core.c revision 317b5684d52269b75b4ec6480f9dac056d0d4ba8
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122static bool have_full_constraints(void)
123{
124	return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		ret = _regulator_do_set_voltage(rdev,
848						rdev->constraints->min_uV,
849						rdev->constraints->max_uV);
850		if (ret < 0) {
851			rdev_err(rdev, "failed to apply %duV constraint\n",
852				 rdev->constraints->min_uV);
853			return ret;
854		}
855	}
856
857	/* constrain machine-level voltage specs to fit
858	 * the actual range supported by this regulator.
859	 */
860	if (ops->list_voltage && rdev->desc->n_voltages) {
861		int	count = rdev->desc->n_voltages;
862		int	i;
863		int	min_uV = INT_MAX;
864		int	max_uV = INT_MIN;
865		int	cmin = constraints->min_uV;
866		int	cmax = constraints->max_uV;
867
868		/* it's safe to autoconfigure fixed-voltage supplies
869		   and the constraints are used by list_voltage. */
870		if (count == 1 && !cmin) {
871			cmin = 1;
872			cmax = INT_MAX;
873			constraints->min_uV = cmin;
874			constraints->max_uV = cmax;
875		}
876
877		/* voltage constraints are optional */
878		if ((cmin == 0) && (cmax == 0))
879			return 0;
880
881		/* else require explicit machine-level constraints */
882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883			rdev_err(rdev, "invalid voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888		for (i = 0; i < count; i++) {
889			int	value;
890
891			value = ops->list_voltage(rdev, i);
892			if (value <= 0)
893				continue;
894
895			/* maybe adjust [min_uV..max_uV] */
896			if (value >= cmin && value < min_uV)
897				min_uV = value;
898			if (value <= cmax && value > max_uV)
899				max_uV = value;
900		}
901
902		/* final: [min_uV..max_uV] valid iff constraints valid */
903		if (max_uV < min_uV) {
904			rdev_err(rdev,
905				 "unsupportable voltage constraints %u-%uuV\n",
906				 min_uV, max_uV);
907			return -EINVAL;
908		}
909
910		/* use regulator's subset of machine constraints */
911		if (constraints->min_uV < min_uV) {
912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913				 constraints->min_uV, min_uV);
914			constraints->min_uV = min_uV;
915		}
916		if (constraints->max_uV > max_uV) {
917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918				 constraints->max_uV, max_uV);
919			constraints->max_uV = max_uV;
920		}
921	}
922
923	return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927	struct regulation_constraints *constraints)
928{
929	struct regulator_ops *ops = rdev->desc->ops;
930	int ret;
931
932	if (!constraints->min_uA && !constraints->max_uA)
933		return 0;
934
935	if (constraints->min_uA > constraints->max_uA) {
936		rdev_err(rdev, "Invalid current constraints\n");
937		return -EINVAL;
938	}
939
940	if (!ops->set_current_limit || !ops->get_current_limit) {
941		rdev_warn(rdev, "Operation of current configuration missing\n");
942		return 0;
943	}
944
945	/* Set regulator current in constraints range */
946	ret = ops->set_current_limit(rdev, constraints->min_uA,
947			constraints->max_uA);
948	if (ret < 0) {
949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950		return ret;
951	}
952
953	return 0;
954}
955
956/**
957 * set_machine_constraints - sets regulator constraints
958 * @rdev: regulator source
959 * @constraints: constraints to apply
960 *
961 * Allows platform initialisation code to define and constrain
962 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
963 * Constraints *must* be set by platform code in order for some
964 * regulator operations to proceed i.e. set_voltage, set_current_limit,
965 * set_mode.
966 */
967static int set_machine_constraints(struct regulator_dev *rdev,
968	const struct regulation_constraints *constraints)
969{
970	int ret = 0;
971	struct regulator_ops *ops = rdev->desc->ops;
972
973	if (constraints)
974		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975					    GFP_KERNEL);
976	else
977		rdev->constraints = kzalloc(sizeof(*constraints),
978					    GFP_KERNEL);
979	if (!rdev->constraints)
980		return -ENOMEM;
981
982	ret = machine_constraints_voltage(rdev, rdev->constraints);
983	if (ret != 0)
984		goto out;
985
986	ret = machine_constraints_current(rdev, rdev->constraints);
987	if (ret != 0)
988		goto out;
989
990	/* do we need to setup our suspend state */
991	if (rdev->constraints->initial_state) {
992		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993		if (ret < 0) {
994			rdev_err(rdev, "failed to set suspend state\n");
995			goto out;
996		}
997	}
998
999	if (rdev->constraints->initial_mode) {
1000		if (!ops->set_mode) {
1001			rdev_err(rdev, "no set_mode operation\n");
1002			ret = -EINVAL;
1003			goto out;
1004		}
1005
1006		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007		if (ret < 0) {
1008			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009			goto out;
1010		}
1011	}
1012
1013	/* If the constraints say the regulator should be on at this point
1014	 * and we have control then make sure it is enabled.
1015	 */
1016	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017	    ops->enable) {
1018		ret = ops->enable(rdev);
1019		if (ret < 0) {
1020			rdev_err(rdev, "failed to enable\n");
1021			goto out;
1022		}
1023	}
1024
1025	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026		&& ops->set_ramp_delay) {
1027		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028		if (ret < 0) {
1029			rdev_err(rdev, "failed to set ramp_delay\n");
1030			goto out;
1031		}
1032	}
1033
1034	print_constraints(rdev);
1035	return 0;
1036out:
1037	kfree(rdev->constraints);
1038	rdev->constraints = NULL;
1039	return ret;
1040}
1041
1042/**
1043 * set_supply - set regulator supply regulator
1044 * @rdev: regulator name
1045 * @supply_rdev: supply regulator name
1046 *
1047 * Called by platform initialisation code to set the supply regulator for this
1048 * regulator. This ensures that a regulators supply will also be enabled by the
1049 * core if it's child is enabled.
1050 */
1051static int set_supply(struct regulator_dev *rdev,
1052		      struct regulator_dev *supply_rdev)
1053{
1054	int err;
1055
1056	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057
1058	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059	if (rdev->supply == NULL) {
1060		err = -ENOMEM;
1061		return err;
1062	}
1063	supply_rdev->open_count++;
1064
1065	return 0;
1066}
1067
1068/**
1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070 * @rdev:         regulator source
1071 * @consumer_dev_name: dev_name() string for device supply applies to
1072 * @supply:       symbolic name for supply
1073 *
1074 * Allows platform initialisation code to map physical regulator
1075 * sources to symbolic names for supplies for use by devices.  Devices
1076 * should use these symbolic names to request regulators, avoiding the
1077 * need to provide board-specific regulator names as platform data.
1078 */
1079static int set_consumer_device_supply(struct regulator_dev *rdev,
1080				      const char *consumer_dev_name,
1081				      const char *supply)
1082{
1083	struct regulator_map *node;
1084	int has_dev;
1085
1086	if (supply == NULL)
1087		return -EINVAL;
1088
1089	if (consumer_dev_name != NULL)
1090		has_dev = 1;
1091	else
1092		has_dev = 0;
1093
1094	list_for_each_entry(node, &regulator_map_list, list) {
1095		if (node->dev_name && consumer_dev_name) {
1096			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097				continue;
1098		} else if (node->dev_name || consumer_dev_name) {
1099			continue;
1100		}
1101
1102		if (strcmp(node->supply, supply) != 0)
1103			continue;
1104
1105		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106			 consumer_dev_name,
1107			 dev_name(&node->regulator->dev),
1108			 node->regulator->desc->name,
1109			 supply,
1110			 dev_name(&rdev->dev), rdev_get_name(rdev));
1111		return -EBUSY;
1112	}
1113
1114	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115	if (node == NULL)
1116		return -ENOMEM;
1117
1118	node->regulator = rdev;
1119	node->supply = supply;
1120
1121	if (has_dev) {
1122		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123		if (node->dev_name == NULL) {
1124			kfree(node);
1125			return -ENOMEM;
1126		}
1127	}
1128
1129	list_add(&node->list, &regulator_map_list);
1130	return 0;
1131}
1132
1133static void unset_regulator_supplies(struct regulator_dev *rdev)
1134{
1135	struct regulator_map *node, *n;
1136
1137	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138		if (rdev == node->regulator) {
1139			list_del(&node->list);
1140			kfree(node->dev_name);
1141			kfree(node);
1142		}
1143	}
1144}
1145
1146#define REG_STR_SIZE	64
1147
1148static struct regulator *create_regulator(struct regulator_dev *rdev,
1149					  struct device *dev,
1150					  const char *supply_name)
1151{
1152	struct regulator *regulator;
1153	char buf[REG_STR_SIZE];
1154	int err, size;
1155
1156	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157	if (regulator == NULL)
1158		return NULL;
1159
1160	mutex_lock(&rdev->mutex);
1161	regulator->rdev = rdev;
1162	list_add(&regulator->list, &rdev->consumer_list);
1163
1164	if (dev) {
1165		regulator->dev = dev;
1166
1167		/* Add a link to the device sysfs entry */
1168		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169				 dev->kobj.name, supply_name);
1170		if (size >= REG_STR_SIZE)
1171			goto overflow_err;
1172
1173		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174		if (regulator->supply_name == NULL)
1175			goto overflow_err;
1176
1177		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178					buf);
1179		if (err) {
1180			rdev_warn(rdev, "could not add device link %s err %d\n",
1181				  dev->kobj.name, err);
1182			/* non-fatal */
1183		}
1184	} else {
1185		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186		if (regulator->supply_name == NULL)
1187			goto overflow_err;
1188	}
1189
1190	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191						rdev->debugfs);
1192	if (!regulator->debugfs) {
1193		rdev_warn(rdev, "Failed to create debugfs directory\n");
1194	} else {
1195		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196				   &regulator->uA_load);
1197		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198				   &regulator->min_uV);
1199		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200				   &regulator->max_uV);
1201	}
1202
1203	/*
1204	 * Check now if the regulator is an always on regulator - if
1205	 * it is then we don't need to do nearly so much work for
1206	 * enable/disable calls.
1207	 */
1208	if (!_regulator_can_change_status(rdev) &&
1209	    _regulator_is_enabled(rdev))
1210		regulator->always_on = true;
1211
1212	mutex_unlock(&rdev->mutex);
1213	return regulator;
1214overflow_err:
1215	list_del(&regulator->list);
1216	kfree(regulator);
1217	mutex_unlock(&rdev->mutex);
1218	return NULL;
1219}
1220
1221static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222{
1223	if (rdev->constraints && rdev->constraints->enable_time)
1224		return rdev->constraints->enable_time;
1225	if (!rdev->desc->ops->enable_time)
1226		return rdev->desc->enable_time;
1227	return rdev->desc->ops->enable_time(rdev);
1228}
1229
1230static struct regulator_supply_alias *regulator_find_supply_alias(
1231		struct device *dev, const char *supply)
1232{
1233	struct regulator_supply_alias *map;
1234
1235	list_for_each_entry(map, &regulator_supply_alias_list, list)
1236		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237			return map;
1238
1239	return NULL;
1240}
1241
1242static void regulator_supply_alias(struct device **dev, const char **supply)
1243{
1244	struct regulator_supply_alias *map;
1245
1246	map = regulator_find_supply_alias(*dev, *supply);
1247	if (map) {
1248		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249				*supply, map->alias_supply,
1250				dev_name(map->alias_dev));
1251		*dev = map->alias_dev;
1252		*supply = map->alias_supply;
1253	}
1254}
1255
1256static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257						  const char *supply,
1258						  int *ret)
1259{
1260	struct regulator_dev *r;
1261	struct device_node *node;
1262	struct regulator_map *map;
1263	const char *devname = NULL;
1264
1265	regulator_supply_alias(&dev, &supply);
1266
1267	/* first do a dt based lookup */
1268	if (dev && dev->of_node) {
1269		node = of_get_regulator(dev, supply);
1270		if (node) {
1271			list_for_each_entry(r, &regulator_list, list)
1272				if (r->dev.parent &&
1273					node == r->dev.of_node)
1274					return r;
1275			*ret = -EPROBE_DEFER;
1276			return NULL;
1277		} else {
1278			/*
1279			 * If we couldn't even get the node then it's
1280			 * not just that the device didn't register
1281			 * yet, there's no node and we'll never
1282			 * succeed.
1283			 */
1284			*ret = -ENODEV;
1285		}
1286	}
1287
1288	/* if not found, try doing it non-dt way */
1289	if (dev)
1290		devname = dev_name(dev);
1291
1292	list_for_each_entry(r, &regulator_list, list)
1293		if (strcmp(rdev_get_name(r), supply) == 0)
1294			return r;
1295
1296	list_for_each_entry(map, &regulator_map_list, list) {
1297		/* If the mapping has a device set up it must match */
1298		if (map->dev_name &&
1299		    (!devname || strcmp(map->dev_name, devname)))
1300			continue;
1301
1302		if (strcmp(map->supply, supply) == 0)
1303			return map->regulator;
1304	}
1305
1306
1307	return NULL;
1308}
1309
1310/* Internal regulator request function */
1311static struct regulator *_regulator_get(struct device *dev, const char *id,
1312					bool exclusive, bool allow_dummy)
1313{
1314	struct regulator_dev *rdev;
1315	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1316	const char *devname = NULL;
1317	int ret;
1318
1319	if (id == NULL) {
1320		pr_err("get() with no identifier\n");
1321		return ERR_PTR(-EINVAL);
1322	}
1323
1324	if (dev)
1325		devname = dev_name(dev);
1326
1327	if (have_full_constraints())
1328		ret = -ENODEV;
1329	else
1330		ret = -EPROBE_DEFER;
1331
1332	mutex_lock(&regulator_list_mutex);
1333
1334	rdev = regulator_dev_lookup(dev, id, &ret);
1335	if (rdev)
1336		goto found;
1337
1338	regulator = ERR_PTR(ret);
1339
1340	/*
1341	 * If we have return value from dev_lookup fail, we do not expect to
1342	 * succeed, so, quit with appropriate error value
1343	 */
1344	if (ret && ret != -ENODEV)
1345		goto out;
1346
1347	if (!devname)
1348		devname = "deviceless";
1349
1350	/*
1351	 * Assume that a regulator is physically present and enabled
1352	 * even if it isn't hooked up and just provide a dummy.
1353	 */
1354	if (have_full_constraints() && allow_dummy) {
1355		pr_warn("%s supply %s not found, using dummy regulator\n",
1356			devname, id);
1357
1358		rdev = dummy_regulator_rdev;
1359		goto found;
1360	/* Don't log an error when called from regulator_get_optional() */
1361	} else if (!have_full_constraints() || exclusive) {
1362		dev_err(dev, "dummy supplies not allowed\n");
1363	}
1364
1365	mutex_unlock(&regulator_list_mutex);
1366	return regulator;
1367
1368found:
1369	if (rdev->exclusive) {
1370		regulator = ERR_PTR(-EPERM);
1371		goto out;
1372	}
1373
1374	if (exclusive && rdev->open_count) {
1375		regulator = ERR_PTR(-EBUSY);
1376		goto out;
1377	}
1378
1379	if (!try_module_get(rdev->owner))
1380		goto out;
1381
1382	regulator = create_regulator(rdev, dev, id);
1383	if (regulator == NULL) {
1384		regulator = ERR_PTR(-ENOMEM);
1385		module_put(rdev->owner);
1386		goto out;
1387	}
1388
1389	rdev->open_count++;
1390	if (exclusive) {
1391		rdev->exclusive = 1;
1392
1393		ret = _regulator_is_enabled(rdev);
1394		if (ret > 0)
1395			rdev->use_count = 1;
1396		else
1397			rdev->use_count = 0;
1398	}
1399
1400out:
1401	mutex_unlock(&regulator_list_mutex);
1402
1403	return regulator;
1404}
1405
1406/**
1407 * regulator_get - lookup and obtain a reference to a regulator.
1408 * @dev: device for regulator "consumer"
1409 * @id: Supply name or regulator ID.
1410 *
1411 * Returns a struct regulator corresponding to the regulator producer,
1412 * or IS_ERR() condition containing errno.
1413 *
1414 * Use of supply names configured via regulator_set_device_supply() is
1415 * strongly encouraged.  It is recommended that the supply name used
1416 * should match the name used for the supply and/or the relevant
1417 * device pins in the datasheet.
1418 */
1419struct regulator *regulator_get(struct device *dev, const char *id)
1420{
1421	return _regulator_get(dev, id, false, true);
1422}
1423EXPORT_SYMBOL_GPL(regulator_get);
1424
1425/**
1426 * regulator_get_exclusive - obtain exclusive access to a regulator.
1427 * @dev: device for regulator "consumer"
1428 * @id: Supply name or regulator ID.
1429 *
1430 * Returns a struct regulator corresponding to the regulator producer,
1431 * or IS_ERR() condition containing errno.  Other consumers will be
1432 * unable to obtain this reference is held and the use count for the
1433 * regulator will be initialised to reflect the current state of the
1434 * regulator.
1435 *
1436 * This is intended for use by consumers which cannot tolerate shared
1437 * use of the regulator such as those which need to force the
1438 * regulator off for correct operation of the hardware they are
1439 * controlling.
1440 *
1441 * Use of supply names configured via regulator_set_device_supply() is
1442 * strongly encouraged.  It is recommended that the supply name used
1443 * should match the name used for the supply and/or the relevant
1444 * device pins in the datasheet.
1445 */
1446struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1447{
1448	return _regulator_get(dev, id, true, false);
1449}
1450EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1451
1452/**
1453 * regulator_get_optional - obtain optional access to a regulator.
1454 * @dev: device for regulator "consumer"
1455 * @id: Supply name or regulator ID.
1456 *
1457 * Returns a struct regulator corresponding to the regulator producer,
1458 * or IS_ERR() condition containing errno.  Other consumers will be
1459 * unable to obtain this reference is held and the use count for the
1460 * regulator will be initialised to reflect the current state of the
1461 * regulator.
1462 *
1463 * This is intended for use by consumers for devices which can have
1464 * some supplies unconnected in normal use, such as some MMC devices.
1465 * It can allow the regulator core to provide stub supplies for other
1466 * supplies requested using normal regulator_get() calls without
1467 * disrupting the operation of drivers that can handle absent
1468 * supplies.
1469 *
1470 * Use of supply names configured via regulator_set_device_supply() is
1471 * strongly encouraged.  It is recommended that the supply name used
1472 * should match the name used for the supply and/or the relevant
1473 * device pins in the datasheet.
1474 */
1475struct regulator *regulator_get_optional(struct device *dev, const char *id)
1476{
1477	return _regulator_get(dev, id, false, false);
1478}
1479EXPORT_SYMBOL_GPL(regulator_get_optional);
1480
1481/* Locks held by regulator_put() */
1482static void _regulator_put(struct regulator *regulator)
1483{
1484	struct regulator_dev *rdev;
1485
1486	if (regulator == NULL || IS_ERR(regulator))
1487		return;
1488
1489	rdev = regulator->rdev;
1490
1491	debugfs_remove_recursive(regulator->debugfs);
1492
1493	/* remove any sysfs entries */
1494	if (regulator->dev)
1495		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1496	kfree(regulator->supply_name);
1497	list_del(&regulator->list);
1498	kfree(regulator);
1499
1500	rdev->open_count--;
1501	rdev->exclusive = 0;
1502
1503	module_put(rdev->owner);
1504}
1505
1506/**
1507 * regulator_put - "free" the regulator source
1508 * @regulator: regulator source
1509 *
1510 * Note: drivers must ensure that all regulator_enable calls made on this
1511 * regulator source are balanced by regulator_disable calls prior to calling
1512 * this function.
1513 */
1514void regulator_put(struct regulator *regulator)
1515{
1516	mutex_lock(&regulator_list_mutex);
1517	_regulator_put(regulator);
1518	mutex_unlock(&regulator_list_mutex);
1519}
1520EXPORT_SYMBOL_GPL(regulator_put);
1521
1522/**
1523 * regulator_register_supply_alias - Provide device alias for supply lookup
1524 *
1525 * @dev: device that will be given as the regulator "consumer"
1526 * @id: Supply name or regulator ID
1527 * @alias_dev: device that should be used to lookup the supply
1528 * @alias_id: Supply name or regulator ID that should be used to lookup the
1529 * supply
1530 *
1531 * All lookups for id on dev will instead be conducted for alias_id on
1532 * alias_dev.
1533 */
1534int regulator_register_supply_alias(struct device *dev, const char *id,
1535				    struct device *alias_dev,
1536				    const char *alias_id)
1537{
1538	struct regulator_supply_alias *map;
1539
1540	map = regulator_find_supply_alias(dev, id);
1541	if (map)
1542		return -EEXIST;
1543
1544	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1545	if (!map)
1546		return -ENOMEM;
1547
1548	map->src_dev = dev;
1549	map->src_supply = id;
1550	map->alias_dev = alias_dev;
1551	map->alias_supply = alias_id;
1552
1553	list_add(&map->list, &regulator_supply_alias_list);
1554
1555	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1556		id, dev_name(dev), alias_id, dev_name(alias_dev));
1557
1558	return 0;
1559}
1560EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1561
1562/**
1563 * regulator_unregister_supply_alias - Remove device alias
1564 *
1565 * @dev: device that will be given as the regulator "consumer"
1566 * @id: Supply name or regulator ID
1567 *
1568 * Remove a lookup alias if one exists for id on dev.
1569 */
1570void regulator_unregister_supply_alias(struct device *dev, const char *id)
1571{
1572	struct regulator_supply_alias *map;
1573
1574	map = regulator_find_supply_alias(dev, id);
1575	if (map) {
1576		list_del(&map->list);
1577		kfree(map);
1578	}
1579}
1580EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1581
1582/**
1583 * regulator_bulk_register_supply_alias - register multiple aliases
1584 *
1585 * @dev: device that will be given as the regulator "consumer"
1586 * @id: List of supply names or regulator IDs
1587 * @alias_dev: device that should be used to lookup the supply
1588 * @alias_id: List of supply names or regulator IDs that should be used to
1589 * lookup the supply
1590 * @num_id: Number of aliases to register
1591 *
1592 * @return 0 on success, an errno on failure.
1593 *
1594 * This helper function allows drivers to register several supply
1595 * aliases in one operation.  If any of the aliases cannot be
1596 * registered any aliases that were registered will be removed
1597 * before returning to the caller.
1598 */
1599int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1600					 struct device *alias_dev,
1601					 const char **alias_id,
1602					 int num_id)
1603{
1604	int i;
1605	int ret;
1606
1607	for (i = 0; i < num_id; ++i) {
1608		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1609						      alias_id[i]);
1610		if (ret < 0)
1611			goto err;
1612	}
1613
1614	return 0;
1615
1616err:
1617	dev_err(dev,
1618		"Failed to create supply alias %s,%s -> %s,%s\n",
1619		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1620
1621	while (--i >= 0)
1622		regulator_unregister_supply_alias(dev, id[i]);
1623
1624	return ret;
1625}
1626EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1627
1628/**
1629 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1630 *
1631 * @dev: device that will be given as the regulator "consumer"
1632 * @id: List of supply names or regulator IDs
1633 * @num_id: Number of aliases to unregister
1634 *
1635 * This helper function allows drivers to unregister several supply
1636 * aliases in one operation.
1637 */
1638void regulator_bulk_unregister_supply_alias(struct device *dev,
1639					    const char **id,
1640					    int num_id)
1641{
1642	int i;
1643
1644	for (i = 0; i < num_id; ++i)
1645		regulator_unregister_supply_alias(dev, id[i]);
1646}
1647EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1648
1649
1650/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1651static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1652				const struct regulator_config *config)
1653{
1654	struct regulator_enable_gpio *pin;
1655	int ret;
1656
1657	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1658		if (pin->gpio == config->ena_gpio) {
1659			rdev_dbg(rdev, "GPIO %d is already used\n",
1660				config->ena_gpio);
1661			goto update_ena_gpio_to_rdev;
1662		}
1663	}
1664
1665	ret = gpio_request_one(config->ena_gpio,
1666				GPIOF_DIR_OUT | config->ena_gpio_flags,
1667				rdev_get_name(rdev));
1668	if (ret)
1669		return ret;
1670
1671	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1672	if (pin == NULL) {
1673		gpio_free(config->ena_gpio);
1674		return -ENOMEM;
1675	}
1676
1677	pin->gpio = config->ena_gpio;
1678	pin->ena_gpio_invert = config->ena_gpio_invert;
1679	list_add(&pin->list, &regulator_ena_gpio_list);
1680
1681update_ena_gpio_to_rdev:
1682	pin->request_count++;
1683	rdev->ena_pin = pin;
1684	return 0;
1685}
1686
1687static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1688{
1689	struct regulator_enable_gpio *pin, *n;
1690
1691	if (!rdev->ena_pin)
1692		return;
1693
1694	/* Free the GPIO only in case of no use */
1695	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1696		if (pin->gpio == rdev->ena_pin->gpio) {
1697			if (pin->request_count <= 1) {
1698				pin->request_count = 0;
1699				gpio_free(pin->gpio);
1700				list_del(&pin->list);
1701				kfree(pin);
1702			} else {
1703				pin->request_count--;
1704			}
1705		}
1706	}
1707}
1708
1709/**
1710 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1711 * @rdev: regulator_dev structure
1712 * @enable: enable GPIO at initial use?
1713 *
1714 * GPIO is enabled in case of initial use. (enable_count is 0)
1715 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1716 */
1717static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1718{
1719	struct regulator_enable_gpio *pin = rdev->ena_pin;
1720
1721	if (!pin)
1722		return -EINVAL;
1723
1724	if (enable) {
1725		/* Enable GPIO at initial use */
1726		if (pin->enable_count == 0)
1727			gpio_set_value_cansleep(pin->gpio,
1728						!pin->ena_gpio_invert);
1729
1730		pin->enable_count++;
1731	} else {
1732		if (pin->enable_count > 1) {
1733			pin->enable_count--;
1734			return 0;
1735		}
1736
1737		/* Disable GPIO if not used */
1738		if (pin->enable_count <= 1) {
1739			gpio_set_value_cansleep(pin->gpio,
1740						pin->ena_gpio_invert);
1741			pin->enable_count = 0;
1742		}
1743	}
1744
1745	return 0;
1746}
1747
1748static int _regulator_do_enable(struct regulator_dev *rdev)
1749{
1750	int ret, delay;
1751
1752	/* Query before enabling in case configuration dependent.  */
1753	ret = _regulator_get_enable_time(rdev);
1754	if (ret >= 0) {
1755		delay = ret;
1756	} else {
1757		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1758		delay = 0;
1759	}
1760
1761	trace_regulator_enable(rdev_get_name(rdev));
1762
1763	if (rdev->ena_pin) {
1764		ret = regulator_ena_gpio_ctrl(rdev, true);
1765		if (ret < 0)
1766			return ret;
1767		rdev->ena_gpio_state = 1;
1768	} else if (rdev->desc->ops->enable) {
1769		ret = rdev->desc->ops->enable(rdev);
1770		if (ret < 0)
1771			return ret;
1772	} else {
1773		return -EINVAL;
1774	}
1775
1776	/* Allow the regulator to ramp; it would be useful to extend
1777	 * this for bulk operations so that the regulators can ramp
1778	 * together.  */
1779	trace_regulator_enable_delay(rdev_get_name(rdev));
1780
1781	/*
1782	 * Delay for the requested amount of time as per the guidelines in:
1783	 *
1784	 *     Documentation/timers/timers-howto.txt
1785	 *
1786	 * The assumption here is that regulators will never be enabled in
1787	 * atomic context and therefore sleeping functions can be used.
1788	 */
1789	if (delay) {
1790		unsigned int ms = delay / 1000;
1791		unsigned int us = delay % 1000;
1792
1793		if (ms > 0) {
1794			/*
1795			 * For small enough values, handle super-millisecond
1796			 * delays in the usleep_range() call below.
1797			 */
1798			if (ms < 20)
1799				us += ms * 1000;
1800			else
1801				msleep(ms);
1802		}
1803
1804		/*
1805		 * Give the scheduler some room to coalesce with any other
1806		 * wakeup sources. For delays shorter than 10 us, don't even
1807		 * bother setting up high-resolution timers and just busy-
1808		 * loop.
1809		 */
1810		if (us >= 10)
1811			usleep_range(us, us + 100);
1812		else
1813			udelay(us);
1814	}
1815
1816	trace_regulator_enable_complete(rdev_get_name(rdev));
1817
1818	return 0;
1819}
1820
1821/* locks held by regulator_enable() */
1822static int _regulator_enable(struct regulator_dev *rdev)
1823{
1824	int ret;
1825
1826	/* check voltage and requested load before enabling */
1827	if (rdev->constraints &&
1828	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1829		drms_uA_update(rdev);
1830
1831	if (rdev->use_count == 0) {
1832		/* The regulator may on if it's not switchable or left on */
1833		ret = _regulator_is_enabled(rdev);
1834		if (ret == -EINVAL || ret == 0) {
1835			if (!_regulator_can_change_status(rdev))
1836				return -EPERM;
1837
1838			ret = _regulator_do_enable(rdev);
1839			if (ret < 0)
1840				return ret;
1841
1842		} else if (ret < 0) {
1843			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1844			return ret;
1845		}
1846		/* Fallthrough on positive return values - already enabled */
1847	}
1848
1849	rdev->use_count++;
1850
1851	return 0;
1852}
1853
1854/**
1855 * regulator_enable - enable regulator output
1856 * @regulator: regulator source
1857 *
1858 * Request that the regulator be enabled with the regulator output at
1859 * the predefined voltage or current value.  Calls to regulator_enable()
1860 * must be balanced with calls to regulator_disable().
1861 *
1862 * NOTE: the output value can be set by other drivers, boot loader or may be
1863 * hardwired in the regulator.
1864 */
1865int regulator_enable(struct regulator *regulator)
1866{
1867	struct regulator_dev *rdev = regulator->rdev;
1868	int ret = 0;
1869
1870	if (regulator->always_on)
1871		return 0;
1872
1873	if (rdev->supply) {
1874		ret = regulator_enable(rdev->supply);
1875		if (ret != 0)
1876			return ret;
1877	}
1878
1879	mutex_lock(&rdev->mutex);
1880	ret = _regulator_enable(rdev);
1881	mutex_unlock(&rdev->mutex);
1882
1883	if (ret != 0 && rdev->supply)
1884		regulator_disable(rdev->supply);
1885
1886	return ret;
1887}
1888EXPORT_SYMBOL_GPL(regulator_enable);
1889
1890static int _regulator_do_disable(struct regulator_dev *rdev)
1891{
1892	int ret;
1893
1894	trace_regulator_disable(rdev_get_name(rdev));
1895
1896	if (rdev->ena_pin) {
1897		ret = regulator_ena_gpio_ctrl(rdev, false);
1898		if (ret < 0)
1899			return ret;
1900		rdev->ena_gpio_state = 0;
1901
1902	} else if (rdev->desc->ops->disable) {
1903		ret = rdev->desc->ops->disable(rdev);
1904		if (ret != 0)
1905			return ret;
1906	}
1907
1908	trace_regulator_disable_complete(rdev_get_name(rdev));
1909
1910	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1911			     NULL);
1912	return 0;
1913}
1914
1915/* locks held by regulator_disable() */
1916static int _regulator_disable(struct regulator_dev *rdev)
1917{
1918	int ret = 0;
1919
1920	if (WARN(rdev->use_count <= 0,
1921		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1922		return -EIO;
1923
1924	/* are we the last user and permitted to disable ? */
1925	if (rdev->use_count == 1 &&
1926	    (rdev->constraints && !rdev->constraints->always_on)) {
1927
1928		/* we are last user */
1929		if (_regulator_can_change_status(rdev)) {
1930			ret = _regulator_do_disable(rdev);
1931			if (ret < 0) {
1932				rdev_err(rdev, "failed to disable\n");
1933				return ret;
1934			}
1935		}
1936
1937		rdev->use_count = 0;
1938	} else if (rdev->use_count > 1) {
1939
1940		if (rdev->constraints &&
1941			(rdev->constraints->valid_ops_mask &
1942			REGULATOR_CHANGE_DRMS))
1943			drms_uA_update(rdev);
1944
1945		rdev->use_count--;
1946	}
1947
1948	return ret;
1949}
1950
1951/**
1952 * regulator_disable - disable regulator output
1953 * @regulator: regulator source
1954 *
1955 * Disable the regulator output voltage or current.  Calls to
1956 * regulator_enable() must be balanced with calls to
1957 * regulator_disable().
1958 *
1959 * NOTE: this will only disable the regulator output if no other consumer
1960 * devices have it enabled, the regulator device supports disabling and
1961 * machine constraints permit this operation.
1962 */
1963int regulator_disable(struct regulator *regulator)
1964{
1965	struct regulator_dev *rdev = regulator->rdev;
1966	int ret = 0;
1967
1968	if (regulator->always_on)
1969		return 0;
1970
1971	mutex_lock(&rdev->mutex);
1972	ret = _regulator_disable(rdev);
1973	mutex_unlock(&rdev->mutex);
1974
1975	if (ret == 0 && rdev->supply)
1976		regulator_disable(rdev->supply);
1977
1978	return ret;
1979}
1980EXPORT_SYMBOL_GPL(regulator_disable);
1981
1982/* locks held by regulator_force_disable() */
1983static int _regulator_force_disable(struct regulator_dev *rdev)
1984{
1985	int ret = 0;
1986
1987	/* force disable */
1988	if (rdev->desc->ops->disable) {
1989		/* ah well, who wants to live forever... */
1990		ret = rdev->desc->ops->disable(rdev);
1991		if (ret < 0) {
1992			rdev_err(rdev, "failed to force disable\n");
1993			return ret;
1994		}
1995		/* notify other consumers that power has been forced off */
1996		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1997			REGULATOR_EVENT_DISABLE, NULL);
1998	}
1999
2000	return ret;
2001}
2002
2003/**
2004 * regulator_force_disable - force disable regulator output
2005 * @regulator: regulator source
2006 *
2007 * Forcibly disable the regulator output voltage or current.
2008 * NOTE: this *will* disable the regulator output even if other consumer
2009 * devices have it enabled. This should be used for situations when device
2010 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2011 */
2012int regulator_force_disable(struct regulator *regulator)
2013{
2014	struct regulator_dev *rdev = regulator->rdev;
2015	int ret;
2016
2017	mutex_lock(&rdev->mutex);
2018	regulator->uA_load = 0;
2019	ret = _regulator_force_disable(regulator->rdev);
2020	mutex_unlock(&rdev->mutex);
2021
2022	if (rdev->supply)
2023		while (rdev->open_count--)
2024			regulator_disable(rdev->supply);
2025
2026	return ret;
2027}
2028EXPORT_SYMBOL_GPL(regulator_force_disable);
2029
2030static void regulator_disable_work(struct work_struct *work)
2031{
2032	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2033						  disable_work.work);
2034	int count, i, ret;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	BUG_ON(!rdev->deferred_disables);
2039
2040	count = rdev->deferred_disables;
2041	rdev->deferred_disables = 0;
2042
2043	for (i = 0; i < count; i++) {
2044		ret = _regulator_disable(rdev);
2045		if (ret != 0)
2046			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2047	}
2048
2049	mutex_unlock(&rdev->mutex);
2050
2051	if (rdev->supply) {
2052		for (i = 0; i < count; i++) {
2053			ret = regulator_disable(rdev->supply);
2054			if (ret != 0) {
2055				rdev_err(rdev,
2056					 "Supply disable failed: %d\n", ret);
2057			}
2058		}
2059	}
2060}
2061
2062/**
2063 * regulator_disable_deferred - disable regulator output with delay
2064 * @regulator: regulator source
2065 * @ms: miliseconds until the regulator is disabled
2066 *
2067 * Execute regulator_disable() on the regulator after a delay.  This
2068 * is intended for use with devices that require some time to quiesce.
2069 *
2070 * NOTE: this will only disable the regulator output if no other consumer
2071 * devices have it enabled, the regulator device supports disabling and
2072 * machine constraints permit this operation.
2073 */
2074int regulator_disable_deferred(struct regulator *regulator, int ms)
2075{
2076	struct regulator_dev *rdev = regulator->rdev;
2077	int ret;
2078
2079	if (regulator->always_on)
2080		return 0;
2081
2082	if (!ms)
2083		return regulator_disable(regulator);
2084
2085	mutex_lock(&rdev->mutex);
2086	rdev->deferred_disables++;
2087	mutex_unlock(&rdev->mutex);
2088
2089	ret = queue_delayed_work(system_power_efficient_wq,
2090				 &rdev->disable_work,
2091				 msecs_to_jiffies(ms));
2092	if (ret < 0)
2093		return ret;
2094	else
2095		return 0;
2096}
2097EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2098
2099static int _regulator_is_enabled(struct regulator_dev *rdev)
2100{
2101	/* A GPIO control always takes precedence */
2102	if (rdev->ena_pin)
2103		return rdev->ena_gpio_state;
2104
2105	/* If we don't know then assume that the regulator is always on */
2106	if (!rdev->desc->ops->is_enabled)
2107		return 1;
2108
2109	return rdev->desc->ops->is_enabled(rdev);
2110}
2111
2112/**
2113 * regulator_is_enabled - is the regulator output enabled
2114 * @regulator: regulator source
2115 *
2116 * Returns positive if the regulator driver backing the source/client
2117 * has requested that the device be enabled, zero if it hasn't, else a
2118 * negative errno code.
2119 *
2120 * Note that the device backing this regulator handle can have multiple
2121 * users, so it might be enabled even if regulator_enable() was never
2122 * called for this particular source.
2123 */
2124int regulator_is_enabled(struct regulator *regulator)
2125{
2126	int ret;
2127
2128	if (regulator->always_on)
2129		return 1;
2130
2131	mutex_lock(&regulator->rdev->mutex);
2132	ret = _regulator_is_enabled(regulator->rdev);
2133	mutex_unlock(&regulator->rdev->mutex);
2134
2135	return ret;
2136}
2137EXPORT_SYMBOL_GPL(regulator_is_enabled);
2138
2139/**
2140 * regulator_can_change_voltage - check if regulator can change voltage
2141 * @regulator: regulator source
2142 *
2143 * Returns positive if the regulator driver backing the source/client
2144 * can change its voltage, false otherwise. Usefull for detecting fixed
2145 * or dummy regulators and disabling voltage change logic in the client
2146 * driver.
2147 */
2148int regulator_can_change_voltage(struct regulator *regulator)
2149{
2150	struct regulator_dev	*rdev = regulator->rdev;
2151
2152	if (rdev->constraints &&
2153	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2154		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2155			return 1;
2156
2157		if (rdev->desc->continuous_voltage_range &&
2158		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2159		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2160			return 1;
2161	}
2162
2163	return 0;
2164}
2165EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2166
2167/**
2168 * regulator_count_voltages - count regulator_list_voltage() selectors
2169 * @regulator: regulator source
2170 *
2171 * Returns number of selectors, or negative errno.  Selectors are
2172 * numbered starting at zero, and typically correspond to bitfields
2173 * in hardware registers.
2174 */
2175int regulator_count_voltages(struct regulator *regulator)
2176{
2177	struct regulator_dev	*rdev = regulator->rdev;
2178
2179	return rdev->desc->n_voltages ? : -EINVAL;
2180}
2181EXPORT_SYMBOL_GPL(regulator_count_voltages);
2182
2183/**
2184 * regulator_list_voltage - enumerate supported voltages
2185 * @regulator: regulator source
2186 * @selector: identify voltage to list
2187 * Context: can sleep
2188 *
2189 * Returns a voltage that can be passed to @regulator_set_voltage(),
2190 * zero if this selector code can't be used on this system, or a
2191 * negative errno.
2192 */
2193int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2194{
2195	struct regulator_dev	*rdev = regulator->rdev;
2196	struct regulator_ops	*ops = rdev->desc->ops;
2197	int			ret;
2198
2199	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2200		return rdev->desc->fixed_uV;
2201
2202	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2203		return -EINVAL;
2204
2205	mutex_lock(&rdev->mutex);
2206	ret = ops->list_voltage(rdev, selector);
2207	mutex_unlock(&rdev->mutex);
2208
2209	if (ret > 0) {
2210		if (ret < rdev->constraints->min_uV)
2211			ret = 0;
2212		else if (ret > rdev->constraints->max_uV)
2213			ret = 0;
2214	}
2215
2216	return ret;
2217}
2218EXPORT_SYMBOL_GPL(regulator_list_voltage);
2219
2220/**
2221 * regulator_get_linear_step - return the voltage step size between VSEL values
2222 * @regulator: regulator source
2223 *
2224 * Returns the voltage step size between VSEL values for linear
2225 * regulators, or return 0 if the regulator isn't a linear regulator.
2226 */
2227unsigned int regulator_get_linear_step(struct regulator *regulator)
2228{
2229	struct regulator_dev *rdev = regulator->rdev;
2230
2231	return rdev->desc->uV_step;
2232}
2233EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2234
2235/**
2236 * regulator_is_supported_voltage - check if a voltage range can be supported
2237 *
2238 * @regulator: Regulator to check.
2239 * @min_uV: Minimum required voltage in uV.
2240 * @max_uV: Maximum required voltage in uV.
2241 *
2242 * Returns a boolean or a negative error code.
2243 */
2244int regulator_is_supported_voltage(struct regulator *regulator,
2245				   int min_uV, int max_uV)
2246{
2247	struct regulator_dev *rdev = regulator->rdev;
2248	int i, voltages, ret;
2249
2250	/* If we can't change voltage check the current voltage */
2251	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2252		ret = regulator_get_voltage(regulator);
2253		if (ret >= 0)
2254			return min_uV <= ret && ret <= max_uV;
2255		else
2256			return ret;
2257	}
2258
2259	/* Any voltage within constrains range is fine? */
2260	if (rdev->desc->continuous_voltage_range)
2261		return min_uV >= rdev->constraints->min_uV &&
2262				max_uV <= rdev->constraints->max_uV;
2263
2264	ret = regulator_count_voltages(regulator);
2265	if (ret < 0)
2266		return ret;
2267	voltages = ret;
2268
2269	for (i = 0; i < voltages; i++) {
2270		ret = regulator_list_voltage(regulator, i);
2271
2272		if (ret >= min_uV && ret <= max_uV)
2273			return 1;
2274	}
2275
2276	return 0;
2277}
2278EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2279
2280static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2281				     int min_uV, int max_uV)
2282{
2283	int ret;
2284	int delay = 0;
2285	int best_val = 0;
2286	unsigned int selector;
2287	int old_selector = -1;
2288
2289	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2290
2291	min_uV += rdev->constraints->uV_offset;
2292	max_uV += rdev->constraints->uV_offset;
2293
2294	/*
2295	 * If we can't obtain the old selector there is not enough
2296	 * info to call set_voltage_time_sel().
2297	 */
2298	if (_regulator_is_enabled(rdev) &&
2299	    rdev->desc->ops->set_voltage_time_sel &&
2300	    rdev->desc->ops->get_voltage_sel) {
2301		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2302		if (old_selector < 0)
2303			return old_selector;
2304	}
2305
2306	if (rdev->desc->ops->set_voltage) {
2307		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2308						   &selector);
2309
2310		if (ret >= 0) {
2311			if (rdev->desc->ops->list_voltage)
2312				best_val = rdev->desc->ops->list_voltage(rdev,
2313									 selector);
2314			else
2315				best_val = _regulator_get_voltage(rdev);
2316		}
2317
2318	} else if (rdev->desc->ops->set_voltage_sel) {
2319		if (rdev->desc->ops->map_voltage) {
2320			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2321							   max_uV);
2322		} else {
2323			if (rdev->desc->ops->list_voltage ==
2324			    regulator_list_voltage_linear)
2325				ret = regulator_map_voltage_linear(rdev,
2326								min_uV, max_uV);
2327			else
2328				ret = regulator_map_voltage_iterate(rdev,
2329								min_uV, max_uV);
2330		}
2331
2332		if (ret >= 0) {
2333			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2334			if (min_uV <= best_val && max_uV >= best_val) {
2335				selector = ret;
2336				if (old_selector == selector)
2337					ret = 0;
2338				else
2339					ret = rdev->desc->ops->set_voltage_sel(
2340								rdev, ret);
2341			} else {
2342				ret = -EINVAL;
2343			}
2344		}
2345	} else {
2346		ret = -EINVAL;
2347	}
2348
2349	/* Call set_voltage_time_sel if successfully obtained old_selector */
2350	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2351		&& old_selector != selector) {
2352
2353		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2354						old_selector, selector);
2355		if (delay < 0) {
2356			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2357				  delay);
2358			delay = 0;
2359		}
2360
2361		/* Insert any necessary delays */
2362		if (delay >= 1000) {
2363			mdelay(delay / 1000);
2364			udelay(delay % 1000);
2365		} else if (delay) {
2366			udelay(delay);
2367		}
2368	}
2369
2370	if (ret == 0 && best_val >= 0) {
2371		unsigned long data = best_val;
2372
2373		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2374				     (void *)data);
2375	}
2376
2377	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2378
2379	return ret;
2380}
2381
2382/**
2383 * regulator_set_voltage - set regulator output voltage
2384 * @regulator: regulator source
2385 * @min_uV: Minimum required voltage in uV
2386 * @max_uV: Maximum acceptable voltage in uV
2387 *
2388 * Sets a voltage regulator to the desired output voltage. This can be set
2389 * during any regulator state. IOW, regulator can be disabled or enabled.
2390 *
2391 * If the regulator is enabled then the voltage will change to the new value
2392 * immediately otherwise if the regulator is disabled the regulator will
2393 * output at the new voltage when enabled.
2394 *
2395 * NOTE: If the regulator is shared between several devices then the lowest
2396 * request voltage that meets the system constraints will be used.
2397 * Regulator system constraints must be set for this regulator before
2398 * calling this function otherwise this call will fail.
2399 */
2400int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2401{
2402	struct regulator_dev *rdev = regulator->rdev;
2403	int ret = 0;
2404	int old_min_uV, old_max_uV;
2405
2406	mutex_lock(&rdev->mutex);
2407
2408	/* If we're setting the same range as last time the change
2409	 * should be a noop (some cpufreq implementations use the same
2410	 * voltage for multiple frequencies, for example).
2411	 */
2412	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2413		goto out;
2414
2415	/* sanity check */
2416	if (!rdev->desc->ops->set_voltage &&
2417	    !rdev->desc->ops->set_voltage_sel) {
2418		ret = -EINVAL;
2419		goto out;
2420	}
2421
2422	/* constraints check */
2423	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2424	if (ret < 0)
2425		goto out;
2426
2427	/* restore original values in case of error */
2428	old_min_uV = regulator->min_uV;
2429	old_max_uV = regulator->max_uV;
2430	regulator->min_uV = min_uV;
2431	regulator->max_uV = max_uV;
2432
2433	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2434	if (ret < 0)
2435		goto out2;
2436
2437	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2438	if (ret < 0)
2439		goto out2;
2440
2441out:
2442	mutex_unlock(&rdev->mutex);
2443	return ret;
2444out2:
2445	regulator->min_uV = old_min_uV;
2446	regulator->max_uV = old_max_uV;
2447	mutex_unlock(&rdev->mutex);
2448	return ret;
2449}
2450EXPORT_SYMBOL_GPL(regulator_set_voltage);
2451
2452/**
2453 * regulator_set_voltage_time - get raise/fall time
2454 * @regulator: regulator source
2455 * @old_uV: starting voltage in microvolts
2456 * @new_uV: target voltage in microvolts
2457 *
2458 * Provided with the starting and ending voltage, this function attempts to
2459 * calculate the time in microseconds required to rise or fall to this new
2460 * voltage.
2461 */
2462int regulator_set_voltage_time(struct regulator *regulator,
2463			       int old_uV, int new_uV)
2464{
2465	struct regulator_dev	*rdev = regulator->rdev;
2466	struct regulator_ops	*ops = rdev->desc->ops;
2467	int old_sel = -1;
2468	int new_sel = -1;
2469	int voltage;
2470	int i;
2471
2472	/* Currently requires operations to do this */
2473	if (!ops->list_voltage || !ops->set_voltage_time_sel
2474	    || !rdev->desc->n_voltages)
2475		return -EINVAL;
2476
2477	for (i = 0; i < rdev->desc->n_voltages; i++) {
2478		/* We only look for exact voltage matches here */
2479		voltage = regulator_list_voltage(regulator, i);
2480		if (voltage < 0)
2481			return -EINVAL;
2482		if (voltage == 0)
2483			continue;
2484		if (voltage == old_uV)
2485			old_sel = i;
2486		if (voltage == new_uV)
2487			new_sel = i;
2488	}
2489
2490	if (old_sel < 0 || new_sel < 0)
2491		return -EINVAL;
2492
2493	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2494}
2495EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2496
2497/**
2498 * regulator_set_voltage_time_sel - get raise/fall time
2499 * @rdev: regulator source device
2500 * @old_selector: selector for starting voltage
2501 * @new_selector: selector for target voltage
2502 *
2503 * Provided with the starting and target voltage selectors, this function
2504 * returns time in microseconds required to rise or fall to this new voltage
2505 *
2506 * Drivers providing ramp_delay in regulation_constraints can use this as their
2507 * set_voltage_time_sel() operation.
2508 */
2509int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2510				   unsigned int old_selector,
2511				   unsigned int new_selector)
2512{
2513	unsigned int ramp_delay = 0;
2514	int old_volt, new_volt;
2515
2516	if (rdev->constraints->ramp_delay)
2517		ramp_delay = rdev->constraints->ramp_delay;
2518	else if (rdev->desc->ramp_delay)
2519		ramp_delay = rdev->desc->ramp_delay;
2520
2521	if (ramp_delay == 0) {
2522		rdev_warn(rdev, "ramp_delay not set\n");
2523		return 0;
2524	}
2525
2526	/* sanity check */
2527	if (!rdev->desc->ops->list_voltage)
2528		return -EINVAL;
2529
2530	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2531	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2532
2533	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2534}
2535EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2536
2537/**
2538 * regulator_sync_voltage - re-apply last regulator output voltage
2539 * @regulator: regulator source
2540 *
2541 * Re-apply the last configured voltage.  This is intended to be used
2542 * where some external control source the consumer is cooperating with
2543 * has caused the configured voltage to change.
2544 */
2545int regulator_sync_voltage(struct regulator *regulator)
2546{
2547	struct regulator_dev *rdev = regulator->rdev;
2548	int ret, min_uV, max_uV;
2549
2550	mutex_lock(&rdev->mutex);
2551
2552	if (!rdev->desc->ops->set_voltage &&
2553	    !rdev->desc->ops->set_voltage_sel) {
2554		ret = -EINVAL;
2555		goto out;
2556	}
2557
2558	/* This is only going to work if we've had a voltage configured. */
2559	if (!regulator->min_uV && !regulator->max_uV) {
2560		ret = -EINVAL;
2561		goto out;
2562	}
2563
2564	min_uV = regulator->min_uV;
2565	max_uV = regulator->max_uV;
2566
2567	/* This should be a paranoia check... */
2568	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2569	if (ret < 0)
2570		goto out;
2571
2572	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2573	if (ret < 0)
2574		goto out;
2575
2576	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2577
2578out:
2579	mutex_unlock(&rdev->mutex);
2580	return ret;
2581}
2582EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2583
2584static int _regulator_get_voltage(struct regulator_dev *rdev)
2585{
2586	int sel, ret;
2587
2588	if (rdev->desc->ops->get_voltage_sel) {
2589		sel = rdev->desc->ops->get_voltage_sel(rdev);
2590		if (sel < 0)
2591			return sel;
2592		ret = rdev->desc->ops->list_voltage(rdev, sel);
2593	} else if (rdev->desc->ops->get_voltage) {
2594		ret = rdev->desc->ops->get_voltage(rdev);
2595	} else if (rdev->desc->ops->list_voltage) {
2596		ret = rdev->desc->ops->list_voltage(rdev, 0);
2597	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2598		ret = rdev->desc->fixed_uV;
2599	} else {
2600		return -EINVAL;
2601	}
2602
2603	if (ret < 0)
2604		return ret;
2605	return ret - rdev->constraints->uV_offset;
2606}
2607
2608/**
2609 * regulator_get_voltage - get regulator output voltage
2610 * @regulator: regulator source
2611 *
2612 * This returns the current regulator voltage in uV.
2613 *
2614 * NOTE: If the regulator is disabled it will return the voltage value. This
2615 * function should not be used to determine regulator state.
2616 */
2617int regulator_get_voltage(struct regulator *regulator)
2618{
2619	int ret;
2620
2621	mutex_lock(&regulator->rdev->mutex);
2622
2623	ret = _regulator_get_voltage(regulator->rdev);
2624
2625	mutex_unlock(&regulator->rdev->mutex);
2626
2627	return ret;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_voltage);
2630
2631/**
2632 * regulator_set_current_limit - set regulator output current limit
2633 * @regulator: regulator source
2634 * @min_uA: Minimum supported current in uA
2635 * @max_uA: Maximum supported current in uA
2636 *
2637 * Sets current sink to the desired output current. This can be set during
2638 * any regulator state. IOW, regulator can be disabled or enabled.
2639 *
2640 * If the regulator is enabled then the current will change to the new value
2641 * immediately otherwise if the regulator is disabled the regulator will
2642 * output at the new current when enabled.
2643 *
2644 * NOTE: Regulator system constraints must be set for this regulator before
2645 * calling this function otherwise this call will fail.
2646 */
2647int regulator_set_current_limit(struct regulator *regulator,
2648			       int min_uA, int max_uA)
2649{
2650	struct regulator_dev *rdev = regulator->rdev;
2651	int ret;
2652
2653	mutex_lock(&rdev->mutex);
2654
2655	/* sanity check */
2656	if (!rdev->desc->ops->set_current_limit) {
2657		ret = -EINVAL;
2658		goto out;
2659	}
2660
2661	/* constraints check */
2662	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2663	if (ret < 0)
2664		goto out;
2665
2666	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2667out:
2668	mutex_unlock(&rdev->mutex);
2669	return ret;
2670}
2671EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2672
2673static int _regulator_get_current_limit(struct regulator_dev *rdev)
2674{
2675	int ret;
2676
2677	mutex_lock(&rdev->mutex);
2678
2679	/* sanity check */
2680	if (!rdev->desc->ops->get_current_limit) {
2681		ret = -EINVAL;
2682		goto out;
2683	}
2684
2685	ret = rdev->desc->ops->get_current_limit(rdev);
2686out:
2687	mutex_unlock(&rdev->mutex);
2688	return ret;
2689}
2690
2691/**
2692 * regulator_get_current_limit - get regulator output current
2693 * @regulator: regulator source
2694 *
2695 * This returns the current supplied by the specified current sink in uA.
2696 *
2697 * NOTE: If the regulator is disabled it will return the current value. This
2698 * function should not be used to determine regulator state.
2699 */
2700int regulator_get_current_limit(struct regulator *regulator)
2701{
2702	return _regulator_get_current_limit(regulator->rdev);
2703}
2704EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2705
2706/**
2707 * regulator_set_mode - set regulator operating mode
2708 * @regulator: regulator source
2709 * @mode: operating mode - one of the REGULATOR_MODE constants
2710 *
2711 * Set regulator operating mode to increase regulator efficiency or improve
2712 * regulation performance.
2713 *
2714 * NOTE: Regulator system constraints must be set for this regulator before
2715 * calling this function otherwise this call will fail.
2716 */
2717int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2718{
2719	struct regulator_dev *rdev = regulator->rdev;
2720	int ret;
2721	int regulator_curr_mode;
2722
2723	mutex_lock(&rdev->mutex);
2724
2725	/* sanity check */
2726	if (!rdev->desc->ops->set_mode) {
2727		ret = -EINVAL;
2728		goto out;
2729	}
2730
2731	/* return if the same mode is requested */
2732	if (rdev->desc->ops->get_mode) {
2733		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2734		if (regulator_curr_mode == mode) {
2735			ret = 0;
2736			goto out;
2737		}
2738	}
2739
2740	/* constraints check */
2741	ret = regulator_mode_constrain(rdev, &mode);
2742	if (ret < 0)
2743		goto out;
2744
2745	ret = rdev->desc->ops->set_mode(rdev, mode);
2746out:
2747	mutex_unlock(&rdev->mutex);
2748	return ret;
2749}
2750EXPORT_SYMBOL_GPL(regulator_set_mode);
2751
2752static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2753{
2754	int ret;
2755
2756	mutex_lock(&rdev->mutex);
2757
2758	/* sanity check */
2759	if (!rdev->desc->ops->get_mode) {
2760		ret = -EINVAL;
2761		goto out;
2762	}
2763
2764	ret = rdev->desc->ops->get_mode(rdev);
2765out:
2766	mutex_unlock(&rdev->mutex);
2767	return ret;
2768}
2769
2770/**
2771 * regulator_get_mode - get regulator operating mode
2772 * @regulator: regulator source
2773 *
2774 * Get the current regulator operating mode.
2775 */
2776unsigned int regulator_get_mode(struct regulator *regulator)
2777{
2778	return _regulator_get_mode(regulator->rdev);
2779}
2780EXPORT_SYMBOL_GPL(regulator_get_mode);
2781
2782/**
2783 * regulator_set_optimum_mode - set regulator optimum operating mode
2784 * @regulator: regulator source
2785 * @uA_load: load current
2786 *
2787 * Notifies the regulator core of a new device load. This is then used by
2788 * DRMS (if enabled by constraints) to set the most efficient regulator
2789 * operating mode for the new regulator loading.
2790 *
2791 * Consumer devices notify their supply regulator of the maximum power
2792 * they will require (can be taken from device datasheet in the power
2793 * consumption tables) when they change operational status and hence power
2794 * state. Examples of operational state changes that can affect power
2795 * consumption are :-
2796 *
2797 *    o Device is opened / closed.
2798 *    o Device I/O is about to begin or has just finished.
2799 *    o Device is idling in between work.
2800 *
2801 * This information is also exported via sysfs to userspace.
2802 *
2803 * DRMS will sum the total requested load on the regulator and change
2804 * to the most efficient operating mode if platform constraints allow.
2805 *
2806 * Returns the new regulator mode or error.
2807 */
2808int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2809{
2810	struct regulator_dev *rdev = regulator->rdev;
2811	struct regulator *consumer;
2812	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2813	unsigned int mode;
2814
2815	if (rdev->supply)
2816		input_uV = regulator_get_voltage(rdev->supply);
2817
2818	mutex_lock(&rdev->mutex);
2819
2820	/*
2821	 * first check to see if we can set modes at all, otherwise just
2822	 * tell the consumer everything is OK.
2823	 */
2824	regulator->uA_load = uA_load;
2825	ret = regulator_check_drms(rdev);
2826	if (ret < 0) {
2827		ret = 0;
2828		goto out;
2829	}
2830
2831	if (!rdev->desc->ops->get_optimum_mode)
2832		goto out;
2833
2834	/*
2835	 * we can actually do this so any errors are indicators of
2836	 * potential real failure.
2837	 */
2838	ret = -EINVAL;
2839
2840	if (!rdev->desc->ops->set_mode)
2841		goto out;
2842
2843	/* get output voltage */
2844	output_uV = _regulator_get_voltage(rdev);
2845	if (output_uV <= 0) {
2846		rdev_err(rdev, "invalid output voltage found\n");
2847		goto out;
2848	}
2849
2850	/* No supply? Use constraint voltage */
2851	if (input_uV <= 0)
2852		input_uV = rdev->constraints->input_uV;
2853	if (input_uV <= 0) {
2854		rdev_err(rdev, "invalid input voltage found\n");
2855		goto out;
2856	}
2857
2858	/* calc total requested load for this regulator */
2859	list_for_each_entry(consumer, &rdev->consumer_list, list)
2860		total_uA_load += consumer->uA_load;
2861
2862	mode = rdev->desc->ops->get_optimum_mode(rdev,
2863						 input_uV, output_uV,
2864						 total_uA_load);
2865	ret = regulator_mode_constrain(rdev, &mode);
2866	if (ret < 0) {
2867		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2868			 total_uA_load, input_uV, output_uV);
2869		goto out;
2870	}
2871
2872	ret = rdev->desc->ops->set_mode(rdev, mode);
2873	if (ret < 0) {
2874		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2875		goto out;
2876	}
2877	ret = mode;
2878out:
2879	mutex_unlock(&rdev->mutex);
2880	return ret;
2881}
2882EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2883
2884/**
2885 * regulator_allow_bypass - allow the regulator to go into bypass mode
2886 *
2887 * @regulator: Regulator to configure
2888 * @enable: enable or disable bypass mode
2889 *
2890 * Allow the regulator to go into bypass mode if all other consumers
2891 * for the regulator also enable bypass mode and the machine
2892 * constraints allow this.  Bypass mode means that the regulator is
2893 * simply passing the input directly to the output with no regulation.
2894 */
2895int regulator_allow_bypass(struct regulator *regulator, bool enable)
2896{
2897	struct regulator_dev *rdev = regulator->rdev;
2898	int ret = 0;
2899
2900	if (!rdev->desc->ops->set_bypass)
2901		return 0;
2902
2903	if (rdev->constraints &&
2904	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2905		return 0;
2906
2907	mutex_lock(&rdev->mutex);
2908
2909	if (enable && !regulator->bypass) {
2910		rdev->bypass_count++;
2911
2912		if (rdev->bypass_count == rdev->open_count) {
2913			ret = rdev->desc->ops->set_bypass(rdev, enable);
2914			if (ret != 0)
2915				rdev->bypass_count--;
2916		}
2917
2918	} else if (!enable && regulator->bypass) {
2919		rdev->bypass_count--;
2920
2921		if (rdev->bypass_count != rdev->open_count) {
2922			ret = rdev->desc->ops->set_bypass(rdev, enable);
2923			if (ret != 0)
2924				rdev->bypass_count++;
2925		}
2926	}
2927
2928	if (ret == 0)
2929		regulator->bypass = enable;
2930
2931	mutex_unlock(&rdev->mutex);
2932
2933	return ret;
2934}
2935EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2936
2937/**
2938 * regulator_register_notifier - register regulator event notifier
2939 * @regulator: regulator source
2940 * @nb: notifier block
2941 *
2942 * Register notifier block to receive regulator events.
2943 */
2944int regulator_register_notifier(struct regulator *regulator,
2945			      struct notifier_block *nb)
2946{
2947	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2948						nb);
2949}
2950EXPORT_SYMBOL_GPL(regulator_register_notifier);
2951
2952/**
2953 * regulator_unregister_notifier - unregister regulator event notifier
2954 * @regulator: regulator source
2955 * @nb: notifier block
2956 *
2957 * Unregister regulator event notifier block.
2958 */
2959int regulator_unregister_notifier(struct regulator *regulator,
2960				struct notifier_block *nb)
2961{
2962	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2963						  nb);
2964}
2965EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2966
2967/* notify regulator consumers and downstream regulator consumers.
2968 * Note mutex must be held by caller.
2969 */
2970static void _notifier_call_chain(struct regulator_dev *rdev,
2971				  unsigned long event, void *data)
2972{
2973	/* call rdev chain first */
2974	blocking_notifier_call_chain(&rdev->notifier, event, data);
2975}
2976
2977/**
2978 * regulator_bulk_get - get multiple regulator consumers
2979 *
2980 * @dev:           Device to supply
2981 * @num_consumers: Number of consumers to register
2982 * @consumers:     Configuration of consumers; clients are stored here.
2983 *
2984 * @return 0 on success, an errno on failure.
2985 *
2986 * This helper function allows drivers to get several regulator
2987 * consumers in one operation.  If any of the regulators cannot be
2988 * acquired then any regulators that were allocated will be freed
2989 * before returning to the caller.
2990 */
2991int regulator_bulk_get(struct device *dev, int num_consumers,
2992		       struct regulator_bulk_data *consumers)
2993{
2994	int i;
2995	int ret;
2996
2997	for (i = 0; i < num_consumers; i++)
2998		consumers[i].consumer = NULL;
2999
3000	for (i = 0; i < num_consumers; i++) {
3001		consumers[i].consumer = regulator_get(dev,
3002						      consumers[i].supply);
3003		if (IS_ERR(consumers[i].consumer)) {
3004			ret = PTR_ERR(consumers[i].consumer);
3005			dev_err(dev, "Failed to get supply '%s': %d\n",
3006				consumers[i].supply, ret);
3007			consumers[i].consumer = NULL;
3008			goto err;
3009		}
3010	}
3011
3012	return 0;
3013
3014err:
3015	while (--i >= 0)
3016		regulator_put(consumers[i].consumer);
3017
3018	return ret;
3019}
3020EXPORT_SYMBOL_GPL(regulator_bulk_get);
3021
3022static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3023{
3024	struct regulator_bulk_data *bulk = data;
3025
3026	bulk->ret = regulator_enable(bulk->consumer);
3027}
3028
3029/**
3030 * regulator_bulk_enable - enable multiple regulator consumers
3031 *
3032 * @num_consumers: Number of consumers
3033 * @consumers:     Consumer data; clients are stored here.
3034 * @return         0 on success, an errno on failure
3035 *
3036 * This convenience API allows consumers to enable multiple regulator
3037 * clients in a single API call.  If any consumers cannot be enabled
3038 * then any others that were enabled will be disabled again prior to
3039 * return.
3040 */
3041int regulator_bulk_enable(int num_consumers,
3042			  struct regulator_bulk_data *consumers)
3043{
3044	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3045	int i;
3046	int ret = 0;
3047
3048	for (i = 0; i < num_consumers; i++) {
3049		if (consumers[i].consumer->always_on)
3050			consumers[i].ret = 0;
3051		else
3052			async_schedule_domain(regulator_bulk_enable_async,
3053					      &consumers[i], &async_domain);
3054	}
3055
3056	async_synchronize_full_domain(&async_domain);
3057
3058	/* If any consumer failed we need to unwind any that succeeded */
3059	for (i = 0; i < num_consumers; i++) {
3060		if (consumers[i].ret != 0) {
3061			ret = consumers[i].ret;
3062			goto err;
3063		}
3064	}
3065
3066	return 0;
3067
3068err:
3069	for (i = 0; i < num_consumers; i++) {
3070		if (consumers[i].ret < 0)
3071			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3072			       consumers[i].ret);
3073		else
3074			regulator_disable(consumers[i].consumer);
3075	}
3076
3077	return ret;
3078}
3079EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3080
3081/**
3082 * regulator_bulk_disable - disable multiple regulator consumers
3083 *
3084 * @num_consumers: Number of consumers
3085 * @consumers:     Consumer data; clients are stored here.
3086 * @return         0 on success, an errno on failure
3087 *
3088 * This convenience API allows consumers to disable multiple regulator
3089 * clients in a single API call.  If any consumers cannot be disabled
3090 * then any others that were disabled will be enabled again prior to
3091 * return.
3092 */
3093int regulator_bulk_disable(int num_consumers,
3094			   struct regulator_bulk_data *consumers)
3095{
3096	int i;
3097	int ret, r;
3098
3099	for (i = num_consumers - 1; i >= 0; --i) {
3100		ret = regulator_disable(consumers[i].consumer);
3101		if (ret != 0)
3102			goto err;
3103	}
3104
3105	return 0;
3106
3107err:
3108	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3109	for (++i; i < num_consumers; ++i) {
3110		r = regulator_enable(consumers[i].consumer);
3111		if (r != 0)
3112			pr_err("Failed to reename %s: %d\n",
3113			       consumers[i].supply, r);
3114	}
3115
3116	return ret;
3117}
3118EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3119
3120/**
3121 * regulator_bulk_force_disable - force disable multiple regulator consumers
3122 *
3123 * @num_consumers: Number of consumers
3124 * @consumers:     Consumer data; clients are stored here.
3125 * @return         0 on success, an errno on failure
3126 *
3127 * This convenience API allows consumers to forcibly disable multiple regulator
3128 * clients in a single API call.
3129 * NOTE: This should be used for situations when device damage will
3130 * likely occur if the regulators are not disabled (e.g. over temp).
3131 * Although regulator_force_disable function call for some consumers can
3132 * return error numbers, the function is called for all consumers.
3133 */
3134int regulator_bulk_force_disable(int num_consumers,
3135			   struct regulator_bulk_data *consumers)
3136{
3137	int i;
3138	int ret;
3139
3140	for (i = 0; i < num_consumers; i++)
3141		consumers[i].ret =
3142			    regulator_force_disable(consumers[i].consumer);
3143
3144	for (i = 0; i < num_consumers; i++) {
3145		if (consumers[i].ret != 0) {
3146			ret = consumers[i].ret;
3147			goto out;
3148		}
3149	}
3150
3151	return 0;
3152out:
3153	return ret;
3154}
3155EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3156
3157/**
3158 * regulator_bulk_free - free multiple regulator consumers
3159 *
3160 * @num_consumers: Number of consumers
3161 * @consumers:     Consumer data; clients are stored here.
3162 *
3163 * This convenience API allows consumers to free multiple regulator
3164 * clients in a single API call.
3165 */
3166void regulator_bulk_free(int num_consumers,
3167			 struct regulator_bulk_data *consumers)
3168{
3169	int i;
3170
3171	for (i = 0; i < num_consumers; i++) {
3172		regulator_put(consumers[i].consumer);
3173		consumers[i].consumer = NULL;
3174	}
3175}
3176EXPORT_SYMBOL_GPL(regulator_bulk_free);
3177
3178/**
3179 * regulator_notifier_call_chain - call regulator event notifier
3180 * @rdev: regulator source
3181 * @event: notifier block
3182 * @data: callback-specific data.
3183 *
3184 * Called by regulator drivers to notify clients a regulator event has
3185 * occurred. We also notify regulator clients downstream.
3186 * Note lock must be held by caller.
3187 */
3188int regulator_notifier_call_chain(struct regulator_dev *rdev,
3189				  unsigned long event, void *data)
3190{
3191	_notifier_call_chain(rdev, event, data);
3192	return NOTIFY_DONE;
3193
3194}
3195EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3196
3197/**
3198 * regulator_mode_to_status - convert a regulator mode into a status
3199 *
3200 * @mode: Mode to convert
3201 *
3202 * Convert a regulator mode into a status.
3203 */
3204int regulator_mode_to_status(unsigned int mode)
3205{
3206	switch (mode) {
3207	case REGULATOR_MODE_FAST:
3208		return REGULATOR_STATUS_FAST;
3209	case REGULATOR_MODE_NORMAL:
3210		return REGULATOR_STATUS_NORMAL;
3211	case REGULATOR_MODE_IDLE:
3212		return REGULATOR_STATUS_IDLE;
3213	case REGULATOR_MODE_STANDBY:
3214		return REGULATOR_STATUS_STANDBY;
3215	default:
3216		return REGULATOR_STATUS_UNDEFINED;
3217	}
3218}
3219EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3220
3221/*
3222 * To avoid cluttering sysfs (and memory) with useless state, only
3223 * create attributes that can be meaningfully displayed.
3224 */
3225static int add_regulator_attributes(struct regulator_dev *rdev)
3226{
3227	struct device		*dev = &rdev->dev;
3228	struct regulator_ops	*ops = rdev->desc->ops;
3229	int			status = 0;
3230
3231	/* some attributes need specific methods to be displayed */
3232	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3233	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3234	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3235		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3236		status = device_create_file(dev, &dev_attr_microvolts);
3237		if (status < 0)
3238			return status;
3239	}
3240	if (ops->get_current_limit) {
3241		status = device_create_file(dev, &dev_attr_microamps);
3242		if (status < 0)
3243			return status;
3244	}
3245	if (ops->get_mode) {
3246		status = device_create_file(dev, &dev_attr_opmode);
3247		if (status < 0)
3248			return status;
3249	}
3250	if (rdev->ena_pin || ops->is_enabled) {
3251		status = device_create_file(dev, &dev_attr_state);
3252		if (status < 0)
3253			return status;
3254	}
3255	if (ops->get_status) {
3256		status = device_create_file(dev, &dev_attr_status);
3257		if (status < 0)
3258			return status;
3259	}
3260	if (ops->get_bypass) {
3261		status = device_create_file(dev, &dev_attr_bypass);
3262		if (status < 0)
3263			return status;
3264	}
3265
3266	/* some attributes are type-specific */
3267	if (rdev->desc->type == REGULATOR_CURRENT) {
3268		status = device_create_file(dev, &dev_attr_requested_microamps);
3269		if (status < 0)
3270			return status;
3271	}
3272
3273	/* all the other attributes exist to support constraints;
3274	 * don't show them if there are no constraints, or if the
3275	 * relevant supporting methods are missing.
3276	 */
3277	if (!rdev->constraints)
3278		return status;
3279
3280	/* constraints need specific supporting methods */
3281	if (ops->set_voltage || ops->set_voltage_sel) {
3282		status = device_create_file(dev, &dev_attr_min_microvolts);
3283		if (status < 0)
3284			return status;
3285		status = device_create_file(dev, &dev_attr_max_microvolts);
3286		if (status < 0)
3287			return status;
3288	}
3289	if (ops->set_current_limit) {
3290		status = device_create_file(dev, &dev_attr_min_microamps);
3291		if (status < 0)
3292			return status;
3293		status = device_create_file(dev, &dev_attr_max_microamps);
3294		if (status < 0)
3295			return status;
3296	}
3297
3298	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3299	if (status < 0)
3300		return status;
3301	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3302	if (status < 0)
3303		return status;
3304	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3305	if (status < 0)
3306		return status;
3307
3308	if (ops->set_suspend_voltage) {
3309		status = device_create_file(dev,
3310				&dev_attr_suspend_standby_microvolts);
3311		if (status < 0)
3312			return status;
3313		status = device_create_file(dev,
3314				&dev_attr_suspend_mem_microvolts);
3315		if (status < 0)
3316			return status;
3317		status = device_create_file(dev,
3318				&dev_attr_suspend_disk_microvolts);
3319		if (status < 0)
3320			return status;
3321	}
3322
3323	if (ops->set_suspend_mode) {
3324		status = device_create_file(dev,
3325				&dev_attr_suspend_standby_mode);
3326		if (status < 0)
3327			return status;
3328		status = device_create_file(dev,
3329				&dev_attr_suspend_mem_mode);
3330		if (status < 0)
3331			return status;
3332		status = device_create_file(dev,
3333				&dev_attr_suspend_disk_mode);
3334		if (status < 0)
3335			return status;
3336	}
3337
3338	return status;
3339}
3340
3341static void rdev_init_debugfs(struct regulator_dev *rdev)
3342{
3343	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3344	if (!rdev->debugfs) {
3345		rdev_warn(rdev, "Failed to create debugfs directory\n");
3346		return;
3347	}
3348
3349	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3350			   &rdev->use_count);
3351	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3352			   &rdev->open_count);
3353	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3354			   &rdev->bypass_count);
3355}
3356
3357/**
3358 * regulator_register - register regulator
3359 * @regulator_desc: regulator to register
3360 * @config: runtime configuration for regulator
3361 *
3362 * Called by regulator drivers to register a regulator.
3363 * Returns a valid pointer to struct regulator_dev on success
3364 * or an ERR_PTR() on error.
3365 */
3366struct regulator_dev *
3367regulator_register(const struct regulator_desc *regulator_desc,
3368		   const struct regulator_config *config)
3369{
3370	const struct regulation_constraints *constraints = NULL;
3371	const struct regulator_init_data *init_data;
3372	static atomic_t regulator_no = ATOMIC_INIT(0);
3373	struct regulator_dev *rdev;
3374	struct device *dev;
3375	int ret, i;
3376	const char *supply = NULL;
3377
3378	if (regulator_desc == NULL || config == NULL)
3379		return ERR_PTR(-EINVAL);
3380
3381	dev = config->dev;
3382	WARN_ON(!dev);
3383
3384	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3385		return ERR_PTR(-EINVAL);
3386
3387	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3388	    regulator_desc->type != REGULATOR_CURRENT)
3389		return ERR_PTR(-EINVAL);
3390
3391	/* Only one of each should be implemented */
3392	WARN_ON(regulator_desc->ops->get_voltage &&
3393		regulator_desc->ops->get_voltage_sel);
3394	WARN_ON(regulator_desc->ops->set_voltage &&
3395		regulator_desc->ops->set_voltage_sel);
3396
3397	/* If we're using selectors we must implement list_voltage. */
3398	if (regulator_desc->ops->get_voltage_sel &&
3399	    !regulator_desc->ops->list_voltage) {
3400		return ERR_PTR(-EINVAL);
3401	}
3402	if (regulator_desc->ops->set_voltage_sel &&
3403	    !regulator_desc->ops->list_voltage) {
3404		return ERR_PTR(-EINVAL);
3405	}
3406
3407	init_data = config->init_data;
3408
3409	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3410	if (rdev == NULL)
3411		return ERR_PTR(-ENOMEM);
3412
3413	mutex_lock(&regulator_list_mutex);
3414
3415	mutex_init(&rdev->mutex);
3416	rdev->reg_data = config->driver_data;
3417	rdev->owner = regulator_desc->owner;
3418	rdev->desc = regulator_desc;
3419	if (config->regmap)
3420		rdev->regmap = config->regmap;
3421	else if (dev_get_regmap(dev, NULL))
3422		rdev->regmap = dev_get_regmap(dev, NULL);
3423	else if (dev->parent)
3424		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3425	INIT_LIST_HEAD(&rdev->consumer_list);
3426	INIT_LIST_HEAD(&rdev->list);
3427	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3428	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3429
3430	/* preform any regulator specific init */
3431	if (init_data && init_data->regulator_init) {
3432		ret = init_data->regulator_init(rdev->reg_data);
3433		if (ret < 0)
3434			goto clean;
3435	}
3436
3437	/* register with sysfs */
3438	rdev->dev.class = &regulator_class;
3439	rdev->dev.of_node = config->of_node;
3440	rdev->dev.parent = dev;
3441	dev_set_name(&rdev->dev, "regulator.%d",
3442		     atomic_inc_return(&regulator_no) - 1);
3443	ret = device_register(&rdev->dev);
3444	if (ret != 0) {
3445		put_device(&rdev->dev);
3446		goto clean;
3447	}
3448
3449	dev_set_drvdata(&rdev->dev, rdev);
3450
3451	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3452		ret = regulator_ena_gpio_request(rdev, config);
3453		if (ret != 0) {
3454			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3455				 config->ena_gpio, ret);
3456			goto wash;
3457		}
3458
3459		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3460			rdev->ena_gpio_state = 1;
3461
3462		if (config->ena_gpio_invert)
3463			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3464	}
3465
3466	/* set regulator constraints */
3467	if (init_data)
3468		constraints = &init_data->constraints;
3469
3470	ret = set_machine_constraints(rdev, constraints);
3471	if (ret < 0)
3472		goto scrub;
3473
3474	/* add attributes supported by this regulator */
3475	ret = add_regulator_attributes(rdev);
3476	if (ret < 0)
3477		goto scrub;
3478
3479	if (init_data && init_data->supply_regulator)
3480		supply = init_data->supply_regulator;
3481	else if (regulator_desc->supply_name)
3482		supply = regulator_desc->supply_name;
3483
3484	if (supply) {
3485		struct regulator_dev *r;
3486
3487		r = regulator_dev_lookup(dev, supply, &ret);
3488
3489		if (ret == -ENODEV) {
3490			/*
3491			 * No supply was specified for this regulator and
3492			 * there will never be one.
3493			 */
3494			ret = 0;
3495			goto add_dev;
3496		} else if (!r) {
3497			dev_err(dev, "Failed to find supply %s\n", supply);
3498			ret = -EPROBE_DEFER;
3499			goto scrub;
3500		}
3501
3502		ret = set_supply(rdev, r);
3503		if (ret < 0)
3504			goto scrub;
3505
3506		/* Enable supply if rail is enabled */
3507		if (_regulator_is_enabled(rdev)) {
3508			ret = regulator_enable(rdev->supply);
3509			if (ret < 0)
3510				goto scrub;
3511		}
3512	}
3513
3514add_dev:
3515	/* add consumers devices */
3516	if (init_data) {
3517		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3518			ret = set_consumer_device_supply(rdev,
3519				init_data->consumer_supplies[i].dev_name,
3520				init_data->consumer_supplies[i].supply);
3521			if (ret < 0) {
3522				dev_err(dev, "Failed to set supply %s\n",
3523					init_data->consumer_supplies[i].supply);
3524				goto unset_supplies;
3525			}
3526		}
3527	}
3528
3529	list_add(&rdev->list, &regulator_list);
3530
3531	rdev_init_debugfs(rdev);
3532out:
3533	mutex_unlock(&regulator_list_mutex);
3534	return rdev;
3535
3536unset_supplies:
3537	unset_regulator_supplies(rdev);
3538
3539scrub:
3540	if (rdev->supply)
3541		_regulator_put(rdev->supply);
3542	regulator_ena_gpio_free(rdev);
3543	kfree(rdev->constraints);
3544wash:
3545	device_unregister(&rdev->dev);
3546	/* device core frees rdev */
3547	rdev = ERR_PTR(ret);
3548	goto out;
3549
3550clean:
3551	kfree(rdev);
3552	rdev = ERR_PTR(ret);
3553	goto out;
3554}
3555EXPORT_SYMBOL_GPL(regulator_register);
3556
3557/**
3558 * regulator_unregister - unregister regulator
3559 * @rdev: regulator to unregister
3560 *
3561 * Called by regulator drivers to unregister a regulator.
3562 */
3563void regulator_unregister(struct regulator_dev *rdev)
3564{
3565	if (rdev == NULL)
3566		return;
3567
3568	if (rdev->supply) {
3569		while (rdev->use_count--)
3570			regulator_disable(rdev->supply);
3571		regulator_put(rdev->supply);
3572	}
3573	mutex_lock(&regulator_list_mutex);
3574	debugfs_remove_recursive(rdev->debugfs);
3575	flush_work(&rdev->disable_work.work);
3576	WARN_ON(rdev->open_count);
3577	unset_regulator_supplies(rdev);
3578	list_del(&rdev->list);
3579	kfree(rdev->constraints);
3580	regulator_ena_gpio_free(rdev);
3581	device_unregister(&rdev->dev);
3582	mutex_unlock(&regulator_list_mutex);
3583}
3584EXPORT_SYMBOL_GPL(regulator_unregister);
3585
3586/**
3587 * regulator_suspend_prepare - prepare regulators for system wide suspend
3588 * @state: system suspend state
3589 *
3590 * Configure each regulator with it's suspend operating parameters for state.
3591 * This will usually be called by machine suspend code prior to supending.
3592 */
3593int regulator_suspend_prepare(suspend_state_t state)
3594{
3595	struct regulator_dev *rdev;
3596	int ret = 0;
3597
3598	/* ON is handled by regulator active state */
3599	if (state == PM_SUSPEND_ON)
3600		return -EINVAL;
3601
3602	mutex_lock(&regulator_list_mutex);
3603	list_for_each_entry(rdev, &regulator_list, list) {
3604
3605		mutex_lock(&rdev->mutex);
3606		ret = suspend_prepare(rdev, state);
3607		mutex_unlock(&rdev->mutex);
3608
3609		if (ret < 0) {
3610			rdev_err(rdev, "failed to prepare\n");
3611			goto out;
3612		}
3613	}
3614out:
3615	mutex_unlock(&regulator_list_mutex);
3616	return ret;
3617}
3618EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3619
3620/**
3621 * regulator_suspend_finish - resume regulators from system wide suspend
3622 *
3623 * Turn on regulators that might be turned off by regulator_suspend_prepare
3624 * and that should be turned on according to the regulators properties.
3625 */
3626int regulator_suspend_finish(void)
3627{
3628	struct regulator_dev *rdev;
3629	int ret = 0, error;
3630
3631	mutex_lock(&regulator_list_mutex);
3632	list_for_each_entry(rdev, &regulator_list, list) {
3633		struct regulator_ops *ops = rdev->desc->ops;
3634
3635		mutex_lock(&rdev->mutex);
3636		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3637				ops->enable) {
3638			error = ops->enable(rdev);
3639			if (error)
3640				ret = error;
3641		} else {
3642			if (!have_full_constraints())
3643				goto unlock;
3644			if (!ops->disable)
3645				goto unlock;
3646			if (!_regulator_is_enabled(rdev))
3647				goto unlock;
3648
3649			error = ops->disable(rdev);
3650			if (error)
3651				ret = error;
3652		}
3653unlock:
3654		mutex_unlock(&rdev->mutex);
3655	}
3656	mutex_unlock(&regulator_list_mutex);
3657	return ret;
3658}
3659EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3660
3661/**
3662 * regulator_has_full_constraints - the system has fully specified constraints
3663 *
3664 * Calling this function will cause the regulator API to disable all
3665 * regulators which have a zero use count and don't have an always_on
3666 * constraint in a late_initcall.
3667 *
3668 * The intention is that this will become the default behaviour in a
3669 * future kernel release so users are encouraged to use this facility
3670 * now.
3671 */
3672void regulator_has_full_constraints(void)
3673{
3674	has_full_constraints = 1;
3675}
3676EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3677
3678/**
3679 * rdev_get_drvdata - get rdev regulator driver data
3680 * @rdev: regulator
3681 *
3682 * Get rdev regulator driver private data. This call can be used in the
3683 * regulator driver context.
3684 */
3685void *rdev_get_drvdata(struct regulator_dev *rdev)
3686{
3687	return rdev->reg_data;
3688}
3689EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3690
3691/**
3692 * regulator_get_drvdata - get regulator driver data
3693 * @regulator: regulator
3694 *
3695 * Get regulator driver private data. This call can be used in the consumer
3696 * driver context when non API regulator specific functions need to be called.
3697 */
3698void *regulator_get_drvdata(struct regulator *regulator)
3699{
3700	return regulator->rdev->reg_data;
3701}
3702EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3703
3704/**
3705 * regulator_set_drvdata - set regulator driver data
3706 * @regulator: regulator
3707 * @data: data
3708 */
3709void regulator_set_drvdata(struct regulator *regulator, void *data)
3710{
3711	regulator->rdev->reg_data = data;
3712}
3713EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3714
3715/**
3716 * regulator_get_id - get regulator ID
3717 * @rdev: regulator
3718 */
3719int rdev_get_id(struct regulator_dev *rdev)
3720{
3721	return rdev->desc->id;
3722}
3723EXPORT_SYMBOL_GPL(rdev_get_id);
3724
3725struct device *rdev_get_dev(struct regulator_dev *rdev)
3726{
3727	return &rdev->dev;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_dev);
3730
3731void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3732{
3733	return reg_init_data->driver_data;
3734}
3735EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3736
3737#ifdef CONFIG_DEBUG_FS
3738static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3739				    size_t count, loff_t *ppos)
3740{
3741	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3742	ssize_t len, ret = 0;
3743	struct regulator_map *map;
3744
3745	if (!buf)
3746		return -ENOMEM;
3747
3748	list_for_each_entry(map, &regulator_map_list, list) {
3749		len = snprintf(buf + ret, PAGE_SIZE - ret,
3750			       "%s -> %s.%s\n",
3751			       rdev_get_name(map->regulator), map->dev_name,
3752			       map->supply);
3753		if (len >= 0)
3754			ret += len;
3755		if (ret > PAGE_SIZE) {
3756			ret = PAGE_SIZE;
3757			break;
3758		}
3759	}
3760
3761	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3762
3763	kfree(buf);
3764
3765	return ret;
3766}
3767#endif
3768
3769static const struct file_operations supply_map_fops = {
3770#ifdef CONFIG_DEBUG_FS
3771	.read = supply_map_read_file,
3772	.llseek = default_llseek,
3773#endif
3774};
3775
3776static int __init regulator_init(void)
3777{
3778	int ret;
3779
3780	ret = class_register(&regulator_class);
3781
3782	debugfs_root = debugfs_create_dir("regulator", NULL);
3783	if (!debugfs_root)
3784		pr_warn("regulator: Failed to create debugfs directory\n");
3785
3786	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3787			    &supply_map_fops);
3788
3789	regulator_dummy_init();
3790
3791	return ret;
3792}
3793
3794/* init early to allow our consumers to complete system booting */
3795core_initcall(regulator_init);
3796
3797static int __init regulator_init_complete(void)
3798{
3799	struct regulator_dev *rdev;
3800	struct regulator_ops *ops;
3801	struct regulation_constraints *c;
3802	int enabled, ret;
3803
3804	/*
3805	 * Since DT doesn't provide an idiomatic mechanism for
3806	 * enabling full constraints and since it's much more natural
3807	 * with DT to provide them just assume that a DT enabled
3808	 * system has full constraints.
3809	 */
3810	if (of_have_populated_dt())
3811		has_full_constraints = true;
3812
3813	mutex_lock(&regulator_list_mutex);
3814
3815	/* If we have a full configuration then disable any regulators
3816	 * which are not in use or always_on.  This will become the
3817	 * default behaviour in the future.
3818	 */
3819	list_for_each_entry(rdev, &regulator_list, list) {
3820		ops = rdev->desc->ops;
3821		c = rdev->constraints;
3822
3823		if (!ops->disable || (c && c->always_on))
3824			continue;
3825
3826		mutex_lock(&rdev->mutex);
3827
3828		if (rdev->use_count)
3829			goto unlock;
3830
3831		/* If we can't read the status assume it's on. */
3832		if (ops->is_enabled)
3833			enabled = ops->is_enabled(rdev);
3834		else
3835			enabled = 1;
3836
3837		if (!enabled)
3838			goto unlock;
3839
3840		if (have_full_constraints()) {
3841			/* We log since this may kill the system if it
3842			 * goes wrong. */
3843			rdev_info(rdev, "disabling\n");
3844			ret = ops->disable(rdev);
3845			if (ret != 0)
3846				rdev_err(rdev, "couldn't disable: %d\n", ret);
3847		} else {
3848			/* The intention is that in future we will
3849			 * assume that full constraints are provided
3850			 * so warn even if we aren't going to do
3851			 * anything here.
3852			 */
3853			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3854		}
3855
3856unlock:
3857		mutex_unlock(&rdev->mutex);
3858	}
3859
3860	mutex_unlock(&regulator_list_mutex);
3861
3862	return 0;
3863}
3864late_initcall(regulator_init_complete);
3865