core.c revision 247514344492a0cf602317d2089bab1301922624
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regulator/of_regulator.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31#include <linux/module.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/regulator.h>
35
36#include "dummy.h"
37
38#define rdev_crit(rdev, fmt, ...)					\
39	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_err(rdev, fmt, ...)					\
41	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_warn(rdev, fmt, ...)					\
43	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_info(rdev, fmt, ...)					\
45	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_dbg(rdev, fmt, ...)					\
47	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_list);
51static LIST_HEAD(regulator_map_list);
52static bool has_full_constraints;
53static bool board_wants_dummy_regulator;
54
55static struct dentry *debugfs_root;
56
57/*
58 * struct regulator_map
59 *
60 * Used to provide symbolic supply names to devices.
61 */
62struct regulator_map {
63	struct list_head list;
64	const char *dev_name;   /* The dev_name() for the consumer */
65	const char *supply;
66	struct regulator_dev *regulator;
67};
68
69/*
70 * struct regulator
71 *
72 * One for each consumer device.
73 */
74struct regulator {
75	struct device *dev;
76	struct list_head list;
77	int uA_load;
78	int min_uV;
79	int max_uV;
80	char *supply_name;
81	struct device_attribute dev_attr;
82	struct regulator_dev *rdev;
83	struct dentry *debugfs;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator_dev *rdev);
88static int _regulator_get_voltage(struct regulator_dev *rdev);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static void _notifier_call_chain(struct regulator_dev *rdev,
92				  unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94				     int min_uV, int max_uV);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96					  struct device *dev,
97					  const char *supply_name);
98
99static const char *rdev_get_name(struct regulator_dev *rdev)
100{
101	if (rdev->constraints && rdev->constraints->name)
102		return rdev->constraints->name;
103	else if (rdev->desc->name)
104		return rdev->desc->name;
105	else
106		return "";
107}
108
109/* gets the regulator for a given consumer device */
110static struct regulator *get_device_regulator(struct device *dev)
111{
112	struct regulator *regulator = NULL;
113	struct regulator_dev *rdev;
114
115	mutex_lock(&regulator_list_mutex);
116	list_for_each_entry(rdev, &regulator_list, list) {
117		mutex_lock(&rdev->mutex);
118		list_for_each_entry(regulator, &rdev->consumer_list, list) {
119			if (regulator->dev == dev) {
120				mutex_unlock(&rdev->mutex);
121				mutex_unlock(&regulator_list_mutex);
122				return regulator;
123			}
124		}
125		mutex_unlock(&rdev->mutex);
126	}
127	mutex_unlock(&regulator_list_mutex);
128	return NULL;
129}
130
131/**
132 * of_get_regulator - get a regulator device node based on supply name
133 * @dev: Device pointer for the consumer (of regulator) device
134 * @supply: regulator supply name
135 *
136 * Extract the regulator device node corresponding to the supply name.
137 * retruns the device node corresponding to the regulator if found, else
138 * returns NULL.
139 */
140static struct device_node *of_get_regulator(struct device *dev, const char *supply)
141{
142	struct device_node *regnode = NULL;
143	char prop_name[32]; /* 32 is max size of property name */
144
145	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
146
147	snprintf(prop_name, 32, "%s-supply", supply);
148	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
149
150	if (!regnode) {
151		dev_warn(dev, "%s property in node %s references invalid phandle",
152				prop_name, dev->of_node->full_name);
153		return NULL;
154	}
155	return regnode;
156}
157
158/* Platform voltage constraint check */
159static int regulator_check_voltage(struct regulator_dev *rdev,
160				   int *min_uV, int *max_uV)
161{
162	BUG_ON(*min_uV > *max_uV);
163
164	if (!rdev->constraints) {
165		rdev_err(rdev, "no constraints\n");
166		return -ENODEV;
167	}
168	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169		rdev_err(rdev, "operation not allowed\n");
170		return -EPERM;
171	}
172
173	if (*max_uV > rdev->constraints->max_uV)
174		*max_uV = rdev->constraints->max_uV;
175	if (*min_uV < rdev->constraints->min_uV)
176		*min_uV = rdev->constraints->min_uV;
177
178	if (*min_uV > *max_uV) {
179		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180			 *min_uV, *max_uV);
181		return -EINVAL;
182	}
183
184	return 0;
185}
186
187/* Make sure we select a voltage that suits the needs of all
188 * regulator consumers
189 */
190static int regulator_check_consumers(struct regulator_dev *rdev,
191				     int *min_uV, int *max_uV)
192{
193	struct regulator *regulator;
194
195	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196		/*
197		 * Assume consumers that didn't say anything are OK
198		 * with anything in the constraint range.
199		 */
200		if (!regulator->min_uV && !regulator->max_uV)
201			continue;
202
203		if (*max_uV > regulator->max_uV)
204			*max_uV = regulator->max_uV;
205		if (*min_uV < regulator->min_uV)
206			*min_uV = regulator->min_uV;
207	}
208
209	if (*min_uV > *max_uV)
210		return -EINVAL;
211
212	return 0;
213}
214
215/* current constraint check */
216static int regulator_check_current_limit(struct regulator_dev *rdev,
217					int *min_uA, int *max_uA)
218{
219	BUG_ON(*min_uA > *max_uA);
220
221	if (!rdev->constraints) {
222		rdev_err(rdev, "no constraints\n");
223		return -ENODEV;
224	}
225	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226		rdev_err(rdev, "operation not allowed\n");
227		return -EPERM;
228	}
229
230	if (*max_uA > rdev->constraints->max_uA)
231		*max_uA = rdev->constraints->max_uA;
232	if (*min_uA < rdev->constraints->min_uA)
233		*min_uA = rdev->constraints->min_uA;
234
235	if (*min_uA > *max_uA) {
236		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237			 *min_uA, *max_uA);
238		return -EINVAL;
239	}
240
241	return 0;
242}
243
244/* operating mode constraint check */
245static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246{
247	switch (*mode) {
248	case REGULATOR_MODE_FAST:
249	case REGULATOR_MODE_NORMAL:
250	case REGULATOR_MODE_IDLE:
251	case REGULATOR_MODE_STANDBY:
252		break;
253	default:
254		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255		return -EINVAL;
256	}
257
258	if (!rdev->constraints) {
259		rdev_err(rdev, "no constraints\n");
260		return -ENODEV;
261	}
262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263		rdev_err(rdev, "operation not allowed\n");
264		return -EPERM;
265	}
266
267	/* The modes are bitmasks, the most power hungry modes having
268	 * the lowest values. If the requested mode isn't supported
269	 * try higher modes. */
270	while (*mode) {
271		if (rdev->constraints->valid_modes_mask & *mode)
272			return 0;
273		*mode /= 2;
274	}
275
276	return -EINVAL;
277}
278
279/* dynamic regulator mode switching constraint check */
280static int regulator_check_drms(struct regulator_dev *rdev)
281{
282	if (!rdev->constraints) {
283		rdev_err(rdev, "no constraints\n");
284		return -ENODEV;
285	}
286	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287		rdev_err(rdev, "operation not allowed\n");
288		return -EPERM;
289	}
290	return 0;
291}
292
293static ssize_t device_requested_uA_show(struct device *dev,
294			     struct device_attribute *attr, char *buf)
295{
296	struct regulator *regulator;
297
298	regulator = get_device_regulator(dev);
299	if (regulator == NULL)
300		return 0;
301
302	return sprintf(buf, "%d\n", regulator->uA_load);
303}
304
305static ssize_t regulator_uV_show(struct device *dev,
306				struct device_attribute *attr, char *buf)
307{
308	struct regulator_dev *rdev = dev_get_drvdata(dev);
309	ssize_t ret;
310
311	mutex_lock(&rdev->mutex);
312	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313	mutex_unlock(&rdev->mutex);
314
315	return ret;
316}
317static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318
319static ssize_t regulator_uA_show(struct device *dev,
320				struct device_attribute *attr, char *buf)
321{
322	struct regulator_dev *rdev = dev_get_drvdata(dev);
323
324	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325}
326static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327
328static ssize_t regulator_name_show(struct device *dev,
329			     struct device_attribute *attr, char *buf)
330{
331	struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334}
335
336static ssize_t regulator_print_opmode(char *buf, int mode)
337{
338	switch (mode) {
339	case REGULATOR_MODE_FAST:
340		return sprintf(buf, "fast\n");
341	case REGULATOR_MODE_NORMAL:
342		return sprintf(buf, "normal\n");
343	case REGULATOR_MODE_IDLE:
344		return sprintf(buf, "idle\n");
345	case REGULATOR_MODE_STANDBY:
346		return sprintf(buf, "standby\n");
347	}
348	return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_opmode_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357}
358static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360static ssize_t regulator_print_state(char *buf, int state)
361{
362	if (state > 0)
363		return sprintf(buf, "enabled\n");
364	else if (state == 0)
365		return sprintf(buf, "disabled\n");
366	else
367		return sprintf(buf, "unknown\n");
368}
369
370static ssize_t regulator_state_show(struct device *dev,
371				   struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374	ssize_t ret;
375
376	mutex_lock(&rdev->mutex);
377	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378	mutex_unlock(&rdev->mutex);
379
380	return ret;
381}
382static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384static ssize_t regulator_status_show(struct device *dev,
385				   struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	int status;
389	char *label;
390
391	status = rdev->desc->ops->get_status(rdev);
392	if (status < 0)
393		return status;
394
395	switch (status) {
396	case REGULATOR_STATUS_OFF:
397		label = "off";
398		break;
399	case REGULATOR_STATUS_ON:
400		label = "on";
401		break;
402	case REGULATOR_STATUS_ERROR:
403		label = "error";
404		break;
405	case REGULATOR_STATUS_FAST:
406		label = "fast";
407		break;
408	case REGULATOR_STATUS_NORMAL:
409		label = "normal";
410		break;
411	case REGULATOR_STATUS_IDLE:
412		label = "idle";
413		break;
414	case REGULATOR_STATUS_STANDBY:
415		label = "standby";
416		break;
417	default:
418		return -ERANGE;
419	}
420
421	return sprintf(buf, "%s\n", label);
422}
423static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424
425static ssize_t regulator_min_uA_show(struct device *dev,
426				    struct device_attribute *attr, char *buf)
427{
428	struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430	if (!rdev->constraints)
431		return sprintf(buf, "constraint not defined\n");
432
433	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434}
435static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436
437static ssize_t regulator_max_uA_show(struct device *dev,
438				    struct device_attribute *attr, char *buf)
439{
440	struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442	if (!rdev->constraints)
443		return sprintf(buf, "constraint not defined\n");
444
445	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446}
447static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448
449static ssize_t regulator_min_uV_show(struct device *dev,
450				    struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454	if (!rdev->constraints)
455		return sprintf(buf, "constraint not defined\n");
456
457	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458}
459static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460
461static ssize_t regulator_max_uV_show(struct device *dev,
462				    struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	if (!rdev->constraints)
467		return sprintf(buf, "constraint not defined\n");
468
469	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470}
471static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472
473static ssize_t regulator_total_uA_show(struct device *dev,
474				      struct device_attribute *attr, char *buf)
475{
476	struct regulator_dev *rdev = dev_get_drvdata(dev);
477	struct regulator *regulator;
478	int uA = 0;
479
480	mutex_lock(&rdev->mutex);
481	list_for_each_entry(regulator, &rdev->consumer_list, list)
482		uA += regulator->uA_load;
483	mutex_unlock(&rdev->mutex);
484	return sprintf(buf, "%d\n", uA);
485}
486static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487
488static ssize_t regulator_num_users_show(struct device *dev,
489				      struct device_attribute *attr, char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492	return sprintf(buf, "%d\n", rdev->use_count);
493}
494
495static ssize_t regulator_type_show(struct device *dev,
496				  struct device_attribute *attr, char *buf)
497{
498	struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500	switch (rdev->desc->type) {
501	case REGULATOR_VOLTAGE:
502		return sprintf(buf, "voltage\n");
503	case REGULATOR_CURRENT:
504		return sprintf(buf, "current\n");
505	}
506	return sprintf(buf, "unknown\n");
507}
508
509static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
515}
516static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517		regulator_suspend_mem_uV_show, NULL);
518
519static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
525}
526static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527		regulator_suspend_disk_uV_show, NULL);
528
529static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
535}
536static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537		regulator_suspend_standby_uV_show, NULL);
538
539static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540				struct device_attribute *attr, char *buf)
541{
542	struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544	return regulator_print_opmode(buf,
545		rdev->constraints->state_mem.mode);
546}
547static DEVICE_ATTR(suspend_mem_mode, 0444,
548		regulator_suspend_mem_mode_show, NULL);
549
550static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551				struct device_attribute *attr, char *buf)
552{
553	struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555	return regulator_print_opmode(buf,
556		rdev->constraints->state_disk.mode);
557}
558static DEVICE_ATTR(suspend_disk_mode, 0444,
559		regulator_suspend_disk_mode_show, NULL);
560
561static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562				struct device_attribute *attr, char *buf)
563{
564	struct regulator_dev *rdev = dev_get_drvdata(dev);
565
566	return regulator_print_opmode(buf,
567		rdev->constraints->state_standby.mode);
568}
569static DEVICE_ATTR(suspend_standby_mode, 0444,
570		regulator_suspend_standby_mode_show, NULL);
571
572static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573				   struct device_attribute *attr, char *buf)
574{
575	struct regulator_dev *rdev = dev_get_drvdata(dev);
576
577	return regulator_print_state(buf,
578			rdev->constraints->state_mem.enabled);
579}
580static DEVICE_ATTR(suspend_mem_state, 0444,
581		regulator_suspend_mem_state_show, NULL);
582
583static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584				   struct device_attribute *attr, char *buf)
585{
586	struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588	return regulator_print_state(buf,
589			rdev->constraints->state_disk.enabled);
590}
591static DEVICE_ATTR(suspend_disk_state, 0444,
592		regulator_suspend_disk_state_show, NULL);
593
594static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595				   struct device_attribute *attr, char *buf)
596{
597	struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599	return regulator_print_state(buf,
600			rdev->constraints->state_standby.enabled);
601}
602static DEVICE_ATTR(suspend_standby_state, 0444,
603		regulator_suspend_standby_state_show, NULL);
604
605
606/*
607 * These are the only attributes are present for all regulators.
608 * Other attributes are a function of regulator functionality.
609 */
610static struct device_attribute regulator_dev_attrs[] = {
611	__ATTR(name, 0444, regulator_name_show, NULL),
612	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
613	__ATTR(type, 0444, regulator_type_show, NULL),
614	__ATTR_NULL,
615};
616
617static void regulator_dev_release(struct device *dev)
618{
619	struct regulator_dev *rdev = dev_get_drvdata(dev);
620	kfree(rdev);
621}
622
623static struct class regulator_class = {
624	.name = "regulator",
625	.dev_release = regulator_dev_release,
626	.dev_attrs = regulator_dev_attrs,
627};
628
629/* Calculate the new optimum regulator operating mode based on the new total
630 * consumer load. All locks held by caller */
631static void drms_uA_update(struct regulator_dev *rdev)
632{
633	struct regulator *sibling;
634	int current_uA = 0, output_uV, input_uV, err;
635	unsigned int mode;
636
637	err = regulator_check_drms(rdev);
638	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639	    (!rdev->desc->ops->get_voltage &&
640	     !rdev->desc->ops->get_voltage_sel) ||
641	    !rdev->desc->ops->set_mode)
642		return;
643
644	/* get output voltage */
645	output_uV = _regulator_get_voltage(rdev);
646	if (output_uV <= 0)
647		return;
648
649	/* get input voltage */
650	input_uV = 0;
651	if (rdev->supply)
652		input_uV = _regulator_get_voltage(rdev);
653	if (input_uV <= 0)
654		input_uV = rdev->constraints->input_uV;
655	if (input_uV <= 0)
656		return;
657
658	/* calc total requested load */
659	list_for_each_entry(sibling, &rdev->consumer_list, list)
660		current_uA += sibling->uA_load;
661
662	/* now get the optimum mode for our new total regulator load */
663	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664						  output_uV, current_uA);
665
666	/* check the new mode is allowed */
667	err = regulator_mode_constrain(rdev, &mode);
668	if (err == 0)
669		rdev->desc->ops->set_mode(rdev, mode);
670}
671
672static int suspend_set_state(struct regulator_dev *rdev,
673	struct regulator_state *rstate)
674{
675	int ret = 0;
676	bool can_set_state;
677
678	can_set_state = rdev->desc->ops->set_suspend_enable &&
679		rdev->desc->ops->set_suspend_disable;
680
681	/* If we have no suspend mode configration don't set anything;
682	 * only warn if the driver actually makes the suspend mode
683	 * configurable.
684	 */
685	if (!rstate->enabled && !rstate->disabled) {
686		if (can_set_state)
687			rdev_warn(rdev, "No configuration\n");
688		return 0;
689	}
690
691	if (rstate->enabled && rstate->disabled) {
692		rdev_err(rdev, "invalid configuration\n");
693		return -EINVAL;
694	}
695
696	if (!can_set_state) {
697		rdev_err(rdev, "no way to set suspend state\n");
698		return -EINVAL;
699	}
700
701	if (rstate->enabled)
702		ret = rdev->desc->ops->set_suspend_enable(rdev);
703	else
704		ret = rdev->desc->ops->set_suspend_disable(rdev);
705	if (ret < 0) {
706		rdev_err(rdev, "failed to enabled/disable\n");
707		return ret;
708	}
709
710	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712		if (ret < 0) {
713			rdev_err(rdev, "failed to set voltage\n");
714			return ret;
715		}
716	}
717
718	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set mode\n");
722			return ret;
723		}
724	}
725	return ret;
726}
727
728/* locks held by caller */
729static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
730{
731	if (!rdev->constraints)
732		return -EINVAL;
733
734	switch (state) {
735	case PM_SUSPEND_STANDBY:
736		return suspend_set_state(rdev,
737			&rdev->constraints->state_standby);
738	case PM_SUSPEND_MEM:
739		return suspend_set_state(rdev,
740			&rdev->constraints->state_mem);
741	case PM_SUSPEND_MAX:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_disk);
744	default:
745		return -EINVAL;
746	}
747}
748
749static void print_constraints(struct regulator_dev *rdev)
750{
751	struct regulation_constraints *constraints = rdev->constraints;
752	char buf[80] = "";
753	int count = 0;
754	int ret;
755
756	if (constraints->min_uV && constraints->max_uV) {
757		if (constraints->min_uV == constraints->max_uV)
758			count += sprintf(buf + count, "%d mV ",
759					 constraints->min_uV / 1000);
760		else
761			count += sprintf(buf + count, "%d <--> %d mV ",
762					 constraints->min_uV / 1000,
763					 constraints->max_uV / 1000);
764	}
765
766	if (!constraints->min_uV ||
767	    constraints->min_uV != constraints->max_uV) {
768		ret = _regulator_get_voltage(rdev);
769		if (ret > 0)
770			count += sprintf(buf + count, "at %d mV ", ret / 1000);
771	}
772
773	if (constraints->uV_offset)
774		count += sprintf(buf, "%dmV offset ",
775				 constraints->uV_offset / 1000);
776
777	if (constraints->min_uA && constraints->max_uA) {
778		if (constraints->min_uA == constraints->max_uA)
779			count += sprintf(buf + count, "%d mA ",
780					 constraints->min_uA / 1000);
781		else
782			count += sprintf(buf + count, "%d <--> %d mA ",
783					 constraints->min_uA / 1000,
784					 constraints->max_uA / 1000);
785	}
786
787	if (!constraints->min_uA ||
788	    constraints->min_uA != constraints->max_uA) {
789		ret = _regulator_get_current_limit(rdev);
790		if (ret > 0)
791			count += sprintf(buf + count, "at %d mA ", ret / 1000);
792	}
793
794	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795		count += sprintf(buf + count, "fast ");
796	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797		count += sprintf(buf + count, "normal ");
798	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799		count += sprintf(buf + count, "idle ");
800	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801		count += sprintf(buf + count, "standby");
802
803	rdev_info(rdev, "%s\n", buf);
804
805	if ((constraints->min_uV != constraints->max_uV) &&
806	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807		rdev_warn(rdev,
808			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809}
810
811static int machine_constraints_voltage(struct regulator_dev *rdev,
812	struct regulation_constraints *constraints)
813{
814	struct regulator_ops *ops = rdev->desc->ops;
815	int ret;
816
817	/* do we need to apply the constraint voltage */
818	if (rdev->constraints->apply_uV &&
819	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
820		ret = _regulator_do_set_voltage(rdev,
821						rdev->constraints->min_uV,
822						rdev->constraints->max_uV);
823		if (ret < 0) {
824			rdev_err(rdev, "failed to apply %duV constraint\n",
825				 rdev->constraints->min_uV);
826			return ret;
827		}
828	}
829
830	/* constrain machine-level voltage specs to fit
831	 * the actual range supported by this regulator.
832	 */
833	if (ops->list_voltage && rdev->desc->n_voltages) {
834		int	count = rdev->desc->n_voltages;
835		int	i;
836		int	min_uV = INT_MAX;
837		int	max_uV = INT_MIN;
838		int	cmin = constraints->min_uV;
839		int	cmax = constraints->max_uV;
840
841		/* it's safe to autoconfigure fixed-voltage supplies
842		   and the constraints are used by list_voltage. */
843		if (count == 1 && !cmin) {
844			cmin = 1;
845			cmax = INT_MAX;
846			constraints->min_uV = cmin;
847			constraints->max_uV = cmax;
848		}
849
850		/* voltage constraints are optional */
851		if ((cmin == 0) && (cmax == 0))
852			return 0;
853
854		/* else require explicit machine-level constraints */
855		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856			rdev_err(rdev, "invalid voltage constraints\n");
857			return -EINVAL;
858		}
859
860		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861		for (i = 0; i < count; i++) {
862			int	value;
863
864			value = ops->list_voltage(rdev, i);
865			if (value <= 0)
866				continue;
867
868			/* maybe adjust [min_uV..max_uV] */
869			if (value >= cmin && value < min_uV)
870				min_uV = value;
871			if (value <= cmax && value > max_uV)
872				max_uV = value;
873		}
874
875		/* final: [min_uV..max_uV] valid iff constraints valid */
876		if (max_uV < min_uV) {
877			rdev_err(rdev, "unsupportable voltage constraints\n");
878			return -EINVAL;
879		}
880
881		/* use regulator's subset of machine constraints */
882		if (constraints->min_uV < min_uV) {
883			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884				 constraints->min_uV, min_uV);
885			constraints->min_uV = min_uV;
886		}
887		if (constraints->max_uV > max_uV) {
888			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889				 constraints->max_uV, max_uV);
890			constraints->max_uV = max_uV;
891		}
892	}
893
894	return 0;
895}
896
897/**
898 * set_machine_constraints - sets regulator constraints
899 * @rdev: regulator source
900 * @constraints: constraints to apply
901 *
902 * Allows platform initialisation code to define and constrain
903 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
904 * Constraints *must* be set by platform code in order for some
905 * regulator operations to proceed i.e. set_voltage, set_current_limit,
906 * set_mode.
907 */
908static int set_machine_constraints(struct regulator_dev *rdev,
909	const struct regulation_constraints *constraints)
910{
911	int ret = 0;
912	struct regulator_ops *ops = rdev->desc->ops;
913
914	if (constraints)
915		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916					    GFP_KERNEL);
917	else
918		rdev->constraints = kzalloc(sizeof(*constraints),
919					    GFP_KERNEL);
920	if (!rdev->constraints)
921		return -ENOMEM;
922
923	ret = machine_constraints_voltage(rdev, rdev->constraints);
924	if (ret != 0)
925		goto out;
926
927	/* do we need to setup our suspend state */
928	if (rdev->constraints->initial_state) {
929		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930		if (ret < 0) {
931			rdev_err(rdev, "failed to set suspend state\n");
932			goto out;
933		}
934	}
935
936	if (rdev->constraints->initial_mode) {
937		if (!ops->set_mode) {
938			rdev_err(rdev, "no set_mode operation\n");
939			ret = -EINVAL;
940			goto out;
941		}
942
943		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944		if (ret < 0) {
945			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946			goto out;
947		}
948	}
949
950	/* If the constraints say the regulator should be on at this point
951	 * and we have control then make sure it is enabled.
952	 */
953	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954	    ops->enable) {
955		ret = ops->enable(rdev);
956		if (ret < 0) {
957			rdev_err(rdev, "failed to enable\n");
958			goto out;
959		}
960	}
961
962	print_constraints(rdev);
963	return 0;
964out:
965	kfree(rdev->constraints);
966	rdev->constraints = NULL;
967	return ret;
968}
969
970/**
971 * set_supply - set regulator supply regulator
972 * @rdev: regulator name
973 * @supply_rdev: supply regulator name
974 *
975 * Called by platform initialisation code to set the supply regulator for this
976 * regulator. This ensures that a regulators supply will also be enabled by the
977 * core if it's child is enabled.
978 */
979static int set_supply(struct regulator_dev *rdev,
980		      struct regulator_dev *supply_rdev)
981{
982	int err;
983
984	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
985
986	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987	if (rdev->supply == NULL) {
988		err = -ENOMEM;
989		return err;
990	}
991
992	return 0;
993}
994
995/**
996 * set_consumer_device_supply - Bind a regulator to a symbolic supply
997 * @rdev:         regulator source
998 * @consumer_dev: device the supply applies to
999 * @consumer_dev_name: dev_name() string for device supply applies to
1000 * @supply:       symbolic name for supply
1001 *
1002 * Allows platform initialisation code to map physical regulator
1003 * sources to symbolic names for supplies for use by devices.  Devices
1004 * should use these symbolic names to request regulators, avoiding the
1005 * need to provide board-specific regulator names as platform data.
1006 *
1007 * Only one of consumer_dev and consumer_dev_name may be specified.
1008 */
1009static int set_consumer_device_supply(struct regulator_dev *rdev,
1010	struct device *consumer_dev, const char *consumer_dev_name,
1011	const char *supply)
1012{
1013	struct regulator_map *node;
1014	int has_dev;
1015
1016	if (consumer_dev && consumer_dev_name)
1017		return -EINVAL;
1018
1019	if (!consumer_dev_name && consumer_dev)
1020		consumer_dev_name = dev_name(consumer_dev);
1021
1022	if (supply == NULL)
1023		return -EINVAL;
1024
1025	if (consumer_dev_name != NULL)
1026		has_dev = 1;
1027	else
1028		has_dev = 0;
1029
1030	list_for_each_entry(node, &regulator_map_list, list) {
1031		if (node->dev_name && consumer_dev_name) {
1032			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1033				continue;
1034		} else if (node->dev_name || consumer_dev_name) {
1035			continue;
1036		}
1037
1038		if (strcmp(node->supply, supply) != 0)
1039			continue;
1040
1041		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1042			dev_name(&node->regulator->dev),
1043			node->regulator->desc->name,
1044			supply,
1045			dev_name(&rdev->dev), rdev_get_name(rdev));
1046		return -EBUSY;
1047	}
1048
1049	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050	if (node == NULL)
1051		return -ENOMEM;
1052
1053	node->regulator = rdev;
1054	node->supply = supply;
1055
1056	if (has_dev) {
1057		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058		if (node->dev_name == NULL) {
1059			kfree(node);
1060			return -ENOMEM;
1061		}
1062	}
1063
1064	list_add(&node->list, &regulator_map_list);
1065	return 0;
1066}
1067
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070	struct regulator_map *node, *n;
1071
1072	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073		if (rdev == node->regulator) {
1074			list_del(&node->list);
1075			kfree(node->dev_name);
1076			kfree(node);
1077		}
1078	}
1079}
1080
1081#define REG_STR_SIZE	64
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084					  struct device *dev,
1085					  const char *supply_name)
1086{
1087	struct regulator *regulator;
1088	char buf[REG_STR_SIZE];
1089	int err, size;
1090
1091	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092	if (regulator == NULL)
1093		return NULL;
1094
1095	mutex_lock(&rdev->mutex);
1096	regulator->rdev = rdev;
1097	list_add(&regulator->list, &rdev->consumer_list);
1098
1099	if (dev) {
1100		/* create a 'requested_microamps_name' sysfs entry */
1101		size = scnprintf(buf, REG_STR_SIZE,
1102				 "microamps_requested_%s-%s",
1103				 dev_name(dev), supply_name);
1104		if (size >= REG_STR_SIZE)
1105			goto overflow_err;
1106
1107		regulator->dev = dev;
1108		sysfs_attr_init(&regulator->dev_attr.attr);
1109		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110		if (regulator->dev_attr.attr.name == NULL)
1111			goto attr_name_err;
1112
1113		regulator->dev_attr.attr.mode = 0444;
1114		regulator->dev_attr.show = device_requested_uA_show;
1115		err = device_create_file(dev, &regulator->dev_attr);
1116		if (err < 0) {
1117			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118			goto attr_name_err;
1119		}
1120
1121		/* also add a link to the device sysfs entry */
1122		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123				 dev->kobj.name, supply_name);
1124		if (size >= REG_STR_SIZE)
1125			goto attr_err;
1126
1127		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto attr_err;
1130
1131		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132					buf);
1133		if (err) {
1134			rdev_warn(rdev, "could not add device link %s err %d\n",
1135				  dev->kobj.name, err);
1136			goto link_name_err;
1137		}
1138	} else {
1139		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto attr_err;
1142	}
1143
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (!regulator->debugfs) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156
1157	mutex_unlock(&rdev->mutex);
1158	return regulator;
1159link_name_err:
1160	kfree(regulator->supply_name);
1161attr_err:
1162	device_remove_file(regulator->dev, &regulator->dev_attr);
1163attr_name_err:
1164	kfree(regulator->dev_attr.attr.name);
1165overflow_err:
1166	list_del(&regulator->list);
1167	kfree(regulator);
1168	mutex_unlock(&rdev->mutex);
1169	return NULL;
1170}
1171
1172static int _regulator_get_enable_time(struct regulator_dev *rdev)
1173{
1174	if (!rdev->desc->ops->enable_time)
1175		return 0;
1176	return rdev->desc->ops->enable_time(rdev);
1177}
1178
1179static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1180							 const char *supply)
1181{
1182	struct regulator_dev *r;
1183	struct device_node *node;
1184
1185	/* first do a dt based lookup */
1186	if (dev && dev->of_node) {
1187		node = of_get_regulator(dev, supply);
1188		if (node)
1189			list_for_each_entry(r, &regulator_list, list)
1190				if (r->dev.parent &&
1191					node == r->dev.of_node)
1192					return r;
1193	}
1194
1195	/* if not found, try doing it non-dt way */
1196	list_for_each_entry(r, &regulator_list, list)
1197		if (strcmp(rdev_get_name(r), supply) == 0)
1198			return r;
1199
1200	return NULL;
1201}
1202
1203/* Internal regulator request function */
1204static struct regulator *_regulator_get(struct device *dev, const char *id,
1205					int exclusive)
1206{
1207	struct regulator_dev *rdev;
1208	struct regulator_map *map;
1209	struct regulator *regulator = ERR_PTR(-ENODEV);
1210	const char *devname = NULL;
1211	int ret;
1212
1213	if (id == NULL) {
1214		pr_err("get() with no identifier\n");
1215		return regulator;
1216	}
1217
1218	if (dev)
1219		devname = dev_name(dev);
1220
1221	mutex_lock(&regulator_list_mutex);
1222
1223	rdev = regulator_dev_lookup(dev, id);
1224	if (rdev)
1225		goto found;
1226
1227	list_for_each_entry(map, &regulator_map_list, list) {
1228		/* If the mapping has a device set up it must match */
1229		if (map->dev_name &&
1230		    (!devname || strcmp(map->dev_name, devname)))
1231			continue;
1232
1233		if (strcmp(map->supply, id) == 0) {
1234			rdev = map->regulator;
1235			goto found;
1236		}
1237	}
1238
1239	if (board_wants_dummy_regulator) {
1240		rdev = dummy_regulator_rdev;
1241		goto found;
1242	}
1243
1244#ifdef CONFIG_REGULATOR_DUMMY
1245	if (!devname)
1246		devname = "deviceless";
1247
1248	/* If the board didn't flag that it was fully constrained then
1249	 * substitute in a dummy regulator so consumers can continue.
1250	 */
1251	if (!has_full_constraints) {
1252		pr_warn("%s supply %s not found, using dummy regulator\n",
1253			devname, id);
1254		rdev = dummy_regulator_rdev;
1255		goto found;
1256	}
1257#endif
1258
1259	mutex_unlock(&regulator_list_mutex);
1260	return regulator;
1261
1262found:
1263	if (rdev->exclusive) {
1264		regulator = ERR_PTR(-EPERM);
1265		goto out;
1266	}
1267
1268	if (exclusive && rdev->open_count) {
1269		regulator = ERR_PTR(-EBUSY);
1270		goto out;
1271	}
1272
1273	if (!try_module_get(rdev->owner))
1274		goto out;
1275
1276	regulator = create_regulator(rdev, dev, id);
1277	if (regulator == NULL) {
1278		regulator = ERR_PTR(-ENOMEM);
1279		module_put(rdev->owner);
1280		goto out;
1281	}
1282
1283	rdev->open_count++;
1284	if (exclusive) {
1285		rdev->exclusive = 1;
1286
1287		ret = _regulator_is_enabled(rdev);
1288		if (ret > 0)
1289			rdev->use_count = 1;
1290		else
1291			rdev->use_count = 0;
1292	}
1293
1294out:
1295	mutex_unlock(&regulator_list_mutex);
1296
1297	return regulator;
1298}
1299
1300/**
1301 * regulator_get - lookup and obtain a reference to a regulator.
1302 * @dev: device for regulator "consumer"
1303 * @id: Supply name or regulator ID.
1304 *
1305 * Returns a struct regulator corresponding to the regulator producer,
1306 * or IS_ERR() condition containing errno.
1307 *
1308 * Use of supply names configured via regulator_set_device_supply() is
1309 * strongly encouraged.  It is recommended that the supply name used
1310 * should match the name used for the supply and/or the relevant
1311 * device pins in the datasheet.
1312 */
1313struct regulator *regulator_get(struct device *dev, const char *id)
1314{
1315	return _regulator_get(dev, id, 0);
1316}
1317EXPORT_SYMBOL_GPL(regulator_get);
1318
1319/**
1320 * regulator_get_exclusive - obtain exclusive access to a regulator.
1321 * @dev: device for regulator "consumer"
1322 * @id: Supply name or regulator ID.
1323 *
1324 * Returns a struct regulator corresponding to the regulator producer,
1325 * or IS_ERR() condition containing errno.  Other consumers will be
1326 * unable to obtain this reference is held and the use count for the
1327 * regulator will be initialised to reflect the current state of the
1328 * regulator.
1329 *
1330 * This is intended for use by consumers which cannot tolerate shared
1331 * use of the regulator such as those which need to force the
1332 * regulator off for correct operation of the hardware they are
1333 * controlling.
1334 *
1335 * Use of supply names configured via regulator_set_device_supply() is
1336 * strongly encouraged.  It is recommended that the supply name used
1337 * should match the name used for the supply and/or the relevant
1338 * device pins in the datasheet.
1339 */
1340struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1341{
1342	return _regulator_get(dev, id, 1);
1343}
1344EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1345
1346/**
1347 * regulator_put - "free" the regulator source
1348 * @regulator: regulator source
1349 *
1350 * Note: drivers must ensure that all regulator_enable calls made on this
1351 * regulator source are balanced by regulator_disable calls prior to calling
1352 * this function.
1353 */
1354void regulator_put(struct regulator *regulator)
1355{
1356	struct regulator_dev *rdev;
1357
1358	if (regulator == NULL || IS_ERR(regulator))
1359		return;
1360
1361	mutex_lock(&regulator_list_mutex);
1362	rdev = regulator->rdev;
1363
1364	debugfs_remove_recursive(regulator->debugfs);
1365
1366	/* remove any sysfs entries */
1367	if (regulator->dev) {
1368		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1369		device_remove_file(regulator->dev, &regulator->dev_attr);
1370		kfree(regulator->dev_attr.attr.name);
1371	}
1372	kfree(regulator->supply_name);
1373	list_del(&regulator->list);
1374	kfree(regulator);
1375
1376	rdev->open_count--;
1377	rdev->exclusive = 0;
1378
1379	module_put(rdev->owner);
1380	mutex_unlock(&regulator_list_mutex);
1381}
1382EXPORT_SYMBOL_GPL(regulator_put);
1383
1384static int _regulator_can_change_status(struct regulator_dev *rdev)
1385{
1386	if (!rdev->constraints)
1387		return 0;
1388
1389	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1390		return 1;
1391	else
1392		return 0;
1393}
1394
1395/* locks held by regulator_enable() */
1396static int _regulator_enable(struct regulator_dev *rdev)
1397{
1398	int ret, delay;
1399
1400	/* check voltage and requested load before enabling */
1401	if (rdev->constraints &&
1402	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1403		drms_uA_update(rdev);
1404
1405	if (rdev->use_count == 0) {
1406		/* The regulator may on if it's not switchable or left on */
1407		ret = _regulator_is_enabled(rdev);
1408		if (ret == -EINVAL || ret == 0) {
1409			if (!_regulator_can_change_status(rdev))
1410				return -EPERM;
1411
1412			if (!rdev->desc->ops->enable)
1413				return -EINVAL;
1414
1415			/* Query before enabling in case configuration
1416			 * dependent.  */
1417			ret = _regulator_get_enable_time(rdev);
1418			if (ret >= 0) {
1419				delay = ret;
1420			} else {
1421				rdev_warn(rdev, "enable_time() failed: %d\n",
1422					   ret);
1423				delay = 0;
1424			}
1425
1426			trace_regulator_enable(rdev_get_name(rdev));
1427
1428			/* Allow the regulator to ramp; it would be useful
1429			 * to extend this for bulk operations so that the
1430			 * regulators can ramp together.  */
1431			ret = rdev->desc->ops->enable(rdev);
1432			if (ret < 0)
1433				return ret;
1434
1435			trace_regulator_enable_delay(rdev_get_name(rdev));
1436
1437			if (delay >= 1000) {
1438				mdelay(delay / 1000);
1439				udelay(delay % 1000);
1440			} else if (delay) {
1441				udelay(delay);
1442			}
1443
1444			trace_regulator_enable_complete(rdev_get_name(rdev));
1445
1446		} else if (ret < 0) {
1447			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1448			return ret;
1449		}
1450		/* Fallthrough on positive return values - already enabled */
1451	}
1452
1453	rdev->use_count++;
1454
1455	return 0;
1456}
1457
1458/**
1459 * regulator_enable - enable regulator output
1460 * @regulator: regulator source
1461 *
1462 * Request that the regulator be enabled with the regulator output at
1463 * the predefined voltage or current value.  Calls to regulator_enable()
1464 * must be balanced with calls to regulator_disable().
1465 *
1466 * NOTE: the output value can be set by other drivers, boot loader or may be
1467 * hardwired in the regulator.
1468 */
1469int regulator_enable(struct regulator *regulator)
1470{
1471	struct regulator_dev *rdev = regulator->rdev;
1472	int ret = 0;
1473
1474	if (rdev->supply) {
1475		ret = regulator_enable(rdev->supply);
1476		if (ret != 0)
1477			return ret;
1478	}
1479
1480	mutex_lock(&rdev->mutex);
1481	ret = _regulator_enable(rdev);
1482	mutex_unlock(&rdev->mutex);
1483
1484	if (ret != 0 && rdev->supply)
1485		regulator_disable(rdev->supply);
1486
1487	return ret;
1488}
1489EXPORT_SYMBOL_GPL(regulator_enable);
1490
1491/* locks held by regulator_disable() */
1492static int _regulator_disable(struct regulator_dev *rdev)
1493{
1494	int ret = 0;
1495
1496	if (WARN(rdev->use_count <= 0,
1497		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1498		return -EIO;
1499
1500	/* are we the last user and permitted to disable ? */
1501	if (rdev->use_count == 1 &&
1502	    (rdev->constraints && !rdev->constraints->always_on)) {
1503
1504		/* we are last user */
1505		if (_regulator_can_change_status(rdev) &&
1506		    rdev->desc->ops->disable) {
1507			trace_regulator_disable(rdev_get_name(rdev));
1508
1509			ret = rdev->desc->ops->disable(rdev);
1510			if (ret < 0) {
1511				rdev_err(rdev, "failed to disable\n");
1512				return ret;
1513			}
1514
1515			trace_regulator_disable_complete(rdev_get_name(rdev));
1516
1517			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1518					     NULL);
1519		}
1520
1521		rdev->use_count = 0;
1522	} else if (rdev->use_count > 1) {
1523
1524		if (rdev->constraints &&
1525			(rdev->constraints->valid_ops_mask &
1526			REGULATOR_CHANGE_DRMS))
1527			drms_uA_update(rdev);
1528
1529		rdev->use_count--;
1530	}
1531
1532	return ret;
1533}
1534
1535/**
1536 * regulator_disable - disable regulator output
1537 * @regulator: regulator source
1538 *
1539 * Disable the regulator output voltage or current.  Calls to
1540 * regulator_enable() must be balanced with calls to
1541 * regulator_disable().
1542 *
1543 * NOTE: this will only disable the regulator output if no other consumer
1544 * devices have it enabled, the regulator device supports disabling and
1545 * machine constraints permit this operation.
1546 */
1547int regulator_disable(struct regulator *regulator)
1548{
1549	struct regulator_dev *rdev = regulator->rdev;
1550	int ret = 0;
1551
1552	mutex_lock(&rdev->mutex);
1553	ret = _regulator_disable(rdev);
1554	mutex_unlock(&rdev->mutex);
1555
1556	if (ret == 0 && rdev->supply)
1557		regulator_disable(rdev->supply);
1558
1559	return ret;
1560}
1561EXPORT_SYMBOL_GPL(regulator_disable);
1562
1563/* locks held by regulator_force_disable() */
1564static int _regulator_force_disable(struct regulator_dev *rdev)
1565{
1566	int ret = 0;
1567
1568	/* force disable */
1569	if (rdev->desc->ops->disable) {
1570		/* ah well, who wants to live forever... */
1571		ret = rdev->desc->ops->disable(rdev);
1572		if (ret < 0) {
1573			rdev_err(rdev, "failed to force disable\n");
1574			return ret;
1575		}
1576		/* notify other consumers that power has been forced off */
1577		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1578			REGULATOR_EVENT_DISABLE, NULL);
1579	}
1580
1581	return ret;
1582}
1583
1584/**
1585 * regulator_force_disable - force disable regulator output
1586 * @regulator: regulator source
1587 *
1588 * Forcibly disable the regulator output voltage or current.
1589 * NOTE: this *will* disable the regulator output even if other consumer
1590 * devices have it enabled. This should be used for situations when device
1591 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1592 */
1593int regulator_force_disable(struct regulator *regulator)
1594{
1595	struct regulator_dev *rdev = regulator->rdev;
1596	int ret;
1597
1598	mutex_lock(&rdev->mutex);
1599	regulator->uA_load = 0;
1600	ret = _regulator_force_disable(regulator->rdev);
1601	mutex_unlock(&rdev->mutex);
1602
1603	if (rdev->supply)
1604		while (rdev->open_count--)
1605			regulator_disable(rdev->supply);
1606
1607	return ret;
1608}
1609EXPORT_SYMBOL_GPL(regulator_force_disable);
1610
1611static void regulator_disable_work(struct work_struct *work)
1612{
1613	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1614						  disable_work.work);
1615	int count, i, ret;
1616
1617	mutex_lock(&rdev->mutex);
1618
1619	BUG_ON(!rdev->deferred_disables);
1620
1621	count = rdev->deferred_disables;
1622	rdev->deferred_disables = 0;
1623
1624	for (i = 0; i < count; i++) {
1625		ret = _regulator_disable(rdev);
1626		if (ret != 0)
1627			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1628	}
1629
1630	mutex_unlock(&rdev->mutex);
1631
1632	if (rdev->supply) {
1633		for (i = 0; i < count; i++) {
1634			ret = regulator_disable(rdev->supply);
1635			if (ret != 0) {
1636				rdev_err(rdev,
1637					 "Supply disable failed: %d\n", ret);
1638			}
1639		}
1640	}
1641}
1642
1643/**
1644 * regulator_disable_deferred - disable regulator output with delay
1645 * @regulator: regulator source
1646 * @ms: miliseconds until the regulator is disabled
1647 *
1648 * Execute regulator_disable() on the regulator after a delay.  This
1649 * is intended for use with devices that require some time to quiesce.
1650 *
1651 * NOTE: this will only disable the regulator output if no other consumer
1652 * devices have it enabled, the regulator device supports disabling and
1653 * machine constraints permit this operation.
1654 */
1655int regulator_disable_deferred(struct regulator *regulator, int ms)
1656{
1657	struct regulator_dev *rdev = regulator->rdev;
1658	int ret;
1659
1660	mutex_lock(&rdev->mutex);
1661	rdev->deferred_disables++;
1662	mutex_unlock(&rdev->mutex);
1663
1664	ret = schedule_delayed_work(&rdev->disable_work,
1665				    msecs_to_jiffies(ms));
1666	if (ret < 0)
1667		return ret;
1668	else
1669		return 0;
1670}
1671EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1672
1673static int _regulator_is_enabled(struct regulator_dev *rdev)
1674{
1675	/* If we don't know then assume that the regulator is always on */
1676	if (!rdev->desc->ops->is_enabled)
1677		return 1;
1678
1679	return rdev->desc->ops->is_enabled(rdev);
1680}
1681
1682/**
1683 * regulator_is_enabled - is the regulator output enabled
1684 * @regulator: regulator source
1685 *
1686 * Returns positive if the regulator driver backing the source/client
1687 * has requested that the device be enabled, zero if it hasn't, else a
1688 * negative errno code.
1689 *
1690 * Note that the device backing this regulator handle can have multiple
1691 * users, so it might be enabled even if regulator_enable() was never
1692 * called for this particular source.
1693 */
1694int regulator_is_enabled(struct regulator *regulator)
1695{
1696	int ret;
1697
1698	mutex_lock(&regulator->rdev->mutex);
1699	ret = _regulator_is_enabled(regulator->rdev);
1700	mutex_unlock(&regulator->rdev->mutex);
1701
1702	return ret;
1703}
1704EXPORT_SYMBOL_GPL(regulator_is_enabled);
1705
1706/**
1707 * regulator_count_voltages - count regulator_list_voltage() selectors
1708 * @regulator: regulator source
1709 *
1710 * Returns number of selectors, or negative errno.  Selectors are
1711 * numbered starting at zero, and typically correspond to bitfields
1712 * in hardware registers.
1713 */
1714int regulator_count_voltages(struct regulator *regulator)
1715{
1716	struct regulator_dev	*rdev = regulator->rdev;
1717
1718	return rdev->desc->n_voltages ? : -EINVAL;
1719}
1720EXPORT_SYMBOL_GPL(regulator_count_voltages);
1721
1722/**
1723 * regulator_list_voltage - enumerate supported voltages
1724 * @regulator: regulator source
1725 * @selector: identify voltage to list
1726 * Context: can sleep
1727 *
1728 * Returns a voltage that can be passed to @regulator_set_voltage(),
1729 * zero if this selector code can't be used on this system, or a
1730 * negative errno.
1731 */
1732int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1733{
1734	struct regulator_dev	*rdev = regulator->rdev;
1735	struct regulator_ops	*ops = rdev->desc->ops;
1736	int			ret;
1737
1738	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1739		return -EINVAL;
1740
1741	mutex_lock(&rdev->mutex);
1742	ret = ops->list_voltage(rdev, selector);
1743	mutex_unlock(&rdev->mutex);
1744
1745	if (ret > 0) {
1746		if (ret < rdev->constraints->min_uV)
1747			ret = 0;
1748		else if (ret > rdev->constraints->max_uV)
1749			ret = 0;
1750	}
1751
1752	return ret;
1753}
1754EXPORT_SYMBOL_GPL(regulator_list_voltage);
1755
1756/**
1757 * regulator_is_supported_voltage - check if a voltage range can be supported
1758 *
1759 * @regulator: Regulator to check.
1760 * @min_uV: Minimum required voltage in uV.
1761 * @max_uV: Maximum required voltage in uV.
1762 *
1763 * Returns a boolean or a negative error code.
1764 */
1765int regulator_is_supported_voltage(struct regulator *regulator,
1766				   int min_uV, int max_uV)
1767{
1768	int i, voltages, ret;
1769
1770	ret = regulator_count_voltages(regulator);
1771	if (ret < 0)
1772		return ret;
1773	voltages = ret;
1774
1775	for (i = 0; i < voltages; i++) {
1776		ret = regulator_list_voltage(regulator, i);
1777
1778		if (ret >= min_uV && ret <= max_uV)
1779			return 1;
1780	}
1781
1782	return 0;
1783}
1784EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1785
1786static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1787				     int min_uV, int max_uV)
1788{
1789	int ret;
1790	int delay = 0;
1791	unsigned int selector;
1792
1793	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1794
1795	min_uV += rdev->constraints->uV_offset;
1796	max_uV += rdev->constraints->uV_offset;
1797
1798	if (rdev->desc->ops->set_voltage) {
1799		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1800						   &selector);
1801
1802		if (rdev->desc->ops->list_voltage)
1803			selector = rdev->desc->ops->list_voltage(rdev,
1804								 selector);
1805		else
1806			selector = -1;
1807	} else if (rdev->desc->ops->set_voltage_sel) {
1808		int best_val = INT_MAX;
1809		int i;
1810
1811		selector = 0;
1812
1813		/* Find the smallest voltage that falls within the specified
1814		 * range.
1815		 */
1816		for (i = 0; i < rdev->desc->n_voltages; i++) {
1817			ret = rdev->desc->ops->list_voltage(rdev, i);
1818			if (ret < 0)
1819				continue;
1820
1821			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1822				best_val = ret;
1823				selector = i;
1824			}
1825		}
1826
1827		/*
1828		 * If we can't obtain the old selector there is not enough
1829		 * info to call set_voltage_time_sel().
1830		 */
1831		if (rdev->desc->ops->set_voltage_time_sel &&
1832		    rdev->desc->ops->get_voltage_sel) {
1833			unsigned int old_selector = 0;
1834
1835			ret = rdev->desc->ops->get_voltage_sel(rdev);
1836			if (ret < 0)
1837				return ret;
1838			old_selector = ret;
1839			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1840						old_selector, selector);
1841		}
1842
1843		if (best_val != INT_MAX) {
1844			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1845			selector = best_val;
1846		} else {
1847			ret = -EINVAL;
1848		}
1849	} else {
1850		ret = -EINVAL;
1851	}
1852
1853	/* Insert any necessary delays */
1854	if (delay >= 1000) {
1855		mdelay(delay / 1000);
1856		udelay(delay % 1000);
1857	} else if (delay) {
1858		udelay(delay);
1859	}
1860
1861	if (ret == 0)
1862		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1863				     NULL);
1864
1865	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1866
1867	return ret;
1868}
1869
1870/**
1871 * regulator_set_voltage - set regulator output voltage
1872 * @regulator: regulator source
1873 * @min_uV: Minimum required voltage in uV
1874 * @max_uV: Maximum acceptable voltage in uV
1875 *
1876 * Sets a voltage regulator to the desired output voltage. This can be set
1877 * during any regulator state. IOW, regulator can be disabled or enabled.
1878 *
1879 * If the regulator is enabled then the voltage will change to the new value
1880 * immediately otherwise if the regulator is disabled the regulator will
1881 * output at the new voltage when enabled.
1882 *
1883 * NOTE: If the regulator is shared between several devices then the lowest
1884 * request voltage that meets the system constraints will be used.
1885 * Regulator system constraints must be set for this regulator before
1886 * calling this function otherwise this call will fail.
1887 */
1888int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1889{
1890	struct regulator_dev *rdev = regulator->rdev;
1891	int ret = 0;
1892
1893	mutex_lock(&rdev->mutex);
1894
1895	/* If we're setting the same range as last time the change
1896	 * should be a noop (some cpufreq implementations use the same
1897	 * voltage for multiple frequencies, for example).
1898	 */
1899	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1900		goto out;
1901
1902	/* sanity check */
1903	if (!rdev->desc->ops->set_voltage &&
1904	    !rdev->desc->ops->set_voltage_sel) {
1905		ret = -EINVAL;
1906		goto out;
1907	}
1908
1909	/* constraints check */
1910	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1911	if (ret < 0)
1912		goto out;
1913	regulator->min_uV = min_uV;
1914	regulator->max_uV = max_uV;
1915
1916	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1917	if (ret < 0)
1918		goto out;
1919
1920	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1921
1922out:
1923	mutex_unlock(&rdev->mutex);
1924	return ret;
1925}
1926EXPORT_SYMBOL_GPL(regulator_set_voltage);
1927
1928/**
1929 * regulator_set_voltage_time - get raise/fall time
1930 * @regulator: regulator source
1931 * @old_uV: starting voltage in microvolts
1932 * @new_uV: target voltage in microvolts
1933 *
1934 * Provided with the starting and ending voltage, this function attempts to
1935 * calculate the time in microseconds required to rise or fall to this new
1936 * voltage.
1937 */
1938int regulator_set_voltage_time(struct regulator *regulator,
1939			       int old_uV, int new_uV)
1940{
1941	struct regulator_dev	*rdev = regulator->rdev;
1942	struct regulator_ops	*ops = rdev->desc->ops;
1943	int old_sel = -1;
1944	int new_sel = -1;
1945	int voltage;
1946	int i;
1947
1948	/* Currently requires operations to do this */
1949	if (!ops->list_voltage || !ops->set_voltage_time_sel
1950	    || !rdev->desc->n_voltages)
1951		return -EINVAL;
1952
1953	for (i = 0; i < rdev->desc->n_voltages; i++) {
1954		/* We only look for exact voltage matches here */
1955		voltage = regulator_list_voltage(regulator, i);
1956		if (voltage < 0)
1957			return -EINVAL;
1958		if (voltage == 0)
1959			continue;
1960		if (voltage == old_uV)
1961			old_sel = i;
1962		if (voltage == new_uV)
1963			new_sel = i;
1964	}
1965
1966	if (old_sel < 0 || new_sel < 0)
1967		return -EINVAL;
1968
1969	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1970}
1971EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1972
1973/**
1974 * regulator_sync_voltage - re-apply last regulator output voltage
1975 * @regulator: regulator source
1976 *
1977 * Re-apply the last configured voltage.  This is intended to be used
1978 * where some external control source the consumer is cooperating with
1979 * has caused the configured voltage to change.
1980 */
1981int regulator_sync_voltage(struct regulator *regulator)
1982{
1983	struct regulator_dev *rdev = regulator->rdev;
1984	int ret, min_uV, max_uV;
1985
1986	mutex_lock(&rdev->mutex);
1987
1988	if (!rdev->desc->ops->set_voltage &&
1989	    !rdev->desc->ops->set_voltage_sel) {
1990		ret = -EINVAL;
1991		goto out;
1992	}
1993
1994	/* This is only going to work if we've had a voltage configured. */
1995	if (!regulator->min_uV && !regulator->max_uV) {
1996		ret = -EINVAL;
1997		goto out;
1998	}
1999
2000	min_uV = regulator->min_uV;
2001	max_uV = regulator->max_uV;
2002
2003	/* This should be a paranoia check... */
2004	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2005	if (ret < 0)
2006		goto out;
2007
2008	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2009	if (ret < 0)
2010		goto out;
2011
2012	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2013
2014out:
2015	mutex_unlock(&rdev->mutex);
2016	return ret;
2017}
2018EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2019
2020static int _regulator_get_voltage(struct regulator_dev *rdev)
2021{
2022	int sel, ret;
2023
2024	if (rdev->desc->ops->get_voltage_sel) {
2025		sel = rdev->desc->ops->get_voltage_sel(rdev);
2026		if (sel < 0)
2027			return sel;
2028		ret = rdev->desc->ops->list_voltage(rdev, sel);
2029	} else if (rdev->desc->ops->get_voltage) {
2030		ret = rdev->desc->ops->get_voltage(rdev);
2031	} else {
2032		return -EINVAL;
2033	}
2034
2035	if (ret < 0)
2036		return ret;
2037	return ret - rdev->constraints->uV_offset;
2038}
2039
2040/**
2041 * regulator_get_voltage - get regulator output voltage
2042 * @regulator: regulator source
2043 *
2044 * This returns the current regulator voltage in uV.
2045 *
2046 * NOTE: If the regulator is disabled it will return the voltage value. This
2047 * function should not be used to determine regulator state.
2048 */
2049int regulator_get_voltage(struct regulator *regulator)
2050{
2051	int ret;
2052
2053	mutex_lock(&regulator->rdev->mutex);
2054
2055	ret = _regulator_get_voltage(regulator->rdev);
2056
2057	mutex_unlock(&regulator->rdev->mutex);
2058
2059	return ret;
2060}
2061EXPORT_SYMBOL_GPL(regulator_get_voltage);
2062
2063/**
2064 * regulator_set_current_limit - set regulator output current limit
2065 * @regulator: regulator source
2066 * @min_uA: Minimuum supported current in uA
2067 * @max_uA: Maximum supported current in uA
2068 *
2069 * Sets current sink to the desired output current. This can be set during
2070 * any regulator state. IOW, regulator can be disabled or enabled.
2071 *
2072 * If the regulator is enabled then the current will change to the new value
2073 * immediately otherwise if the regulator is disabled the regulator will
2074 * output at the new current when enabled.
2075 *
2076 * NOTE: Regulator system constraints must be set for this regulator before
2077 * calling this function otherwise this call will fail.
2078 */
2079int regulator_set_current_limit(struct regulator *regulator,
2080			       int min_uA, int max_uA)
2081{
2082	struct regulator_dev *rdev = regulator->rdev;
2083	int ret;
2084
2085	mutex_lock(&rdev->mutex);
2086
2087	/* sanity check */
2088	if (!rdev->desc->ops->set_current_limit) {
2089		ret = -EINVAL;
2090		goto out;
2091	}
2092
2093	/* constraints check */
2094	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2095	if (ret < 0)
2096		goto out;
2097
2098	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2099out:
2100	mutex_unlock(&rdev->mutex);
2101	return ret;
2102}
2103EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2104
2105static int _regulator_get_current_limit(struct regulator_dev *rdev)
2106{
2107	int ret;
2108
2109	mutex_lock(&rdev->mutex);
2110
2111	/* sanity check */
2112	if (!rdev->desc->ops->get_current_limit) {
2113		ret = -EINVAL;
2114		goto out;
2115	}
2116
2117	ret = rdev->desc->ops->get_current_limit(rdev);
2118out:
2119	mutex_unlock(&rdev->mutex);
2120	return ret;
2121}
2122
2123/**
2124 * regulator_get_current_limit - get regulator output current
2125 * @regulator: regulator source
2126 *
2127 * This returns the current supplied by the specified current sink in uA.
2128 *
2129 * NOTE: If the regulator is disabled it will return the current value. This
2130 * function should not be used to determine regulator state.
2131 */
2132int regulator_get_current_limit(struct regulator *regulator)
2133{
2134	return _regulator_get_current_limit(regulator->rdev);
2135}
2136EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2137
2138/**
2139 * regulator_set_mode - set regulator operating mode
2140 * @regulator: regulator source
2141 * @mode: operating mode - one of the REGULATOR_MODE constants
2142 *
2143 * Set regulator operating mode to increase regulator efficiency or improve
2144 * regulation performance.
2145 *
2146 * NOTE: Regulator system constraints must be set for this regulator before
2147 * calling this function otherwise this call will fail.
2148 */
2149int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2150{
2151	struct regulator_dev *rdev = regulator->rdev;
2152	int ret;
2153	int regulator_curr_mode;
2154
2155	mutex_lock(&rdev->mutex);
2156
2157	/* sanity check */
2158	if (!rdev->desc->ops->set_mode) {
2159		ret = -EINVAL;
2160		goto out;
2161	}
2162
2163	/* return if the same mode is requested */
2164	if (rdev->desc->ops->get_mode) {
2165		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2166		if (regulator_curr_mode == mode) {
2167			ret = 0;
2168			goto out;
2169		}
2170	}
2171
2172	/* constraints check */
2173	ret = regulator_mode_constrain(rdev, &mode);
2174	if (ret < 0)
2175		goto out;
2176
2177	ret = rdev->desc->ops->set_mode(rdev, mode);
2178out:
2179	mutex_unlock(&rdev->mutex);
2180	return ret;
2181}
2182EXPORT_SYMBOL_GPL(regulator_set_mode);
2183
2184static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2185{
2186	int ret;
2187
2188	mutex_lock(&rdev->mutex);
2189
2190	/* sanity check */
2191	if (!rdev->desc->ops->get_mode) {
2192		ret = -EINVAL;
2193		goto out;
2194	}
2195
2196	ret = rdev->desc->ops->get_mode(rdev);
2197out:
2198	mutex_unlock(&rdev->mutex);
2199	return ret;
2200}
2201
2202/**
2203 * regulator_get_mode - get regulator operating mode
2204 * @regulator: regulator source
2205 *
2206 * Get the current regulator operating mode.
2207 */
2208unsigned int regulator_get_mode(struct regulator *regulator)
2209{
2210	return _regulator_get_mode(regulator->rdev);
2211}
2212EXPORT_SYMBOL_GPL(regulator_get_mode);
2213
2214/**
2215 * regulator_set_optimum_mode - set regulator optimum operating mode
2216 * @regulator: regulator source
2217 * @uA_load: load current
2218 *
2219 * Notifies the regulator core of a new device load. This is then used by
2220 * DRMS (if enabled by constraints) to set the most efficient regulator
2221 * operating mode for the new regulator loading.
2222 *
2223 * Consumer devices notify their supply regulator of the maximum power
2224 * they will require (can be taken from device datasheet in the power
2225 * consumption tables) when they change operational status and hence power
2226 * state. Examples of operational state changes that can affect power
2227 * consumption are :-
2228 *
2229 *    o Device is opened / closed.
2230 *    o Device I/O is about to begin or has just finished.
2231 *    o Device is idling in between work.
2232 *
2233 * This information is also exported via sysfs to userspace.
2234 *
2235 * DRMS will sum the total requested load on the regulator and change
2236 * to the most efficient operating mode if platform constraints allow.
2237 *
2238 * Returns the new regulator mode or error.
2239 */
2240int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2241{
2242	struct regulator_dev *rdev = regulator->rdev;
2243	struct regulator *consumer;
2244	int ret, output_uV, input_uV, total_uA_load = 0;
2245	unsigned int mode;
2246
2247	mutex_lock(&rdev->mutex);
2248
2249	/*
2250	 * first check to see if we can set modes at all, otherwise just
2251	 * tell the consumer everything is OK.
2252	 */
2253	regulator->uA_load = uA_load;
2254	ret = regulator_check_drms(rdev);
2255	if (ret < 0) {
2256		ret = 0;
2257		goto out;
2258	}
2259
2260	if (!rdev->desc->ops->get_optimum_mode)
2261		goto out;
2262
2263	/*
2264	 * we can actually do this so any errors are indicators of
2265	 * potential real failure.
2266	 */
2267	ret = -EINVAL;
2268
2269	/* get output voltage */
2270	output_uV = _regulator_get_voltage(rdev);
2271	if (output_uV <= 0) {
2272		rdev_err(rdev, "invalid output voltage found\n");
2273		goto out;
2274	}
2275
2276	/* get input voltage */
2277	input_uV = 0;
2278	if (rdev->supply)
2279		input_uV = regulator_get_voltage(rdev->supply);
2280	if (input_uV <= 0)
2281		input_uV = rdev->constraints->input_uV;
2282	if (input_uV <= 0) {
2283		rdev_err(rdev, "invalid input voltage found\n");
2284		goto out;
2285	}
2286
2287	/* calc total requested load for this regulator */
2288	list_for_each_entry(consumer, &rdev->consumer_list, list)
2289		total_uA_load += consumer->uA_load;
2290
2291	mode = rdev->desc->ops->get_optimum_mode(rdev,
2292						 input_uV, output_uV,
2293						 total_uA_load);
2294	ret = regulator_mode_constrain(rdev, &mode);
2295	if (ret < 0) {
2296		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2297			 total_uA_load, input_uV, output_uV);
2298		goto out;
2299	}
2300
2301	ret = rdev->desc->ops->set_mode(rdev, mode);
2302	if (ret < 0) {
2303		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2304		goto out;
2305	}
2306	ret = mode;
2307out:
2308	mutex_unlock(&rdev->mutex);
2309	return ret;
2310}
2311EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2312
2313/**
2314 * regulator_register_notifier - register regulator event notifier
2315 * @regulator: regulator source
2316 * @nb: notifier block
2317 *
2318 * Register notifier block to receive regulator events.
2319 */
2320int regulator_register_notifier(struct regulator *regulator,
2321			      struct notifier_block *nb)
2322{
2323	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2324						nb);
2325}
2326EXPORT_SYMBOL_GPL(regulator_register_notifier);
2327
2328/**
2329 * regulator_unregister_notifier - unregister regulator event notifier
2330 * @regulator: regulator source
2331 * @nb: notifier block
2332 *
2333 * Unregister regulator event notifier block.
2334 */
2335int regulator_unregister_notifier(struct regulator *regulator,
2336				struct notifier_block *nb)
2337{
2338	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2339						  nb);
2340}
2341EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2342
2343/* notify regulator consumers and downstream regulator consumers.
2344 * Note mutex must be held by caller.
2345 */
2346static void _notifier_call_chain(struct regulator_dev *rdev,
2347				  unsigned long event, void *data)
2348{
2349	/* call rdev chain first */
2350	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2351}
2352
2353/**
2354 * regulator_bulk_get - get multiple regulator consumers
2355 *
2356 * @dev:           Device to supply
2357 * @num_consumers: Number of consumers to register
2358 * @consumers:     Configuration of consumers; clients are stored here.
2359 *
2360 * @return 0 on success, an errno on failure.
2361 *
2362 * This helper function allows drivers to get several regulator
2363 * consumers in one operation.  If any of the regulators cannot be
2364 * acquired then any regulators that were allocated will be freed
2365 * before returning to the caller.
2366 */
2367int regulator_bulk_get(struct device *dev, int num_consumers,
2368		       struct regulator_bulk_data *consumers)
2369{
2370	int i;
2371	int ret;
2372
2373	for (i = 0; i < num_consumers; i++)
2374		consumers[i].consumer = NULL;
2375
2376	for (i = 0; i < num_consumers; i++) {
2377		consumers[i].consumer = regulator_get(dev,
2378						      consumers[i].supply);
2379		if (IS_ERR(consumers[i].consumer)) {
2380			ret = PTR_ERR(consumers[i].consumer);
2381			dev_err(dev, "Failed to get supply '%s': %d\n",
2382				consumers[i].supply, ret);
2383			consumers[i].consumer = NULL;
2384			goto err;
2385		}
2386	}
2387
2388	return 0;
2389
2390err:
2391	while (--i >= 0)
2392		regulator_put(consumers[i].consumer);
2393
2394	return ret;
2395}
2396EXPORT_SYMBOL_GPL(regulator_bulk_get);
2397
2398static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2399{
2400	struct regulator_bulk_data *bulk = data;
2401
2402	bulk->ret = regulator_enable(bulk->consumer);
2403}
2404
2405/**
2406 * regulator_bulk_enable - enable multiple regulator consumers
2407 *
2408 * @num_consumers: Number of consumers
2409 * @consumers:     Consumer data; clients are stored here.
2410 * @return         0 on success, an errno on failure
2411 *
2412 * This convenience API allows consumers to enable multiple regulator
2413 * clients in a single API call.  If any consumers cannot be enabled
2414 * then any others that were enabled will be disabled again prior to
2415 * return.
2416 */
2417int regulator_bulk_enable(int num_consumers,
2418			  struct regulator_bulk_data *consumers)
2419{
2420	LIST_HEAD(async_domain);
2421	int i;
2422	int ret = 0;
2423
2424	for (i = 0; i < num_consumers; i++)
2425		async_schedule_domain(regulator_bulk_enable_async,
2426				      &consumers[i], &async_domain);
2427
2428	async_synchronize_full_domain(&async_domain);
2429
2430	/* If any consumer failed we need to unwind any that succeeded */
2431	for (i = 0; i < num_consumers; i++) {
2432		if (consumers[i].ret != 0) {
2433			ret = consumers[i].ret;
2434			goto err;
2435		}
2436	}
2437
2438	return 0;
2439
2440err:
2441	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2442	while (--i >= 0)
2443		regulator_disable(consumers[i].consumer);
2444
2445	return ret;
2446}
2447EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2448
2449/**
2450 * regulator_bulk_disable - disable multiple regulator consumers
2451 *
2452 * @num_consumers: Number of consumers
2453 * @consumers:     Consumer data; clients are stored here.
2454 * @return         0 on success, an errno on failure
2455 *
2456 * This convenience API allows consumers to disable multiple regulator
2457 * clients in a single API call.  If any consumers cannot be disabled
2458 * then any others that were disabled will be enabled again prior to
2459 * return.
2460 */
2461int regulator_bulk_disable(int num_consumers,
2462			   struct regulator_bulk_data *consumers)
2463{
2464	int i;
2465	int ret;
2466
2467	for (i = num_consumers - 1; i >= 0; --i) {
2468		ret = regulator_disable(consumers[i].consumer);
2469		if (ret != 0)
2470			goto err;
2471	}
2472
2473	return 0;
2474
2475err:
2476	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2477	for (++i; i < num_consumers; ++i)
2478		regulator_enable(consumers[i].consumer);
2479
2480	return ret;
2481}
2482EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2483
2484/**
2485 * regulator_bulk_force_disable - force disable multiple regulator consumers
2486 *
2487 * @num_consumers: Number of consumers
2488 * @consumers:     Consumer data; clients are stored here.
2489 * @return         0 on success, an errno on failure
2490 *
2491 * This convenience API allows consumers to forcibly disable multiple regulator
2492 * clients in a single API call.
2493 * NOTE: This should be used for situations when device damage will
2494 * likely occur if the regulators are not disabled (e.g. over temp).
2495 * Although regulator_force_disable function call for some consumers can
2496 * return error numbers, the function is called for all consumers.
2497 */
2498int regulator_bulk_force_disable(int num_consumers,
2499			   struct regulator_bulk_data *consumers)
2500{
2501	int i;
2502	int ret;
2503
2504	for (i = 0; i < num_consumers; i++)
2505		consumers[i].ret =
2506			    regulator_force_disable(consumers[i].consumer);
2507
2508	for (i = 0; i < num_consumers; i++) {
2509		if (consumers[i].ret != 0) {
2510			ret = consumers[i].ret;
2511			goto out;
2512		}
2513	}
2514
2515	return 0;
2516out:
2517	return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2520
2521/**
2522 * regulator_bulk_free - free multiple regulator consumers
2523 *
2524 * @num_consumers: Number of consumers
2525 * @consumers:     Consumer data; clients are stored here.
2526 *
2527 * This convenience API allows consumers to free multiple regulator
2528 * clients in a single API call.
2529 */
2530void regulator_bulk_free(int num_consumers,
2531			 struct regulator_bulk_data *consumers)
2532{
2533	int i;
2534
2535	for (i = 0; i < num_consumers; i++) {
2536		regulator_put(consumers[i].consumer);
2537		consumers[i].consumer = NULL;
2538	}
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_free);
2541
2542/**
2543 * regulator_notifier_call_chain - call regulator event notifier
2544 * @rdev: regulator source
2545 * @event: notifier block
2546 * @data: callback-specific data.
2547 *
2548 * Called by regulator drivers to notify clients a regulator event has
2549 * occurred. We also notify regulator clients downstream.
2550 * Note lock must be held by caller.
2551 */
2552int regulator_notifier_call_chain(struct regulator_dev *rdev,
2553				  unsigned long event, void *data)
2554{
2555	_notifier_call_chain(rdev, event, data);
2556	return NOTIFY_DONE;
2557
2558}
2559EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2560
2561/**
2562 * regulator_mode_to_status - convert a regulator mode into a status
2563 *
2564 * @mode: Mode to convert
2565 *
2566 * Convert a regulator mode into a status.
2567 */
2568int regulator_mode_to_status(unsigned int mode)
2569{
2570	switch (mode) {
2571	case REGULATOR_MODE_FAST:
2572		return REGULATOR_STATUS_FAST;
2573	case REGULATOR_MODE_NORMAL:
2574		return REGULATOR_STATUS_NORMAL;
2575	case REGULATOR_MODE_IDLE:
2576		return REGULATOR_STATUS_IDLE;
2577	case REGULATOR_STATUS_STANDBY:
2578		return REGULATOR_STATUS_STANDBY;
2579	default:
2580		return 0;
2581	}
2582}
2583EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2584
2585/*
2586 * To avoid cluttering sysfs (and memory) with useless state, only
2587 * create attributes that can be meaningfully displayed.
2588 */
2589static int add_regulator_attributes(struct regulator_dev *rdev)
2590{
2591	struct device		*dev = &rdev->dev;
2592	struct regulator_ops	*ops = rdev->desc->ops;
2593	int			status = 0;
2594
2595	/* some attributes need specific methods to be displayed */
2596	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2597	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2598		status = device_create_file(dev, &dev_attr_microvolts);
2599		if (status < 0)
2600			return status;
2601	}
2602	if (ops->get_current_limit) {
2603		status = device_create_file(dev, &dev_attr_microamps);
2604		if (status < 0)
2605			return status;
2606	}
2607	if (ops->get_mode) {
2608		status = device_create_file(dev, &dev_attr_opmode);
2609		if (status < 0)
2610			return status;
2611	}
2612	if (ops->is_enabled) {
2613		status = device_create_file(dev, &dev_attr_state);
2614		if (status < 0)
2615			return status;
2616	}
2617	if (ops->get_status) {
2618		status = device_create_file(dev, &dev_attr_status);
2619		if (status < 0)
2620			return status;
2621	}
2622
2623	/* some attributes are type-specific */
2624	if (rdev->desc->type == REGULATOR_CURRENT) {
2625		status = device_create_file(dev, &dev_attr_requested_microamps);
2626		if (status < 0)
2627			return status;
2628	}
2629
2630	/* all the other attributes exist to support constraints;
2631	 * don't show them if there are no constraints, or if the
2632	 * relevant supporting methods are missing.
2633	 */
2634	if (!rdev->constraints)
2635		return status;
2636
2637	/* constraints need specific supporting methods */
2638	if (ops->set_voltage || ops->set_voltage_sel) {
2639		status = device_create_file(dev, &dev_attr_min_microvolts);
2640		if (status < 0)
2641			return status;
2642		status = device_create_file(dev, &dev_attr_max_microvolts);
2643		if (status < 0)
2644			return status;
2645	}
2646	if (ops->set_current_limit) {
2647		status = device_create_file(dev, &dev_attr_min_microamps);
2648		if (status < 0)
2649			return status;
2650		status = device_create_file(dev, &dev_attr_max_microamps);
2651		if (status < 0)
2652			return status;
2653	}
2654
2655	/* suspend mode constraints need multiple supporting methods */
2656	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2657		return status;
2658
2659	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2660	if (status < 0)
2661		return status;
2662	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2663	if (status < 0)
2664		return status;
2665	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2666	if (status < 0)
2667		return status;
2668
2669	if (ops->set_suspend_voltage) {
2670		status = device_create_file(dev,
2671				&dev_attr_suspend_standby_microvolts);
2672		if (status < 0)
2673			return status;
2674		status = device_create_file(dev,
2675				&dev_attr_suspend_mem_microvolts);
2676		if (status < 0)
2677			return status;
2678		status = device_create_file(dev,
2679				&dev_attr_suspend_disk_microvolts);
2680		if (status < 0)
2681			return status;
2682	}
2683
2684	if (ops->set_suspend_mode) {
2685		status = device_create_file(dev,
2686				&dev_attr_suspend_standby_mode);
2687		if (status < 0)
2688			return status;
2689		status = device_create_file(dev,
2690				&dev_attr_suspend_mem_mode);
2691		if (status < 0)
2692			return status;
2693		status = device_create_file(dev,
2694				&dev_attr_suspend_disk_mode);
2695		if (status < 0)
2696			return status;
2697	}
2698
2699	return status;
2700}
2701
2702static void rdev_init_debugfs(struct regulator_dev *rdev)
2703{
2704	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2705	if (!rdev->debugfs) {
2706		rdev_warn(rdev, "Failed to create debugfs directory\n");
2707		return;
2708	}
2709
2710	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2711			   &rdev->use_count);
2712	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2713			   &rdev->open_count);
2714}
2715
2716/**
2717 * regulator_register - register regulator
2718 * @regulator_desc: regulator to register
2719 * @dev: struct device for the regulator
2720 * @init_data: platform provided init data, passed through by driver
2721 * @driver_data: private regulator data
2722 *
2723 * Called by regulator drivers to register a regulator.
2724 * Returns 0 on success.
2725 */
2726struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2727	struct device *dev, const struct regulator_init_data *init_data,
2728	void *driver_data, struct device_node *of_node)
2729{
2730	const struct regulation_constraints *constraints = NULL;
2731	static atomic_t regulator_no = ATOMIC_INIT(0);
2732	struct regulator_dev *rdev;
2733	int ret, i;
2734	const char *supply = NULL;
2735
2736	if (regulator_desc == NULL)
2737		return ERR_PTR(-EINVAL);
2738
2739	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2740		return ERR_PTR(-EINVAL);
2741
2742	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2743	    regulator_desc->type != REGULATOR_CURRENT)
2744		return ERR_PTR(-EINVAL);
2745
2746	/* Only one of each should be implemented */
2747	WARN_ON(regulator_desc->ops->get_voltage &&
2748		regulator_desc->ops->get_voltage_sel);
2749	WARN_ON(regulator_desc->ops->set_voltage &&
2750		regulator_desc->ops->set_voltage_sel);
2751
2752	/* If we're using selectors we must implement list_voltage. */
2753	if (regulator_desc->ops->get_voltage_sel &&
2754	    !regulator_desc->ops->list_voltage) {
2755		return ERR_PTR(-EINVAL);
2756	}
2757	if (regulator_desc->ops->set_voltage_sel &&
2758	    !regulator_desc->ops->list_voltage) {
2759		return ERR_PTR(-EINVAL);
2760	}
2761
2762	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2763	if (rdev == NULL)
2764		return ERR_PTR(-ENOMEM);
2765
2766	mutex_lock(&regulator_list_mutex);
2767
2768	mutex_init(&rdev->mutex);
2769	rdev->reg_data = driver_data;
2770	rdev->owner = regulator_desc->owner;
2771	rdev->desc = regulator_desc;
2772	INIT_LIST_HEAD(&rdev->consumer_list);
2773	INIT_LIST_HEAD(&rdev->list);
2774	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2775	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2776
2777	/* preform any regulator specific init */
2778	if (init_data && init_data->regulator_init) {
2779		ret = init_data->regulator_init(rdev->reg_data);
2780		if (ret < 0)
2781			goto clean;
2782	}
2783
2784	/* register with sysfs */
2785	rdev->dev.class = &regulator_class;
2786	rdev->dev.of_node = of_node;
2787	rdev->dev.parent = dev;
2788	dev_set_name(&rdev->dev, "regulator.%d",
2789		     atomic_inc_return(&regulator_no) - 1);
2790	ret = device_register(&rdev->dev);
2791	if (ret != 0) {
2792		put_device(&rdev->dev);
2793		goto clean;
2794	}
2795
2796	dev_set_drvdata(&rdev->dev, rdev);
2797
2798	/* set regulator constraints */
2799	if (init_data)
2800		constraints = &init_data->constraints;
2801
2802	ret = set_machine_constraints(rdev, constraints);
2803	if (ret < 0)
2804		goto scrub;
2805
2806	/* add attributes supported by this regulator */
2807	ret = add_regulator_attributes(rdev);
2808	if (ret < 0)
2809		goto scrub;
2810
2811	if (init_data && init_data->supply_regulator)
2812		supply = init_data->supply_regulator;
2813	else if (regulator_desc->supply_name)
2814		supply = regulator_desc->supply_name;
2815
2816	if (supply) {
2817		struct regulator_dev *r;
2818
2819		r = regulator_dev_lookup(dev, supply);
2820
2821		if (!r) {
2822			dev_err(dev, "Failed to find supply %s\n", supply);
2823			ret = -ENODEV;
2824			goto scrub;
2825		}
2826
2827		ret = set_supply(rdev, r);
2828		if (ret < 0)
2829			goto scrub;
2830
2831		/* Enable supply if rail is enabled */
2832		if (rdev->desc->ops->is_enabled &&
2833				rdev->desc->ops->is_enabled(rdev)) {
2834			ret = regulator_enable(rdev->supply);
2835			if (ret < 0)
2836				goto scrub;
2837		}
2838	}
2839
2840	/* add consumers devices */
2841	if (init_data) {
2842		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2843			ret = set_consumer_device_supply(rdev,
2844				init_data->consumer_supplies[i].dev,
2845				init_data->consumer_supplies[i].dev_name,
2846				init_data->consumer_supplies[i].supply);
2847			if (ret < 0) {
2848				dev_err(dev, "Failed to set supply %s\n",
2849					init_data->consumer_supplies[i].supply);
2850				goto unset_supplies;
2851			}
2852		}
2853	}
2854
2855	list_add(&rdev->list, &regulator_list);
2856
2857	rdev_init_debugfs(rdev);
2858out:
2859	mutex_unlock(&regulator_list_mutex);
2860	return rdev;
2861
2862unset_supplies:
2863	unset_regulator_supplies(rdev);
2864
2865scrub:
2866	kfree(rdev->constraints);
2867	device_unregister(&rdev->dev);
2868	/* device core frees rdev */
2869	rdev = ERR_PTR(ret);
2870	goto out;
2871
2872clean:
2873	kfree(rdev);
2874	rdev = ERR_PTR(ret);
2875	goto out;
2876}
2877EXPORT_SYMBOL_GPL(regulator_register);
2878
2879/**
2880 * regulator_unregister - unregister regulator
2881 * @rdev: regulator to unregister
2882 *
2883 * Called by regulator drivers to unregister a regulator.
2884 */
2885void regulator_unregister(struct regulator_dev *rdev)
2886{
2887	if (rdev == NULL)
2888		return;
2889
2890	mutex_lock(&regulator_list_mutex);
2891	debugfs_remove_recursive(rdev->debugfs);
2892	flush_work_sync(&rdev->disable_work.work);
2893	WARN_ON(rdev->open_count);
2894	unset_regulator_supplies(rdev);
2895	list_del(&rdev->list);
2896	if (rdev->supply)
2897		regulator_put(rdev->supply);
2898	kfree(rdev->constraints);
2899	device_unregister(&rdev->dev);
2900	mutex_unlock(&regulator_list_mutex);
2901}
2902EXPORT_SYMBOL_GPL(regulator_unregister);
2903
2904/**
2905 * regulator_suspend_prepare - prepare regulators for system wide suspend
2906 * @state: system suspend state
2907 *
2908 * Configure each regulator with it's suspend operating parameters for state.
2909 * This will usually be called by machine suspend code prior to supending.
2910 */
2911int regulator_suspend_prepare(suspend_state_t state)
2912{
2913	struct regulator_dev *rdev;
2914	int ret = 0;
2915
2916	/* ON is handled by regulator active state */
2917	if (state == PM_SUSPEND_ON)
2918		return -EINVAL;
2919
2920	mutex_lock(&regulator_list_mutex);
2921	list_for_each_entry(rdev, &regulator_list, list) {
2922
2923		mutex_lock(&rdev->mutex);
2924		ret = suspend_prepare(rdev, state);
2925		mutex_unlock(&rdev->mutex);
2926
2927		if (ret < 0) {
2928			rdev_err(rdev, "failed to prepare\n");
2929			goto out;
2930		}
2931	}
2932out:
2933	mutex_unlock(&regulator_list_mutex);
2934	return ret;
2935}
2936EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2937
2938/**
2939 * regulator_suspend_finish - resume regulators from system wide suspend
2940 *
2941 * Turn on regulators that might be turned off by regulator_suspend_prepare
2942 * and that should be turned on according to the regulators properties.
2943 */
2944int regulator_suspend_finish(void)
2945{
2946	struct regulator_dev *rdev;
2947	int ret = 0, error;
2948
2949	mutex_lock(&regulator_list_mutex);
2950	list_for_each_entry(rdev, &regulator_list, list) {
2951		struct regulator_ops *ops = rdev->desc->ops;
2952
2953		mutex_lock(&rdev->mutex);
2954		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2955				ops->enable) {
2956			error = ops->enable(rdev);
2957			if (error)
2958				ret = error;
2959		} else {
2960			if (!has_full_constraints)
2961				goto unlock;
2962			if (!ops->disable)
2963				goto unlock;
2964			if (ops->is_enabled && !ops->is_enabled(rdev))
2965				goto unlock;
2966
2967			error = ops->disable(rdev);
2968			if (error)
2969				ret = error;
2970		}
2971unlock:
2972		mutex_unlock(&rdev->mutex);
2973	}
2974	mutex_unlock(&regulator_list_mutex);
2975	return ret;
2976}
2977EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2978
2979/**
2980 * regulator_has_full_constraints - the system has fully specified constraints
2981 *
2982 * Calling this function will cause the regulator API to disable all
2983 * regulators which have a zero use count and don't have an always_on
2984 * constraint in a late_initcall.
2985 *
2986 * The intention is that this will become the default behaviour in a
2987 * future kernel release so users are encouraged to use this facility
2988 * now.
2989 */
2990void regulator_has_full_constraints(void)
2991{
2992	has_full_constraints = 1;
2993}
2994EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2995
2996/**
2997 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2998 *
2999 * Calling this function will cause the regulator API to provide a
3000 * dummy regulator to consumers if no physical regulator is found,
3001 * allowing most consumers to proceed as though a regulator were
3002 * configured.  This allows systems such as those with software
3003 * controllable regulators for the CPU core only to be brought up more
3004 * readily.
3005 */
3006void regulator_use_dummy_regulator(void)
3007{
3008	board_wants_dummy_regulator = true;
3009}
3010EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3011
3012/**
3013 * rdev_get_drvdata - get rdev regulator driver data
3014 * @rdev: regulator
3015 *
3016 * Get rdev regulator driver private data. This call can be used in the
3017 * regulator driver context.
3018 */
3019void *rdev_get_drvdata(struct regulator_dev *rdev)
3020{
3021	return rdev->reg_data;
3022}
3023EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3024
3025/**
3026 * regulator_get_drvdata - get regulator driver data
3027 * @regulator: regulator
3028 *
3029 * Get regulator driver private data. This call can be used in the consumer
3030 * driver context when non API regulator specific functions need to be called.
3031 */
3032void *regulator_get_drvdata(struct regulator *regulator)
3033{
3034	return regulator->rdev->reg_data;
3035}
3036EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3037
3038/**
3039 * regulator_set_drvdata - set regulator driver data
3040 * @regulator: regulator
3041 * @data: data
3042 */
3043void regulator_set_drvdata(struct regulator *regulator, void *data)
3044{
3045	regulator->rdev->reg_data = data;
3046}
3047EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3048
3049/**
3050 * regulator_get_id - get regulator ID
3051 * @rdev: regulator
3052 */
3053int rdev_get_id(struct regulator_dev *rdev)
3054{
3055	return rdev->desc->id;
3056}
3057EXPORT_SYMBOL_GPL(rdev_get_id);
3058
3059struct device *rdev_get_dev(struct regulator_dev *rdev)
3060{
3061	return &rdev->dev;
3062}
3063EXPORT_SYMBOL_GPL(rdev_get_dev);
3064
3065void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3066{
3067	return reg_init_data->driver_data;
3068}
3069EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3070
3071#ifdef CONFIG_DEBUG_FS
3072static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3073				    size_t count, loff_t *ppos)
3074{
3075	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3076	ssize_t len, ret = 0;
3077	struct regulator_map *map;
3078
3079	if (!buf)
3080		return -ENOMEM;
3081
3082	list_for_each_entry(map, &regulator_map_list, list) {
3083		len = snprintf(buf + ret, PAGE_SIZE - ret,
3084			       "%s -> %s.%s\n",
3085			       rdev_get_name(map->regulator), map->dev_name,
3086			       map->supply);
3087		if (len >= 0)
3088			ret += len;
3089		if (ret > PAGE_SIZE) {
3090			ret = PAGE_SIZE;
3091			break;
3092		}
3093	}
3094
3095	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3096
3097	kfree(buf);
3098
3099	return ret;
3100}
3101#endif
3102
3103static const struct file_operations supply_map_fops = {
3104#ifdef CONFIG_DEBUG_FS
3105	.read = supply_map_read_file,
3106	.llseek = default_llseek,
3107#endif
3108};
3109
3110static int __init regulator_init(void)
3111{
3112	int ret;
3113
3114	ret = class_register(&regulator_class);
3115
3116	debugfs_root = debugfs_create_dir("regulator", NULL);
3117	if (!debugfs_root)
3118		pr_warn("regulator: Failed to create debugfs directory\n");
3119
3120	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3121			    &supply_map_fops);
3122
3123	regulator_dummy_init();
3124
3125	return ret;
3126}
3127
3128/* init early to allow our consumers to complete system booting */
3129core_initcall(regulator_init);
3130
3131static int __init regulator_init_complete(void)
3132{
3133	struct regulator_dev *rdev;
3134	struct regulator_ops *ops;
3135	struct regulation_constraints *c;
3136	int enabled, ret;
3137
3138	mutex_lock(&regulator_list_mutex);
3139
3140	/* If we have a full configuration then disable any regulators
3141	 * which are not in use or always_on.  This will become the
3142	 * default behaviour in the future.
3143	 */
3144	list_for_each_entry(rdev, &regulator_list, list) {
3145		ops = rdev->desc->ops;
3146		c = rdev->constraints;
3147
3148		if (!ops->disable || (c && c->always_on))
3149			continue;
3150
3151		mutex_lock(&rdev->mutex);
3152
3153		if (rdev->use_count)
3154			goto unlock;
3155
3156		/* If we can't read the status assume it's on. */
3157		if (ops->is_enabled)
3158			enabled = ops->is_enabled(rdev);
3159		else
3160			enabled = 1;
3161
3162		if (!enabled)
3163			goto unlock;
3164
3165		if (has_full_constraints) {
3166			/* We log since this may kill the system if it
3167			 * goes wrong. */
3168			rdev_info(rdev, "disabling\n");
3169			ret = ops->disable(rdev);
3170			if (ret != 0) {
3171				rdev_err(rdev, "couldn't disable: %d\n", ret);
3172			}
3173		} else {
3174			/* The intention is that in future we will
3175			 * assume that full constraints are provided
3176			 * so warn even if we aren't going to do
3177			 * anything here.
3178			 */
3179			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3180		}
3181
3182unlock:
3183		mutex_unlock(&rdev->mutex);
3184	}
3185
3186	mutex_unlock(&regulator_list_mutex);
3187
3188	return 0;
3189}
3190late_initcall(regulator_init_complete);
3191