core.c revision 2c043bcbf287dc69848054d5c02c55c20f7a7bc5
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31#include <linux/module.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/regulator.h>
35
36#include "dummy.h"
37
38#define rdev_crit(rdev, fmt, ...)					\
39	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_err(rdev, fmt, ...)					\
41	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_warn(rdev, fmt, ...)					\
43	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_info(rdev, fmt, ...)					\
45	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_dbg(rdev, fmt, ...)					\
47	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_list);
51static LIST_HEAD(regulator_map_list);
52static bool has_full_constraints;
53static bool board_wants_dummy_regulator;
54
55#ifdef CONFIG_DEBUG_FS
56static struct dentry *debugfs_root;
57#endif
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85#ifdef CONFIG_DEBUG_FS
86	struct dentry *debugfs;
87#endif
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/* gets the regulator for a given consumer device */
114static struct regulator *get_device_regulator(struct device *dev)
115{
116	struct regulator *regulator = NULL;
117	struct regulator_dev *rdev;
118
119	mutex_lock(&regulator_list_mutex);
120	list_for_each_entry(rdev, &regulator_list, list) {
121		mutex_lock(&rdev->mutex);
122		list_for_each_entry(regulator, &rdev->consumer_list, list) {
123			if (regulator->dev == dev) {
124				mutex_unlock(&rdev->mutex);
125				mutex_unlock(&regulator_list_mutex);
126				return regulator;
127			}
128		}
129		mutex_unlock(&rdev->mutex);
130	}
131	mutex_unlock(&regulator_list_mutex);
132	return NULL;
133}
134
135/* Platform voltage constraint check */
136static int regulator_check_voltage(struct regulator_dev *rdev,
137				   int *min_uV, int *max_uV)
138{
139	BUG_ON(*min_uV > *max_uV);
140
141	if (!rdev->constraints) {
142		rdev_err(rdev, "no constraints\n");
143		return -ENODEV;
144	}
145	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
146		rdev_err(rdev, "operation not allowed\n");
147		return -EPERM;
148	}
149
150	if (*max_uV > rdev->constraints->max_uV)
151		*max_uV = rdev->constraints->max_uV;
152	if (*min_uV < rdev->constraints->min_uV)
153		*min_uV = rdev->constraints->min_uV;
154
155	if (*min_uV > *max_uV) {
156		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
157			 *min_uV, *max_uV);
158		return -EINVAL;
159	}
160
161	return 0;
162}
163
164/* Make sure we select a voltage that suits the needs of all
165 * regulator consumers
166 */
167static int regulator_check_consumers(struct regulator_dev *rdev,
168				     int *min_uV, int *max_uV)
169{
170	struct regulator *regulator;
171
172	list_for_each_entry(regulator, &rdev->consumer_list, list) {
173		/*
174		 * Assume consumers that didn't say anything are OK
175		 * with anything in the constraint range.
176		 */
177		if (!regulator->min_uV && !regulator->max_uV)
178			continue;
179
180		if (*max_uV > regulator->max_uV)
181			*max_uV = regulator->max_uV;
182		if (*min_uV < regulator->min_uV)
183			*min_uV = regulator->min_uV;
184	}
185
186	if (*min_uV > *max_uV)
187		return -EINVAL;
188
189	return 0;
190}
191
192/* current constraint check */
193static int regulator_check_current_limit(struct regulator_dev *rdev,
194					int *min_uA, int *max_uA)
195{
196	BUG_ON(*min_uA > *max_uA);
197
198	if (!rdev->constraints) {
199		rdev_err(rdev, "no constraints\n");
200		return -ENODEV;
201	}
202	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
203		rdev_err(rdev, "operation not allowed\n");
204		return -EPERM;
205	}
206
207	if (*max_uA > rdev->constraints->max_uA)
208		*max_uA = rdev->constraints->max_uA;
209	if (*min_uA < rdev->constraints->min_uA)
210		*min_uA = rdev->constraints->min_uA;
211
212	if (*min_uA > *max_uA) {
213		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
214			 *min_uA, *max_uA);
215		return -EINVAL;
216	}
217
218	return 0;
219}
220
221/* operating mode constraint check */
222static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
223{
224	switch (*mode) {
225	case REGULATOR_MODE_FAST:
226	case REGULATOR_MODE_NORMAL:
227	case REGULATOR_MODE_IDLE:
228	case REGULATOR_MODE_STANDBY:
229		break;
230	default:
231		rdev_err(rdev, "invalid mode %x specified\n", *mode);
232		return -EINVAL;
233	}
234
235	if (!rdev->constraints) {
236		rdev_err(rdev, "no constraints\n");
237		return -ENODEV;
238	}
239	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
240		rdev_err(rdev, "operation not allowed\n");
241		return -EPERM;
242	}
243
244	/* The modes are bitmasks, the most power hungry modes having
245	 * the lowest values. If the requested mode isn't supported
246	 * try higher modes. */
247	while (*mode) {
248		if (rdev->constraints->valid_modes_mask & *mode)
249			return 0;
250		*mode /= 2;
251	}
252
253	return -EINVAL;
254}
255
256/* dynamic regulator mode switching constraint check */
257static int regulator_check_drms(struct regulator_dev *rdev)
258{
259	if (!rdev->constraints) {
260		rdev_err(rdev, "no constraints\n");
261		return -ENODEV;
262	}
263	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
264		rdev_err(rdev, "operation not allowed\n");
265		return -EPERM;
266	}
267	return 0;
268}
269
270static ssize_t device_requested_uA_show(struct device *dev,
271			     struct device_attribute *attr, char *buf)
272{
273	struct regulator *regulator;
274
275	regulator = get_device_regulator(dev);
276	if (regulator == NULL)
277		return 0;
278
279	return sprintf(buf, "%d\n", regulator->uA_load);
280}
281
282static ssize_t regulator_uV_show(struct device *dev,
283				struct device_attribute *attr, char *buf)
284{
285	struct regulator_dev *rdev = dev_get_drvdata(dev);
286	ssize_t ret;
287
288	mutex_lock(&rdev->mutex);
289	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
290	mutex_unlock(&rdev->mutex);
291
292	return ret;
293}
294static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
295
296static ssize_t regulator_uA_show(struct device *dev,
297				struct device_attribute *attr, char *buf)
298{
299	struct regulator_dev *rdev = dev_get_drvdata(dev);
300
301	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
302}
303static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
304
305static ssize_t regulator_name_show(struct device *dev,
306			     struct device_attribute *attr, char *buf)
307{
308	struct regulator_dev *rdev = dev_get_drvdata(dev);
309
310	return sprintf(buf, "%s\n", rdev_get_name(rdev));
311}
312
313static ssize_t regulator_print_opmode(char *buf, int mode)
314{
315	switch (mode) {
316	case REGULATOR_MODE_FAST:
317		return sprintf(buf, "fast\n");
318	case REGULATOR_MODE_NORMAL:
319		return sprintf(buf, "normal\n");
320	case REGULATOR_MODE_IDLE:
321		return sprintf(buf, "idle\n");
322	case REGULATOR_MODE_STANDBY:
323		return sprintf(buf, "standby\n");
324	}
325	return sprintf(buf, "unknown\n");
326}
327
328static ssize_t regulator_opmode_show(struct device *dev,
329				    struct device_attribute *attr, char *buf)
330{
331	struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
334}
335static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
336
337static ssize_t regulator_print_state(char *buf, int state)
338{
339	if (state > 0)
340		return sprintf(buf, "enabled\n");
341	else if (state == 0)
342		return sprintf(buf, "disabled\n");
343	else
344		return sprintf(buf, "unknown\n");
345}
346
347static ssize_t regulator_state_show(struct device *dev,
348				   struct device_attribute *attr, char *buf)
349{
350	struct regulator_dev *rdev = dev_get_drvdata(dev);
351	ssize_t ret;
352
353	mutex_lock(&rdev->mutex);
354	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
355	mutex_unlock(&rdev->mutex);
356
357	return ret;
358}
359static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
360
361static ssize_t regulator_status_show(struct device *dev,
362				   struct device_attribute *attr, char *buf)
363{
364	struct regulator_dev *rdev = dev_get_drvdata(dev);
365	int status;
366	char *label;
367
368	status = rdev->desc->ops->get_status(rdev);
369	if (status < 0)
370		return status;
371
372	switch (status) {
373	case REGULATOR_STATUS_OFF:
374		label = "off";
375		break;
376	case REGULATOR_STATUS_ON:
377		label = "on";
378		break;
379	case REGULATOR_STATUS_ERROR:
380		label = "error";
381		break;
382	case REGULATOR_STATUS_FAST:
383		label = "fast";
384		break;
385	case REGULATOR_STATUS_NORMAL:
386		label = "normal";
387		break;
388	case REGULATOR_STATUS_IDLE:
389		label = "idle";
390		break;
391	case REGULATOR_STATUS_STANDBY:
392		label = "standby";
393		break;
394	default:
395		return -ERANGE;
396	}
397
398	return sprintf(buf, "%s\n", label);
399}
400static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
401
402static ssize_t regulator_min_uA_show(struct device *dev,
403				    struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407	if (!rdev->constraints)
408		return sprintf(buf, "constraint not defined\n");
409
410	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
411}
412static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
413
414static ssize_t regulator_max_uA_show(struct device *dev,
415				    struct device_attribute *attr, char *buf)
416{
417	struct regulator_dev *rdev = dev_get_drvdata(dev);
418
419	if (!rdev->constraints)
420		return sprintf(buf, "constraint not defined\n");
421
422	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
423}
424static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
425
426static ssize_t regulator_min_uV_show(struct device *dev,
427				    struct device_attribute *attr, char *buf)
428{
429	struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431	if (!rdev->constraints)
432		return sprintf(buf, "constraint not defined\n");
433
434	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
435}
436static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
437
438static ssize_t regulator_max_uV_show(struct device *dev,
439				    struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	if (!rdev->constraints)
444		return sprintf(buf, "constraint not defined\n");
445
446	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
447}
448static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
449
450static ssize_t regulator_total_uA_show(struct device *dev,
451				      struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454	struct regulator *regulator;
455	int uA = 0;
456
457	mutex_lock(&rdev->mutex);
458	list_for_each_entry(regulator, &rdev->consumer_list, list)
459		uA += regulator->uA_load;
460	mutex_unlock(&rdev->mutex);
461	return sprintf(buf, "%d\n", uA);
462}
463static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
464
465static ssize_t regulator_num_users_show(struct device *dev,
466				      struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469	return sprintf(buf, "%d\n", rdev->use_count);
470}
471
472static ssize_t regulator_type_show(struct device *dev,
473				  struct device_attribute *attr, char *buf)
474{
475	struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477	switch (rdev->desc->type) {
478	case REGULATOR_VOLTAGE:
479		return sprintf(buf, "voltage\n");
480	case REGULATOR_CURRENT:
481		return sprintf(buf, "current\n");
482	}
483	return sprintf(buf, "unknown\n");
484}
485
486static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
487				struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
492}
493static DEVICE_ATTR(suspend_mem_microvolts, 0444,
494		regulator_suspend_mem_uV_show, NULL);
495
496static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
497				struct device_attribute *attr, char *buf)
498{
499	struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
502}
503static DEVICE_ATTR(suspend_disk_microvolts, 0444,
504		regulator_suspend_disk_uV_show, NULL);
505
506static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
507				struct device_attribute *attr, char *buf)
508{
509	struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
512}
513static DEVICE_ATTR(suspend_standby_microvolts, 0444,
514		regulator_suspend_standby_uV_show, NULL);
515
516static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return regulator_print_opmode(buf,
522		rdev->constraints->state_mem.mode);
523}
524static DEVICE_ATTR(suspend_mem_mode, 0444,
525		regulator_suspend_mem_mode_show, NULL);
526
527static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
528				struct device_attribute *attr, char *buf)
529{
530	struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532	return regulator_print_opmode(buf,
533		rdev->constraints->state_disk.mode);
534}
535static DEVICE_ATTR(suspend_disk_mode, 0444,
536		regulator_suspend_disk_mode_show, NULL);
537
538static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
539				struct device_attribute *attr, char *buf)
540{
541	struct regulator_dev *rdev = dev_get_drvdata(dev);
542
543	return regulator_print_opmode(buf,
544		rdev->constraints->state_standby.mode);
545}
546static DEVICE_ATTR(suspend_standby_mode, 0444,
547		regulator_suspend_standby_mode_show, NULL);
548
549static ssize_t regulator_suspend_mem_state_show(struct device *dev,
550				   struct device_attribute *attr, char *buf)
551{
552	struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554	return regulator_print_state(buf,
555			rdev->constraints->state_mem.enabled);
556}
557static DEVICE_ATTR(suspend_mem_state, 0444,
558		regulator_suspend_mem_state_show, NULL);
559
560static ssize_t regulator_suspend_disk_state_show(struct device *dev,
561				   struct device_attribute *attr, char *buf)
562{
563	struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565	return regulator_print_state(buf,
566			rdev->constraints->state_disk.enabled);
567}
568static DEVICE_ATTR(suspend_disk_state, 0444,
569		regulator_suspend_disk_state_show, NULL);
570
571static ssize_t regulator_suspend_standby_state_show(struct device *dev,
572				   struct device_attribute *attr, char *buf)
573{
574	struct regulator_dev *rdev = dev_get_drvdata(dev);
575
576	return regulator_print_state(buf,
577			rdev->constraints->state_standby.enabled);
578}
579static DEVICE_ATTR(suspend_standby_state, 0444,
580		regulator_suspend_standby_state_show, NULL);
581
582
583/*
584 * These are the only attributes are present for all regulators.
585 * Other attributes are a function of regulator functionality.
586 */
587static struct device_attribute regulator_dev_attrs[] = {
588	__ATTR(name, 0444, regulator_name_show, NULL),
589	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
590	__ATTR(type, 0444, regulator_type_show, NULL),
591	__ATTR_NULL,
592};
593
594static void regulator_dev_release(struct device *dev)
595{
596	struct regulator_dev *rdev = dev_get_drvdata(dev);
597	kfree(rdev);
598}
599
600static struct class regulator_class = {
601	.name = "regulator",
602	.dev_release = regulator_dev_release,
603	.dev_attrs = regulator_dev_attrs,
604};
605
606/* Calculate the new optimum regulator operating mode based on the new total
607 * consumer load. All locks held by caller */
608static void drms_uA_update(struct regulator_dev *rdev)
609{
610	struct regulator *sibling;
611	int current_uA = 0, output_uV, input_uV, err;
612	unsigned int mode;
613
614	err = regulator_check_drms(rdev);
615	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
616	    (!rdev->desc->ops->get_voltage &&
617	     !rdev->desc->ops->get_voltage_sel) ||
618	    !rdev->desc->ops->set_mode)
619		return;
620
621	/* get output voltage */
622	output_uV = _regulator_get_voltage(rdev);
623	if (output_uV <= 0)
624		return;
625
626	/* get input voltage */
627	input_uV = 0;
628	if (rdev->supply)
629		input_uV = _regulator_get_voltage(rdev);
630	if (input_uV <= 0)
631		input_uV = rdev->constraints->input_uV;
632	if (input_uV <= 0)
633		return;
634
635	/* calc total requested load */
636	list_for_each_entry(sibling, &rdev->consumer_list, list)
637		current_uA += sibling->uA_load;
638
639	/* now get the optimum mode for our new total regulator load */
640	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
641						  output_uV, current_uA);
642
643	/* check the new mode is allowed */
644	err = regulator_mode_constrain(rdev, &mode);
645	if (err == 0)
646		rdev->desc->ops->set_mode(rdev, mode);
647}
648
649static int suspend_set_state(struct regulator_dev *rdev,
650	struct regulator_state *rstate)
651{
652	int ret = 0;
653	bool can_set_state;
654
655	can_set_state = rdev->desc->ops->set_suspend_enable &&
656		rdev->desc->ops->set_suspend_disable;
657
658	/* If we have no suspend mode configration don't set anything;
659	 * only warn if the driver actually makes the suspend mode
660	 * configurable.
661	 */
662	if (!rstate->enabled && !rstate->disabled) {
663		if (can_set_state)
664			rdev_warn(rdev, "No configuration\n");
665		return 0;
666	}
667
668	if (rstate->enabled && rstate->disabled) {
669		rdev_err(rdev, "invalid configuration\n");
670		return -EINVAL;
671	}
672
673	if (!can_set_state) {
674		rdev_err(rdev, "no way to set suspend state\n");
675		return -EINVAL;
676	}
677
678	if (rstate->enabled)
679		ret = rdev->desc->ops->set_suspend_enable(rdev);
680	else
681		ret = rdev->desc->ops->set_suspend_disable(rdev);
682	if (ret < 0) {
683		rdev_err(rdev, "failed to enabled/disable\n");
684		return ret;
685	}
686
687	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
688		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
689		if (ret < 0) {
690			rdev_err(rdev, "failed to set voltage\n");
691			return ret;
692		}
693	}
694
695	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
696		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
697		if (ret < 0) {
698			rdev_err(rdev, "failed to set mode\n");
699			return ret;
700		}
701	}
702	return ret;
703}
704
705/* locks held by caller */
706static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
707{
708	if (!rdev->constraints)
709		return -EINVAL;
710
711	switch (state) {
712	case PM_SUSPEND_STANDBY:
713		return suspend_set_state(rdev,
714			&rdev->constraints->state_standby);
715	case PM_SUSPEND_MEM:
716		return suspend_set_state(rdev,
717			&rdev->constraints->state_mem);
718	case PM_SUSPEND_MAX:
719		return suspend_set_state(rdev,
720			&rdev->constraints->state_disk);
721	default:
722		return -EINVAL;
723	}
724}
725
726static void print_constraints(struct regulator_dev *rdev)
727{
728	struct regulation_constraints *constraints = rdev->constraints;
729	char buf[80] = "";
730	int count = 0;
731	int ret;
732
733	if (constraints->min_uV && constraints->max_uV) {
734		if (constraints->min_uV == constraints->max_uV)
735			count += sprintf(buf + count, "%d mV ",
736					 constraints->min_uV / 1000);
737		else
738			count += sprintf(buf + count, "%d <--> %d mV ",
739					 constraints->min_uV / 1000,
740					 constraints->max_uV / 1000);
741	}
742
743	if (!constraints->min_uV ||
744	    constraints->min_uV != constraints->max_uV) {
745		ret = _regulator_get_voltage(rdev);
746		if (ret > 0)
747			count += sprintf(buf + count, "at %d mV ", ret / 1000);
748	}
749
750	if (constraints->uV_offset)
751		count += sprintf(buf, "%dmV offset ",
752				 constraints->uV_offset / 1000);
753
754	if (constraints->min_uA && constraints->max_uA) {
755		if (constraints->min_uA == constraints->max_uA)
756			count += sprintf(buf + count, "%d mA ",
757					 constraints->min_uA / 1000);
758		else
759			count += sprintf(buf + count, "%d <--> %d mA ",
760					 constraints->min_uA / 1000,
761					 constraints->max_uA / 1000);
762	}
763
764	if (!constraints->min_uA ||
765	    constraints->min_uA != constraints->max_uA) {
766		ret = _regulator_get_current_limit(rdev);
767		if (ret > 0)
768			count += sprintf(buf + count, "at %d mA ", ret / 1000);
769	}
770
771	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
772		count += sprintf(buf + count, "fast ");
773	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
774		count += sprintf(buf + count, "normal ");
775	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
776		count += sprintf(buf + count, "idle ");
777	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
778		count += sprintf(buf + count, "standby");
779
780	rdev_info(rdev, "%s\n", buf);
781}
782
783static int machine_constraints_voltage(struct regulator_dev *rdev,
784	struct regulation_constraints *constraints)
785{
786	struct regulator_ops *ops = rdev->desc->ops;
787	int ret;
788
789	/* do we need to apply the constraint voltage */
790	if (rdev->constraints->apply_uV &&
791	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
792		ret = _regulator_do_set_voltage(rdev,
793						rdev->constraints->min_uV,
794						rdev->constraints->max_uV);
795		if (ret < 0) {
796			rdev_err(rdev, "failed to apply %duV constraint\n",
797				 rdev->constraints->min_uV);
798			return ret;
799		}
800	}
801
802	/* constrain machine-level voltage specs to fit
803	 * the actual range supported by this regulator.
804	 */
805	if (ops->list_voltage && rdev->desc->n_voltages) {
806		int	count = rdev->desc->n_voltages;
807		int	i;
808		int	min_uV = INT_MAX;
809		int	max_uV = INT_MIN;
810		int	cmin = constraints->min_uV;
811		int	cmax = constraints->max_uV;
812
813		/* it's safe to autoconfigure fixed-voltage supplies
814		   and the constraints are used by list_voltage. */
815		if (count == 1 && !cmin) {
816			cmin = 1;
817			cmax = INT_MAX;
818			constraints->min_uV = cmin;
819			constraints->max_uV = cmax;
820		}
821
822		/* voltage constraints are optional */
823		if ((cmin == 0) && (cmax == 0))
824			return 0;
825
826		/* else require explicit machine-level constraints */
827		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
828			rdev_err(rdev, "invalid voltage constraints\n");
829			return -EINVAL;
830		}
831
832		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
833		for (i = 0; i < count; i++) {
834			int	value;
835
836			value = ops->list_voltage(rdev, i);
837			if (value <= 0)
838				continue;
839
840			/* maybe adjust [min_uV..max_uV] */
841			if (value >= cmin && value < min_uV)
842				min_uV = value;
843			if (value <= cmax && value > max_uV)
844				max_uV = value;
845		}
846
847		/* final: [min_uV..max_uV] valid iff constraints valid */
848		if (max_uV < min_uV) {
849			rdev_err(rdev, "unsupportable voltage constraints\n");
850			return -EINVAL;
851		}
852
853		/* use regulator's subset of machine constraints */
854		if (constraints->min_uV < min_uV) {
855			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
856				 constraints->min_uV, min_uV);
857			constraints->min_uV = min_uV;
858		}
859		if (constraints->max_uV > max_uV) {
860			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
861				 constraints->max_uV, max_uV);
862			constraints->max_uV = max_uV;
863		}
864	}
865
866	return 0;
867}
868
869/**
870 * set_machine_constraints - sets regulator constraints
871 * @rdev: regulator source
872 * @constraints: constraints to apply
873 *
874 * Allows platform initialisation code to define and constrain
875 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
876 * Constraints *must* be set by platform code in order for some
877 * regulator operations to proceed i.e. set_voltage, set_current_limit,
878 * set_mode.
879 */
880static int set_machine_constraints(struct regulator_dev *rdev,
881	const struct regulation_constraints *constraints)
882{
883	int ret = 0;
884	struct regulator_ops *ops = rdev->desc->ops;
885
886	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
887				    GFP_KERNEL);
888	if (!rdev->constraints)
889		return -ENOMEM;
890
891	ret = machine_constraints_voltage(rdev, rdev->constraints);
892	if (ret != 0)
893		goto out;
894
895	/* do we need to setup our suspend state */
896	if (constraints->initial_state) {
897		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
898		if (ret < 0) {
899			rdev_err(rdev, "failed to set suspend state\n");
900			goto out;
901		}
902	}
903
904	if (constraints->initial_mode) {
905		if (!ops->set_mode) {
906			rdev_err(rdev, "no set_mode operation\n");
907			ret = -EINVAL;
908			goto out;
909		}
910
911		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
912		if (ret < 0) {
913			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
914			goto out;
915		}
916	}
917
918	/* If the constraints say the regulator should be on at this point
919	 * and we have control then make sure it is enabled.
920	 */
921	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
922	    ops->enable) {
923		ret = ops->enable(rdev);
924		if (ret < 0) {
925			rdev_err(rdev, "failed to enable\n");
926			goto out;
927		}
928	}
929
930	print_constraints(rdev);
931	return 0;
932out:
933	kfree(rdev->constraints);
934	rdev->constraints = NULL;
935	return ret;
936}
937
938/**
939 * set_supply - set regulator supply regulator
940 * @rdev: regulator name
941 * @supply_rdev: supply regulator name
942 *
943 * Called by platform initialisation code to set the supply regulator for this
944 * regulator. This ensures that a regulators supply will also be enabled by the
945 * core if it's child is enabled.
946 */
947static int set_supply(struct regulator_dev *rdev,
948		      struct regulator_dev *supply_rdev)
949{
950	int err;
951
952	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
953
954	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
955	if (IS_ERR(rdev->supply)) {
956		err = PTR_ERR(rdev->supply);
957		rdev->supply = NULL;
958		return err;
959	}
960
961	return 0;
962}
963
964/**
965 * set_consumer_device_supply - Bind a regulator to a symbolic supply
966 * @rdev:         regulator source
967 * @consumer_dev: device the supply applies to
968 * @consumer_dev_name: dev_name() string for device supply applies to
969 * @supply:       symbolic name for supply
970 *
971 * Allows platform initialisation code to map physical regulator
972 * sources to symbolic names for supplies for use by devices.  Devices
973 * should use these symbolic names to request regulators, avoiding the
974 * need to provide board-specific regulator names as platform data.
975 *
976 * Only one of consumer_dev and consumer_dev_name may be specified.
977 */
978static int set_consumer_device_supply(struct regulator_dev *rdev,
979	struct device *consumer_dev, const char *consumer_dev_name,
980	const char *supply)
981{
982	struct regulator_map *node;
983	int has_dev;
984
985	if (consumer_dev && consumer_dev_name)
986		return -EINVAL;
987
988	if (!consumer_dev_name && consumer_dev)
989		consumer_dev_name = dev_name(consumer_dev);
990
991	if (supply == NULL)
992		return -EINVAL;
993
994	if (consumer_dev_name != NULL)
995		has_dev = 1;
996	else
997		has_dev = 0;
998
999	list_for_each_entry(node, &regulator_map_list, list) {
1000		if (node->dev_name && consumer_dev_name) {
1001			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1002				continue;
1003		} else if (node->dev_name || consumer_dev_name) {
1004			continue;
1005		}
1006
1007		if (strcmp(node->supply, supply) != 0)
1008			continue;
1009
1010		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1011			dev_name(&node->regulator->dev),
1012			node->regulator->desc->name,
1013			supply,
1014			dev_name(&rdev->dev), rdev_get_name(rdev));
1015		return -EBUSY;
1016	}
1017
1018	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1019	if (node == NULL)
1020		return -ENOMEM;
1021
1022	node->regulator = rdev;
1023	node->supply = supply;
1024
1025	if (has_dev) {
1026		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1027		if (node->dev_name == NULL) {
1028			kfree(node);
1029			return -ENOMEM;
1030		}
1031	}
1032
1033	list_add(&node->list, &regulator_map_list);
1034	return 0;
1035}
1036
1037static void unset_regulator_supplies(struct regulator_dev *rdev)
1038{
1039	struct regulator_map *node, *n;
1040
1041	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1042		if (rdev == node->regulator) {
1043			list_del(&node->list);
1044			kfree(node->dev_name);
1045			kfree(node);
1046		}
1047	}
1048}
1049
1050#define REG_STR_SIZE	64
1051
1052static struct regulator *create_regulator(struct regulator_dev *rdev,
1053					  struct device *dev,
1054					  const char *supply_name)
1055{
1056	struct regulator *regulator;
1057	char buf[REG_STR_SIZE];
1058	int err, size;
1059
1060	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1061	if (regulator == NULL)
1062		return NULL;
1063
1064	mutex_lock(&rdev->mutex);
1065	regulator->rdev = rdev;
1066	list_add(&regulator->list, &rdev->consumer_list);
1067
1068	if (dev) {
1069		/* create a 'requested_microamps_name' sysfs entry */
1070		size = scnprintf(buf, REG_STR_SIZE,
1071				 "microamps_requested_%s-%s",
1072				 dev_name(dev), supply_name);
1073		if (size >= REG_STR_SIZE)
1074			goto overflow_err;
1075
1076		regulator->dev = dev;
1077		sysfs_attr_init(&regulator->dev_attr.attr);
1078		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1079		if (regulator->dev_attr.attr.name == NULL)
1080			goto attr_name_err;
1081
1082		regulator->dev_attr.attr.mode = 0444;
1083		regulator->dev_attr.show = device_requested_uA_show;
1084		err = device_create_file(dev, &regulator->dev_attr);
1085		if (err < 0) {
1086			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1087			goto attr_name_err;
1088		}
1089
1090		/* also add a link to the device sysfs entry */
1091		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1092				 dev->kobj.name, supply_name);
1093		if (size >= REG_STR_SIZE)
1094			goto attr_err;
1095
1096		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1097		if (regulator->supply_name == NULL)
1098			goto attr_err;
1099
1100		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1101					buf);
1102		if (err) {
1103			rdev_warn(rdev, "could not add device link %s err %d\n",
1104				  dev->kobj.name, err);
1105			goto link_name_err;
1106		}
1107	} else {
1108		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1109		if (regulator->supply_name == NULL)
1110			goto attr_err;
1111	}
1112
1113#ifdef CONFIG_DEBUG_FS
1114	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1115						rdev->debugfs);
1116	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1117		rdev_warn(rdev, "Failed to create debugfs directory\n");
1118		regulator->debugfs = NULL;
1119	} else {
1120		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1121				   &regulator->uA_load);
1122		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1123				   &regulator->min_uV);
1124		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1125				   &regulator->max_uV);
1126	}
1127#endif
1128
1129	mutex_unlock(&rdev->mutex);
1130	return regulator;
1131link_name_err:
1132	kfree(regulator->supply_name);
1133attr_err:
1134	device_remove_file(regulator->dev, &regulator->dev_attr);
1135attr_name_err:
1136	kfree(regulator->dev_attr.attr.name);
1137overflow_err:
1138	list_del(&regulator->list);
1139	kfree(regulator);
1140	mutex_unlock(&rdev->mutex);
1141	return NULL;
1142}
1143
1144static int _regulator_get_enable_time(struct regulator_dev *rdev)
1145{
1146	if (!rdev->desc->ops->enable_time)
1147		return 0;
1148	return rdev->desc->ops->enable_time(rdev);
1149}
1150
1151/* Internal regulator request function */
1152static struct regulator *_regulator_get(struct device *dev, const char *id,
1153					int exclusive)
1154{
1155	struct regulator_dev *rdev;
1156	struct regulator_map *map;
1157	struct regulator *regulator = ERR_PTR(-ENODEV);
1158	const char *devname = NULL;
1159	int ret;
1160
1161	if (id == NULL) {
1162		pr_err("get() with no identifier\n");
1163		return regulator;
1164	}
1165
1166	if (dev)
1167		devname = dev_name(dev);
1168
1169	mutex_lock(&regulator_list_mutex);
1170
1171	list_for_each_entry(map, &regulator_map_list, list) {
1172		/* If the mapping has a device set up it must match */
1173		if (map->dev_name &&
1174		    (!devname || strcmp(map->dev_name, devname)))
1175			continue;
1176
1177		if (strcmp(map->supply, id) == 0) {
1178			rdev = map->regulator;
1179			goto found;
1180		}
1181	}
1182
1183	if (board_wants_dummy_regulator) {
1184		rdev = dummy_regulator_rdev;
1185		goto found;
1186	}
1187
1188#ifdef CONFIG_REGULATOR_DUMMY
1189	if (!devname)
1190		devname = "deviceless";
1191
1192	/* If the board didn't flag that it was fully constrained then
1193	 * substitute in a dummy regulator so consumers can continue.
1194	 */
1195	if (!has_full_constraints) {
1196		pr_warn("%s supply %s not found, using dummy regulator\n",
1197			devname, id);
1198		rdev = dummy_regulator_rdev;
1199		goto found;
1200	}
1201#endif
1202
1203	mutex_unlock(&regulator_list_mutex);
1204	return regulator;
1205
1206found:
1207	if (rdev->exclusive) {
1208		regulator = ERR_PTR(-EPERM);
1209		goto out;
1210	}
1211
1212	if (exclusive && rdev->open_count) {
1213		regulator = ERR_PTR(-EBUSY);
1214		goto out;
1215	}
1216
1217	if (!try_module_get(rdev->owner))
1218		goto out;
1219
1220	regulator = create_regulator(rdev, dev, id);
1221	if (regulator == NULL) {
1222		regulator = ERR_PTR(-ENOMEM);
1223		module_put(rdev->owner);
1224	}
1225
1226	rdev->open_count++;
1227	if (exclusive) {
1228		rdev->exclusive = 1;
1229
1230		ret = _regulator_is_enabled(rdev);
1231		if (ret > 0)
1232			rdev->use_count = 1;
1233		else
1234			rdev->use_count = 0;
1235	}
1236
1237out:
1238	mutex_unlock(&regulator_list_mutex);
1239
1240	return regulator;
1241}
1242
1243/**
1244 * regulator_get - lookup and obtain a reference to a regulator.
1245 * @dev: device for regulator "consumer"
1246 * @id: Supply name or regulator ID.
1247 *
1248 * Returns a struct regulator corresponding to the regulator producer,
1249 * or IS_ERR() condition containing errno.
1250 *
1251 * Use of supply names configured via regulator_set_device_supply() is
1252 * strongly encouraged.  It is recommended that the supply name used
1253 * should match the name used for the supply and/or the relevant
1254 * device pins in the datasheet.
1255 */
1256struct regulator *regulator_get(struct device *dev, const char *id)
1257{
1258	return _regulator_get(dev, id, 0);
1259}
1260EXPORT_SYMBOL_GPL(regulator_get);
1261
1262/**
1263 * regulator_get_exclusive - obtain exclusive access to a regulator.
1264 * @dev: device for regulator "consumer"
1265 * @id: Supply name or regulator ID.
1266 *
1267 * Returns a struct regulator corresponding to the regulator producer,
1268 * or IS_ERR() condition containing errno.  Other consumers will be
1269 * unable to obtain this reference is held and the use count for the
1270 * regulator will be initialised to reflect the current state of the
1271 * regulator.
1272 *
1273 * This is intended for use by consumers which cannot tolerate shared
1274 * use of the regulator such as those which need to force the
1275 * regulator off for correct operation of the hardware they are
1276 * controlling.
1277 *
1278 * Use of supply names configured via regulator_set_device_supply() is
1279 * strongly encouraged.  It is recommended that the supply name used
1280 * should match the name used for the supply and/or the relevant
1281 * device pins in the datasheet.
1282 */
1283struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1284{
1285	return _regulator_get(dev, id, 1);
1286}
1287EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1288
1289/**
1290 * regulator_put - "free" the regulator source
1291 * @regulator: regulator source
1292 *
1293 * Note: drivers must ensure that all regulator_enable calls made on this
1294 * regulator source are balanced by regulator_disable calls prior to calling
1295 * this function.
1296 */
1297void regulator_put(struct regulator *regulator)
1298{
1299	struct regulator_dev *rdev;
1300
1301	if (regulator == NULL || IS_ERR(regulator))
1302		return;
1303
1304	mutex_lock(&regulator_list_mutex);
1305	rdev = regulator->rdev;
1306
1307#ifdef CONFIG_DEBUG_FS
1308	debugfs_remove_recursive(regulator->debugfs);
1309#endif
1310
1311	/* remove any sysfs entries */
1312	if (regulator->dev) {
1313		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1314		device_remove_file(regulator->dev, &regulator->dev_attr);
1315		kfree(regulator->dev_attr.attr.name);
1316	}
1317	kfree(regulator->supply_name);
1318	list_del(&regulator->list);
1319	kfree(regulator);
1320
1321	rdev->open_count--;
1322	rdev->exclusive = 0;
1323
1324	module_put(rdev->owner);
1325	mutex_unlock(&regulator_list_mutex);
1326}
1327EXPORT_SYMBOL_GPL(regulator_put);
1328
1329static int _regulator_can_change_status(struct regulator_dev *rdev)
1330{
1331	if (!rdev->constraints)
1332		return 0;
1333
1334	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1335		return 1;
1336	else
1337		return 0;
1338}
1339
1340/* locks held by regulator_enable() */
1341static int _regulator_enable(struct regulator_dev *rdev)
1342{
1343	int ret, delay;
1344
1345	/* check voltage and requested load before enabling */
1346	if (rdev->constraints &&
1347	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1348		drms_uA_update(rdev);
1349
1350	if (rdev->use_count == 0) {
1351		/* The regulator may on if it's not switchable or left on */
1352		ret = _regulator_is_enabled(rdev);
1353		if (ret == -EINVAL || ret == 0) {
1354			if (!_regulator_can_change_status(rdev))
1355				return -EPERM;
1356
1357			if (!rdev->desc->ops->enable)
1358				return -EINVAL;
1359
1360			/* Query before enabling in case configuration
1361			 * dependent.  */
1362			ret = _regulator_get_enable_time(rdev);
1363			if (ret >= 0) {
1364				delay = ret;
1365			} else {
1366				rdev_warn(rdev, "enable_time() failed: %d\n",
1367					   ret);
1368				delay = 0;
1369			}
1370
1371			trace_regulator_enable(rdev_get_name(rdev));
1372
1373			/* Allow the regulator to ramp; it would be useful
1374			 * to extend this for bulk operations so that the
1375			 * regulators can ramp together.  */
1376			ret = rdev->desc->ops->enable(rdev);
1377			if (ret < 0)
1378				return ret;
1379
1380			trace_regulator_enable_delay(rdev_get_name(rdev));
1381
1382			if (delay >= 1000) {
1383				mdelay(delay / 1000);
1384				udelay(delay % 1000);
1385			} else if (delay) {
1386				udelay(delay);
1387			}
1388
1389			trace_regulator_enable_complete(rdev_get_name(rdev));
1390
1391		} else if (ret < 0) {
1392			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1393			return ret;
1394		}
1395		/* Fallthrough on positive return values - already enabled */
1396	}
1397
1398	rdev->use_count++;
1399
1400	return 0;
1401}
1402
1403/**
1404 * regulator_enable - enable regulator output
1405 * @regulator: regulator source
1406 *
1407 * Request that the regulator be enabled with the regulator output at
1408 * the predefined voltage or current value.  Calls to regulator_enable()
1409 * must be balanced with calls to regulator_disable().
1410 *
1411 * NOTE: the output value can be set by other drivers, boot loader or may be
1412 * hardwired in the regulator.
1413 */
1414int regulator_enable(struct regulator *regulator)
1415{
1416	struct regulator_dev *rdev = regulator->rdev;
1417	int ret = 0;
1418
1419	if (rdev->supply) {
1420		ret = regulator_enable(rdev->supply);
1421		if (ret != 0)
1422			return ret;
1423	}
1424
1425	mutex_lock(&rdev->mutex);
1426	ret = _regulator_enable(rdev);
1427	mutex_unlock(&rdev->mutex);
1428
1429	if (ret != 0 && rdev->supply)
1430		regulator_disable(rdev->supply);
1431
1432	return ret;
1433}
1434EXPORT_SYMBOL_GPL(regulator_enable);
1435
1436/* locks held by regulator_disable() */
1437static int _regulator_disable(struct regulator_dev *rdev)
1438{
1439	int ret = 0;
1440
1441	if (WARN(rdev->use_count <= 0,
1442		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1443		return -EIO;
1444
1445	/* are we the last user and permitted to disable ? */
1446	if (rdev->use_count == 1 &&
1447	    (rdev->constraints && !rdev->constraints->always_on)) {
1448
1449		/* we are last user */
1450		if (_regulator_can_change_status(rdev) &&
1451		    rdev->desc->ops->disable) {
1452			trace_regulator_disable(rdev_get_name(rdev));
1453
1454			ret = rdev->desc->ops->disable(rdev);
1455			if (ret < 0) {
1456				rdev_err(rdev, "failed to disable\n");
1457				return ret;
1458			}
1459
1460			trace_regulator_disable_complete(rdev_get_name(rdev));
1461
1462			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1463					     NULL);
1464		}
1465
1466		rdev->use_count = 0;
1467	} else if (rdev->use_count > 1) {
1468
1469		if (rdev->constraints &&
1470			(rdev->constraints->valid_ops_mask &
1471			REGULATOR_CHANGE_DRMS))
1472			drms_uA_update(rdev);
1473
1474		rdev->use_count--;
1475	}
1476
1477	return ret;
1478}
1479
1480/**
1481 * regulator_disable - disable regulator output
1482 * @regulator: regulator source
1483 *
1484 * Disable the regulator output voltage or current.  Calls to
1485 * regulator_enable() must be balanced with calls to
1486 * regulator_disable().
1487 *
1488 * NOTE: this will only disable the regulator output if no other consumer
1489 * devices have it enabled, the regulator device supports disabling and
1490 * machine constraints permit this operation.
1491 */
1492int regulator_disable(struct regulator *regulator)
1493{
1494	struct regulator_dev *rdev = regulator->rdev;
1495	int ret = 0;
1496
1497	mutex_lock(&rdev->mutex);
1498	ret = _regulator_disable(rdev);
1499	mutex_unlock(&rdev->mutex);
1500
1501	if (ret == 0 && rdev->supply)
1502		regulator_disable(rdev->supply);
1503
1504	return ret;
1505}
1506EXPORT_SYMBOL_GPL(regulator_disable);
1507
1508/* locks held by regulator_force_disable() */
1509static int _regulator_force_disable(struct regulator_dev *rdev)
1510{
1511	int ret = 0;
1512
1513	/* force disable */
1514	if (rdev->desc->ops->disable) {
1515		/* ah well, who wants to live forever... */
1516		ret = rdev->desc->ops->disable(rdev);
1517		if (ret < 0) {
1518			rdev_err(rdev, "failed to force disable\n");
1519			return ret;
1520		}
1521		/* notify other consumers that power has been forced off */
1522		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1523			REGULATOR_EVENT_DISABLE, NULL);
1524	}
1525
1526	return ret;
1527}
1528
1529/**
1530 * regulator_force_disable - force disable regulator output
1531 * @regulator: regulator source
1532 *
1533 * Forcibly disable the regulator output voltage or current.
1534 * NOTE: this *will* disable the regulator output even if other consumer
1535 * devices have it enabled. This should be used for situations when device
1536 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1537 */
1538int regulator_force_disable(struct regulator *regulator)
1539{
1540	struct regulator_dev *rdev = regulator->rdev;
1541	int ret;
1542
1543	mutex_lock(&rdev->mutex);
1544	regulator->uA_load = 0;
1545	ret = _regulator_force_disable(regulator->rdev);
1546	mutex_unlock(&rdev->mutex);
1547
1548	if (rdev->supply)
1549		while (rdev->open_count--)
1550			regulator_disable(rdev->supply);
1551
1552	return ret;
1553}
1554EXPORT_SYMBOL_GPL(regulator_force_disable);
1555
1556static void regulator_disable_work(struct work_struct *work)
1557{
1558	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1559						  disable_work.work);
1560	int count, i, ret;
1561
1562	mutex_lock(&rdev->mutex);
1563
1564	BUG_ON(!rdev->deferred_disables);
1565
1566	count = rdev->deferred_disables;
1567	rdev->deferred_disables = 0;
1568
1569	for (i = 0; i < count; i++) {
1570		ret = _regulator_disable(rdev);
1571		if (ret != 0)
1572			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1573	}
1574
1575	mutex_unlock(&rdev->mutex);
1576
1577	if (rdev->supply) {
1578		for (i = 0; i < count; i++) {
1579			ret = regulator_disable(rdev->supply);
1580			if (ret != 0) {
1581				rdev_err(rdev,
1582					 "Supply disable failed: %d\n", ret);
1583			}
1584		}
1585	}
1586}
1587
1588/**
1589 * regulator_disable_deferred - disable regulator output with delay
1590 * @regulator: regulator source
1591 * @ms: miliseconds until the regulator is disabled
1592 *
1593 * Execute regulator_disable() on the regulator after a delay.  This
1594 * is intended for use with devices that require some time to quiesce.
1595 *
1596 * NOTE: this will only disable the regulator output if no other consumer
1597 * devices have it enabled, the regulator device supports disabling and
1598 * machine constraints permit this operation.
1599 */
1600int regulator_disable_deferred(struct regulator *regulator, int ms)
1601{
1602	struct regulator_dev *rdev = regulator->rdev;
1603	int ret;
1604
1605	mutex_lock(&rdev->mutex);
1606	rdev->deferred_disables++;
1607	mutex_unlock(&rdev->mutex);
1608
1609	ret = schedule_delayed_work(&rdev->disable_work,
1610				    msecs_to_jiffies(ms));
1611	if (ret < 0)
1612		return ret;
1613	else
1614		return 0;
1615}
1616EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1617
1618static int _regulator_is_enabled(struct regulator_dev *rdev)
1619{
1620	/* If we don't know then assume that the regulator is always on */
1621	if (!rdev->desc->ops->is_enabled)
1622		return 1;
1623
1624	return rdev->desc->ops->is_enabled(rdev);
1625}
1626
1627/**
1628 * regulator_is_enabled - is the regulator output enabled
1629 * @regulator: regulator source
1630 *
1631 * Returns positive if the regulator driver backing the source/client
1632 * has requested that the device be enabled, zero if it hasn't, else a
1633 * negative errno code.
1634 *
1635 * Note that the device backing this regulator handle can have multiple
1636 * users, so it might be enabled even if regulator_enable() was never
1637 * called for this particular source.
1638 */
1639int regulator_is_enabled(struct regulator *regulator)
1640{
1641	int ret;
1642
1643	mutex_lock(&regulator->rdev->mutex);
1644	ret = _regulator_is_enabled(regulator->rdev);
1645	mutex_unlock(&regulator->rdev->mutex);
1646
1647	return ret;
1648}
1649EXPORT_SYMBOL_GPL(regulator_is_enabled);
1650
1651/**
1652 * regulator_count_voltages - count regulator_list_voltage() selectors
1653 * @regulator: regulator source
1654 *
1655 * Returns number of selectors, or negative errno.  Selectors are
1656 * numbered starting at zero, and typically correspond to bitfields
1657 * in hardware registers.
1658 */
1659int regulator_count_voltages(struct regulator *regulator)
1660{
1661	struct regulator_dev	*rdev = regulator->rdev;
1662
1663	return rdev->desc->n_voltages ? : -EINVAL;
1664}
1665EXPORT_SYMBOL_GPL(regulator_count_voltages);
1666
1667/**
1668 * regulator_list_voltage - enumerate supported voltages
1669 * @regulator: regulator source
1670 * @selector: identify voltage to list
1671 * Context: can sleep
1672 *
1673 * Returns a voltage that can be passed to @regulator_set_voltage(),
1674 * zero if this selector code can't be used on this system, or a
1675 * negative errno.
1676 */
1677int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1678{
1679	struct regulator_dev	*rdev = regulator->rdev;
1680	struct regulator_ops	*ops = rdev->desc->ops;
1681	int			ret;
1682
1683	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1684		return -EINVAL;
1685
1686	mutex_lock(&rdev->mutex);
1687	ret = ops->list_voltage(rdev, selector);
1688	mutex_unlock(&rdev->mutex);
1689
1690	if (ret > 0) {
1691		if (ret < rdev->constraints->min_uV)
1692			ret = 0;
1693		else if (ret > rdev->constraints->max_uV)
1694			ret = 0;
1695	}
1696
1697	return ret;
1698}
1699EXPORT_SYMBOL_GPL(regulator_list_voltage);
1700
1701/**
1702 * regulator_is_supported_voltage - check if a voltage range can be supported
1703 *
1704 * @regulator: Regulator to check.
1705 * @min_uV: Minimum required voltage in uV.
1706 * @max_uV: Maximum required voltage in uV.
1707 *
1708 * Returns a boolean or a negative error code.
1709 */
1710int regulator_is_supported_voltage(struct regulator *regulator,
1711				   int min_uV, int max_uV)
1712{
1713	int i, voltages, ret;
1714
1715	ret = regulator_count_voltages(regulator);
1716	if (ret < 0)
1717		return ret;
1718	voltages = ret;
1719
1720	for (i = 0; i < voltages; i++) {
1721		ret = regulator_list_voltage(regulator, i);
1722
1723		if (ret >= min_uV && ret <= max_uV)
1724			return 1;
1725	}
1726
1727	return 0;
1728}
1729
1730static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1731				     int min_uV, int max_uV)
1732{
1733	int ret;
1734	int delay = 0;
1735	unsigned int selector;
1736
1737	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1738
1739	min_uV += rdev->constraints->uV_offset;
1740	max_uV += rdev->constraints->uV_offset;
1741
1742	if (rdev->desc->ops->set_voltage) {
1743		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1744						   &selector);
1745
1746		if (rdev->desc->ops->list_voltage)
1747			selector = rdev->desc->ops->list_voltage(rdev,
1748								 selector);
1749		else
1750			selector = -1;
1751	} else if (rdev->desc->ops->set_voltage_sel) {
1752		int best_val = INT_MAX;
1753		int i;
1754
1755		selector = 0;
1756
1757		/* Find the smallest voltage that falls within the specified
1758		 * range.
1759		 */
1760		for (i = 0; i < rdev->desc->n_voltages; i++) {
1761			ret = rdev->desc->ops->list_voltage(rdev, i);
1762			if (ret < 0)
1763				continue;
1764
1765			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1766				best_val = ret;
1767				selector = i;
1768			}
1769		}
1770
1771		/*
1772		 * If we can't obtain the old selector there is not enough
1773		 * info to call set_voltage_time_sel().
1774		 */
1775		if (rdev->desc->ops->set_voltage_time_sel &&
1776		    rdev->desc->ops->get_voltage_sel) {
1777			unsigned int old_selector = 0;
1778
1779			ret = rdev->desc->ops->get_voltage_sel(rdev);
1780			if (ret < 0)
1781				return ret;
1782			old_selector = ret;
1783			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1784						old_selector, selector);
1785		}
1786
1787		if (best_val != INT_MAX) {
1788			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1789			selector = best_val;
1790		} else {
1791			ret = -EINVAL;
1792		}
1793	} else {
1794		ret = -EINVAL;
1795	}
1796
1797	/* Insert any necessary delays */
1798	if (delay >= 1000) {
1799		mdelay(delay / 1000);
1800		udelay(delay % 1000);
1801	} else if (delay) {
1802		udelay(delay);
1803	}
1804
1805	if (ret == 0)
1806		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1807				     NULL);
1808
1809	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1810
1811	return ret;
1812}
1813
1814/**
1815 * regulator_set_voltage - set regulator output voltage
1816 * @regulator: regulator source
1817 * @min_uV: Minimum required voltage in uV
1818 * @max_uV: Maximum acceptable voltage in uV
1819 *
1820 * Sets a voltage regulator to the desired output voltage. This can be set
1821 * during any regulator state. IOW, regulator can be disabled or enabled.
1822 *
1823 * If the regulator is enabled then the voltage will change to the new value
1824 * immediately otherwise if the regulator is disabled the regulator will
1825 * output at the new voltage when enabled.
1826 *
1827 * NOTE: If the regulator is shared between several devices then the lowest
1828 * request voltage that meets the system constraints will be used.
1829 * Regulator system constraints must be set for this regulator before
1830 * calling this function otherwise this call will fail.
1831 */
1832int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1833{
1834	struct regulator_dev *rdev = regulator->rdev;
1835	int ret = 0;
1836
1837	mutex_lock(&rdev->mutex);
1838
1839	/* If we're setting the same range as last time the change
1840	 * should be a noop (some cpufreq implementations use the same
1841	 * voltage for multiple frequencies, for example).
1842	 */
1843	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1844		goto out;
1845
1846	/* sanity check */
1847	if (!rdev->desc->ops->set_voltage &&
1848	    !rdev->desc->ops->set_voltage_sel) {
1849		ret = -EINVAL;
1850		goto out;
1851	}
1852
1853	/* constraints check */
1854	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1855	if (ret < 0)
1856		goto out;
1857	regulator->min_uV = min_uV;
1858	regulator->max_uV = max_uV;
1859
1860	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1861	if (ret < 0)
1862		goto out;
1863
1864	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1865
1866out:
1867	mutex_unlock(&rdev->mutex);
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(regulator_set_voltage);
1871
1872/**
1873 * regulator_set_voltage_time - get raise/fall time
1874 * @regulator: regulator source
1875 * @old_uV: starting voltage in microvolts
1876 * @new_uV: target voltage in microvolts
1877 *
1878 * Provided with the starting and ending voltage, this function attempts to
1879 * calculate the time in microseconds required to rise or fall to this new
1880 * voltage.
1881 */
1882int regulator_set_voltage_time(struct regulator *regulator,
1883			       int old_uV, int new_uV)
1884{
1885	struct regulator_dev	*rdev = regulator->rdev;
1886	struct regulator_ops	*ops = rdev->desc->ops;
1887	int old_sel = -1;
1888	int new_sel = -1;
1889	int voltage;
1890	int i;
1891
1892	/* Currently requires operations to do this */
1893	if (!ops->list_voltage || !ops->set_voltage_time_sel
1894	    || !rdev->desc->n_voltages)
1895		return -EINVAL;
1896
1897	for (i = 0; i < rdev->desc->n_voltages; i++) {
1898		/* We only look for exact voltage matches here */
1899		voltage = regulator_list_voltage(regulator, i);
1900		if (voltage < 0)
1901			return -EINVAL;
1902		if (voltage == 0)
1903			continue;
1904		if (voltage == old_uV)
1905			old_sel = i;
1906		if (voltage == new_uV)
1907			new_sel = i;
1908	}
1909
1910	if (old_sel < 0 || new_sel < 0)
1911		return -EINVAL;
1912
1913	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1914}
1915EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1916
1917/**
1918 * regulator_sync_voltage - re-apply last regulator output voltage
1919 * @regulator: regulator source
1920 *
1921 * Re-apply the last configured voltage.  This is intended to be used
1922 * where some external control source the consumer is cooperating with
1923 * has caused the configured voltage to change.
1924 */
1925int regulator_sync_voltage(struct regulator *regulator)
1926{
1927	struct regulator_dev *rdev = regulator->rdev;
1928	int ret, min_uV, max_uV;
1929
1930	mutex_lock(&rdev->mutex);
1931
1932	if (!rdev->desc->ops->set_voltage &&
1933	    !rdev->desc->ops->set_voltage_sel) {
1934		ret = -EINVAL;
1935		goto out;
1936	}
1937
1938	/* This is only going to work if we've had a voltage configured. */
1939	if (!regulator->min_uV && !regulator->max_uV) {
1940		ret = -EINVAL;
1941		goto out;
1942	}
1943
1944	min_uV = regulator->min_uV;
1945	max_uV = regulator->max_uV;
1946
1947	/* This should be a paranoia check... */
1948	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1949	if (ret < 0)
1950		goto out;
1951
1952	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1953	if (ret < 0)
1954		goto out;
1955
1956	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1957
1958out:
1959	mutex_unlock(&rdev->mutex);
1960	return ret;
1961}
1962EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1963
1964static int _regulator_get_voltage(struct regulator_dev *rdev)
1965{
1966	int sel, ret;
1967
1968	if (rdev->desc->ops->get_voltage_sel) {
1969		sel = rdev->desc->ops->get_voltage_sel(rdev);
1970		if (sel < 0)
1971			return sel;
1972		ret = rdev->desc->ops->list_voltage(rdev, sel);
1973	} else if (rdev->desc->ops->get_voltage) {
1974		ret = rdev->desc->ops->get_voltage(rdev);
1975	} else {
1976		return -EINVAL;
1977	}
1978
1979	if (ret < 0)
1980		return ret;
1981	return ret - rdev->constraints->uV_offset;
1982}
1983
1984/**
1985 * regulator_get_voltage - get regulator output voltage
1986 * @regulator: regulator source
1987 *
1988 * This returns the current regulator voltage in uV.
1989 *
1990 * NOTE: If the regulator is disabled it will return the voltage value. This
1991 * function should not be used to determine regulator state.
1992 */
1993int regulator_get_voltage(struct regulator *regulator)
1994{
1995	int ret;
1996
1997	mutex_lock(&regulator->rdev->mutex);
1998
1999	ret = _regulator_get_voltage(regulator->rdev);
2000
2001	mutex_unlock(&regulator->rdev->mutex);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(regulator_get_voltage);
2006
2007/**
2008 * regulator_set_current_limit - set regulator output current limit
2009 * @regulator: regulator source
2010 * @min_uA: Minimuum supported current in uA
2011 * @max_uA: Maximum supported current in uA
2012 *
2013 * Sets current sink to the desired output current. This can be set during
2014 * any regulator state. IOW, regulator can be disabled or enabled.
2015 *
2016 * If the regulator is enabled then the current will change to the new value
2017 * immediately otherwise if the regulator is disabled the regulator will
2018 * output at the new current when enabled.
2019 *
2020 * NOTE: Regulator system constraints must be set for this regulator before
2021 * calling this function otherwise this call will fail.
2022 */
2023int regulator_set_current_limit(struct regulator *regulator,
2024			       int min_uA, int max_uA)
2025{
2026	struct regulator_dev *rdev = regulator->rdev;
2027	int ret;
2028
2029	mutex_lock(&rdev->mutex);
2030
2031	/* sanity check */
2032	if (!rdev->desc->ops->set_current_limit) {
2033		ret = -EINVAL;
2034		goto out;
2035	}
2036
2037	/* constraints check */
2038	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2039	if (ret < 0)
2040		goto out;
2041
2042	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2043out:
2044	mutex_unlock(&rdev->mutex);
2045	return ret;
2046}
2047EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2048
2049static int _regulator_get_current_limit(struct regulator_dev *rdev)
2050{
2051	int ret;
2052
2053	mutex_lock(&rdev->mutex);
2054
2055	/* sanity check */
2056	if (!rdev->desc->ops->get_current_limit) {
2057		ret = -EINVAL;
2058		goto out;
2059	}
2060
2061	ret = rdev->desc->ops->get_current_limit(rdev);
2062out:
2063	mutex_unlock(&rdev->mutex);
2064	return ret;
2065}
2066
2067/**
2068 * regulator_get_current_limit - get regulator output current
2069 * @regulator: regulator source
2070 *
2071 * This returns the current supplied by the specified current sink in uA.
2072 *
2073 * NOTE: If the regulator is disabled it will return the current value. This
2074 * function should not be used to determine regulator state.
2075 */
2076int regulator_get_current_limit(struct regulator *regulator)
2077{
2078	return _regulator_get_current_limit(regulator->rdev);
2079}
2080EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2081
2082/**
2083 * regulator_set_mode - set regulator operating mode
2084 * @regulator: regulator source
2085 * @mode: operating mode - one of the REGULATOR_MODE constants
2086 *
2087 * Set regulator operating mode to increase regulator efficiency or improve
2088 * regulation performance.
2089 *
2090 * NOTE: Regulator system constraints must be set for this regulator before
2091 * calling this function otherwise this call will fail.
2092 */
2093int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2094{
2095	struct regulator_dev *rdev = regulator->rdev;
2096	int ret;
2097	int regulator_curr_mode;
2098
2099	mutex_lock(&rdev->mutex);
2100
2101	/* sanity check */
2102	if (!rdev->desc->ops->set_mode) {
2103		ret = -EINVAL;
2104		goto out;
2105	}
2106
2107	/* return if the same mode is requested */
2108	if (rdev->desc->ops->get_mode) {
2109		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2110		if (regulator_curr_mode == mode) {
2111			ret = 0;
2112			goto out;
2113		}
2114	}
2115
2116	/* constraints check */
2117	ret = regulator_mode_constrain(rdev, &mode);
2118	if (ret < 0)
2119		goto out;
2120
2121	ret = rdev->desc->ops->set_mode(rdev, mode);
2122out:
2123	mutex_unlock(&rdev->mutex);
2124	return ret;
2125}
2126EXPORT_SYMBOL_GPL(regulator_set_mode);
2127
2128static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2129{
2130	int ret;
2131
2132	mutex_lock(&rdev->mutex);
2133
2134	/* sanity check */
2135	if (!rdev->desc->ops->get_mode) {
2136		ret = -EINVAL;
2137		goto out;
2138	}
2139
2140	ret = rdev->desc->ops->get_mode(rdev);
2141out:
2142	mutex_unlock(&rdev->mutex);
2143	return ret;
2144}
2145
2146/**
2147 * regulator_get_mode - get regulator operating mode
2148 * @regulator: regulator source
2149 *
2150 * Get the current regulator operating mode.
2151 */
2152unsigned int regulator_get_mode(struct regulator *regulator)
2153{
2154	return _regulator_get_mode(regulator->rdev);
2155}
2156EXPORT_SYMBOL_GPL(regulator_get_mode);
2157
2158/**
2159 * regulator_set_optimum_mode - set regulator optimum operating mode
2160 * @regulator: regulator source
2161 * @uA_load: load current
2162 *
2163 * Notifies the regulator core of a new device load. This is then used by
2164 * DRMS (if enabled by constraints) to set the most efficient regulator
2165 * operating mode for the new regulator loading.
2166 *
2167 * Consumer devices notify their supply regulator of the maximum power
2168 * they will require (can be taken from device datasheet in the power
2169 * consumption tables) when they change operational status and hence power
2170 * state. Examples of operational state changes that can affect power
2171 * consumption are :-
2172 *
2173 *    o Device is opened / closed.
2174 *    o Device I/O is about to begin or has just finished.
2175 *    o Device is idling in between work.
2176 *
2177 * This information is also exported via sysfs to userspace.
2178 *
2179 * DRMS will sum the total requested load on the regulator and change
2180 * to the most efficient operating mode if platform constraints allow.
2181 *
2182 * Returns the new regulator mode or error.
2183 */
2184int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2185{
2186	struct regulator_dev *rdev = regulator->rdev;
2187	struct regulator *consumer;
2188	int ret, output_uV, input_uV, total_uA_load = 0;
2189	unsigned int mode;
2190
2191	mutex_lock(&rdev->mutex);
2192
2193	/*
2194	 * first check to see if we can set modes at all, otherwise just
2195	 * tell the consumer everything is OK.
2196	 */
2197	regulator->uA_load = uA_load;
2198	ret = regulator_check_drms(rdev);
2199	if (ret < 0) {
2200		ret = 0;
2201		goto out;
2202	}
2203
2204	if (!rdev->desc->ops->get_optimum_mode)
2205		goto out;
2206
2207	/*
2208	 * we can actually do this so any errors are indicators of
2209	 * potential real failure.
2210	 */
2211	ret = -EINVAL;
2212
2213	/* get output voltage */
2214	output_uV = _regulator_get_voltage(rdev);
2215	if (output_uV <= 0) {
2216		rdev_err(rdev, "invalid output voltage found\n");
2217		goto out;
2218	}
2219
2220	/* get input voltage */
2221	input_uV = 0;
2222	if (rdev->supply)
2223		input_uV = regulator_get_voltage(rdev->supply);
2224	if (input_uV <= 0)
2225		input_uV = rdev->constraints->input_uV;
2226	if (input_uV <= 0) {
2227		rdev_err(rdev, "invalid input voltage found\n");
2228		goto out;
2229	}
2230
2231	/* calc total requested load for this regulator */
2232	list_for_each_entry(consumer, &rdev->consumer_list, list)
2233		total_uA_load += consumer->uA_load;
2234
2235	mode = rdev->desc->ops->get_optimum_mode(rdev,
2236						 input_uV, output_uV,
2237						 total_uA_load);
2238	ret = regulator_mode_constrain(rdev, &mode);
2239	if (ret < 0) {
2240		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2241			 total_uA_load, input_uV, output_uV);
2242		goto out;
2243	}
2244
2245	ret = rdev->desc->ops->set_mode(rdev, mode);
2246	if (ret < 0) {
2247		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2248		goto out;
2249	}
2250	ret = mode;
2251out:
2252	mutex_unlock(&rdev->mutex);
2253	return ret;
2254}
2255EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2256
2257/**
2258 * regulator_register_notifier - register regulator event notifier
2259 * @regulator: regulator source
2260 * @nb: notifier block
2261 *
2262 * Register notifier block to receive regulator events.
2263 */
2264int regulator_register_notifier(struct regulator *regulator,
2265			      struct notifier_block *nb)
2266{
2267	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2268						nb);
2269}
2270EXPORT_SYMBOL_GPL(regulator_register_notifier);
2271
2272/**
2273 * regulator_unregister_notifier - unregister regulator event notifier
2274 * @regulator: regulator source
2275 * @nb: notifier block
2276 *
2277 * Unregister regulator event notifier block.
2278 */
2279int regulator_unregister_notifier(struct regulator *regulator,
2280				struct notifier_block *nb)
2281{
2282	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2283						  nb);
2284}
2285EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2286
2287/* notify regulator consumers and downstream regulator consumers.
2288 * Note mutex must be held by caller.
2289 */
2290static void _notifier_call_chain(struct regulator_dev *rdev,
2291				  unsigned long event, void *data)
2292{
2293	/* call rdev chain first */
2294	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2295}
2296
2297/**
2298 * regulator_bulk_get - get multiple regulator consumers
2299 *
2300 * @dev:           Device to supply
2301 * @num_consumers: Number of consumers to register
2302 * @consumers:     Configuration of consumers; clients are stored here.
2303 *
2304 * @return 0 on success, an errno on failure.
2305 *
2306 * This helper function allows drivers to get several regulator
2307 * consumers in one operation.  If any of the regulators cannot be
2308 * acquired then any regulators that were allocated will be freed
2309 * before returning to the caller.
2310 */
2311int regulator_bulk_get(struct device *dev, int num_consumers,
2312		       struct regulator_bulk_data *consumers)
2313{
2314	int i;
2315	int ret;
2316
2317	for (i = 0; i < num_consumers; i++)
2318		consumers[i].consumer = NULL;
2319
2320	for (i = 0; i < num_consumers; i++) {
2321		consumers[i].consumer = regulator_get(dev,
2322						      consumers[i].supply);
2323		if (IS_ERR(consumers[i].consumer)) {
2324			ret = PTR_ERR(consumers[i].consumer);
2325			dev_err(dev, "Failed to get supply '%s': %d\n",
2326				consumers[i].supply, ret);
2327			consumers[i].consumer = NULL;
2328			goto err;
2329		}
2330	}
2331
2332	return 0;
2333
2334err:
2335	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2336		regulator_put(consumers[i].consumer);
2337
2338	return ret;
2339}
2340EXPORT_SYMBOL_GPL(regulator_bulk_get);
2341
2342static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2343{
2344	struct regulator_bulk_data *bulk = data;
2345
2346	bulk->ret = regulator_enable(bulk->consumer);
2347}
2348
2349/**
2350 * regulator_bulk_enable - enable multiple regulator consumers
2351 *
2352 * @num_consumers: Number of consumers
2353 * @consumers:     Consumer data; clients are stored here.
2354 * @return         0 on success, an errno on failure
2355 *
2356 * This convenience API allows consumers to enable multiple regulator
2357 * clients in a single API call.  If any consumers cannot be enabled
2358 * then any others that were enabled will be disabled again prior to
2359 * return.
2360 */
2361int regulator_bulk_enable(int num_consumers,
2362			  struct regulator_bulk_data *consumers)
2363{
2364	LIST_HEAD(async_domain);
2365	int i;
2366	int ret = 0;
2367
2368	for (i = 0; i < num_consumers; i++)
2369		async_schedule_domain(regulator_bulk_enable_async,
2370				      &consumers[i], &async_domain);
2371
2372	async_synchronize_full_domain(&async_domain);
2373
2374	/* If any consumer failed we need to unwind any that succeeded */
2375	for (i = 0; i < num_consumers; i++) {
2376		if (consumers[i].ret != 0) {
2377			ret = consumers[i].ret;
2378			goto err;
2379		}
2380	}
2381
2382	return 0;
2383
2384err:
2385	for (i = 0; i < num_consumers; i++)
2386		if (consumers[i].ret == 0)
2387			regulator_disable(consumers[i].consumer);
2388		else
2389			pr_err("Failed to enable %s: %d\n",
2390			       consumers[i].supply, consumers[i].ret);
2391
2392	return ret;
2393}
2394EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2395
2396/**
2397 * regulator_bulk_disable - disable multiple regulator consumers
2398 *
2399 * @num_consumers: Number of consumers
2400 * @consumers:     Consumer data; clients are stored here.
2401 * @return         0 on success, an errno on failure
2402 *
2403 * This convenience API allows consumers to disable multiple regulator
2404 * clients in a single API call.  If any consumers cannot be enabled
2405 * then any others that were disabled will be disabled again prior to
2406 * return.
2407 */
2408int regulator_bulk_disable(int num_consumers,
2409			   struct regulator_bulk_data *consumers)
2410{
2411	int i;
2412	int ret;
2413
2414	for (i = 0; i < num_consumers; i++) {
2415		ret = regulator_disable(consumers[i].consumer);
2416		if (ret != 0)
2417			goto err;
2418	}
2419
2420	return 0;
2421
2422err:
2423	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2424	for (--i; i >= 0; --i)
2425		regulator_enable(consumers[i].consumer);
2426
2427	return ret;
2428}
2429EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2430
2431/**
2432 * regulator_bulk_free - free multiple regulator consumers
2433 *
2434 * @num_consumers: Number of consumers
2435 * @consumers:     Consumer data; clients are stored here.
2436 *
2437 * This convenience API allows consumers to free multiple regulator
2438 * clients in a single API call.
2439 */
2440void regulator_bulk_free(int num_consumers,
2441			 struct regulator_bulk_data *consumers)
2442{
2443	int i;
2444
2445	for (i = 0; i < num_consumers; i++) {
2446		regulator_put(consumers[i].consumer);
2447		consumers[i].consumer = NULL;
2448	}
2449}
2450EXPORT_SYMBOL_GPL(regulator_bulk_free);
2451
2452/**
2453 * regulator_notifier_call_chain - call regulator event notifier
2454 * @rdev: regulator source
2455 * @event: notifier block
2456 * @data: callback-specific data.
2457 *
2458 * Called by regulator drivers to notify clients a regulator event has
2459 * occurred. We also notify regulator clients downstream.
2460 * Note lock must be held by caller.
2461 */
2462int regulator_notifier_call_chain(struct regulator_dev *rdev,
2463				  unsigned long event, void *data)
2464{
2465	_notifier_call_chain(rdev, event, data);
2466	return NOTIFY_DONE;
2467
2468}
2469EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2470
2471/**
2472 * regulator_mode_to_status - convert a regulator mode into a status
2473 *
2474 * @mode: Mode to convert
2475 *
2476 * Convert a regulator mode into a status.
2477 */
2478int regulator_mode_to_status(unsigned int mode)
2479{
2480	switch (mode) {
2481	case REGULATOR_MODE_FAST:
2482		return REGULATOR_STATUS_FAST;
2483	case REGULATOR_MODE_NORMAL:
2484		return REGULATOR_STATUS_NORMAL;
2485	case REGULATOR_MODE_IDLE:
2486		return REGULATOR_STATUS_IDLE;
2487	case REGULATOR_STATUS_STANDBY:
2488		return REGULATOR_STATUS_STANDBY;
2489	default:
2490		return 0;
2491	}
2492}
2493EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2494
2495/*
2496 * To avoid cluttering sysfs (and memory) with useless state, only
2497 * create attributes that can be meaningfully displayed.
2498 */
2499static int add_regulator_attributes(struct regulator_dev *rdev)
2500{
2501	struct device		*dev = &rdev->dev;
2502	struct regulator_ops	*ops = rdev->desc->ops;
2503	int			status = 0;
2504
2505	/* some attributes need specific methods to be displayed */
2506	if (ops->get_voltage || ops->get_voltage_sel) {
2507		status = device_create_file(dev, &dev_attr_microvolts);
2508		if (status < 0)
2509			return status;
2510	}
2511	if (ops->get_current_limit) {
2512		status = device_create_file(dev, &dev_attr_microamps);
2513		if (status < 0)
2514			return status;
2515	}
2516	if (ops->get_mode) {
2517		status = device_create_file(dev, &dev_attr_opmode);
2518		if (status < 0)
2519			return status;
2520	}
2521	if (ops->is_enabled) {
2522		status = device_create_file(dev, &dev_attr_state);
2523		if (status < 0)
2524			return status;
2525	}
2526	if (ops->get_status) {
2527		status = device_create_file(dev, &dev_attr_status);
2528		if (status < 0)
2529			return status;
2530	}
2531
2532	/* some attributes are type-specific */
2533	if (rdev->desc->type == REGULATOR_CURRENT) {
2534		status = device_create_file(dev, &dev_attr_requested_microamps);
2535		if (status < 0)
2536			return status;
2537	}
2538
2539	/* all the other attributes exist to support constraints;
2540	 * don't show them if there are no constraints, or if the
2541	 * relevant supporting methods are missing.
2542	 */
2543	if (!rdev->constraints)
2544		return status;
2545
2546	/* constraints need specific supporting methods */
2547	if (ops->set_voltage || ops->set_voltage_sel) {
2548		status = device_create_file(dev, &dev_attr_min_microvolts);
2549		if (status < 0)
2550			return status;
2551		status = device_create_file(dev, &dev_attr_max_microvolts);
2552		if (status < 0)
2553			return status;
2554	}
2555	if (ops->set_current_limit) {
2556		status = device_create_file(dev, &dev_attr_min_microamps);
2557		if (status < 0)
2558			return status;
2559		status = device_create_file(dev, &dev_attr_max_microamps);
2560		if (status < 0)
2561			return status;
2562	}
2563
2564	/* suspend mode constraints need multiple supporting methods */
2565	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2566		return status;
2567
2568	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2569	if (status < 0)
2570		return status;
2571	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2572	if (status < 0)
2573		return status;
2574	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2575	if (status < 0)
2576		return status;
2577
2578	if (ops->set_suspend_voltage) {
2579		status = device_create_file(dev,
2580				&dev_attr_suspend_standby_microvolts);
2581		if (status < 0)
2582			return status;
2583		status = device_create_file(dev,
2584				&dev_attr_suspend_mem_microvolts);
2585		if (status < 0)
2586			return status;
2587		status = device_create_file(dev,
2588				&dev_attr_suspend_disk_microvolts);
2589		if (status < 0)
2590			return status;
2591	}
2592
2593	if (ops->set_suspend_mode) {
2594		status = device_create_file(dev,
2595				&dev_attr_suspend_standby_mode);
2596		if (status < 0)
2597			return status;
2598		status = device_create_file(dev,
2599				&dev_attr_suspend_mem_mode);
2600		if (status < 0)
2601			return status;
2602		status = device_create_file(dev,
2603				&dev_attr_suspend_disk_mode);
2604		if (status < 0)
2605			return status;
2606	}
2607
2608	return status;
2609}
2610
2611static void rdev_init_debugfs(struct regulator_dev *rdev)
2612{
2613#ifdef CONFIG_DEBUG_FS
2614	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2615	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2616		rdev_warn(rdev, "Failed to create debugfs directory\n");
2617		rdev->debugfs = NULL;
2618		return;
2619	}
2620
2621	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2622			   &rdev->use_count);
2623	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2624			   &rdev->open_count);
2625#endif
2626}
2627
2628/**
2629 * regulator_register - register regulator
2630 * @regulator_desc: regulator to register
2631 * @dev: struct device for the regulator
2632 * @init_data: platform provided init data, passed through by driver
2633 * @driver_data: private regulator data
2634 *
2635 * Called by regulator drivers to register a regulator.
2636 * Returns 0 on success.
2637 */
2638struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2639	struct device *dev, const struct regulator_init_data *init_data,
2640	void *driver_data, struct device_node *of_node)
2641{
2642	static atomic_t regulator_no = ATOMIC_INIT(0);
2643	struct regulator_dev *rdev;
2644	int ret, i;
2645
2646	if (regulator_desc == NULL)
2647		return ERR_PTR(-EINVAL);
2648
2649	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2650		return ERR_PTR(-EINVAL);
2651
2652	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2653	    regulator_desc->type != REGULATOR_CURRENT)
2654		return ERR_PTR(-EINVAL);
2655
2656	if (!init_data)
2657		return ERR_PTR(-EINVAL);
2658
2659	/* Only one of each should be implemented */
2660	WARN_ON(regulator_desc->ops->get_voltage &&
2661		regulator_desc->ops->get_voltage_sel);
2662	WARN_ON(regulator_desc->ops->set_voltage &&
2663		regulator_desc->ops->set_voltage_sel);
2664
2665	/* If we're using selectors we must implement list_voltage. */
2666	if (regulator_desc->ops->get_voltage_sel &&
2667	    !regulator_desc->ops->list_voltage) {
2668		return ERR_PTR(-EINVAL);
2669	}
2670	if (regulator_desc->ops->set_voltage_sel &&
2671	    !regulator_desc->ops->list_voltage) {
2672		return ERR_PTR(-EINVAL);
2673	}
2674
2675	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2676	if (rdev == NULL)
2677		return ERR_PTR(-ENOMEM);
2678
2679	mutex_lock(&regulator_list_mutex);
2680
2681	mutex_init(&rdev->mutex);
2682	rdev->reg_data = driver_data;
2683	rdev->owner = regulator_desc->owner;
2684	rdev->desc = regulator_desc;
2685	INIT_LIST_HEAD(&rdev->consumer_list);
2686	INIT_LIST_HEAD(&rdev->list);
2687	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2688	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2689
2690	/* preform any regulator specific init */
2691	if (init_data->regulator_init) {
2692		ret = init_data->regulator_init(rdev->reg_data);
2693		if (ret < 0)
2694			goto clean;
2695	}
2696
2697	/* register with sysfs */
2698	rdev->dev.class = &regulator_class;
2699	rdev->dev.of_node = of_node;
2700	rdev->dev.parent = dev;
2701	dev_set_name(&rdev->dev, "regulator.%d",
2702		     atomic_inc_return(&regulator_no) - 1);
2703	ret = device_register(&rdev->dev);
2704	if (ret != 0) {
2705		put_device(&rdev->dev);
2706		goto clean;
2707	}
2708
2709	dev_set_drvdata(&rdev->dev, rdev);
2710
2711	/* set regulator constraints */
2712	ret = set_machine_constraints(rdev, &init_data->constraints);
2713	if (ret < 0)
2714		goto scrub;
2715
2716	/* add attributes supported by this regulator */
2717	ret = add_regulator_attributes(rdev);
2718	if (ret < 0)
2719		goto scrub;
2720
2721	if (init_data->supply_regulator) {
2722		struct regulator_dev *r;
2723		int found = 0;
2724
2725		list_for_each_entry(r, &regulator_list, list) {
2726			if (strcmp(rdev_get_name(r),
2727				   init_data->supply_regulator) == 0) {
2728				found = 1;
2729				break;
2730			}
2731		}
2732
2733		if (!found) {
2734			dev_err(dev, "Failed to find supply %s\n",
2735				init_data->supply_regulator);
2736			ret = -ENODEV;
2737			goto scrub;
2738		}
2739
2740		ret = set_supply(rdev, r);
2741		if (ret < 0)
2742			goto scrub;
2743	}
2744
2745	/* add consumers devices */
2746	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2747		ret = set_consumer_device_supply(rdev,
2748			init_data->consumer_supplies[i].dev,
2749			init_data->consumer_supplies[i].dev_name,
2750			init_data->consumer_supplies[i].supply);
2751		if (ret < 0) {
2752			dev_err(dev, "Failed to set supply %s\n",
2753				init_data->consumer_supplies[i].supply);
2754			goto unset_supplies;
2755		}
2756	}
2757
2758	list_add(&rdev->list, &regulator_list);
2759
2760	rdev_init_debugfs(rdev);
2761out:
2762	mutex_unlock(&regulator_list_mutex);
2763	return rdev;
2764
2765unset_supplies:
2766	unset_regulator_supplies(rdev);
2767
2768scrub:
2769	kfree(rdev->constraints);
2770	device_unregister(&rdev->dev);
2771	/* device core frees rdev */
2772	rdev = ERR_PTR(ret);
2773	goto out;
2774
2775clean:
2776	kfree(rdev);
2777	rdev = ERR_PTR(ret);
2778	goto out;
2779}
2780EXPORT_SYMBOL_GPL(regulator_register);
2781
2782/**
2783 * regulator_unregister - unregister regulator
2784 * @rdev: regulator to unregister
2785 *
2786 * Called by regulator drivers to unregister a regulator.
2787 */
2788void regulator_unregister(struct regulator_dev *rdev)
2789{
2790	if (rdev == NULL)
2791		return;
2792
2793	mutex_lock(&regulator_list_mutex);
2794#ifdef CONFIG_DEBUG_FS
2795	debugfs_remove_recursive(rdev->debugfs);
2796#endif
2797	flush_work_sync(&rdev->disable_work.work);
2798	WARN_ON(rdev->open_count);
2799	unset_regulator_supplies(rdev);
2800	list_del(&rdev->list);
2801	if (rdev->supply)
2802		regulator_put(rdev->supply);
2803	device_unregister(&rdev->dev);
2804	kfree(rdev->constraints);
2805	mutex_unlock(&regulator_list_mutex);
2806}
2807EXPORT_SYMBOL_GPL(regulator_unregister);
2808
2809/**
2810 * regulator_suspend_prepare - prepare regulators for system wide suspend
2811 * @state: system suspend state
2812 *
2813 * Configure each regulator with it's suspend operating parameters for state.
2814 * This will usually be called by machine suspend code prior to supending.
2815 */
2816int regulator_suspend_prepare(suspend_state_t state)
2817{
2818	struct regulator_dev *rdev;
2819	int ret = 0;
2820
2821	/* ON is handled by regulator active state */
2822	if (state == PM_SUSPEND_ON)
2823		return -EINVAL;
2824
2825	mutex_lock(&regulator_list_mutex);
2826	list_for_each_entry(rdev, &regulator_list, list) {
2827
2828		mutex_lock(&rdev->mutex);
2829		ret = suspend_prepare(rdev, state);
2830		mutex_unlock(&rdev->mutex);
2831
2832		if (ret < 0) {
2833			rdev_err(rdev, "failed to prepare\n");
2834			goto out;
2835		}
2836	}
2837out:
2838	mutex_unlock(&regulator_list_mutex);
2839	return ret;
2840}
2841EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2842
2843/**
2844 * regulator_suspend_finish - resume regulators from system wide suspend
2845 *
2846 * Turn on regulators that might be turned off by regulator_suspend_prepare
2847 * and that should be turned on according to the regulators properties.
2848 */
2849int regulator_suspend_finish(void)
2850{
2851	struct regulator_dev *rdev;
2852	int ret = 0, error;
2853
2854	mutex_lock(&regulator_list_mutex);
2855	list_for_each_entry(rdev, &regulator_list, list) {
2856		struct regulator_ops *ops = rdev->desc->ops;
2857
2858		mutex_lock(&rdev->mutex);
2859		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2860				ops->enable) {
2861			error = ops->enable(rdev);
2862			if (error)
2863				ret = error;
2864		} else {
2865			if (!has_full_constraints)
2866				goto unlock;
2867			if (!ops->disable)
2868				goto unlock;
2869			if (ops->is_enabled && !ops->is_enabled(rdev))
2870				goto unlock;
2871
2872			error = ops->disable(rdev);
2873			if (error)
2874				ret = error;
2875		}
2876unlock:
2877		mutex_unlock(&rdev->mutex);
2878	}
2879	mutex_unlock(&regulator_list_mutex);
2880	return ret;
2881}
2882EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2883
2884/**
2885 * regulator_has_full_constraints - the system has fully specified constraints
2886 *
2887 * Calling this function will cause the regulator API to disable all
2888 * regulators which have a zero use count and don't have an always_on
2889 * constraint in a late_initcall.
2890 *
2891 * The intention is that this will become the default behaviour in a
2892 * future kernel release so users are encouraged to use this facility
2893 * now.
2894 */
2895void regulator_has_full_constraints(void)
2896{
2897	has_full_constraints = 1;
2898}
2899EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2900
2901/**
2902 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2903 *
2904 * Calling this function will cause the regulator API to provide a
2905 * dummy regulator to consumers if no physical regulator is found,
2906 * allowing most consumers to proceed as though a regulator were
2907 * configured.  This allows systems such as those with software
2908 * controllable regulators for the CPU core only to be brought up more
2909 * readily.
2910 */
2911void regulator_use_dummy_regulator(void)
2912{
2913	board_wants_dummy_regulator = true;
2914}
2915EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2916
2917/**
2918 * rdev_get_drvdata - get rdev regulator driver data
2919 * @rdev: regulator
2920 *
2921 * Get rdev regulator driver private data. This call can be used in the
2922 * regulator driver context.
2923 */
2924void *rdev_get_drvdata(struct regulator_dev *rdev)
2925{
2926	return rdev->reg_data;
2927}
2928EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2929
2930/**
2931 * regulator_get_drvdata - get regulator driver data
2932 * @regulator: regulator
2933 *
2934 * Get regulator driver private data. This call can be used in the consumer
2935 * driver context when non API regulator specific functions need to be called.
2936 */
2937void *regulator_get_drvdata(struct regulator *regulator)
2938{
2939	return regulator->rdev->reg_data;
2940}
2941EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2942
2943/**
2944 * regulator_set_drvdata - set regulator driver data
2945 * @regulator: regulator
2946 * @data: data
2947 */
2948void regulator_set_drvdata(struct regulator *regulator, void *data)
2949{
2950	regulator->rdev->reg_data = data;
2951}
2952EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2953
2954/**
2955 * regulator_get_id - get regulator ID
2956 * @rdev: regulator
2957 */
2958int rdev_get_id(struct regulator_dev *rdev)
2959{
2960	return rdev->desc->id;
2961}
2962EXPORT_SYMBOL_GPL(rdev_get_id);
2963
2964struct device *rdev_get_dev(struct regulator_dev *rdev)
2965{
2966	return &rdev->dev;
2967}
2968EXPORT_SYMBOL_GPL(rdev_get_dev);
2969
2970void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2971{
2972	return reg_init_data->driver_data;
2973}
2974EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2975
2976#ifdef CONFIG_DEBUG_FS
2977static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
2978				    size_t count, loff_t *ppos)
2979{
2980	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2981	ssize_t len, ret = 0;
2982	struct regulator_map *map;
2983
2984	if (!buf)
2985		return -ENOMEM;
2986
2987	list_for_each_entry(map, &regulator_map_list, list) {
2988		len = snprintf(buf + ret, PAGE_SIZE - ret,
2989			       "%s -> %s.%s\n",
2990			       rdev_get_name(map->regulator), map->dev_name,
2991			       map->supply);
2992		if (len >= 0)
2993			ret += len;
2994		if (ret > PAGE_SIZE) {
2995			ret = PAGE_SIZE;
2996			break;
2997		}
2998	}
2999
3000	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3001
3002	kfree(buf);
3003
3004	return ret;
3005}
3006
3007static const struct file_operations supply_map_fops = {
3008	.read = supply_map_read_file,
3009	.llseek = default_llseek,
3010};
3011#endif
3012
3013static int __init regulator_init(void)
3014{
3015	int ret;
3016
3017	ret = class_register(&regulator_class);
3018
3019#ifdef CONFIG_DEBUG_FS
3020	debugfs_root = debugfs_create_dir("regulator", NULL);
3021	if (IS_ERR(debugfs_root) || !debugfs_root) {
3022		pr_warn("regulator: Failed to create debugfs directory\n");
3023		debugfs_root = NULL;
3024	}
3025
3026	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3027				       NULL, &supply_map_fops)))
3028		pr_warn("regulator: Failed to create supplies debugfs\n");
3029#endif
3030
3031	regulator_dummy_init();
3032
3033	return ret;
3034}
3035
3036/* init early to allow our consumers to complete system booting */
3037core_initcall(regulator_init);
3038
3039static int __init regulator_init_complete(void)
3040{
3041	struct regulator_dev *rdev;
3042	struct regulator_ops *ops;
3043	struct regulation_constraints *c;
3044	int enabled, ret;
3045
3046	mutex_lock(&regulator_list_mutex);
3047
3048	/* If we have a full configuration then disable any regulators
3049	 * which are not in use or always_on.  This will become the
3050	 * default behaviour in the future.
3051	 */
3052	list_for_each_entry(rdev, &regulator_list, list) {
3053		ops = rdev->desc->ops;
3054		c = rdev->constraints;
3055
3056		if (!ops->disable || (c && c->always_on))
3057			continue;
3058
3059		mutex_lock(&rdev->mutex);
3060
3061		if (rdev->use_count)
3062			goto unlock;
3063
3064		/* If we can't read the status assume it's on. */
3065		if (ops->is_enabled)
3066			enabled = ops->is_enabled(rdev);
3067		else
3068			enabled = 1;
3069
3070		if (!enabled)
3071			goto unlock;
3072
3073		if (has_full_constraints) {
3074			/* We log since this may kill the system if it
3075			 * goes wrong. */
3076			rdev_info(rdev, "disabling\n");
3077			ret = ops->disable(rdev);
3078			if (ret != 0) {
3079				rdev_err(rdev, "couldn't disable: %d\n", ret);
3080			}
3081		} else {
3082			/* The intention is that in future we will
3083			 * assume that full constraints are provided
3084			 * so warn even if we aren't going to do
3085			 * anything here.
3086			 */
3087			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3088		}
3089
3090unlock:
3091		mutex_unlock(&rdev->mutex);
3092	}
3093
3094	mutex_unlock(&regulator_list_mutex);
3095
3096	return 0;
3097}
3098late_initcall(regulator_init_complete);
3099