;
846	struct regulator_ops *ops = rdev->desc->ops;
847
848	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
849				    GFP_KERNEL);
850	if (!rdev->constraints)
851		return -ENOMEM;
852
853	ret = machine_constraints_voltage(rdev, rdev->constraints);
854	if (ret != 0)
855		goto out;
856
857	/* do we need to setup our suspend state */
858	if (constraints->initial_state) {
859		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
860		if (ret < 0) {
861			rdev_err(rdev, "failed to set suspend state\n");
862			rdev->constraints = NULL;
863			goto out;
864		}
865	}
866
867	if (constraints->initial_mode) {
868		if (!ops->set_mode) {
869			rdev_err(rdev, "no set_mode operation\n");
870			ret = -EINVAL;
871			goto out;
872		}
873
874		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
875		if (ret < 0) {
876			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
877			goto out;
878		}
879	}
880
881	/* If the constraints say the regulator should be on at this point
882	 * and we have control then make sure it is enabled.
883	 */
884	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
885	    ops->enable) {
886		ret = ops->enable(rdev);
887		if (ret < 0) {
888			rdev_err(rdev, "failed to enable\n");
889			rdev->constraints = NULL;
890			goto out;
891		}
892	}
893
894	print_constraints(rdev);
895out:
896	return ret;
897}
898
899/**
900 * set_supply - set regulator supply regulator
901 * @rdev: regulator name
902 * @supply_rdev: supply regulator name
903 *
904 * Called by platform initialisation code to set the supply regulator for this
905 * regulator. This ensures that a regulators supply will also be enabled by the
906 * core if it's child is enabled.
907 */
908static int set_supply(struct regulator_dev *rdev,
909	struct regulator_dev *supply_rdev)
910{
911	int err;
912
913	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
914				"supply");
915	if (err) {
916		rdev_err(rdev, "could not add device link %s err %d\n",
917			 supply_rdev->dev.kobj.name, err);
918		       goto out;
919	}
920	rdev->supply = supply_rdev;
921	list_add(&rdev->slist, &supply_rdev->supply_list);
922out:
923	return err;
924}
925
926/**
927 * set_consumer_device_supply - Bind a regulator to a symbolic supply
928 * @rdev:         regulator source
929 * @consumer_dev: device the supply applies to
930 * @consumer_dev_name: dev_name() string for device supply applies to
931 * @supply:       symbolic name for supply
932 *
933 * Allows platform initialisation code to map physical regulator
934 * sources to symbolic names for supplies for use by devices.  Devices
935 * should use these symbolic names to request regulators, avoiding the
936 * need to provide board-specific regulator names as platform data.
937 *
938 * Only one of consumer_dev and consumer_dev_name may be specified.
939 */
940static int set_consumer_device_supply(struct regulator_dev *rdev,
941	struct device *consumer_dev, const char *consumer_dev_name,
942	const char *supply)
943{
944	struct regulator_map *node;
945	int has_dev;
946
947	if (consumer_dev && consumer_dev_name)
948		return -EINVAL;
949
950	if (!consumer_dev_name && consumer_dev)
951		consumer_dev_name = dev_name(consumer_dev);
952
953	if (supply == NULL)
954		return -EINVAL;
955
956	if (consumer_dev_name != NULL)
957		has_dev = 1;
958	else
959		has_dev = 0;
960
961	list_for_each_entry(node, &regulator_map_list, list) {
962		if (node->dev_name && consumer_dev_name) {
963			if (strcmp(node->dev_name, consumer_dev_name) != 0)
964				continue;
965		} else if (node->dev_name || consumer_dev_name) {
966			continue;
967		}
968
969		if (strcmp(node->supply, supply) != 0)
970			continue;
971
972		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
973			dev_name(&node->regulator->dev),
974			node->regulator->desc->name,
975			supply,
976			dev_name(&rdev->dev), rdev_get_name(rdev));
977		return -EBUSY;
978	}
979
980	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
981	if (node == NULL)
982		return -ENOMEM;
983
984	node->regulator = rdev;
985	node->supply = supply;
986
987	if (has_dev) {
988		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
989		if (node->dev_name == NULL) {
990			kfree(node);
991			return -ENOMEM;
992		}
993	}
994
995	list_add(&node->list, &regulator_map_list);
996	return 0;
997}
998
999static void unset_regulator_supplies(struct regulator_dev *rdev)
1000{
1001	struct regulator_map *node, *n;
1002
1003	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1004		if (rdev == node->regulator) {
1005			list_del(&node->list);
1006			kfree(node->dev_name);
1007			kfree(node);
1008		}
1009	}
1010}
1011
1012#define REG_STR_SIZE	32
1013
1014static struct regulator *create_regulator(struct regulator_dev *rdev,
1015					  struct device *dev,
1016					  const char *supply_name)
1017{
1018	struct regulator *regulator;
1019	char buf[REG_STR_SIZE];
1020	int err, size;
1021
1022	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1023	if (regulator == NULL)
1024		return NULL;
1025
1026	mutex_lock(&rdev->mutex);
1027	regulator->rdev = rdev;
1028	list_add(&regulator->list, &rdev->consumer_list);
1029
1030	if (dev) {
1031		/* create a 'requested_microamps_name' sysfs entry */
1032		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1033			supply_name);
1034		if (size >= REG_STR_SIZE)
1035			goto overflow_err;
1036
1037		regulator->dev = dev;
1038		sysfs_attr_init(&regulator->dev_attr.attr);
1039		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1040		if (regulator->dev_attr.attr.name == NULL)
1041			goto attr_name_err;
1042
1043		regulator->dev_attr.attr.mode = 0444;
1044		regulator->dev_attr.show = device_requested_uA_show;
1045		err = device_create_file(dev, &regulator->dev_attr);
1046		if (err < 0) {
1047			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1048			goto attr_name_err;
1049		}
1050
1051		/* also add a link to the device sysfs entry */
1052		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1053				 dev->kobj.name, supply_name);
1054		if (size >= REG_STR_SIZE)
1055			goto attr_err;
1056
1057		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1058		if (regulator->supply_name == NULL)
1059			goto attr_err;
1060
1061		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1062					buf);
1063		if (err) {
1064			rdev_warn(rdev, "could not add device link %s err %d\n",
1065				  dev->kobj.name, err);
1066			goto link_name_err;
1067		}
1068	}
1069	mutex_unlock(&rdev->mutex);
1070	return regulator;
1071link_name_err:
1072	kfree(regulator->supply_name);
1073attr_err:
1074	device_remove_file(regulator->dev, &regulator->dev_attr);
1075attr_name_err:
1076	kfree(regulator->dev_attr.attr.name);
1077overflow_err:
1078	list_del(&regulator->list);
1079	kfree(regulator);
1080	mutex_unlock(&rdev->mutex);
1081	return NULL;
1082}
1083
1084static int _regulator_get_enable_time(struct regulator_dev *rdev)
1085{
1086	if (!rdev->desc->ops->enable_time)
1087		return 0;
1088	return rdev->desc->ops->enable_time(rdev);
1089}
1090
1091/* Internal regulator request function */
1092static struct regulator *_regulator_get(struct device *dev, const char *id,
1093					int exclusive)
1094{
1095	struct regulator_dev *rdev;
1096	struct regulator_map *map;
1097	struct regulator *regulator = ERR_PTR(-ENODEV);
1098	const char *devname = NULL;
1099	int ret;
1100
1101	if (id == NULL) {
1102		pr_err("get() with no identifier\n");
1103		return regulator;
1104	}
1105
1106	if (dev)
1107		devname = dev_name(dev);
1108
1109	mutex_lock(&regulator_list_mutex);
1110
1111	list_for_each_entry(map, &regulator_map_list, list) {
1112		/* If the mapping has a device set up it must match */
1113		if (map->dev_name &&
1114		    (!devname || strcmp(map->dev_name, devname)))
1115			continue;
1116
1117		if (strcmp(map->supply, id) == 0) {
1118			rdev = map->regulator;
1119			goto found;
1120		}
1121	}
1122
1123	if (board_wants_dummy_regulator) {
1124		rdev = dummy_regulator_rdev;
1125		goto found;
1126	}
1127
1128#ifdef CONFIG_REGULATOR_DUMMY
1129	if (!devname)
1130		devname = "deviceless";
1131
1132	/* If the board didn't flag that it was fully constrained then
1133	 * substitute in a dummy regulator so consumers can continue.
1134	 */
1135	if (!has_full_constraints) {
1136		pr_warn("%s supply %s not found, using dummy regulator\n",
1137			devname, id);
1138		rdev = dummy_regulator_rdev;
1139		goto found;
1140	}
1141#endif
1142
1143	mutex_unlock(&regulator_list_mutex);
1144	return regulator;
1145
1146found:
1147	if (rdev->exclusive) {
1148		regulator = ERR_PTR(-EPERM);
1149		goto out;
1150	}
1151
1152	if (exclusive && rdev->open_count) {
1153		regulator = ERR_PTR(-EBUSY);
1154		goto out;
1155	}
1156
1157	if (!try_module_get(rdev->owner))
1158		goto out;
1159
1160	regulator = create_regulator(rdev, dev, id);
1161	if (regulator == NULL) {
1162		regulator = ERR_PTR(-ENOMEM);
1163		module_put(rdev->owner);
1164	}
1165
1166	rdev->open_count++;
1167	if (exclusive) {
1168		rdev->exclusive = 1;
1169
1170		ret = _regulator_is_enabled(rdev);
1171		if (ret > 0)
1172			rdev->use_count = 1;
1173		else
1174			rdev->use_count = 0;
1175	}
1176
1177out:
1178	mutex_unlock(&regulator_list_mutex);
1179
1180	return regulator;
1181}
1182
1183/**
1184 * regulator_get - lookup and obtain a reference to a regulator.
1185 * @dev: device for regulator "consumer"
1186 * @id: Supply name or regulator ID.
1187 *
1188 * Returns a struct regulator corresponding to the regulator producer,
1189 * or IS_ERR() condition containing errno.
1190 *
1191 * Use of supply names configured via regulator_set_device_supply() is
1192 * strongly encouraged.  It is recommended that the supply name used
1193 * should match the name used for the supply and/or the relevant
1194 * device pins in the datasheet.
1195 */
1196struct regulator *regulator_get(struct device *dev, const char *id)
1197{
1198	return _regulator_get(dev, id, 0);
1199}
1200EXPORT_SYMBOL_GPL(regulator_get);
1201
1202/**
1203 * regulator_get_exclusive - obtain exclusive access to a regulator.
1204 * @dev: device for regulator "consumer"
1205 * @id: Supply name or regulator ID.
1206 *
1207 * Returns a struct regulator corresponding to the regulator producer,
1208 * or IS_ERR() condition containing errno.  Other consumers will be
1209 * unable to obtain this reference is held and the use count for the
1210 * regulator will be initialised to reflect the current state of the
1211 * regulator.
1212 *
1213 * This is intended for use by consumers which cannot tolerate shared
1214 * use of the regulator such as those which need to force the
1215 * regulator off for correct operation of the hardware they are
1216 * controlling.
1217 *
1218 * Use of supply names configured via regulator_set_device_supply() is
1219 * strongly encouraged.  It is recommended that the supply name used
1220 * should match the name used for the supply and/or the relevant
1221 * device pins in the datasheet.
1222 */
1223struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1224{
1225	return _regulator_get(dev, id, 1);
1226}
1227EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1228
1229/**
1230 * regulator_put - "free" the regulator source
1231 * @regulator: regulator source
1232 *
1233 * Note: drivers must ensure that all regulator_enable calls made on this
1234 * regulator source are balanced by regulator_disable calls prior to calling
1235 * this function.
1236 */
1237void regulator_put(struct regulator *regulator)
1238{
1239	struct regulator_dev *rdev;
1240
1241	if (regulator == NULL || IS_ERR(regulator))
1242		return;
1243
1244	mutex_lock(&regulator_list_mutex);
1245	rdev = regulator->rdev;
1246
1247	/* remove any sysfs entries */
1248	if (regulator->dev) {
1249		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1250		kfree(regulator->supply_name);
1251		device_remove_file(regulator->dev, &regulator->dev_attr);
1252		kfree(regulator->dev_attr.attr.name);
1253	}
1254	list_del(&regulator->list);
1255	kfree(regulator);
1256
1257	rdev->open_count--;
1258	rdev->exclusive = 0;
1259
1260	module_put(rdev->owner);
1261	mutex_unlock(&regulator_list_mutex);
1262}
1263EXPORT_SYMBOL_GPL(regulator_put);
1264
1265static int _regulator_can_change_status(struct regulator_dev *rdev)
1266{
1267	if (!rdev->constraints)
1268		return 0;
1269
1270	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1271		return 1;
1272	else
1273		return 0;
1274}
1275
1276/* locks held by regulator_enable() */
1277static int _regulator_enable(struct regulator_dev *rdev)
1278{
1279	int ret, delay;
1280
1281	if (rdev->use_count == 0) {
1282		/* do we need to enable the supply regulator first */
1283		if (rdev->supply) {
1284			mutex_lock(&rdev->supply->mutex);
1285			ret = _regulator_enable(rdev->supply);
1286			mutex_unlock(&rdev->supply->mutex);
1287			if (ret < 0) {
1288				rdev_err(rdev, "failed to enable: %d\n", ret);
1289				return ret;
1290			}
1291		}
1292	}
1293
1294	/* check voltage and requested load before enabling */
1295	if (rdev->constraints &&
1296	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1297		drms_uA_update(rdev);
1298
1299	if (rdev->use_count == 0) {
1300		/* The regulator may on if it's not switchable or left on */
1301		ret = _regulator_is_enabled(rdev);
1302		if (ret == -EINVAL || ret == 0) {
1303			if (!_regulator_can_change_status(rdev))
1304				return -EPERM;
1305
1306			if (!rdev->desc->ops->enable)
1307				return -EINVAL;
1308
1309			/* Query before enabling in case configuration
1310			 * dependant.  */
1311			ret = _regulator_get_enable_time(rdev);
1312			if (ret >= 0) {
1313				delay = ret;
1314			} else {
1315				rdev_warn(rdev, "enable_time() failed: %d\n",
1316					   ret);
1317				delay = 0;
1318			}
1319
1320			trace_regulator_enable(rdev_get_name(rdev));
1321
1322			/* Allow the regulator to ramp; it would be useful
1323			 * to extend this for bulk operations so that the
1324			 * regulators can ramp together.  */
1325			ret = rdev->desc->ops->enable(rdev);
1326			if (ret < 0)
1327				return ret;
1328
1329			trace_regulator_enable_delay(rdev_get_name(rdev));
1330
1331			if (delay >= 1000) {
1332				mdelay(delay / 1000);
1333				udelay(delay % 1000);
1334			} else if (delay) {
1335				udelay(delay);
1336			}
1337
1338			trace_regulator_enable_complete(rdev_get_name(rdev));
1339
1340		} else if (ret < 0) {
1341			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1342			return ret;
1343		}
1344		/* Fallthrough on positive return values - already enabled */
1345	}
1346
1347	rdev->use_count++;
1348
1349	return 0;
1350}
1351
1352/**
1353 * regulator_enable - enable regulator output
1354 * @regulator: regulator source
1355 *
1356 * Request that the regulator be enabled with the regulator output at
1357 * the predefined voltage or current value.  Calls to regulator_enable()
1358 * must be balanced with calls to regulator_disable().
1359 *
1360 * NOTE: the output value can be set by other drivers, boot loader or may be
1361 * hardwired in the regulator.
1362 */
1363int regulator_enable(struct regulator *regulator)
1364{
1365	struct regulator_dev *rdev = regulator->rdev;
1366	int ret = 0;
1367
1368	mutex_lock(&rdev->mutex);
1369	ret = _regulator_enable(rdev);
1370	mutex_unlock(&rdev->mutex);
1371	return ret;
1372}
1373EXPORT_SYMBOL_GPL(regulator_enable);
1374
1375/* locks held by regulator_disable() */
1376static int _regulator_disable(struct regulator_dev *rdev,
1377		struct regulator_dev **supply_rdev_ptr)
1378{
1379	int ret = 0;
1380	*supply_rdev_ptr = NULL;
1381
1382	if (WARN(rdev->use_count <= 0,
1383		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1384		return -EIO;
1385
1386	/* are we the last user and permitted to disable ? */
1387	if (rdev->use_count == 1 &&
1388	    (rdev->constraints && !rdev->constraints->always_on)) {
1389
1390		/* we are last user */
1391		if (_regulator_can_change_status(rdev) &&
1392		    rdev->desc->ops->disable) {
1393			trace_regulator_disable(rdev_get_name(rdev));
1394
1395			ret = rdev->desc->ops->disable(rdev);
1396			if (ret < 0) {
1397				rdev_err(rdev, "failed to disable\n");
1398				return ret;
1399			}
1400
1401			trace_regulator_disable_complete(rdev_get_name(rdev));
1402
1403			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1404					     NULL);
1405		}
1406
1407		/* decrease our supplies ref count and disable if required */
1408		*supply_rdev_ptr = rdev->supply;
1409
1410		rdev->use_count = 0;
1411	} else if (rdev->use_count > 1) {
1412
1413		if (rdev->constraints &&
1414			(rdev->constraints->valid_ops_mask &
1415			REGULATOR_CHANGE_DRMS))
1416			drms_uA_update(rdev);
1417
1418		rdev->use_count--;
1419	}
1420	return ret;
1421}
1422
1423/**
1424 * regulator_disable - disable regulator output
1425 * @regulator: regulator source
1426 *
1427 * Disable the regulator output voltage or current.  Calls to
1428 * regulator_enable() must be balanced with calls to
1429 * regulator_disable().
1430 *
1431 * NOTE: this will only disable the regulator output if no other consumer
1432 * devices have it enabled, the regulator device supports disabling and
1433 * machine constraints permit this operation.
1434 */
1435int regulator_disable(struct regulator *regulator)
1436{
1437	struct regulator_dev *rdev = regulator->rdev;
1438	struct regulator_dev *supply_rdev = NULL;
1439	int ret = 0;
1440
1441	mutex_lock(&rdev->mutex);
1442	ret = _regulator_disable(rdev, &supply_rdev);
1443	mutex_unlock(&rdev->mutex);
1444
1445	/* decrease our supplies ref count and disable if required */
1446	while (supply_rdev != NULL) {
1447		rdev = supply_rdev;
1448
1449		mutex_lock(&rdev->mutex);
1450		_regulator_disable(rdev, &supply_rdev);
1451		mutex_unlock(&rdev->mutex);
1452	}
1453
1454	return ret;
1455}
1456EXPORT_SYMBOL_GPL(regulator_disable);
1457
1458/* locks held by regulator_force_disable() */
1459static int _regulator_force_disable(struct regulator_dev *rdev,
1460		struct regulator_dev **supply_rdev_ptr)
1461{
1462	int ret = 0;
1463
1464	/* force disable */
1465	if (rdev->desc->ops->disable) {
1466		/* ah well, who wants to live forever... */
1467		ret = rdev->desc->ops->disable(rdev);
1468		if (ret < 0) {
1469			rdev_err(rdev, "failed to force disable\n");
1470			return ret;
1471		}
1472		/* notify other consumers that power has been forced off */
1473		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1474			REGULATOR_EVENT_DISABLE, NULL);
1475	}
1476
1477	/* decrease our supplies ref count and disable if required */
1478	*supply_rdev_ptr = rdev->supply;
1479
1480	rdev->use_count = 0;
1481	return ret;
1482}
1483
1484/**
1485 * regulator_force_disable - force disable regulator output
1486 * @regulator: regulator source
1487 *
1488 * Forcibly disable the regulator output voltage or current.
1489 * NOTE: this *will* disable the regulator output even if other consumer
1490 * devices have it enabled. This should be used for situations when device
1491 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1492 */
1493int regulator_force_disable(struct regulator *regulator)
1494{
1495	struct regulator_dev *supply_rdev = NULL;
1496	int ret;
1497
1498	mutex_lock(&regulator->rdev->mutex);
1499	regulator->uA_load = 0;
1500	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1501	mutex_unlock(&regulator->rdev->mutex);
1502
1503	if (supply_rdev)
1504		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1505
1506	return ret;
1507}
1508EXPORT_SYMBOL_GPL(regulator_force_disable);
1509
1510static int _regulator_is_enabled(struct regulator_dev *rdev)
1511{
1512	/* If we don't know then assume that the regulator is always on */
1513	if (!rdev->desc->ops->is_enabled)
1514		return 1;
1515
1516	return rdev->desc->ops->is_enabled(rdev);
1517}
1518
1519/**
1520 * regulator_is_enabled - is the regulator output enabled
1521 * @regulator: regulator source
1522 *
1523 * Returns positive if the regulator driver backing the source/client
1524 * has requested that the device be enabled, zero if it hasn't, else a
1525 * negative errno code.
1526 *
1527 * Note that the device backing this regulator handle can have multiple
1528 * users, so it might be enabled even if regulator_enable() was never
1529 * called for this particular source.
1530 */
1531int regulator_is_enabled(struct regulator *regulator)
1532{
1533	int ret;
1534
1535	mutex_lock(&regulator->rdev->mutex);
1536	ret = _regulator_is_enabled(regulator->rdev);
1537	mutex_unlock(&regulator->rdev->mutex);
1538
1539	return ret;
1540}
1541EXPORT_SYMBOL_GPL(regulator_is_enabled);
1542
1543/**
1544 * regulator_count_voltages - count regulator_list_voltage() selectors
1545 * @regulator: regulator source
1546 *
1547 * Returns number of selectors, or negative errno.  Selectors are
1548 * numbered starting at zero, and typically correspond to bitfields
1549 * in hardware registers.
1550 */
1551int regulator_count_voltages(struct regulator *regulator)
1552{
1553	struct regulator_dev	*rdev = regulator->rdev;
1554
1555	return rdev->desc->n_voltages ? : -EINVAL;
1556}
1557EXPORT_SYMBOL_GPL(regulator_count_voltages);
1558
1559/**
1560 * regulator_list_voltage - enumerate supported voltages
1561 * @regulator: regulator source
1562 * @selector: identify voltage to list
1563 * Context: can sleep
1564 *
1565 * Returns a voltage that can be passed to @regulator_set_voltage(),
1566 * zero if this selector code can't be used on this system, or a
1567 * negative errno.
1568 */
1569int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1570{
1571	struct regulator_dev	*rdev = regulator->rdev;
1572	struct regulator_ops	*ops = rdev->desc->ops;
1573	int			ret;
1574
1575	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1576		return -EINVAL;
1577
1578	mutex_lock(&rdev->mutex);
1579	ret = ops->list_voltage(rdev, selector);
1580	mutex_unlock(&rdev->mutex);
1581
1582	if (ret > 0) {
1583		if (ret < rdev->constraints->min_uV)
1584			ret = 0;
1585		else if (ret > rdev->constraints->max_uV)
1586			ret = 0;
1587	}
1588
1589	return ret;
1590}
1591EXPORT_SYMBOL_GPL(regulator_list_voltage);
1592
1593/**
1594 * regulator_is_supported_voltage - check if a voltage range can be supported
1595 *
1596 * @regulator: Regulator to check.
1597 * @min_uV: Minimum required voltage in uV.
1598 * @max_uV: Maximum required voltage in uV.
1599 *
1600 * Returns a boolean or a negative error code.
1601 */
1602int regulator_is_supported_voltage(struct regulator *regulator,
1603				   int min_uV, int max_uV)
1604{
1605	int i, voltages, ret;
1606
1607	ret = regulator_count_voltages(regulator);
1608	if (ret < 0)
1609		return ret;
1610	voltages = ret;
1611
1612	for (i = 0; i < voltages; i++) {
1613		ret = regulator_list_voltage(regulator, i);
1614
1615		if (ret >= min_uV && ret <= max_uV)
1616			return 1;
1617	}
1618
1619	return 0;
1620}
1621
1622/**
1623 * regulator_set_voltage - set regulator output voltage
1624 * @regulator: regulator source
1625 * @min_uV: Minimum required voltage in uV
1626 * @max_uV: Maximum acceptable voltage in uV
1627 *
1628 * Sets a voltage regulator to the desired output voltage. This can be set
1629 * during any regulator state. IOW, regulator can be disabled or enabled.
1630 *
1631 * If the regulator is enabled then the voltage will change to the new value
1632 * immediately otherwise if the regulator is disabled the regulator will
1633 * output at the new voltage when enabled.
1634 *
1635 * NOTE: If the regulator is shared between several devices then the lowest
1636 * request voltage that meets the system constraints will be used.
1637 * Regulator system constraints must be set for this regulator before
1638 * calling this function otherwise this call will fail.
1639 */
1640int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1641{
1642	struct regulator_dev *rdev = regulator->rdev;
1643	int ret;
1644	unsigned selector;
1645
1646	mutex_lock(&rdev->mutex);
1647
1648	/* sanity check */
1649	if (!rdev->desc->ops->set_voltage) {
1650		ret = -EINVAL;
1651		goto out;
1652	}
1653
1654	/* constraints check */
1655	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1656	if (ret < 0)
1657		goto out;
1658	regulator->min_uV = min_uV;
1659	regulator->max_uV = max_uV;
1660
1661	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1662	if (ret < 0)
1663		goto out;
1664
1665	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1666
1667	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1668
1669	if (rdev->desc->ops->list_voltage)
1670		selector = rdev->desc->ops->list_voltage(rdev, selector);
1671	else
1672		selector = -1;
1673
1674	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1675
1676out:
1677	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1678	mutex_unlock(&rdev->mutex);
1679	return ret;
1680}
1681EXPORT_SYMBOL_GPL(regulator_set_voltage);
1682
1683static int _regulator_get_voltage(struct regulator_dev *rdev)
1684{
1685	/* sanity check */
1686	if (rdev->desc->ops->get_voltage)
1687		return rdev->desc->ops->get_voltage(rdev);
1688	else
1689		return -EINVAL;
1690}
1691
1692/**
1693 * regulator_get_voltage - get regulator output voltage
1694 * @regulator: regulator source
1695 *
1696 * This returns the current regulator voltage in uV.
1697 *
1698 * NOTE: If the regulator is disabled it will return the voltage value. This
1699 * function should not be used to determine regulator state.
1700 */
1701int regulator_get_voltage(struct regulator *regulator)
1702{
1703	int ret;
1704
1705	mutex_lock(&regulator->rdev->mutex);
1706
1707	ret = _regulator_get_voltage(regulator->rdev);
1708
1709	mutex_unlock(&regulator->rdev->mutex);
1710
1711	return ret;
1712}
1713EXPORT_SYMBOL_GPL(regulator_get_voltage);
1714
1715/**
1716 * regulator_set_current_limit - set regulator output current limit
1717 * @regulator: regulator source
1718 * @min_uA: Minimuum supported current in uA
1719 * @max_uA: Maximum supported current in uA
1720 *
1721 * Sets current sink to the desired output current. This can be set during
1722 * any regulator state. IOW, regulator can be disabled or enabled.
1723 *
1724 * If the regulator is enabled then the current will change to the new value
1725 * immediately otherwise if the regulator is disabled the regulator will
1726 * output at the new current when enabled.
1727 *
1728 * NOTE: Regulator system constraints must be set for this regulator before
1729 * calling this function otherwise this call will fail.
1730 */
1731int regulator_set_current_limit(struct regulator *regulator,
1732			       int min_uA, int max_uA)
1733{
1734	struct regulator_dev *rdev = regulator->rdev;
1735	int ret;
1736
1737	mutex_lock(&rdev->mutex);
1738
1739	/* sanity check */
1740	if (!rdev->desc->ops->set_current_limit) {
1741		ret = -EINVAL;
1742		goto out;
1743	}
1744
1745	/* constraints check */
1746	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1747	if (ret < 0)
1748		goto out;
1749
1750	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1751out:
1752	mutex_unlock(&rdev->mutex);
1753	return ret;
1754}
1755EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1756
1757static int _regulator_get_current_limit(struct regulator_dev *rdev)
1758{
1759	int ret;
1760
1761	mutex_lock(&rdev->mutex);
1762
1763	/* sanity check */
1764	if (!rdev->desc->ops->get_current_limit) {
1765		ret = -EINVAL;
1766		goto out;
1767	}
1768
1769	ret = rdev->desc->ops->get_current_limit(rdev);
1770out:
1771	mutex_unlock(&rdev->mutex);
1772	return ret;
1773}
1774
1775/**
1776 * regulator_get_current_limit - get regulator output current
1777 * @regulator: regulator source
1778 *
1779 * This returns the current supplied by the specified current sink in uA.
1780 *
1781 * NOTE: If the regulator is disabled it will return the current value. This
1782 * function should not be used to determine regulator state.
1783 */
1784int regulator_get_current_limit(struct regulator *regulator)
1785{
1786	return _regulator_get_current_limit(regulator->rdev);
1787}
1788EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1789
1790/**
1791 * regulator_set_mode - set regulator operating mode
1792 * @regulator: regulator source
1793 * @mode: operating mode - one of the REGULATOR_MODE constants
1794 *
1795 * Set regulator operating mode to increase regulator efficiency or improve
1796 * regulation performance.
1797 *
1798 * NOTE: Regulator system constraints must be set for this regulator before
1799 * calling this function otherwise this call will fail.
1800 */
1801int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1802{
1803	struct regulator_dev *rdev = regulator->rdev;
1804	int ret;
1805	int regulator_curr_mode;
1806
1807	mutex_lock(&rdev->mutex);
1808
1809	/* sanity check */
1810	if (!rdev->desc->ops->set_mode) {
1811		ret = -EINVAL;
1812		goto out;
1813	}
1814
1815	/* return if the same mode is requested */
1816	if (rdev->desc->ops->get_mode) {
1817		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1818		if (regulator_curr_mode == mode) {
1819			ret = 0;
1820			goto out;
1821		}
1822	}
1823
1824	/* constraints check */
1825	ret = regulator_check_mode(rdev, mode);
1826	if (ret < 0)
1827		goto out;
1828
1829	ret = rdev->desc->ops->set_mode(rdev, mode);
1830out:
1831	mutex_unlock(&rdev->mutex);
1832	return ret;
1833}
1834EXPORT_SYMBOL_GPL(regulator_set_mode);
1835
1836static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1837{
1838	int ret;
1839
1840	mutex_lock(&rdev->mutex);
1841
1842	/* sanity check */
1843	if (!rdev->desc->ops->get_mode) {
1844		ret = -EINVAL;
1845		goto out;
1846	}
1847
1848	ret = rdev->desc->ops->get_mode(rdev);
1849out:
1850	mutex_unlock(&rdev->mutex);
1851	return ret;
1852}
1853
1854/**
1855 * regulator_get_mode - get regulator operating mode
1856 * @regulator: regulator source
1857 *
1858 * Get the current regulator operating mode.
1859 */
1860unsigned int regulator_get_mode(struct regulator *regulator)
1861{
1862	return _regulator_get_mode(regulator->rdev);
1863}
1864EXPORT_SYMBOL_GPL(regulator_get_mode);
1865
1866/**
1867 * regulator_set_optimum_mode - set regulator optimum operating mode
1868 * @regulator: regulator source
1869 * @uA_load: load current
1870 *
1871 * Notifies the regulator core of a new device load. This is then used by
1872 * DRMS (if enabled by constraints) to set the most efficient regulator
1873 * operating mode for the new regulator loading.
1874 *
1875 * Consumer devices notify their supply regulator of the maximum power
1876 * they will require (can be taken from device datasheet in the power
1877 * consumption tables) when they change operational status and hence power
1878 * state. Examples of operational state changes that can affect power
1879 * consumption are :-
1880 *
1881 *    o Device is opened / closed.
1882 *    o Device I/O is about to begin or has just finished.
1883 *    o Device is idling in between work.
1884 *
1885 * This information is also exported via sysfs to userspace.
1886 *
1887 * DRMS will sum the total requested load on the regulator and change
1888 * to the most efficient operating mode if platform constraints allow.
1889 *
1890 * Returns the new regulator mode or error.
1891 */
1892int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1893{
1894	struct regulator_dev *rdev = regulator->rdev;
1895	struct regulator *consumer;
1896	int ret, output_uV, input_uV, total_uA_load = 0;
1897	unsigned int mode;
1898
1899	mutex_lock(&rdev->mutex);
1900
1901	regulator->uA_load = uA_load;
1902	ret = regulator_check_drms(rdev);
1903	if (ret < 0)
1904		goto out;
1905	ret = -EINVAL;
1906
1907	/* sanity check */
1908	if (!rdev->desc->ops->get_optimum_mode)
1909		goto out;
1910
1911	/* get output voltage */
1912	output_uV = _regulator_get_voltage(rdev);
1913	if (output_uV <= 0) {
1914		rdev_err(rdev, "invalid output voltage found\n");
1915		goto out;
1916	}
1917
1918	/* get input voltage */
1919	input_uV = 0;
1920	if (rdev->supply)
1921		input_uV = _regulator_get_voltage(rdev->supply);
1922	if (input_uV <= 0)
1923		input_uV = rdev->constraints->input_uV;
1924	if (input_uV <= 0) {
1925		rdev_err(rdev, "invalid input voltage found\n");
1926		goto out;
1927	}
1928
1929	/* calc total requested load for this regulator */
1930	list_for_each_entry(consumer, &rdev->consumer_list, list)
1931		total_uA_load += consumer->uA_load;
1932
1933	mode = rdev->desc->ops->get_optimum_mode(rdev,
1934						 input_uV, output_uV,
1935						 total_uA_load);
1936	ret = regulator_check_mode(rdev, mode);
1937	if (ret < 0) {
1938		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1939			 total_uA_load, input_uV, output_uV);
1940		goto out;
1941	}
1942
1943	ret = rdev->desc->ops->set_mode(rdev, mode);
1944	if (ret < 0) {
1945		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1946		goto out;
1947	}
1948	ret = mode;
1949out:
1950	mutex_unlock(&rdev->mutex);
1951	return ret;
1952}
1953EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1954
1955/**
1956 * regulator_register_notifier - register regulator event notifier
1957 * @regulator: regulator source
1958 * @nb: notifier block
1959 *
1960 * Register notifier block to receive regulator events.
1961 */
1962int regulator_register_notifier(struct regulator *regulator,
1963			      struct notifier_block *nb)
1964{
1965	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1966						nb);
1967}
1968EXPORT_SYMBOL_GPL(regulator_register_notifier);
1969
1970/**
1971 * regulator_unregister_notifier - unregister regulator event notifier
1972 * @regulator: regulator source
1973 * @nb: notifier block
1974 *
1975 * Unregister regulator event notifier block.
1976 */
1977int regulator_unregister_notifier(struct regulator *regulator,
1978				struct notifier_block *nb)
1979{
1980	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1981						  nb);
1982}
1983EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1984
1985/* notify regulator consumers and downstream regulator consumers.
1986 * Note mutex must be held by caller.
1987 */
1988static void _notifier_call_chain(struct regulator_dev *rdev,
1989				  unsigned long event, void *data)
1990{
1991	struct regulator_dev *_rdev;
1992
1993	/* call rdev chain first */
1994	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1995
1996	/* now notify regulator we supply */
1997	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1998		mutex_lock(&_rdev->mutex);
1999		_notifier_call_chain(_rdev, event, data);
2000		mutex_unlock(&_rdev->mutex);
2001	}
2002}
2003
2004/**
2005 * regulator_bulk_get - get multiple regulator consumers
2006 *
2007 * @dev:           Device to supply
2008 * @num_consumers: Number of consumers to register
2009 * @consumers:     Configuration of consumers; clients are stored here.
2010 *
2011 * @return 0 on success, an errno on failure.
2012 *
2013 * This helper function allows drivers to get several regulator
2014 * consumers in one operation.  If any of the regulators cannot be
2015 * acquired then any regulators that were allocated will be freed
2016 * before returning to the caller.
2017 */
2018int regulator_bulk_get(struct device *dev, int num_consumers,
2019		       struct regulator_bulk_data *consumers)
2020{
2021	int i;
2022	int ret;
2023
2024	for (i = 0; i < num_consumers; i++)
2025		consumers[i].consumer = NULL;
2026
2027	for (i = 0; i < num_consumers; i++) {
2028		consumers[i].consumer = regulator_get(dev,
2029						      consumers[i].supply);
2030		if (IS_ERR(consumers[i].consumer)) {
2031			ret = PTR_ERR(consumers[i].consumer);
2032			dev_err(dev, "Failed to get supply '%s': %d\n",
2033				consumers[i].supply, ret);
2034			consumers[i].consumer = NULL;
2035			goto err;
2036		}
2037	}
2038
2039	return 0;
2040
2041err:
2042	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2043		regulator_put(consumers[i].consumer);
2044
2045	return ret;
2046}
2047EXPORT_SYMBOL_GPL(regulator_bulk_get);
2048
2049/**
2050 * regulator_bulk_enable - enable multiple regulator consumers
2051 *
2052 * @num_consumers: Number of consumers
2053 * @consumers:     Consumer data; clients are stored here.
2054 * @return         0 on success, an errno on failure
2055 *
2056 * This convenience API allows consumers to enable multiple regulator
2057 * clients in a single API call.  If any consumers cannot be enabled
2058 * then any others that were enabled will be disabled again prior to
2059 * return.
2060 */
2061int regulator_bulk_enable(int num_consumers,
2062			  struct regulator_bulk_data *consumers)
2063{
2064	int i;
2065	int ret;
2066
2067	for (i = 0; i < num_consumers; i++) {
2068		ret = regulator_enable(consumers[i].consumer);
2069		if (ret != 0)
2070			goto err;
2071	}
2072
2073	return 0;
2074
2075err:
2076	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2077	for (--i; i >= 0; --i)
2078		regulator_disable(consumers[i].consumer);
2079
2080	return ret;
2081}
2082EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2083
2084/**
2085 * regulator_bulk_disable - disable multiple regulator consumers
2086 *
2087 * @num_consumers: Number of consumers
2088 * @consumers:     Consumer data; clients are stored here.
2089 * @return         0 on success, an errno on failure
2090 *
2091 * This convenience API allows consumers to disable multiple regulator
2092 * clients in a single API call.  If any consumers cannot be enabled
2093 * then any others that were disabled will be disabled again prior to
2094 * return.
2095 */
2096int regulator_bulk_disable(int num_consumers,
2097			   struct regulator_bulk_data *consumers)
2098{
2099	int i;
2100	int ret;
2101
2102	for (i = 0; i < num_consumers; i++) {
2103		ret = regulator_disable(consumers[i].consumer);
2104		if (ret != 0)
2105			goto err;
2106	}
2107
2108	return 0;
2109
2110err:
2111	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2112	for (--i; i >= 0; --i)
2113		regulator_enable(consumers[i].consumer);
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2118
2119/**
2120 * regulator_bulk_free - free multiple regulator consumers
2121 *
2122 * @num_consumers: Number of consumers
2123 * @consumers:     Consumer data; clients are stored here.
2124 *
2125 * This convenience API allows consumers to free multiple regulator
2126 * clients in a single API call.
2127 */
2128void regulator_bulk_free(int num_consumers,
2129			 struct regulator_bulk_data *consumers)
2130{
2131	int i;
2132
2133	for (i = 0; i < num_consumers; i++) {
2134		regulator_put(consumers[i].consumer);
2135		consumers[i].consumer = NULL;
2136	}
2137}
2138EXPORT_SYMBOL_GPL(regulator_bulk_free);
2139
2140/**
2141 * regulator_notifier_call_chain - call regulator event notifier
2142 * @rdev: regulator source
2143 * @event: notifier block
2144 * @data: callback-specific data.
2145 *
2146 * Called by regulator drivers to notify clients a regulator event has
2147 * occurred. We also notify regulator clients downstream.
2148 * Note lock must be held by caller.
2149 */
2150int regulator_notifier_call_chain(struct regulator_dev *rdev,
2151				  unsigned long event, void *data)
2152{
2153	_notifier_call_chain(rdev, event, data);
2154	return NOTIFY_DONE;
2155
2156}
2157EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2158
2159/**
2160 * regulator_mode_to_status - convert a regulator mode into a status
2161 *
2162 * @mode: Mode to convert
2163 *
2164 * Convert a regulator mode into a status.
2165 */
2166int regulator_mode_to_status(unsigned int mode)
2167{
2168	switch (mode) {
2169	case REGULATOR_MODE_FAST:
2170		return REGULATOR_STATUS_FAST;
2171	case REGULATOR_MODE_NORMAL:
2172		return REGULATOR_STATUS_NORMAL;
2173	case REGULATOR_MODE_IDLE:
2174		return REGULATOR_STATUS_IDLE;
2175	case REGULATOR_STATUS_STANDBY:
2176		return REGULATOR_STATUS_STANDBY;
2177	default:
2178		return 0;
2179	}
2180}
2181EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2182
2183/*
2184 * To avoid cluttering sysfs (and memory) with useless state, only
2185 * create attributes that can be meaningfully displayed.
2186 */
2187static int add_regulator_attributes(struct regulator_dev *rdev)
2188{
2189	struct device		*dev = &rdev->dev;
2190	struct regulator_ops	*ops = rdev->desc->ops;
2191	int			status = 0;
2192
2193	/* some attributes need specific methods to be displayed */
2194	if (ops->get_voltage) {
2195		status = device_create_file(dev, &dev_attr_microvolts);
2196		if (status < 0)
2197			return status;
2198	}
2199	if (ops->get_current_limit) {
2200		status = device_create_file(dev, &dev_attr_microamps);
2201		if (status < 0)
2202			return status;
2203	}
2204	if (ops->get_mode) {
2205		status = device_create_file(dev, &dev_attr_opmode);
2206		if (status < 0)
2207			return status;
2208	}
2209	if (ops->is_enabled) {
2210		status = device_create_file(dev, &dev_attr_state);
2211		if (status < 0)
2212			return status;
2213	}
2214	if (ops->get_status) {
2215		status = device_create_file(dev, &dev_attr_status);
2216		if (status < 0)
2217			return status;
2218	}
2219
2220	/* some attributes are type-specific */
2221	if (rdev->desc->type == REGULATOR_CURRENT) {
2222		status = device_create_file(dev, &dev_attr_requested_microamps);
2223		if (status < 0)
2224			return status;
2225	}
2226
2227	/* all the other attributes exist to support constraints;
2228	 * don't show them if there are no constraints, or if the
2229	 * relevant supporting methods are missing.
2230	 */
2231	if (!rdev->constraints)
2232		return status;
2233
2234	/* constraints need specific supporting methods */
2235	if (ops->set_voltage) {
2236		status = device_create_file(dev, &dev_attr_min_microvolts);
2237		if (status < 0)
2238			return status;
2239		status = device_create_file(dev, &dev_attr_max_microvolts);
2240		if (status < 0)
2241			return status;
2242	}
2243	if (ops->set_current_limit) {
2244		status = device_create_file(dev, &dev_attr_min_microamps);
2245		if (status < 0)
2246			return status;
2247		status = device_create_file(dev, &dev_attr_max_microamps);
2248		if (status < 0)
2249			return status;
2250	}
2251
2252	/* suspend mode constraints need multiple supporting methods */
2253	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2254		return status;
2255
2256	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2257	if (status < 0)
2258		return status;
2259	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2260	if (status < 0)
2261		return status;
2262	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2263	if (status < 0)
2264		return status;
2265
2266	if (ops->set_suspend_voltage) {
2267		status = device_create_file(dev,
2268				&dev_attr_suspend_standby_microvolts);
2269		if (status < 0)
2270			return status;
2271		status = device_create_file(dev,
2272				&dev_attr_suspend_mem_microvolts);
2273		if (status < 0)
2274			return status;
2275		status = device_create_file(dev,
2276				&dev_attr_suspend_disk_microvolts);
2277		if (status < 0)
2278			return status;
2279	}
2280
2281	if (ops->set_suspend_mode) {
2282		status = device_create_file(dev,
2283				&dev_attr_suspend_standby_mode);
2284		if (status < 0)
2285			return status;
2286		status = device_create_file(dev,
2287				&dev_attr_suspend_mem_mode);
2288		if (status < 0)
2289			return status;
2290		status = device_create_file(dev,
2291				&dev_attr_suspend_disk_mode);
2292		if (status < 0)
2293			return status;
2294	}
2295
2296	return status;
2297}
2298
2299/**
2300 * regulator_register - register regulator
2301 * @regulator_desc: regulator to register
2302 * @dev: struct device for the regulator
2303 * @init_data: platform provided init data, passed through by driver
2304 * @driver_data: private regulator data
2305 *
2306 * Called by regulator drivers to register a regulator.
2307 * Returns 0 on success.
2308 */
2309struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2310	struct device *dev, const struct regulator_init_data *init_data,
2311	void *driver_data)
2312{
2313	static atomic_t regulator_no = ATOMIC_INIT(0);
2314	struct regulator_dev *rdev;
2315	int ret, i;
2316
2317	if (regulator_desc == NULL)
2318		return ERR_PTR(-EINVAL);
2319
2320	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2321		return ERR_PTR(-EINVAL);
2322
2323	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2324	    regulator_desc->type != REGULATOR_CURRENT)
2325		return ERR_PTR(-EINVAL);
2326
2327	if (!init_data)
2328		return ERR_PTR(-EINVAL);
2329
2330	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2331	if (rdev == NULL)
2332		return ERR_PTR(-ENOMEM);
2333
2334	mutex_lock(&regulator_list_mutex);
2335
2336	mutex_init(&rdev->mutex);
2337	rdev->reg_data = driver_data;
2338	rdev->owner = regulator_desc->owner;
2339	rdev->desc = regulator_desc;
2340	INIT_LIST_HEAD(&rdev->consumer_list);
2341	INIT_LIST_HEAD(&rdev->supply_list);
2342	INIT_LIST_HEAD(&rdev->list);
2343	INIT_LIST_HEAD(&rdev->slist);
2344	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2345
2346	/* preform any regulator specific init */
2347	if (init_data->regulator_init) {
2348		ret = init_data->regulator_init(rdev->reg_data);
2349		if (ret < 0)
2350			goto clean;
2351	}
2352
2353	/* register with sysfs */
2354	rdev->dev.class = &regulator_class;
2355	rdev->dev.parent = dev;
2356	dev_set_name(&rdev->dev, "regulator.%d",
2357		     atomic_inc_return(&regulator_no) - 1);
2358	ret = device_register(&rdev->dev);
2359	if (ret != 0) {
2360		put_device(&rdev->dev);
2361		goto clean;
2362	}
2363
2364	dev_set_drvdata(&rdev->dev, rdev);
2365
2366	/* set regulator constraints */
2367	ret = set_machine_constraints(rdev, &init_data->constraints);
2368	if (ret < 0)
2369		goto scrub;
2370
2371	/* add attributes supported by this regulator */
2372	ret = add_regulator_attributes(rdev);
2373	if (ret < 0)
2374		goto scrub;
2375
2376	/* set supply regulator if it exists */
2377	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2378		dev_err(dev,
2379			"Supply regulator specified by both name and dev\n");
2380		ret = -EINVAL;
2381		goto scrub;
2382	}
2383
2384	if (init_data->supply_regulator) {
2385		struct regulator_dev *r;
2386		int found = 0;
2387
2388		list_for_each_entry(r, &regulator_list, list) {
2389			if (strcmp(rdev_get_name(r),
2390				   init_data->supply_regulator) == 0) {
2391				found = 1;
2392				break;
2393			}
2394		}
2395
2396		if (!found) {
2397			dev_err(dev, "Failed to find supply %s\n",
2398				init_data->supply_regulator);
2399			ret = -ENODEV;
2400			goto scrub;
2401		}
2402
2403		ret = set_supply(rdev, r);
2404		if (ret < 0)
2405			goto scrub;
2406	}
2407
2408	if (init_data->supply_regulator_dev) {
2409		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2410		ret = set_supply(rdev,
2411			dev_get_drvdata(init_data->supply_regulator_dev));
2412		if (ret < 0)
2413			goto scrub;
2414	}
2415
2416	/* add consumers devices */
2417	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2418		ret = set_consumer_device_supply(rdev,
2419			init_data->consumer_supplies[i].dev,
2420			init_data->consumer_supplies[i].dev_name,
2421			init_data->consumer_supplies[i].supply);
2422		if (ret < 0)
2423			goto unset_supplies;
2424	}
2425
2426	list_add(&rdev->list, &regulator_list);
2427out:
2428	mutex_unlock(&regulator_list_mutex);
2429	return rdev;
2430
2431unset_supplies:
2432	unset_regulator_supplies(rdev);
2433
2434scrub:
2435	device_unregister(&rdev->dev);
2436	/* device core frees rdev */
2437	rdev = ERR_PTR(ret);
2438	goto out;
2439
2440clean:
2441	kfree(rdev);
2442	rdev = ERR_PTR(ret);
2443	goto out;
2444}
2445EXPORT_SYMBOL_GPL(regulator_register);
2446
2447/**
2448 * regulator_unregister - unregister regulator
2449 * @rdev: regulator to unregister
2450 *
2451 * Called by regulator drivers to unregister a regulator.
2452 */
2453void regulator_unregister(struct regulator_dev *rdev)
2454{
2455	if (rdev == NULL)
2456		return;
2457
2458	mutex_lock(&regulator_list_mutex);
2459	WARN_ON(rdev->open_count);
2460	unset_regulator_supplies(rdev);
2461	list_del(&rdev->list);
2462	if (rdev->supply)
2463		sysfs_remove_link(&rdev->dev.kobj, "supply");
2464	device_unregister(&rdev->dev);
2465	kfree(rdev->constraints);
2466	mutex_unlock(&regulator_list_mutex);
2467}
2468EXPORT_SYMBOL_GPL(regulator_unregister);
2469
2470/**
2471 * regulator_suspend_prepare - prepare regulators for system wide suspend
2472 * @state: system suspend state
2473 *
2474 * Configure each regulator with it's suspend operating parameters for state.
2475 * This will usually be called by machine suspend code prior to supending.
2476 */
2477int regulator_suspend_prepare(suspend_state_t state)
2478{
2479	struct regulator_dev *rdev;
2480	int ret = 0;
2481
2482	/* ON is handled by regulator active state */
2483	if (state == PM_SUSPEND_ON)
2484		return -EINVAL;
2485
2486	mutex_lock(&regulator_list_mutex);
2487	list_for_each_entry(rdev, &regulator_list, list) {
2488
2489		mutex_lock(&rdev->mutex);
2490		ret = suspend_prepare(rdev, state);
2491		mutex_unlock(&rdev->mutex);
2492
2493		if (ret < 0) {
2494			rdev_err(rdev, "failed to prepare\n");
2495			goto out;
2496		}
2497	}
2498out:
2499	mutex_unlock(&regulator_list_mutex);
2500	return ret;
2501}
2502EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2503
2504/**
2505 * regulator_has_full_constraints - the system has fully specified constraints
2506 *
2507 * Calling this function will cause the regulator API to disable all
2508 * regulators which have a zero use count and don't have an always_on
2509 * constraint in a late_initcall.
2510 *
2511 * The intention is that this will become the default behaviour in a
2512 * future kernel release so users are encouraged to use this facility
2513 * now.
2514 */
2515void regulator_has_full_constraints(void)
2516{
2517	has_full_constraints = 1;
2518}
2519EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2520
2521/**
2522 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2523 *
2524 * Calling this function will cause the regulator API to provide a
2525 * dummy regulator to consumers if no physical regulator is found,
2526 * allowing most consumers to proceed as though a regulator were
2527 * configured.  This allows systems such as those with software
2528 * controllable regulators for the CPU core only to be brought up more
2529 * readily.
2530 */
2531void regulator_use_dummy_regulator(void)
2532{
2533	board_wants_dummy_regulator = true;
2534}
2535EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2536
2537/**
2538 * rdev_get_drvdata - get rdev regulator driver data
2539 * @rdev: regulator
2540 *
2541 * Get rdev regulator driver private data. This call can be used in the
2542 * regulator driver context.
2543 */
2544void *rdev_get_drvdata(struct regulator_dev *rdev)
2545{
2546	return rdev->reg_data;
2547}
2548EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2549
2550/**
2551 * regulator_get_drvdata - get regulator driver data
2552 * @regulator: regulator
2553 *
2554 * Get regulator driver private data. This call can be used in the consumer
2555 * driver context when non API regulator specific functions need to be called.
2556 */
2557void *regulator_get_drvdata(struct regulator *regulator)
2558{
2559	return regulator->rdev->reg_data;
2560}
2561EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2562
2563/**
2564 * regulator_set_drvdata - set regulator driver data
2565 * @regulator: regulator
2566 * @data: data
2567 */
2568void regulator_set_drvdata(struct regulator *regulator, void *data)
2569{
2570	regulator->rdev->reg_data = data;
2571}
2572EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2573
2574/**
2575 * regulator_get_id - get regulator ID
2576 * @rdev: regulator
2577 */
2578int rdev_get_id(struct regulator_dev *rdev)
2579{
2580	return rdev->desc->id;
2581}
2582EXPORT_SYMBOL_GPL(rdev_get_id);
2583
2584struct device *rdev_get_dev(struct regulator_dev *rdev)
2585{
2586	return &rdev->dev;
2587}
2588EXPORT_SYMBOL_GPL(rdev_get_dev);
2589
2590void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2591{
2592	return reg_init_data->driver_data;
2593}
2594EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2595
2596static int __init regulator_init(void)
2597{
2598	int ret;
2599
2600	ret = class_register(&regulator_class);
2601
2602	regulator_dummy_init();
2603
2604	return ret;
2605}
2606
2607/* init early to allow our consumers to complete system booting */
2608core_initcall(regulator_init);
2609
2610static int __init regulator_init_complete(void)
2611{
2612	struct regulator_dev *rdev;
2613	struct regulator_ops *ops;
2614	struct regulation_constraints *c;
2615	int enabled, ret;
2616
2617	mutex_lock(&regulator_list_mutex);
2618
2619	/* If we have a full configuration then disable any regulators
2620	 * which are not in use or always_on.  This will become the
2621	 * default behaviour in the future.
2622	 */
2623	list_for_each_entry(rdev, &regulator_list, list) {
2624		ops = rdev->desc->ops;
2625		c = rdev->constraints;
2626
2627		if (!ops->disable || (c && c->always_on))
2628			continue;
2629
2630		mutex_lock(&rdev->mutex);
2631
2632		if (rdev->use_count)
2633			goto unlock;
2634
2635		/* If we can't read the status assume it's on. */
2636		if (ops->is_enabled)
2637			enabled = ops->is_enabled(rdev);
2638		else
2639			enabled = 1;
2640
2641		if (!enabled)
2642			goto unlock;
2643
2644		if (has_full_constraints) {
2645			/* We log since this may kill the system if it
2646			 * goes wrong. */
2647			rdev_info(rdev, "disabling\n");
2648			ret = ops->disable(rdev);
2649			if (ret != 0) {
2650				rdev_err(rdev, "couldn't disable: %d\n", ret);
2651			}
2652		} else {
2653			/* The intention is that in future we will
2654			 * assume that full constraints are provided
2655			 * so warn even if we aren't going to do
2656			 * anything here.
2657			 */
2658			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2659		}
2660
2661unlock:
2662		mutex_unlock(&rdev->mutex);
2663	}
2664
2665	mutex_unlock(&regulator_list_mutex);
2666
2667	return 0;
2668}
2669late_initcall(regulator_init_complete);
2670