core.c revision 31d6eebf7e079cfb5e98e65d5af4c6de093e076c
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static LIST_HEAD(regulator_ena_gpio_list);
55static bool has_full_constraints;
56static bool board_wants_dummy_regulator;
57
58static struct dentry *debugfs_root;
59
60/*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65struct regulator_map {
66	struct list_head list;
67	const char *dev_name;   /* The dev_name() for the consumer */
68	const char *supply;
69	struct regulator_dev *regulator;
70};
71
72/*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77struct regulator_enable_gpio {
78	struct list_head list;
79	int gpio;
80	u32 enable_count;	/* a number of enabled shared GPIO */
81	u32 request_count;	/* a number of requested shared GPIO */
82	unsigned int ena_gpio_invert:1;
83};
84
85/*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90struct regulator {
91	struct device *dev;
92	struct list_head list;
93	unsigned int always_on:1;
94	unsigned int bypass:1;
95	int uA_load;
96	int min_uV;
97	int max_uV;
98	char *supply_name;
99	struct device_attribute dev_attr;
100	struct regulator_dev *rdev;
101	struct dentry *debugfs;
102};
103
104static int _regulator_is_enabled(struct regulator_dev *rdev);
105static int _regulator_disable(struct regulator_dev *rdev);
106static int _regulator_get_voltage(struct regulator_dev *rdev);
107static int _regulator_get_current_limit(struct regulator_dev *rdev);
108static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109static void _notifier_call_chain(struct regulator_dev *rdev,
110				  unsigned long event, void *data);
111static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112				     int min_uV, int max_uV);
113static struct regulator *create_regulator(struct regulator_dev *rdev,
114					  struct device *dev,
115					  const char *supply_name);
116
117static const char *rdev_get_name(struct regulator_dev *rdev)
118{
119	if (rdev->constraints && rdev->constraints->name)
120		return rdev->constraints->name;
121	else if (rdev->desc->name)
122		return rdev->desc->name;
123	else
124		return "";
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t regulator_name_show(struct device *dev,
327			     struct device_attribute *attr, char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333
334static ssize_t regulator_print_opmode(char *buf, int mode)
335{
336	switch (mode) {
337	case REGULATOR_MODE_FAST:
338		return sprintf(buf, "fast\n");
339	case REGULATOR_MODE_NORMAL:
340		return sprintf(buf, "normal\n");
341	case REGULATOR_MODE_IDLE:
342		return sprintf(buf, "idle\n");
343	case REGULATOR_MODE_STANDBY:
344		return sprintf(buf, "standby\n");
345	}
346	return sprintf(buf, "unknown\n");
347}
348
349static ssize_t regulator_opmode_show(struct device *dev,
350				    struct device_attribute *attr, char *buf)
351{
352	struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355}
356static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358static ssize_t regulator_print_state(char *buf, int state)
359{
360	if (state > 0)
361		return sprintf(buf, "enabled\n");
362	else if (state == 0)
363		return sprintf(buf, "disabled\n");
364	else
365		return sprintf(buf, "unknown\n");
366}
367
368static ssize_t regulator_state_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	ssize_t ret;
373
374	mutex_lock(&rdev->mutex);
375	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376	mutex_unlock(&rdev->mutex);
377
378	return ret;
379}
380static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382static ssize_t regulator_status_show(struct device *dev,
383				   struct device_attribute *attr, char *buf)
384{
385	struct regulator_dev *rdev = dev_get_drvdata(dev);
386	int status;
387	char *label;
388
389	status = rdev->desc->ops->get_status(rdev);
390	if (status < 0)
391		return status;
392
393	switch (status) {
394	case REGULATOR_STATUS_OFF:
395		label = "off";
396		break;
397	case REGULATOR_STATUS_ON:
398		label = "on";
399		break;
400	case REGULATOR_STATUS_ERROR:
401		label = "error";
402		break;
403	case REGULATOR_STATUS_FAST:
404		label = "fast";
405		break;
406	case REGULATOR_STATUS_NORMAL:
407		label = "normal";
408		break;
409	case REGULATOR_STATUS_IDLE:
410		label = "idle";
411		break;
412	case REGULATOR_STATUS_STANDBY:
413		label = "standby";
414		break;
415	case REGULATOR_STATUS_BYPASS:
416		label = "bypass";
417		break;
418	case REGULATOR_STATUS_UNDEFINED:
419		label = "undefined";
420		break;
421	default:
422		return -ERANGE;
423	}
424
425	return sprintf(buf, "%s\n", label);
426}
427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429static ssize_t regulator_min_uA_show(struct device *dev,
430				    struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434	if (!rdev->constraints)
435		return sprintf(buf, "constraint not defined\n");
436
437	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438}
439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441static ssize_t regulator_max_uA_show(struct device *dev,
442				    struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	if (!rdev->constraints)
447		return sprintf(buf, "constraint not defined\n");
448
449	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450}
451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453static ssize_t regulator_min_uV_show(struct device *dev,
454				    struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	if (!rdev->constraints)
459		return sprintf(buf, "constraint not defined\n");
460
461	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462}
463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465static ssize_t regulator_max_uV_show(struct device *dev,
466				    struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	if (!rdev->constraints)
471		return sprintf(buf, "constraint not defined\n");
472
473	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474}
475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477static ssize_t regulator_total_uA_show(struct device *dev,
478				      struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481	struct regulator *regulator;
482	int uA = 0;
483
484	mutex_lock(&rdev->mutex);
485	list_for_each_entry(regulator, &rdev->consumer_list, list)
486		uA += regulator->uA_load;
487	mutex_unlock(&rdev->mutex);
488	return sprintf(buf, "%d\n", uA);
489}
490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492static ssize_t regulator_num_users_show(struct device *dev,
493				      struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496	return sprintf(buf, "%d\n", rdev->use_count);
497}
498
499static ssize_t regulator_type_show(struct device *dev,
500				  struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	switch (rdev->desc->type) {
505	case REGULATOR_VOLTAGE:
506		return sprintf(buf, "voltage\n");
507	case REGULATOR_CURRENT:
508		return sprintf(buf, "current\n");
509	}
510	return sprintf(buf, "unknown\n");
511}
512
513static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514				struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519}
520static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521		regulator_suspend_mem_uV_show, NULL);
522
523static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529}
530static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531		regulator_suspend_disk_uV_show, NULL);
532
533static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534				struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539}
540static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541		regulator_suspend_standby_uV_show, NULL);
542
543static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544				struct device_attribute *attr, char *buf)
545{
546	struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548	return regulator_print_opmode(buf,
549		rdev->constraints->state_mem.mode);
550}
551static DEVICE_ATTR(suspend_mem_mode, 0444,
552		regulator_suspend_mem_mode_show, NULL);
553
554static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555				struct device_attribute *attr, char *buf)
556{
557	struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559	return regulator_print_opmode(buf,
560		rdev->constraints->state_disk.mode);
561}
562static DEVICE_ATTR(suspend_disk_mode, 0444,
563		regulator_suspend_disk_mode_show, NULL);
564
565static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566				struct device_attribute *attr, char *buf)
567{
568	struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570	return regulator_print_opmode(buf,
571		rdev->constraints->state_standby.mode);
572}
573static DEVICE_ATTR(suspend_standby_mode, 0444,
574		regulator_suspend_standby_mode_show, NULL);
575
576static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577				   struct device_attribute *attr, char *buf)
578{
579	struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581	return regulator_print_state(buf,
582			rdev->constraints->state_mem.enabled);
583}
584static DEVICE_ATTR(suspend_mem_state, 0444,
585		regulator_suspend_mem_state_show, NULL);
586
587static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588				   struct device_attribute *attr, char *buf)
589{
590	struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592	return regulator_print_state(buf,
593			rdev->constraints->state_disk.enabled);
594}
595static DEVICE_ATTR(suspend_disk_state, 0444,
596		regulator_suspend_disk_state_show, NULL);
597
598static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599				   struct device_attribute *attr, char *buf)
600{
601	struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603	return regulator_print_state(buf,
604			rdev->constraints->state_standby.enabled);
605}
606static DEVICE_ATTR(suspend_standby_state, 0444,
607		regulator_suspend_standby_state_show, NULL);
608
609static ssize_t regulator_bypass_show(struct device *dev,
610				     struct device_attribute *attr, char *buf)
611{
612	struct regulator_dev *rdev = dev_get_drvdata(dev);
613	const char *report;
614	bool bypass;
615	int ret;
616
617	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619	if (ret != 0)
620		report = "unknown";
621	else if (bypass)
622		report = "enabled";
623	else
624		report = "disabled";
625
626	return sprintf(buf, "%s\n", report);
627}
628static DEVICE_ATTR(bypass, 0444,
629		   regulator_bypass_show, NULL);
630
631/*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635static struct device_attribute regulator_dev_attrs[] = {
636	__ATTR(name, 0444, regulator_name_show, NULL),
637	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
638	__ATTR(type, 0444, regulator_type_show, NULL),
639	__ATTR_NULL,
640};
641
642static void regulator_dev_release(struct device *dev)
643{
644	struct regulator_dev *rdev = dev_get_drvdata(dev);
645	kfree(rdev);
646}
647
648static struct class regulator_class = {
649	.name = "regulator",
650	.dev_release = regulator_dev_release,
651	.dev_attrs = regulator_dev_attrs,
652};
653
654/* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656static void drms_uA_update(struct regulator_dev *rdev)
657{
658	struct regulator *sibling;
659	int current_uA = 0, output_uV, input_uV, err;
660	unsigned int mode;
661
662	err = regulator_check_drms(rdev);
663	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664	    (!rdev->desc->ops->get_voltage &&
665	     !rdev->desc->ops->get_voltage_sel) ||
666	    !rdev->desc->ops->set_mode)
667		return;
668
669	/* get output voltage */
670	output_uV = _regulator_get_voltage(rdev);
671	if (output_uV <= 0)
672		return;
673
674	/* get input voltage */
675	input_uV = 0;
676	if (rdev->supply)
677		input_uV = regulator_get_voltage(rdev->supply);
678	if (input_uV <= 0)
679		input_uV = rdev->constraints->input_uV;
680	if (input_uV <= 0)
681		return;
682
683	/* calc total requested load */
684	list_for_each_entry(sibling, &rdev->consumer_list, list)
685		current_uA += sibling->uA_load;
686
687	/* now get the optimum mode for our new total regulator load */
688	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689						  output_uV, current_uA);
690
691	/* check the new mode is allowed */
692	err = regulator_mode_constrain(rdev, &mode);
693	if (err == 0)
694		rdev->desc->ops->set_mode(rdev, mode);
695}
696
697static int suspend_set_state(struct regulator_dev *rdev,
698	struct regulator_state *rstate)
699{
700	int ret = 0;
701
702	/* If we have no suspend mode configration don't set anything;
703	 * only warn if the driver implements set_suspend_voltage or
704	 * set_suspend_mode callback.
705	 */
706	if (!rstate->enabled && !rstate->disabled) {
707		if (rdev->desc->ops->set_suspend_voltage ||
708		    rdev->desc->ops->set_suspend_mode)
709			rdev_warn(rdev, "No configuration\n");
710		return 0;
711	}
712
713	if (rstate->enabled && rstate->disabled) {
714		rdev_err(rdev, "invalid configuration\n");
715		return -EINVAL;
716	}
717
718	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719		ret = rdev->desc->ops->set_suspend_enable(rdev);
720	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721		ret = rdev->desc->ops->set_suspend_disable(rdev);
722	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723		ret = 0;
724
725	if (ret < 0) {
726		rdev_err(rdev, "failed to enabled/disable\n");
727		return ret;
728	}
729
730	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732		if (ret < 0) {
733			rdev_err(rdev, "failed to set voltage\n");
734			return ret;
735		}
736	}
737
738	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740		if (ret < 0) {
741			rdev_err(rdev, "failed to set mode\n");
742			return ret;
743		}
744	}
745	return ret;
746}
747
748/* locks held by caller */
749static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750{
751	if (!rdev->constraints)
752		return -EINVAL;
753
754	switch (state) {
755	case PM_SUSPEND_STANDBY:
756		return suspend_set_state(rdev,
757			&rdev->constraints->state_standby);
758	case PM_SUSPEND_MEM:
759		return suspend_set_state(rdev,
760			&rdev->constraints->state_mem);
761	case PM_SUSPEND_MAX:
762		return suspend_set_state(rdev,
763			&rdev->constraints->state_disk);
764	default:
765		return -EINVAL;
766	}
767}
768
769static void print_constraints(struct regulator_dev *rdev)
770{
771	struct regulation_constraints *constraints = rdev->constraints;
772	char buf[80] = "";
773	int count = 0;
774	int ret;
775
776	if (constraints->min_uV && constraints->max_uV) {
777		if (constraints->min_uV == constraints->max_uV)
778			count += sprintf(buf + count, "%d mV ",
779					 constraints->min_uV / 1000);
780		else
781			count += sprintf(buf + count, "%d <--> %d mV ",
782					 constraints->min_uV / 1000,
783					 constraints->max_uV / 1000);
784	}
785
786	if (!constraints->min_uV ||
787	    constraints->min_uV != constraints->max_uV) {
788		ret = _regulator_get_voltage(rdev);
789		if (ret > 0)
790			count += sprintf(buf + count, "at %d mV ", ret / 1000);
791	}
792
793	if (constraints->uV_offset)
794		count += sprintf(buf, "%dmV offset ",
795				 constraints->uV_offset / 1000);
796
797	if (constraints->min_uA && constraints->max_uA) {
798		if (constraints->min_uA == constraints->max_uA)
799			count += sprintf(buf + count, "%d mA ",
800					 constraints->min_uA / 1000);
801		else
802			count += sprintf(buf + count, "%d <--> %d mA ",
803					 constraints->min_uA / 1000,
804					 constraints->max_uA / 1000);
805	}
806
807	if (!constraints->min_uA ||
808	    constraints->min_uA != constraints->max_uA) {
809		ret = _regulator_get_current_limit(rdev);
810		if (ret > 0)
811			count += sprintf(buf + count, "at %d mA ", ret / 1000);
812	}
813
814	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815		count += sprintf(buf + count, "fast ");
816	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817		count += sprintf(buf + count, "normal ");
818	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819		count += sprintf(buf + count, "idle ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821		count += sprintf(buf + count, "standby");
822
823	if (!count)
824		sprintf(buf, "no parameters");
825
826	rdev_info(rdev, "%s\n", buf);
827
828	if ((constraints->min_uV != constraints->max_uV) &&
829	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830		rdev_warn(rdev,
831			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832}
833
834static int machine_constraints_voltage(struct regulator_dev *rdev,
835	struct regulation_constraints *constraints)
836{
837	struct regulator_ops *ops = rdev->desc->ops;
838	int ret;
839
840	/* do we need to apply the constraint voltage */
841	if (rdev->constraints->apply_uV &&
842	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
843		ret = _regulator_do_set_voltage(rdev,
844						rdev->constraints->min_uV,
845						rdev->constraints->max_uV);
846		if (ret < 0) {
847			rdev_err(rdev, "failed to apply %duV constraint\n",
848				 rdev->constraints->min_uV);
849			return ret;
850		}
851	}
852
853	/* constrain machine-level voltage specs to fit
854	 * the actual range supported by this regulator.
855	 */
856	if (ops->list_voltage && rdev->desc->n_voltages) {
857		int	count = rdev->desc->n_voltages;
858		int	i;
859		int	min_uV = INT_MAX;
860		int	max_uV = INT_MIN;
861		int	cmin = constraints->min_uV;
862		int	cmax = constraints->max_uV;
863
864		/* it's safe to autoconfigure fixed-voltage supplies
865		   and the constraints are used by list_voltage. */
866		if (count == 1 && !cmin) {
867			cmin = 1;
868			cmax = INT_MAX;
869			constraints->min_uV = cmin;
870			constraints->max_uV = cmax;
871		}
872
873		/* voltage constraints are optional */
874		if ((cmin == 0) && (cmax == 0))
875			return 0;
876
877		/* else require explicit machine-level constraints */
878		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879			rdev_err(rdev, "invalid voltage constraints\n");
880			return -EINVAL;
881		}
882
883		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884		for (i = 0; i < count; i++) {
885			int	value;
886
887			value = ops->list_voltage(rdev, i);
888			if (value <= 0)
889				continue;
890
891			/* maybe adjust [min_uV..max_uV] */
892			if (value >= cmin && value < min_uV)
893				min_uV = value;
894			if (value <= cmax && value > max_uV)
895				max_uV = value;
896		}
897
898		/* final: [min_uV..max_uV] valid iff constraints valid */
899		if (max_uV < min_uV) {
900			rdev_err(rdev,
901				 "unsupportable voltage constraints %u-%uuV\n",
902				 min_uV, max_uV);
903			return -EINVAL;
904		}
905
906		/* use regulator's subset of machine constraints */
907		if (constraints->min_uV < min_uV) {
908			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909				 constraints->min_uV, min_uV);
910			constraints->min_uV = min_uV;
911		}
912		if (constraints->max_uV > max_uV) {
913			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914				 constraints->max_uV, max_uV);
915			constraints->max_uV = max_uV;
916		}
917	}
918
919	return 0;
920}
921
922/**
923 * set_machine_constraints - sets regulator constraints
924 * @rdev: regulator source
925 * @constraints: constraints to apply
926 *
927 * Allows platform initialisation code to define and constrain
928 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
929 * Constraints *must* be set by platform code in order for some
930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
931 * set_mode.
932 */
933static int set_machine_constraints(struct regulator_dev *rdev,
934	const struct regulation_constraints *constraints)
935{
936	int ret = 0;
937	struct regulator_ops *ops = rdev->desc->ops;
938
939	if (constraints)
940		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941					    GFP_KERNEL);
942	else
943		rdev->constraints = kzalloc(sizeof(*constraints),
944					    GFP_KERNEL);
945	if (!rdev->constraints)
946		return -ENOMEM;
947
948	ret = machine_constraints_voltage(rdev, rdev->constraints);
949	if (ret != 0)
950		goto out;
951
952	/* do we need to setup our suspend state */
953	if (rdev->constraints->initial_state) {
954		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to set suspend state\n");
957			goto out;
958		}
959	}
960
961	if (rdev->constraints->initial_mode) {
962		if (!ops->set_mode) {
963			rdev_err(rdev, "no set_mode operation\n");
964			ret = -EINVAL;
965			goto out;
966		}
967
968		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969		if (ret < 0) {
970			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971			goto out;
972		}
973	}
974
975	/* If the constraints say the regulator should be on at this point
976	 * and we have control then make sure it is enabled.
977	 */
978	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979	    ops->enable) {
980		ret = ops->enable(rdev);
981		if (ret < 0) {
982			rdev_err(rdev, "failed to enable\n");
983			goto out;
984		}
985	}
986
987	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989		if (ret < 0) {
990			rdev_err(rdev, "failed to set ramp_delay\n");
991			goto out;
992		}
993	}
994
995	print_constraints(rdev);
996	return 0;
997out:
998	kfree(rdev->constraints);
999	rdev->constraints = NULL;
1000	return ret;
1001}
1002
1003/**
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1007 *
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1011 */
1012static int set_supply(struct regulator_dev *rdev,
1013		      struct regulator_dev *supply_rdev)
1014{
1015	int err;
1016
1017	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020	if (rdev->supply == NULL) {
1021		err = -ENOMEM;
1022		return err;
1023	}
1024	supply_rdev->open_count++;
1025
1026	return 0;
1027}
1028
1029/**
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev:         regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply:       symbolic name for supply
1034 *
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices.  Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1039 */
1040static int set_consumer_device_supply(struct regulator_dev *rdev,
1041				      const char *consumer_dev_name,
1042				      const char *supply)
1043{
1044	struct regulator_map *node;
1045	int has_dev;
1046
1047	if (supply == NULL)
1048		return -EINVAL;
1049
1050	if (consumer_dev_name != NULL)
1051		has_dev = 1;
1052	else
1053		has_dev = 0;
1054
1055	list_for_each_entry(node, &regulator_map_list, list) {
1056		if (node->dev_name && consumer_dev_name) {
1057			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058				continue;
1059		} else if (node->dev_name || consumer_dev_name) {
1060			continue;
1061		}
1062
1063		if (strcmp(node->supply, supply) != 0)
1064			continue;
1065
1066		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067			 consumer_dev_name,
1068			 dev_name(&node->regulator->dev),
1069			 node->regulator->desc->name,
1070			 supply,
1071			 dev_name(&rdev->dev), rdev_get_name(rdev));
1072		return -EBUSY;
1073	}
1074
1075	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076	if (node == NULL)
1077		return -ENOMEM;
1078
1079	node->regulator = rdev;
1080	node->supply = supply;
1081
1082	if (has_dev) {
1083		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084		if (node->dev_name == NULL) {
1085			kfree(node);
1086			return -ENOMEM;
1087		}
1088	}
1089
1090	list_add(&node->list, &regulator_map_list);
1091	return 0;
1092}
1093
1094static void unset_regulator_supplies(struct regulator_dev *rdev)
1095{
1096	struct regulator_map *node, *n;
1097
1098	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099		if (rdev == node->regulator) {
1100			list_del(&node->list);
1101			kfree(node->dev_name);
1102			kfree(node);
1103		}
1104	}
1105}
1106
1107#define REG_STR_SIZE	64
1108
1109static struct regulator *create_regulator(struct regulator_dev *rdev,
1110					  struct device *dev,
1111					  const char *supply_name)
1112{
1113	struct regulator *regulator;
1114	char buf[REG_STR_SIZE];
1115	int err, size;
1116
1117	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118	if (regulator == NULL)
1119		return NULL;
1120
1121	mutex_lock(&rdev->mutex);
1122	regulator->rdev = rdev;
1123	list_add(&regulator->list, &rdev->consumer_list);
1124
1125	if (dev) {
1126		regulator->dev = dev;
1127
1128		/* Add a link to the device sysfs entry */
1129		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130				 dev->kobj.name, supply_name);
1131		if (size >= REG_STR_SIZE)
1132			goto overflow_err;
1133
1134		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135		if (regulator->supply_name == NULL)
1136			goto overflow_err;
1137
1138		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139					buf);
1140		if (err) {
1141			rdev_warn(rdev, "could not add device link %s err %d\n",
1142				  dev->kobj.name, err);
1143			/* non-fatal */
1144		}
1145	} else {
1146		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147		if (regulator->supply_name == NULL)
1148			goto overflow_err;
1149	}
1150
1151	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152						rdev->debugfs);
1153	if (!regulator->debugfs) {
1154		rdev_warn(rdev, "Failed to create debugfs directory\n");
1155	} else {
1156		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157				   &regulator->uA_load);
1158		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159				   &regulator->min_uV);
1160		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161				   &regulator->max_uV);
1162	}
1163
1164	/*
1165	 * Check now if the regulator is an always on regulator - if
1166	 * it is then we don't need to do nearly so much work for
1167	 * enable/disable calls.
1168	 */
1169	if (!_regulator_can_change_status(rdev) &&
1170	    _regulator_is_enabled(rdev))
1171		regulator->always_on = true;
1172
1173	mutex_unlock(&rdev->mutex);
1174	return regulator;
1175overflow_err:
1176	list_del(&regulator->list);
1177	kfree(regulator);
1178	mutex_unlock(&rdev->mutex);
1179	return NULL;
1180}
1181
1182static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183{
1184	if (!rdev->desc->ops->enable_time)
1185		return rdev->desc->enable_time;
1186	return rdev->desc->ops->enable_time(rdev);
1187}
1188
1189static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190						  const char *supply,
1191						  int *ret)
1192{
1193	struct regulator_dev *r;
1194	struct device_node *node;
1195	struct regulator_map *map;
1196	const char *devname = NULL;
1197
1198	/* first do a dt based lookup */
1199	if (dev && dev->of_node) {
1200		node = of_get_regulator(dev, supply);
1201		if (node) {
1202			list_for_each_entry(r, &regulator_list, list)
1203				if (r->dev.parent &&
1204					node == r->dev.of_node)
1205					return r;
1206		} else {
1207			/*
1208			 * If we couldn't even get the node then it's
1209			 * not just that the device didn't register
1210			 * yet, there's no node and we'll never
1211			 * succeed.
1212			 */
1213			*ret = -ENODEV;
1214		}
1215	}
1216
1217	/* if not found, try doing it non-dt way */
1218	if (dev)
1219		devname = dev_name(dev);
1220
1221	list_for_each_entry(r, &regulator_list, list)
1222		if (strcmp(rdev_get_name(r), supply) == 0)
1223			return r;
1224
1225	list_for_each_entry(map, &regulator_map_list, list) {
1226		/* If the mapping has a device set up it must match */
1227		if (map->dev_name &&
1228		    (!devname || strcmp(map->dev_name, devname)))
1229			continue;
1230
1231		if (strcmp(map->supply, supply) == 0)
1232			return map->regulator;
1233	}
1234
1235
1236	return NULL;
1237}
1238
1239/* Internal regulator request function */
1240static struct regulator *_regulator_get(struct device *dev, const char *id,
1241					int exclusive)
1242{
1243	struct regulator_dev *rdev;
1244	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245	const char *devname = NULL;
1246	int ret = 0;
1247
1248	if (id == NULL) {
1249		pr_err("get() with no identifier\n");
1250		return regulator;
1251	}
1252
1253	if (dev)
1254		devname = dev_name(dev);
1255
1256	mutex_lock(&regulator_list_mutex);
1257
1258	rdev = regulator_dev_lookup(dev, id, &ret);
1259	if (rdev)
1260		goto found;
1261
1262	/*
1263	 * If we have return value from dev_lookup fail, we do not expect to
1264	 * succeed, so, quit with appropriate error value
1265	 */
1266	if (ret) {
1267		regulator = ERR_PTR(ret);
1268		goto out;
1269	}
1270
1271	if (board_wants_dummy_regulator) {
1272		rdev = dummy_regulator_rdev;
1273		goto found;
1274	}
1275
1276#ifdef CONFIG_REGULATOR_DUMMY
1277	if (!devname)
1278		devname = "deviceless";
1279
1280	/* If the board didn't flag that it was fully constrained then
1281	 * substitute in a dummy regulator so consumers can continue.
1282	 */
1283	if (!has_full_constraints) {
1284		pr_warn("%s supply %s not found, using dummy regulator\n",
1285			devname, id);
1286		rdev = dummy_regulator_rdev;
1287		goto found;
1288	}
1289#endif
1290
1291	mutex_unlock(&regulator_list_mutex);
1292	return regulator;
1293
1294found:
1295	if (rdev->exclusive) {
1296		regulator = ERR_PTR(-EPERM);
1297		goto out;
1298	}
1299
1300	if (exclusive && rdev->open_count) {
1301		regulator = ERR_PTR(-EBUSY);
1302		goto out;
1303	}
1304
1305	if (!try_module_get(rdev->owner))
1306		goto out;
1307
1308	regulator = create_regulator(rdev, dev, id);
1309	if (regulator == NULL) {
1310		regulator = ERR_PTR(-ENOMEM);
1311		module_put(rdev->owner);
1312		goto out;
1313	}
1314
1315	rdev->open_count++;
1316	if (exclusive) {
1317		rdev->exclusive = 1;
1318
1319		ret = _regulator_is_enabled(rdev);
1320		if (ret > 0)
1321			rdev->use_count = 1;
1322		else
1323			rdev->use_count = 0;
1324	}
1325
1326out:
1327	mutex_unlock(&regulator_list_mutex);
1328
1329	return regulator;
1330}
1331
1332/**
1333 * regulator_get - lookup and obtain a reference to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1336 *
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno.
1339 *
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged.  It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1344 */
1345struct regulator *regulator_get(struct device *dev, const char *id)
1346{
1347	return _regulator_get(dev, id, 0);
1348}
1349EXPORT_SYMBOL_GPL(regulator_get);
1350
1351static void devm_regulator_release(struct device *dev, void *res)
1352{
1353	regulator_put(*(struct regulator **)res);
1354}
1355
1356/**
1357 * devm_regulator_get - Resource managed regulator_get()
1358 * @dev: device for regulator "consumer"
1359 * @id: Supply name or regulator ID.
1360 *
1361 * Managed regulator_get(). Regulators returned from this function are
1362 * automatically regulator_put() on driver detach. See regulator_get() for more
1363 * information.
1364 */
1365struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366{
1367	struct regulator **ptr, *regulator;
1368
1369	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370	if (!ptr)
1371		return ERR_PTR(-ENOMEM);
1372
1373	regulator = regulator_get(dev, id);
1374	if (!IS_ERR(regulator)) {
1375		*ptr = regulator;
1376		devres_add(dev, ptr);
1377	} else {
1378		devres_free(ptr);
1379	}
1380
1381	return regulator;
1382}
1383EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385/**
1386 * regulator_get_exclusive - obtain exclusive access to a regulator.
1387 * @dev: device for regulator "consumer"
1388 * @id: Supply name or regulator ID.
1389 *
1390 * Returns a struct regulator corresponding to the regulator producer,
1391 * or IS_ERR() condition containing errno.  Other consumers will be
1392 * unable to obtain this reference is held and the use count for the
1393 * regulator will be initialised to reflect the current state of the
1394 * regulator.
1395 *
1396 * This is intended for use by consumers which cannot tolerate shared
1397 * use of the regulator such as those which need to force the
1398 * regulator off for correct operation of the hardware they are
1399 * controlling.
1400 *
1401 * Use of supply names configured via regulator_set_device_supply() is
1402 * strongly encouraged.  It is recommended that the supply name used
1403 * should match the name used for the supply and/or the relevant
1404 * device pins in the datasheet.
1405 */
1406struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407{
1408	return _regulator_get(dev, id, 1);
1409}
1410EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412/* Locks held by regulator_put() */
1413static void _regulator_put(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev;
1416
1417	if (regulator == NULL || IS_ERR(regulator))
1418		return;
1419
1420	rdev = regulator->rdev;
1421
1422	debugfs_remove_recursive(regulator->debugfs);
1423
1424	/* remove any sysfs entries */
1425	if (regulator->dev)
1426		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427	kfree(regulator->supply_name);
1428	list_del(&regulator->list);
1429	kfree(regulator);
1430
1431	rdev->open_count--;
1432	rdev->exclusive = 0;
1433
1434	module_put(rdev->owner);
1435}
1436
1437/**
1438 * regulator_put - "free" the regulator source
1439 * @regulator: regulator source
1440 *
1441 * Note: drivers must ensure that all regulator_enable calls made on this
1442 * regulator source are balanced by regulator_disable calls prior to calling
1443 * this function.
1444 */
1445void regulator_put(struct regulator *regulator)
1446{
1447	mutex_lock(&regulator_list_mutex);
1448	_regulator_put(regulator);
1449	mutex_unlock(&regulator_list_mutex);
1450}
1451EXPORT_SYMBOL_GPL(regulator_put);
1452
1453static int devm_regulator_match(struct device *dev, void *res, void *data)
1454{
1455	struct regulator **r = res;
1456	if (!r || !*r) {
1457		WARN_ON(!r || !*r);
1458		return 0;
1459	}
1460	return *r == data;
1461}
1462
1463/**
1464 * devm_regulator_put - Resource managed regulator_put()
1465 * @regulator: regulator to free
1466 *
1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468 * this function will not need to be called and the resource management
1469 * code will ensure that the resource is freed.
1470 */
1471void devm_regulator_put(struct regulator *regulator)
1472{
1473	int rc;
1474
1475	rc = devres_release(regulator->dev, devm_regulator_release,
1476			    devm_regulator_match, regulator);
1477	if (rc != 0)
1478		WARN_ON(rc);
1479}
1480EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484				const struct regulator_config *config)
1485{
1486	struct regulator_enable_gpio *pin;
1487	int ret;
1488
1489	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490		if (pin->gpio == config->ena_gpio) {
1491			rdev_dbg(rdev, "GPIO %d is already used\n",
1492				config->ena_gpio);
1493			goto update_ena_gpio_to_rdev;
1494		}
1495	}
1496
1497	ret = gpio_request_one(config->ena_gpio,
1498				GPIOF_DIR_OUT | config->ena_gpio_flags,
1499				rdev_get_name(rdev));
1500	if (ret)
1501		return ret;
1502
1503	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504	if (pin == NULL) {
1505		gpio_free(config->ena_gpio);
1506		return -ENOMEM;
1507	}
1508
1509	pin->gpio = config->ena_gpio;
1510	pin->ena_gpio_invert = config->ena_gpio_invert;
1511	list_add(&pin->list, &regulator_ena_gpio_list);
1512
1513update_ena_gpio_to_rdev:
1514	pin->request_count++;
1515	rdev->ena_pin = pin;
1516	return 0;
1517}
1518
1519static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520{
1521	struct regulator_enable_gpio *pin, *n;
1522
1523	if (!rdev->ena_pin)
1524		return;
1525
1526	/* Free the GPIO only in case of no use */
1527	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528		if (pin->gpio == rdev->ena_pin->gpio) {
1529			if (pin->request_count <= 1) {
1530				pin->request_count = 0;
1531				gpio_free(pin->gpio);
1532				list_del(&pin->list);
1533				kfree(pin);
1534			} else {
1535				pin->request_count--;
1536			}
1537		}
1538	}
1539}
1540
1541/**
1542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1543 * @rdev: regulator_dev structure
1544 * @enable: enable GPIO at initial use?
1545 *
1546 * GPIO is enabled in case of initial use. (enable_count is 0)
1547 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1548 */
1549static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1550{
1551	struct regulator_enable_gpio *pin = rdev->ena_pin;
1552
1553	if (!pin)
1554		return -EINVAL;
1555
1556	if (enable) {
1557		/* Enable GPIO at initial use */
1558		if (pin->enable_count == 0)
1559			gpio_set_value_cansleep(pin->gpio,
1560						!pin->ena_gpio_invert);
1561
1562		pin->enable_count++;
1563	} else {
1564		if (pin->enable_count > 1) {
1565			pin->enable_count--;
1566			return 0;
1567		}
1568
1569		/* Disable GPIO if not used */
1570		if (pin->enable_count <= 1) {
1571			gpio_set_value_cansleep(pin->gpio,
1572						pin->ena_gpio_invert);
1573			pin->enable_count = 0;
1574		}
1575	}
1576
1577	return 0;
1578}
1579
1580static int _regulator_do_enable(struct regulator_dev *rdev)
1581{
1582	int ret, delay;
1583
1584	/* Query before enabling in case configuration dependent.  */
1585	ret = _regulator_get_enable_time(rdev);
1586	if (ret >= 0) {
1587		delay = ret;
1588	} else {
1589		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1590		delay = 0;
1591	}
1592
1593	trace_regulator_enable(rdev_get_name(rdev));
1594
1595	if (rdev->ena_pin) {
1596		ret = regulator_ena_gpio_ctrl(rdev, true);
1597		if (ret < 0)
1598			return ret;
1599		rdev->ena_gpio_state = 1;
1600	} else if (rdev->desc->ops->enable) {
1601		ret = rdev->desc->ops->enable(rdev);
1602		if (ret < 0)
1603			return ret;
1604	} else {
1605		return -EINVAL;
1606	}
1607
1608	/* Allow the regulator to ramp; it would be useful to extend
1609	 * this for bulk operations so that the regulators can ramp
1610	 * together.  */
1611	trace_regulator_enable_delay(rdev_get_name(rdev));
1612
1613	if (delay >= 1000) {
1614		mdelay(delay / 1000);
1615		udelay(delay % 1000);
1616	} else if (delay) {
1617		udelay(delay);
1618	}
1619
1620	trace_regulator_enable_complete(rdev_get_name(rdev));
1621
1622	return 0;
1623}
1624
1625/* locks held by regulator_enable() */
1626static int _regulator_enable(struct regulator_dev *rdev)
1627{
1628	int ret;
1629
1630	/* check voltage and requested load before enabling */
1631	if (rdev->constraints &&
1632	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1633		drms_uA_update(rdev);
1634
1635	if (rdev->use_count == 0) {
1636		/* The regulator may on if it's not switchable or left on */
1637		ret = _regulator_is_enabled(rdev);
1638		if (ret == -EINVAL || ret == 0) {
1639			if (!_regulator_can_change_status(rdev))
1640				return -EPERM;
1641
1642			ret = _regulator_do_enable(rdev);
1643			if (ret < 0)
1644				return ret;
1645
1646		} else if (ret < 0) {
1647			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648			return ret;
1649		}
1650		/* Fallthrough on positive return values - already enabled */
1651	}
1652
1653	rdev->use_count++;
1654
1655	return 0;
1656}
1657
1658/**
1659 * regulator_enable - enable regulator output
1660 * @regulator: regulator source
1661 *
1662 * Request that the regulator be enabled with the regulator output at
1663 * the predefined voltage or current value.  Calls to regulator_enable()
1664 * must be balanced with calls to regulator_disable().
1665 *
1666 * NOTE: the output value can be set by other drivers, boot loader or may be
1667 * hardwired in the regulator.
1668 */
1669int regulator_enable(struct regulator *regulator)
1670{
1671	struct regulator_dev *rdev = regulator->rdev;
1672	int ret = 0;
1673
1674	if (regulator->always_on)
1675		return 0;
1676
1677	if (rdev->supply) {
1678		ret = regulator_enable(rdev->supply);
1679		if (ret != 0)
1680			return ret;
1681	}
1682
1683	mutex_lock(&rdev->mutex);
1684	ret = _regulator_enable(rdev);
1685	mutex_unlock(&rdev->mutex);
1686
1687	if (ret != 0 && rdev->supply)
1688		regulator_disable(rdev->supply);
1689
1690	return ret;
1691}
1692EXPORT_SYMBOL_GPL(regulator_enable);
1693
1694static int _regulator_do_disable(struct regulator_dev *rdev)
1695{
1696	int ret;
1697
1698	trace_regulator_disable(rdev_get_name(rdev));
1699
1700	if (rdev->ena_pin) {
1701		ret = regulator_ena_gpio_ctrl(rdev, false);
1702		if (ret < 0)
1703			return ret;
1704		rdev->ena_gpio_state = 0;
1705
1706	} else if (rdev->desc->ops->disable) {
1707		ret = rdev->desc->ops->disable(rdev);
1708		if (ret != 0)
1709			return ret;
1710	}
1711
1712	trace_regulator_disable_complete(rdev_get_name(rdev));
1713
1714	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1715			     NULL);
1716	return 0;
1717}
1718
1719/* locks held by regulator_disable() */
1720static int _regulator_disable(struct regulator_dev *rdev)
1721{
1722	int ret = 0;
1723
1724	if (WARN(rdev->use_count <= 0,
1725		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1726		return -EIO;
1727
1728	/* are we the last user and permitted to disable ? */
1729	if (rdev->use_count == 1 &&
1730	    (rdev->constraints && !rdev->constraints->always_on)) {
1731
1732		/* we are last user */
1733		if (_regulator_can_change_status(rdev)) {
1734			ret = _regulator_do_disable(rdev);
1735			if (ret < 0) {
1736				rdev_err(rdev, "failed to disable\n");
1737				return ret;
1738			}
1739		}
1740
1741		rdev->use_count = 0;
1742	} else if (rdev->use_count > 1) {
1743
1744		if (rdev->constraints &&
1745			(rdev->constraints->valid_ops_mask &
1746			REGULATOR_CHANGE_DRMS))
1747			drms_uA_update(rdev);
1748
1749		rdev->use_count--;
1750	}
1751
1752	return ret;
1753}
1754
1755/**
1756 * regulator_disable - disable regulator output
1757 * @regulator: regulator source
1758 *
1759 * Disable the regulator output voltage or current.  Calls to
1760 * regulator_enable() must be balanced with calls to
1761 * regulator_disable().
1762 *
1763 * NOTE: this will only disable the regulator output if no other consumer
1764 * devices have it enabled, the regulator device supports disabling and
1765 * machine constraints permit this operation.
1766 */
1767int regulator_disable(struct regulator *regulator)
1768{
1769	struct regulator_dev *rdev = regulator->rdev;
1770	int ret = 0;
1771
1772	if (regulator->always_on)
1773		return 0;
1774
1775	mutex_lock(&rdev->mutex);
1776	ret = _regulator_disable(rdev);
1777	mutex_unlock(&rdev->mutex);
1778
1779	if (ret == 0 && rdev->supply)
1780		regulator_disable(rdev->supply);
1781
1782	return ret;
1783}
1784EXPORT_SYMBOL_GPL(regulator_disable);
1785
1786/* locks held by regulator_force_disable() */
1787static int _regulator_force_disable(struct regulator_dev *rdev)
1788{
1789	int ret = 0;
1790
1791	/* force disable */
1792	if (rdev->desc->ops->disable) {
1793		/* ah well, who wants to live forever... */
1794		ret = rdev->desc->ops->disable(rdev);
1795		if (ret < 0) {
1796			rdev_err(rdev, "failed to force disable\n");
1797			return ret;
1798		}
1799		/* notify other consumers that power has been forced off */
1800		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1801			REGULATOR_EVENT_DISABLE, NULL);
1802	}
1803
1804	return ret;
1805}
1806
1807/**
1808 * regulator_force_disable - force disable regulator output
1809 * @regulator: regulator source
1810 *
1811 * Forcibly disable the regulator output voltage or current.
1812 * NOTE: this *will* disable the regulator output even if other consumer
1813 * devices have it enabled. This should be used for situations when device
1814 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1815 */
1816int regulator_force_disable(struct regulator *regulator)
1817{
1818	struct regulator_dev *rdev = regulator->rdev;
1819	int ret;
1820
1821	mutex_lock(&rdev->mutex);
1822	regulator->uA_load = 0;
1823	ret = _regulator_force_disable(regulator->rdev);
1824	mutex_unlock(&rdev->mutex);
1825
1826	if (rdev->supply)
1827		while (rdev->open_count--)
1828			regulator_disable(rdev->supply);
1829
1830	return ret;
1831}
1832EXPORT_SYMBOL_GPL(regulator_force_disable);
1833
1834static void regulator_disable_work(struct work_struct *work)
1835{
1836	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837						  disable_work.work);
1838	int count, i, ret;
1839
1840	mutex_lock(&rdev->mutex);
1841
1842	BUG_ON(!rdev->deferred_disables);
1843
1844	count = rdev->deferred_disables;
1845	rdev->deferred_disables = 0;
1846
1847	for (i = 0; i < count; i++) {
1848		ret = _regulator_disable(rdev);
1849		if (ret != 0)
1850			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1851	}
1852
1853	mutex_unlock(&rdev->mutex);
1854
1855	if (rdev->supply) {
1856		for (i = 0; i < count; i++) {
1857			ret = regulator_disable(rdev->supply);
1858			if (ret != 0) {
1859				rdev_err(rdev,
1860					 "Supply disable failed: %d\n", ret);
1861			}
1862		}
1863	}
1864}
1865
1866/**
1867 * regulator_disable_deferred - disable regulator output with delay
1868 * @regulator: regulator source
1869 * @ms: miliseconds until the regulator is disabled
1870 *
1871 * Execute regulator_disable() on the regulator after a delay.  This
1872 * is intended for use with devices that require some time to quiesce.
1873 *
1874 * NOTE: this will only disable the regulator output if no other consumer
1875 * devices have it enabled, the regulator device supports disabling and
1876 * machine constraints permit this operation.
1877 */
1878int regulator_disable_deferred(struct regulator *regulator, int ms)
1879{
1880	struct regulator_dev *rdev = regulator->rdev;
1881	int ret;
1882
1883	if (regulator->always_on)
1884		return 0;
1885
1886	if (!ms)
1887		return regulator_disable(regulator);
1888
1889	mutex_lock(&rdev->mutex);
1890	rdev->deferred_disables++;
1891	mutex_unlock(&rdev->mutex);
1892
1893	ret = schedule_delayed_work(&rdev->disable_work,
1894				    msecs_to_jiffies(ms));
1895	if (ret < 0)
1896		return ret;
1897	else
1898		return 0;
1899}
1900EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1901
1902/**
1903 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1904 *
1905 * @rdev: regulator to operate on
1906 *
1907 * Regulators that use regmap for their register I/O can set the
1908 * enable_reg and enable_mask fields in their descriptor and then use
1909 * this as their is_enabled operation, saving some code.
1910 */
1911int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1912{
1913	unsigned int val;
1914	int ret;
1915
1916	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1917	if (ret != 0)
1918		return ret;
1919
1920	if (rdev->desc->enable_is_inverted)
1921		return (val & rdev->desc->enable_mask) == 0;
1922	else
1923		return (val & rdev->desc->enable_mask) != 0;
1924}
1925EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1926
1927/**
1928 * regulator_enable_regmap - standard enable() for regmap users
1929 *
1930 * @rdev: regulator to operate on
1931 *
1932 * Regulators that use regmap for their register I/O can set the
1933 * enable_reg and enable_mask fields in their descriptor and then use
1934 * this as their enable() operation, saving some code.
1935 */
1936int regulator_enable_regmap(struct regulator_dev *rdev)
1937{
1938	unsigned int val;
1939
1940	if (rdev->desc->enable_is_inverted)
1941		val = 0;
1942	else
1943		val = rdev->desc->enable_mask;
1944
1945	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946				  rdev->desc->enable_mask, val);
1947}
1948EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1949
1950/**
1951 * regulator_disable_regmap - standard disable() for regmap users
1952 *
1953 * @rdev: regulator to operate on
1954 *
1955 * Regulators that use regmap for their register I/O can set the
1956 * enable_reg and enable_mask fields in their descriptor and then use
1957 * this as their disable() operation, saving some code.
1958 */
1959int regulator_disable_regmap(struct regulator_dev *rdev)
1960{
1961	unsigned int val;
1962
1963	if (rdev->desc->enable_is_inverted)
1964		val = rdev->desc->enable_mask;
1965	else
1966		val = 0;
1967
1968	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969				  rdev->desc->enable_mask, val);
1970}
1971EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1972
1973static int _regulator_is_enabled(struct regulator_dev *rdev)
1974{
1975	/* A GPIO control always takes precedence */
1976	if (rdev->ena_pin)
1977		return rdev->ena_gpio_state;
1978
1979	/* If we don't know then assume that the regulator is always on */
1980	if (!rdev->desc->ops->is_enabled)
1981		return 1;
1982
1983	return rdev->desc->ops->is_enabled(rdev);
1984}
1985
1986/**
1987 * regulator_is_enabled - is the regulator output enabled
1988 * @regulator: regulator source
1989 *
1990 * Returns positive if the regulator driver backing the source/client
1991 * has requested that the device be enabled, zero if it hasn't, else a
1992 * negative errno code.
1993 *
1994 * Note that the device backing this regulator handle can have multiple
1995 * users, so it might be enabled even if regulator_enable() was never
1996 * called for this particular source.
1997 */
1998int regulator_is_enabled(struct regulator *regulator)
1999{
2000	int ret;
2001
2002	if (regulator->always_on)
2003		return 1;
2004
2005	mutex_lock(&regulator->rdev->mutex);
2006	ret = _regulator_is_enabled(regulator->rdev);
2007	mutex_unlock(&regulator->rdev->mutex);
2008
2009	return ret;
2010}
2011EXPORT_SYMBOL_GPL(regulator_is_enabled);
2012
2013/**
2014 * regulator_can_change_voltage - check if regulator can change voltage
2015 * @regulator: regulator source
2016 *
2017 * Returns positive if the regulator driver backing the source/client
2018 * can change its voltage, false otherwise. Usefull for detecting fixed
2019 * or dummy regulators and disabling voltage change logic in the client
2020 * driver.
2021 */
2022int regulator_can_change_voltage(struct regulator *regulator)
2023{
2024	struct regulator_dev	*rdev = regulator->rdev;
2025
2026	if (rdev->constraints &&
2027	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2028		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2029			return 1;
2030
2031		if (rdev->desc->continuous_voltage_range &&
2032		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2033		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2034			return 1;
2035	}
2036
2037	return 0;
2038}
2039EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2040
2041/**
2042 * regulator_count_voltages - count regulator_list_voltage() selectors
2043 * @regulator: regulator source
2044 *
2045 * Returns number of selectors, or negative errno.  Selectors are
2046 * numbered starting at zero, and typically correspond to bitfields
2047 * in hardware registers.
2048 */
2049int regulator_count_voltages(struct regulator *regulator)
2050{
2051	struct regulator_dev	*rdev = regulator->rdev;
2052
2053	return rdev->desc->n_voltages ? : -EINVAL;
2054}
2055EXPORT_SYMBOL_GPL(regulator_count_voltages);
2056
2057/**
2058 * regulator_list_voltage_linear - List voltages with simple calculation
2059 *
2060 * @rdev: Regulator device
2061 * @selector: Selector to convert into a voltage
2062 *
2063 * Regulators with a simple linear mapping between voltages and
2064 * selectors can set min_uV and uV_step in the regulator descriptor
2065 * and then use this function as their list_voltage() operation,
2066 */
2067int regulator_list_voltage_linear(struct regulator_dev *rdev,
2068				  unsigned int selector)
2069{
2070	if (selector >= rdev->desc->n_voltages)
2071		return -EINVAL;
2072	if (selector < rdev->desc->linear_min_sel)
2073		return 0;
2074
2075	selector -= rdev->desc->linear_min_sel;
2076
2077	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2078}
2079EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2080
2081/**
2082 * regulator_list_voltage_table - List voltages with table based mapping
2083 *
2084 * @rdev: Regulator device
2085 * @selector: Selector to convert into a voltage
2086 *
2087 * Regulators with table based mapping between voltages and
2088 * selectors can set volt_table in the regulator descriptor
2089 * and then use this function as their list_voltage() operation.
2090 */
2091int regulator_list_voltage_table(struct regulator_dev *rdev,
2092				 unsigned int selector)
2093{
2094	if (!rdev->desc->volt_table) {
2095		BUG_ON(!rdev->desc->volt_table);
2096		return -EINVAL;
2097	}
2098
2099	if (selector >= rdev->desc->n_voltages)
2100		return -EINVAL;
2101
2102	return rdev->desc->volt_table[selector];
2103}
2104EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2105
2106/**
2107 * regulator_list_voltage - enumerate supported voltages
2108 * @regulator: regulator source
2109 * @selector: identify voltage to list
2110 * Context: can sleep
2111 *
2112 * Returns a voltage that can be passed to @regulator_set_voltage(),
2113 * zero if this selector code can't be used on this system, or a
2114 * negative errno.
2115 */
2116int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2117{
2118	struct regulator_dev	*rdev = regulator->rdev;
2119	struct regulator_ops	*ops = rdev->desc->ops;
2120	int			ret;
2121
2122	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2123		return -EINVAL;
2124
2125	mutex_lock(&rdev->mutex);
2126	ret = ops->list_voltage(rdev, selector);
2127	mutex_unlock(&rdev->mutex);
2128
2129	if (ret > 0) {
2130		if (ret < rdev->constraints->min_uV)
2131			ret = 0;
2132		else if (ret > rdev->constraints->max_uV)
2133			ret = 0;
2134	}
2135
2136	return ret;
2137}
2138EXPORT_SYMBOL_GPL(regulator_list_voltage);
2139
2140/**
2141 * regulator_is_supported_voltage - check if a voltage range can be supported
2142 *
2143 * @regulator: Regulator to check.
2144 * @min_uV: Minimum required voltage in uV.
2145 * @max_uV: Maximum required voltage in uV.
2146 *
2147 * Returns a boolean or a negative error code.
2148 */
2149int regulator_is_supported_voltage(struct regulator *regulator,
2150				   int min_uV, int max_uV)
2151{
2152	struct regulator_dev *rdev = regulator->rdev;
2153	int i, voltages, ret;
2154
2155	/* If we can't change voltage check the current voltage */
2156	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2157		ret = regulator_get_voltage(regulator);
2158		if (ret >= 0)
2159			return (min_uV <= ret && ret <= max_uV);
2160		else
2161			return ret;
2162	}
2163
2164	/* Any voltage within constrains range is fine? */
2165	if (rdev->desc->continuous_voltage_range)
2166		return min_uV >= rdev->constraints->min_uV &&
2167				max_uV <= rdev->constraints->max_uV;
2168
2169	ret = regulator_count_voltages(regulator);
2170	if (ret < 0)
2171		return ret;
2172	voltages = ret;
2173
2174	for (i = 0; i < voltages; i++) {
2175		ret = regulator_list_voltage(regulator, i);
2176
2177		if (ret >= min_uV && ret <= max_uV)
2178			return 1;
2179	}
2180
2181	return 0;
2182}
2183EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2184
2185/**
2186 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2187 *
2188 * @rdev: regulator to operate on
2189 *
2190 * Regulators that use regmap for their register I/O can set the
2191 * vsel_reg and vsel_mask fields in their descriptor and then use this
2192 * as their get_voltage_vsel operation, saving some code.
2193 */
2194int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2195{
2196	unsigned int val;
2197	int ret;
2198
2199	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2200	if (ret != 0)
2201		return ret;
2202
2203	val &= rdev->desc->vsel_mask;
2204	val >>= ffs(rdev->desc->vsel_mask) - 1;
2205
2206	return val;
2207}
2208EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2209
2210/**
2211 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2212 *
2213 * @rdev: regulator to operate on
2214 * @sel: Selector to set
2215 *
2216 * Regulators that use regmap for their register I/O can set the
2217 * vsel_reg and vsel_mask fields in their descriptor and then use this
2218 * as their set_voltage_vsel operation, saving some code.
2219 */
2220int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2221{
2222	int ret;
2223
2224	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2225
2226	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2227				  rdev->desc->vsel_mask, sel);
2228	if (ret)
2229		return ret;
2230
2231	if (rdev->desc->apply_bit)
2232		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2233					 rdev->desc->apply_bit,
2234					 rdev->desc->apply_bit);
2235	return ret;
2236}
2237EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2238
2239/**
2240 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2241 *
2242 * @rdev: Regulator to operate on
2243 * @min_uV: Lower bound for voltage
2244 * @max_uV: Upper bound for voltage
2245 *
2246 * Drivers implementing set_voltage_sel() and list_voltage() can use
2247 * this as their map_voltage() operation.  It will find a suitable
2248 * voltage by calling list_voltage() until it gets something in bounds
2249 * for the requested voltages.
2250 */
2251int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2252				  int min_uV, int max_uV)
2253{
2254	int best_val = INT_MAX;
2255	int selector = 0;
2256	int i, ret;
2257
2258	/* Find the smallest voltage that falls within the specified
2259	 * range.
2260	 */
2261	for (i = 0; i < rdev->desc->n_voltages; i++) {
2262		ret = rdev->desc->ops->list_voltage(rdev, i);
2263		if (ret < 0)
2264			continue;
2265
2266		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2267			best_val = ret;
2268			selector = i;
2269		}
2270	}
2271
2272	if (best_val != INT_MAX)
2273		return selector;
2274	else
2275		return -EINVAL;
2276}
2277EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2278
2279/**
2280 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2281 *
2282 * @rdev: Regulator to operate on
2283 * @min_uV: Lower bound for voltage
2284 * @max_uV: Upper bound for voltage
2285 *
2286 * Drivers that have ascendant voltage list can use this as their
2287 * map_voltage() operation.
2288 */
2289int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2290				 int min_uV, int max_uV)
2291{
2292	int i, ret;
2293
2294	for (i = 0; i < rdev->desc->n_voltages; i++) {
2295		ret = rdev->desc->ops->list_voltage(rdev, i);
2296		if (ret < 0)
2297			continue;
2298
2299		if (ret > max_uV)
2300			break;
2301
2302		if (ret >= min_uV && ret <= max_uV)
2303			return i;
2304	}
2305
2306	return -EINVAL;
2307}
2308EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2309
2310/**
2311 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2312 *
2313 * @rdev: Regulator to operate on
2314 * @min_uV: Lower bound for voltage
2315 * @max_uV: Upper bound for voltage
2316 *
2317 * Drivers providing min_uV and uV_step in their regulator_desc can
2318 * use this as their map_voltage() operation.
2319 */
2320int regulator_map_voltage_linear(struct regulator_dev *rdev,
2321				 int min_uV, int max_uV)
2322{
2323	int ret, voltage;
2324
2325	/* Allow uV_step to be 0 for fixed voltage */
2326	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2327		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2328			return 0;
2329		else
2330			return -EINVAL;
2331	}
2332
2333	if (!rdev->desc->uV_step) {
2334		BUG_ON(!rdev->desc->uV_step);
2335		return -EINVAL;
2336	}
2337
2338	if (min_uV < rdev->desc->min_uV)
2339		min_uV = rdev->desc->min_uV;
2340
2341	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2342	if (ret < 0)
2343		return ret;
2344
2345	ret += rdev->desc->linear_min_sel;
2346
2347	/* Map back into a voltage to verify we're still in bounds */
2348	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2349	if (voltage < min_uV || voltage > max_uV)
2350		return -EINVAL;
2351
2352	return ret;
2353}
2354EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2355
2356static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2357				     int min_uV, int max_uV)
2358{
2359	int ret;
2360	int delay = 0;
2361	int best_val = 0;
2362	unsigned int selector;
2363	int old_selector = -1;
2364
2365	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2366
2367	min_uV += rdev->constraints->uV_offset;
2368	max_uV += rdev->constraints->uV_offset;
2369
2370	/*
2371	 * If we can't obtain the old selector there is not enough
2372	 * info to call set_voltage_time_sel().
2373	 */
2374	if (_regulator_is_enabled(rdev) &&
2375	    rdev->desc->ops->set_voltage_time_sel &&
2376	    rdev->desc->ops->get_voltage_sel) {
2377		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2378		if (old_selector < 0)
2379			return old_selector;
2380	}
2381
2382	if (rdev->desc->ops->set_voltage) {
2383		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2384						   &selector);
2385
2386		if (ret >= 0) {
2387			if (rdev->desc->ops->list_voltage)
2388				best_val = rdev->desc->ops->list_voltage(rdev,
2389									 selector);
2390			else
2391				best_val = _regulator_get_voltage(rdev);
2392		}
2393
2394	} else if (rdev->desc->ops->set_voltage_sel) {
2395		if (rdev->desc->ops->map_voltage) {
2396			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2397							   max_uV);
2398		} else {
2399			if (rdev->desc->ops->list_voltage ==
2400			    regulator_list_voltage_linear)
2401				ret = regulator_map_voltage_linear(rdev,
2402								min_uV, max_uV);
2403			else
2404				ret = regulator_map_voltage_iterate(rdev,
2405								min_uV, max_uV);
2406		}
2407
2408		if (ret >= 0) {
2409			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2410			if (min_uV <= best_val && max_uV >= best_val) {
2411				selector = ret;
2412				if (old_selector == selector)
2413					ret = 0;
2414				else
2415					ret = rdev->desc->ops->set_voltage_sel(
2416								rdev, ret);
2417			} else {
2418				ret = -EINVAL;
2419			}
2420		}
2421	} else {
2422		ret = -EINVAL;
2423	}
2424
2425	/* Call set_voltage_time_sel if successfully obtained old_selector */
2426	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2427	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2428
2429		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2430						old_selector, selector);
2431		if (delay < 0) {
2432			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2433				  delay);
2434			delay = 0;
2435		}
2436
2437		/* Insert any necessary delays */
2438		if (delay >= 1000) {
2439			mdelay(delay / 1000);
2440			udelay(delay % 1000);
2441		} else if (delay) {
2442			udelay(delay);
2443		}
2444	}
2445
2446	if (ret == 0 && best_val >= 0) {
2447		unsigned long data = best_val;
2448
2449		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2450				     (void *)data);
2451	}
2452
2453	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2454
2455	return ret;
2456}
2457
2458/**
2459 * regulator_set_voltage - set regulator output voltage
2460 * @regulator: regulator source
2461 * @min_uV: Minimum required voltage in uV
2462 * @max_uV: Maximum acceptable voltage in uV
2463 *
2464 * Sets a voltage regulator to the desired output voltage. This can be set
2465 * during any regulator state. IOW, regulator can be disabled or enabled.
2466 *
2467 * If the regulator is enabled then the voltage will change to the new value
2468 * immediately otherwise if the regulator is disabled the regulator will
2469 * output at the new voltage when enabled.
2470 *
2471 * NOTE: If the regulator is shared between several devices then the lowest
2472 * request voltage that meets the system constraints will be used.
2473 * Regulator system constraints must be set for this regulator before
2474 * calling this function otherwise this call will fail.
2475 */
2476int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2477{
2478	struct regulator_dev *rdev = regulator->rdev;
2479	int ret = 0;
2480	int old_min_uV, old_max_uV;
2481
2482	mutex_lock(&rdev->mutex);
2483
2484	/* If we're setting the same range as last time the change
2485	 * should be a noop (some cpufreq implementations use the same
2486	 * voltage for multiple frequencies, for example).
2487	 */
2488	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2489		goto out;
2490
2491	/* sanity check */
2492	if (!rdev->desc->ops->set_voltage &&
2493	    !rdev->desc->ops->set_voltage_sel) {
2494		ret = -EINVAL;
2495		goto out;
2496	}
2497
2498	/* constraints check */
2499	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2500	if (ret < 0)
2501		goto out;
2502
2503	/* restore original values in case of error */
2504	old_min_uV = regulator->min_uV;
2505	old_max_uV = regulator->max_uV;
2506	regulator->min_uV = min_uV;
2507	regulator->max_uV = max_uV;
2508
2509	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2510	if (ret < 0)
2511		goto out2;
2512
2513	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2514	if (ret < 0)
2515		goto out2;
2516
2517out:
2518	mutex_unlock(&rdev->mutex);
2519	return ret;
2520out2:
2521	regulator->min_uV = old_min_uV;
2522	regulator->max_uV = old_max_uV;
2523	mutex_unlock(&rdev->mutex);
2524	return ret;
2525}
2526EXPORT_SYMBOL_GPL(regulator_set_voltage);
2527
2528/**
2529 * regulator_set_voltage_time - get raise/fall time
2530 * @regulator: regulator source
2531 * @old_uV: starting voltage in microvolts
2532 * @new_uV: target voltage in microvolts
2533 *
2534 * Provided with the starting and ending voltage, this function attempts to
2535 * calculate the time in microseconds required to rise or fall to this new
2536 * voltage.
2537 */
2538int regulator_set_voltage_time(struct regulator *regulator,
2539			       int old_uV, int new_uV)
2540{
2541	struct regulator_dev	*rdev = regulator->rdev;
2542	struct regulator_ops	*ops = rdev->desc->ops;
2543	int old_sel = -1;
2544	int new_sel = -1;
2545	int voltage;
2546	int i;
2547
2548	/* Currently requires operations to do this */
2549	if (!ops->list_voltage || !ops->set_voltage_time_sel
2550	    || !rdev->desc->n_voltages)
2551		return -EINVAL;
2552
2553	for (i = 0; i < rdev->desc->n_voltages; i++) {
2554		/* We only look for exact voltage matches here */
2555		voltage = regulator_list_voltage(regulator, i);
2556		if (voltage < 0)
2557			return -EINVAL;
2558		if (voltage == 0)
2559			continue;
2560		if (voltage == old_uV)
2561			old_sel = i;
2562		if (voltage == new_uV)
2563			new_sel = i;
2564	}
2565
2566	if (old_sel < 0 || new_sel < 0)
2567		return -EINVAL;
2568
2569	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2570}
2571EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2572
2573/**
2574 * regulator_set_voltage_time_sel - get raise/fall time
2575 * @rdev: regulator source device
2576 * @old_selector: selector for starting voltage
2577 * @new_selector: selector for target voltage
2578 *
2579 * Provided with the starting and target voltage selectors, this function
2580 * returns time in microseconds required to rise or fall to this new voltage
2581 *
2582 * Drivers providing ramp_delay in regulation_constraints can use this as their
2583 * set_voltage_time_sel() operation.
2584 */
2585int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2586				   unsigned int old_selector,
2587				   unsigned int new_selector)
2588{
2589	unsigned int ramp_delay = 0;
2590	int old_volt, new_volt;
2591
2592	if (rdev->constraints->ramp_delay)
2593		ramp_delay = rdev->constraints->ramp_delay;
2594	else if (rdev->desc->ramp_delay)
2595		ramp_delay = rdev->desc->ramp_delay;
2596
2597	if (ramp_delay == 0) {
2598		rdev_warn(rdev, "ramp_delay not set\n");
2599		return 0;
2600	}
2601
2602	/* sanity check */
2603	if (!rdev->desc->ops->list_voltage)
2604		return -EINVAL;
2605
2606	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2607	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2608
2609	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2610}
2611EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2612
2613/**
2614 * regulator_sync_voltage - re-apply last regulator output voltage
2615 * @regulator: regulator source
2616 *
2617 * Re-apply the last configured voltage.  This is intended to be used
2618 * where some external control source the consumer is cooperating with
2619 * has caused the configured voltage to change.
2620 */
2621int regulator_sync_voltage(struct regulator *regulator)
2622{
2623	struct regulator_dev *rdev = regulator->rdev;
2624	int ret, min_uV, max_uV;
2625
2626	mutex_lock(&rdev->mutex);
2627
2628	if (!rdev->desc->ops->set_voltage &&
2629	    !rdev->desc->ops->set_voltage_sel) {
2630		ret = -EINVAL;
2631		goto out;
2632	}
2633
2634	/* This is only going to work if we've had a voltage configured. */
2635	if (!regulator->min_uV && !regulator->max_uV) {
2636		ret = -EINVAL;
2637		goto out;
2638	}
2639
2640	min_uV = regulator->min_uV;
2641	max_uV = regulator->max_uV;
2642
2643	/* This should be a paranoia check... */
2644	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2645	if (ret < 0)
2646		goto out;
2647
2648	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2649	if (ret < 0)
2650		goto out;
2651
2652	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2653
2654out:
2655	mutex_unlock(&rdev->mutex);
2656	return ret;
2657}
2658EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2659
2660static int _regulator_get_voltage(struct regulator_dev *rdev)
2661{
2662	int sel, ret;
2663
2664	if (rdev->desc->ops->get_voltage_sel) {
2665		sel = rdev->desc->ops->get_voltage_sel(rdev);
2666		if (sel < 0)
2667			return sel;
2668		ret = rdev->desc->ops->list_voltage(rdev, sel);
2669	} else if (rdev->desc->ops->get_voltage) {
2670		ret = rdev->desc->ops->get_voltage(rdev);
2671	} else if (rdev->desc->ops->list_voltage) {
2672		ret = rdev->desc->ops->list_voltage(rdev, 0);
2673	} else {
2674		return -EINVAL;
2675	}
2676
2677	if (ret < 0)
2678		return ret;
2679	return ret - rdev->constraints->uV_offset;
2680}
2681
2682/**
2683 * regulator_get_voltage - get regulator output voltage
2684 * @regulator: regulator source
2685 *
2686 * This returns the current regulator voltage in uV.
2687 *
2688 * NOTE: If the regulator is disabled it will return the voltage value. This
2689 * function should not be used to determine regulator state.
2690 */
2691int regulator_get_voltage(struct regulator *regulator)
2692{
2693	int ret;
2694
2695	mutex_lock(&regulator->rdev->mutex);
2696
2697	ret = _regulator_get_voltage(regulator->rdev);
2698
2699	mutex_unlock(&regulator->rdev->mutex);
2700
2701	return ret;
2702}
2703EXPORT_SYMBOL_GPL(regulator_get_voltage);
2704
2705/**
2706 * regulator_set_current_limit - set regulator output current limit
2707 * @regulator: regulator source
2708 * @min_uA: Minimuum supported current in uA
2709 * @max_uA: Maximum supported current in uA
2710 *
2711 * Sets current sink to the desired output current. This can be set during
2712 * any regulator state. IOW, regulator can be disabled or enabled.
2713 *
2714 * If the regulator is enabled then the current will change to the new value
2715 * immediately otherwise if the regulator is disabled the regulator will
2716 * output at the new current when enabled.
2717 *
2718 * NOTE: Regulator system constraints must be set for this regulator before
2719 * calling this function otherwise this call will fail.
2720 */
2721int regulator_set_current_limit(struct regulator *regulator,
2722			       int min_uA, int max_uA)
2723{
2724	struct regulator_dev *rdev = regulator->rdev;
2725	int ret;
2726
2727	mutex_lock(&rdev->mutex);
2728
2729	/* sanity check */
2730	if (!rdev->desc->ops->set_current_limit) {
2731		ret = -EINVAL;
2732		goto out;
2733	}
2734
2735	/* constraints check */
2736	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2737	if (ret < 0)
2738		goto out;
2739
2740	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2741out:
2742	mutex_unlock(&rdev->mutex);
2743	return ret;
2744}
2745EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2746
2747static int _regulator_get_current_limit(struct regulator_dev *rdev)
2748{
2749	int ret;
2750
2751	mutex_lock(&rdev->mutex);
2752
2753	/* sanity check */
2754	if (!rdev->desc->ops->get_current_limit) {
2755		ret = -EINVAL;
2756		goto out;
2757	}
2758
2759	ret = rdev->desc->ops->get_current_limit(rdev);
2760out:
2761	mutex_unlock(&rdev->mutex);
2762	return ret;
2763}
2764
2765/**
2766 * regulator_get_current_limit - get regulator output current
2767 * @regulator: regulator source
2768 *
2769 * This returns the current supplied by the specified current sink in uA.
2770 *
2771 * NOTE: If the regulator is disabled it will return the current value. This
2772 * function should not be used to determine regulator state.
2773 */
2774int regulator_get_current_limit(struct regulator *regulator)
2775{
2776	return _regulator_get_current_limit(regulator->rdev);
2777}
2778EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2779
2780/**
2781 * regulator_set_mode - set regulator operating mode
2782 * @regulator: regulator source
2783 * @mode: operating mode - one of the REGULATOR_MODE constants
2784 *
2785 * Set regulator operating mode to increase regulator efficiency or improve
2786 * regulation performance.
2787 *
2788 * NOTE: Regulator system constraints must be set for this regulator before
2789 * calling this function otherwise this call will fail.
2790 */
2791int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2792{
2793	struct regulator_dev *rdev = regulator->rdev;
2794	int ret;
2795	int regulator_curr_mode;
2796
2797	mutex_lock(&rdev->mutex);
2798
2799	/* sanity check */
2800	if (!rdev->desc->ops->set_mode) {
2801		ret = -EINVAL;
2802		goto out;
2803	}
2804
2805	/* return if the same mode is requested */
2806	if (rdev->desc->ops->get_mode) {
2807		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2808		if (regulator_curr_mode == mode) {
2809			ret = 0;
2810			goto out;
2811		}
2812	}
2813
2814	/* constraints check */
2815	ret = regulator_mode_constrain(rdev, &mode);
2816	if (ret < 0)
2817		goto out;
2818
2819	ret = rdev->desc->ops->set_mode(rdev, mode);
2820out:
2821	mutex_unlock(&rdev->mutex);
2822	return ret;
2823}
2824EXPORT_SYMBOL_GPL(regulator_set_mode);
2825
2826static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2827{
2828	int ret;
2829
2830	mutex_lock(&rdev->mutex);
2831
2832	/* sanity check */
2833	if (!rdev->desc->ops->get_mode) {
2834		ret = -EINVAL;
2835		goto out;
2836	}
2837
2838	ret = rdev->desc->ops->get_mode(rdev);
2839out:
2840	mutex_unlock(&rdev->mutex);
2841	return ret;
2842}
2843
2844/**
2845 * regulator_get_mode - get regulator operating mode
2846 * @regulator: regulator source
2847 *
2848 * Get the current regulator operating mode.
2849 */
2850unsigned int regulator_get_mode(struct regulator *regulator)
2851{
2852	return _regulator_get_mode(regulator->rdev);
2853}
2854EXPORT_SYMBOL_GPL(regulator_get_mode);
2855
2856/**
2857 * regulator_set_optimum_mode - set regulator optimum operating mode
2858 * @regulator: regulator source
2859 * @uA_load: load current
2860 *
2861 * Notifies the regulator core of a new device load. This is then used by
2862 * DRMS (if enabled by constraints) to set the most efficient regulator
2863 * operating mode for the new regulator loading.
2864 *
2865 * Consumer devices notify their supply regulator of the maximum power
2866 * they will require (can be taken from device datasheet in the power
2867 * consumption tables) when they change operational status and hence power
2868 * state. Examples of operational state changes that can affect power
2869 * consumption are :-
2870 *
2871 *    o Device is opened / closed.
2872 *    o Device I/O is about to begin or has just finished.
2873 *    o Device is idling in between work.
2874 *
2875 * This information is also exported via sysfs to userspace.
2876 *
2877 * DRMS will sum the total requested load on the regulator and change
2878 * to the most efficient operating mode if platform constraints allow.
2879 *
2880 * Returns the new regulator mode or error.
2881 */
2882int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2883{
2884	struct regulator_dev *rdev = regulator->rdev;
2885	struct regulator *consumer;
2886	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2887	unsigned int mode;
2888
2889	if (rdev->supply)
2890		input_uV = regulator_get_voltage(rdev->supply);
2891
2892	mutex_lock(&rdev->mutex);
2893
2894	/*
2895	 * first check to see if we can set modes at all, otherwise just
2896	 * tell the consumer everything is OK.
2897	 */
2898	regulator->uA_load = uA_load;
2899	ret = regulator_check_drms(rdev);
2900	if (ret < 0) {
2901		ret = 0;
2902		goto out;
2903	}
2904
2905	if (!rdev->desc->ops->get_optimum_mode)
2906		goto out;
2907
2908	/*
2909	 * we can actually do this so any errors are indicators of
2910	 * potential real failure.
2911	 */
2912	ret = -EINVAL;
2913
2914	if (!rdev->desc->ops->set_mode)
2915		goto out;
2916
2917	/* get output voltage */
2918	output_uV = _regulator_get_voltage(rdev);
2919	if (output_uV <= 0) {
2920		rdev_err(rdev, "invalid output voltage found\n");
2921		goto out;
2922	}
2923
2924	/* No supply? Use constraint voltage */
2925	if (input_uV <= 0)
2926		input_uV = rdev->constraints->input_uV;
2927	if (input_uV <= 0) {
2928		rdev_err(rdev, "invalid input voltage found\n");
2929		goto out;
2930	}
2931
2932	/* calc total requested load for this regulator */
2933	list_for_each_entry(consumer, &rdev->consumer_list, list)
2934		total_uA_load += consumer->uA_load;
2935
2936	mode = rdev->desc->ops->get_optimum_mode(rdev,
2937						 input_uV, output_uV,
2938						 total_uA_load);
2939	ret = regulator_mode_constrain(rdev, &mode);
2940	if (ret < 0) {
2941		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2942			 total_uA_load, input_uV, output_uV);
2943		goto out;
2944	}
2945
2946	ret = rdev->desc->ops->set_mode(rdev, mode);
2947	if (ret < 0) {
2948		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2949		goto out;
2950	}
2951	ret = mode;
2952out:
2953	mutex_unlock(&rdev->mutex);
2954	return ret;
2955}
2956EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2957
2958/**
2959 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2960 *
2961 * @rdev: device to operate on.
2962 * @enable: state to set.
2963 */
2964int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2965{
2966	unsigned int val;
2967
2968	if (enable)
2969		val = rdev->desc->bypass_mask;
2970	else
2971		val = 0;
2972
2973	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2974				  rdev->desc->bypass_mask, val);
2975}
2976EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2977
2978/**
2979 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2980 *
2981 * @rdev: device to operate on.
2982 * @enable: current state.
2983 */
2984int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2985{
2986	unsigned int val;
2987	int ret;
2988
2989	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2990	if (ret != 0)
2991		return ret;
2992
2993	*enable = val & rdev->desc->bypass_mask;
2994
2995	return 0;
2996}
2997EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2998
2999/**
3000 * regulator_allow_bypass - allow the regulator to go into bypass mode
3001 *
3002 * @regulator: Regulator to configure
3003 * @enable: enable or disable bypass mode
3004 *
3005 * Allow the regulator to go into bypass mode if all other consumers
3006 * for the regulator also enable bypass mode and the machine
3007 * constraints allow this.  Bypass mode means that the regulator is
3008 * simply passing the input directly to the output with no regulation.
3009 */
3010int regulator_allow_bypass(struct regulator *regulator, bool enable)
3011{
3012	struct regulator_dev *rdev = regulator->rdev;
3013	int ret = 0;
3014
3015	if (!rdev->desc->ops->set_bypass)
3016		return 0;
3017
3018	if (rdev->constraints &&
3019	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3020		return 0;
3021
3022	mutex_lock(&rdev->mutex);
3023
3024	if (enable && !regulator->bypass) {
3025		rdev->bypass_count++;
3026
3027		if (rdev->bypass_count == rdev->open_count) {
3028			ret = rdev->desc->ops->set_bypass(rdev, enable);
3029			if (ret != 0)
3030				rdev->bypass_count--;
3031		}
3032
3033	} else if (!enable && regulator->bypass) {
3034		rdev->bypass_count--;
3035
3036		if (rdev->bypass_count != rdev->open_count) {
3037			ret = rdev->desc->ops->set_bypass(rdev, enable);
3038			if (ret != 0)
3039				rdev->bypass_count++;
3040		}
3041	}
3042
3043	if (ret == 0)
3044		regulator->bypass = enable;
3045
3046	mutex_unlock(&rdev->mutex);
3047
3048	return ret;
3049}
3050EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3051
3052/**
3053 * regulator_register_notifier - register regulator event notifier
3054 * @regulator: regulator source
3055 * @nb: notifier block
3056 *
3057 * Register notifier block to receive regulator events.
3058 */
3059int regulator_register_notifier(struct regulator *regulator,
3060			      struct notifier_block *nb)
3061{
3062	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3063						nb);
3064}
3065EXPORT_SYMBOL_GPL(regulator_register_notifier);
3066
3067/**
3068 * regulator_unregister_notifier - unregister regulator event notifier
3069 * @regulator: regulator source
3070 * @nb: notifier block
3071 *
3072 * Unregister regulator event notifier block.
3073 */
3074int regulator_unregister_notifier(struct regulator *regulator,
3075				struct notifier_block *nb)
3076{
3077	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3078						  nb);
3079}
3080EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3081
3082/* notify regulator consumers and downstream regulator consumers.
3083 * Note mutex must be held by caller.
3084 */
3085static void _notifier_call_chain(struct regulator_dev *rdev,
3086				  unsigned long event, void *data)
3087{
3088	/* call rdev chain first */
3089	blocking_notifier_call_chain(&rdev->notifier, event, data);
3090}
3091
3092/**
3093 * regulator_bulk_get - get multiple regulator consumers
3094 *
3095 * @dev:           Device to supply
3096 * @num_consumers: Number of consumers to register
3097 * @consumers:     Configuration of consumers; clients are stored here.
3098 *
3099 * @return 0 on success, an errno on failure.
3100 *
3101 * This helper function allows drivers to get several regulator
3102 * consumers in one operation.  If any of the regulators cannot be
3103 * acquired then any regulators that were allocated will be freed
3104 * before returning to the caller.
3105 */
3106int regulator_bulk_get(struct device *dev, int num_consumers,
3107		       struct regulator_bulk_data *consumers)
3108{
3109	int i;
3110	int ret;
3111
3112	for (i = 0; i < num_consumers; i++)
3113		consumers[i].consumer = NULL;
3114
3115	for (i = 0; i < num_consumers; i++) {
3116		consumers[i].consumer = regulator_get(dev,
3117						      consumers[i].supply);
3118		if (IS_ERR(consumers[i].consumer)) {
3119			ret = PTR_ERR(consumers[i].consumer);
3120			dev_err(dev, "Failed to get supply '%s': %d\n",
3121				consumers[i].supply, ret);
3122			consumers[i].consumer = NULL;
3123			goto err;
3124		}
3125	}
3126
3127	return 0;
3128
3129err:
3130	while (--i >= 0)
3131		regulator_put(consumers[i].consumer);
3132
3133	return ret;
3134}
3135EXPORT_SYMBOL_GPL(regulator_bulk_get);
3136
3137/**
3138 * devm_regulator_bulk_get - managed get multiple regulator consumers
3139 *
3140 * @dev:           Device to supply
3141 * @num_consumers: Number of consumers to register
3142 * @consumers:     Configuration of consumers; clients are stored here.
3143 *
3144 * @return 0 on success, an errno on failure.
3145 *
3146 * This helper function allows drivers to get several regulator
3147 * consumers in one operation with management, the regulators will
3148 * automatically be freed when the device is unbound.  If any of the
3149 * regulators cannot be acquired then any regulators that were
3150 * allocated will be freed before returning to the caller.
3151 */
3152int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3153			    struct regulator_bulk_data *consumers)
3154{
3155	int i;
3156	int ret;
3157
3158	for (i = 0; i < num_consumers; i++)
3159		consumers[i].consumer = NULL;
3160
3161	for (i = 0; i < num_consumers; i++) {
3162		consumers[i].consumer = devm_regulator_get(dev,
3163							   consumers[i].supply);
3164		if (IS_ERR(consumers[i].consumer)) {
3165			ret = PTR_ERR(consumers[i].consumer);
3166			dev_err(dev, "Failed to get supply '%s': %d\n",
3167				consumers[i].supply, ret);
3168			consumers[i].consumer = NULL;
3169			goto err;
3170		}
3171	}
3172
3173	return 0;
3174
3175err:
3176	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3177		devm_regulator_put(consumers[i].consumer);
3178
3179	return ret;
3180}
3181EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3182
3183static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3184{
3185	struct regulator_bulk_data *bulk = data;
3186
3187	bulk->ret = regulator_enable(bulk->consumer);
3188}
3189
3190/**
3191 * regulator_bulk_enable - enable multiple regulator consumers
3192 *
3193 * @num_consumers: Number of consumers
3194 * @consumers:     Consumer data; clients are stored here.
3195 * @return         0 on success, an errno on failure
3196 *
3197 * This convenience API allows consumers to enable multiple regulator
3198 * clients in a single API call.  If any consumers cannot be enabled
3199 * then any others that were enabled will be disabled again prior to
3200 * return.
3201 */
3202int regulator_bulk_enable(int num_consumers,
3203			  struct regulator_bulk_data *consumers)
3204{
3205	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3206	int i;
3207	int ret = 0;
3208
3209	for (i = 0; i < num_consumers; i++) {
3210		if (consumers[i].consumer->always_on)
3211			consumers[i].ret = 0;
3212		else
3213			async_schedule_domain(regulator_bulk_enable_async,
3214					      &consumers[i], &async_domain);
3215	}
3216
3217	async_synchronize_full_domain(&async_domain);
3218
3219	/* If any consumer failed we need to unwind any that succeeded */
3220	for (i = 0; i < num_consumers; i++) {
3221		if (consumers[i].ret != 0) {
3222			ret = consumers[i].ret;
3223			goto err;
3224		}
3225	}
3226
3227	return 0;
3228
3229err:
3230	for (i = 0; i < num_consumers; i++) {
3231		if (consumers[i].ret < 0)
3232			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3233			       consumers[i].ret);
3234		else
3235			regulator_disable(consumers[i].consumer);
3236	}
3237
3238	return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3241
3242/**
3243 * regulator_bulk_disable - disable multiple regulator consumers
3244 *
3245 * @num_consumers: Number of consumers
3246 * @consumers:     Consumer data; clients are stored here.
3247 * @return         0 on success, an errno on failure
3248 *
3249 * This convenience API allows consumers to disable multiple regulator
3250 * clients in a single API call.  If any consumers cannot be disabled
3251 * then any others that were disabled will be enabled again prior to
3252 * return.
3253 */
3254int regulator_bulk_disable(int num_consumers,
3255			   struct regulator_bulk_data *consumers)
3256{
3257	int i;
3258	int ret, r;
3259
3260	for (i = num_consumers - 1; i >= 0; --i) {
3261		ret = regulator_disable(consumers[i].consumer);
3262		if (ret != 0)
3263			goto err;
3264	}
3265
3266	return 0;
3267
3268err:
3269	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3270	for (++i; i < num_consumers; ++i) {
3271		r = regulator_enable(consumers[i].consumer);
3272		if (r != 0)
3273			pr_err("Failed to reename %s: %d\n",
3274			       consumers[i].supply, r);
3275	}
3276
3277	return ret;
3278}
3279EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3280
3281/**
3282 * regulator_bulk_force_disable - force disable multiple regulator consumers
3283 *
3284 * @num_consumers: Number of consumers
3285 * @consumers:     Consumer data; clients are stored here.
3286 * @return         0 on success, an errno on failure
3287 *
3288 * This convenience API allows consumers to forcibly disable multiple regulator
3289 * clients in a single API call.
3290 * NOTE: This should be used for situations when device damage will
3291 * likely occur if the regulators are not disabled (e.g. over temp).
3292 * Although regulator_force_disable function call for some consumers can
3293 * return error numbers, the function is called for all consumers.
3294 */
3295int regulator_bulk_force_disable(int num_consumers,
3296			   struct regulator_bulk_data *consumers)
3297{
3298	int i;
3299	int ret;
3300
3301	for (i = 0; i < num_consumers; i++)
3302		consumers[i].ret =
3303			    regulator_force_disable(consumers[i].consumer);
3304
3305	for (i = 0; i < num_consumers; i++) {
3306		if (consumers[i].ret != 0) {
3307			ret = consumers[i].ret;
3308			goto out;
3309		}
3310	}
3311
3312	return 0;
3313out:
3314	return ret;
3315}
3316EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3317
3318/**
3319 * regulator_bulk_free - free multiple regulator consumers
3320 *
3321 * @num_consumers: Number of consumers
3322 * @consumers:     Consumer data; clients are stored here.
3323 *
3324 * This convenience API allows consumers to free multiple regulator
3325 * clients in a single API call.
3326 */
3327void regulator_bulk_free(int num_consumers,
3328			 struct regulator_bulk_data *consumers)
3329{
3330	int i;
3331
3332	for (i = 0; i < num_consumers; i++) {
3333		regulator_put(consumers[i].consumer);
3334		consumers[i].consumer = NULL;
3335	}
3336}
3337EXPORT_SYMBOL_GPL(regulator_bulk_free);
3338
3339/**
3340 * regulator_notifier_call_chain - call regulator event notifier
3341 * @rdev: regulator source
3342 * @event: notifier block
3343 * @data: callback-specific data.
3344 *
3345 * Called by regulator drivers to notify clients a regulator event has
3346 * occurred. We also notify regulator clients downstream.
3347 * Note lock must be held by caller.
3348 */
3349int regulator_notifier_call_chain(struct regulator_dev *rdev,
3350				  unsigned long event, void *data)
3351{
3352	_notifier_call_chain(rdev, event, data);
3353	return NOTIFY_DONE;
3354
3355}
3356EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3357
3358/**
3359 * regulator_mode_to_status - convert a regulator mode into a status
3360 *
3361 * @mode: Mode to convert
3362 *
3363 * Convert a regulator mode into a status.
3364 */
3365int regulator_mode_to_status(unsigned int mode)
3366{
3367	switch (mode) {
3368	case REGULATOR_MODE_FAST:
3369		return REGULATOR_STATUS_FAST;
3370	case REGULATOR_MODE_NORMAL:
3371		return REGULATOR_STATUS_NORMAL;
3372	case REGULATOR_MODE_IDLE:
3373		return REGULATOR_STATUS_IDLE;
3374	case REGULATOR_MODE_STANDBY:
3375		return REGULATOR_STATUS_STANDBY;
3376	default:
3377		return REGULATOR_STATUS_UNDEFINED;
3378	}
3379}
3380EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3381
3382/*
3383 * To avoid cluttering sysfs (and memory) with useless state, only
3384 * create attributes that can be meaningfully displayed.
3385 */
3386static int add_regulator_attributes(struct regulator_dev *rdev)
3387{
3388	struct device		*dev = &rdev->dev;
3389	struct regulator_ops	*ops = rdev->desc->ops;
3390	int			status = 0;
3391
3392	/* some attributes need specific methods to be displayed */
3393	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3394	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3395	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3396		status = device_create_file(dev, &dev_attr_microvolts);
3397		if (status < 0)
3398			return status;
3399	}
3400	if (ops->get_current_limit) {
3401		status = device_create_file(dev, &dev_attr_microamps);
3402		if (status < 0)
3403			return status;
3404	}
3405	if (ops->get_mode) {
3406		status = device_create_file(dev, &dev_attr_opmode);
3407		if (status < 0)
3408			return status;
3409	}
3410	if (rdev->ena_pin || ops->is_enabled) {
3411		status = device_create_file(dev, &dev_attr_state);
3412		if (status < 0)
3413			return status;
3414	}
3415	if (ops->get_status) {
3416		status = device_create_file(dev, &dev_attr_status);
3417		if (status < 0)
3418			return status;
3419	}
3420	if (ops->get_bypass) {
3421		status = device_create_file(dev, &dev_attr_bypass);
3422		if (status < 0)
3423			return status;
3424	}
3425
3426	/* some attributes are type-specific */
3427	if (rdev->desc->type == REGULATOR_CURRENT) {
3428		status = device_create_file(dev, &dev_attr_requested_microamps);
3429		if (status < 0)
3430			return status;
3431	}
3432
3433	/* all the other attributes exist to support constraints;
3434	 * don't show them if there are no constraints, or if the
3435	 * relevant supporting methods are missing.
3436	 */
3437	if (!rdev->constraints)
3438		return status;
3439
3440	/* constraints need specific supporting methods */
3441	if (ops->set_voltage || ops->set_voltage_sel) {
3442		status = device_create_file(dev, &dev_attr_min_microvolts);
3443		if (status < 0)
3444			return status;
3445		status = device_create_file(dev, &dev_attr_max_microvolts);
3446		if (status < 0)
3447			return status;
3448	}
3449	if (ops->set_current_limit) {
3450		status = device_create_file(dev, &dev_attr_min_microamps);
3451		if (status < 0)
3452			return status;
3453		status = device_create_file(dev, &dev_attr_max_microamps);
3454		if (status < 0)
3455			return status;
3456	}
3457
3458	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3459	if (status < 0)
3460		return status;
3461	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3462	if (status < 0)
3463		return status;
3464	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3465	if (status < 0)
3466		return status;
3467
3468	if (ops->set_suspend_voltage) {
3469		status = device_create_file(dev,
3470				&dev_attr_suspend_standby_microvolts);
3471		if (status < 0)
3472			return status;
3473		status = device_create_file(dev,
3474				&dev_attr_suspend_mem_microvolts);
3475		if (status < 0)
3476			return status;
3477		status = device_create_file(dev,
3478				&dev_attr_suspend_disk_microvolts);
3479		if (status < 0)
3480			return status;
3481	}
3482
3483	if (ops->set_suspend_mode) {
3484		status = device_create_file(dev,
3485				&dev_attr_suspend_standby_mode);
3486		if (status < 0)
3487			return status;
3488		status = device_create_file(dev,
3489				&dev_attr_suspend_mem_mode);
3490		if (status < 0)
3491			return status;
3492		status = device_create_file(dev,
3493				&dev_attr_suspend_disk_mode);
3494		if (status < 0)
3495			return status;
3496	}
3497
3498	return status;
3499}
3500
3501static void rdev_init_debugfs(struct regulator_dev *rdev)
3502{
3503	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3504	if (!rdev->debugfs) {
3505		rdev_warn(rdev, "Failed to create debugfs directory\n");
3506		return;
3507	}
3508
3509	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3510			   &rdev->use_count);
3511	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3512			   &rdev->open_count);
3513	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3514			   &rdev->bypass_count);
3515}
3516
3517/**
3518 * regulator_register - register regulator
3519 * @regulator_desc: regulator to register
3520 * @config: runtime configuration for regulator
3521 *
3522 * Called by regulator drivers to register a regulator.
3523 * Returns a valid pointer to struct regulator_dev on success
3524 * or an ERR_PTR() on error.
3525 */
3526struct regulator_dev *
3527regulator_register(const struct regulator_desc *regulator_desc,
3528		   const struct regulator_config *config)
3529{
3530	const struct regulation_constraints *constraints = NULL;
3531	const struct regulator_init_data *init_data;
3532	static atomic_t regulator_no = ATOMIC_INIT(0);
3533	struct regulator_dev *rdev;
3534	struct device *dev;
3535	int ret, i;
3536	const char *supply = NULL;
3537
3538	if (regulator_desc == NULL || config == NULL)
3539		return ERR_PTR(-EINVAL);
3540
3541	dev = config->dev;
3542	WARN_ON(!dev);
3543
3544	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3545		return ERR_PTR(-EINVAL);
3546
3547	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3548	    regulator_desc->type != REGULATOR_CURRENT)
3549		return ERR_PTR(-EINVAL);
3550
3551	/* Only one of each should be implemented */
3552	WARN_ON(regulator_desc->ops->get_voltage &&
3553		regulator_desc->ops->get_voltage_sel);
3554	WARN_ON(regulator_desc->ops->set_voltage &&
3555		regulator_desc->ops->set_voltage_sel);
3556
3557	/* If we're using selectors we must implement list_voltage. */
3558	if (regulator_desc->ops->get_voltage_sel &&
3559	    !regulator_desc->ops->list_voltage) {
3560		return ERR_PTR(-EINVAL);
3561	}
3562	if (regulator_desc->ops->set_voltage_sel &&
3563	    !regulator_desc->ops->list_voltage) {
3564		return ERR_PTR(-EINVAL);
3565	}
3566
3567	init_data = config->init_data;
3568
3569	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3570	if (rdev == NULL)
3571		return ERR_PTR(-ENOMEM);
3572
3573	mutex_lock(&regulator_list_mutex);
3574
3575	mutex_init(&rdev->mutex);
3576	rdev->reg_data = config->driver_data;
3577	rdev->owner = regulator_desc->owner;
3578	rdev->desc = regulator_desc;
3579	if (config->regmap)
3580		rdev->regmap = config->regmap;
3581	else if (dev_get_regmap(dev, NULL))
3582		rdev->regmap = dev_get_regmap(dev, NULL);
3583	else if (dev->parent)
3584		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3585	INIT_LIST_HEAD(&rdev->consumer_list);
3586	INIT_LIST_HEAD(&rdev->list);
3587	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3588	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3589
3590	/* preform any regulator specific init */
3591	if (init_data && init_data->regulator_init) {
3592		ret = init_data->regulator_init(rdev->reg_data);
3593		if (ret < 0)
3594			goto clean;
3595	}
3596
3597	/* register with sysfs */
3598	rdev->dev.class = &regulator_class;
3599	rdev->dev.of_node = config->of_node;
3600	rdev->dev.parent = dev;
3601	dev_set_name(&rdev->dev, "regulator.%d",
3602		     atomic_inc_return(&regulator_no) - 1);
3603	ret = device_register(&rdev->dev);
3604	if (ret != 0) {
3605		put_device(&rdev->dev);
3606		goto clean;
3607	}
3608
3609	dev_set_drvdata(&rdev->dev, rdev);
3610
3611	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3612		ret = regulator_ena_gpio_request(rdev, config);
3613		if (ret != 0) {
3614			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3615				 config->ena_gpio, ret);
3616			goto wash;
3617		}
3618
3619		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3620			rdev->ena_gpio_state = 1;
3621
3622		if (config->ena_gpio_invert)
3623			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3624	}
3625
3626	/* set regulator constraints */
3627	if (init_data)
3628		constraints = &init_data->constraints;
3629
3630	ret = set_machine_constraints(rdev, constraints);
3631	if (ret < 0)
3632		goto scrub;
3633
3634	/* add attributes supported by this regulator */
3635	ret = add_regulator_attributes(rdev);
3636	if (ret < 0)
3637		goto scrub;
3638
3639	if (init_data && init_data->supply_regulator)
3640		supply = init_data->supply_regulator;
3641	else if (regulator_desc->supply_name)
3642		supply = regulator_desc->supply_name;
3643
3644	if (supply) {
3645		struct regulator_dev *r;
3646
3647		r = regulator_dev_lookup(dev, supply, &ret);
3648
3649		if (ret == -ENODEV) {
3650			/*
3651			 * No supply was specified for this regulator and
3652			 * there will never be one.
3653			 */
3654			ret = 0;
3655			goto add_dev;
3656		} else if (!r) {
3657			dev_err(dev, "Failed to find supply %s\n", supply);
3658			ret = -EPROBE_DEFER;
3659			goto scrub;
3660		}
3661
3662		ret = set_supply(rdev, r);
3663		if (ret < 0)
3664			goto scrub;
3665
3666		/* Enable supply if rail is enabled */
3667		if (_regulator_is_enabled(rdev)) {
3668			ret = regulator_enable(rdev->supply);
3669			if (ret < 0)
3670				goto scrub;
3671		}
3672	}
3673
3674add_dev:
3675	/* add consumers devices */
3676	if (init_data) {
3677		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3678			ret = set_consumer_device_supply(rdev,
3679				init_data->consumer_supplies[i].dev_name,
3680				init_data->consumer_supplies[i].supply);
3681			if (ret < 0) {
3682				dev_err(dev, "Failed to set supply %s\n",
3683					init_data->consumer_supplies[i].supply);
3684				goto unset_supplies;
3685			}
3686		}
3687	}
3688
3689	list_add(&rdev->list, &regulator_list);
3690
3691	rdev_init_debugfs(rdev);
3692out:
3693	mutex_unlock(&regulator_list_mutex);
3694	return rdev;
3695
3696unset_supplies:
3697	unset_regulator_supplies(rdev);
3698
3699scrub:
3700	if (rdev->supply)
3701		_regulator_put(rdev->supply);
3702	regulator_ena_gpio_free(rdev);
3703	kfree(rdev->constraints);
3704wash:
3705	device_unregister(&rdev->dev);
3706	/* device core frees rdev */
3707	rdev = ERR_PTR(ret);
3708	goto out;
3709
3710clean:
3711	kfree(rdev);
3712	rdev = ERR_PTR(ret);
3713	goto out;
3714}
3715EXPORT_SYMBOL_GPL(regulator_register);
3716
3717/**
3718 * regulator_unregister - unregister regulator
3719 * @rdev: regulator to unregister
3720 *
3721 * Called by regulator drivers to unregister a regulator.
3722 */
3723void regulator_unregister(struct regulator_dev *rdev)
3724{
3725	if (rdev == NULL)
3726		return;
3727
3728	if (rdev->supply)
3729		regulator_put(rdev->supply);
3730	mutex_lock(&regulator_list_mutex);
3731	debugfs_remove_recursive(rdev->debugfs);
3732	flush_work(&rdev->disable_work.work);
3733	WARN_ON(rdev->open_count);
3734	unset_regulator_supplies(rdev);
3735	list_del(&rdev->list);
3736	kfree(rdev->constraints);
3737	regulator_ena_gpio_free(rdev);
3738	device_unregister(&rdev->dev);
3739	mutex_unlock(&regulator_list_mutex);
3740}
3741EXPORT_SYMBOL_GPL(regulator_unregister);
3742
3743/**
3744 * regulator_suspend_prepare - prepare regulators for system wide suspend
3745 * @state: system suspend state
3746 *
3747 * Configure each regulator with it's suspend operating parameters for state.
3748 * This will usually be called by machine suspend code prior to supending.
3749 */
3750int regulator_suspend_prepare(suspend_state_t state)
3751{
3752	struct regulator_dev *rdev;
3753	int ret = 0;
3754
3755	/* ON is handled by regulator active state */
3756	if (state == PM_SUSPEND_ON)
3757		return -EINVAL;
3758
3759	mutex_lock(&regulator_list_mutex);
3760	list_for_each_entry(rdev, &regulator_list, list) {
3761
3762		mutex_lock(&rdev->mutex);
3763		ret = suspend_prepare(rdev, state);
3764		mutex_unlock(&rdev->mutex);
3765
3766		if (ret < 0) {
3767			rdev_err(rdev, "failed to prepare\n");
3768			goto out;
3769		}
3770	}
3771out:
3772	mutex_unlock(&regulator_list_mutex);
3773	return ret;
3774}
3775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3776
3777/**
3778 * regulator_suspend_finish - resume regulators from system wide suspend
3779 *
3780 * Turn on regulators that might be turned off by regulator_suspend_prepare
3781 * and that should be turned on according to the regulators properties.
3782 */
3783int regulator_suspend_finish(void)
3784{
3785	struct regulator_dev *rdev;
3786	int ret = 0, error;
3787
3788	mutex_lock(&regulator_list_mutex);
3789	list_for_each_entry(rdev, &regulator_list, list) {
3790		struct regulator_ops *ops = rdev->desc->ops;
3791
3792		mutex_lock(&rdev->mutex);
3793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3794				ops->enable) {
3795			error = ops->enable(rdev);
3796			if (error)
3797				ret = error;
3798		} else {
3799			if (!has_full_constraints)
3800				goto unlock;
3801			if (!ops->disable)
3802				goto unlock;
3803			if (!_regulator_is_enabled(rdev))
3804				goto unlock;
3805
3806			error = ops->disable(rdev);
3807			if (error)
3808				ret = error;
3809		}
3810unlock:
3811		mutex_unlock(&rdev->mutex);
3812	}
3813	mutex_unlock(&regulator_list_mutex);
3814	return ret;
3815}
3816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3817
3818/**
3819 * regulator_has_full_constraints - the system has fully specified constraints
3820 *
3821 * Calling this function will cause the regulator API to disable all
3822 * regulators which have a zero use count and don't have an always_on
3823 * constraint in a late_initcall.
3824 *
3825 * The intention is that this will become the default behaviour in a
3826 * future kernel release so users are encouraged to use this facility
3827 * now.
3828 */
3829void regulator_has_full_constraints(void)
3830{
3831	has_full_constraints = 1;
3832}
3833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3834
3835/**
3836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3837 *
3838 * Calling this function will cause the regulator API to provide a
3839 * dummy regulator to consumers if no physical regulator is found,
3840 * allowing most consumers to proceed as though a regulator were
3841 * configured.  This allows systems such as those with software
3842 * controllable regulators for the CPU core only to be brought up more
3843 * readily.
3844 */
3845void regulator_use_dummy_regulator(void)
3846{
3847	board_wants_dummy_regulator = true;
3848}
3849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3850
3851/**
3852 * rdev_get_drvdata - get rdev regulator driver data
3853 * @rdev: regulator
3854 *
3855 * Get rdev regulator driver private data. This call can be used in the
3856 * regulator driver context.
3857 */
3858void *rdev_get_drvdata(struct regulator_dev *rdev)
3859{
3860	return rdev->reg_data;
3861}
3862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3863
3864/**
3865 * regulator_get_drvdata - get regulator driver data
3866 * @regulator: regulator
3867 *
3868 * Get regulator driver private data. This call can be used in the consumer
3869 * driver context when non API regulator specific functions need to be called.
3870 */
3871void *regulator_get_drvdata(struct regulator *regulator)
3872{
3873	return regulator->rdev->reg_data;
3874}
3875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3876
3877/**
3878 * regulator_set_drvdata - set regulator driver data
3879 * @regulator: regulator
3880 * @data: data
3881 */
3882void regulator_set_drvdata(struct regulator *regulator, void *data)
3883{
3884	regulator->rdev->reg_data = data;
3885}
3886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3887
3888/**
3889 * regulator_get_id - get regulator ID
3890 * @rdev: regulator
3891 */
3892int rdev_get_id(struct regulator_dev *rdev)
3893{
3894	return rdev->desc->id;
3895}
3896EXPORT_SYMBOL_GPL(rdev_get_id);
3897
3898struct device *rdev_get_dev(struct regulator_dev *rdev)
3899{
3900	return &rdev->dev;
3901}
3902EXPORT_SYMBOL_GPL(rdev_get_dev);
3903
3904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3905{
3906	return reg_init_data->driver_data;
3907}
3908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3909
3910#ifdef CONFIG_DEBUG_FS
3911static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3912				    size_t count, loff_t *ppos)
3913{
3914	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3915	ssize_t len, ret = 0;
3916	struct regulator_map *map;
3917
3918	if (!buf)
3919		return -ENOMEM;
3920
3921	list_for_each_entry(map, &regulator_map_list, list) {
3922		len = snprintf(buf + ret, PAGE_SIZE - ret,
3923			       "%s -> %s.%s\n",
3924			       rdev_get_name(map->regulator), map->dev_name,
3925			       map->supply);
3926		if (len >= 0)
3927			ret += len;
3928		if (ret > PAGE_SIZE) {
3929			ret = PAGE_SIZE;
3930			break;
3931		}
3932	}
3933
3934	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3935
3936	kfree(buf);
3937
3938	return ret;
3939}
3940#endif
3941
3942static const struct file_operations supply_map_fops = {
3943#ifdef CONFIG_DEBUG_FS
3944	.read = supply_map_read_file,
3945	.llseek = default_llseek,
3946#endif
3947};
3948
3949static int __init regulator_init(void)
3950{
3951	int ret;
3952
3953	ret = class_register(&regulator_class);
3954
3955	debugfs_root = debugfs_create_dir("regulator", NULL);
3956	if (!debugfs_root)
3957		pr_warn("regulator: Failed to create debugfs directory\n");
3958
3959	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3960			    &supply_map_fops);
3961
3962	regulator_dummy_init();
3963
3964	return ret;
3965}
3966
3967/* init early to allow our consumers to complete system booting */
3968core_initcall(regulator_init);
3969
3970static int __init regulator_init_complete(void)
3971{
3972	struct regulator_dev *rdev;
3973	struct regulator_ops *ops;
3974	struct regulation_constraints *c;
3975	int enabled, ret;
3976
3977	/*
3978	 * Since DT doesn't provide an idiomatic mechanism for
3979	 * enabling full constraints and since it's much more natural
3980	 * with DT to provide them just assume that a DT enabled
3981	 * system has full constraints.
3982	 */
3983	if (of_have_populated_dt())
3984		has_full_constraints = true;
3985
3986	mutex_lock(&regulator_list_mutex);
3987
3988	/* If we have a full configuration then disable any regulators
3989	 * which are not in use or always_on.  This will become the
3990	 * default behaviour in the future.
3991	 */
3992	list_for_each_entry(rdev, &regulator_list, list) {
3993		ops = rdev->desc->ops;
3994		c = rdev->constraints;
3995
3996		if (!ops->disable || (c && c->always_on))
3997			continue;
3998
3999		mutex_lock(&rdev->mutex);
4000
4001		if (rdev->use_count)
4002			goto unlock;
4003
4004		/* If we can't read the status assume it's on. */
4005		if (ops->is_enabled)
4006			enabled = ops->is_enabled(rdev);
4007		else
4008			enabled = 1;
4009
4010		if (!enabled)
4011			goto unlock;
4012
4013		if (has_full_constraints) {
4014			/* We log since this may kill the system if it
4015			 * goes wrong. */
4016			rdev_info(rdev, "disabling\n");
4017			ret = ops->disable(rdev);
4018			if (ret != 0) {
4019				rdev_err(rdev, "couldn't disable: %d\n", ret);
4020			}
4021		} else {
4022			/* The intention is that in future we will
4023			 * assume that full constraints are provided
4024			 * so warn even if we aren't going to do
4025			 * anything here.
4026			 */
4027			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4028		}
4029
4030unlock:
4031		mutex_unlock(&rdev->mutex);
4032	}
4033
4034	mutex_unlock(&regulator_list_mutex);
4035
4036	return 0;
4037}
4038late_initcall(regulator_init_complete);
4039