core.c revision 23c2f041efa891e6ec0706dc9ad4f776a9aa8c14
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/err.h>
24#include <linux/mutex.h>
25#include <linux/suspend.h>
26#include <linux/delay.h>
27#include <linux/regulator/consumer.h>
28#include <linux/regulator/driver.h>
29#include <linux/regulator/machine.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35
36#define rdev_err(rdev, fmt, ...)					\
37	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_warn(rdev, fmt, ...)					\
39	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_info(rdev, fmt, ...)					\
41	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_dbg(rdev, fmt, ...)					\
43	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45static DEFINE_MUTEX(regulator_list_mutex);
46static LIST_HEAD(regulator_list);
47static LIST_HEAD(regulator_map_list);
48static bool has_full_constraints;
49static bool board_wants_dummy_regulator;
50
51#ifdef CONFIG_DEBUG_FS
52static struct dentry *debugfs_root;
53#endif
54
55/*
56 * struct regulator_map
57 *
58 * Used to provide symbolic supply names to devices.
59 */
60struct regulator_map {
61	struct list_head list;
62	const char *dev_name;   /* The dev_name() for the consumer */
63	const char *supply;
64	struct regulator_dev *regulator;
65};
66
67/*
68 * struct regulator
69 *
70 * One for each consumer device.
71 */
72struct regulator {
73	struct device *dev;
74	struct list_head list;
75	int uA_load;
76	int min_uV;
77	int max_uV;
78	char *supply_name;
79	struct device_attribute dev_attr;
80	struct regulator_dev *rdev;
81};
82
83static int _regulator_is_enabled(struct regulator_dev *rdev);
84static int _regulator_disable(struct regulator_dev *rdev,
85		struct regulator_dev **supply_rdev_ptr);
86static int _regulator_get_voltage(struct regulator_dev *rdev);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static void _notifier_call_chain(struct regulator_dev *rdev,
90				  unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92				     int min_uV, int max_uV);
93
94static const char *rdev_get_name(struct regulator_dev *rdev)
95{
96	if (rdev->constraints && rdev->constraints->name)
97		return rdev->constraints->name;
98	else if (rdev->desc->name)
99		return rdev->desc->name;
100	else
101		return "";
102}
103
104/* gets the regulator for a given consumer device */
105static struct regulator *get_device_regulator(struct device *dev)
106{
107	struct regulator *regulator = NULL;
108	struct regulator_dev *rdev;
109
110	mutex_lock(&regulator_list_mutex);
111	list_for_each_entry(rdev, &regulator_list, list) {
112		mutex_lock(&rdev->mutex);
113		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114			if (regulator->dev == dev) {
115				mutex_unlock(&rdev->mutex);
116				mutex_unlock(&regulator_list_mutex);
117				return regulator;
118			}
119		}
120		mutex_unlock(&rdev->mutex);
121	}
122	mutex_unlock(&regulator_list_mutex);
123	return NULL;
124}
125
126/* Platform voltage constraint check */
127static int regulator_check_voltage(struct regulator_dev *rdev,
128				   int *min_uV, int *max_uV)
129{
130	BUG_ON(*min_uV > *max_uV);
131
132	if (!rdev->constraints) {
133		rdev_err(rdev, "no constraints\n");
134		return -ENODEV;
135	}
136	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137		rdev_err(rdev, "operation not allowed\n");
138		return -EPERM;
139	}
140
141	if (*max_uV > rdev->constraints->max_uV)
142		*max_uV = rdev->constraints->max_uV;
143	if (*min_uV < rdev->constraints->min_uV)
144		*min_uV = rdev->constraints->min_uV;
145
146	if (*min_uV > *max_uV)
147		return -EINVAL;
148
149	return 0;
150}
151
152/* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
154 */
155static int regulator_check_consumers(struct regulator_dev *rdev,
156				     int *min_uV, int *max_uV)
157{
158	struct regulator *regulator;
159
160	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161		if (*max_uV > regulator->max_uV)
162			*max_uV = regulator->max_uV;
163		if (*min_uV < regulator->min_uV)
164			*min_uV = regulator->min_uV;
165	}
166
167	if (*min_uV > *max_uV)
168		return -EINVAL;
169
170	return 0;
171}
172
173/* current constraint check */
174static int regulator_check_current_limit(struct regulator_dev *rdev,
175					int *min_uA, int *max_uA)
176{
177	BUG_ON(*min_uA > *max_uA);
178
179	if (!rdev->constraints) {
180		rdev_err(rdev, "no constraints\n");
181		return -ENODEV;
182	}
183	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184		rdev_err(rdev, "operation not allowed\n");
185		return -EPERM;
186	}
187
188	if (*max_uA > rdev->constraints->max_uA)
189		*max_uA = rdev->constraints->max_uA;
190	if (*min_uA < rdev->constraints->min_uA)
191		*min_uA = rdev->constraints->min_uA;
192
193	if (*min_uA > *max_uA)
194		return -EINVAL;
195
196	return 0;
197}
198
199/* operating mode constraint check */
200static int regulator_check_mode(struct regulator_dev *rdev, int mode)
201{
202	switch (mode) {
203	case REGULATOR_MODE_FAST:
204	case REGULATOR_MODE_NORMAL:
205	case REGULATOR_MODE_IDLE:
206	case REGULATOR_MODE_STANDBY:
207		break;
208	default:
209		return -EINVAL;
210	}
211
212	if (!rdev->constraints) {
213		rdev_err(rdev, "no constraints\n");
214		return -ENODEV;
215	}
216	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217		rdev_err(rdev, "operation not allowed\n");
218		return -EPERM;
219	}
220	if (!(rdev->constraints->valid_modes_mask & mode)) {
221		rdev_err(rdev, "invalid mode %x\n", mode);
222		return -EINVAL;
223	}
224	return 0;
225}
226
227/* dynamic regulator mode switching constraint check */
228static int regulator_check_drms(struct regulator_dev *rdev)
229{
230	if (!rdev->constraints) {
231		rdev_err(rdev, "no constraints\n");
232		return -ENODEV;
233	}
234	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
235		rdev_err(rdev, "operation not allowed\n");
236		return -EPERM;
237	}
238	return 0;
239}
240
241static ssize_t device_requested_uA_show(struct device *dev,
242			     struct device_attribute *attr, char *buf)
243{
244	struct regulator *regulator;
245
246	regulator = get_device_regulator(dev);
247	if (regulator == NULL)
248		return 0;
249
250	return sprintf(buf, "%d\n", regulator->uA_load);
251}
252
253static ssize_t regulator_uV_show(struct device *dev,
254				struct device_attribute *attr, char *buf)
255{
256	struct regulator_dev *rdev = dev_get_drvdata(dev);
257	ssize_t ret;
258
259	mutex_lock(&rdev->mutex);
260	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
261	mutex_unlock(&rdev->mutex);
262
263	return ret;
264}
265static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
266
267static ssize_t regulator_uA_show(struct device *dev,
268				struct device_attribute *attr, char *buf)
269{
270	struct regulator_dev *rdev = dev_get_drvdata(dev);
271
272	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
273}
274static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
275
276static ssize_t regulator_name_show(struct device *dev,
277			     struct device_attribute *attr, char *buf)
278{
279	struct regulator_dev *rdev = dev_get_drvdata(dev);
280
281	return sprintf(buf, "%s\n", rdev_get_name(rdev));
282}
283
284static ssize_t regulator_print_opmode(char *buf, int mode)
285{
286	switch (mode) {
287	case REGULATOR_MODE_FAST:
288		return sprintf(buf, "fast\n");
289	case REGULATOR_MODE_NORMAL:
290		return sprintf(buf, "normal\n");
291	case REGULATOR_MODE_IDLE:
292		return sprintf(buf, "idle\n");
293	case REGULATOR_MODE_STANDBY:
294		return sprintf(buf, "standby\n");
295	}
296	return sprintf(buf, "unknown\n");
297}
298
299static ssize_t regulator_opmode_show(struct device *dev,
300				    struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
305}
306static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
307
308static ssize_t regulator_print_state(char *buf, int state)
309{
310	if (state > 0)
311		return sprintf(buf, "enabled\n");
312	else if (state == 0)
313		return sprintf(buf, "disabled\n");
314	else
315		return sprintf(buf, "unknown\n");
316}
317
318static ssize_t regulator_state_show(struct device *dev,
319				   struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
331
332static ssize_t regulator_status_show(struct device *dev,
333				   struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336	int status;
337	char *label;
338
339	status = rdev->desc->ops->get_status(rdev);
340	if (status < 0)
341		return status;
342
343	switch (status) {
344	case REGULATOR_STATUS_OFF:
345		label = "off";
346		break;
347	case REGULATOR_STATUS_ON:
348		label = "on";
349		break;
350	case REGULATOR_STATUS_ERROR:
351		label = "error";
352		break;
353	case REGULATOR_STATUS_FAST:
354		label = "fast";
355		break;
356	case REGULATOR_STATUS_NORMAL:
357		label = "normal";
358		break;
359	case REGULATOR_STATUS_IDLE:
360		label = "idle";
361		break;
362	case REGULATOR_STATUS_STANDBY:
363		label = "standby";
364		break;
365	default:
366		return -ERANGE;
367	}
368
369	return sprintf(buf, "%s\n", label);
370}
371static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
372
373static ssize_t regulator_min_uA_show(struct device *dev,
374				    struct device_attribute *attr, char *buf)
375{
376	struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378	if (!rdev->constraints)
379		return sprintf(buf, "constraint not defined\n");
380
381	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
382}
383static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
384
385static ssize_t regulator_max_uA_show(struct device *dev,
386				    struct device_attribute *attr, char *buf)
387{
388	struct regulator_dev *rdev = dev_get_drvdata(dev);
389
390	if (!rdev->constraints)
391		return sprintf(buf, "constraint not defined\n");
392
393	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
394}
395static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
396
397static ssize_t regulator_min_uV_show(struct device *dev,
398				    struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402	if (!rdev->constraints)
403		return sprintf(buf, "constraint not defined\n");
404
405	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
406}
407static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
408
409static ssize_t regulator_max_uV_show(struct device *dev,
410				    struct device_attribute *attr, char *buf)
411{
412	struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414	if (!rdev->constraints)
415		return sprintf(buf, "constraint not defined\n");
416
417	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
418}
419static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
420
421static ssize_t regulator_total_uA_show(struct device *dev,
422				      struct device_attribute *attr, char *buf)
423{
424	struct regulator_dev *rdev = dev_get_drvdata(dev);
425	struct regulator *regulator;
426	int uA = 0;
427
428	mutex_lock(&rdev->mutex);
429	list_for_each_entry(regulator, &rdev->consumer_list, list)
430		uA += regulator->uA_load;
431	mutex_unlock(&rdev->mutex);
432	return sprintf(buf, "%d\n", uA);
433}
434static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
435
436static ssize_t regulator_num_users_show(struct device *dev,
437				      struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440	return sprintf(buf, "%d\n", rdev->use_count);
441}
442
443static ssize_t regulator_type_show(struct device *dev,
444				  struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	switch (rdev->desc->type) {
449	case REGULATOR_VOLTAGE:
450		return sprintf(buf, "voltage\n");
451	case REGULATOR_CURRENT:
452		return sprintf(buf, "current\n");
453	}
454	return sprintf(buf, "unknown\n");
455}
456
457static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
458				struct device_attribute *attr, char *buf)
459{
460	struct regulator_dev *rdev = dev_get_drvdata(dev);
461
462	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
463}
464static DEVICE_ATTR(suspend_mem_microvolts, 0444,
465		regulator_suspend_mem_uV_show, NULL);
466
467static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
468				struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
473}
474static DEVICE_ATTR(suspend_disk_microvolts, 0444,
475		regulator_suspend_disk_uV_show, NULL);
476
477static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
478				struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
483}
484static DEVICE_ATTR(suspend_standby_microvolts, 0444,
485		regulator_suspend_standby_uV_show, NULL);
486
487static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
488				struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_opmode(buf,
493		rdev->constraints->state_mem.mode);
494}
495static DEVICE_ATTR(suspend_mem_mode, 0444,
496		regulator_suspend_mem_mode_show, NULL);
497
498static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
499				struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_opmode(buf,
504		rdev->constraints->state_disk.mode);
505}
506static DEVICE_ATTR(suspend_disk_mode, 0444,
507		regulator_suspend_disk_mode_show, NULL);
508
509static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return regulator_print_opmode(buf,
515		rdev->constraints->state_standby.mode);
516}
517static DEVICE_ATTR(suspend_standby_mode, 0444,
518		regulator_suspend_standby_mode_show, NULL);
519
520static ssize_t regulator_suspend_mem_state_show(struct device *dev,
521				   struct device_attribute *attr, char *buf)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524
525	return regulator_print_state(buf,
526			rdev->constraints->state_mem.enabled);
527}
528static DEVICE_ATTR(suspend_mem_state, 0444,
529		regulator_suspend_mem_state_show, NULL);
530
531static ssize_t regulator_suspend_disk_state_show(struct device *dev,
532				   struct device_attribute *attr, char *buf)
533{
534	struct regulator_dev *rdev = dev_get_drvdata(dev);
535
536	return regulator_print_state(buf,
537			rdev->constraints->state_disk.enabled);
538}
539static DEVICE_ATTR(suspend_disk_state, 0444,
540		regulator_suspend_disk_state_show, NULL);
541
542static ssize_t regulator_suspend_standby_state_show(struct device *dev,
543				   struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return regulator_print_state(buf,
548			rdev->constraints->state_standby.enabled);
549}
550static DEVICE_ATTR(suspend_standby_state, 0444,
551		regulator_suspend_standby_state_show, NULL);
552
553
554/*
555 * These are the only attributes are present for all regulators.
556 * Other attributes are a function of regulator functionality.
557 */
558static struct device_attribute regulator_dev_attrs[] = {
559	__ATTR(name, 0444, regulator_name_show, NULL),
560	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
561	__ATTR(type, 0444, regulator_type_show, NULL),
562	__ATTR_NULL,
563};
564
565static void regulator_dev_release(struct device *dev)
566{
567	struct regulator_dev *rdev = dev_get_drvdata(dev);
568	kfree(rdev);
569}
570
571static struct class regulator_class = {
572	.name = "regulator",
573	.dev_release = regulator_dev_release,
574	.dev_attrs = regulator_dev_attrs,
575};
576
577/* Calculate the new optimum regulator operating mode based on the new total
578 * consumer load. All locks held by caller */
579static void drms_uA_update(struct regulator_dev *rdev)
580{
581	struct regulator *sibling;
582	int current_uA = 0, output_uV, input_uV, err;
583	unsigned int mode;
584
585	err = regulator_check_drms(rdev);
586	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
587	    (!rdev->desc->ops->get_voltage &&
588	     !rdev->desc->ops->get_voltage_sel) ||
589	    !rdev->desc->ops->set_mode)
590		return;
591
592	/* get output voltage */
593	output_uV = _regulator_get_voltage(rdev);
594	if (output_uV <= 0)
595		return;
596
597	/* get input voltage */
598	input_uV = 0;
599	if (rdev->supply)
600		input_uV = _regulator_get_voltage(rdev);
601	if (input_uV <= 0)
602		input_uV = rdev->constraints->input_uV;
603	if (input_uV <= 0)
604		return;
605
606	/* calc total requested load */
607	list_for_each_entry(sibling, &rdev->consumer_list, list)
608		current_uA += sibling->uA_load;
609
610	/* now get the optimum mode for our new total regulator load */
611	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
612						  output_uV, current_uA);
613
614	/* check the new mode is allowed */
615	err = regulator_check_mode(rdev, mode);
616	if (err == 0)
617		rdev->desc->ops->set_mode(rdev, mode);
618}
619
620static int suspend_set_state(struct regulator_dev *rdev,
621	struct regulator_state *rstate)
622{
623	int ret = 0;
624	bool can_set_state;
625
626	can_set_state = rdev->desc->ops->set_suspend_enable &&
627		rdev->desc->ops->set_suspend_disable;
628
629	/* If we have no suspend mode configration don't set anything;
630	 * only warn if the driver actually makes the suspend mode
631	 * configurable.
632	 */
633	if (!rstate->enabled && !rstate->disabled) {
634		if (can_set_state)
635			rdev_warn(rdev, "No configuration\n");
636		return 0;
637	}
638
639	if (rstate->enabled && rstate->disabled) {
640		rdev_err(rdev, "invalid configuration\n");
641		return -EINVAL;
642	}
643
644	if (!can_set_state) {
645		rdev_err(rdev, "no way to set suspend state\n");
646		return -EINVAL;
647	}
648
649	if (rstate->enabled)
650		ret = rdev->desc->ops->set_suspend_enable(rdev);
651	else
652		ret = rdev->desc->ops->set_suspend_disable(rdev);
653	if (ret < 0) {
654		rdev_err(rdev, "failed to enabled/disable\n");
655		return ret;
656	}
657
658	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
659		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
660		if (ret < 0) {
661			rdev_err(rdev, "failed to set voltage\n");
662			return ret;
663		}
664	}
665
666	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
667		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
668		if (ret < 0) {
669			rdev_err(rdev, "failed to set mode\n");
670			return ret;
671		}
672	}
673	return ret;
674}
675
676/* locks held by caller */
677static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
678{
679	if (!rdev->constraints)
680		return -EINVAL;
681
682	switch (state) {
683	case PM_SUSPEND_STANDBY:
684		return suspend_set_state(rdev,
685			&rdev->constraints->state_standby);
686	case PM_SUSPEND_MEM:
687		return suspend_set_state(rdev,
688			&rdev->constraints->state_mem);
689	case PM_SUSPEND_MAX:
690		return suspend_set_state(rdev,
691			&rdev->constraints->state_disk);
692	default:
693		return -EINVAL;
694	}
695}
696
697static void print_constraints(struct regulator_dev *rdev)
698{
699	struct regulation_constraints *constraints = rdev->constraints;
700	char buf[80] = "";
701	int count = 0;
702	int ret;
703
704	if (constraints->min_uV && constraints->max_uV) {
705		if (constraints->min_uV == constraints->max_uV)
706			count += sprintf(buf + count, "%d mV ",
707					 constraints->min_uV / 1000);
708		else
709			count += sprintf(buf + count, "%d <--> %d mV ",
710					 constraints->min_uV / 1000,
711					 constraints->max_uV / 1000);
712	}
713
714	if (!constraints->min_uV ||
715	    constraints->min_uV != constraints->max_uV) {
716		ret = _regulator_get_voltage(rdev);
717		if (ret > 0)
718			count += sprintf(buf + count, "at %d mV ", ret / 1000);
719	}
720
721	if (constraints->min_uA && constraints->max_uA) {
722		if (constraints->min_uA == constraints->max_uA)
723			count += sprintf(buf + count, "%d mA ",
724					 constraints->min_uA / 1000);
725		else
726			count += sprintf(buf + count, "%d <--> %d mA ",
727					 constraints->min_uA / 1000,
728					 constraints->max_uA / 1000);
729	}
730
731	if (!constraints->min_uA ||
732	    constraints->min_uA != constraints->max_uA) {
733		ret = _regulator_get_current_limit(rdev);
734		if (ret > 0)
735			count += sprintf(buf + count, "at %d mA ", ret / 1000);
736	}
737
738	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
739		count += sprintf(buf + count, "fast ");
740	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
741		count += sprintf(buf + count, "normal ");
742	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
743		count += sprintf(buf + count, "idle ");
744	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
745		count += sprintf(buf + count, "standby");
746
747	rdev_info(rdev, "%s\n", buf);
748}
749
750static int machine_constraints_voltage(struct regulator_dev *rdev,
751	struct regulation_constraints *constraints)
752{
753	struct regulator_ops *ops = rdev->desc->ops;
754	int ret;
755
756	/* do we need to apply the constraint voltage */
757	if (rdev->constraints->apply_uV &&
758	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
759		ret = _regulator_do_set_voltage(rdev,
760						rdev->constraints->min_uV,
761						rdev->constraints->max_uV);
762		if (ret < 0) {
763			rdev_err(rdev, "failed to apply %duV constraint\n",
764				 rdev->constraints->min_uV);
765			rdev->constraints = NULL;
766			return ret;
767		}
768	}
769
770	/* constrain machine-level voltage specs to fit
771	 * the actual range supported by this regulator.
772	 */
773	if (ops->list_voltage && rdev->desc->n_voltages) {
774		int	count = rdev->desc->n_voltages;
775		int	i;
776		int	min_uV = INT_MAX;
777		int	max_uV = INT_MIN;
778		int	cmin = constraints->min_uV;
779		int	cmax = constraints->max_uV;
780
781		/* it's safe to autoconfigure fixed-voltage supplies
782		   and the constraints are used by list_voltage. */
783		if (count == 1 && !cmin) {
784			cmin = 1;
785			cmax = INT_MAX;
786			constraints->min_uV = cmin;
787			constraints->max_uV = cmax;
788		}
789
790		/* voltage constraints are optional */
791		if ((cmin == 0) && (cmax == 0))
792			return 0;
793
794		/* else require explicit machine-level constraints */
795		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
796			rdev_err(rdev, "invalid voltage constraints\n");
797			return -EINVAL;
798		}
799
800		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
801		for (i = 0; i < count; i++) {
802			int	value;
803
804			value = ops->list_voltage(rdev, i);
805			if (value <= 0)
806				continue;
807
808			/* maybe adjust [min_uV..max_uV] */
809			if (value >= cmin && value < min_uV)
810				min_uV = value;
811			if (value <= cmax && value > max_uV)
812				max_uV = value;
813		}
814
815		/* final: [min_uV..max_uV] valid iff constraints valid */
816		if (max_uV < min_uV) {
817			rdev_err(rdev, "unsupportable voltage constraints\n");
818			return -EINVAL;
819		}
820
821		/* use regulator's subset of machine constraints */
822		if (constraints->min_uV < min_uV) {
823			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
824				 constraints->min_uV, min_uV);
825			constraints->min_uV = min_uV;
826		}
827		if (constraints->max_uV > max_uV) {
828			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
829				 constraints->max_uV, max_uV);
830			constraints->max_uV = max_uV;
831		}
832	}
833
834	return 0;
835}
836
837/**
838 * set_machine_constraints - sets regulator constraints
839 * @rdev: regulator source
840 * @constraints: constraints to apply
841 *
842 * Allows platform initialisation code to define and constrain
843 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
844 * Constraints *must* be set by platform code in order for some
845 * regulator operations to proceed i.e. set_voltage, set_current_limit,
846 * set_mode.
847 */
848static int set_machine_constraints(struct regulator_dev *rdev,
849	const struct regulation_constraints *constraints)
850{
851	int ret = 0;
852	struct regulator_ops *ops = rdev->desc->ops;
853
854	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
855				    GFP_KERNEL);
856	if (!rdev->constraints)
857		return -ENOMEM;
858
859	ret = machine_constraints_voltage(rdev, rdev->constraints);
860	if (ret != 0)
861		goto out;
862
863	/* do we need to setup our suspend state */
864	if (constraints->initial_state) {
865		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
866		if (ret < 0) {
867			rdev_err(rdev, "failed to set suspend state\n");
868			rdev->constraints = NULL;
869			goto out;
870		}
871	}
872
873	if (constraints->initial_mode) {
874		if (!ops->set_mode) {
875			rdev_err(rdev, "no set_mode operation\n");
876			ret = -EINVAL;
877			goto out;
878		}
879
880		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
881		if (ret < 0) {
882			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
883			goto out;
884		}
885	}
886
887	/* If the constraints say the regulator should be on at this point
888	 * and we have control then make sure it is enabled.
889	 */
890	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
891	    ops->enable) {
892		ret = ops->enable(rdev);
893		if (ret < 0) {
894			rdev_err(rdev, "failed to enable\n");
895			rdev->constraints = NULL;
896			goto out;
897		}
898	}
899
900	print_constraints(rdev);
901out:
902	return ret;
903}
904
905/**
906 * set_supply - set regulator supply regulator
907 * @rdev: regulator name
908 * @supply_rdev: supply regulator name
909 *
910 * Called by platform initialisation code to set the supply regulator for this
911 * regulator. This ensures that a regulators supply will also be enabled by the
912 * core if it's child is enabled.
913 */
914static int set_supply(struct regulator_dev *rdev,
915	struct regulator_dev *supply_rdev)
916{
917	int err;
918
919	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
920				"supply");
921	if (err) {
922		rdev_err(rdev, "could not add device link %s err %d\n",
923			 supply_rdev->dev.kobj.name, err);
924		       goto out;
925	}
926	rdev->supply = supply_rdev;
927	list_add(&rdev->slist, &supply_rdev->supply_list);
928out:
929	return err;
930}
931
932/**
933 * set_consumer_device_supply - Bind a regulator to a symbolic supply
934 * @rdev:         regulator source
935 * @consumer_dev: device the supply applies to
936 * @consumer_dev_name: dev_name() string for device supply applies to
937 * @supply:       symbolic name for supply
938 *
939 * Allows platform initialisation code to map physical regulator
940 * sources to symbolic names for supplies for use by devices.  Devices
941 * should use these symbolic names to request regulators, avoiding the
942 * need to provide board-specific regulator names as platform data.
943 *
944 * Only one of consumer_dev and consumer_dev_name may be specified.
945 */
946static int set_consumer_device_supply(struct regulator_dev *rdev,
947	struct device *consumer_dev, const char *consumer_dev_name,
948	const char *supply)
949{
950	struct regulator_map *node;
951	int has_dev;
952
953	if (consumer_dev && consumer_dev_name)
954		return -EINVAL;
955
956	if (!consumer_dev_name && consumer_dev)
957		consumer_dev_name = dev_name(consumer_dev);
958
959	if (supply == NULL)
960		return -EINVAL;
961
962	if (consumer_dev_name != NULL)
963		has_dev = 1;
964	else
965		has_dev = 0;
966
967	list_for_each_entry(node, &regulator_map_list, list) {
968		if (node->dev_name && consumer_dev_name) {
969			if (strcmp(node->dev_name, consumer_dev_name) != 0)
970				continue;
971		} else if (node->dev_name || consumer_dev_name) {
972			continue;
973		}
974
975		if (strcmp(node->supply, supply) != 0)
976			continue;
977
978		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
979			dev_name(&node->regulator->dev),
980			node->regulator->desc->name,
981			supply,
982			dev_name(&rdev->dev), rdev_get_name(rdev));
983		return -EBUSY;
984	}
985
986	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
987	if (node == NULL)
988		return -ENOMEM;
989
990	node->regulator = rdev;
991	node->supply = supply;
992
993	if (has_dev) {
994		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
995		if (node->dev_name == NULL) {
996			kfree(node);
997			return -ENOMEM;
998		}
999	}
1000
1001	list_add(&node->list, &regulator_map_list);
1002	return 0;
1003}
1004
1005static void unset_regulator_supplies(struct regulator_dev *rdev)
1006{
1007	struct regulator_map *node, *n;
1008
1009	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010		if (rdev == node->regulator) {
1011			list_del(&node->list);
1012			kfree(node->dev_name);
1013			kfree(node);
1014		}
1015	}
1016}
1017
1018#define REG_STR_SIZE	32
1019
1020static struct regulator *create_regulator(struct regulator_dev *rdev,
1021					  struct device *dev,
1022					  const char *supply_name)
1023{
1024	struct regulator *regulator;
1025	char buf[REG_STR_SIZE];
1026	int err, size;
1027
1028	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029	if (regulator == NULL)
1030		return NULL;
1031
1032	mutex_lock(&rdev->mutex);
1033	regulator->rdev = rdev;
1034	list_add(&regulator->list, &rdev->consumer_list);
1035
1036	if (dev) {
1037		/* create a 'requested_microamps_name' sysfs entry */
1038		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039			supply_name);
1040		if (size >= REG_STR_SIZE)
1041			goto overflow_err;
1042
1043		regulator->dev = dev;
1044		sysfs_attr_init(&regulator->dev_attr.attr);
1045		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046		if (regulator->dev_attr.attr.name == NULL)
1047			goto attr_name_err;
1048
1049		regulator->dev_attr.attr.mode = 0444;
1050		regulator->dev_attr.show = device_requested_uA_show;
1051		err = device_create_file(dev, &regulator->dev_attr);
1052		if (err < 0) {
1053			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054			goto attr_name_err;
1055		}
1056
1057		/* also add a link to the device sysfs entry */
1058		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059				 dev->kobj.name, supply_name);
1060		if (size >= REG_STR_SIZE)
1061			goto attr_err;
1062
1063		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064		if (regulator->supply_name == NULL)
1065			goto attr_err;
1066
1067		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068					buf);
1069		if (err) {
1070			rdev_warn(rdev, "could not add device link %s err %d\n",
1071				  dev->kobj.name, err);
1072			goto link_name_err;
1073		}
1074	}
1075	mutex_unlock(&rdev->mutex);
1076	return regulator;
1077link_name_err:
1078	kfree(regulator->supply_name);
1079attr_err:
1080	device_remove_file(regulator->dev, &regulator->dev_attr);
1081attr_name_err:
1082	kfree(regulator->dev_attr.attr.name);
1083overflow_err:
1084	list_del(&regulator->list);
1085	kfree(regulator);
1086	mutex_unlock(&rdev->mutex);
1087	return NULL;
1088}
1089
1090static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091{
1092	if (!rdev->desc->ops->enable_time)
1093		return 0;
1094	return rdev->desc->ops->enable_time(rdev);
1095}
1096
1097/* Internal regulator request function */
1098static struct regulator *_regulator_get(struct device *dev, const char *id,
1099					int exclusive)
1100{
1101	struct regulator_dev *rdev;
1102	struct regulator_map *map;
1103	struct regulator *regulator = ERR_PTR(-ENODEV);
1104	const char *devname = NULL;
1105	int ret;
1106
1107	if (id == NULL) {
1108		pr_err("get() with no identifier\n");
1109		return regulator;
1110	}
1111
1112	if (dev)
1113		devname = dev_name(dev);
1114
1115	mutex_lock(&regulator_list_mutex);
1116
1117	list_for_each_entry(map, &regulator_map_list, list) {
1118		/* If the mapping has a device set up it must match */
1119		if (map->dev_name &&
1120		    (!devname || strcmp(map->dev_name, devname)))
1121			continue;
1122
1123		if (strcmp(map->supply, id) == 0) {
1124			rdev = map->regulator;
1125			goto found;
1126		}
1127	}
1128
1129	if (board_wants_dummy_regulator) {
1130		rdev = dummy_regulator_rdev;
1131		goto found;
1132	}
1133
1134#ifdef CONFIG_REGULATOR_DUMMY
1135	if (!devname)
1136		devname = "deviceless";
1137
1138	/* If the board didn't flag that it was fully constrained then
1139	 * substitute in a dummy regulator so consumers can continue.
1140	 */
1141	if (!has_full_constraints) {
1142		pr_warn("%s supply %s not found, using dummy regulator\n",
1143			devname, id);
1144		rdev = dummy_regulator_rdev;
1145		goto found;
1146	}
1147#endif
1148
1149	mutex_unlock(&regulator_list_mutex);
1150	return regulator;
1151
1152found:
1153	if (rdev->exclusive) {
1154		regulator = ERR_PTR(-EPERM);
1155		goto out;
1156	}
1157
1158	if (exclusive && rdev->open_count) {
1159		regulator = ERR_PTR(-EBUSY);
1160		goto out;
1161	}
1162
1163	if (!try_module_get(rdev->owner))
1164		goto out;
1165
1166	regulator = create_regulator(rdev, dev, id);
1167	if (regulator == NULL) {
1168		regulator = ERR_PTR(-ENOMEM);
1169		module_put(rdev->owner);
1170	}
1171
1172	rdev->open_count++;
1173	if (exclusive) {
1174		rdev->exclusive = 1;
1175
1176		ret = _regulator_is_enabled(rdev);
1177		if (ret > 0)
1178			rdev->use_count = 1;
1179		else
1180			rdev->use_count = 0;
1181	}
1182
1183out:
1184	mutex_unlock(&regulator_list_mutex);
1185
1186	return regulator;
1187}
1188
1189/**
1190 * regulator_get - lookup and obtain a reference to a regulator.
1191 * @dev: device for regulator "consumer"
1192 * @id: Supply name or regulator ID.
1193 *
1194 * Returns a struct regulator corresponding to the regulator producer,
1195 * or IS_ERR() condition containing errno.
1196 *
1197 * Use of supply names configured via regulator_set_device_supply() is
1198 * strongly encouraged.  It is recommended that the supply name used
1199 * should match the name used for the supply and/or the relevant
1200 * device pins in the datasheet.
1201 */
1202struct regulator *regulator_get(struct device *dev, const char *id)
1203{
1204	return _regulator_get(dev, id, 0);
1205}
1206EXPORT_SYMBOL_GPL(regulator_get);
1207
1208/**
1209 * regulator_get_exclusive - obtain exclusive access to a regulator.
1210 * @dev: device for regulator "consumer"
1211 * @id: Supply name or regulator ID.
1212 *
1213 * Returns a struct regulator corresponding to the regulator producer,
1214 * or IS_ERR() condition containing errno.  Other consumers will be
1215 * unable to obtain this reference is held and the use count for the
1216 * regulator will be initialised to reflect the current state of the
1217 * regulator.
1218 *
1219 * This is intended for use by consumers which cannot tolerate shared
1220 * use of the regulator such as those which need to force the
1221 * regulator off for correct operation of the hardware they are
1222 * controlling.
1223 *
1224 * Use of supply names configured via regulator_set_device_supply() is
1225 * strongly encouraged.  It is recommended that the supply name used
1226 * should match the name used for the supply and/or the relevant
1227 * device pins in the datasheet.
1228 */
1229struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1230{
1231	return _regulator_get(dev, id, 1);
1232}
1233EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1234
1235/**
1236 * regulator_put - "free" the regulator source
1237 * @regulator: regulator source
1238 *
1239 * Note: drivers must ensure that all regulator_enable calls made on this
1240 * regulator source are balanced by regulator_disable calls prior to calling
1241 * this function.
1242 */
1243void regulator_put(struct regulator *regulator)
1244{
1245	struct regulator_dev *rdev;
1246
1247	if (regulator == NULL || IS_ERR(regulator))
1248		return;
1249
1250	mutex_lock(&regulator_list_mutex);
1251	rdev = regulator->rdev;
1252
1253	/* remove any sysfs entries */
1254	if (regulator->dev) {
1255		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256		kfree(regulator->supply_name);
1257		device_remove_file(regulator->dev, &regulator->dev_attr);
1258		kfree(regulator->dev_attr.attr.name);
1259	}
1260	list_del(&regulator->list);
1261	kfree(regulator);
1262
1263	rdev->open_count--;
1264	rdev->exclusive = 0;
1265
1266	module_put(rdev->owner);
1267	mutex_unlock(&regulator_list_mutex);
1268}
1269EXPORT_SYMBOL_GPL(regulator_put);
1270
1271static int _regulator_can_change_status(struct regulator_dev *rdev)
1272{
1273	if (!rdev->constraints)
1274		return 0;
1275
1276	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277		return 1;
1278	else
1279		return 0;
1280}
1281
1282/* locks held by regulator_enable() */
1283static int _regulator_enable(struct regulator_dev *rdev)
1284{
1285	int ret, delay;
1286
1287	if (rdev->use_count == 0) {
1288		/* do we need to enable the supply regulator first */
1289		if (rdev->supply) {
1290			mutex_lock(&rdev->supply->mutex);
1291			ret = _regulator_enable(rdev->supply);
1292			mutex_unlock(&rdev->supply->mutex);
1293			if (ret < 0) {
1294				rdev_err(rdev, "failed to enable: %d\n", ret);
1295				return ret;
1296			}
1297		}
1298	}
1299
1300	/* check voltage and requested load before enabling */
1301	if (rdev->constraints &&
1302	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303		drms_uA_update(rdev);
1304
1305	if (rdev->use_count == 0) {
1306		/* The regulator may on if it's not switchable or left on */
1307		ret = _regulator_is_enabled(rdev);
1308		if (ret == -EINVAL || ret == 0) {
1309			if (!_regulator_can_change_status(rdev))
1310				return -EPERM;
1311
1312			if (!rdev->desc->ops->enable)
1313				return -EINVAL;
1314
1315			/* Query before enabling in case configuration
1316			 * dependant.  */
1317			ret = _regulator_get_enable_time(rdev);
1318			if (ret >= 0) {
1319				delay = ret;
1320			} else {
1321				rdev_warn(rdev, "enable_time() failed: %d\n",
1322					   ret);
1323				delay = 0;
1324			}
1325
1326			trace_regulator_enable(rdev_get_name(rdev));
1327
1328			/* Allow the regulator to ramp; it would be useful
1329			 * to extend this for bulk operations so that the
1330			 * regulators can ramp together.  */
1331			ret = rdev->desc->ops->enable(rdev);
1332			if (ret < 0)
1333				return ret;
1334
1335			trace_regulator_enable_delay(rdev_get_name(rdev));
1336
1337			if (delay >= 1000) {
1338				mdelay(delay / 1000);
1339				udelay(delay % 1000);
1340			} else if (delay) {
1341				udelay(delay);
1342			}
1343
1344			trace_regulator_enable_complete(rdev_get_name(rdev));
1345
1346		} else if (ret < 0) {
1347			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348			return ret;
1349		}
1350		/* Fallthrough on positive return values - already enabled */
1351	}
1352
1353	rdev->use_count++;
1354
1355	return 0;
1356}
1357
1358/**
1359 * regulator_enable - enable regulator output
1360 * @regulator: regulator source
1361 *
1362 * Request that the regulator be enabled with the regulator output at
1363 * the predefined voltage or current value.  Calls to regulator_enable()
1364 * must be balanced with calls to regulator_disable().
1365 *
1366 * NOTE: the output value can be set by other drivers, boot loader or may be
1367 * hardwired in the regulator.
1368 */
1369int regulator_enable(struct regulator *regulator)
1370{
1371	struct regulator_dev *rdev = regulator->rdev;
1372	int ret = 0;
1373
1374	mutex_lock(&rdev->mutex);
1375	ret = _regulator_enable(rdev);
1376	mutex_unlock(&rdev->mutex);
1377	return ret;
1378}
1379EXPORT_SYMBOL_GPL(regulator_enable);
1380
1381/* locks held by regulator_disable() */
1382static int _regulator_disable(struct regulator_dev *rdev,
1383		struct regulator_dev **supply_rdev_ptr)
1384{
1385	int ret = 0;
1386	*supply_rdev_ptr = NULL;
1387
1388	if (WARN(rdev->use_count <= 0,
1389		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390		return -EIO;
1391
1392	/* are we the last user and permitted to disable ? */
1393	if (rdev->use_count == 1 &&
1394	    (rdev->constraints && !rdev->constraints->always_on)) {
1395
1396		/* we are last user */
1397		if (_regulator_can_change_status(rdev) &&
1398		    rdev->desc->ops->disable) {
1399			trace_regulator_disable(rdev_get_name(rdev));
1400
1401			ret = rdev->desc->ops->disable(rdev);
1402			if (ret < 0) {
1403				rdev_err(rdev, "failed to disable\n");
1404				return ret;
1405			}
1406
1407			trace_regulator_disable_complete(rdev_get_name(rdev));
1408
1409			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410					     NULL);
1411		}
1412
1413		/* decrease our supplies ref count and disable if required */
1414		*supply_rdev_ptr = rdev->supply;
1415
1416		rdev->use_count = 0;
1417	} else if (rdev->use_count > 1) {
1418
1419		if (rdev->constraints &&
1420			(rdev->constraints->valid_ops_mask &
1421			REGULATOR_CHANGE_DRMS))
1422			drms_uA_update(rdev);
1423
1424		rdev->use_count--;
1425	}
1426	return ret;
1427}
1428
1429/**
1430 * regulator_disable - disable regulator output
1431 * @regulator: regulator source
1432 *
1433 * Disable the regulator output voltage or current.  Calls to
1434 * regulator_enable() must be balanced with calls to
1435 * regulator_disable().
1436 *
1437 * NOTE: this will only disable the regulator output if no other consumer
1438 * devices have it enabled, the regulator device supports disabling and
1439 * machine constraints permit this operation.
1440 */
1441int regulator_disable(struct regulator *regulator)
1442{
1443	struct regulator_dev *rdev = regulator->rdev;
1444	struct regulator_dev *supply_rdev = NULL;
1445	int ret = 0;
1446
1447	mutex_lock(&rdev->mutex);
1448	ret = _regulator_disable(rdev, &supply_rdev);
1449	mutex_unlock(&rdev->mutex);
1450
1451	/* decrease our supplies ref count and disable if required */
1452	while (supply_rdev != NULL) {
1453		rdev = supply_rdev;
1454
1455		mutex_lock(&rdev->mutex);
1456		_regulator_disable(rdev, &supply_rdev);
1457		mutex_unlock(&rdev->mutex);
1458	}
1459
1460	return ret;
1461}
1462EXPORT_SYMBOL_GPL(regulator_disable);
1463
1464/* locks held by regulator_force_disable() */
1465static int _regulator_force_disable(struct regulator_dev *rdev,
1466		struct regulator_dev **supply_rdev_ptr)
1467{
1468	int ret = 0;
1469
1470	/* force disable */
1471	if (rdev->desc->ops->disable) {
1472		/* ah well, who wants to live forever... */
1473		ret = rdev->desc->ops->disable(rdev);
1474		if (ret < 0) {
1475			rdev_err(rdev, "failed to force disable\n");
1476			return ret;
1477		}
1478		/* notify other consumers that power has been forced off */
1479		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480			REGULATOR_EVENT_DISABLE, NULL);
1481	}
1482
1483	/* decrease our supplies ref count and disable if required */
1484	*supply_rdev_ptr = rdev->supply;
1485
1486	rdev->use_count = 0;
1487	return ret;
1488}
1489
1490/**
1491 * regulator_force_disable - force disable regulator output
1492 * @regulator: regulator source
1493 *
1494 * Forcibly disable the regulator output voltage or current.
1495 * NOTE: this *will* disable the regulator output even if other consumer
1496 * devices have it enabled. This should be used for situations when device
1497 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1498 */
1499int regulator_force_disable(struct regulator *regulator)
1500{
1501	struct regulator_dev *supply_rdev = NULL;
1502	int ret;
1503
1504	mutex_lock(&regulator->rdev->mutex);
1505	regulator->uA_load = 0;
1506	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507	mutex_unlock(&regulator->rdev->mutex);
1508
1509	if (supply_rdev)
1510		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1511
1512	return ret;
1513}
1514EXPORT_SYMBOL_GPL(regulator_force_disable);
1515
1516static int _regulator_is_enabled(struct regulator_dev *rdev)
1517{
1518	/* If we don't know then assume that the regulator is always on */
1519	if (!rdev->desc->ops->is_enabled)
1520		return 1;
1521
1522	return rdev->desc->ops->is_enabled(rdev);
1523}
1524
1525/**
1526 * regulator_is_enabled - is the regulator output enabled
1527 * @regulator: regulator source
1528 *
1529 * Returns positive if the regulator driver backing the source/client
1530 * has requested that the device be enabled, zero if it hasn't, else a
1531 * negative errno code.
1532 *
1533 * Note that the device backing this regulator handle can have multiple
1534 * users, so it might be enabled even if regulator_enable() was never
1535 * called for this particular source.
1536 */
1537int regulator_is_enabled(struct regulator *regulator)
1538{
1539	int ret;
1540
1541	mutex_lock(&regulator->rdev->mutex);
1542	ret = _regulator_is_enabled(regulator->rdev);
1543	mutex_unlock(&regulator->rdev->mutex);
1544
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(regulator_is_enabled);
1548
1549/**
1550 * regulator_count_voltages - count regulator_list_voltage() selectors
1551 * @regulator: regulator source
1552 *
1553 * Returns number of selectors, or negative errno.  Selectors are
1554 * numbered starting at zero, and typically correspond to bitfields
1555 * in hardware registers.
1556 */
1557int regulator_count_voltages(struct regulator *regulator)
1558{
1559	struct regulator_dev	*rdev = regulator->rdev;
1560
1561	return rdev->desc->n_voltages ? : -EINVAL;
1562}
1563EXPORT_SYMBOL_GPL(regulator_count_voltages);
1564
1565/**
1566 * regulator_list_voltage - enumerate supported voltages
1567 * @regulator: regulator source
1568 * @selector: identify voltage to list
1569 * Context: can sleep
1570 *
1571 * Returns a voltage that can be passed to @regulator_set_voltage(),
1572 * zero if this selector code can't be used on this system, or a
1573 * negative errno.
1574 */
1575int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1576{
1577	struct regulator_dev	*rdev = regulator->rdev;
1578	struct regulator_ops	*ops = rdev->desc->ops;
1579	int			ret;
1580
1581	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582		return -EINVAL;
1583
1584	mutex_lock(&rdev->mutex);
1585	ret = ops->list_voltage(rdev, selector);
1586	mutex_unlock(&rdev->mutex);
1587
1588	if (ret > 0) {
1589		if (ret < rdev->constraints->min_uV)
1590			ret = 0;
1591		else if (ret > rdev->constraints->max_uV)
1592			ret = 0;
1593	}
1594
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(regulator_list_voltage);
1598
1599/**
1600 * regulator_is_supported_voltage - check if a voltage range can be supported
1601 *
1602 * @regulator: Regulator to check.
1603 * @min_uV: Minimum required voltage in uV.
1604 * @max_uV: Maximum required voltage in uV.
1605 *
1606 * Returns a boolean or a negative error code.
1607 */
1608int regulator_is_supported_voltage(struct regulator *regulator,
1609				   int min_uV, int max_uV)
1610{
1611	int i, voltages, ret;
1612
1613	ret = regulator_count_voltages(regulator);
1614	if (ret < 0)
1615		return ret;
1616	voltages = ret;
1617
1618	for (i = 0; i < voltages; i++) {
1619		ret = regulator_list_voltage(regulator, i);
1620
1621		if (ret >= min_uV && ret <= max_uV)
1622			return 1;
1623	}
1624
1625	return 0;
1626}
1627
1628static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629				     int min_uV, int max_uV)
1630{
1631	int ret;
1632	unsigned int selector;
1633
1634	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1635
1636	if (rdev->desc->ops->set_voltage) {
1637		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1638						   &selector);
1639
1640		if (rdev->desc->ops->list_voltage)
1641			selector = rdev->desc->ops->list_voltage(rdev,
1642								 selector);
1643		else
1644			selector = -1;
1645	} else if (rdev->desc->ops->set_voltage_sel) {
1646		int best_val = INT_MAX;
1647		int i;
1648
1649		selector = 0;
1650
1651		/* Find the smallest voltage that falls within the specified
1652		 * range.
1653		 */
1654		for (i = 0; i < rdev->desc->n_voltages; i++) {
1655			ret = rdev->desc->ops->list_voltage(rdev, i);
1656			if (ret < 0)
1657				continue;
1658
1659			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1660				best_val = ret;
1661				selector = i;
1662			}
1663		}
1664
1665		if (best_val != INT_MAX) {
1666			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1667			selector = best_val;
1668		} else {
1669			ret = -EINVAL;
1670		}
1671	} else {
1672		ret = -EINVAL;
1673	}
1674
1675	if (ret == 0)
1676		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1677				     NULL);
1678
1679	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1680
1681	return ret;
1682}
1683
1684/**
1685 * regulator_set_voltage - set regulator output voltage
1686 * @regulator: regulator source
1687 * @min_uV: Minimum required voltage in uV
1688 * @max_uV: Maximum acceptable voltage in uV
1689 *
1690 * Sets a voltage regulator to the desired output voltage. This can be set
1691 * during any regulator state. IOW, regulator can be disabled or enabled.
1692 *
1693 * If the regulator is enabled then the voltage will change to the new value
1694 * immediately otherwise if the regulator is disabled the regulator will
1695 * output at the new voltage when enabled.
1696 *
1697 * NOTE: If the regulator is shared between several devices then the lowest
1698 * request voltage that meets the system constraints will be used.
1699 * Regulator system constraints must be set for this regulator before
1700 * calling this function otherwise this call will fail.
1701 */
1702int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1703{
1704	struct regulator_dev *rdev = regulator->rdev;
1705	int ret = 0;
1706
1707	mutex_lock(&rdev->mutex);
1708
1709	/* If we're setting the same range as last time the change
1710	 * should be a noop (some cpufreq implementations use the same
1711	 * voltage for multiple frequencies, for example).
1712	 */
1713	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1714		goto out;
1715
1716	/* sanity check */
1717	if (!rdev->desc->ops->set_voltage &&
1718	    !rdev->desc->ops->set_voltage_sel) {
1719		ret = -EINVAL;
1720		goto out;
1721	}
1722
1723	/* constraints check */
1724	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1725	if (ret < 0)
1726		goto out;
1727	regulator->min_uV = min_uV;
1728	regulator->max_uV = max_uV;
1729
1730	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1731	if (ret < 0)
1732		goto out;
1733
1734	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1735
1736out:
1737	mutex_unlock(&rdev->mutex);
1738	return ret;
1739}
1740EXPORT_SYMBOL_GPL(regulator_set_voltage);
1741
1742/**
1743 * regulator_sync_voltage - re-apply last regulator output voltage
1744 * @regulator: regulator source
1745 *
1746 * Re-apply the last configured voltage.  This is intended to be used
1747 * where some external control source the consumer is cooperating with
1748 * has caused the configured voltage to change.
1749 */
1750int regulator_sync_voltage(struct regulator *regulator)
1751{
1752	struct regulator_dev *rdev = regulator->rdev;
1753	int ret, min_uV, max_uV;
1754
1755	mutex_lock(&rdev->mutex);
1756
1757	if (!rdev->desc->ops->set_voltage &&
1758	    !rdev->desc->ops->set_voltage_sel) {
1759		ret = -EINVAL;
1760		goto out;
1761	}
1762
1763	/* This is only going to work if we've had a voltage configured. */
1764	if (!regulator->min_uV && !regulator->max_uV) {
1765		ret = -EINVAL;
1766		goto out;
1767	}
1768
1769	min_uV = regulator->min_uV;
1770	max_uV = regulator->max_uV;
1771
1772	/* This should be a paranoia check... */
1773	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1774	if (ret < 0)
1775		goto out;
1776
1777	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1778	if (ret < 0)
1779		goto out;
1780
1781	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1782
1783out:
1784	mutex_unlock(&rdev->mutex);
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1788
1789static int _regulator_get_voltage(struct regulator_dev *rdev)
1790{
1791	int sel;
1792
1793	if (rdev->desc->ops->get_voltage_sel) {
1794		sel = rdev->desc->ops->get_voltage_sel(rdev);
1795		if (sel < 0)
1796			return sel;
1797		return rdev->desc->ops->list_voltage(rdev, sel);
1798	}
1799	if (rdev->desc->ops->get_voltage)
1800		return rdev->desc->ops->get_voltage(rdev);
1801	else
1802		return -EINVAL;
1803}
1804
1805/**
1806 * regulator_get_voltage - get regulator output voltage
1807 * @regulator: regulator source
1808 *
1809 * This returns the current regulator voltage in uV.
1810 *
1811 * NOTE: If the regulator is disabled it will return the voltage value. This
1812 * function should not be used to determine regulator state.
1813 */
1814int regulator_get_voltage(struct regulator *regulator)
1815{
1816	int ret;
1817
1818	mutex_lock(&regulator->rdev->mutex);
1819
1820	ret = _regulator_get_voltage(regulator->rdev);
1821
1822	mutex_unlock(&regulator->rdev->mutex);
1823
1824	return ret;
1825}
1826EXPORT_SYMBOL_GPL(regulator_get_voltage);
1827
1828/**
1829 * regulator_set_current_limit - set regulator output current limit
1830 * @regulator: regulator source
1831 * @min_uA: Minimuum supported current in uA
1832 * @max_uA: Maximum supported current in uA
1833 *
1834 * Sets current sink to the desired output current. This can be set during
1835 * any regulator state. IOW, regulator can be disabled or enabled.
1836 *
1837 * If the regulator is enabled then the current will change to the new value
1838 * immediately otherwise if the regulator is disabled the regulator will
1839 * output at the new current when enabled.
1840 *
1841 * NOTE: Regulator system constraints must be set for this regulator before
1842 * calling this function otherwise this call will fail.
1843 */
1844int regulator_set_current_limit(struct regulator *regulator,
1845			       int min_uA, int max_uA)
1846{
1847	struct regulator_dev *rdev = regulator->rdev;
1848	int ret;
1849
1850	mutex_lock(&rdev->mutex);
1851
1852	/* sanity check */
1853	if (!rdev->desc->ops->set_current_limit) {
1854		ret = -EINVAL;
1855		goto out;
1856	}
1857
1858	/* constraints check */
1859	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1860	if (ret < 0)
1861		goto out;
1862
1863	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1864out:
1865	mutex_unlock(&rdev->mutex);
1866	return ret;
1867}
1868EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1869
1870static int _regulator_get_current_limit(struct regulator_dev *rdev)
1871{
1872	int ret;
1873
1874	mutex_lock(&rdev->mutex);
1875
1876	/* sanity check */
1877	if (!rdev->desc->ops->get_current_limit) {
1878		ret = -EINVAL;
1879		goto out;
1880	}
1881
1882	ret = rdev->desc->ops->get_current_limit(rdev);
1883out:
1884	mutex_unlock(&rdev->mutex);
1885	return ret;
1886}
1887
1888/**
1889 * regulator_get_current_limit - get regulator output current
1890 * @regulator: regulator source
1891 *
1892 * This returns the current supplied by the specified current sink in uA.
1893 *
1894 * NOTE: If the regulator is disabled it will return the current value. This
1895 * function should not be used to determine regulator state.
1896 */
1897int regulator_get_current_limit(struct regulator *regulator)
1898{
1899	return _regulator_get_current_limit(regulator->rdev);
1900}
1901EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1902
1903/**
1904 * regulator_set_mode - set regulator operating mode
1905 * @regulator: regulator source
1906 * @mode: operating mode - one of the REGULATOR_MODE constants
1907 *
1908 * Set regulator operating mode to increase regulator efficiency or improve
1909 * regulation performance.
1910 *
1911 * NOTE: Regulator system constraints must be set for this regulator before
1912 * calling this function otherwise this call will fail.
1913 */
1914int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1915{
1916	struct regulator_dev *rdev = regulator->rdev;
1917	int ret;
1918	int regulator_curr_mode;
1919
1920	mutex_lock(&rdev->mutex);
1921
1922	/* sanity check */
1923	if (!rdev->desc->ops->set_mode) {
1924		ret = -EINVAL;
1925		goto out;
1926	}
1927
1928	/* return if the same mode is requested */
1929	if (rdev->desc->ops->get_mode) {
1930		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1931		if (regulator_curr_mode == mode) {
1932			ret = 0;
1933			goto out;
1934		}
1935	}
1936
1937	/* constraints check */
1938	ret = regulator_check_mode(rdev, mode);
1939	if (ret < 0)
1940		goto out;
1941
1942	ret = rdev->desc->ops->set_mode(rdev, mode);
1943out:
1944	mutex_unlock(&rdev->mutex);
1945	return ret;
1946}
1947EXPORT_SYMBOL_GPL(regulator_set_mode);
1948
1949static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1950{
1951	int ret;
1952
1953	mutex_lock(&rdev->mutex);
1954
1955	/* sanity check */
1956	if (!rdev->desc->ops->get_mode) {
1957		ret = -EINVAL;
1958		goto out;
1959	}
1960
1961	ret = rdev->desc->ops->get_mode(rdev);
1962out:
1963	mutex_unlock(&rdev->mutex);
1964	return ret;
1965}
1966
1967/**
1968 * regulator_get_mode - get regulator operating mode
1969 * @regulator: regulator source
1970 *
1971 * Get the current regulator operating mode.
1972 */
1973unsigned int regulator_get_mode(struct regulator *regulator)
1974{
1975	return _regulator_get_mode(regulator->rdev);
1976}
1977EXPORT_SYMBOL_GPL(regulator_get_mode);
1978
1979/**
1980 * regulator_set_optimum_mode - set regulator optimum operating mode
1981 * @regulator: regulator source
1982 * @uA_load: load current
1983 *
1984 * Notifies the regulator core of a new device load. This is then used by
1985 * DRMS (if enabled by constraints) to set the most efficient regulator
1986 * operating mode for the new regulator loading.
1987 *
1988 * Consumer devices notify their supply regulator of the maximum power
1989 * they will require (can be taken from device datasheet in the power
1990 * consumption tables) when they change operational status and hence power
1991 * state. Examples of operational state changes that can affect power
1992 * consumption are :-
1993 *
1994 *    o Device is opened / closed.
1995 *    o Device I/O is about to begin or has just finished.
1996 *    o Device is idling in between work.
1997 *
1998 * This information is also exported via sysfs to userspace.
1999 *
2000 * DRMS will sum the total requested load on the regulator and change
2001 * to the most efficient operating mode if platform constraints allow.
2002 *
2003 * Returns the new regulator mode or error.
2004 */
2005int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2006{
2007	struct regulator_dev *rdev = regulator->rdev;
2008	struct regulator *consumer;
2009	int ret, output_uV, input_uV, total_uA_load = 0;
2010	unsigned int mode;
2011
2012	mutex_lock(&rdev->mutex);
2013
2014	regulator->uA_load = uA_load;
2015	ret = regulator_check_drms(rdev);
2016	if (ret < 0)
2017		goto out;
2018	ret = -EINVAL;
2019
2020	/* sanity check */
2021	if (!rdev->desc->ops->get_optimum_mode)
2022		goto out;
2023
2024	/* get output voltage */
2025	output_uV = _regulator_get_voltage(rdev);
2026	if (output_uV <= 0) {
2027		rdev_err(rdev, "invalid output voltage found\n");
2028		goto out;
2029	}
2030
2031	/* get input voltage */
2032	input_uV = 0;
2033	if (rdev->supply)
2034		input_uV = _regulator_get_voltage(rdev->supply);
2035	if (input_uV <= 0)
2036		input_uV = rdev->constraints->input_uV;
2037	if (input_uV <= 0) {
2038		rdev_err(rdev, "invalid input voltage found\n");
2039		goto out;
2040	}
2041
2042	/* calc total requested load for this regulator */
2043	list_for_each_entry(consumer, &rdev->consumer_list, list)
2044		total_uA_load += consumer->uA_load;
2045
2046	mode = rdev->desc->ops->get_optimum_mode(rdev,
2047						 input_uV, output_uV,
2048						 total_uA_load);
2049	ret = regulator_check_mode(rdev, mode);
2050	if (ret < 0) {
2051		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2052			 total_uA_load, input_uV, output_uV);
2053		goto out;
2054	}
2055
2056	ret = rdev->desc->ops->set_mode(rdev, mode);
2057	if (ret < 0) {
2058		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2059		goto out;
2060	}
2061	ret = mode;
2062out:
2063	mutex_unlock(&rdev->mutex);
2064	return ret;
2065}
2066EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2067
2068/**
2069 * regulator_register_notifier - register regulator event notifier
2070 * @regulator: regulator source
2071 * @nb: notifier block
2072 *
2073 * Register notifier block to receive regulator events.
2074 */
2075int regulator_register_notifier(struct regulator *regulator,
2076			      struct notifier_block *nb)
2077{
2078	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2079						nb);
2080}
2081EXPORT_SYMBOL_GPL(regulator_register_notifier);
2082
2083/**
2084 * regulator_unregister_notifier - unregister regulator event notifier
2085 * @regulator: regulator source
2086 * @nb: notifier block
2087 *
2088 * Unregister regulator event notifier block.
2089 */
2090int regulator_unregister_notifier(struct regulator *regulator,
2091				struct notifier_block *nb)
2092{
2093	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2094						  nb);
2095}
2096EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2097
2098/* notify regulator consumers and downstream regulator consumers.
2099 * Note mutex must be held by caller.
2100 */
2101static void _notifier_call_chain(struct regulator_dev *rdev,
2102				  unsigned long event, void *data)
2103{
2104	struct regulator_dev *_rdev;
2105
2106	/* call rdev chain first */
2107	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2108
2109	/* now notify regulator we supply */
2110	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2111		mutex_lock(&_rdev->mutex);
2112		_notifier_call_chain(_rdev, event, data);
2113		mutex_unlock(&_rdev->mutex);
2114	}
2115}
2116
2117/**
2118 * regulator_bulk_get - get multiple regulator consumers
2119 *
2120 * @dev:           Device to supply
2121 * @num_consumers: Number of consumers to register
2122 * @consumers:     Configuration of consumers; clients are stored here.
2123 *
2124 * @return 0 on success, an errno on failure.
2125 *
2126 * This helper function allows drivers to get several regulator
2127 * consumers in one operation.  If any of the regulators cannot be
2128 * acquired then any regulators that were allocated will be freed
2129 * before returning to the caller.
2130 */
2131int regulator_bulk_get(struct device *dev, int num_consumers,
2132		       struct regulator_bulk_data *consumers)
2133{
2134	int i;
2135	int ret;
2136
2137	for (i = 0; i < num_consumers; i++)
2138		consumers[i].consumer = NULL;
2139
2140	for (i = 0; i < num_consumers; i++) {
2141		consumers[i].consumer = regulator_get(dev,
2142						      consumers[i].supply);
2143		if (IS_ERR(consumers[i].consumer)) {
2144			ret = PTR_ERR(consumers[i].consumer);
2145			dev_err(dev, "Failed to get supply '%s': %d\n",
2146				consumers[i].supply, ret);
2147			consumers[i].consumer = NULL;
2148			goto err;
2149		}
2150	}
2151
2152	return 0;
2153
2154err:
2155	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2156		regulator_put(consumers[i].consumer);
2157
2158	return ret;
2159}
2160EXPORT_SYMBOL_GPL(regulator_bulk_get);
2161
2162/**
2163 * regulator_bulk_enable - enable multiple regulator consumers
2164 *
2165 * @num_consumers: Number of consumers
2166 * @consumers:     Consumer data; clients are stored here.
2167 * @return         0 on success, an errno on failure
2168 *
2169 * This convenience API allows consumers to enable multiple regulator
2170 * clients in a single API call.  If any consumers cannot be enabled
2171 * then any others that were enabled will be disabled again prior to
2172 * return.
2173 */
2174int regulator_bulk_enable(int num_consumers,
2175			  struct regulator_bulk_data *consumers)
2176{
2177	int i;
2178	int ret;
2179
2180	for (i = 0; i < num_consumers; i++) {
2181		ret = regulator_enable(consumers[i].consumer);
2182		if (ret != 0)
2183			goto err;
2184	}
2185
2186	return 0;
2187
2188err:
2189	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2190	for (--i; i >= 0; --i)
2191		regulator_disable(consumers[i].consumer);
2192
2193	return ret;
2194}
2195EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2196
2197/**
2198 * regulator_bulk_disable - disable multiple regulator consumers
2199 *
2200 * @num_consumers: Number of consumers
2201 * @consumers:     Consumer data; clients are stored here.
2202 * @return         0 on success, an errno on failure
2203 *
2204 * This convenience API allows consumers to disable multiple regulator
2205 * clients in a single API call.  If any consumers cannot be enabled
2206 * then any others that were disabled will be disabled again prior to
2207 * return.
2208 */
2209int regulator_bulk_disable(int num_consumers,
2210			   struct regulator_bulk_data *consumers)
2211{
2212	int i;
2213	int ret;
2214
2215	for (i = 0; i < num_consumers; i++) {
2216		ret = regulator_disable(consumers[i].consumer);
2217		if (ret != 0)
2218			goto err;
2219	}
2220
2221	return 0;
2222
2223err:
2224	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2225	for (--i; i >= 0; --i)
2226		regulator_enable(consumers[i].consumer);
2227
2228	return ret;
2229}
2230EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2231
2232/**
2233 * regulator_bulk_free - free multiple regulator consumers
2234 *
2235 * @num_consumers: Number of consumers
2236 * @consumers:     Consumer data; clients are stored here.
2237 *
2238 * This convenience API allows consumers to free multiple regulator
2239 * clients in a single API call.
2240 */
2241void regulator_bulk_free(int num_consumers,
2242			 struct regulator_bulk_data *consumers)
2243{
2244	int i;
2245
2246	for (i = 0; i < num_consumers; i++) {
2247		regulator_put(consumers[i].consumer);
2248		consumers[i].consumer = NULL;
2249	}
2250}
2251EXPORT_SYMBOL_GPL(regulator_bulk_free);
2252
2253/**
2254 * regulator_notifier_call_chain - call regulator event notifier
2255 * @rdev: regulator source
2256 * @event: notifier block
2257 * @data: callback-specific data.
2258 *
2259 * Called by regulator drivers to notify clients a regulator event has
2260 * occurred. We also notify regulator clients downstream.
2261 * Note lock must be held by caller.
2262 */
2263int regulator_notifier_call_chain(struct regulator_dev *rdev,
2264				  unsigned long event, void *data)
2265{
2266	_notifier_call_chain(rdev, event, data);
2267	return NOTIFY_DONE;
2268
2269}
2270EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2271
2272/**
2273 * regulator_mode_to_status - convert a regulator mode into a status
2274 *
2275 * @mode: Mode to convert
2276 *
2277 * Convert a regulator mode into a status.
2278 */
2279int regulator_mode_to_status(unsigned int mode)
2280{
2281	switch (mode) {
2282	case REGULATOR_MODE_FAST:
2283		return REGULATOR_STATUS_FAST;
2284	case REGULATOR_MODE_NORMAL:
2285		return REGULATOR_STATUS_NORMAL;
2286	case REGULATOR_MODE_IDLE:
2287		return REGULATOR_STATUS_IDLE;
2288	case REGULATOR_STATUS_STANDBY:
2289		return REGULATOR_STATUS_STANDBY;
2290	default:
2291		return 0;
2292	}
2293}
2294EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2295
2296/*
2297 * To avoid cluttering sysfs (and memory) with useless state, only
2298 * create attributes that can be meaningfully displayed.
2299 */
2300static int add_regulator_attributes(struct regulator_dev *rdev)
2301{
2302	struct device		*dev = &rdev->dev;
2303	struct regulator_ops	*ops = rdev->desc->ops;
2304	int			status = 0;
2305
2306	/* some attributes need specific methods to be displayed */
2307	if (ops->get_voltage || ops->get_voltage_sel) {
2308		status = device_create_file(dev, &dev_attr_microvolts);
2309		if (status < 0)
2310			return status;
2311	}
2312	if (ops->get_current_limit) {
2313		status = device_create_file(dev, &dev_attr_microamps);
2314		if (status < 0)
2315			return status;
2316	}
2317	if (ops->get_mode) {
2318		status = device_create_file(dev, &dev_attr_opmode);
2319		if (status < 0)
2320			return status;
2321	}
2322	if (ops->is_enabled) {
2323		status = device_create_file(dev, &dev_attr_state);
2324		if (status < 0)
2325			return status;
2326	}
2327	if (ops->get_status) {
2328		status = device_create_file(dev, &dev_attr_status);
2329		if (status < 0)
2330			return status;
2331	}
2332
2333	/* some attributes are type-specific */
2334	if (rdev->desc->type == REGULATOR_CURRENT) {
2335		status = device_create_file(dev, &dev_attr_requested_microamps);
2336		if (status < 0)
2337			return status;
2338	}
2339
2340	/* all the other attributes exist to support constraints;
2341	 * don't show them if there are no constraints, or if the
2342	 * relevant supporting methods are missing.
2343	 */
2344	if (!rdev->constraints)
2345		return status;
2346
2347	/* constraints need specific supporting methods */
2348	if (ops->set_voltage || ops->set_voltage_sel) {
2349		status = device_create_file(dev, &dev_attr_min_microvolts);
2350		if (status < 0)
2351			return status;
2352		status = device_create_file(dev, &dev_attr_max_microvolts);
2353		if (status < 0)
2354			return status;
2355	}
2356	if (ops->set_current_limit) {
2357		status = device_create_file(dev, &dev_attr_min_microamps);
2358		if (status < 0)
2359			return status;
2360		status = device_create_file(dev, &dev_attr_max_microamps);
2361		if (status < 0)
2362			return status;
2363	}
2364
2365	/* suspend mode constraints need multiple supporting methods */
2366	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2367		return status;
2368
2369	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2370	if (status < 0)
2371		return status;
2372	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2373	if (status < 0)
2374		return status;
2375	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2376	if (status < 0)
2377		return status;
2378
2379	if (ops->set_suspend_voltage) {
2380		status = device_create_file(dev,
2381				&dev_attr_suspend_standby_microvolts);
2382		if (status < 0)
2383			return status;
2384		status = device_create_file(dev,
2385				&dev_attr_suspend_mem_microvolts);
2386		if (status < 0)
2387			return status;
2388		status = device_create_file(dev,
2389				&dev_attr_suspend_disk_microvolts);
2390		if (status < 0)
2391			return status;
2392	}
2393
2394	if (ops->set_suspend_mode) {
2395		status = device_create_file(dev,
2396				&dev_attr_suspend_standby_mode);
2397		if (status < 0)
2398			return status;
2399		status = device_create_file(dev,
2400				&dev_attr_suspend_mem_mode);
2401		if (status < 0)
2402			return status;
2403		status = device_create_file(dev,
2404				&dev_attr_suspend_disk_mode);
2405		if (status < 0)
2406			return status;
2407	}
2408
2409	return status;
2410}
2411
2412static void rdev_init_debugfs(struct regulator_dev *rdev)
2413{
2414#ifdef CONFIG_DEBUG_FS
2415	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2416	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2417		rdev_warn(rdev, "Failed to create debugfs directory\n");
2418		rdev->debugfs = NULL;
2419		return;
2420	}
2421
2422	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2423			   &rdev->use_count);
2424	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2425			   &rdev->open_count);
2426#endif
2427}
2428
2429/**
2430 * regulator_register - register regulator
2431 * @regulator_desc: regulator to register
2432 * @dev: struct device for the regulator
2433 * @init_data: platform provided init data, passed through by driver
2434 * @driver_data: private regulator data
2435 *
2436 * Called by regulator drivers to register a regulator.
2437 * Returns 0 on success.
2438 */
2439struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2440	struct device *dev, const struct regulator_init_data *init_data,
2441	void *driver_data)
2442{
2443	static atomic_t regulator_no = ATOMIC_INIT(0);
2444	struct regulator_dev *rdev;
2445	int ret, i;
2446
2447	if (regulator_desc == NULL)
2448		return ERR_PTR(-EINVAL);
2449
2450	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2451		return ERR_PTR(-EINVAL);
2452
2453	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2454	    regulator_desc->type != REGULATOR_CURRENT)
2455		return ERR_PTR(-EINVAL);
2456
2457	if (!init_data)
2458		return ERR_PTR(-EINVAL);
2459
2460	/* Only one of each should be implemented */
2461	WARN_ON(regulator_desc->ops->get_voltage &&
2462		regulator_desc->ops->get_voltage_sel);
2463	WARN_ON(regulator_desc->ops->set_voltage &&
2464		regulator_desc->ops->set_voltage_sel);
2465
2466	/* If we're using selectors we must implement list_voltage. */
2467	if (regulator_desc->ops->get_voltage_sel &&
2468	    !regulator_desc->ops->list_voltage) {
2469		return ERR_PTR(-EINVAL);
2470	}
2471	if (regulator_desc->ops->set_voltage_sel &&
2472	    !regulator_desc->ops->list_voltage) {
2473		return ERR_PTR(-EINVAL);
2474	}
2475
2476	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2477	if (rdev == NULL)
2478		return ERR_PTR(-ENOMEM);
2479
2480	mutex_lock(&regulator_list_mutex);
2481
2482	mutex_init(&rdev->mutex);
2483	rdev->reg_data = driver_data;
2484	rdev->owner = regulator_desc->owner;
2485	rdev->desc = regulator_desc;
2486	INIT_LIST_HEAD(&rdev->consumer_list);
2487	INIT_LIST_HEAD(&rdev->supply_list);
2488	INIT_LIST_HEAD(&rdev->list);
2489	INIT_LIST_HEAD(&rdev->slist);
2490	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2491
2492	/* preform any regulator specific init */
2493	if (init_data->regulator_init) {
2494		ret = init_data->regulator_init(rdev->reg_data);
2495		if (ret < 0)
2496			goto clean;
2497	}
2498
2499	/* register with sysfs */
2500	rdev->dev.class = &regulator_class;
2501	rdev->dev.parent = dev;
2502	dev_set_name(&rdev->dev, "regulator.%d",
2503		     atomic_inc_return(&regulator_no) - 1);
2504	ret = device_register(&rdev->dev);
2505	if (ret != 0) {
2506		put_device(&rdev->dev);
2507		goto clean;
2508	}
2509
2510	dev_set_drvdata(&rdev->dev, rdev);
2511
2512	/* set regulator constraints */
2513	ret = set_machine_constraints(rdev, &init_data->constraints);
2514	if (ret < 0)
2515		goto scrub;
2516
2517	/* add attributes supported by this regulator */
2518	ret = add_regulator_attributes(rdev);
2519	if (ret < 0)
2520		goto scrub;
2521
2522	/* set supply regulator if it exists */
2523	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2524		dev_err(dev,
2525			"Supply regulator specified by both name and dev\n");
2526		ret = -EINVAL;
2527		goto scrub;
2528	}
2529
2530	if (init_data->supply_regulator) {
2531		struct regulator_dev *r;
2532		int found = 0;
2533
2534		list_for_each_entry(r, &regulator_list, list) {
2535			if (strcmp(rdev_get_name(r),
2536				   init_data->supply_regulator) == 0) {
2537				found = 1;
2538				break;
2539			}
2540		}
2541
2542		if (!found) {
2543			dev_err(dev, "Failed to find supply %s\n",
2544				init_data->supply_regulator);
2545			ret = -ENODEV;
2546			goto scrub;
2547		}
2548
2549		ret = set_supply(rdev, r);
2550		if (ret < 0)
2551			goto scrub;
2552	}
2553
2554	if (init_data->supply_regulator_dev) {
2555		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2556		ret = set_supply(rdev,
2557			dev_get_drvdata(init_data->supply_regulator_dev));
2558		if (ret < 0)
2559			goto scrub;
2560	}
2561
2562	/* add consumers devices */
2563	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2564		ret = set_consumer_device_supply(rdev,
2565			init_data->consumer_supplies[i].dev,
2566			init_data->consumer_supplies[i].dev_name,
2567			init_data->consumer_supplies[i].supply);
2568		if (ret < 0) {
2569			dev_err(dev, "Failed to set supply %s\n",
2570				init_data->consumer_supplies[i].supply);
2571			goto unset_supplies;
2572		}
2573	}
2574
2575	list_add(&rdev->list, &regulator_list);
2576
2577	rdev_init_debugfs(rdev);
2578out:
2579	mutex_unlock(&regulator_list_mutex);
2580	return rdev;
2581
2582unset_supplies:
2583	unset_regulator_supplies(rdev);
2584
2585scrub:
2586	device_unregister(&rdev->dev);
2587	/* device core frees rdev */
2588	rdev = ERR_PTR(ret);
2589	goto out;
2590
2591clean:
2592	kfree(rdev);
2593	rdev = ERR_PTR(ret);
2594	goto out;
2595}
2596EXPORT_SYMBOL_GPL(regulator_register);
2597
2598/**
2599 * regulator_unregister - unregister regulator
2600 * @rdev: regulator to unregister
2601 *
2602 * Called by regulator drivers to unregister a regulator.
2603 */
2604void regulator_unregister(struct regulator_dev *rdev)
2605{
2606	if (rdev == NULL)
2607		return;
2608
2609	mutex_lock(&regulator_list_mutex);
2610#ifdef CONFIG_DEBUG_FS
2611	debugfs_remove_recursive(rdev->debugfs);
2612#endif
2613	WARN_ON(rdev->open_count);
2614	unset_regulator_supplies(rdev);
2615	list_del(&rdev->list);
2616	if (rdev->supply)
2617		sysfs_remove_link(&rdev->dev.kobj, "supply");
2618	device_unregister(&rdev->dev);
2619	kfree(rdev->constraints);
2620	mutex_unlock(&regulator_list_mutex);
2621}
2622EXPORT_SYMBOL_GPL(regulator_unregister);
2623
2624/**
2625 * regulator_suspend_prepare - prepare regulators for system wide suspend
2626 * @state: system suspend state
2627 *
2628 * Configure each regulator with it's suspend operating parameters for state.
2629 * This will usually be called by machine suspend code prior to supending.
2630 */
2631int regulator_suspend_prepare(suspend_state_t state)
2632{
2633	struct regulator_dev *rdev;
2634	int ret = 0;
2635
2636	/* ON is handled by regulator active state */
2637	if (state == PM_SUSPEND_ON)
2638		return -EINVAL;
2639
2640	mutex_lock(&regulator_list_mutex);
2641	list_for_each_entry(rdev, &regulator_list, list) {
2642
2643		mutex_lock(&rdev->mutex);
2644		ret = suspend_prepare(rdev, state);
2645		mutex_unlock(&rdev->mutex);
2646
2647		if (ret < 0) {
2648			rdev_err(rdev, "failed to prepare\n");
2649			goto out;
2650		}
2651	}
2652out:
2653	mutex_unlock(&regulator_list_mutex);
2654	return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2657
2658/**
2659 * regulator_has_full_constraints - the system has fully specified constraints
2660 *
2661 * Calling this function will cause the regulator API to disable all
2662 * regulators which have a zero use count and don't have an always_on
2663 * constraint in a late_initcall.
2664 *
2665 * The intention is that this will become the default behaviour in a
2666 * future kernel release so users are encouraged to use this facility
2667 * now.
2668 */
2669void regulator_has_full_constraints(void)
2670{
2671	has_full_constraints = 1;
2672}
2673EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2674
2675/**
2676 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2677 *
2678 * Calling this function will cause the regulator API to provide a
2679 * dummy regulator to consumers if no physical regulator is found,
2680 * allowing most consumers to proceed as though a regulator were
2681 * configured.  This allows systems such as those with software
2682 * controllable regulators for the CPU core only to be brought up more
2683 * readily.
2684 */
2685void regulator_use_dummy_regulator(void)
2686{
2687	board_wants_dummy_regulator = true;
2688}
2689EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2690
2691/**
2692 * rdev_get_drvdata - get rdev regulator driver data
2693 * @rdev: regulator
2694 *
2695 * Get rdev regulator driver private data. This call can be used in the
2696 * regulator driver context.
2697 */
2698void *rdev_get_drvdata(struct regulator_dev *rdev)
2699{
2700	return rdev->reg_data;
2701}
2702EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2703
2704/**
2705 * regulator_get_drvdata - get regulator driver data
2706 * @regulator: regulator
2707 *
2708 * Get regulator driver private data. This call can be used in the consumer
2709 * driver context when non API regulator specific functions need to be called.
2710 */
2711void *regulator_get_drvdata(struct regulator *regulator)
2712{
2713	return regulator->rdev->reg_data;
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2716
2717/**
2718 * regulator_set_drvdata - set regulator driver data
2719 * @regulator: regulator
2720 * @data: data
2721 */
2722void regulator_set_drvdata(struct regulator *regulator, void *data)
2723{
2724	regulator->rdev->reg_data = data;
2725}
2726EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2727
2728/**
2729 * regulator_get_id - get regulator ID
2730 * @rdev: regulator
2731 */
2732int rdev_get_id(struct regulator_dev *rdev)
2733{
2734	return rdev->desc->id;
2735}
2736EXPORT_SYMBOL_GPL(rdev_get_id);
2737
2738struct device *rdev_get_dev(struct regulator_dev *rdev)
2739{
2740	return &rdev->dev;
2741}
2742EXPORT_SYMBOL_GPL(rdev_get_dev);
2743
2744void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2745{
2746	return reg_init_data->driver_data;
2747}
2748EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2749
2750static int __init regulator_init(void)
2751{
2752	int ret;
2753
2754	ret = class_register(&regulator_class);
2755
2756#ifdef CONFIG_DEBUG_FS
2757	debugfs_root = debugfs_create_dir("regulator", NULL);
2758	if (IS_ERR(debugfs_root) || !debugfs_root) {
2759		pr_warn("regulator: Failed to create debugfs directory\n");
2760		debugfs_root = NULL;
2761	}
2762#endif
2763
2764	regulator_dummy_init();
2765
2766	return ret;
2767}
2768
2769/* init early to allow our consumers to complete system booting */
2770core_initcall(regulator_init);
2771
2772static int __init regulator_init_complete(void)
2773{
2774	struct regulator_dev *rdev;
2775	struct regulator_ops *ops;
2776	struct regulation_constraints *c;
2777	int enabled, ret;
2778
2779	mutex_lock(&regulator_list_mutex);
2780
2781	/* If we have a full configuration then disable any regulators
2782	 * which are not in use or always_on.  This will become the
2783	 * default behaviour in the future.
2784	 */
2785	list_for_each_entry(rdev, &regulator_list, list) {
2786		ops = rdev->desc->ops;
2787		c = rdev->constraints;
2788
2789		if (!ops->disable || (c && c->always_on))
2790			continue;
2791
2792		mutex_lock(&rdev->mutex);
2793
2794		if (rdev->use_count)
2795			goto unlock;
2796
2797		/* If we can't read the status assume it's on. */
2798		if (ops->is_enabled)
2799			enabled = ops->is_enabled(rdev);
2800		else
2801			enabled = 1;
2802
2803		if (!enabled)
2804			goto unlock;
2805
2806		if (has_full_constraints) {
2807			/* We log since this may kill the system if it
2808			 * goes wrong. */
2809			rdev_info(rdev, "disabling\n");
2810			ret = ops->disable(rdev);
2811			if (ret != 0) {
2812				rdev_err(rdev, "couldn't disable: %d\n", ret);
2813			}
2814		} else {
2815			/* The intention is that in future we will
2816			 * assume that full constraints are provided
2817			 * so warn even if we aren't going to do
2818			 * anything here.
2819			 */
2820			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2821		}
2822
2823unlock:
2824		mutex_unlock(&rdev->mutex);
2825	}
2826
2827	mutex_unlock(&regulator_list_mutex);
2828
2829	return 0;
2830}
2831late_initcall(regulator_init_complete);
2832