core.c revision 34abbd68efe09765465b81dfedeee9994f13302f
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/delay.h>
23#include <linux/regulator/consumer.h>
24#include <linux/regulator/driver.h>
25#include <linux/regulator/machine.h>
26
27#include "dummy.h"
28
29#define REGULATOR_VERSION "0.5"
30
31static DEFINE_MUTEX(regulator_list_mutex);
32static LIST_HEAD(regulator_list);
33static LIST_HEAD(regulator_map_list);
34static int has_full_constraints;
35
36/*
37 * struct regulator_map
38 *
39 * Used to provide symbolic supply names to devices.
40 */
41struct regulator_map {
42	struct list_head list;
43	const char *dev_name;   /* The dev_name() for the consumer */
44	const char *supply;
45	struct regulator_dev *regulator;
46};
47
48/*
49 * struct regulator
50 *
51 * One for each consumer device.
52 */
53struct regulator {
54	struct device *dev;
55	struct list_head list;
56	int uA_load;
57	int min_uV;
58	int max_uV;
59	char *supply_name;
60	struct device_attribute dev_attr;
61	struct regulator_dev *rdev;
62};
63
64static int _regulator_is_enabled(struct regulator_dev *rdev);
65static int _regulator_disable(struct regulator_dev *rdev);
66static int _regulator_get_voltage(struct regulator_dev *rdev);
67static int _regulator_get_current_limit(struct regulator_dev *rdev);
68static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
69static void _notifier_call_chain(struct regulator_dev *rdev,
70				  unsigned long event, void *data);
71
72static const char *rdev_get_name(struct regulator_dev *rdev)
73{
74	if (rdev->constraints && rdev->constraints->name)
75		return rdev->constraints->name;
76	else if (rdev->desc->name)
77		return rdev->desc->name;
78	else
79		return "";
80}
81
82/* gets the regulator for a given consumer device */
83static struct regulator *get_device_regulator(struct device *dev)
84{
85	struct regulator *regulator = NULL;
86	struct regulator_dev *rdev;
87
88	mutex_lock(&regulator_list_mutex);
89	list_for_each_entry(rdev, &regulator_list, list) {
90		mutex_lock(&rdev->mutex);
91		list_for_each_entry(regulator, &rdev->consumer_list, list) {
92			if (regulator->dev == dev) {
93				mutex_unlock(&rdev->mutex);
94				mutex_unlock(&regulator_list_mutex);
95				return regulator;
96			}
97		}
98		mutex_unlock(&rdev->mutex);
99	}
100	mutex_unlock(&regulator_list_mutex);
101	return NULL;
102}
103
104/* Platform voltage constraint check */
105static int regulator_check_voltage(struct regulator_dev *rdev,
106				   int *min_uV, int *max_uV)
107{
108	BUG_ON(*min_uV > *max_uV);
109
110	if (!rdev->constraints) {
111		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
112		       rdev_get_name(rdev));
113		return -ENODEV;
114	}
115	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
116		printk(KERN_ERR "%s: operation not allowed for %s\n",
117		       __func__, rdev_get_name(rdev));
118		return -EPERM;
119	}
120
121	if (*max_uV > rdev->constraints->max_uV)
122		*max_uV = rdev->constraints->max_uV;
123	if (*min_uV < rdev->constraints->min_uV)
124		*min_uV = rdev->constraints->min_uV;
125
126	if (*min_uV > *max_uV)
127		return -EINVAL;
128
129	return 0;
130}
131
132/* current constraint check */
133static int regulator_check_current_limit(struct regulator_dev *rdev,
134					int *min_uA, int *max_uA)
135{
136	BUG_ON(*min_uA > *max_uA);
137
138	if (!rdev->constraints) {
139		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
140		       rdev_get_name(rdev));
141		return -ENODEV;
142	}
143	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
144		printk(KERN_ERR "%s: operation not allowed for %s\n",
145		       __func__, rdev_get_name(rdev));
146		return -EPERM;
147	}
148
149	if (*max_uA > rdev->constraints->max_uA)
150		*max_uA = rdev->constraints->max_uA;
151	if (*min_uA < rdev->constraints->min_uA)
152		*min_uA = rdev->constraints->min_uA;
153
154	if (*min_uA > *max_uA)
155		return -EINVAL;
156
157	return 0;
158}
159
160/* operating mode constraint check */
161static int regulator_check_mode(struct regulator_dev *rdev, int mode)
162{
163	switch (mode) {
164	case REGULATOR_MODE_FAST:
165	case REGULATOR_MODE_NORMAL:
166	case REGULATOR_MODE_IDLE:
167	case REGULATOR_MODE_STANDBY:
168		break;
169	default:
170		return -EINVAL;
171	}
172
173	if (!rdev->constraints) {
174		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
175		       rdev_get_name(rdev));
176		return -ENODEV;
177	}
178	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
179		printk(KERN_ERR "%s: operation not allowed for %s\n",
180		       __func__, rdev_get_name(rdev));
181		return -EPERM;
182	}
183	if (!(rdev->constraints->valid_modes_mask & mode)) {
184		printk(KERN_ERR "%s: invalid mode %x for %s\n",
185		       __func__, mode, rdev_get_name(rdev));
186		return -EINVAL;
187	}
188	return 0;
189}
190
191/* dynamic regulator mode switching constraint check */
192static int regulator_check_drms(struct regulator_dev *rdev)
193{
194	if (!rdev->constraints) {
195		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
196		       rdev_get_name(rdev));
197		return -ENODEV;
198	}
199	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
200		printk(KERN_ERR "%s: operation not allowed for %s\n",
201		       __func__, rdev_get_name(rdev));
202		return -EPERM;
203	}
204	return 0;
205}
206
207static ssize_t device_requested_uA_show(struct device *dev,
208			     struct device_attribute *attr, char *buf)
209{
210	struct regulator *regulator;
211
212	regulator = get_device_regulator(dev);
213	if (regulator == NULL)
214		return 0;
215
216	return sprintf(buf, "%d\n", regulator->uA_load);
217}
218
219static ssize_t regulator_uV_show(struct device *dev,
220				struct device_attribute *attr, char *buf)
221{
222	struct regulator_dev *rdev = dev_get_drvdata(dev);
223	ssize_t ret;
224
225	mutex_lock(&rdev->mutex);
226	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
227	mutex_unlock(&rdev->mutex);
228
229	return ret;
230}
231static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
232
233static ssize_t regulator_uA_show(struct device *dev,
234				struct device_attribute *attr, char *buf)
235{
236	struct regulator_dev *rdev = dev_get_drvdata(dev);
237
238	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
239}
240static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
241
242static ssize_t regulator_name_show(struct device *dev,
243			     struct device_attribute *attr, char *buf)
244{
245	struct regulator_dev *rdev = dev_get_drvdata(dev);
246
247	return sprintf(buf, "%s\n", rdev_get_name(rdev));
248}
249
250static ssize_t regulator_print_opmode(char *buf, int mode)
251{
252	switch (mode) {
253	case REGULATOR_MODE_FAST:
254		return sprintf(buf, "fast\n");
255	case REGULATOR_MODE_NORMAL:
256		return sprintf(buf, "normal\n");
257	case REGULATOR_MODE_IDLE:
258		return sprintf(buf, "idle\n");
259	case REGULATOR_MODE_STANDBY:
260		return sprintf(buf, "standby\n");
261	}
262	return sprintf(buf, "unknown\n");
263}
264
265static ssize_t regulator_opmode_show(struct device *dev,
266				    struct device_attribute *attr, char *buf)
267{
268	struct regulator_dev *rdev = dev_get_drvdata(dev);
269
270	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
271}
272static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
273
274static ssize_t regulator_print_state(char *buf, int state)
275{
276	if (state > 0)
277		return sprintf(buf, "enabled\n");
278	else if (state == 0)
279		return sprintf(buf, "disabled\n");
280	else
281		return sprintf(buf, "unknown\n");
282}
283
284static ssize_t regulator_state_show(struct device *dev,
285				   struct device_attribute *attr, char *buf)
286{
287	struct regulator_dev *rdev = dev_get_drvdata(dev);
288	ssize_t ret;
289
290	mutex_lock(&rdev->mutex);
291	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
292	mutex_unlock(&rdev->mutex);
293
294	return ret;
295}
296static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
297
298static ssize_t regulator_status_show(struct device *dev,
299				   struct device_attribute *attr, char *buf)
300{
301	struct regulator_dev *rdev = dev_get_drvdata(dev);
302	int status;
303	char *label;
304
305	status = rdev->desc->ops->get_status(rdev);
306	if (status < 0)
307		return status;
308
309	switch (status) {
310	case REGULATOR_STATUS_OFF:
311		label = "off";
312		break;
313	case REGULATOR_STATUS_ON:
314		label = "on";
315		break;
316	case REGULATOR_STATUS_ERROR:
317		label = "error";
318		break;
319	case REGULATOR_STATUS_FAST:
320		label = "fast";
321		break;
322	case REGULATOR_STATUS_NORMAL:
323		label = "normal";
324		break;
325	case REGULATOR_STATUS_IDLE:
326		label = "idle";
327		break;
328	case REGULATOR_STATUS_STANDBY:
329		label = "standby";
330		break;
331	default:
332		return -ERANGE;
333	}
334
335	return sprintf(buf, "%s\n", label);
336}
337static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
338
339static ssize_t regulator_min_uA_show(struct device *dev,
340				    struct device_attribute *attr, char *buf)
341{
342	struct regulator_dev *rdev = dev_get_drvdata(dev);
343
344	if (!rdev->constraints)
345		return sprintf(buf, "constraint not defined\n");
346
347	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
348}
349static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
350
351static ssize_t regulator_max_uA_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	if (!rdev->constraints)
357		return sprintf(buf, "constraint not defined\n");
358
359	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
360}
361static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
362
363static ssize_t regulator_min_uV_show(struct device *dev,
364				    struct device_attribute *attr, char *buf)
365{
366	struct regulator_dev *rdev = dev_get_drvdata(dev);
367
368	if (!rdev->constraints)
369		return sprintf(buf, "constraint not defined\n");
370
371	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
372}
373static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
374
375static ssize_t regulator_max_uV_show(struct device *dev,
376				    struct device_attribute *attr, char *buf)
377{
378	struct regulator_dev *rdev = dev_get_drvdata(dev);
379
380	if (!rdev->constraints)
381		return sprintf(buf, "constraint not defined\n");
382
383	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
384}
385static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
386
387static ssize_t regulator_total_uA_show(struct device *dev,
388				      struct device_attribute *attr, char *buf)
389{
390	struct regulator_dev *rdev = dev_get_drvdata(dev);
391	struct regulator *regulator;
392	int uA = 0;
393
394	mutex_lock(&rdev->mutex);
395	list_for_each_entry(regulator, &rdev->consumer_list, list)
396		uA += regulator->uA_load;
397	mutex_unlock(&rdev->mutex);
398	return sprintf(buf, "%d\n", uA);
399}
400static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
401
402static ssize_t regulator_num_users_show(struct device *dev,
403				      struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406	return sprintf(buf, "%d\n", rdev->use_count);
407}
408
409static ssize_t regulator_type_show(struct device *dev,
410				  struct device_attribute *attr, char *buf)
411{
412	struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414	switch (rdev->desc->type) {
415	case REGULATOR_VOLTAGE:
416		return sprintf(buf, "voltage\n");
417	case REGULATOR_CURRENT:
418		return sprintf(buf, "current\n");
419	}
420	return sprintf(buf, "unknown\n");
421}
422
423static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
429}
430static DEVICE_ATTR(suspend_mem_microvolts, 0444,
431		regulator_suspend_mem_uV_show, NULL);
432
433static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
439}
440static DEVICE_ATTR(suspend_disk_microvolts, 0444,
441		regulator_suspend_disk_uV_show, NULL);
442
443static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
449}
450static DEVICE_ATTR(suspend_standby_microvolts, 0444,
451		regulator_suspend_standby_uV_show, NULL);
452
453static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
454				struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	return regulator_print_opmode(buf,
459		rdev->constraints->state_mem.mode);
460}
461static DEVICE_ATTR(suspend_mem_mode, 0444,
462		regulator_suspend_mem_mode_show, NULL);
463
464static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
465				struct device_attribute *attr, char *buf)
466{
467	struct regulator_dev *rdev = dev_get_drvdata(dev);
468
469	return regulator_print_opmode(buf,
470		rdev->constraints->state_disk.mode);
471}
472static DEVICE_ATTR(suspend_disk_mode, 0444,
473		regulator_suspend_disk_mode_show, NULL);
474
475static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
476				struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479
480	return regulator_print_opmode(buf,
481		rdev->constraints->state_standby.mode);
482}
483static DEVICE_ATTR(suspend_standby_mode, 0444,
484		regulator_suspend_standby_mode_show, NULL);
485
486static ssize_t regulator_suspend_mem_state_show(struct device *dev,
487				   struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491	return regulator_print_state(buf,
492			rdev->constraints->state_mem.enabled);
493}
494static DEVICE_ATTR(suspend_mem_state, 0444,
495		regulator_suspend_mem_state_show, NULL);
496
497static ssize_t regulator_suspend_disk_state_show(struct device *dev,
498				   struct device_attribute *attr, char *buf)
499{
500	struct regulator_dev *rdev = dev_get_drvdata(dev);
501
502	return regulator_print_state(buf,
503			rdev->constraints->state_disk.enabled);
504}
505static DEVICE_ATTR(suspend_disk_state, 0444,
506		regulator_suspend_disk_state_show, NULL);
507
508static ssize_t regulator_suspend_standby_state_show(struct device *dev,
509				   struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	return regulator_print_state(buf,
514			rdev->constraints->state_standby.enabled);
515}
516static DEVICE_ATTR(suspend_standby_state, 0444,
517		regulator_suspend_standby_state_show, NULL);
518
519
520/*
521 * These are the only attributes are present for all regulators.
522 * Other attributes are a function of regulator functionality.
523 */
524static struct device_attribute regulator_dev_attrs[] = {
525	__ATTR(name, 0444, regulator_name_show, NULL),
526	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
527	__ATTR(type, 0444, regulator_type_show, NULL),
528	__ATTR_NULL,
529};
530
531static void regulator_dev_release(struct device *dev)
532{
533	struct regulator_dev *rdev = dev_get_drvdata(dev);
534	kfree(rdev);
535}
536
537static struct class regulator_class = {
538	.name = "regulator",
539	.dev_release = regulator_dev_release,
540	.dev_attrs = regulator_dev_attrs,
541};
542
543/* Calculate the new optimum regulator operating mode based on the new total
544 * consumer load. All locks held by caller */
545static void drms_uA_update(struct regulator_dev *rdev)
546{
547	struct regulator *sibling;
548	int current_uA = 0, output_uV, input_uV, err;
549	unsigned int mode;
550
551	err = regulator_check_drms(rdev);
552	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
553	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
554		return;
555
556	/* get output voltage */
557	output_uV = rdev->desc->ops->get_voltage(rdev);
558	if (output_uV <= 0)
559		return;
560
561	/* get input voltage */
562	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
563		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
564	else
565		input_uV = rdev->constraints->input_uV;
566	if (input_uV <= 0)
567		return;
568
569	/* calc total requested load */
570	list_for_each_entry(sibling, &rdev->consumer_list, list)
571		current_uA += sibling->uA_load;
572
573	/* now get the optimum mode for our new total regulator load */
574	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
575						  output_uV, current_uA);
576
577	/* check the new mode is allowed */
578	err = regulator_check_mode(rdev, mode);
579	if (err == 0)
580		rdev->desc->ops->set_mode(rdev, mode);
581}
582
583static int suspend_set_state(struct regulator_dev *rdev,
584	struct regulator_state *rstate)
585{
586	int ret = 0;
587	bool can_set_state;
588
589	can_set_state = rdev->desc->ops->set_suspend_enable &&
590		rdev->desc->ops->set_suspend_disable;
591
592	/* If we have no suspend mode configration don't set anything;
593	 * only warn if the driver actually makes the suspend mode
594	 * configurable.
595	 */
596	if (!rstate->enabled && !rstate->disabled) {
597		if (can_set_state)
598			printk(KERN_WARNING "%s: No configuration for %s\n",
599			       __func__, rdev_get_name(rdev));
600		return 0;
601	}
602
603	if (rstate->enabled && rstate->disabled) {
604		printk(KERN_ERR "%s: invalid configuration for %s\n",
605		       __func__, rdev_get_name(rdev));
606		return -EINVAL;
607	}
608
609	if (!can_set_state) {
610		printk(KERN_ERR "%s: no way to set suspend state\n",
611			__func__);
612		return -EINVAL;
613	}
614
615	if (rstate->enabled)
616		ret = rdev->desc->ops->set_suspend_enable(rdev);
617	else
618		ret = rdev->desc->ops->set_suspend_disable(rdev);
619	if (ret < 0) {
620		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
621		return ret;
622	}
623
624	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
625		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
626		if (ret < 0) {
627			printk(KERN_ERR "%s: failed to set voltage\n",
628				__func__);
629			return ret;
630		}
631	}
632
633	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
634		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
635		if (ret < 0) {
636			printk(KERN_ERR "%s: failed to set mode\n", __func__);
637			return ret;
638		}
639	}
640	return ret;
641}
642
643/* locks held by caller */
644static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
645{
646	if (!rdev->constraints)
647		return -EINVAL;
648
649	switch (state) {
650	case PM_SUSPEND_STANDBY:
651		return suspend_set_state(rdev,
652			&rdev->constraints->state_standby);
653	case PM_SUSPEND_MEM:
654		return suspend_set_state(rdev,
655			&rdev->constraints->state_mem);
656	case PM_SUSPEND_MAX:
657		return suspend_set_state(rdev,
658			&rdev->constraints->state_disk);
659	default:
660		return -EINVAL;
661	}
662}
663
664static void print_constraints(struct regulator_dev *rdev)
665{
666	struct regulation_constraints *constraints = rdev->constraints;
667	char buf[80] = "";
668	int count = 0;
669	int ret;
670
671	if (constraints->min_uV && constraints->max_uV) {
672		if (constraints->min_uV == constraints->max_uV)
673			count += sprintf(buf + count, "%d mV ",
674					 constraints->min_uV / 1000);
675		else
676			count += sprintf(buf + count, "%d <--> %d mV ",
677					 constraints->min_uV / 1000,
678					 constraints->max_uV / 1000);
679	}
680
681	if (!constraints->min_uV ||
682	    constraints->min_uV != constraints->max_uV) {
683		ret = _regulator_get_voltage(rdev);
684		if (ret > 0)
685			count += sprintf(buf + count, "at %d mV ", ret / 1000);
686	}
687
688	if (constraints->min_uA && constraints->max_uA) {
689		if (constraints->min_uA == constraints->max_uA)
690			count += sprintf(buf + count, "%d mA ",
691					 constraints->min_uA / 1000);
692		else
693			count += sprintf(buf + count, "%d <--> %d mA ",
694					 constraints->min_uA / 1000,
695					 constraints->max_uA / 1000);
696	}
697
698	if (!constraints->min_uA ||
699	    constraints->min_uA != constraints->max_uA) {
700		ret = _regulator_get_current_limit(rdev);
701		if (ret > 0)
702			count += sprintf(buf + count, "at %d uA ", ret / 1000);
703	}
704
705	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
706		count += sprintf(buf + count, "fast ");
707	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
708		count += sprintf(buf + count, "normal ");
709	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
710		count += sprintf(buf + count, "idle ");
711	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
712		count += sprintf(buf + count, "standby");
713
714	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
715}
716
717static int machine_constraints_voltage(struct regulator_dev *rdev,
718	struct regulation_constraints *constraints)
719{
720	struct regulator_ops *ops = rdev->desc->ops;
721	const char *name = rdev_get_name(rdev);
722	int ret;
723
724	/* do we need to apply the constraint voltage */
725	if (rdev->constraints->apply_uV &&
726		rdev->constraints->min_uV == rdev->constraints->max_uV &&
727		ops->set_voltage) {
728		ret = ops->set_voltage(rdev,
729			rdev->constraints->min_uV, rdev->constraints->max_uV);
730			if (ret < 0) {
731				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
732				       __func__,
733				       rdev->constraints->min_uV, name);
734				rdev->constraints = NULL;
735				return ret;
736			}
737	}
738
739	/* constrain machine-level voltage specs to fit
740	 * the actual range supported by this regulator.
741	 */
742	if (ops->list_voltage && rdev->desc->n_voltages) {
743		int	count = rdev->desc->n_voltages;
744		int	i;
745		int	min_uV = INT_MAX;
746		int	max_uV = INT_MIN;
747		int	cmin = constraints->min_uV;
748		int	cmax = constraints->max_uV;
749
750		/* it's safe to autoconfigure fixed-voltage supplies
751		   and the constraints are used by list_voltage. */
752		if (count == 1 && !cmin) {
753			cmin = 1;
754			cmax = INT_MAX;
755			constraints->min_uV = cmin;
756			constraints->max_uV = cmax;
757		}
758
759		/* voltage constraints are optional */
760		if ((cmin == 0) && (cmax == 0))
761			return 0;
762
763		/* else require explicit machine-level constraints */
764		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
765			pr_err("%s: %s '%s' voltage constraints\n",
766				       __func__, "invalid", name);
767			return -EINVAL;
768		}
769
770		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
771		for (i = 0; i < count; i++) {
772			int	value;
773
774			value = ops->list_voltage(rdev, i);
775			if (value <= 0)
776				continue;
777
778			/* maybe adjust [min_uV..max_uV] */
779			if (value >= cmin && value < min_uV)
780				min_uV = value;
781			if (value <= cmax && value > max_uV)
782				max_uV = value;
783		}
784
785		/* final: [min_uV..max_uV] valid iff constraints valid */
786		if (max_uV < min_uV) {
787			pr_err("%s: %s '%s' voltage constraints\n",
788				       __func__, "unsupportable", name);
789			return -EINVAL;
790		}
791
792		/* use regulator's subset of machine constraints */
793		if (constraints->min_uV < min_uV) {
794			pr_debug("%s: override '%s' %s, %d -> %d\n",
795				       __func__, name, "min_uV",
796					constraints->min_uV, min_uV);
797			constraints->min_uV = min_uV;
798		}
799		if (constraints->max_uV > max_uV) {
800			pr_debug("%s: override '%s' %s, %d -> %d\n",
801				       __func__, name, "max_uV",
802					constraints->max_uV, max_uV);
803			constraints->max_uV = max_uV;
804		}
805	}
806
807	return 0;
808}
809
810/**
811 * set_machine_constraints - sets regulator constraints
812 * @rdev: regulator source
813 * @constraints: constraints to apply
814 *
815 * Allows platform initialisation code to define and constrain
816 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
817 * Constraints *must* be set by platform code in order for some
818 * regulator operations to proceed i.e. set_voltage, set_current_limit,
819 * set_mode.
820 */
821static int set_machine_constraints(struct regulator_dev *rdev,
822	struct regulation_constraints *constraints)
823{
824	int ret = 0;
825	const char *name;
826	struct regulator_ops *ops = rdev->desc->ops;
827
828	rdev->constraints = constraints;
829
830	name = rdev_get_name(rdev);
831
832	ret = machine_constraints_voltage(rdev, constraints);
833	if (ret != 0)
834		goto out;
835
836	/* do we need to setup our suspend state */
837	if (constraints->initial_state) {
838		ret = suspend_prepare(rdev, constraints->initial_state);
839		if (ret < 0) {
840			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
841			       __func__, name);
842			rdev->constraints = NULL;
843			goto out;
844		}
845	}
846
847	if (constraints->initial_mode) {
848		if (!ops->set_mode) {
849			printk(KERN_ERR "%s: no set_mode operation for %s\n",
850			       __func__, name);
851			ret = -EINVAL;
852			goto out;
853		}
854
855		ret = ops->set_mode(rdev, constraints->initial_mode);
856		if (ret < 0) {
857			printk(KERN_ERR
858			       "%s: failed to set initial mode for %s: %d\n",
859			       __func__, name, ret);
860			goto out;
861		}
862	}
863
864	/* If the constraints say the regulator should be on at this point
865	 * and we have control then make sure it is enabled.
866	 */
867	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
868		ret = ops->enable(rdev);
869		if (ret < 0) {
870			printk(KERN_ERR "%s: failed to enable %s\n",
871			       __func__, name);
872			rdev->constraints = NULL;
873			goto out;
874		}
875	}
876
877	print_constraints(rdev);
878out:
879	return ret;
880}
881
882/**
883 * set_supply - set regulator supply regulator
884 * @rdev: regulator name
885 * @supply_rdev: supply regulator name
886 *
887 * Called by platform initialisation code to set the supply regulator for this
888 * regulator. This ensures that a regulators supply will also be enabled by the
889 * core if it's child is enabled.
890 */
891static int set_supply(struct regulator_dev *rdev,
892	struct regulator_dev *supply_rdev)
893{
894	int err;
895
896	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
897				"supply");
898	if (err) {
899		printk(KERN_ERR
900		       "%s: could not add device link %s err %d\n",
901		       __func__, supply_rdev->dev.kobj.name, err);
902		       goto out;
903	}
904	rdev->supply = supply_rdev;
905	list_add(&rdev->slist, &supply_rdev->supply_list);
906out:
907	return err;
908}
909
910/**
911 * set_consumer_device_supply: Bind a regulator to a symbolic supply
912 * @rdev:         regulator source
913 * @consumer_dev: device the supply applies to
914 * @consumer_dev_name: dev_name() string for device supply applies to
915 * @supply:       symbolic name for supply
916 *
917 * Allows platform initialisation code to map physical regulator
918 * sources to symbolic names for supplies for use by devices.  Devices
919 * should use these symbolic names to request regulators, avoiding the
920 * need to provide board-specific regulator names as platform data.
921 *
922 * Only one of consumer_dev and consumer_dev_name may be specified.
923 */
924static int set_consumer_device_supply(struct regulator_dev *rdev,
925	struct device *consumer_dev, const char *consumer_dev_name,
926	const char *supply)
927{
928	struct regulator_map *node;
929	int has_dev;
930
931	if (consumer_dev && consumer_dev_name)
932		return -EINVAL;
933
934	if (!consumer_dev_name && consumer_dev)
935		consumer_dev_name = dev_name(consumer_dev);
936
937	if (supply == NULL)
938		return -EINVAL;
939
940	if (consumer_dev_name != NULL)
941		has_dev = 1;
942	else
943		has_dev = 0;
944
945	list_for_each_entry(node, &regulator_map_list, list) {
946		if (consumer_dev_name != node->dev_name)
947			continue;
948		if (strcmp(node->supply, supply) != 0)
949			continue;
950
951		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
952				dev_name(&node->regulator->dev),
953				node->regulator->desc->name,
954				supply,
955				dev_name(&rdev->dev), rdev_get_name(rdev));
956		return -EBUSY;
957	}
958
959	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
960	if (node == NULL)
961		return -ENOMEM;
962
963	node->regulator = rdev;
964	node->supply = supply;
965
966	if (has_dev) {
967		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
968		if (node->dev_name == NULL) {
969			kfree(node);
970			return -ENOMEM;
971		}
972	}
973
974	list_add(&node->list, &regulator_map_list);
975	return 0;
976}
977
978static void unset_consumer_device_supply(struct regulator_dev *rdev,
979	const char *consumer_dev_name, struct device *consumer_dev)
980{
981	struct regulator_map *node, *n;
982
983	if (consumer_dev && !consumer_dev_name)
984		consumer_dev_name = dev_name(consumer_dev);
985
986	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
987		if (rdev != node->regulator)
988			continue;
989
990		if (consumer_dev_name && node->dev_name &&
991		    strcmp(consumer_dev_name, node->dev_name))
992			continue;
993
994		list_del(&node->list);
995		kfree(node->dev_name);
996		kfree(node);
997		return;
998	}
999}
1000
1001static void unset_regulator_supplies(struct regulator_dev *rdev)
1002{
1003	struct regulator_map *node, *n;
1004
1005	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006		if (rdev == node->regulator) {
1007			list_del(&node->list);
1008			kfree(node->dev_name);
1009			kfree(node);
1010			return;
1011		}
1012	}
1013}
1014
1015#define REG_STR_SIZE	32
1016
1017static struct regulator *create_regulator(struct regulator_dev *rdev,
1018					  struct device *dev,
1019					  const char *supply_name)
1020{
1021	struct regulator *regulator;
1022	char buf[REG_STR_SIZE];
1023	int err, size;
1024
1025	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1026	if (regulator == NULL)
1027		return NULL;
1028
1029	mutex_lock(&rdev->mutex);
1030	regulator->rdev = rdev;
1031	list_add(&regulator->list, &rdev->consumer_list);
1032
1033	if (dev) {
1034		/* create a 'requested_microamps_name' sysfs entry */
1035		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1036			supply_name);
1037		if (size >= REG_STR_SIZE)
1038			goto overflow_err;
1039
1040		regulator->dev = dev;
1041		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1042		if (regulator->dev_attr.attr.name == NULL)
1043			goto attr_name_err;
1044
1045		regulator->dev_attr.attr.owner = THIS_MODULE;
1046		regulator->dev_attr.attr.mode = 0444;
1047		regulator->dev_attr.show = device_requested_uA_show;
1048		err = device_create_file(dev, &regulator->dev_attr);
1049		if (err < 0) {
1050			printk(KERN_WARNING "%s: could not add regulator_dev"
1051				" load sysfs\n", __func__);
1052			goto attr_name_err;
1053		}
1054
1055		/* also add a link to the device sysfs entry */
1056		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1057				 dev->kobj.name, supply_name);
1058		if (size >= REG_STR_SIZE)
1059			goto attr_err;
1060
1061		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1062		if (regulator->supply_name == NULL)
1063			goto attr_err;
1064
1065		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1066					buf);
1067		if (err) {
1068			printk(KERN_WARNING
1069			       "%s: could not add device link %s err %d\n",
1070			       __func__, dev->kobj.name, err);
1071			device_remove_file(dev, &regulator->dev_attr);
1072			goto link_name_err;
1073		}
1074	}
1075	mutex_unlock(&rdev->mutex);
1076	return regulator;
1077link_name_err:
1078	kfree(regulator->supply_name);
1079attr_err:
1080	device_remove_file(regulator->dev, &regulator->dev_attr);
1081attr_name_err:
1082	kfree(regulator->dev_attr.attr.name);
1083overflow_err:
1084	list_del(&regulator->list);
1085	kfree(regulator);
1086	mutex_unlock(&rdev->mutex);
1087	return NULL;
1088}
1089
1090static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091{
1092	if (!rdev->desc->ops->enable_time)
1093		return 0;
1094	return rdev->desc->ops->enable_time(rdev);
1095}
1096
1097/* Internal regulator request function */
1098static struct regulator *_regulator_get(struct device *dev, const char *id,
1099					int exclusive)
1100{
1101	struct regulator_dev *rdev;
1102	struct regulator_map *map;
1103	struct regulator *regulator = ERR_PTR(-ENODEV);
1104	const char *devname = NULL;
1105	int ret;
1106
1107	if (id == NULL) {
1108		printk(KERN_ERR "regulator: get() with no identifier\n");
1109		return regulator;
1110	}
1111
1112	if (dev)
1113		devname = dev_name(dev);
1114
1115	mutex_lock(&regulator_list_mutex);
1116
1117	list_for_each_entry(map, &regulator_map_list, list) {
1118		/* If the mapping has a device set up it must match */
1119		if (map->dev_name &&
1120		    (!devname || strcmp(map->dev_name, devname)))
1121			continue;
1122
1123		if (strcmp(map->supply, id) == 0) {
1124			rdev = map->regulator;
1125			goto found;
1126		}
1127	}
1128
1129#ifdef CONFIG_REGULATOR_DUMMY
1130	if (!devname)
1131		devname = "deviceless";
1132
1133	/* If the board didn't flag that it was fully constrained then
1134	 * substitute in a dummy regulator so consumers can continue.
1135	 */
1136	if (!has_full_constraints) {
1137		pr_warning("%s supply %s not found, using dummy regulator\n",
1138			   devname, id);
1139		rdev = dummy_regulator_rdev;
1140		goto found;
1141	}
1142#endif
1143
1144	mutex_unlock(&regulator_list_mutex);
1145	return regulator;
1146
1147found:
1148	if (rdev->exclusive) {
1149		regulator = ERR_PTR(-EPERM);
1150		goto out;
1151	}
1152
1153	if (exclusive && rdev->open_count) {
1154		regulator = ERR_PTR(-EBUSY);
1155		goto out;
1156	}
1157
1158	if (!try_module_get(rdev->owner))
1159		goto out;
1160
1161	regulator = create_regulator(rdev, dev, id);
1162	if (regulator == NULL) {
1163		regulator = ERR_PTR(-ENOMEM);
1164		module_put(rdev->owner);
1165	}
1166
1167	rdev->open_count++;
1168	if (exclusive) {
1169		rdev->exclusive = 1;
1170
1171		ret = _regulator_is_enabled(rdev);
1172		if (ret > 0)
1173			rdev->use_count = 1;
1174		else
1175			rdev->use_count = 0;
1176	}
1177
1178out:
1179	mutex_unlock(&regulator_list_mutex);
1180
1181	return regulator;
1182}
1183
1184/**
1185 * regulator_get - lookup and obtain a reference to a regulator.
1186 * @dev: device for regulator "consumer"
1187 * @id: Supply name or regulator ID.
1188 *
1189 * Returns a struct regulator corresponding to the regulator producer,
1190 * or IS_ERR() condition containing errno.
1191 *
1192 * Use of supply names configured via regulator_set_device_supply() is
1193 * strongly encouraged.  It is recommended that the supply name used
1194 * should match the name used for the supply and/or the relevant
1195 * device pins in the datasheet.
1196 */
1197struct regulator *regulator_get(struct device *dev, const char *id)
1198{
1199	return _regulator_get(dev, id, 0);
1200}
1201EXPORT_SYMBOL_GPL(regulator_get);
1202
1203/**
1204 * regulator_get_exclusive - obtain exclusive access to a regulator.
1205 * @dev: device for regulator "consumer"
1206 * @id: Supply name or regulator ID.
1207 *
1208 * Returns a struct regulator corresponding to the regulator producer,
1209 * or IS_ERR() condition containing errno.  Other consumers will be
1210 * unable to obtain this reference is held and the use count for the
1211 * regulator will be initialised to reflect the current state of the
1212 * regulator.
1213 *
1214 * This is intended for use by consumers which cannot tolerate shared
1215 * use of the regulator such as those which need to force the
1216 * regulator off for correct operation of the hardware they are
1217 * controlling.
1218 *
1219 * Use of supply names configured via regulator_set_device_supply() is
1220 * strongly encouraged.  It is recommended that the supply name used
1221 * should match the name used for the supply and/or the relevant
1222 * device pins in the datasheet.
1223 */
1224struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1225{
1226	return _regulator_get(dev, id, 1);
1227}
1228EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1229
1230/**
1231 * regulator_put - "free" the regulator source
1232 * @regulator: regulator source
1233 *
1234 * Note: drivers must ensure that all regulator_enable calls made on this
1235 * regulator source are balanced by regulator_disable calls prior to calling
1236 * this function.
1237 */
1238void regulator_put(struct regulator *regulator)
1239{
1240	struct regulator_dev *rdev;
1241
1242	if (regulator == NULL || IS_ERR(regulator))
1243		return;
1244
1245	mutex_lock(&regulator_list_mutex);
1246	rdev = regulator->rdev;
1247
1248	/* remove any sysfs entries */
1249	if (regulator->dev) {
1250		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1251		kfree(regulator->supply_name);
1252		device_remove_file(regulator->dev, &regulator->dev_attr);
1253		kfree(regulator->dev_attr.attr.name);
1254	}
1255	list_del(&regulator->list);
1256	kfree(regulator);
1257
1258	rdev->open_count--;
1259	rdev->exclusive = 0;
1260
1261	module_put(rdev->owner);
1262	mutex_unlock(&regulator_list_mutex);
1263}
1264EXPORT_SYMBOL_GPL(regulator_put);
1265
1266static int _regulator_can_change_status(struct regulator_dev *rdev)
1267{
1268	if (!rdev->constraints)
1269		return 0;
1270
1271	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1272		return 1;
1273	else
1274		return 0;
1275}
1276
1277/* locks held by regulator_enable() */
1278static int _regulator_enable(struct regulator_dev *rdev)
1279{
1280	int ret, delay;
1281
1282	/* do we need to enable the supply regulator first */
1283	if (rdev->supply) {
1284		ret = _regulator_enable(rdev->supply);
1285		if (ret < 0) {
1286			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1287			       __func__, rdev_get_name(rdev), ret);
1288			return ret;
1289		}
1290	}
1291
1292	/* check voltage and requested load before enabling */
1293	if (rdev->constraints &&
1294	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1295		drms_uA_update(rdev);
1296
1297	if (rdev->use_count == 0) {
1298		/* The regulator may on if it's not switchable or left on */
1299		ret = _regulator_is_enabled(rdev);
1300		if (ret == -EINVAL || ret == 0) {
1301			if (!_regulator_can_change_status(rdev))
1302				return -EPERM;
1303
1304			if (!rdev->desc->ops->enable)
1305				return -EINVAL;
1306
1307			/* Query before enabling in case configuration
1308			 * dependant.  */
1309			ret = _regulator_get_enable_time(rdev);
1310			if (ret >= 0) {
1311				delay = ret;
1312			} else {
1313				printk(KERN_WARNING
1314					"%s: enable_time() failed for %s: %d\n",
1315					__func__, rdev_get_name(rdev),
1316					ret);
1317				delay = 0;
1318			}
1319
1320			/* Allow the regulator to ramp; it would be useful
1321			 * to extend this for bulk operations so that the
1322			 * regulators can ramp together.  */
1323			ret = rdev->desc->ops->enable(rdev);
1324			if (ret < 0)
1325				return ret;
1326
1327			if (delay >= 1000)
1328				mdelay(delay / 1000);
1329			else if (delay)
1330				udelay(delay);
1331
1332		} else if (ret < 0) {
1333			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1334			       __func__, rdev_get_name(rdev), ret);
1335			return ret;
1336		}
1337		/* Fallthrough on positive return values - already enabled */
1338	}
1339
1340	rdev->use_count++;
1341
1342	return 0;
1343}
1344
1345/**
1346 * regulator_enable - enable regulator output
1347 * @regulator: regulator source
1348 *
1349 * Request that the regulator be enabled with the regulator output at
1350 * the predefined voltage or current value.  Calls to regulator_enable()
1351 * must be balanced with calls to regulator_disable().
1352 *
1353 * NOTE: the output value can be set by other drivers, boot loader or may be
1354 * hardwired in the regulator.
1355 */
1356int regulator_enable(struct regulator *regulator)
1357{
1358	struct regulator_dev *rdev = regulator->rdev;
1359	int ret = 0;
1360
1361	mutex_lock(&rdev->mutex);
1362	ret = _regulator_enable(rdev);
1363	mutex_unlock(&rdev->mutex);
1364	return ret;
1365}
1366EXPORT_SYMBOL_GPL(regulator_enable);
1367
1368/* locks held by regulator_disable() */
1369static int _regulator_disable(struct regulator_dev *rdev)
1370{
1371	int ret = 0;
1372
1373	if (WARN(rdev->use_count <= 0,
1374			"unbalanced disables for %s\n",
1375			rdev_get_name(rdev)))
1376		return -EIO;
1377
1378	/* are we the last user and permitted to disable ? */
1379	if (rdev->use_count == 1 &&
1380	    (rdev->constraints && !rdev->constraints->always_on)) {
1381
1382		/* we are last user */
1383		if (_regulator_can_change_status(rdev) &&
1384		    rdev->desc->ops->disable) {
1385			ret = rdev->desc->ops->disable(rdev);
1386			if (ret < 0) {
1387				printk(KERN_ERR "%s: failed to disable %s\n",
1388				       __func__, rdev_get_name(rdev));
1389				return ret;
1390			}
1391
1392			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1393					     NULL);
1394		}
1395
1396		/* decrease our supplies ref count and disable if required */
1397		if (rdev->supply)
1398			_regulator_disable(rdev->supply);
1399
1400		rdev->use_count = 0;
1401	} else if (rdev->use_count > 1) {
1402
1403		if (rdev->constraints &&
1404			(rdev->constraints->valid_ops_mask &
1405			REGULATOR_CHANGE_DRMS))
1406			drms_uA_update(rdev);
1407
1408		rdev->use_count--;
1409	}
1410	return ret;
1411}
1412
1413/**
1414 * regulator_disable - disable regulator output
1415 * @regulator: regulator source
1416 *
1417 * Disable the regulator output voltage or current.  Calls to
1418 * regulator_enable() must be balanced with calls to
1419 * regulator_disable().
1420 *
1421 * NOTE: this will only disable the regulator output if no other consumer
1422 * devices have it enabled, the regulator device supports disabling and
1423 * machine constraints permit this operation.
1424 */
1425int regulator_disable(struct regulator *regulator)
1426{
1427	struct regulator_dev *rdev = regulator->rdev;
1428	int ret = 0;
1429
1430	mutex_lock(&rdev->mutex);
1431	ret = _regulator_disable(rdev);
1432	mutex_unlock(&rdev->mutex);
1433	return ret;
1434}
1435EXPORT_SYMBOL_GPL(regulator_disable);
1436
1437/* locks held by regulator_force_disable() */
1438static int _regulator_force_disable(struct regulator_dev *rdev)
1439{
1440	int ret = 0;
1441
1442	/* force disable */
1443	if (rdev->desc->ops->disable) {
1444		/* ah well, who wants to live forever... */
1445		ret = rdev->desc->ops->disable(rdev);
1446		if (ret < 0) {
1447			printk(KERN_ERR "%s: failed to force disable %s\n",
1448			       __func__, rdev_get_name(rdev));
1449			return ret;
1450		}
1451		/* notify other consumers that power has been forced off */
1452		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1453			REGULATOR_EVENT_DISABLE, NULL);
1454	}
1455
1456	/* decrease our supplies ref count and disable if required */
1457	if (rdev->supply)
1458		_regulator_disable(rdev->supply);
1459
1460	rdev->use_count = 0;
1461	return ret;
1462}
1463
1464/**
1465 * regulator_force_disable - force disable regulator output
1466 * @regulator: regulator source
1467 *
1468 * Forcibly disable the regulator output voltage or current.
1469 * NOTE: this *will* disable the regulator output even if other consumer
1470 * devices have it enabled. This should be used for situations when device
1471 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1472 */
1473int regulator_force_disable(struct regulator *regulator)
1474{
1475	int ret;
1476
1477	mutex_lock(&regulator->rdev->mutex);
1478	regulator->uA_load = 0;
1479	ret = _regulator_force_disable(regulator->rdev);
1480	mutex_unlock(&regulator->rdev->mutex);
1481	return ret;
1482}
1483EXPORT_SYMBOL_GPL(regulator_force_disable);
1484
1485static int _regulator_is_enabled(struct regulator_dev *rdev)
1486{
1487	/* If we don't know then assume that the regulator is always on */
1488	if (!rdev->desc->ops->is_enabled)
1489		return 1;
1490
1491	return rdev->desc->ops->is_enabled(rdev);
1492}
1493
1494/**
1495 * regulator_is_enabled - is the regulator output enabled
1496 * @regulator: regulator source
1497 *
1498 * Returns positive if the regulator driver backing the source/client
1499 * has requested that the device be enabled, zero if it hasn't, else a
1500 * negative errno code.
1501 *
1502 * Note that the device backing this regulator handle can have multiple
1503 * users, so it might be enabled even if regulator_enable() was never
1504 * called for this particular source.
1505 */
1506int regulator_is_enabled(struct regulator *regulator)
1507{
1508	int ret;
1509
1510	mutex_lock(&regulator->rdev->mutex);
1511	ret = _regulator_is_enabled(regulator->rdev);
1512	mutex_unlock(&regulator->rdev->mutex);
1513
1514	return ret;
1515}
1516EXPORT_SYMBOL_GPL(regulator_is_enabled);
1517
1518/**
1519 * regulator_count_voltages - count regulator_list_voltage() selectors
1520 * @regulator: regulator source
1521 *
1522 * Returns number of selectors, or negative errno.  Selectors are
1523 * numbered starting at zero, and typically correspond to bitfields
1524 * in hardware registers.
1525 */
1526int regulator_count_voltages(struct regulator *regulator)
1527{
1528	struct regulator_dev	*rdev = regulator->rdev;
1529
1530	return rdev->desc->n_voltages ? : -EINVAL;
1531}
1532EXPORT_SYMBOL_GPL(regulator_count_voltages);
1533
1534/**
1535 * regulator_list_voltage - enumerate supported voltages
1536 * @regulator: regulator source
1537 * @selector: identify voltage to list
1538 * Context: can sleep
1539 *
1540 * Returns a voltage that can be passed to @regulator_set_voltage(),
1541 * zero if this selector code can't be used on this sytem, or a
1542 * negative errno.
1543 */
1544int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1545{
1546	struct regulator_dev	*rdev = regulator->rdev;
1547	struct regulator_ops	*ops = rdev->desc->ops;
1548	int			ret;
1549
1550	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1551		return -EINVAL;
1552
1553	mutex_lock(&rdev->mutex);
1554	ret = ops->list_voltage(rdev, selector);
1555	mutex_unlock(&rdev->mutex);
1556
1557	if (ret > 0) {
1558		if (ret < rdev->constraints->min_uV)
1559			ret = 0;
1560		else if (ret > rdev->constraints->max_uV)
1561			ret = 0;
1562	}
1563
1564	return ret;
1565}
1566EXPORT_SYMBOL_GPL(regulator_list_voltage);
1567
1568/**
1569 * regulator_is_supported_voltage - check if a voltage range can be supported
1570 *
1571 * @regulator: Regulator to check.
1572 * @min_uV: Minimum required voltage in uV.
1573 * @max_uV: Maximum required voltage in uV.
1574 *
1575 * Returns a boolean or a negative error code.
1576 */
1577int regulator_is_supported_voltage(struct regulator *regulator,
1578				   int min_uV, int max_uV)
1579{
1580	int i, voltages, ret;
1581
1582	ret = regulator_count_voltages(regulator);
1583	if (ret < 0)
1584		return ret;
1585	voltages = ret;
1586
1587	for (i = 0; i < voltages; i++) {
1588		ret = regulator_list_voltage(regulator, i);
1589
1590		if (ret >= min_uV && ret <= max_uV)
1591			return 1;
1592	}
1593
1594	return 0;
1595}
1596
1597/**
1598 * regulator_set_voltage - set regulator output voltage
1599 * @regulator: regulator source
1600 * @min_uV: Minimum required voltage in uV
1601 * @max_uV: Maximum acceptable voltage in uV
1602 *
1603 * Sets a voltage regulator to the desired output voltage. This can be set
1604 * during any regulator state. IOW, regulator can be disabled or enabled.
1605 *
1606 * If the regulator is enabled then the voltage will change to the new value
1607 * immediately otherwise if the regulator is disabled the regulator will
1608 * output at the new voltage when enabled.
1609 *
1610 * NOTE: If the regulator is shared between several devices then the lowest
1611 * request voltage that meets the system constraints will be used.
1612 * Regulator system constraints must be set for this regulator before
1613 * calling this function otherwise this call will fail.
1614 */
1615int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1616{
1617	struct regulator_dev *rdev = regulator->rdev;
1618	int ret;
1619
1620	mutex_lock(&rdev->mutex);
1621
1622	/* sanity check */
1623	if (!rdev->desc->ops->set_voltage) {
1624		ret = -EINVAL;
1625		goto out;
1626	}
1627
1628	/* constraints check */
1629	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1630	if (ret < 0)
1631		goto out;
1632	regulator->min_uV = min_uV;
1633	regulator->max_uV = max_uV;
1634	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1635
1636out:
1637	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1638	mutex_unlock(&rdev->mutex);
1639	return ret;
1640}
1641EXPORT_SYMBOL_GPL(regulator_set_voltage);
1642
1643static int _regulator_get_voltage(struct regulator_dev *rdev)
1644{
1645	/* sanity check */
1646	if (rdev->desc->ops->get_voltage)
1647		return rdev->desc->ops->get_voltage(rdev);
1648	else
1649		return -EINVAL;
1650}
1651
1652/**
1653 * regulator_get_voltage - get regulator output voltage
1654 * @regulator: regulator source
1655 *
1656 * This returns the current regulator voltage in uV.
1657 *
1658 * NOTE: If the regulator is disabled it will return the voltage value. This
1659 * function should not be used to determine regulator state.
1660 */
1661int regulator_get_voltage(struct regulator *regulator)
1662{
1663	int ret;
1664
1665	mutex_lock(&regulator->rdev->mutex);
1666
1667	ret = _regulator_get_voltage(regulator->rdev);
1668
1669	mutex_unlock(&regulator->rdev->mutex);
1670
1671	return ret;
1672}
1673EXPORT_SYMBOL_GPL(regulator_get_voltage);
1674
1675/**
1676 * regulator_set_current_limit - set regulator output current limit
1677 * @regulator: regulator source
1678 * @min_uA: Minimuum supported current in uA
1679 * @max_uA: Maximum supported current in uA
1680 *
1681 * Sets current sink to the desired output current. This can be set during
1682 * any regulator state. IOW, regulator can be disabled or enabled.
1683 *
1684 * If the regulator is enabled then the current will change to the new value
1685 * immediately otherwise if the regulator is disabled the regulator will
1686 * output at the new current when enabled.
1687 *
1688 * NOTE: Regulator system constraints must be set for this regulator before
1689 * calling this function otherwise this call will fail.
1690 */
1691int regulator_set_current_limit(struct regulator *regulator,
1692			       int min_uA, int max_uA)
1693{
1694	struct regulator_dev *rdev = regulator->rdev;
1695	int ret;
1696
1697	mutex_lock(&rdev->mutex);
1698
1699	/* sanity check */
1700	if (!rdev->desc->ops->set_current_limit) {
1701		ret = -EINVAL;
1702		goto out;
1703	}
1704
1705	/* constraints check */
1706	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1707	if (ret < 0)
1708		goto out;
1709
1710	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1711out:
1712	mutex_unlock(&rdev->mutex);
1713	return ret;
1714}
1715EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1716
1717static int _regulator_get_current_limit(struct regulator_dev *rdev)
1718{
1719	int ret;
1720
1721	mutex_lock(&rdev->mutex);
1722
1723	/* sanity check */
1724	if (!rdev->desc->ops->get_current_limit) {
1725		ret = -EINVAL;
1726		goto out;
1727	}
1728
1729	ret = rdev->desc->ops->get_current_limit(rdev);
1730out:
1731	mutex_unlock(&rdev->mutex);
1732	return ret;
1733}
1734
1735/**
1736 * regulator_get_current_limit - get regulator output current
1737 * @regulator: regulator source
1738 *
1739 * This returns the current supplied by the specified current sink in uA.
1740 *
1741 * NOTE: If the regulator is disabled it will return the current value. This
1742 * function should not be used to determine regulator state.
1743 */
1744int regulator_get_current_limit(struct regulator *regulator)
1745{
1746	return _regulator_get_current_limit(regulator->rdev);
1747}
1748EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1749
1750/**
1751 * regulator_set_mode - set regulator operating mode
1752 * @regulator: regulator source
1753 * @mode: operating mode - one of the REGULATOR_MODE constants
1754 *
1755 * Set regulator operating mode to increase regulator efficiency or improve
1756 * regulation performance.
1757 *
1758 * NOTE: Regulator system constraints must be set for this regulator before
1759 * calling this function otherwise this call will fail.
1760 */
1761int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1762{
1763	struct regulator_dev *rdev = regulator->rdev;
1764	int ret;
1765
1766	mutex_lock(&rdev->mutex);
1767
1768	/* sanity check */
1769	if (!rdev->desc->ops->set_mode) {
1770		ret = -EINVAL;
1771		goto out;
1772	}
1773
1774	/* constraints check */
1775	ret = regulator_check_mode(rdev, mode);
1776	if (ret < 0)
1777		goto out;
1778
1779	ret = rdev->desc->ops->set_mode(rdev, mode);
1780out:
1781	mutex_unlock(&rdev->mutex);
1782	return ret;
1783}
1784EXPORT_SYMBOL_GPL(regulator_set_mode);
1785
1786static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1787{
1788	int ret;
1789
1790	mutex_lock(&rdev->mutex);
1791
1792	/* sanity check */
1793	if (!rdev->desc->ops->get_mode) {
1794		ret = -EINVAL;
1795		goto out;
1796	}
1797
1798	ret = rdev->desc->ops->get_mode(rdev);
1799out:
1800	mutex_unlock(&rdev->mutex);
1801	return ret;
1802}
1803
1804/**
1805 * regulator_get_mode - get regulator operating mode
1806 * @regulator: regulator source
1807 *
1808 * Get the current regulator operating mode.
1809 */
1810unsigned int regulator_get_mode(struct regulator *regulator)
1811{
1812	return _regulator_get_mode(regulator->rdev);
1813}
1814EXPORT_SYMBOL_GPL(regulator_get_mode);
1815
1816/**
1817 * regulator_set_optimum_mode - set regulator optimum operating mode
1818 * @regulator: regulator source
1819 * @uA_load: load current
1820 *
1821 * Notifies the regulator core of a new device load. This is then used by
1822 * DRMS (if enabled by constraints) to set the most efficient regulator
1823 * operating mode for the new regulator loading.
1824 *
1825 * Consumer devices notify their supply regulator of the maximum power
1826 * they will require (can be taken from device datasheet in the power
1827 * consumption tables) when they change operational status and hence power
1828 * state. Examples of operational state changes that can affect power
1829 * consumption are :-
1830 *
1831 *    o Device is opened / closed.
1832 *    o Device I/O is about to begin or has just finished.
1833 *    o Device is idling in between work.
1834 *
1835 * This information is also exported via sysfs to userspace.
1836 *
1837 * DRMS will sum the total requested load on the regulator and change
1838 * to the most efficient operating mode if platform constraints allow.
1839 *
1840 * Returns the new regulator mode or error.
1841 */
1842int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1843{
1844	struct regulator_dev *rdev = regulator->rdev;
1845	struct regulator *consumer;
1846	int ret, output_uV, input_uV, total_uA_load = 0;
1847	unsigned int mode;
1848
1849	mutex_lock(&rdev->mutex);
1850
1851	regulator->uA_load = uA_load;
1852	ret = regulator_check_drms(rdev);
1853	if (ret < 0)
1854		goto out;
1855	ret = -EINVAL;
1856
1857	/* sanity check */
1858	if (!rdev->desc->ops->get_optimum_mode)
1859		goto out;
1860
1861	/* get output voltage */
1862	output_uV = rdev->desc->ops->get_voltage(rdev);
1863	if (output_uV <= 0) {
1864		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1865			__func__, rdev_get_name(rdev));
1866		goto out;
1867	}
1868
1869	/* get input voltage */
1870	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1871		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1872	else
1873		input_uV = rdev->constraints->input_uV;
1874	if (input_uV <= 0) {
1875		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1876			__func__, rdev_get_name(rdev));
1877		goto out;
1878	}
1879
1880	/* calc total requested load for this regulator */
1881	list_for_each_entry(consumer, &rdev->consumer_list, list)
1882		total_uA_load += consumer->uA_load;
1883
1884	mode = rdev->desc->ops->get_optimum_mode(rdev,
1885						 input_uV, output_uV,
1886						 total_uA_load);
1887	ret = regulator_check_mode(rdev, mode);
1888	if (ret < 0) {
1889		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1890			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1891			total_uA_load, input_uV, output_uV);
1892		goto out;
1893	}
1894
1895	ret = rdev->desc->ops->set_mode(rdev, mode);
1896	if (ret < 0) {
1897		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1898			__func__, mode, rdev_get_name(rdev));
1899		goto out;
1900	}
1901	ret = mode;
1902out:
1903	mutex_unlock(&rdev->mutex);
1904	return ret;
1905}
1906EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1907
1908/**
1909 * regulator_register_notifier - register regulator event notifier
1910 * @regulator: regulator source
1911 * @nb: notifier block
1912 *
1913 * Register notifier block to receive regulator events.
1914 */
1915int regulator_register_notifier(struct regulator *regulator,
1916			      struct notifier_block *nb)
1917{
1918	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1919						nb);
1920}
1921EXPORT_SYMBOL_GPL(regulator_register_notifier);
1922
1923/**
1924 * regulator_unregister_notifier - unregister regulator event notifier
1925 * @regulator: regulator source
1926 * @nb: notifier block
1927 *
1928 * Unregister regulator event notifier block.
1929 */
1930int regulator_unregister_notifier(struct regulator *regulator,
1931				struct notifier_block *nb)
1932{
1933	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1934						  nb);
1935}
1936EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1937
1938/* notify regulator consumers and downstream regulator consumers.
1939 * Note mutex must be held by caller.
1940 */
1941static void _notifier_call_chain(struct regulator_dev *rdev,
1942				  unsigned long event, void *data)
1943{
1944	struct regulator_dev *_rdev;
1945
1946	/* call rdev chain first */
1947	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1948
1949	/* now notify regulator we supply */
1950	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1951		mutex_lock(&_rdev->mutex);
1952		_notifier_call_chain(_rdev, event, data);
1953		mutex_unlock(&_rdev->mutex);
1954	}
1955}
1956
1957/**
1958 * regulator_bulk_get - get multiple regulator consumers
1959 *
1960 * @dev:           Device to supply
1961 * @num_consumers: Number of consumers to register
1962 * @consumers:     Configuration of consumers; clients are stored here.
1963 *
1964 * @return 0 on success, an errno on failure.
1965 *
1966 * This helper function allows drivers to get several regulator
1967 * consumers in one operation.  If any of the regulators cannot be
1968 * acquired then any regulators that were allocated will be freed
1969 * before returning to the caller.
1970 */
1971int regulator_bulk_get(struct device *dev, int num_consumers,
1972		       struct regulator_bulk_data *consumers)
1973{
1974	int i;
1975	int ret;
1976
1977	for (i = 0; i < num_consumers; i++)
1978		consumers[i].consumer = NULL;
1979
1980	for (i = 0; i < num_consumers; i++) {
1981		consumers[i].consumer = regulator_get(dev,
1982						      consumers[i].supply);
1983		if (IS_ERR(consumers[i].consumer)) {
1984			ret = PTR_ERR(consumers[i].consumer);
1985			dev_err(dev, "Failed to get supply '%s': %d\n",
1986				consumers[i].supply, ret);
1987			consumers[i].consumer = NULL;
1988			goto err;
1989		}
1990	}
1991
1992	return 0;
1993
1994err:
1995	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1996		regulator_put(consumers[i].consumer);
1997
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(regulator_bulk_get);
2001
2002/**
2003 * regulator_bulk_enable - enable multiple regulator consumers
2004 *
2005 * @num_consumers: Number of consumers
2006 * @consumers:     Consumer data; clients are stored here.
2007 * @return         0 on success, an errno on failure
2008 *
2009 * This convenience API allows consumers to enable multiple regulator
2010 * clients in a single API call.  If any consumers cannot be enabled
2011 * then any others that were enabled will be disabled again prior to
2012 * return.
2013 */
2014int regulator_bulk_enable(int num_consumers,
2015			  struct regulator_bulk_data *consumers)
2016{
2017	int i;
2018	int ret;
2019
2020	for (i = 0; i < num_consumers; i++) {
2021		ret = regulator_enable(consumers[i].consumer);
2022		if (ret != 0)
2023			goto err;
2024	}
2025
2026	return 0;
2027
2028err:
2029	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2030	for (--i; i >= 0; --i)
2031		regulator_disable(consumers[i].consumer);
2032
2033	return ret;
2034}
2035EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2036
2037/**
2038 * regulator_bulk_disable - disable multiple regulator consumers
2039 *
2040 * @num_consumers: Number of consumers
2041 * @consumers:     Consumer data; clients are stored here.
2042 * @return         0 on success, an errno on failure
2043 *
2044 * This convenience API allows consumers to disable multiple regulator
2045 * clients in a single API call.  If any consumers cannot be enabled
2046 * then any others that were disabled will be disabled again prior to
2047 * return.
2048 */
2049int regulator_bulk_disable(int num_consumers,
2050			   struct regulator_bulk_data *consumers)
2051{
2052	int i;
2053	int ret;
2054
2055	for (i = 0; i < num_consumers; i++) {
2056		ret = regulator_disable(consumers[i].consumer);
2057		if (ret != 0)
2058			goto err;
2059	}
2060
2061	return 0;
2062
2063err:
2064	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2065	       ret);
2066	for (--i; i >= 0; --i)
2067		regulator_enable(consumers[i].consumer);
2068
2069	return ret;
2070}
2071EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2072
2073/**
2074 * regulator_bulk_free - free multiple regulator consumers
2075 *
2076 * @num_consumers: Number of consumers
2077 * @consumers:     Consumer data; clients are stored here.
2078 *
2079 * This convenience API allows consumers to free multiple regulator
2080 * clients in a single API call.
2081 */
2082void regulator_bulk_free(int num_consumers,
2083			 struct regulator_bulk_data *consumers)
2084{
2085	int i;
2086
2087	for (i = 0; i < num_consumers; i++) {
2088		regulator_put(consumers[i].consumer);
2089		consumers[i].consumer = NULL;
2090	}
2091}
2092EXPORT_SYMBOL_GPL(regulator_bulk_free);
2093
2094/**
2095 * regulator_notifier_call_chain - call regulator event notifier
2096 * @rdev: regulator source
2097 * @event: notifier block
2098 * @data: callback-specific data.
2099 *
2100 * Called by regulator drivers to notify clients a regulator event has
2101 * occurred. We also notify regulator clients downstream.
2102 * Note lock must be held by caller.
2103 */
2104int regulator_notifier_call_chain(struct regulator_dev *rdev,
2105				  unsigned long event, void *data)
2106{
2107	_notifier_call_chain(rdev, event, data);
2108	return NOTIFY_DONE;
2109
2110}
2111EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2112
2113/**
2114 * regulator_mode_to_status - convert a regulator mode into a status
2115 *
2116 * @mode: Mode to convert
2117 *
2118 * Convert a regulator mode into a status.
2119 */
2120int regulator_mode_to_status(unsigned int mode)
2121{
2122	switch (mode) {
2123	case REGULATOR_MODE_FAST:
2124		return REGULATOR_STATUS_FAST;
2125	case REGULATOR_MODE_NORMAL:
2126		return REGULATOR_STATUS_NORMAL;
2127	case REGULATOR_MODE_IDLE:
2128		return REGULATOR_STATUS_IDLE;
2129	case REGULATOR_STATUS_STANDBY:
2130		return REGULATOR_STATUS_STANDBY;
2131	default:
2132		return 0;
2133	}
2134}
2135EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2136
2137/*
2138 * To avoid cluttering sysfs (and memory) with useless state, only
2139 * create attributes that can be meaningfully displayed.
2140 */
2141static int add_regulator_attributes(struct regulator_dev *rdev)
2142{
2143	struct device		*dev = &rdev->dev;
2144	struct regulator_ops	*ops = rdev->desc->ops;
2145	int			status = 0;
2146
2147	/* some attributes need specific methods to be displayed */
2148	if (ops->get_voltage) {
2149		status = device_create_file(dev, &dev_attr_microvolts);
2150		if (status < 0)
2151			return status;
2152	}
2153	if (ops->get_current_limit) {
2154		status = device_create_file(dev, &dev_attr_microamps);
2155		if (status < 0)
2156			return status;
2157	}
2158	if (ops->get_mode) {
2159		status = device_create_file(dev, &dev_attr_opmode);
2160		if (status < 0)
2161			return status;
2162	}
2163	if (ops->is_enabled) {
2164		status = device_create_file(dev, &dev_attr_state);
2165		if (status < 0)
2166			return status;
2167	}
2168	if (ops->get_status) {
2169		status = device_create_file(dev, &dev_attr_status);
2170		if (status < 0)
2171			return status;
2172	}
2173
2174	/* some attributes are type-specific */
2175	if (rdev->desc->type == REGULATOR_CURRENT) {
2176		status = device_create_file(dev, &dev_attr_requested_microamps);
2177		if (status < 0)
2178			return status;
2179	}
2180
2181	/* all the other attributes exist to support constraints;
2182	 * don't show them if there are no constraints, or if the
2183	 * relevant supporting methods are missing.
2184	 */
2185	if (!rdev->constraints)
2186		return status;
2187
2188	/* constraints need specific supporting methods */
2189	if (ops->set_voltage) {
2190		status = device_create_file(dev, &dev_attr_min_microvolts);
2191		if (status < 0)
2192			return status;
2193		status = device_create_file(dev, &dev_attr_max_microvolts);
2194		if (status < 0)
2195			return status;
2196	}
2197	if (ops->set_current_limit) {
2198		status = device_create_file(dev, &dev_attr_min_microamps);
2199		if (status < 0)
2200			return status;
2201		status = device_create_file(dev, &dev_attr_max_microamps);
2202		if (status < 0)
2203			return status;
2204	}
2205
2206	/* suspend mode constraints need multiple supporting methods */
2207	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2208		return status;
2209
2210	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2211	if (status < 0)
2212		return status;
2213	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2214	if (status < 0)
2215		return status;
2216	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2217	if (status < 0)
2218		return status;
2219
2220	if (ops->set_suspend_voltage) {
2221		status = device_create_file(dev,
2222				&dev_attr_suspend_standby_microvolts);
2223		if (status < 0)
2224			return status;
2225		status = device_create_file(dev,
2226				&dev_attr_suspend_mem_microvolts);
2227		if (status < 0)
2228			return status;
2229		status = device_create_file(dev,
2230				&dev_attr_suspend_disk_microvolts);
2231		if (status < 0)
2232			return status;
2233	}
2234
2235	if (ops->set_suspend_mode) {
2236		status = device_create_file(dev,
2237				&dev_attr_suspend_standby_mode);
2238		if (status < 0)
2239			return status;
2240		status = device_create_file(dev,
2241				&dev_attr_suspend_mem_mode);
2242		if (status < 0)
2243			return status;
2244		status = device_create_file(dev,
2245				&dev_attr_suspend_disk_mode);
2246		if (status < 0)
2247			return status;
2248	}
2249
2250	return status;
2251}
2252
2253/**
2254 * regulator_register - register regulator
2255 * @regulator_desc: regulator to register
2256 * @dev: struct device for the regulator
2257 * @init_data: platform provided init data, passed through by driver
2258 * @driver_data: private regulator data
2259 *
2260 * Called by regulator drivers to register a regulator.
2261 * Returns 0 on success.
2262 */
2263struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2264	struct device *dev, struct regulator_init_data *init_data,
2265	void *driver_data)
2266{
2267	static atomic_t regulator_no = ATOMIC_INIT(0);
2268	struct regulator_dev *rdev;
2269	int ret, i;
2270
2271	if (regulator_desc == NULL)
2272		return ERR_PTR(-EINVAL);
2273
2274	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2275		return ERR_PTR(-EINVAL);
2276
2277	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2278	    regulator_desc->type != REGULATOR_CURRENT)
2279		return ERR_PTR(-EINVAL);
2280
2281	if (!init_data)
2282		return ERR_PTR(-EINVAL);
2283
2284	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2285	if (rdev == NULL)
2286		return ERR_PTR(-ENOMEM);
2287
2288	mutex_lock(&regulator_list_mutex);
2289
2290	mutex_init(&rdev->mutex);
2291	rdev->reg_data = driver_data;
2292	rdev->owner = regulator_desc->owner;
2293	rdev->desc = regulator_desc;
2294	INIT_LIST_HEAD(&rdev->consumer_list);
2295	INIT_LIST_HEAD(&rdev->supply_list);
2296	INIT_LIST_HEAD(&rdev->list);
2297	INIT_LIST_HEAD(&rdev->slist);
2298	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2299
2300	/* preform any regulator specific init */
2301	if (init_data->regulator_init) {
2302		ret = init_data->regulator_init(rdev->reg_data);
2303		if (ret < 0)
2304			goto clean;
2305	}
2306
2307	/* register with sysfs */
2308	rdev->dev.class = &regulator_class;
2309	rdev->dev.parent = dev;
2310	dev_set_name(&rdev->dev, "regulator.%d",
2311		     atomic_inc_return(&regulator_no) - 1);
2312	ret = device_register(&rdev->dev);
2313	if (ret != 0)
2314		goto clean;
2315
2316	dev_set_drvdata(&rdev->dev, rdev);
2317
2318	/* set regulator constraints */
2319	ret = set_machine_constraints(rdev, &init_data->constraints);
2320	if (ret < 0)
2321		goto scrub;
2322
2323	/* add attributes supported by this regulator */
2324	ret = add_regulator_attributes(rdev);
2325	if (ret < 0)
2326		goto scrub;
2327
2328	/* set supply regulator if it exists */
2329	if (init_data->supply_regulator_dev) {
2330		ret = set_supply(rdev,
2331			dev_get_drvdata(init_data->supply_regulator_dev));
2332		if (ret < 0)
2333			goto scrub;
2334	}
2335
2336	/* add consumers devices */
2337	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2338		ret = set_consumer_device_supply(rdev,
2339			init_data->consumer_supplies[i].dev,
2340			init_data->consumer_supplies[i].dev_name,
2341			init_data->consumer_supplies[i].supply);
2342		if (ret < 0) {
2343			for (--i; i >= 0; i--)
2344				unset_consumer_device_supply(rdev,
2345				    init_data->consumer_supplies[i].dev_name,
2346				    init_data->consumer_supplies[i].dev);
2347			goto scrub;
2348		}
2349	}
2350
2351	list_add(&rdev->list, &regulator_list);
2352out:
2353	mutex_unlock(&regulator_list_mutex);
2354	return rdev;
2355
2356scrub:
2357	device_unregister(&rdev->dev);
2358	/* device core frees rdev */
2359	rdev = ERR_PTR(ret);
2360	goto out;
2361
2362clean:
2363	kfree(rdev);
2364	rdev = ERR_PTR(ret);
2365	goto out;
2366}
2367EXPORT_SYMBOL_GPL(regulator_register);
2368
2369/**
2370 * regulator_unregister - unregister regulator
2371 * @rdev: regulator to unregister
2372 *
2373 * Called by regulator drivers to unregister a regulator.
2374 */
2375void regulator_unregister(struct regulator_dev *rdev)
2376{
2377	if (rdev == NULL)
2378		return;
2379
2380	mutex_lock(&regulator_list_mutex);
2381	WARN_ON(rdev->open_count);
2382	unset_regulator_supplies(rdev);
2383	list_del(&rdev->list);
2384	if (rdev->supply)
2385		sysfs_remove_link(&rdev->dev.kobj, "supply");
2386	device_unregister(&rdev->dev);
2387	mutex_unlock(&regulator_list_mutex);
2388}
2389EXPORT_SYMBOL_GPL(regulator_unregister);
2390
2391/**
2392 * regulator_suspend_prepare - prepare regulators for system wide suspend
2393 * @state: system suspend state
2394 *
2395 * Configure each regulator with it's suspend operating parameters for state.
2396 * This will usually be called by machine suspend code prior to supending.
2397 */
2398int regulator_suspend_prepare(suspend_state_t state)
2399{
2400	struct regulator_dev *rdev;
2401	int ret = 0;
2402
2403	/* ON is handled by regulator active state */
2404	if (state == PM_SUSPEND_ON)
2405		return -EINVAL;
2406
2407	mutex_lock(&regulator_list_mutex);
2408	list_for_each_entry(rdev, &regulator_list, list) {
2409
2410		mutex_lock(&rdev->mutex);
2411		ret = suspend_prepare(rdev, state);
2412		mutex_unlock(&rdev->mutex);
2413
2414		if (ret < 0) {
2415			printk(KERN_ERR "%s: failed to prepare %s\n",
2416				__func__, rdev_get_name(rdev));
2417			goto out;
2418		}
2419	}
2420out:
2421	mutex_unlock(&regulator_list_mutex);
2422	return ret;
2423}
2424EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2425
2426/**
2427 * regulator_has_full_constraints - the system has fully specified constraints
2428 *
2429 * Calling this function will cause the regulator API to disable all
2430 * regulators which have a zero use count and don't have an always_on
2431 * constraint in a late_initcall.
2432 *
2433 * The intention is that this will become the default behaviour in a
2434 * future kernel release so users are encouraged to use this facility
2435 * now.
2436 */
2437void regulator_has_full_constraints(void)
2438{
2439	has_full_constraints = 1;
2440}
2441EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2442
2443/**
2444 * rdev_get_drvdata - get rdev regulator driver data
2445 * @rdev: regulator
2446 *
2447 * Get rdev regulator driver private data. This call can be used in the
2448 * regulator driver context.
2449 */
2450void *rdev_get_drvdata(struct regulator_dev *rdev)
2451{
2452	return rdev->reg_data;
2453}
2454EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2455
2456/**
2457 * regulator_get_drvdata - get regulator driver data
2458 * @regulator: regulator
2459 *
2460 * Get regulator driver private data. This call can be used in the consumer
2461 * driver context when non API regulator specific functions need to be called.
2462 */
2463void *regulator_get_drvdata(struct regulator *regulator)
2464{
2465	return regulator->rdev->reg_data;
2466}
2467EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2468
2469/**
2470 * regulator_set_drvdata - set regulator driver data
2471 * @regulator: regulator
2472 * @data: data
2473 */
2474void regulator_set_drvdata(struct regulator *regulator, void *data)
2475{
2476	regulator->rdev->reg_data = data;
2477}
2478EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2479
2480/**
2481 * regulator_get_id - get regulator ID
2482 * @rdev: regulator
2483 */
2484int rdev_get_id(struct regulator_dev *rdev)
2485{
2486	return rdev->desc->id;
2487}
2488EXPORT_SYMBOL_GPL(rdev_get_id);
2489
2490struct device *rdev_get_dev(struct regulator_dev *rdev)
2491{
2492	return &rdev->dev;
2493}
2494EXPORT_SYMBOL_GPL(rdev_get_dev);
2495
2496void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2497{
2498	return reg_init_data->driver_data;
2499}
2500EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2501
2502static int __init regulator_init(void)
2503{
2504	int ret;
2505
2506	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2507
2508	ret = class_register(&regulator_class);
2509
2510	regulator_dummy_init();
2511
2512	return ret;
2513}
2514
2515/* init early to allow our consumers to complete system booting */
2516core_initcall(regulator_init);
2517
2518static int __init regulator_init_complete(void)
2519{
2520	struct regulator_dev *rdev;
2521	struct regulator_ops *ops;
2522	struct regulation_constraints *c;
2523	int enabled, ret;
2524	const char *name;
2525
2526	mutex_lock(&regulator_list_mutex);
2527
2528	/* If we have a full configuration then disable any regulators
2529	 * which are not in use or always_on.  This will become the
2530	 * default behaviour in the future.
2531	 */
2532	list_for_each_entry(rdev, &regulator_list, list) {
2533		ops = rdev->desc->ops;
2534		c = rdev->constraints;
2535
2536		name = rdev_get_name(rdev);
2537
2538		if (!ops->disable || (c && c->always_on))
2539			continue;
2540
2541		mutex_lock(&rdev->mutex);
2542
2543		if (rdev->use_count)
2544			goto unlock;
2545
2546		/* If we can't read the status assume it's on. */
2547		if (ops->is_enabled)
2548			enabled = ops->is_enabled(rdev);
2549		else
2550			enabled = 1;
2551
2552		if (!enabled)
2553			goto unlock;
2554
2555		if (has_full_constraints) {
2556			/* We log since this may kill the system if it
2557			 * goes wrong. */
2558			printk(KERN_INFO "%s: disabling %s\n",
2559			       __func__, name);
2560			ret = ops->disable(rdev);
2561			if (ret != 0) {
2562				printk(KERN_ERR
2563				       "%s: couldn't disable %s: %d\n",
2564				       __func__, name, ret);
2565			}
2566		} else {
2567			/* The intention is that in future we will
2568			 * assume that full constraints are provided
2569			 * so warn even if we aren't going to do
2570			 * anything here.
2571			 */
2572			printk(KERN_WARNING
2573			       "%s: incomplete constraints, leaving %s on\n",
2574			       __func__, name);
2575		}
2576
2577unlock:
2578		mutex_unlock(&rdev->mutex);
2579	}
2580
2581	mutex_unlock(&regulator_list_mutex);
2582
2583	return 0;
2584}
2585late_initcall(regulator_init_complete);
2586