core.c revision 25985edcedea6396277003854657b5f3cb31a628
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/err.h>
24#include <linux/mutex.h>
25#include <linux/suspend.h>
26#include <linux/delay.h>
27#include <linux/regulator/consumer.h>
28#include <linux/regulator/driver.h>
29#include <linux/regulator/machine.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35
36#define rdev_err(rdev, fmt, ...)					\
37	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_warn(rdev, fmt, ...)					\
39	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_info(rdev, fmt, ...)					\
41	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_dbg(rdev, fmt, ...)					\
43	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45static DEFINE_MUTEX(regulator_list_mutex);
46static LIST_HEAD(regulator_list);
47static LIST_HEAD(regulator_map_list);
48static bool has_full_constraints;
49static bool board_wants_dummy_regulator;
50
51#ifdef CONFIG_DEBUG_FS
52static struct dentry *debugfs_root;
53#endif
54
55/*
56 * struct regulator_map
57 *
58 * Used to provide symbolic supply names to devices.
59 */
60struct regulator_map {
61	struct list_head list;
62	const char *dev_name;   /* The dev_name() for the consumer */
63	const char *supply;
64	struct regulator_dev *regulator;
65};
66
67/*
68 * struct regulator
69 *
70 * One for each consumer device.
71 */
72struct regulator {
73	struct device *dev;
74	struct list_head list;
75	int uA_load;
76	int min_uV;
77	int max_uV;
78	char *supply_name;
79	struct device_attribute dev_attr;
80	struct regulator_dev *rdev;
81};
82
83static int _regulator_is_enabled(struct regulator_dev *rdev);
84static int _regulator_disable(struct regulator_dev *rdev,
85		struct regulator_dev **supply_rdev_ptr);
86static int _regulator_get_voltage(struct regulator_dev *rdev);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static void _notifier_call_chain(struct regulator_dev *rdev,
90				  unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92				     int min_uV, int max_uV);
93
94static const char *rdev_get_name(struct regulator_dev *rdev)
95{
96	if (rdev->constraints && rdev->constraints->name)
97		return rdev->constraints->name;
98	else if (rdev->desc->name)
99		return rdev->desc->name;
100	else
101		return "";
102}
103
104/* gets the regulator for a given consumer device */
105static struct regulator *get_device_regulator(struct device *dev)
106{
107	struct regulator *regulator = NULL;
108	struct regulator_dev *rdev;
109
110	mutex_lock(&regulator_list_mutex);
111	list_for_each_entry(rdev, &regulator_list, list) {
112		mutex_lock(&rdev->mutex);
113		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114			if (regulator->dev == dev) {
115				mutex_unlock(&rdev->mutex);
116				mutex_unlock(&regulator_list_mutex);
117				return regulator;
118			}
119		}
120		mutex_unlock(&rdev->mutex);
121	}
122	mutex_unlock(&regulator_list_mutex);
123	return NULL;
124}
125
126/* Platform voltage constraint check */
127static int regulator_check_voltage(struct regulator_dev *rdev,
128				   int *min_uV, int *max_uV)
129{
130	BUG_ON(*min_uV > *max_uV);
131
132	if (!rdev->constraints) {
133		rdev_err(rdev, "no constraints\n");
134		return -ENODEV;
135	}
136	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137		rdev_err(rdev, "operation not allowed\n");
138		return -EPERM;
139	}
140
141	if (*max_uV > rdev->constraints->max_uV)
142		*max_uV = rdev->constraints->max_uV;
143	if (*min_uV < rdev->constraints->min_uV)
144		*min_uV = rdev->constraints->min_uV;
145
146	if (*min_uV > *max_uV)
147		return -EINVAL;
148
149	return 0;
150}
151
152/* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
154 */
155static int regulator_check_consumers(struct regulator_dev *rdev,
156				     int *min_uV, int *max_uV)
157{
158	struct regulator *regulator;
159
160	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161		if (*max_uV > regulator->max_uV)
162			*max_uV = regulator->max_uV;
163		if (*min_uV < regulator->min_uV)
164			*min_uV = regulator->min_uV;
165	}
166
167	if (*min_uV > *max_uV)
168		return -EINVAL;
169
170	return 0;
171}
172
173/* current constraint check */
174static int regulator_check_current_limit(struct regulator_dev *rdev,
175					int *min_uA, int *max_uA)
176{
177	BUG_ON(*min_uA > *max_uA);
178
179	if (!rdev->constraints) {
180		rdev_err(rdev, "no constraints\n");
181		return -ENODEV;
182	}
183	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184		rdev_err(rdev, "operation not allowed\n");
185		return -EPERM;
186	}
187
188	if (*max_uA > rdev->constraints->max_uA)
189		*max_uA = rdev->constraints->max_uA;
190	if (*min_uA < rdev->constraints->min_uA)
191		*min_uA = rdev->constraints->min_uA;
192
193	if (*min_uA > *max_uA)
194		return -EINVAL;
195
196	return 0;
197}
198
199/* operating mode constraint check */
200static int regulator_check_mode(struct regulator_dev *rdev, int mode)
201{
202	switch (mode) {
203	case REGULATOR_MODE_FAST:
204	case REGULATOR_MODE_NORMAL:
205	case REGULATOR_MODE_IDLE:
206	case REGULATOR_MODE_STANDBY:
207		break;
208	default:
209		return -EINVAL;
210	}
211
212	if (!rdev->constraints) {
213		rdev_err(rdev, "no constraints\n");
214		return -ENODEV;
215	}
216	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217		rdev_err(rdev, "operation not allowed\n");
218		return -EPERM;
219	}
220	if (!(rdev->constraints->valid_modes_mask & mode)) {
221		rdev_err(rdev, "invalid mode %x\n", mode);
222		return -EINVAL;
223	}
224	return 0;
225}
226
227/* dynamic regulator mode switching constraint check */
228static int regulator_check_drms(struct regulator_dev *rdev)
229{
230	if (!rdev->constraints) {
231		rdev_err(rdev, "no constraints\n");
232		return -ENODEV;
233	}
234	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
235		rdev_err(rdev, "operation not allowed\n");
236		return -EPERM;
237	}
238	return 0;
239}
240
241static ssize_t device_requested_uA_show(struct device *dev,
242			     struct device_attribute *attr, char *buf)
243{
244	struct regulator *regulator;
245
246	regulator = get_device_regulator(dev);
247	if (regulator == NULL)
248		return 0;
249
250	return sprintf(buf, "%d\n", regulator->uA_load);
251}
252
253static ssize_t regulator_uV_show(struct device *dev,
254				struct device_attribute *attr, char *buf)
255{
256	struct regulator_dev *rdev = dev_get_drvdata(dev);
257	ssize_t ret;
258
259	mutex_lock(&rdev->mutex);
260	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
261	mutex_unlock(&rdev->mutex);
262
263	return ret;
264}
265static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
266
267static ssize_t regulator_uA_show(struct device *dev,
268				struct device_attribute *attr, char *buf)
269{
270	struct regulator_dev *rdev = dev_get_drvdata(dev);
271
272	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
273}
274static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
275
276static ssize_t regulator_name_show(struct device *dev,
277			     struct device_attribute *attr, char *buf)
278{
279	struct regulator_dev *rdev = dev_get_drvdata(dev);
280
281	return sprintf(buf, "%s\n", rdev_get_name(rdev));
282}
283
284static ssize_t regulator_print_opmode(char *buf, int mode)
285{
286	switch (mode) {
287	case REGULATOR_MODE_FAST:
288		return sprintf(buf, "fast\n");
289	case REGULATOR_MODE_NORMAL:
290		return sprintf(buf, "normal\n");
291	case REGULATOR_MODE_IDLE:
292		return sprintf(buf, "idle\n");
293	case REGULATOR_MODE_STANDBY:
294		return sprintf(buf, "standby\n");
295	}
296	return sprintf(buf, "unknown\n");
297}
298
299static ssize_t regulator_opmode_show(struct device *dev,
300				    struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
305}
306static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
307
308static ssize_t regulator_print_state(char *buf, int state)
309{
310	if (state > 0)
311		return sprintf(buf, "enabled\n");
312	else if (state == 0)
313		return sprintf(buf, "disabled\n");
314	else
315		return sprintf(buf, "unknown\n");
316}
317
318static ssize_t regulator_state_show(struct device *dev,
319				   struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
331
332static ssize_t regulator_status_show(struct device *dev,
333				   struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336	int status;
337	char *label;
338
339	status = rdev->desc->ops->get_status(rdev);
340	if (status < 0)
341		return status;
342
343	switch (status) {
344	case REGULATOR_STATUS_OFF:
345		label = "off";
346		break;
347	case REGULATOR_STATUS_ON:
348		label = "on";
349		break;
350	case REGULATOR_STATUS_ERROR:
351		label = "error";
352		break;
353	case REGULATOR_STATUS_FAST:
354		label = "fast";
355		break;
356	case REGULATOR_STATUS_NORMAL:
357		label = "normal";
358		break;
359	case REGULATOR_STATUS_IDLE:
360		label = "idle";
361		break;
362	case REGULATOR_STATUS_STANDBY:
363		label = "standby";
364		break;
365	default:
366		return -ERANGE;
367	}
368
369	return sprintf(buf, "%s\n", label);
370}
371static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
372
373static ssize_t regulator_min_uA_show(struct device *dev,
374				    struct device_attribute *attr, char *buf)
375{
376	struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378	if (!rdev->constraints)
379		return sprintf(buf, "constraint not defined\n");
380
381	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
382}
383static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
384
385static ssize_t regulator_max_uA_show(struct device *dev,
386				    struct device_attribute *attr, char *buf)
387{
388	struct regulator_dev *rdev = dev_get_drvdata(dev);
389
390	if (!rdev->constraints)
391		return sprintf(buf, "constraint not defined\n");
392
393	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
394}
395static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
396
397static ssize_t regulator_min_uV_show(struct device *dev,
398				    struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402	if (!rdev->constraints)
403		return sprintf(buf, "constraint not defined\n");
404
405	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
406}
407static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
408
409static ssize_t regulator_max_uV_show(struct device *dev,
410				    struct device_attribute *attr, char *buf)
411{
412	struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414	if (!rdev->constraints)
415		return sprintf(buf, "constraint not defined\n");
416
417	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
418}
419static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
420
421static ssize_t regulator_total_uA_show(struct device *dev,
422				      struct device_attribute *attr, char *buf)
423{
424	struct regulator_dev *rdev = dev_get_drvdata(dev);
425	struct regulator *regulator;
426	int uA = 0;
427
428	mutex_lock(&rdev->mutex);
429	list_for_each_entry(regulator, &rdev->consumer_list, list)
430		uA += regulator->uA_load;
431	mutex_unlock(&rdev->mutex);
432	return sprintf(buf, "%d\n", uA);
433}
434static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
435
436static ssize_t regulator_num_users_show(struct device *dev,
437				      struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440	return sprintf(buf, "%d\n", rdev->use_count);
441}
442
443static ssize_t regulator_type_show(struct device *dev,
444				  struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	switch (rdev->desc->type) {
449	case REGULATOR_VOLTAGE:
450		return sprintf(buf, "voltage\n");
451	case REGULATOR_CURRENT:
452		return sprintf(buf, "current\n");
453	}
454	return sprintf(buf, "unknown\n");
455}
456
457static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
458				struct device_attribute *attr, char *buf)
459{
460	struct regulator_dev *rdev = dev_get_drvdata(dev);
461
462	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
463}
464static DEVICE_ATTR(suspend_mem_microvolts, 0444,
465		regulator_suspend_mem_uV_show, NULL);
466
467static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
468				struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
473}
474static DEVICE_ATTR(suspend_disk_microvolts, 0444,
475		regulator_suspend_disk_uV_show, NULL);
476
477static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
478				struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
483}
484static DEVICE_ATTR(suspend_standby_microvolts, 0444,
485		regulator_suspend_standby_uV_show, NULL);
486
487static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
488				struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_opmode(buf,
493		rdev->constraints->state_mem.mode);
494}
495static DEVICE_ATTR(suspend_mem_mode, 0444,
496		regulator_suspend_mem_mode_show, NULL);
497
498static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
499				struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_opmode(buf,
504		rdev->constraints->state_disk.mode);
505}
506static DEVICE_ATTR(suspend_disk_mode, 0444,
507		regulator_suspend_disk_mode_show, NULL);
508
509static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return regulator_print_opmode(buf,
515		rdev->constraints->state_standby.mode);
516}
517static DEVICE_ATTR(suspend_standby_mode, 0444,
518		regulator_suspend_standby_mode_show, NULL);
519
520static ssize_t regulator_suspend_mem_state_show(struct device *dev,
521				   struct device_attribute *attr, char *buf)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524
525	return regulator_print_state(buf,
526			rdev->constraints->state_mem.enabled);
527}
528static DEVICE_ATTR(suspend_mem_state, 0444,
529		regulator_suspend_mem_state_show, NULL);
530
531static ssize_t regulator_suspend_disk_state_show(struct device *dev,
532				   struct device_attribute *attr, char *buf)
533{
534	struct regulator_dev *rdev = dev_get_drvdata(dev);
535
536	return regulator_print_state(buf,
537			rdev->constraints->state_disk.enabled);
538}
539static DEVICE_ATTR(suspend_disk_state, 0444,
540		regulator_suspend_disk_state_show, NULL);
541
542static ssize_t regulator_suspend_standby_state_show(struct device *dev,
543				   struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return regulator_print_state(buf,
548			rdev->constraints->state_standby.enabled);
549}
550static DEVICE_ATTR(suspend_standby_state, 0444,
551		regulator_suspend_standby_state_show, NULL);
552
553
554/*
555 * These are the only attributes are present for all regulators.
556 * Other attributes are a function of regulator functionality.
557 */
558static struct device_attribute regulator_dev_attrs[] = {
559	__ATTR(name, 0444, regulator_name_show, NULL),
560	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
561	__ATTR(type, 0444, regulator_type_show, NULL),
562	__ATTR_NULL,
563};
564
565static void regulator_dev_release(struct device *dev)
566{
567	struct regulator_dev *rdev = dev_get_drvdata(dev);
568	kfree(rdev);
569}
570
571static struct class regulator_class = {
572	.name = "regulator",
573	.dev_release = regulator_dev_release,
574	.dev_attrs = regulator_dev_attrs,
575};
576
577/* Calculate the new optimum regulator operating mode based on the new total
578 * consumer load. All locks held by caller */
579static void drms_uA_update(struct regulator_dev *rdev)
580{
581	struct regulator *sibling;
582	int current_uA = 0, output_uV, input_uV, err;
583	unsigned int mode;
584
585	err = regulator_check_drms(rdev);
586	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
587	    (!rdev->desc->ops->get_voltage &&
588	     !rdev->desc->ops->get_voltage_sel) ||
589	    !rdev->desc->ops->set_mode)
590		return;
591
592	/* get output voltage */
593	output_uV = _regulator_get_voltage(rdev);
594	if (output_uV <= 0)
595		return;
596
597	/* get input voltage */
598	input_uV = 0;
599	if (rdev->supply)
600		input_uV = _regulator_get_voltage(rdev);
601	if (input_uV <= 0)
602		input_uV = rdev->constraints->input_uV;
603	if (input_uV <= 0)
604		return;
605
606	/* calc total requested load */
607	list_for_each_entry(sibling, &rdev->consumer_list, list)
608		current_uA += sibling->uA_load;
609
610	/* now get the optimum mode for our new total regulator load */
611	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
612						  output_uV, current_uA);
613
614	/* check the new mode is allowed */
615	err = regulator_check_mode(rdev, mode);
616	if (err == 0)
617		rdev->desc->ops->set_mode(rdev, mode);
618}
619
620static int suspend_set_state(struct regulator_dev *rdev,
621	struct regulator_state *rstate)
622{
623	int ret = 0;
624	bool can_set_state;
625
626	can_set_state = rdev->desc->ops->set_suspend_enable &&
627		rdev->desc->ops->set_suspend_disable;
628
629	/* If we have no suspend mode configration don't set anything;
630	 * only warn if the driver actually makes the suspend mode
631	 * configurable.
632	 */
633	if (!rstate->enabled && !rstate->disabled) {
634		if (can_set_state)
635			rdev_warn(rdev, "No configuration\n");
636		return 0;
637	}
638
639	if (rstate->enabled && rstate->disabled) {
640		rdev_err(rdev, "invalid configuration\n");
641		return -EINVAL;
642	}
643
644	if (!can_set_state) {
645		rdev_err(rdev, "no way to set suspend state\n");
646		return -EINVAL;
647	}
648
649	if (rstate->enabled)
650		ret = rdev->desc->ops->set_suspend_enable(rdev);
651	else
652		ret = rdev->desc->ops->set_suspend_disable(rdev);
653	if (ret < 0) {
654		rdev_err(rdev, "failed to enabled/disable\n");
655		return ret;
656	}
657
658	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
659		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
660		if (ret < 0) {
661			rdev_err(rdev, "failed to set voltage\n");
662			return ret;
663		}
664	}
665
666	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
667		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
668		if (ret < 0) {
669			rdev_err(rdev, "failed to set mode\n");
670			return ret;
671		}
672	}
673	return ret;
674}
675
676/* locks held by caller */
677static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
678{
679	if (!rdev->constraints)
680		return -EINVAL;
681
682	switch (state) {
683	case PM_SUSPEND_STANDBY:
684		return suspend_set_state(rdev,
685			&rdev->constraints->state_standby);
686	case PM_SUSPEND_MEM:
687		return suspend_set_state(rdev,
688			&rdev->constraints->state_mem);
689	case PM_SUSPEND_MAX:
690		return suspend_set_state(rdev,
691			&rdev->constraints->state_disk);
692	default:
693		return -EINVAL;
694	}
695}
696
697static void print_constraints(struct regulator_dev *rdev)
698{
699	struct regulation_constraints *constraints = rdev->constraints;
700	char buf[80] = "";
701	int count = 0;
702	int ret;
703
704	if (constraints->min_uV && constraints->max_uV) {
705		if (constraints->min_uV == constraints->max_uV)
706			count += sprintf(buf + count, "%d mV ",
707					 constraints->min_uV / 1000);
708		else
709			count += sprintf(buf + count, "%d <--> %d mV ",
710					 constraints->min_uV / 1000,
711					 constraints->max_uV / 1000);
712	}
713
714	if (!constraints->min_uV ||
715	    constraints->min_uV != constraints->max_uV) {
716		ret = _regulator_get_voltage(rdev);
717		if (ret > 0)
718			count += sprintf(buf + count, "at %d mV ", ret / 1000);
719	}
720
721	if (constraints->min_uA && constraints->max_uA) {
722		if (constraints->min_uA == constraints->max_uA)
723			count += sprintf(buf + count, "%d mA ",
724					 constraints->min_uA / 1000);
725		else
726			count += sprintf(buf + count, "%d <--> %d mA ",
727					 constraints->min_uA / 1000,
728					 constraints->max_uA / 1000);
729	}
730
731	if (!constraints->min_uA ||
732	    constraints->min_uA != constraints->max_uA) {
733		ret = _regulator_get_current_limit(rdev);
734		if (ret > 0)
735			count += sprintf(buf + count, "at %d mA ", ret / 1000);
736	}
737
738	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
739		count += sprintf(buf + count, "fast ");
740	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
741		count += sprintf(buf + count, "normal ");
742	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
743		count += sprintf(buf + count, "idle ");
744	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
745		count += sprintf(buf + count, "standby");
746
747	rdev_info(rdev, "%s\n", buf);
748}
749
750static int machine_constraints_voltage(struct regulator_dev *rdev,
751	struct regulation_constraints *constraints)
752{
753	struct regulator_ops *ops = rdev->desc->ops;
754	int ret;
755
756	/* do we need to apply the constraint voltage */
757	if (rdev->constraints->apply_uV &&
758	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
759		ret = _regulator_do_set_voltage(rdev,
760						rdev->constraints->min_uV,
761						rdev->constraints->max_uV);
762		if (ret < 0) {
763			rdev_err(rdev, "failed to apply %duV constraint\n",
764				 rdev->constraints->min_uV);
765			rdev->constraints = NULL;
766			return ret;
767		}
768	}
769
770	/* constrain machine-level voltage specs to fit
771	 * the actual range supported by this regulator.
772	 */
773	if (ops->list_voltage && rdev->desc->n_voltages) {
774		int	count = rdev->desc->n_voltages;
775		int	i;
776		int	min_uV = INT_MAX;
777		int	max_uV = INT_MIN;
778		int	cmin = constraints->min_uV;
779		int	cmax = constraints->max_uV;
780
781		/* it's safe to autoconfigure fixed-voltage supplies
782		   and the constraints are used by list_voltage. */
783		if (count == 1 && !cmin) {
784			cmin = 1;
785			cmax = INT_MAX;
786			constraints->min_uV = cmin;
787			constraints->max_uV = cmax;
788		}
789
790		/* voltage constraints are optional */
791		if ((cmin == 0) && (cmax == 0))
792			return 0;
793
794		/* else require explicit machine-level constraints */
795		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
796			rdev_err(rdev, "invalid voltage constraints\n");
797			return -EINVAL;
798		}
799
800		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
801		for (i = 0; i < count; i++) {
802			int	value;
803
804			value = ops->list_voltage(rdev, i);
805			if (value <= 0)
806				continue;
807
808			/* maybe adjust [min_uV..max_uV] */
809			if (value >= cmin && value < min_uV)
810				min_uV = value;
811			if (value <= cmax && value > max_uV)
812				max_uV = value;
813		}
814
815		/* final: [min_uV..max_uV] valid iff constraints valid */
816		if (max_uV < min_uV) {
817			rdev_err(rdev, "unsupportable voltage constraints\n");
818			return -EINVAL;
819		}
820
821		/* use regulator's subset of machine constraints */
822		if (constraints->min_uV < min_uV) {
823			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
824				 constraints->min_uV, min_uV);
825			constraints->min_uV = min_uV;
826		}
827		if (constraints->max_uV > max_uV) {
828			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
829				 constraints->max_uV, max_uV);
830			constraints->max_uV = max_uV;
831		}
832	}
833
834	return 0;
835}
836
837/**
838 * set_machine_constraints - sets regulator constraints
839 * @rdev: regulator source
840 * @constraints: constraints to apply
841 *
842 * Allows platform initialisation code to define and constrain
843 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
844 * Constraints *must* be set by platform code in order for some
845 * regulator operations to proceed i.e. set_voltage, set_current_limit,
846 * set_mode.
847 */
848static int set_machine_constraints(struct regulator_dev *rdev,
849	const struct regulation_constraints *constraints)
850{
851	int ret = 0;
852	struct regulator_ops *ops = rdev->desc->ops;
853
854	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
855				    GFP_KERNEL);
856	if (!rdev->constraints)
857		return -ENOMEM;
858
859	ret = machine_constraints_voltage(rdev, rdev->constraints);
860	if (ret != 0)
861		goto out;
862
863	/* do we need to setup our suspend state */
864	if (constraints->initial_state) {
865		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
866		if (ret < 0) {
867			rdev_err(rdev, "failed to set suspend state\n");
868			rdev->constraints = NULL;
869			goto out;
870		}
871	}
872
873	if (constraints->initial_mode) {
874		if (!ops->set_mode) {
875			rdev_err(rdev, "no set_mode operation\n");
876			ret = -EINVAL;
877			goto out;
878		}
879
880		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
881		if (ret < 0) {
882			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
883			goto out;
884		}
885	}
886
887	/* If the constraints say the regulator should be on at this point
888	 * and we have control then make sure it is enabled.
889	 */
890	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
891	    ops->enable) {
892		ret = ops->enable(rdev);
893		if (ret < 0) {
894			rdev_err(rdev, "failed to enable\n");
895			rdev->constraints = NULL;
896			goto out;
897		}
898	}
899
900	print_constraints(rdev);
901out:
902	return ret;
903}
904
905/**
906 * set_supply - set regulator supply regulator
907 * @rdev: regulator name
908 * @supply_rdev: supply regulator name
909 *
910 * Called by platform initialisation code to set the supply regulator for this
911 * regulator. This ensures that a regulators supply will also be enabled by the
912 * core if it's child is enabled.
913 */
914static int set_supply(struct regulator_dev *rdev,
915	struct regulator_dev *supply_rdev)
916{
917	int err;
918
919	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
920				"supply");
921	if (err) {
922		rdev_err(rdev, "could not add device link %s err %d\n",
923			 supply_rdev->dev.kobj.name, err);
924		       goto out;
925	}
926	rdev->supply = supply_rdev;
927	list_add(&rdev->slist, &supply_rdev->supply_list);
928out:
929	return err;
930}
931
932/**
933 * set_consumer_device_supply - Bind a regulator to a symbolic supply
934 * @rdev:         regulator source
935 * @consumer_dev: device the supply applies to
936 * @consumer_dev_name: dev_name() string for device supply applies to
937 * @supply:       symbolic name for supply
938 *
939 * Allows platform initialisation code to map physical regulator
940 * sources to symbolic names for supplies for use by devices.  Devices
941 * should use these symbolic names to request regulators, avoiding the
942 * need to provide board-specific regulator names as platform data.
943 *
944 * Only one of consumer_dev and consumer_dev_name may be specified.
945 */
946static int set_consumer_device_supply(struct regulator_dev *rdev,
947	struct device *consumer_dev, const char *consumer_dev_name,
948	const char *supply)
949{
950	struct regulator_map *node;
951	int has_dev;
952
953	if (consumer_dev && consumer_dev_name)
954		return -EINVAL;
955
956	if (!consumer_dev_name && consumer_dev)
957		consumer_dev_name = dev_name(consumer_dev);
958
959	if (supply == NULL)
960		return -EINVAL;
961
962	if (consumer_dev_name != NULL)
963		has_dev = 1;
964	else
965		has_dev = 0;
966
967	list_for_each_entry(node, &regulator_map_list, list) {
968		if (node->dev_name && consumer_dev_name) {
969			if (strcmp(node->dev_name, consumer_dev_name) != 0)
970				continue;
971		} else if (node->dev_name || consumer_dev_name) {
972			continue;
973		}
974
975		if (strcmp(node->supply, supply) != 0)
976			continue;
977
978		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
979			dev_name(&node->regulator->dev),
980			node->regulator->desc->name,
981			supply,
982			dev_name(&rdev->dev), rdev_get_name(rdev));
983		return -EBUSY;
984	}
985
986	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
987	if (node == NULL)
988		return -ENOMEM;
989
990	node->regulator = rdev;
991	node->supply = supply;
992
993	if (has_dev) {
994		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
995		if (node->dev_name == NULL) {
996			kfree(node);
997			return -ENOMEM;
998		}
999	}
1000
1001	list_add(&node->list, &regulator_map_list);
1002	return 0;
1003}
1004
1005static void unset_regulator_supplies(struct regulator_dev *rdev)
1006{
1007	struct regulator_map *node, *n;
1008
1009	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010		if (rdev == node->regulator) {
1011			list_del(&node->list);
1012			kfree(node->dev_name);
1013			kfree(node);
1014		}
1015	}
1016}
1017
1018#define REG_STR_SIZE	32
1019
1020static struct regulator *create_regulator(struct regulator_dev *rdev,
1021					  struct device *dev,
1022					  const char *supply_name)
1023{
1024	struct regulator *regulator;
1025	char buf[REG_STR_SIZE];
1026	int err, size;
1027
1028	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029	if (regulator == NULL)
1030		return NULL;
1031
1032	mutex_lock(&rdev->mutex);
1033	regulator->rdev = rdev;
1034	list_add(&regulator->list, &rdev->consumer_list);
1035
1036	if (dev) {
1037		/* create a 'requested_microamps_name' sysfs entry */
1038		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039			supply_name);
1040		if (size >= REG_STR_SIZE)
1041			goto overflow_err;
1042
1043		regulator->dev = dev;
1044		sysfs_attr_init(&regulator->dev_attr.attr);
1045		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046		if (regulator->dev_attr.attr.name == NULL)
1047			goto attr_name_err;
1048
1049		regulator->dev_attr.attr.mode = 0444;
1050		regulator->dev_attr.show = device_requested_uA_show;
1051		err = device_create_file(dev, &regulator->dev_attr);
1052		if (err < 0) {
1053			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054			goto attr_name_err;
1055		}
1056
1057		/* also add a link to the device sysfs entry */
1058		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059				 dev->kobj.name, supply_name);
1060		if (size >= REG_STR_SIZE)
1061			goto attr_err;
1062
1063		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064		if (regulator->supply_name == NULL)
1065			goto attr_err;
1066
1067		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068					buf);
1069		if (err) {
1070			rdev_warn(rdev, "could not add device link %s err %d\n",
1071				  dev->kobj.name, err);
1072			goto link_name_err;
1073		}
1074	}
1075	mutex_unlock(&rdev->mutex);
1076	return regulator;
1077link_name_err:
1078	kfree(regulator->supply_name);
1079attr_err:
1080	device_remove_file(regulator->dev, &regulator->dev_attr);
1081attr_name_err:
1082	kfree(regulator->dev_attr.attr.name);
1083overflow_err:
1084	list_del(&regulator->list);
1085	kfree(regulator);
1086	mutex_unlock(&rdev->mutex);
1087	return NULL;
1088}
1089
1090static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091{
1092	if (!rdev->desc->ops->enable_time)
1093		return 0;
1094	return rdev->desc->ops->enable_time(rdev);
1095}
1096
1097/* Internal regulator request function */
1098static struct regulator *_regulator_get(struct device *dev, const char *id,
1099					int exclusive)
1100{
1101	struct regulator_dev *rdev;
1102	struct regulator_map *map;
1103	struct regulator *regulator = ERR_PTR(-ENODEV);
1104	const char *devname = NULL;
1105	int ret;
1106
1107	if (id == NULL) {
1108		pr_err("get() with no identifier\n");
1109		return regulator;
1110	}
1111
1112	if (dev)
1113		devname = dev_name(dev);
1114
1115	mutex_lock(&regulator_list_mutex);
1116
1117	list_for_each_entry(map, &regulator_map_list, list) {
1118		/* If the mapping has a device set up it must match */
1119		if (map->dev_name &&
1120		    (!devname || strcmp(map->dev_name, devname)))
1121			continue;
1122
1123		if (strcmp(map->supply, id) == 0) {
1124			rdev = map->regulator;
1125			goto found;
1126		}
1127	}
1128
1129	if (board_wants_dummy_regulator) {
1130		rdev = dummy_regulator_rdev;
1131		goto found;
1132	}
1133
1134#ifdef CONFIG_REGULATOR_DUMMY
1135	if (!devname)
1136		devname = "deviceless";
1137
1138	/* If the board didn't flag that it was fully constrained then
1139	 * substitute in a dummy regulator so consumers can continue.
1140	 */
1141	if (!has_full_constraints) {
1142		pr_warn("%s supply %s not found, using dummy regulator\n",
1143			devname, id);
1144		rdev = dummy_regulator_rdev;
1145		goto found;
1146	}
1147#endif
1148
1149	mutex_unlock(&regulator_list_mutex);
1150	return regulator;
1151
1152found:
1153	if (rdev->exclusive) {
1154		regulator = ERR_PTR(-EPERM);
1155		goto out;
1156	}
1157
1158	if (exclusive && rdev->open_count) {
1159		regulator = ERR_PTR(-EBUSY);
1160		goto out;
1161	}
1162
1163	if (!try_module_get(rdev->owner))
1164		goto out;
1165
1166	regulator = create_regulator(rdev, dev, id);
1167	if (regulator == NULL) {
1168		regulator = ERR_PTR(-ENOMEM);
1169		module_put(rdev->owner);
1170	}
1171
1172	rdev->open_count++;
1173	if (exclusive) {
1174		rdev->exclusive = 1;
1175
1176		ret = _regulator_is_enabled(rdev);
1177		if (ret > 0)
1178			rdev->use_count = 1;
1179		else
1180			rdev->use_count = 0;
1181	}
1182
1183out:
1184	mutex_unlock(&regulator_list_mutex);
1185
1186	return regulator;
1187}
1188
1189/**
1190 * regulator_get - lookup and obtain a reference to a regulator.
1191 * @dev: device for regulator "consumer"
1192 * @id: Supply name or regulator ID.
1193 *
1194 * Returns a struct regulator corresponding to the regulator producer,
1195 * or IS_ERR() condition containing errno.
1196 *
1197 * Use of supply names configured via regulator_set_device_supply() is
1198 * strongly encouraged.  It is recommended that the supply name used
1199 * should match the name used for the supply and/or the relevant
1200 * device pins in the datasheet.
1201 */
1202struct regulator *regulator_get(struct device *dev, const char *id)
1203{
1204	return _regulator_get(dev, id, 0);
1205}
1206EXPORT_SYMBOL_GPL(regulator_get);
1207
1208/**
1209 * regulator_get_exclusive - obtain exclusive access to a regulator.
1210 * @dev: device for regulator "consumer"
1211 * @id: Supply name or regulator ID.
1212 *
1213 * Returns a struct regulator corresponding to the regulator producer,
1214 * or IS_ERR() condition containing errno.  Other consumers will be
1215 * unable to obtain this reference is held and the use count for the
1216 * regulator will be initialised to reflect the current state of the
1217 * regulator.
1218 *
1219 * This is intended for use by consumers which cannot tolerate shared
1220 * use of the regulator such as those which need to force the
1221 * regulator off for correct operation of the hardware they are
1222 * controlling.
1223 *
1224 * Use of supply names configured via regulator_set_device_supply() is
1225 * strongly encouraged.  It is recommended that the supply name used
1226 * should match the name used for the supply and/or the relevant
1227 * device pins in the datasheet.
1228 */
1229struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1230{
1231	return _regulator_get(dev, id, 1);
1232}
1233EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1234
1235/**
1236 * regulator_put - "free" the regulator source
1237 * @regulator: regulator source
1238 *
1239 * Note: drivers must ensure that all regulator_enable calls made on this
1240 * regulator source are balanced by regulator_disable calls prior to calling
1241 * this function.
1242 */
1243void regulator_put(struct regulator *regulator)
1244{
1245	struct regulator_dev *rdev;
1246
1247	if (regulator == NULL || IS_ERR(regulator))
1248		return;
1249
1250	mutex_lock(&regulator_list_mutex);
1251	rdev = regulator->rdev;
1252
1253	/* remove any sysfs entries */
1254	if (regulator->dev) {
1255		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256		kfree(regulator->supply_name);
1257		device_remove_file(regulator->dev, &regulator->dev_attr);
1258		kfree(regulator->dev_attr.attr.name);
1259	}
1260	list_del(&regulator->list);
1261	kfree(regulator);
1262
1263	rdev->open_count--;
1264	rdev->exclusive = 0;
1265
1266	module_put(rdev->owner);
1267	mutex_unlock(&regulator_list_mutex);
1268}
1269EXPORT_SYMBOL_GPL(regulator_put);
1270
1271static int _regulator_can_change_status(struct regulator_dev *rdev)
1272{
1273	if (!rdev->constraints)
1274		return 0;
1275
1276	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277		return 1;
1278	else
1279		return 0;
1280}
1281
1282/* locks held by regulator_enable() */
1283static int _regulator_enable(struct regulator_dev *rdev)
1284{
1285	int ret, delay;
1286
1287	if (rdev->use_count == 0) {
1288		/* do we need to enable the supply regulator first */
1289		if (rdev->supply) {
1290			mutex_lock(&rdev->supply->mutex);
1291			ret = _regulator_enable(rdev->supply);
1292			mutex_unlock(&rdev->supply->mutex);
1293			if (ret < 0) {
1294				rdev_err(rdev, "failed to enable: %d\n", ret);
1295				return ret;
1296			}
1297		}
1298	}
1299
1300	/* check voltage and requested load before enabling */
1301	if (rdev->constraints &&
1302	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303		drms_uA_update(rdev);
1304
1305	if (rdev->use_count == 0) {
1306		/* The regulator may on if it's not switchable or left on */
1307		ret = _regulator_is_enabled(rdev);
1308		if (ret == -EINVAL || ret == 0) {
1309			if (!_regulator_can_change_status(rdev))
1310				return -EPERM;
1311
1312			if (!rdev->desc->ops->enable)
1313				return -EINVAL;
1314
1315			/* Query before enabling in case configuration
1316			 * dependent.  */
1317			ret = _regulator_get_enable_time(rdev);
1318			if (ret >= 0) {
1319				delay = ret;
1320			} else {
1321				rdev_warn(rdev, "enable_time() failed: %d\n",
1322					   ret);
1323				delay = 0;
1324			}
1325
1326			trace_regulator_enable(rdev_get_name(rdev));
1327
1328			/* Allow the regulator to ramp; it would be useful
1329			 * to extend this for bulk operations so that the
1330			 * regulators can ramp together.  */
1331			ret = rdev->desc->ops->enable(rdev);
1332			if (ret < 0)
1333				return ret;
1334
1335			trace_regulator_enable_delay(rdev_get_name(rdev));
1336
1337			if (delay >= 1000) {
1338				mdelay(delay / 1000);
1339				udelay(delay % 1000);
1340			} else if (delay) {
1341				udelay(delay);
1342			}
1343
1344			trace_regulator_enable_complete(rdev_get_name(rdev));
1345
1346		} else if (ret < 0) {
1347			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348			return ret;
1349		}
1350		/* Fallthrough on positive return values - already enabled */
1351	}
1352
1353	rdev->use_count++;
1354
1355	return 0;
1356}
1357
1358/**
1359 * regulator_enable - enable regulator output
1360 * @regulator: regulator source
1361 *
1362 * Request that the regulator be enabled with the regulator output at
1363 * the predefined voltage or current value.  Calls to regulator_enable()
1364 * must be balanced with calls to regulator_disable().
1365 *
1366 * NOTE: the output value can be set by other drivers, boot loader or may be
1367 * hardwired in the regulator.
1368 */
1369int regulator_enable(struct regulator *regulator)
1370{
1371	struct regulator_dev *rdev = regulator->rdev;
1372	int ret = 0;
1373
1374	mutex_lock(&rdev->mutex);
1375	ret = _regulator_enable(rdev);
1376	mutex_unlock(&rdev->mutex);
1377	return ret;
1378}
1379EXPORT_SYMBOL_GPL(regulator_enable);
1380
1381/* locks held by regulator_disable() */
1382static int _regulator_disable(struct regulator_dev *rdev,
1383		struct regulator_dev **supply_rdev_ptr)
1384{
1385	int ret = 0;
1386	*supply_rdev_ptr = NULL;
1387
1388	if (WARN(rdev->use_count <= 0,
1389		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390		return -EIO;
1391
1392	/* are we the last user and permitted to disable ? */
1393	if (rdev->use_count == 1 &&
1394	    (rdev->constraints && !rdev->constraints->always_on)) {
1395
1396		/* we are last user */
1397		if (_regulator_can_change_status(rdev) &&
1398		    rdev->desc->ops->disable) {
1399			trace_regulator_disable(rdev_get_name(rdev));
1400
1401			ret = rdev->desc->ops->disable(rdev);
1402			if (ret < 0) {
1403				rdev_err(rdev, "failed to disable\n");
1404				return ret;
1405			}
1406
1407			trace_regulator_disable_complete(rdev_get_name(rdev));
1408
1409			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410					     NULL);
1411		}
1412
1413		/* decrease our supplies ref count and disable if required */
1414		*supply_rdev_ptr = rdev->supply;
1415
1416		rdev->use_count = 0;
1417	} else if (rdev->use_count > 1) {
1418
1419		if (rdev->constraints &&
1420			(rdev->constraints->valid_ops_mask &
1421			REGULATOR_CHANGE_DRMS))
1422			drms_uA_update(rdev);
1423
1424		rdev->use_count--;
1425	}
1426	return ret;
1427}
1428
1429/**
1430 * regulator_disable - disable regulator output
1431 * @regulator: regulator source
1432 *
1433 * Disable the regulator output voltage or current.  Calls to
1434 * regulator_enable() must be balanced with calls to
1435 * regulator_disable().
1436 *
1437 * NOTE: this will only disable the regulator output if no other consumer
1438 * devices have it enabled, the regulator device supports disabling and
1439 * machine constraints permit this operation.
1440 */
1441int regulator_disable(struct regulator *regulator)
1442{
1443	struct regulator_dev *rdev = regulator->rdev;
1444	struct regulator_dev *supply_rdev = NULL;
1445	int ret = 0;
1446
1447	mutex_lock(&rdev->mutex);
1448	ret = _regulator_disable(rdev, &supply_rdev);
1449	mutex_unlock(&rdev->mutex);
1450
1451	/* decrease our supplies ref count and disable if required */
1452	while (supply_rdev != NULL) {
1453		rdev = supply_rdev;
1454
1455		mutex_lock(&rdev->mutex);
1456		_regulator_disable(rdev, &supply_rdev);
1457		mutex_unlock(&rdev->mutex);
1458	}
1459
1460	return ret;
1461}
1462EXPORT_SYMBOL_GPL(regulator_disable);
1463
1464/* locks held by regulator_force_disable() */
1465static int _regulator_force_disable(struct regulator_dev *rdev,
1466		struct regulator_dev **supply_rdev_ptr)
1467{
1468	int ret = 0;
1469
1470	/* force disable */
1471	if (rdev->desc->ops->disable) {
1472		/* ah well, who wants to live forever... */
1473		ret = rdev->desc->ops->disable(rdev);
1474		if (ret < 0) {
1475			rdev_err(rdev, "failed to force disable\n");
1476			return ret;
1477		}
1478		/* notify other consumers that power has been forced off */
1479		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480			REGULATOR_EVENT_DISABLE, NULL);
1481	}
1482
1483	/* decrease our supplies ref count and disable if required */
1484	*supply_rdev_ptr = rdev->supply;
1485
1486	rdev->use_count = 0;
1487	return ret;
1488}
1489
1490/**
1491 * regulator_force_disable - force disable regulator output
1492 * @regulator: regulator source
1493 *
1494 * Forcibly disable the regulator output voltage or current.
1495 * NOTE: this *will* disable the regulator output even if other consumer
1496 * devices have it enabled. This should be used for situations when device
1497 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1498 */
1499int regulator_force_disable(struct regulator *regulator)
1500{
1501	struct regulator_dev *supply_rdev = NULL;
1502	int ret;
1503
1504	mutex_lock(&regulator->rdev->mutex);
1505	regulator->uA_load = 0;
1506	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507	mutex_unlock(&regulator->rdev->mutex);
1508
1509	if (supply_rdev)
1510		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1511
1512	return ret;
1513}
1514EXPORT_SYMBOL_GPL(regulator_force_disable);
1515
1516static int _regulator_is_enabled(struct regulator_dev *rdev)
1517{
1518	/* If we don't know then assume that the regulator is always on */
1519	if (!rdev->desc->ops->is_enabled)
1520		return 1;
1521
1522	return rdev->desc->ops->is_enabled(rdev);
1523}
1524
1525/**
1526 * regulator_is_enabled - is the regulator output enabled
1527 * @regulator: regulator source
1528 *
1529 * Returns positive if the regulator driver backing the source/client
1530 * has requested that the device be enabled, zero if it hasn't, else a
1531 * negative errno code.
1532 *
1533 * Note that the device backing this regulator handle can have multiple
1534 * users, so it might be enabled even if regulator_enable() was never
1535 * called for this particular source.
1536 */
1537int regulator_is_enabled(struct regulator *regulator)
1538{
1539	int ret;
1540
1541	mutex_lock(&regulator->rdev->mutex);
1542	ret = _regulator_is_enabled(regulator->rdev);
1543	mutex_unlock(&regulator->rdev->mutex);
1544
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(regulator_is_enabled);
1548
1549/**
1550 * regulator_count_voltages - count regulator_list_voltage() selectors
1551 * @regulator: regulator source
1552 *
1553 * Returns number of selectors, or negative errno.  Selectors are
1554 * numbered starting at zero, and typically correspond to bitfields
1555 * in hardware registers.
1556 */
1557int regulator_count_voltages(struct regulator *regulator)
1558{
1559	struct regulator_dev	*rdev = regulator->rdev;
1560
1561	return rdev->desc->n_voltages ? : -EINVAL;
1562}
1563EXPORT_SYMBOL_GPL(regulator_count_voltages);
1564
1565/**
1566 * regulator_list_voltage - enumerate supported voltages
1567 * @regulator: regulator source
1568 * @selector: identify voltage to list
1569 * Context: can sleep
1570 *
1571 * Returns a voltage that can be passed to @regulator_set_voltage(),
1572 * zero if this selector code can't be used on this system, or a
1573 * negative errno.
1574 */
1575int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1576{
1577	struct regulator_dev	*rdev = regulator->rdev;
1578	struct regulator_ops	*ops = rdev->desc->ops;
1579	int			ret;
1580
1581	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582		return -EINVAL;
1583
1584	mutex_lock(&rdev->mutex);
1585	ret = ops->list_voltage(rdev, selector);
1586	mutex_unlock(&rdev->mutex);
1587
1588	if (ret > 0) {
1589		if (ret < rdev->constraints->min_uV)
1590			ret = 0;
1591		else if (ret > rdev->constraints->max_uV)
1592			ret = 0;
1593	}
1594
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(regulator_list_voltage);
1598
1599/**
1600 * regulator_is_supported_voltage - check if a voltage range can be supported
1601 *
1602 * @regulator: Regulator to check.
1603 * @min_uV: Minimum required voltage in uV.
1604 * @max_uV: Maximum required voltage in uV.
1605 *
1606 * Returns a boolean or a negative error code.
1607 */
1608int regulator_is_supported_voltage(struct regulator *regulator,
1609				   int min_uV, int max_uV)
1610{
1611	int i, voltages, ret;
1612
1613	ret = regulator_count_voltages(regulator);
1614	if (ret < 0)
1615		return ret;
1616	voltages = ret;
1617
1618	for (i = 0; i < voltages; i++) {
1619		ret = regulator_list_voltage(regulator, i);
1620
1621		if (ret >= min_uV && ret <= max_uV)
1622			return 1;
1623	}
1624
1625	return 0;
1626}
1627
1628static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629				     int min_uV, int max_uV)
1630{
1631	int ret;
1632	int delay = 0;
1633	unsigned int selector;
1634
1635	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1636
1637	if (rdev->desc->ops->set_voltage) {
1638		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1639						   &selector);
1640
1641		if (rdev->desc->ops->list_voltage)
1642			selector = rdev->desc->ops->list_voltage(rdev,
1643								 selector);
1644		else
1645			selector = -1;
1646	} else if (rdev->desc->ops->set_voltage_sel) {
1647		int best_val = INT_MAX;
1648		int i;
1649
1650		selector = 0;
1651
1652		/* Find the smallest voltage that falls within the specified
1653		 * range.
1654		 */
1655		for (i = 0; i < rdev->desc->n_voltages; i++) {
1656			ret = rdev->desc->ops->list_voltage(rdev, i);
1657			if (ret < 0)
1658				continue;
1659
1660			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1661				best_val = ret;
1662				selector = i;
1663			}
1664		}
1665
1666		/*
1667		 * If we can't obtain the old selector there is not enough
1668		 * info to call set_voltage_time_sel().
1669		 */
1670		if (rdev->desc->ops->set_voltage_time_sel &&
1671		    rdev->desc->ops->get_voltage_sel) {
1672			unsigned int old_selector = 0;
1673
1674			ret = rdev->desc->ops->get_voltage_sel(rdev);
1675			if (ret < 0)
1676				return ret;
1677			old_selector = ret;
1678			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1679						old_selector, selector);
1680		}
1681
1682		if (best_val != INT_MAX) {
1683			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1684			selector = best_val;
1685		} else {
1686			ret = -EINVAL;
1687		}
1688	} else {
1689		ret = -EINVAL;
1690	}
1691
1692	/* Insert any necessary delays */
1693	if (delay >= 1000) {
1694		mdelay(delay / 1000);
1695		udelay(delay % 1000);
1696	} else if (delay) {
1697		udelay(delay);
1698	}
1699
1700	if (ret == 0)
1701		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1702				     NULL);
1703
1704	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1705
1706	return ret;
1707}
1708
1709/**
1710 * regulator_set_voltage - set regulator output voltage
1711 * @regulator: regulator source
1712 * @min_uV: Minimum required voltage in uV
1713 * @max_uV: Maximum acceptable voltage in uV
1714 *
1715 * Sets a voltage regulator to the desired output voltage. This can be set
1716 * during any regulator state. IOW, regulator can be disabled or enabled.
1717 *
1718 * If the regulator is enabled then the voltage will change to the new value
1719 * immediately otherwise if the regulator is disabled the regulator will
1720 * output at the new voltage when enabled.
1721 *
1722 * NOTE: If the regulator is shared between several devices then the lowest
1723 * request voltage that meets the system constraints will be used.
1724 * Regulator system constraints must be set for this regulator before
1725 * calling this function otherwise this call will fail.
1726 */
1727int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1728{
1729	struct regulator_dev *rdev = regulator->rdev;
1730	int ret = 0;
1731
1732	mutex_lock(&rdev->mutex);
1733
1734	/* If we're setting the same range as last time the change
1735	 * should be a noop (some cpufreq implementations use the same
1736	 * voltage for multiple frequencies, for example).
1737	 */
1738	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1739		goto out;
1740
1741	/* sanity check */
1742	if (!rdev->desc->ops->set_voltage &&
1743	    !rdev->desc->ops->set_voltage_sel) {
1744		ret = -EINVAL;
1745		goto out;
1746	}
1747
1748	/* constraints check */
1749	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1750	if (ret < 0)
1751		goto out;
1752	regulator->min_uV = min_uV;
1753	regulator->max_uV = max_uV;
1754
1755	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1756	if (ret < 0)
1757		goto out;
1758
1759	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1760
1761out:
1762	mutex_unlock(&rdev->mutex);
1763	return ret;
1764}
1765EXPORT_SYMBOL_GPL(regulator_set_voltage);
1766
1767/**
1768 * regulator_set_voltage_time - get raise/fall time
1769 * @regulator: regulator source
1770 * @old_uV: starting voltage in microvolts
1771 * @new_uV: target voltage in microvolts
1772 *
1773 * Provided with the starting and ending voltage, this function attempts to
1774 * calculate the time in microseconds required to rise or fall to this new
1775 * voltage.
1776 */
1777int regulator_set_voltage_time(struct regulator *regulator,
1778			       int old_uV, int new_uV)
1779{
1780	struct regulator_dev	*rdev = regulator->rdev;
1781	struct regulator_ops	*ops = rdev->desc->ops;
1782	int old_sel = -1;
1783	int new_sel = -1;
1784	int voltage;
1785	int i;
1786
1787	/* Currently requires operations to do this */
1788	if (!ops->list_voltage || !ops->set_voltage_time_sel
1789	    || !rdev->desc->n_voltages)
1790		return -EINVAL;
1791
1792	for (i = 0; i < rdev->desc->n_voltages; i++) {
1793		/* We only look for exact voltage matches here */
1794		voltage = regulator_list_voltage(regulator, i);
1795		if (voltage < 0)
1796			return -EINVAL;
1797		if (voltage == 0)
1798			continue;
1799		if (voltage == old_uV)
1800			old_sel = i;
1801		if (voltage == new_uV)
1802			new_sel = i;
1803	}
1804
1805	if (old_sel < 0 || new_sel < 0)
1806		return -EINVAL;
1807
1808	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1809}
1810EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1811
1812/**
1813 * regulator_sync_voltage - re-apply last regulator output voltage
1814 * @regulator: regulator source
1815 *
1816 * Re-apply the last configured voltage.  This is intended to be used
1817 * where some external control source the consumer is cooperating with
1818 * has caused the configured voltage to change.
1819 */
1820int regulator_sync_voltage(struct regulator *regulator)
1821{
1822	struct regulator_dev *rdev = regulator->rdev;
1823	int ret, min_uV, max_uV;
1824
1825	mutex_lock(&rdev->mutex);
1826
1827	if (!rdev->desc->ops->set_voltage &&
1828	    !rdev->desc->ops->set_voltage_sel) {
1829		ret = -EINVAL;
1830		goto out;
1831	}
1832
1833	/* This is only going to work if we've had a voltage configured. */
1834	if (!regulator->min_uV && !regulator->max_uV) {
1835		ret = -EINVAL;
1836		goto out;
1837	}
1838
1839	min_uV = regulator->min_uV;
1840	max_uV = regulator->max_uV;
1841
1842	/* This should be a paranoia check... */
1843	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1844	if (ret < 0)
1845		goto out;
1846
1847	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1848	if (ret < 0)
1849		goto out;
1850
1851	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1852
1853out:
1854	mutex_unlock(&rdev->mutex);
1855	return ret;
1856}
1857EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1858
1859static int _regulator_get_voltage(struct regulator_dev *rdev)
1860{
1861	int sel;
1862
1863	if (rdev->desc->ops->get_voltage_sel) {
1864		sel = rdev->desc->ops->get_voltage_sel(rdev);
1865		if (sel < 0)
1866			return sel;
1867		return rdev->desc->ops->list_voltage(rdev, sel);
1868	}
1869	if (rdev->desc->ops->get_voltage)
1870		return rdev->desc->ops->get_voltage(rdev);
1871	else
1872		return -EINVAL;
1873}
1874
1875/**
1876 * regulator_get_voltage - get regulator output voltage
1877 * @regulator: regulator source
1878 *
1879 * This returns the current regulator voltage in uV.
1880 *
1881 * NOTE: If the regulator is disabled it will return the voltage value. This
1882 * function should not be used to determine regulator state.
1883 */
1884int regulator_get_voltage(struct regulator *regulator)
1885{
1886	int ret;
1887
1888	mutex_lock(&regulator->rdev->mutex);
1889
1890	ret = _regulator_get_voltage(regulator->rdev);
1891
1892	mutex_unlock(&regulator->rdev->mutex);
1893
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(regulator_get_voltage);
1897
1898/**
1899 * regulator_set_current_limit - set regulator output current limit
1900 * @regulator: regulator source
1901 * @min_uA: Minimuum supported current in uA
1902 * @max_uA: Maximum supported current in uA
1903 *
1904 * Sets current sink to the desired output current. This can be set during
1905 * any regulator state. IOW, regulator can be disabled or enabled.
1906 *
1907 * If the regulator is enabled then the current will change to the new value
1908 * immediately otherwise if the regulator is disabled the regulator will
1909 * output at the new current when enabled.
1910 *
1911 * NOTE: Regulator system constraints must be set for this regulator before
1912 * calling this function otherwise this call will fail.
1913 */
1914int regulator_set_current_limit(struct regulator *regulator,
1915			       int min_uA, int max_uA)
1916{
1917	struct regulator_dev *rdev = regulator->rdev;
1918	int ret;
1919
1920	mutex_lock(&rdev->mutex);
1921
1922	/* sanity check */
1923	if (!rdev->desc->ops->set_current_limit) {
1924		ret = -EINVAL;
1925		goto out;
1926	}
1927
1928	/* constraints check */
1929	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1930	if (ret < 0)
1931		goto out;
1932
1933	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1934out:
1935	mutex_unlock(&rdev->mutex);
1936	return ret;
1937}
1938EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1939
1940static int _regulator_get_current_limit(struct regulator_dev *rdev)
1941{
1942	int ret;
1943
1944	mutex_lock(&rdev->mutex);
1945
1946	/* sanity check */
1947	if (!rdev->desc->ops->get_current_limit) {
1948		ret = -EINVAL;
1949		goto out;
1950	}
1951
1952	ret = rdev->desc->ops->get_current_limit(rdev);
1953out:
1954	mutex_unlock(&rdev->mutex);
1955	return ret;
1956}
1957
1958/**
1959 * regulator_get_current_limit - get regulator output current
1960 * @regulator: regulator source
1961 *
1962 * This returns the current supplied by the specified current sink in uA.
1963 *
1964 * NOTE: If the regulator is disabled it will return the current value. This
1965 * function should not be used to determine regulator state.
1966 */
1967int regulator_get_current_limit(struct regulator *regulator)
1968{
1969	return _regulator_get_current_limit(regulator->rdev);
1970}
1971EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1972
1973/**
1974 * regulator_set_mode - set regulator operating mode
1975 * @regulator: regulator source
1976 * @mode: operating mode - one of the REGULATOR_MODE constants
1977 *
1978 * Set regulator operating mode to increase regulator efficiency or improve
1979 * regulation performance.
1980 *
1981 * NOTE: Regulator system constraints must be set for this regulator before
1982 * calling this function otherwise this call will fail.
1983 */
1984int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1985{
1986	struct regulator_dev *rdev = regulator->rdev;
1987	int ret;
1988	int regulator_curr_mode;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->set_mode) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	/* return if the same mode is requested */
1999	if (rdev->desc->ops->get_mode) {
2000		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2001		if (regulator_curr_mode == mode) {
2002			ret = 0;
2003			goto out;
2004		}
2005	}
2006
2007	/* constraints check */
2008	ret = regulator_check_mode(rdev, mode);
2009	if (ret < 0)
2010		goto out;
2011
2012	ret = rdev->desc->ops->set_mode(rdev, mode);
2013out:
2014	mutex_unlock(&rdev->mutex);
2015	return ret;
2016}
2017EXPORT_SYMBOL_GPL(regulator_set_mode);
2018
2019static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2020{
2021	int ret;
2022
2023	mutex_lock(&rdev->mutex);
2024
2025	/* sanity check */
2026	if (!rdev->desc->ops->get_mode) {
2027		ret = -EINVAL;
2028		goto out;
2029	}
2030
2031	ret = rdev->desc->ops->get_mode(rdev);
2032out:
2033	mutex_unlock(&rdev->mutex);
2034	return ret;
2035}
2036
2037/**
2038 * regulator_get_mode - get regulator operating mode
2039 * @regulator: regulator source
2040 *
2041 * Get the current regulator operating mode.
2042 */
2043unsigned int regulator_get_mode(struct regulator *regulator)
2044{
2045	return _regulator_get_mode(regulator->rdev);
2046}
2047EXPORT_SYMBOL_GPL(regulator_get_mode);
2048
2049/**
2050 * regulator_set_optimum_mode - set regulator optimum operating mode
2051 * @regulator: regulator source
2052 * @uA_load: load current
2053 *
2054 * Notifies the regulator core of a new device load. This is then used by
2055 * DRMS (if enabled by constraints) to set the most efficient regulator
2056 * operating mode for the new regulator loading.
2057 *
2058 * Consumer devices notify their supply regulator of the maximum power
2059 * they will require (can be taken from device datasheet in the power
2060 * consumption tables) when they change operational status and hence power
2061 * state. Examples of operational state changes that can affect power
2062 * consumption are :-
2063 *
2064 *    o Device is opened / closed.
2065 *    o Device I/O is about to begin or has just finished.
2066 *    o Device is idling in between work.
2067 *
2068 * This information is also exported via sysfs to userspace.
2069 *
2070 * DRMS will sum the total requested load on the regulator and change
2071 * to the most efficient operating mode if platform constraints allow.
2072 *
2073 * Returns the new regulator mode or error.
2074 */
2075int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2076{
2077	struct regulator_dev *rdev = regulator->rdev;
2078	struct regulator *consumer;
2079	int ret, output_uV, input_uV, total_uA_load = 0;
2080	unsigned int mode;
2081
2082	mutex_lock(&rdev->mutex);
2083
2084	regulator->uA_load = uA_load;
2085	ret = regulator_check_drms(rdev);
2086	if (ret < 0)
2087		goto out;
2088	ret = -EINVAL;
2089
2090	/* sanity check */
2091	if (!rdev->desc->ops->get_optimum_mode)
2092		goto out;
2093
2094	/* get output voltage */
2095	output_uV = _regulator_get_voltage(rdev);
2096	if (output_uV <= 0) {
2097		rdev_err(rdev, "invalid output voltage found\n");
2098		goto out;
2099	}
2100
2101	/* get input voltage */
2102	input_uV = 0;
2103	if (rdev->supply)
2104		input_uV = _regulator_get_voltage(rdev->supply);
2105	if (input_uV <= 0)
2106		input_uV = rdev->constraints->input_uV;
2107	if (input_uV <= 0) {
2108		rdev_err(rdev, "invalid input voltage found\n");
2109		goto out;
2110	}
2111
2112	/* calc total requested load for this regulator */
2113	list_for_each_entry(consumer, &rdev->consumer_list, list)
2114		total_uA_load += consumer->uA_load;
2115
2116	mode = rdev->desc->ops->get_optimum_mode(rdev,
2117						 input_uV, output_uV,
2118						 total_uA_load);
2119	ret = regulator_check_mode(rdev, mode);
2120	if (ret < 0) {
2121		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2122			 total_uA_load, input_uV, output_uV);
2123		goto out;
2124	}
2125
2126	ret = rdev->desc->ops->set_mode(rdev, mode);
2127	if (ret < 0) {
2128		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2129		goto out;
2130	}
2131	ret = mode;
2132out:
2133	mutex_unlock(&rdev->mutex);
2134	return ret;
2135}
2136EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2137
2138/**
2139 * regulator_register_notifier - register regulator event notifier
2140 * @regulator: regulator source
2141 * @nb: notifier block
2142 *
2143 * Register notifier block to receive regulator events.
2144 */
2145int regulator_register_notifier(struct regulator *regulator,
2146			      struct notifier_block *nb)
2147{
2148	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2149						nb);
2150}
2151EXPORT_SYMBOL_GPL(regulator_register_notifier);
2152
2153/**
2154 * regulator_unregister_notifier - unregister regulator event notifier
2155 * @regulator: regulator source
2156 * @nb: notifier block
2157 *
2158 * Unregister regulator event notifier block.
2159 */
2160int regulator_unregister_notifier(struct regulator *regulator,
2161				struct notifier_block *nb)
2162{
2163	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2164						  nb);
2165}
2166EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2167
2168/* notify regulator consumers and downstream regulator consumers.
2169 * Note mutex must be held by caller.
2170 */
2171static void _notifier_call_chain(struct regulator_dev *rdev,
2172				  unsigned long event, void *data)
2173{
2174	struct regulator_dev *_rdev;
2175
2176	/* call rdev chain first */
2177	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2178
2179	/* now notify regulator we supply */
2180	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2181		mutex_lock(&_rdev->mutex);
2182		_notifier_call_chain(_rdev, event, data);
2183		mutex_unlock(&_rdev->mutex);
2184	}
2185}
2186
2187/**
2188 * regulator_bulk_get - get multiple regulator consumers
2189 *
2190 * @dev:           Device to supply
2191 * @num_consumers: Number of consumers to register
2192 * @consumers:     Configuration of consumers; clients are stored here.
2193 *
2194 * @return 0 on success, an errno on failure.
2195 *
2196 * This helper function allows drivers to get several regulator
2197 * consumers in one operation.  If any of the regulators cannot be
2198 * acquired then any regulators that were allocated will be freed
2199 * before returning to the caller.
2200 */
2201int regulator_bulk_get(struct device *dev, int num_consumers,
2202		       struct regulator_bulk_data *consumers)
2203{
2204	int i;
2205	int ret;
2206
2207	for (i = 0; i < num_consumers; i++)
2208		consumers[i].consumer = NULL;
2209
2210	for (i = 0; i < num_consumers; i++) {
2211		consumers[i].consumer = regulator_get(dev,
2212						      consumers[i].supply);
2213		if (IS_ERR(consumers[i].consumer)) {
2214			ret = PTR_ERR(consumers[i].consumer);
2215			dev_err(dev, "Failed to get supply '%s': %d\n",
2216				consumers[i].supply, ret);
2217			consumers[i].consumer = NULL;
2218			goto err;
2219		}
2220	}
2221
2222	return 0;
2223
2224err:
2225	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2226		regulator_put(consumers[i].consumer);
2227
2228	return ret;
2229}
2230EXPORT_SYMBOL_GPL(regulator_bulk_get);
2231
2232/**
2233 * regulator_bulk_enable - enable multiple regulator consumers
2234 *
2235 * @num_consumers: Number of consumers
2236 * @consumers:     Consumer data; clients are stored here.
2237 * @return         0 on success, an errno on failure
2238 *
2239 * This convenience API allows consumers to enable multiple regulator
2240 * clients in a single API call.  If any consumers cannot be enabled
2241 * then any others that were enabled will be disabled again prior to
2242 * return.
2243 */
2244int regulator_bulk_enable(int num_consumers,
2245			  struct regulator_bulk_data *consumers)
2246{
2247	int i;
2248	int ret;
2249
2250	for (i = 0; i < num_consumers; i++) {
2251		ret = regulator_enable(consumers[i].consumer);
2252		if (ret != 0)
2253			goto err;
2254	}
2255
2256	return 0;
2257
2258err:
2259	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2260	for (--i; i >= 0; --i)
2261		regulator_disable(consumers[i].consumer);
2262
2263	return ret;
2264}
2265EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2266
2267/**
2268 * regulator_bulk_disable - disable multiple regulator consumers
2269 *
2270 * @num_consumers: Number of consumers
2271 * @consumers:     Consumer data; clients are stored here.
2272 * @return         0 on success, an errno on failure
2273 *
2274 * This convenience API allows consumers to disable multiple regulator
2275 * clients in a single API call.  If any consumers cannot be enabled
2276 * then any others that were disabled will be disabled again prior to
2277 * return.
2278 */
2279int regulator_bulk_disable(int num_consumers,
2280			   struct regulator_bulk_data *consumers)
2281{
2282	int i;
2283	int ret;
2284
2285	for (i = 0; i < num_consumers; i++) {
2286		ret = regulator_disable(consumers[i].consumer);
2287		if (ret != 0)
2288			goto err;
2289	}
2290
2291	return 0;
2292
2293err:
2294	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2295	for (--i; i >= 0; --i)
2296		regulator_enable(consumers[i].consumer);
2297
2298	return ret;
2299}
2300EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2301
2302/**
2303 * regulator_bulk_free - free multiple regulator consumers
2304 *
2305 * @num_consumers: Number of consumers
2306 * @consumers:     Consumer data; clients are stored here.
2307 *
2308 * This convenience API allows consumers to free multiple regulator
2309 * clients in a single API call.
2310 */
2311void regulator_bulk_free(int num_consumers,
2312			 struct regulator_bulk_data *consumers)
2313{
2314	int i;
2315
2316	for (i = 0; i < num_consumers; i++) {
2317		regulator_put(consumers[i].consumer);
2318		consumers[i].consumer = NULL;
2319	}
2320}
2321EXPORT_SYMBOL_GPL(regulator_bulk_free);
2322
2323/**
2324 * regulator_notifier_call_chain - call regulator event notifier
2325 * @rdev: regulator source
2326 * @event: notifier block
2327 * @data: callback-specific data.
2328 *
2329 * Called by regulator drivers to notify clients a regulator event has
2330 * occurred. We also notify regulator clients downstream.
2331 * Note lock must be held by caller.
2332 */
2333int regulator_notifier_call_chain(struct regulator_dev *rdev,
2334				  unsigned long event, void *data)
2335{
2336	_notifier_call_chain(rdev, event, data);
2337	return NOTIFY_DONE;
2338
2339}
2340EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2341
2342/**
2343 * regulator_mode_to_status - convert a regulator mode into a status
2344 *
2345 * @mode: Mode to convert
2346 *
2347 * Convert a regulator mode into a status.
2348 */
2349int regulator_mode_to_status(unsigned int mode)
2350{
2351	switch (mode) {
2352	case REGULATOR_MODE_FAST:
2353		return REGULATOR_STATUS_FAST;
2354	case REGULATOR_MODE_NORMAL:
2355		return REGULATOR_STATUS_NORMAL;
2356	case REGULATOR_MODE_IDLE:
2357		return REGULATOR_STATUS_IDLE;
2358	case REGULATOR_STATUS_STANDBY:
2359		return REGULATOR_STATUS_STANDBY;
2360	default:
2361		return 0;
2362	}
2363}
2364EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2365
2366/*
2367 * To avoid cluttering sysfs (and memory) with useless state, only
2368 * create attributes that can be meaningfully displayed.
2369 */
2370static int add_regulator_attributes(struct regulator_dev *rdev)
2371{
2372	struct device		*dev = &rdev->dev;
2373	struct regulator_ops	*ops = rdev->desc->ops;
2374	int			status = 0;
2375
2376	/* some attributes need specific methods to be displayed */
2377	if (ops->get_voltage || ops->get_voltage_sel) {
2378		status = device_create_file(dev, &dev_attr_microvolts);
2379		if (status < 0)
2380			return status;
2381	}
2382	if (ops->get_current_limit) {
2383		status = device_create_file(dev, &dev_attr_microamps);
2384		if (status < 0)
2385			return status;
2386	}
2387	if (ops->get_mode) {
2388		status = device_create_file(dev, &dev_attr_opmode);
2389		if (status < 0)
2390			return status;
2391	}
2392	if (ops->is_enabled) {
2393		status = device_create_file(dev, &dev_attr_state);
2394		if (status < 0)
2395			return status;
2396	}
2397	if (ops->get_status) {
2398		status = device_create_file(dev, &dev_attr_status);
2399		if (status < 0)
2400			return status;
2401	}
2402
2403	/* some attributes are type-specific */
2404	if (rdev->desc->type == REGULATOR_CURRENT) {
2405		status = device_create_file(dev, &dev_attr_requested_microamps);
2406		if (status < 0)
2407			return status;
2408	}
2409
2410	/* all the other attributes exist to support constraints;
2411	 * don't show them if there are no constraints, or if the
2412	 * relevant supporting methods are missing.
2413	 */
2414	if (!rdev->constraints)
2415		return status;
2416
2417	/* constraints need specific supporting methods */
2418	if (ops->set_voltage || ops->set_voltage_sel) {
2419		status = device_create_file(dev, &dev_attr_min_microvolts);
2420		if (status < 0)
2421			return status;
2422		status = device_create_file(dev, &dev_attr_max_microvolts);
2423		if (status < 0)
2424			return status;
2425	}
2426	if (ops->set_current_limit) {
2427		status = device_create_file(dev, &dev_attr_min_microamps);
2428		if (status < 0)
2429			return status;
2430		status = device_create_file(dev, &dev_attr_max_microamps);
2431		if (status < 0)
2432			return status;
2433	}
2434
2435	/* suspend mode constraints need multiple supporting methods */
2436	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2437		return status;
2438
2439	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2440	if (status < 0)
2441		return status;
2442	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2443	if (status < 0)
2444		return status;
2445	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2446	if (status < 0)
2447		return status;
2448
2449	if (ops->set_suspend_voltage) {
2450		status = device_create_file(dev,
2451				&dev_attr_suspend_standby_microvolts);
2452		if (status < 0)
2453			return status;
2454		status = device_create_file(dev,
2455				&dev_attr_suspend_mem_microvolts);
2456		if (status < 0)
2457			return status;
2458		status = device_create_file(dev,
2459				&dev_attr_suspend_disk_microvolts);
2460		if (status < 0)
2461			return status;
2462	}
2463
2464	if (ops->set_suspend_mode) {
2465		status = device_create_file(dev,
2466				&dev_attr_suspend_standby_mode);
2467		if (status < 0)
2468			return status;
2469		status = device_create_file(dev,
2470				&dev_attr_suspend_mem_mode);
2471		if (status < 0)
2472			return status;
2473		status = device_create_file(dev,
2474				&dev_attr_suspend_disk_mode);
2475		if (status < 0)
2476			return status;
2477	}
2478
2479	return status;
2480}
2481
2482static void rdev_init_debugfs(struct regulator_dev *rdev)
2483{
2484#ifdef CONFIG_DEBUG_FS
2485	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2486	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2487		rdev_warn(rdev, "Failed to create debugfs directory\n");
2488		rdev->debugfs = NULL;
2489		return;
2490	}
2491
2492	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2493			   &rdev->use_count);
2494	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2495			   &rdev->open_count);
2496#endif
2497}
2498
2499/**
2500 * regulator_register - register regulator
2501 * @regulator_desc: regulator to register
2502 * @dev: struct device for the regulator
2503 * @init_data: platform provided init data, passed through by driver
2504 * @driver_data: private regulator data
2505 *
2506 * Called by regulator drivers to register a regulator.
2507 * Returns 0 on success.
2508 */
2509struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2510	struct device *dev, const struct regulator_init_data *init_data,
2511	void *driver_data)
2512{
2513	static atomic_t regulator_no = ATOMIC_INIT(0);
2514	struct regulator_dev *rdev;
2515	int ret, i;
2516
2517	if (regulator_desc == NULL)
2518		return ERR_PTR(-EINVAL);
2519
2520	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2521		return ERR_PTR(-EINVAL);
2522
2523	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2524	    regulator_desc->type != REGULATOR_CURRENT)
2525		return ERR_PTR(-EINVAL);
2526
2527	if (!init_data)
2528		return ERR_PTR(-EINVAL);
2529
2530	/* Only one of each should be implemented */
2531	WARN_ON(regulator_desc->ops->get_voltage &&
2532		regulator_desc->ops->get_voltage_sel);
2533	WARN_ON(regulator_desc->ops->set_voltage &&
2534		regulator_desc->ops->set_voltage_sel);
2535
2536	/* If we're using selectors we must implement list_voltage. */
2537	if (regulator_desc->ops->get_voltage_sel &&
2538	    !regulator_desc->ops->list_voltage) {
2539		return ERR_PTR(-EINVAL);
2540	}
2541	if (regulator_desc->ops->set_voltage_sel &&
2542	    !regulator_desc->ops->list_voltage) {
2543		return ERR_PTR(-EINVAL);
2544	}
2545
2546	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2547	if (rdev == NULL)
2548		return ERR_PTR(-ENOMEM);
2549
2550	mutex_lock(&regulator_list_mutex);
2551
2552	mutex_init(&rdev->mutex);
2553	rdev->reg_data = driver_data;
2554	rdev->owner = regulator_desc->owner;
2555	rdev->desc = regulator_desc;
2556	INIT_LIST_HEAD(&rdev->consumer_list);
2557	INIT_LIST_HEAD(&rdev->supply_list);
2558	INIT_LIST_HEAD(&rdev->list);
2559	INIT_LIST_HEAD(&rdev->slist);
2560	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2561
2562	/* preform any regulator specific init */
2563	if (init_data->regulator_init) {
2564		ret = init_data->regulator_init(rdev->reg_data);
2565		if (ret < 0)
2566			goto clean;
2567	}
2568
2569	/* register with sysfs */
2570	rdev->dev.class = &regulator_class;
2571	rdev->dev.parent = dev;
2572	dev_set_name(&rdev->dev, "regulator.%d",
2573		     atomic_inc_return(&regulator_no) - 1);
2574	ret = device_register(&rdev->dev);
2575	if (ret != 0) {
2576		put_device(&rdev->dev);
2577		goto clean;
2578	}
2579
2580	dev_set_drvdata(&rdev->dev, rdev);
2581
2582	/* set regulator constraints */
2583	ret = set_machine_constraints(rdev, &init_data->constraints);
2584	if (ret < 0)
2585		goto scrub;
2586
2587	/* add attributes supported by this regulator */
2588	ret = add_regulator_attributes(rdev);
2589	if (ret < 0)
2590		goto scrub;
2591
2592	/* set supply regulator if it exists */
2593	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2594		dev_err(dev,
2595			"Supply regulator specified by both name and dev\n");
2596		ret = -EINVAL;
2597		goto scrub;
2598	}
2599
2600	if (init_data->supply_regulator) {
2601		struct regulator_dev *r;
2602		int found = 0;
2603
2604		list_for_each_entry(r, &regulator_list, list) {
2605			if (strcmp(rdev_get_name(r),
2606				   init_data->supply_regulator) == 0) {
2607				found = 1;
2608				break;
2609			}
2610		}
2611
2612		if (!found) {
2613			dev_err(dev, "Failed to find supply %s\n",
2614				init_data->supply_regulator);
2615			ret = -ENODEV;
2616			goto scrub;
2617		}
2618
2619		ret = set_supply(rdev, r);
2620		if (ret < 0)
2621			goto scrub;
2622	}
2623
2624	if (init_data->supply_regulator_dev) {
2625		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2626		ret = set_supply(rdev,
2627			dev_get_drvdata(init_data->supply_regulator_dev));
2628		if (ret < 0)
2629			goto scrub;
2630	}
2631
2632	/* add consumers devices */
2633	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2634		ret = set_consumer_device_supply(rdev,
2635			init_data->consumer_supplies[i].dev,
2636			init_data->consumer_supplies[i].dev_name,
2637			init_data->consumer_supplies[i].supply);
2638		if (ret < 0) {
2639			dev_err(dev, "Failed to set supply %s\n",
2640				init_data->consumer_supplies[i].supply);
2641			goto unset_supplies;
2642		}
2643	}
2644
2645	list_add(&rdev->list, &regulator_list);
2646
2647	rdev_init_debugfs(rdev);
2648out:
2649	mutex_unlock(&regulator_list_mutex);
2650	return rdev;
2651
2652unset_supplies:
2653	unset_regulator_supplies(rdev);
2654
2655scrub:
2656	device_unregister(&rdev->dev);
2657	/* device core frees rdev */
2658	rdev = ERR_PTR(ret);
2659	goto out;
2660
2661clean:
2662	kfree(rdev);
2663	rdev = ERR_PTR(ret);
2664	goto out;
2665}
2666EXPORT_SYMBOL_GPL(regulator_register);
2667
2668/**
2669 * regulator_unregister - unregister regulator
2670 * @rdev: regulator to unregister
2671 *
2672 * Called by regulator drivers to unregister a regulator.
2673 */
2674void regulator_unregister(struct regulator_dev *rdev)
2675{
2676	if (rdev == NULL)
2677		return;
2678
2679	mutex_lock(&regulator_list_mutex);
2680#ifdef CONFIG_DEBUG_FS
2681	debugfs_remove_recursive(rdev->debugfs);
2682#endif
2683	WARN_ON(rdev->open_count);
2684	unset_regulator_supplies(rdev);
2685	list_del(&rdev->list);
2686	if (rdev->supply)
2687		sysfs_remove_link(&rdev->dev.kobj, "supply");
2688	device_unregister(&rdev->dev);
2689	kfree(rdev->constraints);
2690	mutex_unlock(&regulator_list_mutex);
2691}
2692EXPORT_SYMBOL_GPL(regulator_unregister);
2693
2694/**
2695 * regulator_suspend_prepare - prepare regulators for system wide suspend
2696 * @state: system suspend state
2697 *
2698 * Configure each regulator with it's suspend operating parameters for state.
2699 * This will usually be called by machine suspend code prior to supending.
2700 */
2701int regulator_suspend_prepare(suspend_state_t state)
2702{
2703	struct regulator_dev *rdev;
2704	int ret = 0;
2705
2706	/* ON is handled by regulator active state */
2707	if (state == PM_SUSPEND_ON)
2708		return -EINVAL;
2709
2710	mutex_lock(&regulator_list_mutex);
2711	list_for_each_entry(rdev, &regulator_list, list) {
2712
2713		mutex_lock(&rdev->mutex);
2714		ret = suspend_prepare(rdev, state);
2715		mutex_unlock(&rdev->mutex);
2716
2717		if (ret < 0) {
2718			rdev_err(rdev, "failed to prepare\n");
2719			goto out;
2720		}
2721	}
2722out:
2723	mutex_unlock(&regulator_list_mutex);
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2727
2728/**
2729 * regulator_suspend_finish - resume regulators from system wide suspend
2730 *
2731 * Turn on regulators that might be turned off by regulator_suspend_prepare
2732 * and that should be turned on according to the regulators properties.
2733 */
2734int regulator_suspend_finish(void)
2735{
2736	struct regulator_dev *rdev;
2737	int ret = 0, error;
2738
2739	mutex_lock(&regulator_list_mutex);
2740	list_for_each_entry(rdev, &regulator_list, list) {
2741		struct regulator_ops *ops = rdev->desc->ops;
2742
2743		mutex_lock(&rdev->mutex);
2744		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2745				ops->enable) {
2746			error = ops->enable(rdev);
2747			if (error)
2748				ret = error;
2749		} else {
2750			if (!has_full_constraints)
2751				goto unlock;
2752			if (!ops->disable)
2753				goto unlock;
2754			if (ops->is_enabled && !ops->is_enabled(rdev))
2755				goto unlock;
2756
2757			error = ops->disable(rdev);
2758			if (error)
2759				ret = error;
2760		}
2761unlock:
2762		mutex_unlock(&rdev->mutex);
2763	}
2764	mutex_unlock(&regulator_list_mutex);
2765	return ret;
2766}
2767EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2768
2769/**
2770 * regulator_has_full_constraints - the system has fully specified constraints
2771 *
2772 * Calling this function will cause the regulator API to disable all
2773 * regulators which have a zero use count and don't have an always_on
2774 * constraint in a late_initcall.
2775 *
2776 * The intention is that this will become the default behaviour in a
2777 * future kernel release so users are encouraged to use this facility
2778 * now.
2779 */
2780void regulator_has_full_constraints(void)
2781{
2782	has_full_constraints = 1;
2783}
2784EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2785
2786/**
2787 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2788 *
2789 * Calling this function will cause the regulator API to provide a
2790 * dummy regulator to consumers if no physical regulator is found,
2791 * allowing most consumers to proceed as though a regulator were
2792 * configured.  This allows systems such as those with software
2793 * controllable regulators for the CPU core only to be brought up more
2794 * readily.
2795 */
2796void regulator_use_dummy_regulator(void)
2797{
2798	board_wants_dummy_regulator = true;
2799}
2800EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2801
2802/**
2803 * rdev_get_drvdata - get rdev regulator driver data
2804 * @rdev: regulator
2805 *
2806 * Get rdev regulator driver private data. This call can be used in the
2807 * regulator driver context.
2808 */
2809void *rdev_get_drvdata(struct regulator_dev *rdev)
2810{
2811	return rdev->reg_data;
2812}
2813EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2814
2815/**
2816 * regulator_get_drvdata - get regulator driver data
2817 * @regulator: regulator
2818 *
2819 * Get regulator driver private data. This call can be used in the consumer
2820 * driver context when non API regulator specific functions need to be called.
2821 */
2822void *regulator_get_drvdata(struct regulator *regulator)
2823{
2824	return regulator->rdev->reg_data;
2825}
2826EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2827
2828/**
2829 * regulator_set_drvdata - set regulator driver data
2830 * @regulator: regulator
2831 * @data: data
2832 */
2833void regulator_set_drvdata(struct regulator *regulator, void *data)
2834{
2835	regulator->rdev->reg_data = data;
2836}
2837EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2838
2839/**
2840 * regulator_get_id - get regulator ID
2841 * @rdev: regulator
2842 */
2843int rdev_get_id(struct regulator_dev *rdev)
2844{
2845	return rdev->desc->id;
2846}
2847EXPORT_SYMBOL_GPL(rdev_get_id);
2848
2849struct device *rdev_get_dev(struct regulator_dev *rdev)
2850{
2851	return &rdev->dev;
2852}
2853EXPORT_SYMBOL_GPL(rdev_get_dev);
2854
2855void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2856{
2857	return reg_init_data->driver_data;
2858}
2859EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2860
2861static int __init regulator_init(void)
2862{
2863	int ret;
2864
2865	ret = class_register(&regulator_class);
2866
2867#ifdef CONFIG_DEBUG_FS
2868	debugfs_root = debugfs_create_dir("regulator", NULL);
2869	if (IS_ERR(debugfs_root) || !debugfs_root) {
2870		pr_warn("regulator: Failed to create debugfs directory\n");
2871		debugfs_root = NULL;
2872	}
2873#endif
2874
2875	regulator_dummy_init();
2876
2877	return ret;
2878}
2879
2880/* init early to allow our consumers to complete system booting */
2881core_initcall(regulator_init);
2882
2883static int __init regulator_init_complete(void)
2884{
2885	struct regulator_dev *rdev;
2886	struct regulator_ops *ops;
2887	struct regulation_constraints *c;
2888	int enabled, ret;
2889
2890	mutex_lock(&regulator_list_mutex);
2891
2892	/* If we have a full configuration then disable any regulators
2893	 * which are not in use or always_on.  This will become the
2894	 * default behaviour in the future.
2895	 */
2896	list_for_each_entry(rdev, &regulator_list, list) {
2897		ops = rdev->desc->ops;
2898		c = rdev->constraints;
2899
2900		if (!ops->disable || (c && c->always_on))
2901			continue;
2902
2903		mutex_lock(&rdev->mutex);
2904
2905		if (rdev->use_count)
2906			goto unlock;
2907
2908		/* If we can't read the status assume it's on. */
2909		if (ops->is_enabled)
2910			enabled = ops->is_enabled(rdev);
2911		else
2912			enabled = 1;
2913
2914		if (!enabled)
2915			goto unlock;
2916
2917		if (has_full_constraints) {
2918			/* We log since this may kill the system if it
2919			 * goes wrong. */
2920			rdev_info(rdev, "disabling\n");
2921			ret = ops->disable(rdev);
2922			if (ret != 0) {
2923				rdev_err(rdev, "couldn't disable: %d\n", ret);
2924			}
2925		} else {
2926			/* The intention is that in future we will
2927			 * assume that full constraints are provided
2928			 * so warn even if we aren't going to do
2929			 * anything here.
2930			 */
2931			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2932		}
2933
2934unlock:
2935		mutex_unlock(&rdev->mutex);
2936	}
2937
2938	mutex_unlock(&regulator_list_mutex);
2939
2940	return 0;
2941}
2942late_initcall(regulator_init_complete);
2943