core.c revision 3801b86aa482d26a8ae460f67fca29e016491a86
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_err(rdev, fmt, ...)					\
38	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_warn(rdev, fmt, ...)					\
40	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_info(rdev, fmt, ...)					\
42	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_dbg(rdev, fmt, ...)					\
44	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45
46static DEFINE_MUTEX(regulator_list_mutex);
47static LIST_HEAD(regulator_list);
48static LIST_HEAD(regulator_map_list);
49static bool has_full_constraints;
50static bool board_wants_dummy_regulator;
51
52#ifdef CONFIG_DEBUG_FS
53static struct dentry *debugfs_root;
54#endif
55
56/*
57 * struct regulator_map
58 *
59 * Used to provide symbolic supply names to devices.
60 */
61struct regulator_map {
62	struct list_head list;
63	const char *dev_name;   /* The dev_name() for the consumer */
64	const char *supply;
65	struct regulator_dev *regulator;
66};
67
68/*
69 * struct regulator
70 *
71 * One for each consumer device.
72 */
73struct regulator {
74	struct device *dev;
75	struct list_head list;
76	int uA_load;
77	int min_uV;
78	int max_uV;
79	char *supply_name;
80	struct device_attribute dev_attr;
81	struct regulator_dev *rdev;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator_dev *rdev);
86static int _regulator_get_voltage(struct regulator_dev *rdev);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static void _notifier_call_chain(struct regulator_dev *rdev,
90				  unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92				     int min_uV, int max_uV);
93static struct regulator *create_regulator(struct regulator_dev *rdev,
94					  struct device *dev,
95					  const char *supply_name);
96
97static const char *rdev_get_name(struct regulator_dev *rdev)
98{
99	if (rdev->constraints && rdev->constraints->name)
100		return rdev->constraints->name;
101	else if (rdev->desc->name)
102		return rdev->desc->name;
103	else
104		return "";
105}
106
107/* gets the regulator for a given consumer device */
108static struct regulator *get_device_regulator(struct device *dev)
109{
110	struct regulator *regulator = NULL;
111	struct regulator_dev *rdev;
112
113	mutex_lock(&regulator_list_mutex);
114	list_for_each_entry(rdev, &regulator_list, list) {
115		mutex_lock(&rdev->mutex);
116		list_for_each_entry(regulator, &rdev->consumer_list, list) {
117			if (regulator->dev == dev) {
118				mutex_unlock(&rdev->mutex);
119				mutex_unlock(&regulator_list_mutex);
120				return regulator;
121			}
122		}
123		mutex_unlock(&rdev->mutex);
124	}
125	mutex_unlock(&regulator_list_mutex);
126	return NULL;
127}
128
129/* Platform voltage constraint check */
130static int regulator_check_voltage(struct regulator_dev *rdev,
131				   int *min_uV, int *max_uV)
132{
133	BUG_ON(*min_uV > *max_uV);
134
135	if (!rdev->constraints) {
136		rdev_err(rdev, "no constraints\n");
137		return -ENODEV;
138	}
139	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
140		rdev_err(rdev, "operation not allowed\n");
141		return -EPERM;
142	}
143
144	if (*max_uV > rdev->constraints->max_uV)
145		*max_uV = rdev->constraints->max_uV;
146	if (*min_uV < rdev->constraints->min_uV)
147		*min_uV = rdev->constraints->min_uV;
148
149	if (*min_uV > *max_uV)
150		return -EINVAL;
151
152	return 0;
153}
154
155/* Make sure we select a voltage that suits the needs of all
156 * regulator consumers
157 */
158static int regulator_check_consumers(struct regulator_dev *rdev,
159				     int *min_uV, int *max_uV)
160{
161	struct regulator *regulator;
162
163	list_for_each_entry(regulator, &rdev->consumer_list, list) {
164		/*
165		 * Assume consumers that didn't say anything are OK
166		 * with anything in the constraint range.
167		 */
168		if (!regulator->min_uV && !regulator->max_uV)
169			continue;
170
171		if (*max_uV > regulator->max_uV)
172			*max_uV = regulator->max_uV;
173		if (*min_uV < regulator->min_uV)
174			*min_uV = regulator->min_uV;
175	}
176
177	if (*min_uV > *max_uV)
178		return -EINVAL;
179
180	return 0;
181}
182
183/* current constraint check */
184static int regulator_check_current_limit(struct regulator_dev *rdev,
185					int *min_uA, int *max_uA)
186{
187	BUG_ON(*min_uA > *max_uA);
188
189	if (!rdev->constraints) {
190		rdev_err(rdev, "no constraints\n");
191		return -ENODEV;
192	}
193	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
194		rdev_err(rdev, "operation not allowed\n");
195		return -EPERM;
196	}
197
198	if (*max_uA > rdev->constraints->max_uA)
199		*max_uA = rdev->constraints->max_uA;
200	if (*min_uA < rdev->constraints->min_uA)
201		*min_uA = rdev->constraints->min_uA;
202
203	if (*min_uA > *max_uA)
204		return -EINVAL;
205
206	return 0;
207}
208
209/* operating mode constraint check */
210static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
211{
212	switch (*mode) {
213	case REGULATOR_MODE_FAST:
214	case REGULATOR_MODE_NORMAL:
215	case REGULATOR_MODE_IDLE:
216	case REGULATOR_MODE_STANDBY:
217		break;
218	default:
219		return -EINVAL;
220	}
221
222	if (!rdev->constraints) {
223		rdev_err(rdev, "no constraints\n");
224		return -ENODEV;
225	}
226	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
227		rdev_err(rdev, "operation not allowed\n");
228		return -EPERM;
229	}
230
231	/* The modes are bitmasks, the most power hungry modes having
232	 * the lowest values. If the requested mode isn't supported
233	 * try higher modes. */
234	while (*mode) {
235		if (rdev->constraints->valid_modes_mask & *mode)
236			return 0;
237		*mode /= 2;
238	}
239
240	return -EINVAL;
241}
242
243/* dynamic regulator mode switching constraint check */
244static int regulator_check_drms(struct regulator_dev *rdev)
245{
246	if (!rdev->constraints) {
247		rdev_err(rdev, "no constraints\n");
248		return -ENODEV;
249	}
250	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
251		rdev_err(rdev, "operation not allowed\n");
252		return -EPERM;
253	}
254	return 0;
255}
256
257static ssize_t device_requested_uA_show(struct device *dev,
258			     struct device_attribute *attr, char *buf)
259{
260	struct regulator *regulator;
261
262	regulator = get_device_regulator(dev);
263	if (regulator == NULL)
264		return 0;
265
266	return sprintf(buf, "%d\n", regulator->uA_load);
267}
268
269static ssize_t regulator_uV_show(struct device *dev,
270				struct device_attribute *attr, char *buf)
271{
272	struct regulator_dev *rdev = dev_get_drvdata(dev);
273	ssize_t ret;
274
275	mutex_lock(&rdev->mutex);
276	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
277	mutex_unlock(&rdev->mutex);
278
279	return ret;
280}
281static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
282
283static ssize_t regulator_uA_show(struct device *dev,
284				struct device_attribute *attr, char *buf)
285{
286	struct regulator_dev *rdev = dev_get_drvdata(dev);
287
288	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
289}
290static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
291
292static ssize_t regulator_name_show(struct device *dev,
293			     struct device_attribute *attr, char *buf)
294{
295	struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297	return sprintf(buf, "%s\n", rdev_get_name(rdev));
298}
299
300static ssize_t regulator_print_opmode(char *buf, int mode)
301{
302	switch (mode) {
303	case REGULATOR_MODE_FAST:
304		return sprintf(buf, "fast\n");
305	case REGULATOR_MODE_NORMAL:
306		return sprintf(buf, "normal\n");
307	case REGULATOR_MODE_IDLE:
308		return sprintf(buf, "idle\n");
309	case REGULATOR_MODE_STANDBY:
310		return sprintf(buf, "standby\n");
311	}
312	return sprintf(buf, "unknown\n");
313}
314
315static ssize_t regulator_opmode_show(struct device *dev,
316				    struct device_attribute *attr, char *buf)
317{
318	struct regulator_dev *rdev = dev_get_drvdata(dev);
319
320	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
321}
322static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
323
324static ssize_t regulator_print_state(char *buf, int state)
325{
326	if (state > 0)
327		return sprintf(buf, "enabled\n");
328	else if (state == 0)
329		return sprintf(buf, "disabled\n");
330	else
331		return sprintf(buf, "unknown\n");
332}
333
334static ssize_t regulator_state_show(struct device *dev,
335				   struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338	ssize_t ret;
339
340	mutex_lock(&rdev->mutex);
341	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
342	mutex_unlock(&rdev->mutex);
343
344	return ret;
345}
346static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
347
348static ssize_t regulator_status_show(struct device *dev,
349				   struct device_attribute *attr, char *buf)
350{
351	struct regulator_dev *rdev = dev_get_drvdata(dev);
352	int status;
353	char *label;
354
355	status = rdev->desc->ops->get_status(rdev);
356	if (status < 0)
357		return status;
358
359	switch (status) {
360	case REGULATOR_STATUS_OFF:
361		label = "off";
362		break;
363	case REGULATOR_STATUS_ON:
364		label = "on";
365		break;
366	case REGULATOR_STATUS_ERROR:
367		label = "error";
368		break;
369	case REGULATOR_STATUS_FAST:
370		label = "fast";
371		break;
372	case REGULATOR_STATUS_NORMAL:
373		label = "normal";
374		break;
375	case REGULATOR_STATUS_IDLE:
376		label = "idle";
377		break;
378	case REGULATOR_STATUS_STANDBY:
379		label = "standby";
380		break;
381	default:
382		return -ERANGE;
383	}
384
385	return sprintf(buf, "%s\n", label);
386}
387static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
388
389static ssize_t regulator_min_uA_show(struct device *dev,
390				    struct device_attribute *attr, char *buf)
391{
392	struct regulator_dev *rdev = dev_get_drvdata(dev);
393
394	if (!rdev->constraints)
395		return sprintf(buf, "constraint not defined\n");
396
397	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
398}
399static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
400
401static ssize_t regulator_max_uA_show(struct device *dev,
402				    struct device_attribute *attr, char *buf)
403{
404	struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406	if (!rdev->constraints)
407		return sprintf(buf, "constraint not defined\n");
408
409	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
410}
411static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
412
413static ssize_t regulator_min_uV_show(struct device *dev,
414				    struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	if (!rdev->constraints)
419		return sprintf(buf, "constraint not defined\n");
420
421	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
422}
423static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
424
425static ssize_t regulator_max_uV_show(struct device *dev,
426				    struct device_attribute *attr, char *buf)
427{
428	struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430	if (!rdev->constraints)
431		return sprintf(buf, "constraint not defined\n");
432
433	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
434}
435static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
436
437static ssize_t regulator_total_uA_show(struct device *dev,
438				      struct device_attribute *attr, char *buf)
439{
440	struct regulator_dev *rdev = dev_get_drvdata(dev);
441	struct regulator *regulator;
442	int uA = 0;
443
444	mutex_lock(&rdev->mutex);
445	list_for_each_entry(regulator, &rdev->consumer_list, list)
446		uA += regulator->uA_load;
447	mutex_unlock(&rdev->mutex);
448	return sprintf(buf, "%d\n", uA);
449}
450static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
451
452static ssize_t regulator_num_users_show(struct device *dev,
453				      struct device_attribute *attr, char *buf)
454{
455	struct regulator_dev *rdev = dev_get_drvdata(dev);
456	return sprintf(buf, "%d\n", rdev->use_count);
457}
458
459static ssize_t regulator_type_show(struct device *dev,
460				  struct device_attribute *attr, char *buf)
461{
462	struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464	switch (rdev->desc->type) {
465	case REGULATOR_VOLTAGE:
466		return sprintf(buf, "voltage\n");
467	case REGULATOR_CURRENT:
468		return sprintf(buf, "current\n");
469	}
470	return sprintf(buf, "unknown\n");
471}
472
473static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
474				struct device_attribute *attr, char *buf)
475{
476	struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
479}
480static DEVICE_ATTR(suspend_mem_microvolts, 0444,
481		regulator_suspend_mem_uV_show, NULL);
482
483static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
484				struct device_attribute *attr, char *buf)
485{
486	struct regulator_dev *rdev = dev_get_drvdata(dev);
487
488	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
489}
490static DEVICE_ATTR(suspend_disk_microvolts, 0444,
491		regulator_suspend_disk_uV_show, NULL);
492
493static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
494				struct device_attribute *attr, char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497
498	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
499}
500static DEVICE_ATTR(suspend_standby_microvolts, 0444,
501		regulator_suspend_standby_uV_show, NULL);
502
503static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
504				struct device_attribute *attr, char *buf)
505{
506	struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508	return regulator_print_opmode(buf,
509		rdev->constraints->state_mem.mode);
510}
511static DEVICE_ATTR(suspend_mem_mode, 0444,
512		regulator_suspend_mem_mode_show, NULL);
513
514static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
515				struct device_attribute *attr, char *buf)
516{
517	struct regulator_dev *rdev = dev_get_drvdata(dev);
518
519	return regulator_print_opmode(buf,
520		rdev->constraints->state_disk.mode);
521}
522static DEVICE_ATTR(suspend_disk_mode, 0444,
523		regulator_suspend_disk_mode_show, NULL);
524
525static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return regulator_print_opmode(buf,
531		rdev->constraints->state_standby.mode);
532}
533static DEVICE_ATTR(suspend_standby_mode, 0444,
534		regulator_suspend_standby_mode_show, NULL);
535
536static ssize_t regulator_suspend_mem_state_show(struct device *dev,
537				   struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return regulator_print_state(buf,
542			rdev->constraints->state_mem.enabled);
543}
544static DEVICE_ATTR(suspend_mem_state, 0444,
545		regulator_suspend_mem_state_show, NULL);
546
547static ssize_t regulator_suspend_disk_state_show(struct device *dev,
548				   struct device_attribute *attr, char *buf)
549{
550	struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552	return regulator_print_state(buf,
553			rdev->constraints->state_disk.enabled);
554}
555static DEVICE_ATTR(suspend_disk_state, 0444,
556		regulator_suspend_disk_state_show, NULL);
557
558static ssize_t regulator_suspend_standby_state_show(struct device *dev,
559				   struct device_attribute *attr, char *buf)
560{
561	struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563	return regulator_print_state(buf,
564			rdev->constraints->state_standby.enabled);
565}
566static DEVICE_ATTR(suspend_standby_state, 0444,
567		regulator_suspend_standby_state_show, NULL);
568
569
570/*
571 * These are the only attributes are present for all regulators.
572 * Other attributes are a function of regulator functionality.
573 */
574static struct device_attribute regulator_dev_attrs[] = {
575	__ATTR(name, 0444, regulator_name_show, NULL),
576	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
577	__ATTR(type, 0444, regulator_type_show, NULL),
578	__ATTR_NULL,
579};
580
581static void regulator_dev_release(struct device *dev)
582{
583	struct regulator_dev *rdev = dev_get_drvdata(dev);
584	kfree(rdev);
585}
586
587static struct class regulator_class = {
588	.name = "regulator",
589	.dev_release = regulator_dev_release,
590	.dev_attrs = regulator_dev_attrs,
591};
592
593/* Calculate the new optimum regulator operating mode based on the new total
594 * consumer load. All locks held by caller */
595static void drms_uA_update(struct regulator_dev *rdev)
596{
597	struct regulator *sibling;
598	int current_uA = 0, output_uV, input_uV, err;
599	unsigned int mode;
600
601	err = regulator_check_drms(rdev);
602	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
603	    (!rdev->desc->ops->get_voltage &&
604	     !rdev->desc->ops->get_voltage_sel) ||
605	    !rdev->desc->ops->set_mode)
606		return;
607
608	/* get output voltage */
609	output_uV = _regulator_get_voltage(rdev);
610	if (output_uV <= 0)
611		return;
612
613	/* get input voltage */
614	input_uV = 0;
615	if (rdev->supply)
616		input_uV = _regulator_get_voltage(rdev);
617	if (input_uV <= 0)
618		input_uV = rdev->constraints->input_uV;
619	if (input_uV <= 0)
620		return;
621
622	/* calc total requested load */
623	list_for_each_entry(sibling, &rdev->consumer_list, list)
624		current_uA += sibling->uA_load;
625
626	/* now get the optimum mode for our new total regulator load */
627	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
628						  output_uV, current_uA);
629
630	/* check the new mode is allowed */
631	err = regulator_mode_constrain(rdev, &mode);
632	if (err == 0)
633		rdev->desc->ops->set_mode(rdev, mode);
634}
635
636static int suspend_set_state(struct regulator_dev *rdev,
637	struct regulator_state *rstate)
638{
639	int ret = 0;
640	bool can_set_state;
641
642	can_set_state = rdev->desc->ops->set_suspend_enable &&
643		rdev->desc->ops->set_suspend_disable;
644
645	/* If we have no suspend mode configration don't set anything;
646	 * only warn if the driver actually makes the suspend mode
647	 * configurable.
648	 */
649	if (!rstate->enabled && !rstate->disabled) {
650		if (can_set_state)
651			rdev_warn(rdev, "No configuration\n");
652		return 0;
653	}
654
655	if (rstate->enabled && rstate->disabled) {
656		rdev_err(rdev, "invalid configuration\n");
657		return -EINVAL;
658	}
659
660	if (!can_set_state) {
661		rdev_err(rdev, "no way to set suspend state\n");
662		return -EINVAL;
663	}
664
665	if (rstate->enabled)
666		ret = rdev->desc->ops->set_suspend_enable(rdev);
667	else
668		ret = rdev->desc->ops->set_suspend_disable(rdev);
669	if (ret < 0) {
670		rdev_err(rdev, "failed to enabled/disable\n");
671		return ret;
672	}
673
674	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
675		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
676		if (ret < 0) {
677			rdev_err(rdev, "failed to set voltage\n");
678			return ret;
679		}
680	}
681
682	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
683		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
684		if (ret < 0) {
685			rdev_err(rdev, "failed to set mode\n");
686			return ret;
687		}
688	}
689	return ret;
690}
691
692/* locks held by caller */
693static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
694{
695	if (!rdev->constraints)
696		return -EINVAL;
697
698	switch (state) {
699	case PM_SUSPEND_STANDBY:
700		return suspend_set_state(rdev,
701			&rdev->constraints->state_standby);
702	case PM_SUSPEND_MEM:
703		return suspend_set_state(rdev,
704			&rdev->constraints->state_mem);
705	case PM_SUSPEND_MAX:
706		return suspend_set_state(rdev,
707			&rdev->constraints->state_disk);
708	default:
709		return -EINVAL;
710	}
711}
712
713static void print_constraints(struct regulator_dev *rdev)
714{
715	struct regulation_constraints *constraints = rdev->constraints;
716	char buf[80] = "";
717	int count = 0;
718	int ret;
719
720	if (constraints->min_uV && constraints->max_uV) {
721		if (constraints->min_uV == constraints->max_uV)
722			count += sprintf(buf + count, "%d mV ",
723					 constraints->min_uV / 1000);
724		else
725			count += sprintf(buf + count, "%d <--> %d mV ",
726					 constraints->min_uV / 1000,
727					 constraints->max_uV / 1000);
728	}
729
730	if (!constraints->min_uV ||
731	    constraints->min_uV != constraints->max_uV) {
732		ret = _regulator_get_voltage(rdev);
733		if (ret > 0)
734			count += sprintf(buf + count, "at %d mV ", ret / 1000);
735	}
736
737	if (constraints->uV_offset)
738		count += sprintf(buf, "%dmV offset ",
739				 constraints->uV_offset / 1000);
740
741	if (constraints->min_uA && constraints->max_uA) {
742		if (constraints->min_uA == constraints->max_uA)
743			count += sprintf(buf + count, "%d mA ",
744					 constraints->min_uA / 1000);
745		else
746			count += sprintf(buf + count, "%d <--> %d mA ",
747					 constraints->min_uA / 1000,
748					 constraints->max_uA / 1000);
749	}
750
751	if (!constraints->min_uA ||
752	    constraints->min_uA != constraints->max_uA) {
753		ret = _regulator_get_current_limit(rdev);
754		if (ret > 0)
755			count += sprintf(buf + count, "at %d mA ", ret / 1000);
756	}
757
758	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
759		count += sprintf(buf + count, "fast ");
760	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
761		count += sprintf(buf + count, "normal ");
762	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
763		count += sprintf(buf + count, "idle ");
764	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
765		count += sprintf(buf + count, "standby");
766
767	rdev_info(rdev, "%s\n", buf);
768}
769
770static int machine_constraints_voltage(struct regulator_dev *rdev,
771	struct regulation_constraints *constraints)
772{
773	struct regulator_ops *ops = rdev->desc->ops;
774	int ret;
775
776	/* do we need to apply the constraint voltage */
777	if (rdev->constraints->apply_uV &&
778	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
779		ret = _regulator_do_set_voltage(rdev,
780						rdev->constraints->min_uV,
781						rdev->constraints->max_uV);
782		if (ret < 0) {
783			rdev_err(rdev, "failed to apply %duV constraint\n",
784				 rdev->constraints->min_uV);
785			rdev->constraints = NULL;
786			return ret;
787		}
788	}
789
790	/* constrain machine-level voltage specs to fit
791	 * the actual range supported by this regulator.
792	 */
793	if (ops->list_voltage && rdev->desc->n_voltages) {
794		int	count = rdev->desc->n_voltages;
795		int	i;
796		int	min_uV = INT_MAX;
797		int	max_uV = INT_MIN;
798		int	cmin = constraints->min_uV;
799		int	cmax = constraints->max_uV;
800
801		/* it's safe to autoconfigure fixed-voltage supplies
802		   and the constraints are used by list_voltage. */
803		if (count == 1 && !cmin) {
804			cmin = 1;
805			cmax = INT_MAX;
806			constraints->min_uV = cmin;
807			constraints->max_uV = cmax;
808		}
809
810		/* voltage constraints are optional */
811		if ((cmin == 0) && (cmax == 0))
812			return 0;
813
814		/* else require explicit machine-level constraints */
815		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
816			rdev_err(rdev, "invalid voltage constraints\n");
817			return -EINVAL;
818		}
819
820		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
821		for (i = 0; i < count; i++) {
822			int	value;
823
824			value = ops->list_voltage(rdev, i);
825			if (value <= 0)
826				continue;
827
828			/* maybe adjust [min_uV..max_uV] */
829			if (value >= cmin && value < min_uV)
830				min_uV = value;
831			if (value <= cmax && value > max_uV)
832				max_uV = value;
833		}
834
835		/* final: [min_uV..max_uV] valid iff constraints valid */
836		if (max_uV < min_uV) {
837			rdev_err(rdev, "unsupportable voltage constraints\n");
838			return -EINVAL;
839		}
840
841		/* use regulator's subset of machine constraints */
842		if (constraints->min_uV < min_uV) {
843			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
844				 constraints->min_uV, min_uV);
845			constraints->min_uV = min_uV;
846		}
847		if (constraints->max_uV > max_uV) {
848			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
849				 constraints->max_uV, max_uV);
850			constraints->max_uV = max_uV;
851		}
852	}
853
854	return 0;
855}
856
857/**
858 * set_machine_constraints - sets regulator constraints
859 * @rdev: regulator source
860 * @constraints: constraints to apply
861 *
862 * Allows platform initialisation code to define and constrain
863 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
864 * Constraints *must* be set by platform code in order for some
865 * regulator operations to proceed i.e. set_voltage, set_current_limit,
866 * set_mode.
867 */
868static int set_machine_constraints(struct regulator_dev *rdev,
869	const struct regulation_constraints *constraints)
870{
871	int ret = 0;
872	struct regulator_ops *ops = rdev->desc->ops;
873
874	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
875				    GFP_KERNEL);
876	if (!rdev->constraints)
877		return -ENOMEM;
878
879	ret = machine_constraints_voltage(rdev, rdev->constraints);
880	if (ret != 0)
881		goto out;
882
883	/* do we need to setup our suspend state */
884	if (constraints->initial_state) {
885		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
886		if (ret < 0) {
887			rdev_err(rdev, "failed to set suspend state\n");
888			rdev->constraints = NULL;
889			goto out;
890		}
891	}
892
893	if (constraints->initial_mode) {
894		if (!ops->set_mode) {
895			rdev_err(rdev, "no set_mode operation\n");
896			ret = -EINVAL;
897			goto out;
898		}
899
900		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
901		if (ret < 0) {
902			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
903			goto out;
904		}
905	}
906
907	/* If the constraints say the regulator should be on at this point
908	 * and we have control then make sure it is enabled.
909	 */
910	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
911	    ops->enable) {
912		ret = ops->enable(rdev);
913		if (ret < 0) {
914			rdev_err(rdev, "failed to enable\n");
915			rdev->constraints = NULL;
916			goto out;
917		}
918	}
919
920	print_constraints(rdev);
921out:
922	return ret;
923}
924
925/**
926 * set_supply - set regulator supply regulator
927 * @rdev: regulator name
928 * @supply_rdev: supply regulator name
929 *
930 * Called by platform initialisation code to set the supply regulator for this
931 * regulator. This ensures that a regulators supply will also be enabled by the
932 * core if it's child is enabled.
933 */
934static int set_supply(struct regulator_dev *rdev,
935		      struct regulator_dev *supply_rdev)
936{
937	int err;
938
939	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
940
941	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
942	if (IS_ERR(rdev->supply)) {
943		err = PTR_ERR(rdev->supply);
944		rdev->supply = NULL;
945		return err;
946	}
947
948	return 0;
949}
950
951/**
952 * set_consumer_device_supply - Bind a regulator to a symbolic supply
953 * @rdev:         regulator source
954 * @consumer_dev: device the supply applies to
955 * @consumer_dev_name: dev_name() string for device supply applies to
956 * @supply:       symbolic name for supply
957 *
958 * Allows platform initialisation code to map physical regulator
959 * sources to symbolic names for supplies for use by devices.  Devices
960 * should use these symbolic names to request regulators, avoiding the
961 * need to provide board-specific regulator names as platform data.
962 *
963 * Only one of consumer_dev and consumer_dev_name may be specified.
964 */
965static int set_consumer_device_supply(struct regulator_dev *rdev,
966	struct device *consumer_dev, const char *consumer_dev_name,
967	const char *supply)
968{
969	struct regulator_map *node;
970	int has_dev;
971
972	if (consumer_dev && consumer_dev_name)
973		return -EINVAL;
974
975	if (!consumer_dev_name && consumer_dev)
976		consumer_dev_name = dev_name(consumer_dev);
977
978	if (supply == NULL)
979		return -EINVAL;
980
981	if (consumer_dev_name != NULL)
982		has_dev = 1;
983	else
984		has_dev = 0;
985
986	list_for_each_entry(node, &regulator_map_list, list) {
987		if (node->dev_name && consumer_dev_name) {
988			if (strcmp(node->dev_name, consumer_dev_name) != 0)
989				continue;
990		} else if (node->dev_name || consumer_dev_name) {
991			continue;
992		}
993
994		if (strcmp(node->supply, supply) != 0)
995			continue;
996
997		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
998			dev_name(&node->regulator->dev),
999			node->regulator->desc->name,
1000			supply,
1001			dev_name(&rdev->dev), rdev_get_name(rdev));
1002		return -EBUSY;
1003	}
1004
1005	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1006	if (node == NULL)
1007		return -ENOMEM;
1008
1009	node->regulator = rdev;
1010	node->supply = supply;
1011
1012	if (has_dev) {
1013		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1014		if (node->dev_name == NULL) {
1015			kfree(node);
1016			return -ENOMEM;
1017		}
1018	}
1019
1020	list_add(&node->list, &regulator_map_list);
1021	return 0;
1022}
1023
1024static void unset_regulator_supplies(struct regulator_dev *rdev)
1025{
1026	struct regulator_map *node, *n;
1027
1028	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1029		if (rdev == node->regulator) {
1030			list_del(&node->list);
1031			kfree(node->dev_name);
1032			kfree(node);
1033		}
1034	}
1035}
1036
1037#define REG_STR_SIZE	64
1038
1039static struct regulator *create_regulator(struct regulator_dev *rdev,
1040					  struct device *dev,
1041					  const char *supply_name)
1042{
1043	struct regulator *regulator;
1044	char buf[REG_STR_SIZE];
1045	int err, size;
1046
1047	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1048	if (regulator == NULL)
1049		return NULL;
1050
1051	mutex_lock(&rdev->mutex);
1052	regulator->rdev = rdev;
1053	list_add(&regulator->list, &rdev->consumer_list);
1054
1055	if (dev) {
1056		/* create a 'requested_microamps_name' sysfs entry */
1057		size = scnprintf(buf, REG_STR_SIZE,
1058				 "microamps_requested_%s-%s",
1059				 dev_name(dev), supply_name);
1060		if (size >= REG_STR_SIZE)
1061			goto overflow_err;
1062
1063		regulator->dev = dev;
1064		sysfs_attr_init(&regulator->dev_attr.attr);
1065		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1066		if (regulator->dev_attr.attr.name == NULL)
1067			goto attr_name_err;
1068
1069		regulator->dev_attr.attr.mode = 0444;
1070		regulator->dev_attr.show = device_requested_uA_show;
1071		err = device_create_file(dev, &regulator->dev_attr);
1072		if (err < 0) {
1073			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1074			goto attr_name_err;
1075		}
1076
1077		/* also add a link to the device sysfs entry */
1078		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1079				 dev->kobj.name, supply_name);
1080		if (size >= REG_STR_SIZE)
1081			goto attr_err;
1082
1083		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1084		if (regulator->supply_name == NULL)
1085			goto attr_err;
1086
1087		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1088					buf);
1089		if (err) {
1090			rdev_warn(rdev, "could not add device link %s err %d\n",
1091				  dev->kobj.name, err);
1092			goto link_name_err;
1093		}
1094	}
1095	mutex_unlock(&rdev->mutex);
1096	return regulator;
1097link_name_err:
1098	kfree(regulator->supply_name);
1099attr_err:
1100	device_remove_file(regulator->dev, &regulator->dev_attr);
1101attr_name_err:
1102	kfree(regulator->dev_attr.attr.name);
1103overflow_err:
1104	list_del(&regulator->list);
1105	kfree(regulator);
1106	mutex_unlock(&rdev->mutex);
1107	return NULL;
1108}
1109
1110static int _regulator_get_enable_time(struct regulator_dev *rdev)
1111{
1112	if (!rdev->desc->ops->enable_time)
1113		return 0;
1114	return rdev->desc->ops->enable_time(rdev);
1115}
1116
1117/* Internal regulator request function */
1118static struct regulator *_regulator_get(struct device *dev, const char *id,
1119					int exclusive)
1120{
1121	struct regulator_dev *rdev;
1122	struct regulator_map *map;
1123	struct regulator *regulator = ERR_PTR(-ENODEV);
1124	const char *devname = NULL;
1125	int ret;
1126
1127	if (id == NULL) {
1128		pr_err("get() with no identifier\n");
1129		return regulator;
1130	}
1131
1132	if (dev)
1133		devname = dev_name(dev);
1134
1135	mutex_lock(&regulator_list_mutex);
1136
1137	list_for_each_entry(map, &regulator_map_list, list) {
1138		/* If the mapping has a device set up it must match */
1139		if (map->dev_name &&
1140		    (!devname || strcmp(map->dev_name, devname)))
1141			continue;
1142
1143		if (strcmp(map->supply, id) == 0) {
1144			rdev = map->regulator;
1145			goto found;
1146		}
1147	}
1148
1149	if (board_wants_dummy_regulator) {
1150		rdev = dummy_regulator_rdev;
1151		goto found;
1152	}
1153
1154#ifdef CONFIG_REGULATOR_DUMMY
1155	if (!devname)
1156		devname = "deviceless";
1157
1158	/* If the board didn't flag that it was fully constrained then
1159	 * substitute in a dummy regulator so consumers can continue.
1160	 */
1161	if (!has_full_constraints) {
1162		pr_warn("%s supply %s not found, using dummy regulator\n",
1163			devname, id);
1164		rdev = dummy_regulator_rdev;
1165		goto found;
1166	}
1167#endif
1168
1169	mutex_unlock(&regulator_list_mutex);
1170	return regulator;
1171
1172found:
1173	if (rdev->exclusive) {
1174		regulator = ERR_PTR(-EPERM);
1175		goto out;
1176	}
1177
1178	if (exclusive && rdev->open_count) {
1179		regulator = ERR_PTR(-EBUSY);
1180		goto out;
1181	}
1182
1183	if (!try_module_get(rdev->owner))
1184		goto out;
1185
1186	regulator = create_regulator(rdev, dev, id);
1187	if (regulator == NULL) {
1188		regulator = ERR_PTR(-ENOMEM);
1189		module_put(rdev->owner);
1190	}
1191
1192	rdev->open_count++;
1193	if (exclusive) {
1194		rdev->exclusive = 1;
1195
1196		ret = _regulator_is_enabled(rdev);
1197		if (ret > 0)
1198			rdev->use_count = 1;
1199		else
1200			rdev->use_count = 0;
1201	}
1202
1203out:
1204	mutex_unlock(&regulator_list_mutex);
1205
1206	return regulator;
1207}
1208
1209/**
1210 * regulator_get - lookup and obtain a reference to a regulator.
1211 * @dev: device for regulator "consumer"
1212 * @id: Supply name or regulator ID.
1213 *
1214 * Returns a struct regulator corresponding to the regulator producer,
1215 * or IS_ERR() condition containing errno.
1216 *
1217 * Use of supply names configured via regulator_set_device_supply() is
1218 * strongly encouraged.  It is recommended that the supply name used
1219 * should match the name used for the supply and/or the relevant
1220 * device pins in the datasheet.
1221 */
1222struct regulator *regulator_get(struct device *dev, const char *id)
1223{
1224	return _regulator_get(dev, id, 0);
1225}
1226EXPORT_SYMBOL_GPL(regulator_get);
1227
1228/**
1229 * regulator_get_exclusive - obtain exclusive access to a regulator.
1230 * @dev: device for regulator "consumer"
1231 * @id: Supply name or regulator ID.
1232 *
1233 * Returns a struct regulator corresponding to the regulator producer,
1234 * or IS_ERR() condition containing errno.  Other consumers will be
1235 * unable to obtain this reference is held and the use count for the
1236 * regulator will be initialised to reflect the current state of the
1237 * regulator.
1238 *
1239 * This is intended for use by consumers which cannot tolerate shared
1240 * use of the regulator such as those which need to force the
1241 * regulator off for correct operation of the hardware they are
1242 * controlling.
1243 *
1244 * Use of supply names configured via regulator_set_device_supply() is
1245 * strongly encouraged.  It is recommended that the supply name used
1246 * should match the name used for the supply and/or the relevant
1247 * device pins in the datasheet.
1248 */
1249struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1250{
1251	return _regulator_get(dev, id, 1);
1252}
1253EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1254
1255/**
1256 * regulator_put - "free" the regulator source
1257 * @regulator: regulator source
1258 *
1259 * Note: drivers must ensure that all regulator_enable calls made on this
1260 * regulator source are balanced by regulator_disable calls prior to calling
1261 * this function.
1262 */
1263void regulator_put(struct regulator *regulator)
1264{
1265	struct regulator_dev *rdev;
1266
1267	if (regulator == NULL || IS_ERR(regulator))
1268		return;
1269
1270	mutex_lock(&regulator_list_mutex);
1271	rdev = regulator->rdev;
1272
1273	/* remove any sysfs entries */
1274	if (regulator->dev) {
1275		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1276		kfree(regulator->supply_name);
1277		device_remove_file(regulator->dev, &regulator->dev_attr);
1278		kfree(regulator->dev_attr.attr.name);
1279	}
1280	list_del(&regulator->list);
1281	kfree(regulator);
1282
1283	rdev->open_count--;
1284	rdev->exclusive = 0;
1285
1286	module_put(rdev->owner);
1287	mutex_unlock(&regulator_list_mutex);
1288}
1289EXPORT_SYMBOL_GPL(regulator_put);
1290
1291static int _regulator_can_change_status(struct regulator_dev *rdev)
1292{
1293	if (!rdev->constraints)
1294		return 0;
1295
1296	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1297		return 1;
1298	else
1299		return 0;
1300}
1301
1302/* locks held by regulator_enable() */
1303static int _regulator_enable(struct regulator_dev *rdev)
1304{
1305	int ret, delay;
1306
1307	/* check voltage and requested load before enabling */
1308	if (rdev->constraints &&
1309	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1310		drms_uA_update(rdev);
1311
1312	if (rdev->use_count == 0) {
1313		/* The regulator may on if it's not switchable or left on */
1314		ret = _regulator_is_enabled(rdev);
1315		if (ret == -EINVAL || ret == 0) {
1316			if (!_regulator_can_change_status(rdev))
1317				return -EPERM;
1318
1319			if (!rdev->desc->ops->enable)
1320				return -EINVAL;
1321
1322			/* Query before enabling in case configuration
1323			 * dependent.  */
1324			ret = _regulator_get_enable_time(rdev);
1325			if (ret >= 0) {
1326				delay = ret;
1327			} else {
1328				rdev_warn(rdev, "enable_time() failed: %d\n",
1329					   ret);
1330				delay = 0;
1331			}
1332
1333			trace_regulator_enable(rdev_get_name(rdev));
1334
1335			/* Allow the regulator to ramp; it would be useful
1336			 * to extend this for bulk operations so that the
1337			 * regulators can ramp together.  */
1338			ret = rdev->desc->ops->enable(rdev);
1339			if (ret < 0)
1340				return ret;
1341
1342			trace_regulator_enable_delay(rdev_get_name(rdev));
1343
1344			if (delay >= 1000) {
1345				mdelay(delay / 1000);
1346				udelay(delay % 1000);
1347			} else if (delay) {
1348				udelay(delay);
1349			}
1350
1351			trace_regulator_enable_complete(rdev_get_name(rdev));
1352
1353		} else if (ret < 0) {
1354			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1355			return ret;
1356		}
1357		/* Fallthrough on positive return values - already enabled */
1358	}
1359
1360	rdev->use_count++;
1361
1362	return 0;
1363}
1364
1365/**
1366 * regulator_enable - enable regulator output
1367 * @regulator: regulator source
1368 *
1369 * Request that the regulator be enabled with the regulator output at
1370 * the predefined voltage or current value.  Calls to regulator_enable()
1371 * must be balanced with calls to regulator_disable().
1372 *
1373 * NOTE: the output value can be set by other drivers, boot loader or may be
1374 * hardwired in the regulator.
1375 */
1376int regulator_enable(struct regulator *regulator)
1377{
1378	struct regulator_dev *rdev = regulator->rdev;
1379	int ret = 0;
1380
1381	if (rdev->supply) {
1382		ret = regulator_enable(rdev->supply);
1383		if (ret != 0)
1384			return ret;
1385	}
1386
1387	mutex_lock(&rdev->mutex);
1388	ret = _regulator_enable(rdev);
1389	mutex_unlock(&rdev->mutex);
1390
1391	if (ret != 0)
1392		regulator_disable(rdev->supply);
1393
1394	return ret;
1395}
1396EXPORT_SYMBOL_GPL(regulator_enable);
1397
1398/* locks held by regulator_disable() */
1399static int _regulator_disable(struct regulator_dev *rdev)
1400{
1401	int ret = 0;
1402
1403	if (WARN(rdev->use_count <= 0,
1404		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1405		return -EIO;
1406
1407	/* are we the last user and permitted to disable ? */
1408	if (rdev->use_count == 1 &&
1409	    (rdev->constraints && !rdev->constraints->always_on)) {
1410
1411		/* we are last user */
1412		if (_regulator_can_change_status(rdev) &&
1413		    rdev->desc->ops->disable) {
1414			trace_regulator_disable(rdev_get_name(rdev));
1415
1416			ret = rdev->desc->ops->disable(rdev);
1417			if (ret < 0) {
1418				rdev_err(rdev, "failed to disable\n");
1419				return ret;
1420			}
1421
1422			trace_regulator_disable_complete(rdev_get_name(rdev));
1423
1424			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1425					     NULL);
1426		}
1427
1428		rdev->use_count = 0;
1429	} else if (rdev->use_count > 1) {
1430
1431		if (rdev->constraints &&
1432			(rdev->constraints->valid_ops_mask &
1433			REGULATOR_CHANGE_DRMS))
1434			drms_uA_update(rdev);
1435
1436		rdev->use_count--;
1437	}
1438
1439	return ret;
1440}
1441
1442/**
1443 * regulator_disable - disable regulator output
1444 * @regulator: regulator source
1445 *
1446 * Disable the regulator output voltage or current.  Calls to
1447 * regulator_enable() must be balanced with calls to
1448 * regulator_disable().
1449 *
1450 * NOTE: this will only disable the regulator output if no other consumer
1451 * devices have it enabled, the regulator device supports disabling and
1452 * machine constraints permit this operation.
1453 */
1454int regulator_disable(struct regulator *regulator)
1455{
1456	struct regulator_dev *rdev = regulator->rdev;
1457	int ret = 0;
1458
1459	mutex_lock(&rdev->mutex);
1460	ret = _regulator_disable(rdev);
1461	mutex_unlock(&rdev->mutex);
1462
1463	if (ret == 0 && rdev->supply)
1464		regulator_disable(rdev->supply);
1465
1466	return ret;
1467}
1468EXPORT_SYMBOL_GPL(regulator_disable);
1469
1470/* locks held by regulator_force_disable() */
1471static int _regulator_force_disable(struct regulator_dev *rdev)
1472{
1473	int ret = 0;
1474
1475	/* force disable */
1476	if (rdev->desc->ops->disable) {
1477		/* ah well, who wants to live forever... */
1478		ret = rdev->desc->ops->disable(rdev);
1479		if (ret < 0) {
1480			rdev_err(rdev, "failed to force disable\n");
1481			return ret;
1482		}
1483		/* notify other consumers that power has been forced off */
1484		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1485			REGULATOR_EVENT_DISABLE, NULL);
1486	}
1487
1488	return ret;
1489}
1490
1491/**
1492 * regulator_force_disable - force disable regulator output
1493 * @regulator: regulator source
1494 *
1495 * Forcibly disable the regulator output voltage or current.
1496 * NOTE: this *will* disable the regulator output even if other consumer
1497 * devices have it enabled. This should be used for situations when device
1498 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1499 */
1500int regulator_force_disable(struct regulator *regulator)
1501{
1502	struct regulator_dev *rdev = regulator->rdev;
1503	int ret;
1504
1505	mutex_lock(&rdev->mutex);
1506	regulator->uA_load = 0;
1507	ret = _regulator_force_disable(regulator->rdev);
1508	mutex_unlock(&rdev->mutex);
1509
1510	if (rdev->supply)
1511		while (rdev->open_count--)
1512			regulator_disable(rdev->supply);
1513
1514	return ret;
1515}
1516EXPORT_SYMBOL_GPL(regulator_force_disable);
1517
1518static int _regulator_is_enabled(struct regulator_dev *rdev)
1519{
1520	/* If we don't know then assume that the regulator is always on */
1521	if (!rdev->desc->ops->is_enabled)
1522		return 1;
1523
1524	return rdev->desc->ops->is_enabled(rdev);
1525}
1526
1527/**
1528 * regulator_is_enabled - is the regulator output enabled
1529 * @regulator: regulator source
1530 *
1531 * Returns positive if the regulator driver backing the source/client
1532 * has requested that the device be enabled, zero if it hasn't, else a
1533 * negative errno code.
1534 *
1535 * Note that the device backing this regulator handle can have multiple
1536 * users, so it might be enabled even if regulator_enable() was never
1537 * called for this particular source.
1538 */
1539int regulator_is_enabled(struct regulator *regulator)
1540{
1541	int ret;
1542
1543	mutex_lock(&regulator->rdev->mutex);
1544	ret = _regulator_is_enabled(regulator->rdev);
1545	mutex_unlock(&regulator->rdev->mutex);
1546
1547	return ret;
1548}
1549EXPORT_SYMBOL_GPL(regulator_is_enabled);
1550
1551/**
1552 * regulator_count_voltages - count regulator_list_voltage() selectors
1553 * @regulator: regulator source
1554 *
1555 * Returns number of selectors, or negative errno.  Selectors are
1556 * numbered starting at zero, and typically correspond to bitfields
1557 * in hardware registers.
1558 */
1559int regulator_count_voltages(struct regulator *regulator)
1560{
1561	struct regulator_dev	*rdev = regulator->rdev;
1562
1563	return rdev->desc->n_voltages ? : -EINVAL;
1564}
1565EXPORT_SYMBOL_GPL(regulator_count_voltages);
1566
1567/**
1568 * regulator_list_voltage - enumerate supported voltages
1569 * @regulator: regulator source
1570 * @selector: identify voltage to list
1571 * Context: can sleep
1572 *
1573 * Returns a voltage that can be passed to @regulator_set_voltage(),
1574 * zero if this selector code can't be used on this system, or a
1575 * negative errno.
1576 */
1577int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1578{
1579	struct regulator_dev	*rdev = regulator->rdev;
1580	struct regulator_ops	*ops = rdev->desc->ops;
1581	int			ret;
1582
1583	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1584		return -EINVAL;
1585
1586	mutex_lock(&rdev->mutex);
1587	ret = ops->list_voltage(rdev, selector);
1588	mutex_unlock(&rdev->mutex);
1589
1590	if (ret > 0) {
1591		if (ret < rdev->constraints->min_uV)
1592			ret = 0;
1593		else if (ret > rdev->constraints->max_uV)
1594			ret = 0;
1595	}
1596
1597	return ret;
1598}
1599EXPORT_SYMBOL_GPL(regulator_list_voltage);
1600
1601/**
1602 * regulator_is_supported_voltage - check if a voltage range can be supported
1603 *
1604 * @regulator: Regulator to check.
1605 * @min_uV: Minimum required voltage in uV.
1606 * @max_uV: Maximum required voltage in uV.
1607 *
1608 * Returns a boolean or a negative error code.
1609 */
1610int regulator_is_supported_voltage(struct regulator *regulator,
1611				   int min_uV, int max_uV)
1612{
1613	int i, voltages, ret;
1614
1615	ret = regulator_count_voltages(regulator);
1616	if (ret < 0)
1617		return ret;
1618	voltages = ret;
1619
1620	for (i = 0; i < voltages; i++) {
1621		ret = regulator_list_voltage(regulator, i);
1622
1623		if (ret >= min_uV && ret <= max_uV)
1624			return 1;
1625	}
1626
1627	return 0;
1628}
1629
1630static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1631				     int min_uV, int max_uV)
1632{
1633	int ret;
1634	int delay = 0;
1635	unsigned int selector;
1636
1637	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1638
1639	min_uV += rdev->constraints->uV_offset;
1640	max_uV += rdev->constraints->uV_offset;
1641
1642	if (rdev->desc->ops->set_voltage) {
1643		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1644						   &selector);
1645
1646		if (rdev->desc->ops->list_voltage)
1647			selector = rdev->desc->ops->list_voltage(rdev,
1648								 selector);
1649		else
1650			selector = -1;
1651	} else if (rdev->desc->ops->set_voltage_sel) {
1652		int best_val = INT_MAX;
1653		int i;
1654
1655		selector = 0;
1656
1657		/* Find the smallest voltage that falls within the specified
1658		 * range.
1659		 */
1660		for (i = 0; i < rdev->desc->n_voltages; i++) {
1661			ret = rdev->desc->ops->list_voltage(rdev, i);
1662			if (ret < 0)
1663				continue;
1664
1665			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1666				best_val = ret;
1667				selector = i;
1668			}
1669		}
1670
1671		/*
1672		 * If we can't obtain the old selector there is not enough
1673		 * info to call set_voltage_time_sel().
1674		 */
1675		if (rdev->desc->ops->set_voltage_time_sel &&
1676		    rdev->desc->ops->get_voltage_sel) {
1677			unsigned int old_selector = 0;
1678
1679			ret = rdev->desc->ops->get_voltage_sel(rdev);
1680			if (ret < 0)
1681				return ret;
1682			old_selector = ret;
1683			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1684						old_selector, selector);
1685		}
1686
1687		if (best_val != INT_MAX) {
1688			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1689			selector = best_val;
1690		} else {
1691			ret = -EINVAL;
1692		}
1693	} else {
1694		ret = -EINVAL;
1695	}
1696
1697	/* Insert any necessary delays */
1698	if (delay >= 1000) {
1699		mdelay(delay / 1000);
1700		udelay(delay % 1000);
1701	} else if (delay) {
1702		udelay(delay);
1703	}
1704
1705	if (ret == 0)
1706		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1707				     NULL);
1708
1709	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1710
1711	return ret;
1712}
1713
1714/**
1715 * regulator_set_voltage - set regulator output voltage
1716 * @regulator: regulator source
1717 * @min_uV: Minimum required voltage in uV
1718 * @max_uV: Maximum acceptable voltage in uV
1719 *
1720 * Sets a voltage regulator to the desired output voltage. This can be set
1721 * during any regulator state. IOW, regulator can be disabled or enabled.
1722 *
1723 * If the regulator is enabled then the voltage will change to the new value
1724 * immediately otherwise if the regulator is disabled the regulator will
1725 * output at the new voltage when enabled.
1726 *
1727 * NOTE: If the regulator is shared between several devices then the lowest
1728 * request voltage that meets the system constraints will be used.
1729 * Regulator system constraints must be set for this regulator before
1730 * calling this function otherwise this call will fail.
1731 */
1732int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1733{
1734	struct regulator_dev *rdev = regulator->rdev;
1735	int ret = 0;
1736
1737	mutex_lock(&rdev->mutex);
1738
1739	/* If we're setting the same range as last time the change
1740	 * should be a noop (some cpufreq implementations use the same
1741	 * voltage for multiple frequencies, for example).
1742	 */
1743	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1744		goto out;
1745
1746	/* sanity check */
1747	if (!rdev->desc->ops->set_voltage &&
1748	    !rdev->desc->ops->set_voltage_sel) {
1749		ret = -EINVAL;
1750		goto out;
1751	}
1752
1753	/* constraints check */
1754	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1755	if (ret < 0)
1756		goto out;
1757	regulator->min_uV = min_uV;
1758	regulator->max_uV = max_uV;
1759
1760	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1761	if (ret < 0)
1762		goto out;
1763
1764	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1765
1766out:
1767	mutex_unlock(&rdev->mutex);
1768	return ret;
1769}
1770EXPORT_SYMBOL_GPL(regulator_set_voltage);
1771
1772/**
1773 * regulator_set_voltage_time - get raise/fall time
1774 * @regulator: regulator source
1775 * @old_uV: starting voltage in microvolts
1776 * @new_uV: target voltage in microvolts
1777 *
1778 * Provided with the starting and ending voltage, this function attempts to
1779 * calculate the time in microseconds required to rise or fall to this new
1780 * voltage.
1781 */
1782int regulator_set_voltage_time(struct regulator *regulator,
1783			       int old_uV, int new_uV)
1784{
1785	struct regulator_dev	*rdev = regulator->rdev;
1786	struct regulator_ops	*ops = rdev->desc->ops;
1787	int old_sel = -1;
1788	int new_sel = -1;
1789	int voltage;
1790	int i;
1791
1792	/* Currently requires operations to do this */
1793	if (!ops->list_voltage || !ops->set_voltage_time_sel
1794	    || !rdev->desc->n_voltages)
1795		return -EINVAL;
1796
1797	for (i = 0; i < rdev->desc->n_voltages; i++) {
1798		/* We only look for exact voltage matches here */
1799		voltage = regulator_list_voltage(regulator, i);
1800		if (voltage < 0)
1801			return -EINVAL;
1802		if (voltage == 0)
1803			continue;
1804		if (voltage == old_uV)
1805			old_sel = i;
1806		if (voltage == new_uV)
1807			new_sel = i;
1808	}
1809
1810	if (old_sel < 0 || new_sel < 0)
1811		return -EINVAL;
1812
1813	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1814}
1815EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1816
1817/**
1818 * regulator_sync_voltage - re-apply last regulator output voltage
1819 * @regulator: regulator source
1820 *
1821 * Re-apply the last configured voltage.  This is intended to be used
1822 * where some external control source the consumer is cooperating with
1823 * has caused the configured voltage to change.
1824 */
1825int regulator_sync_voltage(struct regulator *regulator)
1826{
1827	struct regulator_dev *rdev = regulator->rdev;
1828	int ret, min_uV, max_uV;
1829
1830	mutex_lock(&rdev->mutex);
1831
1832	if (!rdev->desc->ops->set_voltage &&
1833	    !rdev->desc->ops->set_voltage_sel) {
1834		ret = -EINVAL;
1835		goto out;
1836	}
1837
1838	/* This is only going to work if we've had a voltage configured. */
1839	if (!regulator->min_uV && !regulator->max_uV) {
1840		ret = -EINVAL;
1841		goto out;
1842	}
1843
1844	min_uV = regulator->min_uV;
1845	max_uV = regulator->max_uV;
1846
1847	/* This should be a paranoia check... */
1848	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1849	if (ret < 0)
1850		goto out;
1851
1852	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1853	if (ret < 0)
1854		goto out;
1855
1856	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1857
1858out:
1859	mutex_unlock(&rdev->mutex);
1860	return ret;
1861}
1862EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1863
1864static int _regulator_get_voltage(struct regulator_dev *rdev)
1865{
1866	int sel, ret;
1867
1868	if (rdev->desc->ops->get_voltage_sel) {
1869		sel = rdev->desc->ops->get_voltage_sel(rdev);
1870		if (sel < 0)
1871			return sel;
1872		ret = rdev->desc->ops->list_voltage(rdev, sel);
1873	} else if (rdev->desc->ops->get_voltage) {
1874		ret = rdev->desc->ops->get_voltage(rdev);
1875	} else {
1876		return -EINVAL;
1877	}
1878
1879	if (ret < 0)
1880		return ret;
1881	return ret - rdev->constraints->uV_offset;
1882}
1883
1884/**
1885 * regulator_get_voltage - get regulator output voltage
1886 * @regulator: regulator source
1887 *
1888 * This returns the current regulator voltage in uV.
1889 *
1890 * NOTE: If the regulator is disabled it will return the voltage value. This
1891 * function should not be used to determine regulator state.
1892 */
1893int regulator_get_voltage(struct regulator *regulator)
1894{
1895	int ret;
1896
1897	mutex_lock(&regulator->rdev->mutex);
1898
1899	ret = _regulator_get_voltage(regulator->rdev);
1900
1901	mutex_unlock(&regulator->rdev->mutex);
1902
1903	return ret;
1904}
1905EXPORT_SYMBOL_GPL(regulator_get_voltage);
1906
1907/**
1908 * regulator_set_current_limit - set regulator output current limit
1909 * @regulator: regulator source
1910 * @min_uA: Minimuum supported current in uA
1911 * @max_uA: Maximum supported current in uA
1912 *
1913 * Sets current sink to the desired output current. This can be set during
1914 * any regulator state. IOW, regulator can be disabled or enabled.
1915 *
1916 * If the regulator is enabled then the current will change to the new value
1917 * immediately otherwise if the regulator is disabled the regulator will
1918 * output at the new current when enabled.
1919 *
1920 * NOTE: Regulator system constraints must be set for this regulator before
1921 * calling this function otherwise this call will fail.
1922 */
1923int regulator_set_current_limit(struct regulator *regulator,
1924			       int min_uA, int max_uA)
1925{
1926	struct regulator_dev *rdev = regulator->rdev;
1927	int ret;
1928
1929	mutex_lock(&rdev->mutex);
1930
1931	/* sanity check */
1932	if (!rdev->desc->ops->set_current_limit) {
1933		ret = -EINVAL;
1934		goto out;
1935	}
1936
1937	/* constraints check */
1938	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1939	if (ret < 0)
1940		goto out;
1941
1942	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1943out:
1944	mutex_unlock(&rdev->mutex);
1945	return ret;
1946}
1947EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1948
1949static int _regulator_get_current_limit(struct regulator_dev *rdev)
1950{
1951	int ret;
1952
1953	mutex_lock(&rdev->mutex);
1954
1955	/* sanity check */
1956	if (!rdev->desc->ops->get_current_limit) {
1957		ret = -EINVAL;
1958		goto out;
1959	}
1960
1961	ret = rdev->desc->ops->get_current_limit(rdev);
1962out:
1963	mutex_unlock(&rdev->mutex);
1964	return ret;
1965}
1966
1967/**
1968 * regulator_get_current_limit - get regulator output current
1969 * @regulator: regulator source
1970 *
1971 * This returns the current supplied by the specified current sink in uA.
1972 *
1973 * NOTE: If the regulator is disabled it will return the current value. This
1974 * function should not be used to determine regulator state.
1975 */
1976int regulator_get_current_limit(struct regulator *regulator)
1977{
1978	return _regulator_get_current_limit(regulator->rdev);
1979}
1980EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1981
1982/**
1983 * regulator_set_mode - set regulator operating mode
1984 * @regulator: regulator source
1985 * @mode: operating mode - one of the REGULATOR_MODE constants
1986 *
1987 * Set regulator operating mode to increase regulator efficiency or improve
1988 * regulation performance.
1989 *
1990 * NOTE: Regulator system constraints must be set for this regulator before
1991 * calling this function otherwise this call will fail.
1992 */
1993int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1994{
1995	struct regulator_dev *rdev = regulator->rdev;
1996	int ret;
1997	int regulator_curr_mode;
1998
1999	mutex_lock(&rdev->mutex);
2000
2001	/* sanity check */
2002	if (!rdev->desc->ops->set_mode) {
2003		ret = -EINVAL;
2004		goto out;
2005	}
2006
2007	/* return if the same mode is requested */
2008	if (rdev->desc->ops->get_mode) {
2009		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2010		if (regulator_curr_mode == mode) {
2011			ret = 0;
2012			goto out;
2013		}
2014	}
2015
2016	/* constraints check */
2017	ret = regulator_mode_constrain(rdev, &mode);
2018	if (ret < 0)
2019		goto out;
2020
2021	ret = rdev->desc->ops->set_mode(rdev, mode);
2022out:
2023	mutex_unlock(&rdev->mutex);
2024	return ret;
2025}
2026EXPORT_SYMBOL_GPL(regulator_set_mode);
2027
2028static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2029{
2030	int ret;
2031
2032	mutex_lock(&rdev->mutex);
2033
2034	/* sanity check */
2035	if (!rdev->desc->ops->get_mode) {
2036		ret = -EINVAL;
2037		goto out;
2038	}
2039
2040	ret = rdev->desc->ops->get_mode(rdev);
2041out:
2042	mutex_unlock(&rdev->mutex);
2043	return ret;
2044}
2045
2046/**
2047 * regulator_get_mode - get regulator operating mode
2048 * @regulator: regulator source
2049 *
2050 * Get the current regulator operating mode.
2051 */
2052unsigned int regulator_get_mode(struct regulator *regulator)
2053{
2054	return _regulator_get_mode(regulator->rdev);
2055}
2056EXPORT_SYMBOL_GPL(regulator_get_mode);
2057
2058/**
2059 * regulator_set_optimum_mode - set regulator optimum operating mode
2060 * @regulator: regulator source
2061 * @uA_load: load current
2062 *
2063 * Notifies the regulator core of a new device load. This is then used by
2064 * DRMS (if enabled by constraints) to set the most efficient regulator
2065 * operating mode for the new regulator loading.
2066 *
2067 * Consumer devices notify their supply regulator of the maximum power
2068 * they will require (can be taken from device datasheet in the power
2069 * consumption tables) when they change operational status and hence power
2070 * state. Examples of operational state changes that can affect power
2071 * consumption are :-
2072 *
2073 *    o Device is opened / closed.
2074 *    o Device I/O is about to begin or has just finished.
2075 *    o Device is idling in between work.
2076 *
2077 * This information is also exported via sysfs to userspace.
2078 *
2079 * DRMS will sum the total requested load on the regulator and change
2080 * to the most efficient operating mode if platform constraints allow.
2081 *
2082 * Returns the new regulator mode or error.
2083 */
2084int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2085{
2086	struct regulator_dev *rdev = regulator->rdev;
2087	struct regulator *consumer;
2088	int ret, output_uV, input_uV, total_uA_load = 0;
2089	unsigned int mode;
2090
2091	mutex_lock(&rdev->mutex);
2092
2093	/*
2094	 * first check to see if we can set modes at all, otherwise just
2095	 * tell the consumer everything is OK.
2096	 */
2097	regulator->uA_load = uA_load;
2098	ret = regulator_check_drms(rdev);
2099	if (ret < 0) {
2100		ret = 0;
2101		goto out;
2102	}
2103
2104	if (!rdev->desc->ops->get_optimum_mode)
2105		goto out;
2106
2107	/*
2108	 * we can actually do this so any errors are indicators of
2109	 * potential real failure.
2110	 */
2111	ret = -EINVAL;
2112
2113	/* get output voltage */
2114	output_uV = _regulator_get_voltage(rdev);
2115	if (output_uV <= 0) {
2116		rdev_err(rdev, "invalid output voltage found\n");
2117		goto out;
2118	}
2119
2120	/* get input voltage */
2121	input_uV = 0;
2122	if (rdev->supply)
2123		input_uV = regulator_get_voltage(rdev->supply);
2124	if (input_uV <= 0)
2125		input_uV = rdev->constraints->input_uV;
2126	if (input_uV <= 0) {
2127		rdev_err(rdev, "invalid input voltage found\n");
2128		goto out;
2129	}
2130
2131	/* calc total requested load for this regulator */
2132	list_for_each_entry(consumer, &rdev->consumer_list, list)
2133		total_uA_load += consumer->uA_load;
2134
2135	mode = rdev->desc->ops->get_optimum_mode(rdev,
2136						 input_uV, output_uV,
2137						 total_uA_load);
2138	ret = regulator_mode_constrain(rdev, &mode);
2139	if (ret < 0) {
2140		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2141			 total_uA_load, input_uV, output_uV);
2142		goto out;
2143	}
2144
2145	ret = rdev->desc->ops->set_mode(rdev, mode);
2146	if (ret < 0) {
2147		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2148		goto out;
2149	}
2150	ret = mode;
2151out:
2152	mutex_unlock(&rdev->mutex);
2153	return ret;
2154}
2155EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2156
2157/**
2158 * regulator_register_notifier - register regulator event notifier
2159 * @regulator: regulator source
2160 * @nb: notifier block
2161 *
2162 * Register notifier block to receive regulator events.
2163 */
2164int regulator_register_notifier(struct regulator *regulator,
2165			      struct notifier_block *nb)
2166{
2167	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2168						nb);
2169}
2170EXPORT_SYMBOL_GPL(regulator_register_notifier);
2171
2172/**
2173 * regulator_unregister_notifier - unregister regulator event notifier
2174 * @regulator: regulator source
2175 * @nb: notifier block
2176 *
2177 * Unregister regulator event notifier block.
2178 */
2179int regulator_unregister_notifier(struct regulator *regulator,
2180				struct notifier_block *nb)
2181{
2182	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2183						  nb);
2184}
2185EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2186
2187/* notify regulator consumers and downstream regulator consumers.
2188 * Note mutex must be held by caller.
2189 */
2190static void _notifier_call_chain(struct regulator_dev *rdev,
2191				  unsigned long event, void *data)
2192{
2193	/* call rdev chain first */
2194	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2195}
2196
2197/**
2198 * regulator_bulk_get - get multiple regulator consumers
2199 *
2200 * @dev:           Device to supply
2201 * @num_consumers: Number of consumers to register
2202 * @consumers:     Configuration of consumers; clients are stored here.
2203 *
2204 * @return 0 on success, an errno on failure.
2205 *
2206 * This helper function allows drivers to get several regulator
2207 * consumers in one operation.  If any of the regulators cannot be
2208 * acquired then any regulators that were allocated will be freed
2209 * before returning to the caller.
2210 */
2211int regulator_bulk_get(struct device *dev, int num_consumers,
2212		       struct regulator_bulk_data *consumers)
2213{
2214	int i;
2215	int ret;
2216
2217	for (i = 0; i < num_consumers; i++)
2218		consumers[i].consumer = NULL;
2219
2220	for (i = 0; i < num_consumers; i++) {
2221		consumers[i].consumer = regulator_get(dev,
2222						      consumers[i].supply);
2223		if (IS_ERR(consumers[i].consumer)) {
2224			ret = PTR_ERR(consumers[i].consumer);
2225			dev_err(dev, "Failed to get supply '%s': %d\n",
2226				consumers[i].supply, ret);
2227			consumers[i].consumer = NULL;
2228			goto err;
2229		}
2230	}
2231
2232	return 0;
2233
2234err:
2235	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2236		regulator_put(consumers[i].consumer);
2237
2238	return ret;
2239}
2240EXPORT_SYMBOL_GPL(regulator_bulk_get);
2241
2242static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2243{
2244	struct regulator_bulk_data *bulk = data;
2245
2246	bulk->ret = regulator_enable(bulk->consumer);
2247}
2248
2249/**
2250 * regulator_bulk_enable - enable multiple regulator consumers
2251 *
2252 * @num_consumers: Number of consumers
2253 * @consumers:     Consumer data; clients are stored here.
2254 * @return         0 on success, an errno on failure
2255 *
2256 * This convenience API allows consumers to enable multiple regulator
2257 * clients in a single API call.  If any consumers cannot be enabled
2258 * then any others that were enabled will be disabled again prior to
2259 * return.
2260 */
2261int regulator_bulk_enable(int num_consumers,
2262			  struct regulator_bulk_data *consumers)
2263{
2264	LIST_HEAD(async_domain);
2265	int i;
2266	int ret = 0;
2267
2268	for (i = 0; i < num_consumers; i++)
2269		async_schedule_domain(regulator_bulk_enable_async,
2270				      &consumers[i], &async_domain);
2271
2272	async_synchronize_full_domain(&async_domain);
2273
2274	/* If any consumer failed we need to unwind any that succeeded */
2275	for (i = 0; i < num_consumers; i++) {
2276		if (consumers[i].ret != 0) {
2277			ret = consumers[i].ret;
2278			goto err;
2279		}
2280	}
2281
2282	return 0;
2283
2284err:
2285	for (i = 0; i < num_consumers; i++)
2286		if (consumers[i].ret == 0)
2287			regulator_disable(consumers[i].consumer);
2288		else
2289			pr_err("Failed to enable %s: %d\n",
2290			       consumers[i].supply, consumers[i].ret);
2291
2292	return ret;
2293}
2294EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2295
2296/**
2297 * regulator_bulk_disable - disable multiple regulator consumers
2298 *
2299 * @num_consumers: Number of consumers
2300 * @consumers:     Consumer data; clients are stored here.
2301 * @return         0 on success, an errno on failure
2302 *
2303 * This convenience API allows consumers to disable multiple regulator
2304 * clients in a single API call.  If any consumers cannot be enabled
2305 * then any others that were disabled will be disabled again prior to
2306 * return.
2307 */
2308int regulator_bulk_disable(int num_consumers,
2309			   struct regulator_bulk_data *consumers)
2310{
2311	int i;
2312	int ret;
2313
2314	for (i = 0; i < num_consumers; i++) {
2315		ret = regulator_disable(consumers[i].consumer);
2316		if (ret != 0)
2317			goto err;
2318	}
2319
2320	return 0;
2321
2322err:
2323	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2324	for (--i; i >= 0; --i)
2325		regulator_enable(consumers[i].consumer);
2326
2327	return ret;
2328}
2329EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2330
2331/**
2332 * regulator_bulk_free - free multiple regulator consumers
2333 *
2334 * @num_consumers: Number of consumers
2335 * @consumers:     Consumer data; clients are stored here.
2336 *
2337 * This convenience API allows consumers to free multiple regulator
2338 * clients in a single API call.
2339 */
2340void regulator_bulk_free(int num_consumers,
2341			 struct regulator_bulk_data *consumers)
2342{
2343	int i;
2344
2345	for (i = 0; i < num_consumers; i++) {
2346		regulator_put(consumers[i].consumer);
2347		consumers[i].consumer = NULL;
2348	}
2349}
2350EXPORT_SYMBOL_GPL(regulator_bulk_free);
2351
2352/**
2353 * regulator_notifier_call_chain - call regulator event notifier
2354 * @rdev: regulator source
2355 * @event: notifier block
2356 * @data: callback-specific data.
2357 *
2358 * Called by regulator drivers to notify clients a regulator event has
2359 * occurred. We also notify regulator clients downstream.
2360 * Note lock must be held by caller.
2361 */
2362int regulator_notifier_call_chain(struct regulator_dev *rdev,
2363				  unsigned long event, void *data)
2364{
2365	_notifier_call_chain(rdev, event, data);
2366	return NOTIFY_DONE;
2367
2368}
2369EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2370
2371/**
2372 * regulator_mode_to_status - convert a regulator mode into a status
2373 *
2374 * @mode: Mode to convert
2375 *
2376 * Convert a regulator mode into a status.
2377 */
2378int regulator_mode_to_status(unsigned int mode)
2379{
2380	switch (mode) {
2381	case REGULATOR_MODE_FAST:
2382		return REGULATOR_STATUS_FAST;
2383	case REGULATOR_MODE_NORMAL:
2384		return REGULATOR_STATUS_NORMAL;
2385	case REGULATOR_MODE_IDLE:
2386		return REGULATOR_STATUS_IDLE;
2387	case REGULATOR_STATUS_STANDBY:
2388		return REGULATOR_STATUS_STANDBY;
2389	default:
2390		return 0;
2391	}
2392}
2393EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2394
2395/*
2396 * To avoid cluttering sysfs (and memory) with useless state, only
2397 * create attributes that can be meaningfully displayed.
2398 */
2399static int add_regulator_attributes(struct regulator_dev *rdev)
2400{
2401	struct device		*dev = &rdev->dev;
2402	struct regulator_ops	*ops = rdev->desc->ops;
2403	int			status = 0;
2404
2405	/* some attributes need specific methods to be displayed */
2406	if (ops->get_voltage || ops->get_voltage_sel) {
2407		status = device_create_file(dev, &dev_attr_microvolts);
2408		if (status < 0)
2409			return status;
2410	}
2411	if (ops->get_current_limit) {
2412		status = device_create_file(dev, &dev_attr_microamps);
2413		if (status < 0)
2414			return status;
2415	}
2416	if (ops->get_mode) {
2417		status = device_create_file(dev, &dev_attr_opmode);
2418		if (status < 0)
2419			return status;
2420	}
2421	if (ops->is_enabled) {
2422		status = device_create_file(dev, &dev_attr_state);
2423		if (status < 0)
2424			return status;
2425	}
2426	if (ops->get_status) {
2427		status = device_create_file(dev, &dev_attr_status);
2428		if (status < 0)
2429			return status;
2430	}
2431
2432	/* some attributes are type-specific */
2433	if (rdev->desc->type == REGULATOR_CURRENT) {
2434		status = device_create_file(dev, &dev_attr_requested_microamps);
2435		if (status < 0)
2436			return status;
2437	}
2438
2439	/* all the other attributes exist to support constraints;
2440	 * don't show them if there are no constraints, or if the
2441	 * relevant supporting methods are missing.
2442	 */
2443	if (!rdev->constraints)
2444		return status;
2445
2446	/* constraints need specific supporting methods */
2447	if (ops->set_voltage || ops->set_voltage_sel) {
2448		status = device_create_file(dev, &dev_attr_min_microvolts);
2449		if (status < 0)
2450			return status;
2451		status = device_create_file(dev, &dev_attr_max_microvolts);
2452		if (status < 0)
2453			return status;
2454	}
2455	if (ops->set_current_limit) {
2456		status = device_create_file(dev, &dev_attr_min_microamps);
2457		if (status < 0)
2458			return status;
2459		status = device_create_file(dev, &dev_attr_max_microamps);
2460		if (status < 0)
2461			return status;
2462	}
2463
2464	/* suspend mode constraints need multiple supporting methods */
2465	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2466		return status;
2467
2468	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2469	if (status < 0)
2470		return status;
2471	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2472	if (status < 0)
2473		return status;
2474	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2475	if (status < 0)
2476		return status;
2477
2478	if (ops->set_suspend_voltage) {
2479		status = device_create_file(dev,
2480				&dev_attr_suspend_standby_microvolts);
2481		if (status < 0)
2482			return status;
2483		status = device_create_file(dev,
2484				&dev_attr_suspend_mem_microvolts);
2485		if (status < 0)
2486			return status;
2487		status = device_create_file(dev,
2488				&dev_attr_suspend_disk_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492
2493	if (ops->set_suspend_mode) {
2494		status = device_create_file(dev,
2495				&dev_attr_suspend_standby_mode);
2496		if (status < 0)
2497			return status;
2498		status = device_create_file(dev,
2499				&dev_attr_suspend_mem_mode);
2500		if (status < 0)
2501			return status;
2502		status = device_create_file(dev,
2503				&dev_attr_suspend_disk_mode);
2504		if (status < 0)
2505			return status;
2506	}
2507
2508	return status;
2509}
2510
2511static void rdev_init_debugfs(struct regulator_dev *rdev)
2512{
2513#ifdef CONFIG_DEBUG_FS
2514	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2515	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2516		rdev_warn(rdev, "Failed to create debugfs directory\n");
2517		rdev->debugfs = NULL;
2518		return;
2519	}
2520
2521	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2522			   &rdev->use_count);
2523	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2524			   &rdev->open_count);
2525#endif
2526}
2527
2528/**
2529 * regulator_register - register regulator
2530 * @regulator_desc: regulator to register
2531 * @dev: struct device for the regulator
2532 * @init_data: platform provided init data, passed through by driver
2533 * @driver_data: private regulator data
2534 *
2535 * Called by regulator drivers to register a regulator.
2536 * Returns 0 on success.
2537 */
2538struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2539	struct device *dev, const struct regulator_init_data *init_data,
2540	void *driver_data)
2541{
2542	static atomic_t regulator_no = ATOMIC_INIT(0);
2543	struct regulator_dev *rdev;
2544	int ret, i;
2545
2546	if (regulator_desc == NULL)
2547		return ERR_PTR(-EINVAL);
2548
2549	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2550		return ERR_PTR(-EINVAL);
2551
2552	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2553	    regulator_desc->type != REGULATOR_CURRENT)
2554		return ERR_PTR(-EINVAL);
2555
2556	if (!init_data)
2557		return ERR_PTR(-EINVAL);
2558
2559	/* Only one of each should be implemented */
2560	WARN_ON(regulator_desc->ops->get_voltage &&
2561		regulator_desc->ops->get_voltage_sel);
2562	WARN_ON(regulator_desc->ops->set_voltage &&
2563		regulator_desc->ops->set_voltage_sel);
2564
2565	/* If we're using selectors we must implement list_voltage. */
2566	if (regulator_desc->ops->get_voltage_sel &&
2567	    !regulator_desc->ops->list_voltage) {
2568		return ERR_PTR(-EINVAL);
2569	}
2570	if (regulator_desc->ops->set_voltage_sel &&
2571	    !regulator_desc->ops->list_voltage) {
2572		return ERR_PTR(-EINVAL);
2573	}
2574
2575	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2576	if (rdev == NULL)
2577		return ERR_PTR(-ENOMEM);
2578
2579	mutex_lock(&regulator_list_mutex);
2580
2581	mutex_init(&rdev->mutex);
2582	rdev->reg_data = driver_data;
2583	rdev->owner = regulator_desc->owner;
2584	rdev->desc = regulator_desc;
2585	INIT_LIST_HEAD(&rdev->consumer_list);
2586	INIT_LIST_HEAD(&rdev->list);
2587	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2588
2589	/* preform any regulator specific init */
2590	if (init_data->regulator_init) {
2591		ret = init_data->regulator_init(rdev->reg_data);
2592		if (ret < 0)
2593			goto clean;
2594	}
2595
2596	/* register with sysfs */
2597	rdev->dev.class = &regulator_class;
2598	rdev->dev.parent = dev;
2599	dev_set_name(&rdev->dev, "regulator.%d",
2600		     atomic_inc_return(&regulator_no) - 1);
2601	ret = device_register(&rdev->dev);
2602	if (ret != 0) {
2603		put_device(&rdev->dev);
2604		goto clean;
2605	}
2606
2607	dev_set_drvdata(&rdev->dev, rdev);
2608
2609	/* set regulator constraints */
2610	ret = set_machine_constraints(rdev, &init_data->constraints);
2611	if (ret < 0)
2612		goto scrub;
2613
2614	/* add attributes supported by this regulator */
2615	ret = add_regulator_attributes(rdev);
2616	if (ret < 0)
2617		goto scrub;
2618
2619	if (init_data->supply_regulator) {
2620		struct regulator_dev *r;
2621		int found = 0;
2622
2623		list_for_each_entry(r, &regulator_list, list) {
2624			if (strcmp(rdev_get_name(r),
2625				   init_data->supply_regulator) == 0) {
2626				found = 1;
2627				break;
2628			}
2629		}
2630
2631		if (!found) {
2632			dev_err(dev, "Failed to find supply %s\n",
2633				init_data->supply_regulator);
2634			ret = -ENODEV;
2635			goto scrub;
2636		}
2637
2638		ret = set_supply(rdev, r);
2639		if (ret < 0)
2640			goto scrub;
2641	}
2642
2643	/* add consumers devices */
2644	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2645		ret = set_consumer_device_supply(rdev,
2646			init_data->consumer_supplies[i].dev,
2647			init_data->consumer_supplies[i].dev_name,
2648			init_data->consumer_supplies[i].supply);
2649		if (ret < 0) {
2650			dev_err(dev, "Failed to set supply %s\n",
2651				init_data->consumer_supplies[i].supply);
2652			goto unset_supplies;
2653		}
2654	}
2655
2656	list_add(&rdev->list, &regulator_list);
2657
2658	rdev_init_debugfs(rdev);
2659out:
2660	mutex_unlock(&regulator_list_mutex);
2661	return rdev;
2662
2663unset_supplies:
2664	unset_regulator_supplies(rdev);
2665
2666scrub:
2667	device_unregister(&rdev->dev);
2668	/* device core frees rdev */
2669	rdev = ERR_PTR(ret);
2670	goto out;
2671
2672clean:
2673	kfree(rdev);
2674	rdev = ERR_PTR(ret);
2675	goto out;
2676}
2677EXPORT_SYMBOL_GPL(regulator_register);
2678
2679/**
2680 * regulator_unregister - unregister regulator
2681 * @rdev: regulator to unregister
2682 *
2683 * Called by regulator drivers to unregister a regulator.
2684 */
2685void regulator_unregister(struct regulator_dev *rdev)
2686{
2687	if (rdev == NULL)
2688		return;
2689
2690	mutex_lock(&regulator_list_mutex);
2691#ifdef CONFIG_DEBUG_FS
2692	debugfs_remove_recursive(rdev->debugfs);
2693#endif
2694	WARN_ON(rdev->open_count);
2695	unset_regulator_supplies(rdev);
2696	list_del(&rdev->list);
2697	if (rdev->supply)
2698		regulator_put(rdev->supply);
2699	device_unregister(&rdev->dev);
2700	kfree(rdev->constraints);
2701	mutex_unlock(&regulator_list_mutex);
2702}
2703EXPORT_SYMBOL_GPL(regulator_unregister);
2704
2705/**
2706 * regulator_suspend_prepare - prepare regulators for system wide suspend
2707 * @state: system suspend state
2708 *
2709 * Configure each regulator with it's suspend operating parameters for state.
2710 * This will usually be called by machine suspend code prior to supending.
2711 */
2712int regulator_suspend_prepare(suspend_state_t state)
2713{
2714	struct regulator_dev *rdev;
2715	int ret = 0;
2716
2717	/* ON is handled by regulator active state */
2718	if (state == PM_SUSPEND_ON)
2719		return -EINVAL;
2720
2721	mutex_lock(&regulator_list_mutex);
2722	list_for_each_entry(rdev, &regulator_list, list) {
2723
2724		mutex_lock(&rdev->mutex);
2725		ret = suspend_prepare(rdev, state);
2726		mutex_unlock(&rdev->mutex);
2727
2728		if (ret < 0) {
2729			rdev_err(rdev, "failed to prepare\n");
2730			goto out;
2731		}
2732	}
2733out:
2734	mutex_unlock(&regulator_list_mutex);
2735	return ret;
2736}
2737EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2738
2739/**
2740 * regulator_suspend_finish - resume regulators from system wide suspend
2741 *
2742 * Turn on regulators that might be turned off by regulator_suspend_prepare
2743 * and that should be turned on according to the regulators properties.
2744 */
2745int regulator_suspend_finish(void)
2746{
2747	struct regulator_dev *rdev;
2748	int ret = 0, error;
2749
2750	mutex_lock(&regulator_list_mutex);
2751	list_for_each_entry(rdev, &regulator_list, list) {
2752		struct regulator_ops *ops = rdev->desc->ops;
2753
2754		mutex_lock(&rdev->mutex);
2755		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2756				ops->enable) {
2757			error = ops->enable(rdev);
2758			if (error)
2759				ret = error;
2760		} else {
2761			if (!has_full_constraints)
2762				goto unlock;
2763			if (!ops->disable)
2764				goto unlock;
2765			if (ops->is_enabled && !ops->is_enabled(rdev))
2766				goto unlock;
2767
2768			error = ops->disable(rdev);
2769			if (error)
2770				ret = error;
2771		}
2772unlock:
2773		mutex_unlock(&rdev->mutex);
2774	}
2775	mutex_unlock(&regulator_list_mutex);
2776	return ret;
2777}
2778EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2779
2780/**
2781 * regulator_has_full_constraints - the system has fully specified constraints
2782 *
2783 * Calling this function will cause the regulator API to disable all
2784 * regulators which have a zero use count and don't have an always_on
2785 * constraint in a late_initcall.
2786 *
2787 * The intention is that this will become the default behaviour in a
2788 * future kernel release so users are encouraged to use this facility
2789 * now.
2790 */
2791void regulator_has_full_constraints(void)
2792{
2793	has_full_constraints = 1;
2794}
2795EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2796
2797/**
2798 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2799 *
2800 * Calling this function will cause the regulator API to provide a
2801 * dummy regulator to consumers if no physical regulator is found,
2802 * allowing most consumers to proceed as though a regulator were
2803 * configured.  This allows systems such as those with software
2804 * controllable regulators for the CPU core only to be brought up more
2805 * readily.
2806 */
2807void regulator_use_dummy_regulator(void)
2808{
2809	board_wants_dummy_regulator = true;
2810}
2811EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2812
2813/**
2814 * rdev_get_drvdata - get rdev regulator driver data
2815 * @rdev: regulator
2816 *
2817 * Get rdev regulator driver private data. This call can be used in the
2818 * regulator driver context.
2819 */
2820void *rdev_get_drvdata(struct regulator_dev *rdev)
2821{
2822	return rdev->reg_data;
2823}
2824EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2825
2826/**
2827 * regulator_get_drvdata - get regulator driver data
2828 * @regulator: regulator
2829 *
2830 * Get regulator driver private data. This call can be used in the consumer
2831 * driver context when non API regulator specific functions need to be called.
2832 */
2833void *regulator_get_drvdata(struct regulator *regulator)
2834{
2835	return regulator->rdev->reg_data;
2836}
2837EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2838
2839/**
2840 * regulator_set_drvdata - set regulator driver data
2841 * @regulator: regulator
2842 * @data: data
2843 */
2844void regulator_set_drvdata(struct regulator *regulator, void *data)
2845{
2846	regulator->rdev->reg_data = data;
2847}
2848EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2849
2850/**
2851 * regulator_get_id - get regulator ID
2852 * @rdev: regulator
2853 */
2854int rdev_get_id(struct regulator_dev *rdev)
2855{
2856	return rdev->desc->id;
2857}
2858EXPORT_SYMBOL_GPL(rdev_get_id);
2859
2860struct device *rdev_get_dev(struct regulator_dev *rdev)
2861{
2862	return &rdev->dev;
2863}
2864EXPORT_SYMBOL_GPL(rdev_get_dev);
2865
2866void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2867{
2868	return reg_init_data->driver_data;
2869}
2870EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2871
2872static int __init regulator_init(void)
2873{
2874	int ret;
2875
2876	ret = class_register(&regulator_class);
2877
2878#ifdef CONFIG_DEBUG_FS
2879	debugfs_root = debugfs_create_dir("regulator", NULL);
2880	if (IS_ERR(debugfs_root) || !debugfs_root) {
2881		pr_warn("regulator: Failed to create debugfs directory\n");
2882		debugfs_root = NULL;
2883	}
2884#endif
2885
2886	regulator_dummy_init();
2887
2888	return ret;
2889}
2890
2891/* init early to allow our consumers to complete system booting */
2892core_initcall(regulator_init);
2893
2894static int __init regulator_init_complete(void)
2895{
2896	struct regulator_dev *rdev;
2897	struct regulator_ops *ops;
2898	struct regulation_constraints *c;
2899	int enabled, ret;
2900
2901	mutex_lock(&regulator_list_mutex);
2902
2903	/* If we have a full configuration then disable any regulators
2904	 * which are not in use or always_on.  This will become the
2905	 * default behaviour in the future.
2906	 */
2907	list_for_each_entry(rdev, &regulator_list, list) {
2908		ops = rdev->desc->ops;
2909		c = rdev->constraints;
2910
2911		if (!ops->disable || (c && c->always_on))
2912			continue;
2913
2914		mutex_lock(&rdev->mutex);
2915
2916		if (rdev->use_count)
2917			goto unlock;
2918
2919		/* If we can't read the status assume it's on. */
2920		if (ops->is_enabled)
2921			enabled = ops->is_enabled(rdev);
2922		else
2923			enabled = 1;
2924
2925		if (!enabled)
2926			goto unlock;
2927
2928		if (has_full_constraints) {
2929			/* We log since this may kill the system if it
2930			 * goes wrong. */
2931			rdev_info(rdev, "disabling\n");
2932			ret = ops->disable(rdev);
2933			if (ret != 0) {
2934				rdev_err(rdev, "couldn't disable: %d\n", ret);
2935			}
2936		} else {
2937			/* The intention is that in future we will
2938			 * assume that full constraints are provided
2939			 * so warn even if we aren't going to do
2940			 * anything here.
2941			 */
2942			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2943		}
2944
2945unlock:
2946		mutex_unlock(&rdev->mutex);
2947	}
2948
2949	mutex_unlock(&regulator_list_mutex);
2950
2951	return 0;
2952}
2953late_initcall(regulator_init_complete);
2954