core.c revision 230a5a1c41464f7fe5b676c21280ae4effa222c8
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114	struct regulator *regulator = NULL;
115	struct regulator_dev *rdev;
116
117	mutex_lock(&regulator_list_mutex);
118	list_for_each_entry(rdev, &regulator_list, list) {
119		mutex_lock(&rdev->mutex);
120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
121			if (regulator->dev == dev) {
122				mutex_unlock(&rdev->mutex);
123				mutex_unlock(&regulator_list_mutex);
124				return regulator;
125			}
126		}
127		mutex_unlock(&rdev->mutex);
128	}
129	mutex_unlock(&regulator_list_mutex);
130	return NULL;
131}
132
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144	struct device_node *regnode = NULL;
145	char prop_name[32]; /* 32 is max size of property name */
146
147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149	snprintf(prop_name, 32, "%s-supply", supply);
150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152	if (!regnode) {
153		dev_dbg(dev, "Looking up %s property in node %s failed",
154				prop_name, dev->of_node->full_name);
155		return NULL;
156	}
157	return regnode;
158}
159
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162	if (!rdev->constraints)
163		return 0;
164
165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166		return 1;
167	else
168		return 0;
169}
170
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173				   int *min_uV, int *max_uV)
174{
175	BUG_ON(*min_uV > *max_uV);
176
177	if (!rdev->constraints) {
178		rdev_err(rdev, "no constraints\n");
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182		rdev_err(rdev, "operation not allowed\n");
183		return -EPERM;
184	}
185
186	if (*max_uV > rdev->constraints->max_uV)
187		*max_uV = rdev->constraints->max_uV;
188	if (*min_uV < rdev->constraints->min_uV)
189		*min_uV = rdev->constraints->min_uV;
190
191	if (*min_uV > *max_uV) {
192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193			 *min_uV, *max_uV);
194		return -EINVAL;
195	}
196
197	return 0;
198}
199
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204				     int *min_uV, int *max_uV)
205{
206	struct regulator *regulator;
207
208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209		/*
210		 * Assume consumers that didn't say anything are OK
211		 * with anything in the constraint range.
212		 */
213		if (!regulator->min_uV && !regulator->max_uV)
214			continue;
215
216		if (*max_uV > regulator->max_uV)
217			*max_uV = regulator->max_uV;
218		if (*min_uV < regulator->min_uV)
219			*min_uV = regulator->min_uV;
220	}
221
222	if (*min_uV > *max_uV)
223		return -EINVAL;
224
225	return 0;
226}
227
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230					int *min_uA, int *max_uA)
231{
232	BUG_ON(*min_uA > *max_uA);
233
234	if (!rdev->constraints) {
235		rdev_err(rdev, "no constraints\n");
236		return -ENODEV;
237	}
238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239		rdev_err(rdev, "operation not allowed\n");
240		return -EPERM;
241	}
242
243	if (*max_uA > rdev->constraints->max_uA)
244		*max_uA = rdev->constraints->max_uA;
245	if (*min_uA < rdev->constraints->min_uA)
246		*min_uA = rdev->constraints->min_uA;
247
248	if (*min_uA > *max_uA) {
249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250			 *min_uA, *max_uA);
251		return -EINVAL;
252	}
253
254	return 0;
255}
256
257/* operating mode constraint check */
258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259{
260	switch (*mode) {
261	case REGULATOR_MODE_FAST:
262	case REGULATOR_MODE_NORMAL:
263	case REGULATOR_MODE_IDLE:
264	case REGULATOR_MODE_STANDBY:
265		break;
266	default:
267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268		return -EINVAL;
269	}
270
271	if (!rdev->constraints) {
272		rdev_err(rdev, "no constraints\n");
273		return -ENODEV;
274	}
275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276		rdev_err(rdev, "operation not allowed\n");
277		return -EPERM;
278	}
279
280	/* The modes are bitmasks, the most power hungry modes having
281	 * the lowest values. If the requested mode isn't supported
282	 * try higher modes. */
283	while (*mode) {
284		if (rdev->constraints->valid_modes_mask & *mode)
285			return 0;
286		*mode /= 2;
287	}
288
289	return -EINVAL;
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295	if (!rdev->constraints) {
296		rdev_err(rdev, "no constraints\n");
297		return -ENODEV;
298	}
299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300		rdev_err(rdev, "operation not allowed\n");
301		return -EPERM;
302	}
303	return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307			     struct device_attribute *attr, char *buf)
308{
309	struct regulator *regulator;
310
311	regulator = get_device_regulator(dev);
312	if (regulator == NULL)
313		return 0;
314
315	return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332static ssize_t regulator_uA_show(struct device *dev,
333				struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341static ssize_t regulator_name_show(struct device *dev,
342			     struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347}
348
349static ssize_t regulator_print_opmode(char *buf, int mode)
350{
351	switch (mode) {
352	case REGULATOR_MODE_FAST:
353		return sprintf(buf, "fast\n");
354	case REGULATOR_MODE_NORMAL:
355		return sprintf(buf, "normal\n");
356	case REGULATOR_MODE_IDLE:
357		return sprintf(buf, "idle\n");
358	case REGULATOR_MODE_STANDBY:
359		return sprintf(buf, "standby\n");
360	}
361	return sprintf(buf, "unknown\n");
362}
363
364static ssize_t regulator_opmode_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
375	if (state > 0)
376		return sprintf(buf, "enabled\n");
377	else if (state == 0)
378		return sprintf(buf, "disabled\n");
379	else
380		return sprintf(buf, "unknown\n");
381}
382
383static ssize_t regulator_state_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	ssize_t ret;
388
389	mutex_lock(&rdev->mutex);
390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391	mutex_unlock(&rdev->mutex);
392
393	return ret;
394}
395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397static ssize_t regulator_status_show(struct device *dev,
398				   struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	int status;
402	char *label;
403
404	status = rdev->desc->ops->get_status(rdev);
405	if (status < 0)
406		return status;
407
408	switch (status) {
409	case REGULATOR_STATUS_OFF:
410		label = "off";
411		break;
412	case REGULATOR_STATUS_ON:
413		label = "on";
414		break;
415	case REGULATOR_STATUS_ERROR:
416		label = "error";
417		break;
418	case REGULATOR_STATUS_FAST:
419		label = "fast";
420		break;
421	case REGULATOR_STATUS_NORMAL:
422		label = "normal";
423		break;
424	case REGULATOR_STATUS_IDLE:
425		label = "idle";
426		break;
427	case REGULATOR_STATUS_STANDBY:
428		label = "standby";
429		break;
430	default:
431		return -ERANGE;
432	}
433
434	return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438static ssize_t regulator_min_uA_show(struct device *dev,
439				    struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	if (!rdev->constraints)
444		return sprintf(buf, "constraint not defined\n");
445
446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451				    struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	if (!rdev->constraints)
456		return sprintf(buf, "constraint not defined\n");
457
458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463				    struct device_attribute *attr, char *buf)
464{
465	struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467	if (!rdev->constraints)
468		return sprintf(buf, "constraint not defined\n");
469
470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475				    struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	if (!rdev->constraints)
480		return sprintf(buf, "constraint not defined\n");
481
482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487				      struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490	struct regulator *regulator;
491	int uA = 0;
492
493	mutex_lock(&rdev->mutex);
494	list_for_each_entry(regulator, &rdev->consumer_list, list)
495		uA += regulator->uA_load;
496	mutex_unlock(&rdev->mutex);
497	return sprintf(buf, "%d\n", uA);
498}
499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501static ssize_t regulator_num_users_show(struct device *dev,
502				      struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505	return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509				  struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	switch (rdev->desc->type) {
514	case REGULATOR_VOLTAGE:
515		return sprintf(buf, "voltage\n");
516	case REGULATOR_CURRENT:
517		return sprintf(buf, "current\n");
518	}
519	return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530		regulator_suspend_mem_uV_show, NULL);
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533				struct device_attribute *attr, char *buf)
534{
535	struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540		regulator_suspend_disk_uV_show, NULL);
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543				struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550		regulator_suspend_standby_uV_show, NULL);
551
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_mem.mode);
559}
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561		regulator_suspend_mem_mode_show, NULL);
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_disk.mode);
570}
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572		regulator_suspend_disk_mode_show, NULL);
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575				struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_opmode(buf,
580		rdev->constraints->state_standby.mode);
581}
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583		regulator_suspend_standby_mode_show, NULL);
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_mem.enabled);
592}
593static DEVICE_ATTR(suspend_mem_state, 0444,
594		regulator_suspend_mem_state_show, NULL);
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_disk.enabled);
603}
604static DEVICE_ATTR(suspend_disk_state, 0444,
605		regulator_suspend_disk_state_show, NULL);
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608				   struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612	return regulator_print_state(buf,
613			rdev->constraints->state_standby.enabled);
614}
615static DEVICE_ATTR(suspend_standby_state, 0444,
616		regulator_suspend_standby_state_show, NULL);
617
618
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623static struct device_attribute regulator_dev_attrs[] = {
624	__ATTR(name, 0444, regulator_name_show, NULL),
625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
626	__ATTR(type, 0444, regulator_type_show, NULL),
627	__ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
632	struct regulator_dev *rdev = dev_get_drvdata(dev);
633	kfree(rdev);
634}
635
636static struct class regulator_class = {
637	.name = "regulator",
638	.dev_release = regulator_dev_release,
639	.dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646	struct regulator *sibling;
647	int current_uA = 0, output_uV, input_uV, err;
648	unsigned int mode;
649
650	err = regulator_check_drms(rdev);
651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652	    (!rdev->desc->ops->get_voltage &&
653	     !rdev->desc->ops->get_voltage_sel) ||
654	    !rdev->desc->ops->set_mode)
655		return;
656
657	/* get output voltage */
658	output_uV = _regulator_get_voltage(rdev);
659	if (output_uV <= 0)
660		return;
661
662	/* get input voltage */
663	input_uV = 0;
664	if (rdev->supply)
665		input_uV = regulator_get_voltage(rdev->supply);
666	if (input_uV <= 0)
667		input_uV = rdev->constraints->input_uV;
668	if (input_uV <= 0)
669		return;
670
671	/* calc total requested load */
672	list_for_each_entry(sibling, &rdev->consumer_list, list)
673		current_uA += sibling->uA_load;
674
675	/* now get the optimum mode for our new total regulator load */
676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677						  output_uV, current_uA);
678
679	/* check the new mode is allowed */
680	err = regulator_mode_constrain(rdev, &mode);
681	if (err == 0)
682		rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686	struct regulator_state *rstate)
687{
688	int ret = 0;
689
690	/* If we have no suspend mode configration don't set anything;
691	 * only warn if the driver implements set_suspend_voltage or
692	 * set_suspend_mode callback.
693	 */
694	if (!rstate->enabled && !rstate->disabled) {
695		if (rdev->desc->ops->set_suspend_voltage ||
696		    rdev->desc->ops->set_suspend_mode)
697			rdev_warn(rdev, "No configuration\n");
698		return 0;
699	}
700
701	if (rstate->enabled && rstate->disabled) {
702		rdev_err(rdev, "invalid configuration\n");
703		return -EINVAL;
704	}
705
706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707		ret = rdev->desc->ops->set_suspend_enable(rdev);
708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709		ret = rdev->desc->ops->set_suspend_disable(rdev);
710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711		ret = 0;
712
713	if (ret < 0) {
714		rdev_err(rdev, "failed to enabled/disable\n");
715		return ret;
716	}
717
718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set voltage\n");
722			return ret;
723		}
724	}
725
726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728		if (ret < 0) {
729			rdev_err(rdev, "failed to set mode\n");
730			return ret;
731		}
732	}
733	return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739	if (!rdev->constraints)
740		return -EINVAL;
741
742	switch (state) {
743	case PM_SUSPEND_STANDBY:
744		return suspend_set_state(rdev,
745			&rdev->constraints->state_standby);
746	case PM_SUSPEND_MEM:
747		return suspend_set_state(rdev,
748			&rdev->constraints->state_mem);
749	case PM_SUSPEND_MAX:
750		return suspend_set_state(rdev,
751			&rdev->constraints->state_disk);
752	default:
753		return -EINVAL;
754	}
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759	struct regulation_constraints *constraints = rdev->constraints;
760	char buf[80] = "";
761	int count = 0;
762	int ret;
763
764	if (constraints->min_uV && constraints->max_uV) {
765		if (constraints->min_uV == constraints->max_uV)
766			count += sprintf(buf + count, "%d mV ",
767					 constraints->min_uV / 1000);
768		else
769			count += sprintf(buf + count, "%d <--> %d mV ",
770					 constraints->min_uV / 1000,
771					 constraints->max_uV / 1000);
772	}
773
774	if (!constraints->min_uV ||
775	    constraints->min_uV != constraints->max_uV) {
776		ret = _regulator_get_voltage(rdev);
777		if (ret > 0)
778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
779	}
780
781	if (constraints->uV_offset)
782		count += sprintf(buf, "%dmV offset ",
783				 constraints->uV_offset / 1000);
784
785	if (constraints->min_uA && constraints->max_uA) {
786		if (constraints->min_uA == constraints->max_uA)
787			count += sprintf(buf + count, "%d mA ",
788					 constraints->min_uA / 1000);
789		else
790			count += sprintf(buf + count, "%d <--> %d mA ",
791					 constraints->min_uA / 1000,
792					 constraints->max_uA / 1000);
793	}
794
795	if (!constraints->min_uA ||
796	    constraints->min_uA != constraints->max_uA) {
797		ret = _regulator_get_current_limit(rdev);
798		if (ret > 0)
799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800	}
801
802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803		count += sprintf(buf + count, "fast ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805		count += sprintf(buf + count, "normal ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807		count += sprintf(buf + count, "idle ");
808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809		count += sprintf(buf + count, "standby");
810
811	rdev_info(rdev, "%s\n", buf);
812
813	if ((constraints->min_uV != constraints->max_uV) &&
814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815		rdev_warn(rdev,
816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817}
818
819static int machine_constraints_voltage(struct regulator_dev *rdev,
820	struct regulation_constraints *constraints)
821{
822	struct regulator_ops *ops = rdev->desc->ops;
823	int ret;
824
825	/* do we need to apply the constraint voltage */
826	if (rdev->constraints->apply_uV &&
827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
828		ret = _regulator_do_set_voltage(rdev,
829						rdev->constraints->min_uV,
830						rdev->constraints->max_uV);
831		if (ret < 0) {
832			rdev_err(rdev, "failed to apply %duV constraint\n",
833				 rdev->constraints->min_uV);
834			return ret;
835		}
836	}
837
838	/* constrain machine-level voltage specs to fit
839	 * the actual range supported by this regulator.
840	 */
841	if (ops->list_voltage && rdev->desc->n_voltages) {
842		int	count = rdev->desc->n_voltages;
843		int	i;
844		int	min_uV = INT_MAX;
845		int	max_uV = INT_MIN;
846		int	cmin = constraints->min_uV;
847		int	cmax = constraints->max_uV;
848
849		/* it's safe to autoconfigure fixed-voltage supplies
850		   and the constraints are used by list_voltage. */
851		if (count == 1 && !cmin) {
852			cmin = 1;
853			cmax = INT_MAX;
854			constraints->min_uV = cmin;
855			constraints->max_uV = cmax;
856		}
857
858		/* voltage constraints are optional */
859		if ((cmin == 0) && (cmax == 0))
860			return 0;
861
862		/* else require explicit machine-level constraints */
863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864			rdev_err(rdev, "invalid voltage constraints\n");
865			return -EINVAL;
866		}
867
868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869		for (i = 0; i < count; i++) {
870			int	value;
871
872			value = ops->list_voltage(rdev, i);
873			if (value <= 0)
874				continue;
875
876			/* maybe adjust [min_uV..max_uV] */
877			if (value >= cmin && value < min_uV)
878				min_uV = value;
879			if (value <= cmax && value > max_uV)
880				max_uV = value;
881		}
882
883		/* final: [min_uV..max_uV] valid iff constraints valid */
884		if (max_uV < min_uV) {
885			rdev_err(rdev, "unsupportable voltage constraints\n");
886			return -EINVAL;
887		}
888
889		/* use regulator's subset of machine constraints */
890		if (constraints->min_uV < min_uV) {
891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892				 constraints->min_uV, min_uV);
893			constraints->min_uV = min_uV;
894		}
895		if (constraints->max_uV > max_uV) {
896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897				 constraints->max_uV, max_uV);
898			constraints->max_uV = max_uV;
899		}
900	}
901
902	return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
917	const struct regulation_constraints *constraints)
918{
919	int ret = 0;
920	struct regulator_ops *ops = rdev->desc->ops;
921
922	if (constraints)
923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924					    GFP_KERNEL);
925	else
926		rdev->constraints = kzalloc(sizeof(*constraints),
927					    GFP_KERNEL);
928	if (!rdev->constraints)
929		return -ENOMEM;
930
931	ret = machine_constraints_voltage(rdev, rdev->constraints);
932	if (ret != 0)
933		goto out;
934
935	/* do we need to setup our suspend state */
936	if (rdev->constraints->initial_state) {
937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938		if (ret < 0) {
939			rdev_err(rdev, "failed to set suspend state\n");
940			goto out;
941		}
942	}
943
944	if (rdev->constraints->initial_mode) {
945		if (!ops->set_mode) {
946			rdev_err(rdev, "no set_mode operation\n");
947			ret = -EINVAL;
948			goto out;
949		}
950
951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952		if (ret < 0) {
953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954			goto out;
955		}
956	}
957
958	/* If the constraints say the regulator should be on at this point
959	 * and we have control then make sure it is enabled.
960	 */
961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962	    ops->enable) {
963		ret = ops->enable(rdev);
964		if (ret < 0) {
965			rdev_err(rdev, "failed to enable\n");
966			goto out;
967		}
968	}
969
970	print_constraints(rdev);
971	return 0;
972out:
973	kfree(rdev->constraints);
974	rdev->constraints = NULL;
975	return ret;
976}
977
978/**
979 * set_supply - set regulator supply regulator
980 * @rdev: regulator name
981 * @supply_rdev: supply regulator name
982 *
983 * Called by platform initialisation code to set the supply regulator for this
984 * regulator. This ensures that a regulators supply will also be enabled by the
985 * core if it's child is enabled.
986 */
987static int set_supply(struct regulator_dev *rdev,
988		      struct regulator_dev *supply_rdev)
989{
990	int err;
991
992	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995	if (rdev->supply == NULL) {
996		err = -ENOMEM;
997		return err;
998	}
999
1000	return 0;
1001}
1002
1003/**
1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005 * @rdev:         regulator source
1006 * @consumer_dev_name: dev_name() string for device supply applies to
1007 * @supply:       symbolic name for supply
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices.  Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
1015				      const char *consumer_dev_name,
1016				      const char *supply)
1017{
1018	struct regulator_map *node;
1019	int has_dev;
1020
1021	if (supply == NULL)
1022		return -EINVAL;
1023
1024	if (consumer_dev_name != NULL)
1025		has_dev = 1;
1026	else
1027		has_dev = 0;
1028
1029	list_for_each_entry(node, &regulator_map_list, list) {
1030		if (node->dev_name && consumer_dev_name) {
1031			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032				continue;
1033		} else if (node->dev_name || consumer_dev_name) {
1034			continue;
1035		}
1036
1037		if (strcmp(node->supply, supply) != 0)
1038			continue;
1039
1040		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041			 consumer_dev_name,
1042			 dev_name(&node->regulator->dev),
1043			 node->regulator->desc->name,
1044			 supply,
1045			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046		return -EBUSY;
1047	}
1048
1049	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050	if (node == NULL)
1051		return -ENOMEM;
1052
1053	node->regulator = rdev;
1054	node->supply = supply;
1055
1056	if (has_dev) {
1057		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058		if (node->dev_name == NULL) {
1059			kfree(node);
1060			return -ENOMEM;
1061		}
1062	}
1063
1064	list_add(&node->list, &regulator_map_list);
1065	return 0;
1066}
1067
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070	struct regulator_map *node, *n;
1071
1072	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073		if (rdev == node->regulator) {
1074			list_del(&node->list);
1075			kfree(node->dev_name);
1076			kfree(node);
1077		}
1078	}
1079}
1080
1081#define REG_STR_SIZE	64
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084					  struct device *dev,
1085					  const char *supply_name)
1086{
1087	struct regulator *regulator;
1088	char buf[REG_STR_SIZE];
1089	int err, size;
1090
1091	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092	if (regulator == NULL)
1093		return NULL;
1094
1095	mutex_lock(&rdev->mutex);
1096	regulator->rdev = rdev;
1097	list_add(&regulator->list, &rdev->consumer_list);
1098
1099	if (dev) {
1100		/* create a 'requested_microamps_name' sysfs entry */
1101		size = scnprintf(buf, REG_STR_SIZE,
1102				 "microamps_requested_%s-%s",
1103				 dev_name(dev), supply_name);
1104		if (size >= REG_STR_SIZE)
1105			goto overflow_err;
1106
1107		regulator->dev = dev;
1108		sysfs_attr_init(&regulator->dev_attr.attr);
1109		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110		if (regulator->dev_attr.attr.name == NULL)
1111			goto attr_name_err;
1112
1113		regulator->dev_attr.attr.mode = 0444;
1114		regulator->dev_attr.show = device_requested_uA_show;
1115		err = device_create_file(dev, &regulator->dev_attr);
1116		if (err < 0) {
1117			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118			goto attr_name_err;
1119		}
1120
1121		/* also add a link to the device sysfs entry */
1122		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123				 dev->kobj.name, supply_name);
1124		if (size >= REG_STR_SIZE)
1125			goto attr_err;
1126
1127		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto attr_err;
1130
1131		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132					buf);
1133		if (err) {
1134			rdev_warn(rdev, "could not add device link %s err %d\n",
1135				  dev->kobj.name, err);
1136			goto link_name_err;
1137		}
1138	} else {
1139		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto attr_err;
1142	}
1143
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (!regulator->debugfs) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156
1157	/*
1158	 * Check now if the regulator is an always on regulator - if
1159	 * it is then we don't need to do nearly so much work for
1160	 * enable/disable calls.
1161	 */
1162	if (!_regulator_can_change_status(rdev) &&
1163	    _regulator_is_enabled(rdev))
1164		regulator->always_on = true;
1165
1166	mutex_unlock(&rdev->mutex);
1167	return regulator;
1168link_name_err:
1169	kfree(regulator->supply_name);
1170attr_err:
1171	device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173	kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175	list_del(&regulator->list);
1176	kfree(regulator);
1177	mutex_unlock(&rdev->mutex);
1178	return NULL;
1179}
1180
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
1183	if (!rdev->desc->ops->enable_time)
1184		return 0;
1185	return rdev->desc->ops->enable_time(rdev);
1186}
1187
1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189						  const char *supply,
1190						  int *ret)
1191{
1192	struct regulator_dev *r;
1193	struct device_node *node;
1194	struct regulator_map *map;
1195	const char *devname = NULL;
1196
1197	/* first do a dt based lookup */
1198	if (dev && dev->of_node) {
1199		node = of_get_regulator(dev, supply);
1200		if (node) {
1201			list_for_each_entry(r, &regulator_list, list)
1202				if (r->dev.parent &&
1203					node == r->dev.of_node)
1204					return r;
1205		} else {
1206			/*
1207			 * If we couldn't even get the node then it's
1208			 * not just that the device didn't register
1209			 * yet, there's no node and we'll never
1210			 * succeed.
1211			 */
1212			*ret = -ENODEV;
1213		}
1214	}
1215
1216	/* if not found, try doing it non-dt way */
1217	if (dev)
1218		devname = dev_name(dev);
1219
1220	list_for_each_entry(r, &regulator_list, list)
1221		if (strcmp(rdev_get_name(r), supply) == 0)
1222			return r;
1223
1224	list_for_each_entry(map, &regulator_map_list, list) {
1225		/* If the mapping has a device set up it must match */
1226		if (map->dev_name &&
1227		    (!devname || strcmp(map->dev_name, devname)))
1228			continue;
1229
1230		if (strcmp(map->supply, supply) == 0)
1231			return map->regulator;
1232	}
1233
1234
1235	return NULL;
1236}
1237
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240					int exclusive)
1241{
1242	struct regulator_dev *rdev;
1243	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244	const char *devname = NULL;
1245	int ret;
1246
1247	if (id == NULL) {
1248		pr_err("get() with no identifier\n");
1249		return regulator;
1250	}
1251
1252	if (dev)
1253		devname = dev_name(dev);
1254
1255	mutex_lock(&regulator_list_mutex);
1256
1257	rdev = regulator_dev_lookup(dev, id, &ret);
1258	if (rdev)
1259		goto found;
1260
1261	if (board_wants_dummy_regulator) {
1262		rdev = dummy_regulator_rdev;
1263		goto found;
1264	}
1265
1266#ifdef CONFIG_REGULATOR_DUMMY
1267	if (!devname)
1268		devname = "deviceless";
1269
1270	/* If the board didn't flag that it was fully constrained then
1271	 * substitute in a dummy regulator so consumers can continue.
1272	 */
1273	if (!has_full_constraints) {
1274		pr_warn("%s supply %s not found, using dummy regulator\n",
1275			devname, id);
1276		rdev = dummy_regulator_rdev;
1277		goto found;
1278	}
1279#endif
1280
1281	mutex_unlock(&regulator_list_mutex);
1282	return regulator;
1283
1284found:
1285	if (rdev->exclusive) {
1286		regulator = ERR_PTR(-EPERM);
1287		goto out;
1288	}
1289
1290	if (exclusive && rdev->open_count) {
1291		regulator = ERR_PTR(-EBUSY);
1292		goto out;
1293	}
1294
1295	if (!try_module_get(rdev->owner))
1296		goto out;
1297
1298	regulator = create_regulator(rdev, dev, id);
1299	if (regulator == NULL) {
1300		regulator = ERR_PTR(-ENOMEM);
1301		module_put(rdev->owner);
1302		goto out;
1303	}
1304
1305	rdev->open_count++;
1306	if (exclusive) {
1307		rdev->exclusive = 1;
1308
1309		ret = _regulator_is_enabled(rdev);
1310		if (ret > 0)
1311			rdev->use_count = 1;
1312		else
1313			rdev->use_count = 0;
1314	}
1315
1316out:
1317	mutex_unlock(&regulator_list_mutex);
1318
1319	return regulator;
1320}
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged.  It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337	return _regulator_get(dev, id, 0);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343	regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357	struct regulator **ptr, *regulator;
1358
1359	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360	if (!ptr)
1361		return ERR_PTR(-ENOMEM);
1362
1363	regulator = regulator_get(dev, id);
1364	if (!IS_ERR(regulator)) {
1365		*ptr = regulator;
1366		devres_add(dev, ptr);
1367	} else {
1368		devres_free(ptr);
1369	}
1370
1371	return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno.  Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged.  It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398	return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410void regulator_put(struct regulator *regulator)
1411{
1412	struct regulator_dev *rdev;
1413
1414	if (regulator == NULL || IS_ERR(regulator))
1415		return;
1416
1417	mutex_lock(&regulator_list_mutex);
1418	rdev = regulator->rdev;
1419
1420	debugfs_remove_recursive(regulator->debugfs);
1421
1422	/* remove any sysfs entries */
1423	if (regulator->dev) {
1424		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425		device_remove_file(regulator->dev, &regulator->dev_attr);
1426		kfree(regulator->dev_attr.attr.name);
1427	}
1428	kfree(regulator->supply_name);
1429	list_del(&regulator->list);
1430	kfree(regulator);
1431
1432	rdev->open_count--;
1433	rdev->exclusive = 0;
1434
1435	module_put(rdev->owner);
1436	mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
1441{
1442	struct regulator **r = res;
1443	if (!r || !*r) {
1444		WARN_ON(!r || !*r);
1445		return 0;
1446	}
1447	return *r == data;
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460	int rc;
1461
1462	rc = devres_release(regulator->dev, devm_regulator_release,
1463			    devm_regulator_match, regulator);
1464	if (rc != 0)
1465		WARN_ON(rc);
1466}
1467EXPORT_SYMBOL_GPL(devm_regulator_put);
1468
1469/* locks held by regulator_enable() */
1470static int _regulator_enable(struct regulator_dev *rdev)
1471{
1472	int ret, delay;
1473
1474	/* check voltage and requested load before enabling */
1475	if (rdev->constraints &&
1476	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1477		drms_uA_update(rdev);
1478
1479	if (rdev->use_count == 0) {
1480		/* The regulator may on if it's not switchable or left on */
1481		ret = _regulator_is_enabled(rdev);
1482		if (ret == -EINVAL || ret == 0) {
1483			if (!_regulator_can_change_status(rdev))
1484				return -EPERM;
1485
1486			if (!rdev->desc->ops->enable)
1487				return -EINVAL;
1488
1489			/* Query before enabling in case configuration
1490			 * dependent.  */
1491			ret = _regulator_get_enable_time(rdev);
1492			if (ret >= 0) {
1493				delay = ret;
1494			} else {
1495				rdev_warn(rdev, "enable_time() failed: %d\n",
1496					   ret);
1497				delay = 0;
1498			}
1499
1500			trace_regulator_enable(rdev_get_name(rdev));
1501
1502			/* Allow the regulator to ramp; it would be useful
1503			 * to extend this for bulk operations so that the
1504			 * regulators can ramp together.  */
1505			ret = rdev->desc->ops->enable(rdev);
1506			if (ret < 0)
1507				return ret;
1508
1509			trace_regulator_enable_delay(rdev_get_name(rdev));
1510
1511			if (delay >= 1000) {
1512				mdelay(delay / 1000);
1513				udelay(delay % 1000);
1514			} else if (delay) {
1515				udelay(delay);
1516			}
1517
1518			trace_regulator_enable_complete(rdev_get_name(rdev));
1519
1520		} else if (ret < 0) {
1521			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1522			return ret;
1523		}
1524		/* Fallthrough on positive return values - already enabled */
1525	}
1526
1527	rdev->use_count++;
1528
1529	return 0;
1530}
1531
1532/**
1533 * regulator_enable - enable regulator output
1534 * @regulator: regulator source
1535 *
1536 * Request that the regulator be enabled with the regulator output at
1537 * the predefined voltage or current value.  Calls to regulator_enable()
1538 * must be balanced with calls to regulator_disable().
1539 *
1540 * NOTE: the output value can be set by other drivers, boot loader or may be
1541 * hardwired in the regulator.
1542 */
1543int regulator_enable(struct regulator *regulator)
1544{
1545	struct regulator_dev *rdev = regulator->rdev;
1546	int ret = 0;
1547
1548	if (regulator->always_on)
1549		return 0;
1550
1551	if (rdev->supply) {
1552		ret = regulator_enable(rdev->supply);
1553		if (ret != 0)
1554			return ret;
1555	}
1556
1557	mutex_lock(&rdev->mutex);
1558	ret = _regulator_enable(rdev);
1559	mutex_unlock(&rdev->mutex);
1560
1561	if (ret != 0 && rdev->supply)
1562		regulator_disable(rdev->supply);
1563
1564	return ret;
1565}
1566EXPORT_SYMBOL_GPL(regulator_enable);
1567
1568/* locks held by regulator_disable() */
1569static int _regulator_disable(struct regulator_dev *rdev)
1570{
1571	int ret = 0;
1572
1573	if (WARN(rdev->use_count <= 0,
1574		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1575		return -EIO;
1576
1577	/* are we the last user and permitted to disable ? */
1578	if (rdev->use_count == 1 &&
1579	    (rdev->constraints && !rdev->constraints->always_on)) {
1580
1581		/* we are last user */
1582		if (_regulator_can_change_status(rdev) &&
1583		    rdev->desc->ops->disable) {
1584			trace_regulator_disable(rdev_get_name(rdev));
1585
1586			ret = rdev->desc->ops->disable(rdev);
1587			if (ret < 0) {
1588				rdev_err(rdev, "failed to disable\n");
1589				return ret;
1590			}
1591
1592			trace_regulator_disable_complete(rdev_get_name(rdev));
1593
1594			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1595					     NULL);
1596		}
1597
1598		rdev->use_count = 0;
1599	} else if (rdev->use_count > 1) {
1600
1601		if (rdev->constraints &&
1602			(rdev->constraints->valid_ops_mask &
1603			REGULATOR_CHANGE_DRMS))
1604			drms_uA_update(rdev);
1605
1606		rdev->use_count--;
1607	}
1608
1609	return ret;
1610}
1611
1612/**
1613 * regulator_disable - disable regulator output
1614 * @regulator: regulator source
1615 *
1616 * Disable the regulator output voltage or current.  Calls to
1617 * regulator_enable() must be balanced with calls to
1618 * regulator_disable().
1619 *
1620 * NOTE: this will only disable the regulator output if no other consumer
1621 * devices have it enabled, the regulator device supports disabling and
1622 * machine constraints permit this operation.
1623 */
1624int regulator_disable(struct regulator *regulator)
1625{
1626	struct regulator_dev *rdev = regulator->rdev;
1627	int ret = 0;
1628
1629	if (regulator->always_on)
1630		return 0;
1631
1632	mutex_lock(&rdev->mutex);
1633	ret = _regulator_disable(rdev);
1634	mutex_unlock(&rdev->mutex);
1635
1636	if (ret == 0 && rdev->supply)
1637		regulator_disable(rdev->supply);
1638
1639	return ret;
1640}
1641EXPORT_SYMBOL_GPL(regulator_disable);
1642
1643/* locks held by regulator_force_disable() */
1644static int _regulator_force_disable(struct regulator_dev *rdev)
1645{
1646	int ret = 0;
1647
1648	/* force disable */
1649	if (rdev->desc->ops->disable) {
1650		/* ah well, who wants to live forever... */
1651		ret = rdev->desc->ops->disable(rdev);
1652		if (ret < 0) {
1653			rdev_err(rdev, "failed to force disable\n");
1654			return ret;
1655		}
1656		/* notify other consumers that power has been forced off */
1657		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1658			REGULATOR_EVENT_DISABLE, NULL);
1659	}
1660
1661	return ret;
1662}
1663
1664/**
1665 * regulator_force_disable - force disable regulator output
1666 * @regulator: regulator source
1667 *
1668 * Forcibly disable the regulator output voltage or current.
1669 * NOTE: this *will* disable the regulator output even if other consumer
1670 * devices have it enabled. This should be used for situations when device
1671 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1672 */
1673int regulator_force_disable(struct regulator *regulator)
1674{
1675	struct regulator_dev *rdev = regulator->rdev;
1676	int ret;
1677
1678	mutex_lock(&rdev->mutex);
1679	regulator->uA_load = 0;
1680	ret = _regulator_force_disable(regulator->rdev);
1681	mutex_unlock(&rdev->mutex);
1682
1683	if (rdev->supply)
1684		while (rdev->open_count--)
1685			regulator_disable(rdev->supply);
1686
1687	return ret;
1688}
1689EXPORT_SYMBOL_GPL(regulator_force_disable);
1690
1691static void regulator_disable_work(struct work_struct *work)
1692{
1693	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1694						  disable_work.work);
1695	int count, i, ret;
1696
1697	mutex_lock(&rdev->mutex);
1698
1699	BUG_ON(!rdev->deferred_disables);
1700
1701	count = rdev->deferred_disables;
1702	rdev->deferred_disables = 0;
1703
1704	for (i = 0; i < count; i++) {
1705		ret = _regulator_disable(rdev);
1706		if (ret != 0)
1707			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1708	}
1709
1710	mutex_unlock(&rdev->mutex);
1711
1712	if (rdev->supply) {
1713		for (i = 0; i < count; i++) {
1714			ret = regulator_disable(rdev->supply);
1715			if (ret != 0) {
1716				rdev_err(rdev,
1717					 "Supply disable failed: %d\n", ret);
1718			}
1719		}
1720	}
1721}
1722
1723/**
1724 * regulator_disable_deferred - disable regulator output with delay
1725 * @regulator: regulator source
1726 * @ms: miliseconds until the regulator is disabled
1727 *
1728 * Execute regulator_disable() on the regulator after a delay.  This
1729 * is intended for use with devices that require some time to quiesce.
1730 *
1731 * NOTE: this will only disable the regulator output if no other consumer
1732 * devices have it enabled, the regulator device supports disabling and
1733 * machine constraints permit this operation.
1734 */
1735int regulator_disable_deferred(struct regulator *regulator, int ms)
1736{
1737	struct regulator_dev *rdev = regulator->rdev;
1738	int ret;
1739
1740	if (regulator->always_on)
1741		return 0;
1742
1743	mutex_lock(&rdev->mutex);
1744	rdev->deferred_disables++;
1745	mutex_unlock(&rdev->mutex);
1746
1747	ret = schedule_delayed_work(&rdev->disable_work,
1748				    msecs_to_jiffies(ms));
1749	if (ret < 0)
1750		return ret;
1751	else
1752		return 0;
1753}
1754EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1755
1756/**
1757 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1758 *
1759 * @rdev: regulator to operate on
1760 *
1761 * Regulators that use regmap for their register I/O can set the
1762 * enable_reg and enable_mask fields in their descriptor and then use
1763 * this as their is_enabled operation, saving some code.
1764 */
1765int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1766{
1767	unsigned int val;
1768	int ret;
1769
1770	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1771	if (ret != 0)
1772		return ret;
1773
1774	return (val & rdev->desc->enable_mask) != 0;
1775}
1776EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1777
1778/**
1779 * regulator_enable_regmap - standard enable() for regmap users
1780 *
1781 * @rdev: regulator to operate on
1782 *
1783 * Regulators that use regmap for their register I/O can set the
1784 * enable_reg and enable_mask fields in their descriptor and then use
1785 * this as their enable() operation, saving some code.
1786 */
1787int regulator_enable_regmap(struct regulator_dev *rdev)
1788{
1789	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1790				  rdev->desc->enable_mask,
1791				  rdev->desc->enable_mask);
1792}
1793EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1794
1795/**
1796 * regulator_disable_regmap - standard disable() for regmap users
1797 *
1798 * @rdev: regulator to operate on
1799 *
1800 * Regulators that use regmap for their register I/O can set the
1801 * enable_reg and enable_mask fields in their descriptor and then use
1802 * this as their disable() operation, saving some code.
1803 */
1804int regulator_disable_regmap(struct regulator_dev *rdev)
1805{
1806	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1807				  rdev->desc->enable_mask, 0);
1808}
1809EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1810
1811static int _regulator_is_enabled(struct regulator_dev *rdev)
1812{
1813	/* If we don't know then assume that the regulator is always on */
1814	if (!rdev->desc->ops->is_enabled)
1815		return 1;
1816
1817	return rdev->desc->ops->is_enabled(rdev);
1818}
1819
1820/**
1821 * regulator_is_enabled - is the regulator output enabled
1822 * @regulator: regulator source
1823 *
1824 * Returns positive if the regulator driver backing the source/client
1825 * has requested that the device be enabled, zero if it hasn't, else a
1826 * negative errno code.
1827 *
1828 * Note that the device backing this regulator handle can have multiple
1829 * users, so it might be enabled even if regulator_enable() was never
1830 * called for this particular source.
1831 */
1832int regulator_is_enabled(struct regulator *regulator)
1833{
1834	int ret;
1835
1836	if (regulator->always_on)
1837		return 1;
1838
1839	mutex_lock(&regulator->rdev->mutex);
1840	ret = _regulator_is_enabled(regulator->rdev);
1841	mutex_unlock(&regulator->rdev->mutex);
1842
1843	return ret;
1844}
1845EXPORT_SYMBOL_GPL(regulator_is_enabled);
1846
1847/**
1848 * regulator_count_voltages - count regulator_list_voltage() selectors
1849 * @regulator: regulator source
1850 *
1851 * Returns number of selectors, or negative errno.  Selectors are
1852 * numbered starting at zero, and typically correspond to bitfields
1853 * in hardware registers.
1854 */
1855int regulator_count_voltages(struct regulator *regulator)
1856{
1857	struct regulator_dev	*rdev = regulator->rdev;
1858
1859	return rdev->desc->n_voltages ? : -EINVAL;
1860}
1861EXPORT_SYMBOL_GPL(regulator_count_voltages);
1862
1863/**
1864 * regulator_list_voltage_linear - List voltages with simple calculation
1865 *
1866 * @rdev: Regulator device
1867 * @selector: Selector to convert into a voltage
1868 *
1869 * Regulators with a simple linear mapping between voltages and
1870 * selectors can set min_uV and uV_step in the regulator descriptor
1871 * and then use this function as their list_voltage() operation,
1872 */
1873int regulator_list_voltage_linear(struct regulator_dev *rdev,
1874				  unsigned int selector)
1875{
1876	if (selector >= rdev->desc->n_voltages)
1877		return -EINVAL;
1878
1879	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1880}
1881EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1882
1883/**
1884 * regulator_list_voltage_table - List voltages with table based mapping
1885 *
1886 * @rdev: Regulator device
1887 * @selector: Selector to convert into a voltage
1888 *
1889 * Regulators with table based mapping between voltages and
1890 * selectors can set volt_table in the regulator descriptor
1891 * and then use this function as their list_voltage() operation.
1892 */
1893int regulator_list_voltage_table(struct regulator_dev *rdev,
1894				 unsigned int selector)
1895{
1896	if (!rdev->desc->volt_table) {
1897		BUG_ON(!rdev->desc->volt_table);
1898		return -EINVAL;
1899	}
1900
1901	if (selector >= rdev->desc->n_voltages)
1902		return -EINVAL;
1903
1904	return rdev->desc->volt_table[selector];
1905}
1906EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1907
1908/**
1909 * regulator_list_voltage - enumerate supported voltages
1910 * @regulator: regulator source
1911 * @selector: identify voltage to list
1912 * Context: can sleep
1913 *
1914 * Returns a voltage that can be passed to @regulator_set_voltage(),
1915 * zero if this selector code can't be used on this system, or a
1916 * negative errno.
1917 */
1918int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1919{
1920	struct regulator_dev	*rdev = regulator->rdev;
1921	struct regulator_ops	*ops = rdev->desc->ops;
1922	int			ret;
1923
1924	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1925		return -EINVAL;
1926
1927	mutex_lock(&rdev->mutex);
1928	ret = ops->list_voltage(rdev, selector);
1929	mutex_unlock(&rdev->mutex);
1930
1931	if (ret > 0) {
1932		if (ret < rdev->constraints->min_uV)
1933			ret = 0;
1934		else if (ret > rdev->constraints->max_uV)
1935			ret = 0;
1936	}
1937
1938	return ret;
1939}
1940EXPORT_SYMBOL_GPL(regulator_list_voltage);
1941
1942/**
1943 * regulator_is_supported_voltage - check if a voltage range can be supported
1944 *
1945 * @regulator: Regulator to check.
1946 * @min_uV: Minimum required voltage in uV.
1947 * @max_uV: Maximum required voltage in uV.
1948 *
1949 * Returns a boolean or a negative error code.
1950 */
1951int regulator_is_supported_voltage(struct regulator *regulator,
1952				   int min_uV, int max_uV)
1953{
1954	int i, voltages, ret;
1955
1956	ret = regulator_count_voltages(regulator);
1957	if (ret < 0)
1958		return ret;
1959	voltages = ret;
1960
1961	for (i = 0; i < voltages; i++) {
1962		ret = regulator_list_voltage(regulator, i);
1963
1964		if (ret >= min_uV && ret <= max_uV)
1965			return 1;
1966	}
1967
1968	return 0;
1969}
1970EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1971
1972/**
1973 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1974 *
1975 * @rdev: regulator to operate on
1976 *
1977 * Regulators that use regmap for their register I/O can set the
1978 * vsel_reg and vsel_mask fields in their descriptor and then use this
1979 * as their get_voltage_vsel operation, saving some code.
1980 */
1981int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1982{
1983	unsigned int val;
1984	int ret;
1985
1986	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1987	if (ret != 0)
1988		return ret;
1989
1990	val &= rdev->desc->vsel_mask;
1991	val >>= ffs(rdev->desc->vsel_mask) - 1;
1992
1993	return val;
1994}
1995EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1996
1997/**
1998 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1999 *
2000 * @rdev: regulator to operate on
2001 * @sel: Selector to set
2002 *
2003 * Regulators that use regmap for their register I/O can set the
2004 * vsel_reg and vsel_mask fields in their descriptor and then use this
2005 * as their set_voltage_vsel operation, saving some code.
2006 */
2007int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2008{
2009	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2010
2011	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2012				  rdev->desc->vsel_mask, sel);
2013}
2014EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2015
2016/**
2017 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2018 *
2019 * @rdev: Regulator to operate on
2020 * @min_uV: Lower bound for voltage
2021 * @max_uV: Upper bound for voltage
2022 *
2023 * Drivers implementing set_voltage_sel() and list_voltage() can use
2024 * this as their map_voltage() operation.  It will find a suitable
2025 * voltage by calling list_voltage() until it gets something in bounds
2026 * for the requested voltages.
2027 */
2028int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2029				  int min_uV, int max_uV)
2030{
2031	int best_val = INT_MAX;
2032	int selector = 0;
2033	int i, ret;
2034
2035	/* Find the smallest voltage that falls within the specified
2036	 * range.
2037	 */
2038	for (i = 0; i < rdev->desc->n_voltages; i++) {
2039		ret = rdev->desc->ops->list_voltage(rdev, i);
2040		if (ret < 0)
2041			continue;
2042
2043		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2044			best_val = ret;
2045			selector = i;
2046		}
2047	}
2048
2049	if (best_val != INT_MAX)
2050		return selector;
2051	else
2052		return -EINVAL;
2053}
2054EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2055
2056/**
2057 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2058 *
2059 * @rdev: Regulator to operate on
2060 * @min_uV: Lower bound for voltage
2061 * @max_uV: Upper bound for voltage
2062 *
2063 * Drivers providing min_uV and uV_step in their regulator_desc can
2064 * use this as their map_voltage() operation.
2065 */
2066int regulator_map_voltage_linear(struct regulator_dev *rdev,
2067				 int min_uV, int max_uV)
2068{
2069	int ret, voltage;
2070
2071	if (!rdev->desc->uV_step) {
2072		BUG_ON(!rdev->desc->uV_step);
2073		return -EINVAL;
2074	}
2075
2076	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2077	if (ret < 0)
2078		return ret;
2079
2080	/* Map back into a voltage to verify we're still in bounds */
2081	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2082	if (voltage < min_uV || voltage > max_uV)
2083		return -EINVAL;
2084
2085	return ret;
2086}
2087EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2088
2089static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2090				     int min_uV, int max_uV)
2091{
2092	int ret;
2093	int delay = 0;
2094	int best_val;
2095	unsigned int selector;
2096	int old_selector = -1;
2097
2098	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2099
2100	min_uV += rdev->constraints->uV_offset;
2101	max_uV += rdev->constraints->uV_offset;
2102
2103	/*
2104	 * If we can't obtain the old selector there is not enough
2105	 * info to call set_voltage_time_sel().
2106	 */
2107	if (_regulator_is_enabled(rdev) &&
2108	    rdev->desc->ops->set_voltage_time_sel &&
2109	    rdev->desc->ops->get_voltage_sel) {
2110		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2111		if (old_selector < 0)
2112			return old_selector;
2113	}
2114
2115	if (rdev->desc->ops->set_voltage) {
2116		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2117						   &selector);
2118	} else if (rdev->desc->ops->set_voltage_sel) {
2119		if (rdev->desc->ops->map_voltage) {
2120			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2121							   max_uV);
2122		} else {
2123			if (rdev->desc->ops->list_voltage ==
2124			    regulator_list_voltage_linear)
2125				ret = regulator_map_voltage_linear(rdev,
2126								min_uV, max_uV);
2127			else
2128				ret = regulator_map_voltage_iterate(rdev,
2129								min_uV, max_uV);
2130		}
2131
2132		if (ret >= 0) {
2133			selector = ret;
2134			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2135		}
2136	} else {
2137		ret = -EINVAL;
2138	}
2139
2140	if (rdev->desc->ops->list_voltage)
2141		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2142	else
2143		best_val = _regulator_get_voltage(rdev);
2144
2145	/* Call set_voltage_time_sel if successfully obtained old_selector */
2146	if (_regulator_is_enabled(rdev) && ret == 0 && old_selector >= 0 &&
2147	    rdev->desc->ops->set_voltage_time_sel) {
2148
2149		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2150						old_selector, selector);
2151		if (delay < 0) {
2152			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2153				  delay);
2154			delay = 0;
2155		}
2156
2157		/* Insert any necessary delays */
2158		if (delay >= 1000) {
2159			mdelay(delay / 1000);
2160			udelay(delay % 1000);
2161		} else if (delay) {
2162			udelay(delay);
2163		}
2164	}
2165
2166	if (ret == 0 && best_val >= 0)
2167		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2168				     (void *)best_val);
2169
2170	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2171
2172	return ret;
2173}
2174
2175/**
2176 * regulator_set_voltage - set regulator output voltage
2177 * @regulator: regulator source
2178 * @min_uV: Minimum required voltage in uV
2179 * @max_uV: Maximum acceptable voltage in uV
2180 *
2181 * Sets a voltage regulator to the desired output voltage. This can be set
2182 * during any regulator state. IOW, regulator can be disabled or enabled.
2183 *
2184 * If the regulator is enabled then the voltage will change to the new value
2185 * immediately otherwise if the regulator is disabled the regulator will
2186 * output at the new voltage when enabled.
2187 *
2188 * NOTE: If the regulator is shared between several devices then the lowest
2189 * request voltage that meets the system constraints will be used.
2190 * Regulator system constraints must be set for this regulator before
2191 * calling this function otherwise this call will fail.
2192 */
2193int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2194{
2195	struct regulator_dev *rdev = regulator->rdev;
2196	int ret = 0;
2197
2198	mutex_lock(&rdev->mutex);
2199
2200	/* If we're setting the same range as last time the change
2201	 * should be a noop (some cpufreq implementations use the same
2202	 * voltage for multiple frequencies, for example).
2203	 */
2204	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2205		goto out;
2206
2207	/* sanity check */
2208	if (!rdev->desc->ops->set_voltage &&
2209	    !rdev->desc->ops->set_voltage_sel) {
2210		ret = -EINVAL;
2211		goto out;
2212	}
2213
2214	/* constraints check */
2215	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2216	if (ret < 0)
2217		goto out;
2218	regulator->min_uV = min_uV;
2219	regulator->max_uV = max_uV;
2220
2221	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2222	if (ret < 0)
2223		goto out;
2224
2225	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2226
2227out:
2228	mutex_unlock(&rdev->mutex);
2229	return ret;
2230}
2231EXPORT_SYMBOL_GPL(regulator_set_voltage);
2232
2233/**
2234 * regulator_set_voltage_time - get raise/fall time
2235 * @regulator: regulator source
2236 * @old_uV: starting voltage in microvolts
2237 * @new_uV: target voltage in microvolts
2238 *
2239 * Provided with the starting and ending voltage, this function attempts to
2240 * calculate the time in microseconds required to rise or fall to this new
2241 * voltage.
2242 */
2243int regulator_set_voltage_time(struct regulator *regulator,
2244			       int old_uV, int new_uV)
2245{
2246	struct regulator_dev	*rdev = regulator->rdev;
2247	struct regulator_ops	*ops = rdev->desc->ops;
2248	int old_sel = -1;
2249	int new_sel = -1;
2250	int voltage;
2251	int i;
2252
2253	/* Currently requires operations to do this */
2254	if (!ops->list_voltage || !ops->set_voltage_time_sel
2255	    || !rdev->desc->n_voltages)
2256		return -EINVAL;
2257
2258	for (i = 0; i < rdev->desc->n_voltages; i++) {
2259		/* We only look for exact voltage matches here */
2260		voltage = regulator_list_voltage(regulator, i);
2261		if (voltage < 0)
2262			return -EINVAL;
2263		if (voltage == 0)
2264			continue;
2265		if (voltage == old_uV)
2266			old_sel = i;
2267		if (voltage == new_uV)
2268			new_sel = i;
2269	}
2270
2271	if (old_sel < 0 || new_sel < 0)
2272		return -EINVAL;
2273
2274	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2275}
2276EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2277
2278/**
2279 * regulator_sync_voltage - re-apply last regulator output voltage
2280 * @regulator: regulator source
2281 *
2282 * Re-apply the last configured voltage.  This is intended to be used
2283 * where some external control source the consumer is cooperating with
2284 * has caused the configured voltage to change.
2285 */
2286int regulator_sync_voltage(struct regulator *regulator)
2287{
2288	struct regulator_dev *rdev = regulator->rdev;
2289	int ret, min_uV, max_uV;
2290
2291	mutex_lock(&rdev->mutex);
2292
2293	if (!rdev->desc->ops->set_voltage &&
2294	    !rdev->desc->ops->set_voltage_sel) {
2295		ret = -EINVAL;
2296		goto out;
2297	}
2298
2299	/* This is only going to work if we've had a voltage configured. */
2300	if (!regulator->min_uV && !regulator->max_uV) {
2301		ret = -EINVAL;
2302		goto out;
2303	}
2304
2305	min_uV = regulator->min_uV;
2306	max_uV = regulator->max_uV;
2307
2308	/* This should be a paranoia check... */
2309	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2310	if (ret < 0)
2311		goto out;
2312
2313	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2314	if (ret < 0)
2315		goto out;
2316
2317	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2318
2319out:
2320	mutex_unlock(&rdev->mutex);
2321	return ret;
2322}
2323EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2324
2325static int _regulator_get_voltage(struct regulator_dev *rdev)
2326{
2327	int sel, ret;
2328
2329	if (rdev->desc->ops->get_voltage_sel) {
2330		sel = rdev->desc->ops->get_voltage_sel(rdev);
2331		if (sel < 0)
2332			return sel;
2333		ret = rdev->desc->ops->list_voltage(rdev, sel);
2334	} else if (rdev->desc->ops->get_voltage) {
2335		ret = rdev->desc->ops->get_voltage(rdev);
2336	} else {
2337		return -EINVAL;
2338	}
2339
2340	if (ret < 0)
2341		return ret;
2342	return ret - rdev->constraints->uV_offset;
2343}
2344
2345/**
2346 * regulator_get_voltage - get regulator output voltage
2347 * @regulator: regulator source
2348 *
2349 * This returns the current regulator voltage in uV.
2350 *
2351 * NOTE: If the regulator is disabled it will return the voltage value. This
2352 * function should not be used to determine regulator state.
2353 */
2354int regulator_get_voltage(struct regulator *regulator)
2355{
2356	int ret;
2357
2358	mutex_lock(&regulator->rdev->mutex);
2359
2360	ret = _regulator_get_voltage(regulator->rdev);
2361
2362	mutex_unlock(&regulator->rdev->mutex);
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_get_voltage);
2367
2368/**
2369 * regulator_set_current_limit - set regulator output current limit
2370 * @regulator: regulator source
2371 * @min_uA: Minimuum supported current in uA
2372 * @max_uA: Maximum supported current in uA
2373 *
2374 * Sets current sink to the desired output current. This can be set during
2375 * any regulator state. IOW, regulator can be disabled or enabled.
2376 *
2377 * If the regulator is enabled then the current will change to the new value
2378 * immediately otherwise if the regulator is disabled the regulator will
2379 * output at the new current when enabled.
2380 *
2381 * NOTE: Regulator system constraints must be set for this regulator before
2382 * calling this function otherwise this call will fail.
2383 */
2384int regulator_set_current_limit(struct regulator *regulator,
2385			       int min_uA, int max_uA)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
2388	int ret;
2389
2390	mutex_lock(&rdev->mutex);
2391
2392	/* sanity check */
2393	if (!rdev->desc->ops->set_current_limit) {
2394		ret = -EINVAL;
2395		goto out;
2396	}
2397
2398	/* constraints check */
2399	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2400	if (ret < 0)
2401		goto out;
2402
2403	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2404out:
2405	mutex_unlock(&rdev->mutex);
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2409
2410static int _regulator_get_current_limit(struct regulator_dev *rdev)
2411{
2412	int ret;
2413
2414	mutex_lock(&rdev->mutex);
2415
2416	/* sanity check */
2417	if (!rdev->desc->ops->get_current_limit) {
2418		ret = -EINVAL;
2419		goto out;
2420	}
2421
2422	ret = rdev->desc->ops->get_current_limit(rdev);
2423out:
2424	mutex_unlock(&rdev->mutex);
2425	return ret;
2426}
2427
2428/**
2429 * regulator_get_current_limit - get regulator output current
2430 * @regulator: regulator source
2431 *
2432 * This returns the current supplied by the specified current sink in uA.
2433 *
2434 * NOTE: If the regulator is disabled it will return the current value. This
2435 * function should not be used to determine regulator state.
2436 */
2437int regulator_get_current_limit(struct regulator *regulator)
2438{
2439	return _regulator_get_current_limit(regulator->rdev);
2440}
2441EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2442
2443/**
2444 * regulator_set_mode - set regulator operating mode
2445 * @regulator: regulator source
2446 * @mode: operating mode - one of the REGULATOR_MODE constants
2447 *
2448 * Set regulator operating mode to increase regulator efficiency or improve
2449 * regulation performance.
2450 *
2451 * NOTE: Regulator system constraints must be set for this regulator before
2452 * calling this function otherwise this call will fail.
2453 */
2454int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2455{
2456	struct regulator_dev *rdev = regulator->rdev;
2457	int ret;
2458	int regulator_curr_mode;
2459
2460	mutex_lock(&rdev->mutex);
2461
2462	/* sanity check */
2463	if (!rdev->desc->ops->set_mode) {
2464		ret = -EINVAL;
2465		goto out;
2466	}
2467
2468	/* return if the same mode is requested */
2469	if (rdev->desc->ops->get_mode) {
2470		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2471		if (regulator_curr_mode == mode) {
2472			ret = 0;
2473			goto out;
2474		}
2475	}
2476
2477	/* constraints check */
2478	ret = regulator_mode_constrain(rdev, &mode);
2479	if (ret < 0)
2480		goto out;
2481
2482	ret = rdev->desc->ops->set_mode(rdev, mode);
2483out:
2484	mutex_unlock(&rdev->mutex);
2485	return ret;
2486}
2487EXPORT_SYMBOL_GPL(regulator_set_mode);
2488
2489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2490{
2491	int ret;
2492
2493	mutex_lock(&rdev->mutex);
2494
2495	/* sanity check */
2496	if (!rdev->desc->ops->get_mode) {
2497		ret = -EINVAL;
2498		goto out;
2499	}
2500
2501	ret = rdev->desc->ops->get_mode(rdev);
2502out:
2503	mutex_unlock(&rdev->mutex);
2504	return ret;
2505}
2506
2507/**
2508 * regulator_get_mode - get regulator operating mode
2509 * @regulator: regulator source
2510 *
2511 * Get the current regulator operating mode.
2512 */
2513unsigned int regulator_get_mode(struct regulator *regulator)
2514{
2515	return _regulator_get_mode(regulator->rdev);
2516}
2517EXPORT_SYMBOL_GPL(regulator_get_mode);
2518
2519/**
2520 * regulator_set_optimum_mode - set regulator optimum operating mode
2521 * @regulator: regulator source
2522 * @uA_load: load current
2523 *
2524 * Notifies the regulator core of a new device load. This is then used by
2525 * DRMS (if enabled by constraints) to set the most efficient regulator
2526 * operating mode for the new regulator loading.
2527 *
2528 * Consumer devices notify their supply regulator of the maximum power
2529 * they will require (can be taken from device datasheet in the power
2530 * consumption tables) when they change operational status and hence power
2531 * state. Examples of operational state changes that can affect power
2532 * consumption are :-
2533 *
2534 *    o Device is opened / closed.
2535 *    o Device I/O is about to begin or has just finished.
2536 *    o Device is idling in between work.
2537 *
2538 * This information is also exported via sysfs to userspace.
2539 *
2540 * DRMS will sum the total requested load on the regulator and change
2541 * to the most efficient operating mode if platform constraints allow.
2542 *
2543 * Returns the new regulator mode or error.
2544 */
2545int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2546{
2547	struct regulator_dev *rdev = regulator->rdev;
2548	struct regulator *consumer;
2549	int ret, output_uV, input_uV, total_uA_load = 0;
2550	unsigned int mode;
2551
2552	mutex_lock(&rdev->mutex);
2553
2554	/*
2555	 * first check to see if we can set modes at all, otherwise just
2556	 * tell the consumer everything is OK.
2557	 */
2558	regulator->uA_load = uA_load;
2559	ret = regulator_check_drms(rdev);
2560	if (ret < 0) {
2561		ret = 0;
2562		goto out;
2563	}
2564
2565	if (!rdev->desc->ops->get_optimum_mode)
2566		goto out;
2567
2568	/*
2569	 * we can actually do this so any errors are indicators of
2570	 * potential real failure.
2571	 */
2572	ret = -EINVAL;
2573
2574	if (!rdev->desc->ops->set_mode)
2575		goto out;
2576
2577	/* get output voltage */
2578	output_uV = _regulator_get_voltage(rdev);
2579	if (output_uV <= 0) {
2580		rdev_err(rdev, "invalid output voltage found\n");
2581		goto out;
2582	}
2583
2584	/* get input voltage */
2585	input_uV = 0;
2586	if (rdev->supply)
2587		input_uV = regulator_get_voltage(rdev->supply);
2588	if (input_uV <= 0)
2589		input_uV = rdev->constraints->input_uV;
2590	if (input_uV <= 0) {
2591		rdev_err(rdev, "invalid input voltage found\n");
2592		goto out;
2593	}
2594
2595	/* calc total requested load for this regulator */
2596	list_for_each_entry(consumer, &rdev->consumer_list, list)
2597		total_uA_load += consumer->uA_load;
2598
2599	mode = rdev->desc->ops->get_optimum_mode(rdev,
2600						 input_uV, output_uV,
2601						 total_uA_load);
2602	ret = regulator_mode_constrain(rdev, &mode);
2603	if (ret < 0) {
2604		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2605			 total_uA_load, input_uV, output_uV);
2606		goto out;
2607	}
2608
2609	ret = rdev->desc->ops->set_mode(rdev, mode);
2610	if (ret < 0) {
2611		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2612		goto out;
2613	}
2614	ret = mode;
2615out:
2616	mutex_unlock(&rdev->mutex);
2617	return ret;
2618}
2619EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2620
2621/**
2622 * regulator_register_notifier - register regulator event notifier
2623 * @regulator: regulator source
2624 * @nb: notifier block
2625 *
2626 * Register notifier block to receive regulator events.
2627 */
2628int regulator_register_notifier(struct regulator *regulator,
2629			      struct notifier_block *nb)
2630{
2631	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2632						nb);
2633}
2634EXPORT_SYMBOL_GPL(regulator_register_notifier);
2635
2636/**
2637 * regulator_unregister_notifier - unregister regulator event notifier
2638 * @regulator: regulator source
2639 * @nb: notifier block
2640 *
2641 * Unregister regulator event notifier block.
2642 */
2643int regulator_unregister_notifier(struct regulator *regulator,
2644				struct notifier_block *nb)
2645{
2646	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2647						  nb);
2648}
2649EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2650
2651/* notify regulator consumers and downstream regulator consumers.
2652 * Note mutex must be held by caller.
2653 */
2654static void _notifier_call_chain(struct regulator_dev *rdev,
2655				  unsigned long event, void *data)
2656{
2657	/* call rdev chain first */
2658	blocking_notifier_call_chain(&rdev->notifier, event, data);
2659}
2660
2661/**
2662 * regulator_bulk_get - get multiple regulator consumers
2663 *
2664 * @dev:           Device to supply
2665 * @num_consumers: Number of consumers to register
2666 * @consumers:     Configuration of consumers; clients are stored here.
2667 *
2668 * @return 0 on success, an errno on failure.
2669 *
2670 * This helper function allows drivers to get several regulator
2671 * consumers in one operation.  If any of the regulators cannot be
2672 * acquired then any regulators that were allocated will be freed
2673 * before returning to the caller.
2674 */
2675int regulator_bulk_get(struct device *dev, int num_consumers,
2676		       struct regulator_bulk_data *consumers)
2677{
2678	int i;
2679	int ret;
2680
2681	for (i = 0; i < num_consumers; i++)
2682		consumers[i].consumer = NULL;
2683
2684	for (i = 0; i < num_consumers; i++) {
2685		consumers[i].consumer = regulator_get(dev,
2686						      consumers[i].supply);
2687		if (IS_ERR(consumers[i].consumer)) {
2688			ret = PTR_ERR(consumers[i].consumer);
2689			dev_err(dev, "Failed to get supply '%s': %d\n",
2690				consumers[i].supply, ret);
2691			consumers[i].consumer = NULL;
2692			goto err;
2693		}
2694	}
2695
2696	return 0;
2697
2698err:
2699	while (--i >= 0)
2700		regulator_put(consumers[i].consumer);
2701
2702	return ret;
2703}
2704EXPORT_SYMBOL_GPL(regulator_bulk_get);
2705
2706/**
2707 * devm_regulator_bulk_get - managed get multiple regulator consumers
2708 *
2709 * @dev:           Device to supply
2710 * @num_consumers: Number of consumers to register
2711 * @consumers:     Configuration of consumers; clients are stored here.
2712 *
2713 * @return 0 on success, an errno on failure.
2714 *
2715 * This helper function allows drivers to get several regulator
2716 * consumers in one operation with management, the regulators will
2717 * automatically be freed when the device is unbound.  If any of the
2718 * regulators cannot be acquired then any regulators that were
2719 * allocated will be freed before returning to the caller.
2720 */
2721int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2722			    struct regulator_bulk_data *consumers)
2723{
2724	int i;
2725	int ret;
2726
2727	for (i = 0; i < num_consumers; i++)
2728		consumers[i].consumer = NULL;
2729
2730	for (i = 0; i < num_consumers; i++) {
2731		consumers[i].consumer = devm_regulator_get(dev,
2732							   consumers[i].supply);
2733		if (IS_ERR(consumers[i].consumer)) {
2734			ret = PTR_ERR(consumers[i].consumer);
2735			dev_err(dev, "Failed to get supply '%s': %d\n",
2736				consumers[i].supply, ret);
2737			consumers[i].consumer = NULL;
2738			goto err;
2739		}
2740	}
2741
2742	return 0;
2743
2744err:
2745	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2746		devm_regulator_put(consumers[i].consumer);
2747
2748	return ret;
2749}
2750EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2751
2752static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2753{
2754	struct regulator_bulk_data *bulk = data;
2755
2756	bulk->ret = regulator_enable(bulk->consumer);
2757}
2758
2759/**
2760 * regulator_bulk_enable - enable multiple regulator consumers
2761 *
2762 * @num_consumers: Number of consumers
2763 * @consumers:     Consumer data; clients are stored here.
2764 * @return         0 on success, an errno on failure
2765 *
2766 * This convenience API allows consumers to enable multiple regulator
2767 * clients in a single API call.  If any consumers cannot be enabled
2768 * then any others that were enabled will be disabled again prior to
2769 * return.
2770 */
2771int regulator_bulk_enable(int num_consumers,
2772			  struct regulator_bulk_data *consumers)
2773{
2774	LIST_HEAD(async_domain);
2775	int i;
2776	int ret = 0;
2777
2778	for (i = 0; i < num_consumers; i++) {
2779		if (consumers[i].consumer->always_on)
2780			consumers[i].ret = 0;
2781		else
2782			async_schedule_domain(regulator_bulk_enable_async,
2783					      &consumers[i], &async_domain);
2784	}
2785
2786	async_synchronize_full_domain(&async_domain);
2787
2788	/* If any consumer failed we need to unwind any that succeeded */
2789	for (i = 0; i < num_consumers; i++) {
2790		if (consumers[i].ret != 0) {
2791			ret = consumers[i].ret;
2792			goto err;
2793		}
2794	}
2795
2796	return 0;
2797
2798err:
2799	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2800	while (--i >= 0)
2801		regulator_disable(consumers[i].consumer);
2802
2803	return ret;
2804}
2805EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2806
2807/**
2808 * regulator_bulk_disable - disable multiple regulator consumers
2809 *
2810 * @num_consumers: Number of consumers
2811 * @consumers:     Consumer data; clients are stored here.
2812 * @return         0 on success, an errno on failure
2813 *
2814 * This convenience API allows consumers to disable multiple regulator
2815 * clients in a single API call.  If any consumers cannot be disabled
2816 * then any others that were disabled will be enabled again prior to
2817 * return.
2818 */
2819int regulator_bulk_disable(int num_consumers,
2820			   struct regulator_bulk_data *consumers)
2821{
2822	int i;
2823	int ret, r;
2824
2825	for (i = num_consumers - 1; i >= 0; --i) {
2826		ret = regulator_disable(consumers[i].consumer);
2827		if (ret != 0)
2828			goto err;
2829	}
2830
2831	return 0;
2832
2833err:
2834	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2835	for (++i; i < num_consumers; ++i) {
2836		r = regulator_enable(consumers[i].consumer);
2837		if (r != 0)
2838			pr_err("Failed to reename %s: %d\n",
2839			       consumers[i].supply, r);
2840	}
2841
2842	return ret;
2843}
2844EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2845
2846/**
2847 * regulator_bulk_force_disable - force disable multiple regulator consumers
2848 *
2849 * @num_consumers: Number of consumers
2850 * @consumers:     Consumer data; clients are stored here.
2851 * @return         0 on success, an errno on failure
2852 *
2853 * This convenience API allows consumers to forcibly disable multiple regulator
2854 * clients in a single API call.
2855 * NOTE: This should be used for situations when device damage will
2856 * likely occur if the regulators are not disabled (e.g. over temp).
2857 * Although regulator_force_disable function call for some consumers can
2858 * return error numbers, the function is called for all consumers.
2859 */
2860int regulator_bulk_force_disable(int num_consumers,
2861			   struct regulator_bulk_data *consumers)
2862{
2863	int i;
2864	int ret;
2865
2866	for (i = 0; i < num_consumers; i++)
2867		consumers[i].ret =
2868			    regulator_force_disable(consumers[i].consumer);
2869
2870	for (i = 0; i < num_consumers; i++) {
2871		if (consumers[i].ret != 0) {
2872			ret = consumers[i].ret;
2873			goto out;
2874		}
2875	}
2876
2877	return 0;
2878out:
2879	return ret;
2880}
2881EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2882
2883/**
2884 * regulator_bulk_free - free multiple regulator consumers
2885 *
2886 * @num_consumers: Number of consumers
2887 * @consumers:     Consumer data; clients are stored here.
2888 *
2889 * This convenience API allows consumers to free multiple regulator
2890 * clients in a single API call.
2891 */
2892void regulator_bulk_free(int num_consumers,
2893			 struct regulator_bulk_data *consumers)
2894{
2895	int i;
2896
2897	for (i = 0; i < num_consumers; i++) {
2898		regulator_put(consumers[i].consumer);
2899		consumers[i].consumer = NULL;
2900	}
2901}
2902EXPORT_SYMBOL_GPL(regulator_bulk_free);
2903
2904/**
2905 * regulator_notifier_call_chain - call regulator event notifier
2906 * @rdev: regulator source
2907 * @event: notifier block
2908 * @data: callback-specific data.
2909 *
2910 * Called by regulator drivers to notify clients a regulator event has
2911 * occurred. We also notify regulator clients downstream.
2912 * Note lock must be held by caller.
2913 */
2914int regulator_notifier_call_chain(struct regulator_dev *rdev,
2915				  unsigned long event, void *data)
2916{
2917	_notifier_call_chain(rdev, event, data);
2918	return NOTIFY_DONE;
2919
2920}
2921EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2922
2923/**
2924 * regulator_mode_to_status - convert a regulator mode into a status
2925 *
2926 * @mode: Mode to convert
2927 *
2928 * Convert a regulator mode into a status.
2929 */
2930int regulator_mode_to_status(unsigned int mode)
2931{
2932	switch (mode) {
2933	case REGULATOR_MODE_FAST:
2934		return REGULATOR_STATUS_FAST;
2935	case REGULATOR_MODE_NORMAL:
2936		return REGULATOR_STATUS_NORMAL;
2937	case REGULATOR_MODE_IDLE:
2938		return REGULATOR_STATUS_IDLE;
2939	case REGULATOR_STATUS_STANDBY:
2940		return REGULATOR_STATUS_STANDBY;
2941	default:
2942		return 0;
2943	}
2944}
2945EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2946
2947/*
2948 * To avoid cluttering sysfs (and memory) with useless state, only
2949 * create attributes that can be meaningfully displayed.
2950 */
2951static int add_regulator_attributes(struct regulator_dev *rdev)
2952{
2953	struct device		*dev = &rdev->dev;
2954	struct regulator_ops	*ops = rdev->desc->ops;
2955	int			status = 0;
2956
2957	/* some attributes need specific methods to be displayed */
2958	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2959	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2960		status = device_create_file(dev, &dev_attr_microvolts);
2961		if (status < 0)
2962			return status;
2963	}
2964	if (ops->get_current_limit) {
2965		status = device_create_file(dev, &dev_attr_microamps);
2966		if (status < 0)
2967			return status;
2968	}
2969	if (ops->get_mode) {
2970		status = device_create_file(dev, &dev_attr_opmode);
2971		if (status < 0)
2972			return status;
2973	}
2974	if (ops->is_enabled) {
2975		status = device_create_file(dev, &dev_attr_state);
2976		if (status < 0)
2977			return status;
2978	}
2979	if (ops->get_status) {
2980		status = device_create_file(dev, &dev_attr_status);
2981		if (status < 0)
2982			return status;
2983	}
2984
2985	/* some attributes are type-specific */
2986	if (rdev->desc->type == REGULATOR_CURRENT) {
2987		status = device_create_file(dev, &dev_attr_requested_microamps);
2988		if (status < 0)
2989			return status;
2990	}
2991
2992	/* all the other attributes exist to support constraints;
2993	 * don't show them if there are no constraints, or if the
2994	 * relevant supporting methods are missing.
2995	 */
2996	if (!rdev->constraints)
2997		return status;
2998
2999	/* constraints need specific supporting methods */
3000	if (ops->set_voltage || ops->set_voltage_sel) {
3001		status = device_create_file(dev, &dev_attr_min_microvolts);
3002		if (status < 0)
3003			return status;
3004		status = device_create_file(dev, &dev_attr_max_microvolts);
3005		if (status < 0)
3006			return status;
3007	}
3008	if (ops->set_current_limit) {
3009		status = device_create_file(dev, &dev_attr_min_microamps);
3010		if (status < 0)
3011			return status;
3012		status = device_create_file(dev, &dev_attr_max_microamps);
3013		if (status < 0)
3014			return status;
3015	}
3016
3017	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3018	if (status < 0)
3019		return status;
3020	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3021	if (status < 0)
3022		return status;
3023	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3024	if (status < 0)
3025		return status;
3026
3027	if (ops->set_suspend_voltage) {
3028		status = device_create_file(dev,
3029				&dev_attr_suspend_standby_microvolts);
3030		if (status < 0)
3031			return status;
3032		status = device_create_file(dev,
3033				&dev_attr_suspend_mem_microvolts);
3034		if (status < 0)
3035			return status;
3036		status = device_create_file(dev,
3037				&dev_attr_suspend_disk_microvolts);
3038		if (status < 0)
3039			return status;
3040	}
3041
3042	if (ops->set_suspend_mode) {
3043		status = device_create_file(dev,
3044				&dev_attr_suspend_standby_mode);
3045		if (status < 0)
3046			return status;
3047		status = device_create_file(dev,
3048				&dev_attr_suspend_mem_mode);
3049		if (status < 0)
3050			return status;
3051		status = device_create_file(dev,
3052				&dev_attr_suspend_disk_mode);
3053		if (status < 0)
3054			return status;
3055	}
3056
3057	return status;
3058}
3059
3060static void rdev_init_debugfs(struct regulator_dev *rdev)
3061{
3062	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3063	if (!rdev->debugfs) {
3064		rdev_warn(rdev, "Failed to create debugfs directory\n");
3065		return;
3066	}
3067
3068	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3069			   &rdev->use_count);
3070	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3071			   &rdev->open_count);
3072}
3073
3074/**
3075 * regulator_register - register regulator
3076 * @regulator_desc: regulator to register
3077 * @config: runtime configuration for regulator
3078 *
3079 * Called by regulator drivers to register a regulator.
3080 * Returns 0 on success.
3081 */
3082struct regulator_dev *
3083regulator_register(const struct regulator_desc *regulator_desc,
3084		   const struct regulator_config *config)
3085{
3086	const struct regulation_constraints *constraints = NULL;
3087	const struct regulator_init_data *init_data;
3088	static atomic_t regulator_no = ATOMIC_INIT(0);
3089	struct regulator_dev *rdev;
3090	struct device *dev;
3091	int ret, i;
3092	const char *supply = NULL;
3093
3094	if (regulator_desc == NULL || config == NULL)
3095		return ERR_PTR(-EINVAL);
3096
3097	dev = config->dev;
3098	WARN_ON(!dev);
3099
3100	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3101		return ERR_PTR(-EINVAL);
3102
3103	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3104	    regulator_desc->type != REGULATOR_CURRENT)
3105		return ERR_PTR(-EINVAL);
3106
3107	/* Only one of each should be implemented */
3108	WARN_ON(regulator_desc->ops->get_voltage &&
3109		regulator_desc->ops->get_voltage_sel);
3110	WARN_ON(regulator_desc->ops->set_voltage &&
3111		regulator_desc->ops->set_voltage_sel);
3112
3113	/* If we're using selectors we must implement list_voltage. */
3114	if (regulator_desc->ops->get_voltage_sel &&
3115	    !regulator_desc->ops->list_voltage) {
3116		return ERR_PTR(-EINVAL);
3117	}
3118	if (regulator_desc->ops->set_voltage_sel &&
3119	    !regulator_desc->ops->list_voltage) {
3120		return ERR_PTR(-EINVAL);
3121	}
3122
3123	init_data = config->init_data;
3124
3125	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3126	if (rdev == NULL)
3127		return ERR_PTR(-ENOMEM);
3128
3129	mutex_lock(&regulator_list_mutex);
3130
3131	mutex_init(&rdev->mutex);
3132	rdev->reg_data = config->driver_data;
3133	rdev->owner = regulator_desc->owner;
3134	rdev->desc = regulator_desc;
3135	if (config->regmap)
3136		rdev->regmap = config->regmap;
3137	else
3138		rdev->regmap = dev_get_regmap(dev, NULL);
3139	INIT_LIST_HEAD(&rdev->consumer_list);
3140	INIT_LIST_HEAD(&rdev->list);
3141	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3142	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3143
3144	/* preform any regulator specific init */
3145	if (init_data && init_data->regulator_init) {
3146		ret = init_data->regulator_init(rdev->reg_data);
3147		if (ret < 0)
3148			goto clean;
3149	}
3150
3151	/* register with sysfs */
3152	rdev->dev.class = &regulator_class;
3153	rdev->dev.of_node = config->of_node;
3154	rdev->dev.parent = dev;
3155	dev_set_name(&rdev->dev, "regulator.%d",
3156		     atomic_inc_return(&regulator_no) - 1);
3157	ret = device_register(&rdev->dev);
3158	if (ret != 0) {
3159		put_device(&rdev->dev);
3160		goto clean;
3161	}
3162
3163	dev_set_drvdata(&rdev->dev, rdev);
3164
3165	/* set regulator constraints */
3166	if (init_data)
3167		constraints = &init_data->constraints;
3168
3169	ret = set_machine_constraints(rdev, constraints);
3170	if (ret < 0)
3171		goto scrub;
3172
3173	/* add attributes supported by this regulator */
3174	ret = add_regulator_attributes(rdev);
3175	if (ret < 0)
3176		goto scrub;
3177
3178	if (init_data && init_data->supply_regulator)
3179		supply = init_data->supply_regulator;
3180	else if (regulator_desc->supply_name)
3181		supply = regulator_desc->supply_name;
3182
3183	if (supply) {
3184		struct regulator_dev *r;
3185
3186		r = regulator_dev_lookup(dev, supply, &ret);
3187
3188		if (!r) {
3189			dev_err(dev, "Failed to find supply %s\n", supply);
3190			ret = -EPROBE_DEFER;
3191			goto scrub;
3192		}
3193
3194		ret = set_supply(rdev, r);
3195		if (ret < 0)
3196			goto scrub;
3197
3198		/* Enable supply if rail is enabled */
3199		if (_regulator_is_enabled(rdev)) {
3200			ret = regulator_enable(rdev->supply);
3201			if (ret < 0)
3202				goto scrub;
3203		}
3204	}
3205
3206	/* add consumers devices */
3207	if (init_data) {
3208		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3209			ret = set_consumer_device_supply(rdev,
3210				init_data->consumer_supplies[i].dev_name,
3211				init_data->consumer_supplies[i].supply);
3212			if (ret < 0) {
3213				dev_err(dev, "Failed to set supply %s\n",
3214					init_data->consumer_supplies[i].supply);
3215				goto unset_supplies;
3216			}
3217		}
3218	}
3219
3220	list_add(&rdev->list, &regulator_list);
3221
3222	rdev_init_debugfs(rdev);
3223out:
3224	mutex_unlock(&regulator_list_mutex);
3225	return rdev;
3226
3227unset_supplies:
3228	unset_regulator_supplies(rdev);
3229
3230scrub:
3231	if (rdev->supply)
3232		regulator_put(rdev->supply);
3233	kfree(rdev->constraints);
3234	device_unregister(&rdev->dev);
3235	/* device core frees rdev */
3236	rdev = ERR_PTR(ret);
3237	goto out;
3238
3239clean:
3240	kfree(rdev);
3241	rdev = ERR_PTR(ret);
3242	goto out;
3243}
3244EXPORT_SYMBOL_GPL(regulator_register);
3245
3246/**
3247 * regulator_unregister - unregister regulator
3248 * @rdev: regulator to unregister
3249 *
3250 * Called by regulator drivers to unregister a regulator.
3251 */
3252void regulator_unregister(struct regulator_dev *rdev)
3253{
3254	if (rdev == NULL)
3255		return;
3256
3257	if (rdev->supply)
3258		regulator_put(rdev->supply);
3259	mutex_lock(&regulator_list_mutex);
3260	debugfs_remove_recursive(rdev->debugfs);
3261	flush_work_sync(&rdev->disable_work.work);
3262	WARN_ON(rdev->open_count);
3263	unset_regulator_supplies(rdev);
3264	list_del(&rdev->list);
3265	kfree(rdev->constraints);
3266	device_unregister(&rdev->dev);
3267	mutex_unlock(&regulator_list_mutex);
3268}
3269EXPORT_SYMBOL_GPL(regulator_unregister);
3270
3271/**
3272 * regulator_suspend_prepare - prepare regulators for system wide suspend
3273 * @state: system suspend state
3274 *
3275 * Configure each regulator with it's suspend operating parameters for state.
3276 * This will usually be called by machine suspend code prior to supending.
3277 */
3278int regulator_suspend_prepare(suspend_state_t state)
3279{
3280	struct regulator_dev *rdev;
3281	int ret = 0;
3282
3283	/* ON is handled by regulator active state */
3284	if (state == PM_SUSPEND_ON)
3285		return -EINVAL;
3286
3287	mutex_lock(&regulator_list_mutex);
3288	list_for_each_entry(rdev, &regulator_list, list) {
3289
3290		mutex_lock(&rdev->mutex);
3291		ret = suspend_prepare(rdev, state);
3292		mutex_unlock(&rdev->mutex);
3293
3294		if (ret < 0) {
3295			rdev_err(rdev, "failed to prepare\n");
3296			goto out;
3297		}
3298	}
3299out:
3300	mutex_unlock(&regulator_list_mutex);
3301	return ret;
3302}
3303EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3304
3305/**
3306 * regulator_suspend_finish - resume regulators from system wide suspend
3307 *
3308 * Turn on regulators that might be turned off by regulator_suspend_prepare
3309 * and that should be turned on according to the regulators properties.
3310 */
3311int regulator_suspend_finish(void)
3312{
3313	struct regulator_dev *rdev;
3314	int ret = 0, error;
3315
3316	mutex_lock(&regulator_list_mutex);
3317	list_for_each_entry(rdev, &regulator_list, list) {
3318		struct regulator_ops *ops = rdev->desc->ops;
3319
3320		mutex_lock(&rdev->mutex);
3321		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3322				ops->enable) {
3323			error = ops->enable(rdev);
3324			if (error)
3325				ret = error;
3326		} else {
3327			if (!has_full_constraints)
3328				goto unlock;
3329			if (!ops->disable)
3330				goto unlock;
3331			if (!_regulator_is_enabled(rdev))
3332				goto unlock;
3333
3334			error = ops->disable(rdev);
3335			if (error)
3336				ret = error;
3337		}
3338unlock:
3339		mutex_unlock(&rdev->mutex);
3340	}
3341	mutex_unlock(&regulator_list_mutex);
3342	return ret;
3343}
3344EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3345
3346/**
3347 * regulator_has_full_constraints - the system has fully specified constraints
3348 *
3349 * Calling this function will cause the regulator API to disable all
3350 * regulators which have a zero use count and don't have an always_on
3351 * constraint in a late_initcall.
3352 *
3353 * The intention is that this will become the default behaviour in a
3354 * future kernel release so users are encouraged to use this facility
3355 * now.
3356 */
3357void regulator_has_full_constraints(void)
3358{
3359	has_full_constraints = 1;
3360}
3361EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3362
3363/**
3364 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3365 *
3366 * Calling this function will cause the regulator API to provide a
3367 * dummy regulator to consumers if no physical regulator is found,
3368 * allowing most consumers to proceed as though a regulator were
3369 * configured.  This allows systems such as those with software
3370 * controllable regulators for the CPU core only to be brought up more
3371 * readily.
3372 */
3373void regulator_use_dummy_regulator(void)
3374{
3375	board_wants_dummy_regulator = true;
3376}
3377EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3378
3379/**
3380 * rdev_get_drvdata - get rdev regulator driver data
3381 * @rdev: regulator
3382 *
3383 * Get rdev regulator driver private data. This call can be used in the
3384 * regulator driver context.
3385 */
3386void *rdev_get_drvdata(struct regulator_dev *rdev)
3387{
3388	return rdev->reg_data;
3389}
3390EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3391
3392/**
3393 * regulator_get_drvdata - get regulator driver data
3394 * @regulator: regulator
3395 *
3396 * Get regulator driver private data. This call can be used in the consumer
3397 * driver context when non API regulator specific functions need to be called.
3398 */
3399void *regulator_get_drvdata(struct regulator *regulator)
3400{
3401	return regulator->rdev->reg_data;
3402}
3403EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3404
3405/**
3406 * regulator_set_drvdata - set regulator driver data
3407 * @regulator: regulator
3408 * @data: data
3409 */
3410void regulator_set_drvdata(struct regulator *regulator, void *data)
3411{
3412	regulator->rdev->reg_data = data;
3413}
3414EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3415
3416/**
3417 * regulator_get_id - get regulator ID
3418 * @rdev: regulator
3419 */
3420int rdev_get_id(struct regulator_dev *rdev)
3421{
3422	return rdev->desc->id;
3423}
3424EXPORT_SYMBOL_GPL(rdev_get_id);
3425
3426struct device *rdev_get_dev(struct regulator_dev *rdev)
3427{
3428	return &rdev->dev;
3429}
3430EXPORT_SYMBOL_GPL(rdev_get_dev);
3431
3432void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3433{
3434	return reg_init_data->driver_data;
3435}
3436EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3437
3438#ifdef CONFIG_DEBUG_FS
3439static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3440				    size_t count, loff_t *ppos)
3441{
3442	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3443	ssize_t len, ret = 0;
3444	struct regulator_map *map;
3445
3446	if (!buf)
3447		return -ENOMEM;
3448
3449	list_for_each_entry(map, &regulator_map_list, list) {
3450		len = snprintf(buf + ret, PAGE_SIZE - ret,
3451			       "%s -> %s.%s\n",
3452			       rdev_get_name(map->regulator), map->dev_name,
3453			       map->supply);
3454		if (len >= 0)
3455			ret += len;
3456		if (ret > PAGE_SIZE) {
3457			ret = PAGE_SIZE;
3458			break;
3459		}
3460	}
3461
3462	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3463
3464	kfree(buf);
3465
3466	return ret;
3467}
3468#endif
3469
3470static const struct file_operations supply_map_fops = {
3471#ifdef CONFIG_DEBUG_FS
3472	.read = supply_map_read_file,
3473	.llseek = default_llseek,
3474#endif
3475};
3476
3477static int __init regulator_init(void)
3478{
3479	int ret;
3480
3481	ret = class_register(&regulator_class);
3482
3483	debugfs_root = debugfs_create_dir("regulator", NULL);
3484	if (!debugfs_root)
3485		pr_warn("regulator: Failed to create debugfs directory\n");
3486
3487	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3488			    &supply_map_fops);
3489
3490	regulator_dummy_init();
3491
3492	return ret;
3493}
3494
3495/* init early to allow our consumers to complete system booting */
3496core_initcall(regulator_init);
3497
3498static int __init regulator_init_complete(void)
3499{
3500	struct regulator_dev *rdev;
3501	struct regulator_ops *ops;
3502	struct regulation_constraints *c;
3503	int enabled, ret;
3504
3505	mutex_lock(&regulator_list_mutex);
3506
3507	/* If we have a full configuration then disable any regulators
3508	 * which are not in use or always_on.  This will become the
3509	 * default behaviour in the future.
3510	 */
3511	list_for_each_entry(rdev, &regulator_list, list) {
3512		ops = rdev->desc->ops;
3513		c = rdev->constraints;
3514
3515		if (!ops->disable || (c && c->always_on))
3516			continue;
3517
3518		mutex_lock(&rdev->mutex);
3519
3520		if (rdev->use_count)
3521			goto unlock;
3522
3523		/* If we can't read the status assume it's on. */
3524		if (ops->is_enabled)
3525			enabled = ops->is_enabled(rdev);
3526		else
3527			enabled = 1;
3528
3529		if (!enabled)
3530			goto unlock;
3531
3532		if (has_full_constraints) {
3533			/* We log since this may kill the system if it
3534			 * goes wrong. */
3535			rdev_info(rdev, "disabling\n");
3536			ret = ops->disable(rdev);
3537			if (ret != 0) {
3538				rdev_err(rdev, "couldn't disable: %d\n", ret);
3539			}
3540		} else {
3541			/* The intention is that in future we will
3542			 * assume that full constraints are provided
3543			 * so warn even if we aren't going to do
3544			 * anything here.
3545			 */
3546			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3547		}
3548
3549unlock:
3550		mutex_unlock(&rdev->mutex);
3551	}
3552
3553	mutex_unlock(&regulator_list_mutex);
3554
3555	return 0;
3556}
3557late_initcall(regulator_init_complete);
3558