core.c revision 39f5460d7f9cc57d3dd745301bf60ca5d65a6e7b
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/gpio/consumer.h>
28#include <linux/of.h>
29#include <linux/regmap.h>
30#include <linux/regulator/of_regulator.h>
31#include <linux/regulator/consumer.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include <linux/module.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/regulator.h>
38
39#include "dummy.h"
40#include "internal.h"
41
42#define rdev_crit(rdev, fmt, ...)					\
43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_err(rdev, fmt, ...)					\
45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_warn(rdev, fmt, ...)					\
47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_info(rdev, fmt, ...)					\
49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50#define rdev_dbg(rdev, fmt, ...)					\
51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53static DEFINE_MUTEX(regulator_list_mutex);
54static LIST_HEAD(regulator_list);
55static LIST_HEAD(regulator_map_list);
56static LIST_HEAD(regulator_ena_gpio_list);
57static LIST_HEAD(regulator_supply_alias_list);
58static bool has_full_constraints;
59
60static struct dentry *debugfs_root;
61
62/*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67struct regulator_map {
68	struct list_head list;
69	const char *dev_name;   /* The dev_name() for the consumer */
70	const char *supply;
71	struct regulator_dev *regulator;
72};
73
74/*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79struct regulator_enable_gpio {
80	struct list_head list;
81	struct gpio_desc *gpiod;
82	u32 enable_count;	/* a number of enabled shared GPIO */
83	u32 request_count;	/* a number of requested shared GPIO */
84	unsigned int ena_gpio_invert:1;
85};
86
87/*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92struct regulator_supply_alias {
93	struct list_head list;
94	struct device *src_dev;
95	const char *src_supply;
96	struct device *alias_dev;
97	const char *alias_supply;
98};
99
100static int _regulator_is_enabled(struct regulator_dev *rdev);
101static int _regulator_disable(struct regulator_dev *rdev);
102static int _regulator_get_voltage(struct regulator_dev *rdev);
103static int _regulator_get_current_limit(struct regulator_dev *rdev);
104static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105static void _notifier_call_chain(struct regulator_dev *rdev,
106				  unsigned long event, void *data);
107static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108				     int min_uV, int max_uV);
109static struct regulator *create_regulator(struct regulator_dev *rdev,
110					  struct device *dev,
111					  const char *supply_name);
112
113static const char *rdev_get_name(struct regulator_dev *rdev)
114{
115	if (rdev->constraints && rdev->constraints->name)
116		return rdev->constraints->name;
117	else if (rdev->desc->name)
118		return rdev->desc->name;
119	else
120		return "";
121}
122
123static bool have_full_constraints(void)
124{
125	return has_full_constraints || of_have_populated_dt();
126}
127
128/**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138{
139	struct device_node *regnode = NULL;
140	char prop_name[32]; /* 32 is max size of property name */
141
142	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144	snprintf(prop_name, 32, "%s-supply", supply);
145	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147	if (!regnode) {
148		dev_dbg(dev, "Looking up %s property in node %s failed",
149				prop_name, dev->of_node->full_name);
150		return NULL;
151	}
152	return regnode;
153}
154
155static int _regulator_can_change_status(struct regulator_dev *rdev)
156{
157	if (!rdev->constraints)
158		return 0;
159
160	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161		return 1;
162	else
163		return 0;
164}
165
166/* Platform voltage constraint check */
167static int regulator_check_voltage(struct regulator_dev *rdev,
168				   int *min_uV, int *max_uV)
169{
170	BUG_ON(*min_uV > *max_uV);
171
172	if (!rdev->constraints) {
173		rdev_err(rdev, "no constraints\n");
174		return -ENODEV;
175	}
176	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177		rdev_err(rdev, "operation not allowed\n");
178		return -EPERM;
179	}
180
181	if (*max_uV > rdev->constraints->max_uV)
182		*max_uV = rdev->constraints->max_uV;
183	if (*min_uV < rdev->constraints->min_uV)
184		*min_uV = rdev->constraints->min_uV;
185
186	if (*min_uV > *max_uV) {
187		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188			 *min_uV, *max_uV);
189		return -EINVAL;
190	}
191
192	return 0;
193}
194
195/* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198static int regulator_check_consumers(struct regulator_dev *rdev,
199				     int *min_uV, int *max_uV)
200{
201	struct regulator *regulator;
202
203	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204		/*
205		 * Assume consumers that didn't say anything are OK
206		 * with anything in the constraint range.
207		 */
208		if (!regulator->min_uV && !regulator->max_uV)
209			continue;
210
211		if (*max_uV > regulator->max_uV)
212			*max_uV = regulator->max_uV;
213		if (*min_uV < regulator->min_uV)
214			*min_uV = regulator->min_uV;
215	}
216
217	if (*min_uV > *max_uV) {
218		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219			*min_uV, *max_uV);
220		return -EINVAL;
221	}
222
223	return 0;
224}
225
226/* current constraint check */
227static int regulator_check_current_limit(struct regulator_dev *rdev,
228					int *min_uA, int *max_uA)
229{
230	BUG_ON(*min_uA > *max_uA);
231
232	if (!rdev->constraints) {
233		rdev_err(rdev, "no constraints\n");
234		return -ENODEV;
235	}
236	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237		rdev_err(rdev, "operation not allowed\n");
238		return -EPERM;
239	}
240
241	if (*max_uA > rdev->constraints->max_uA)
242		*max_uA = rdev->constraints->max_uA;
243	if (*min_uA < rdev->constraints->min_uA)
244		*min_uA = rdev->constraints->min_uA;
245
246	if (*min_uA > *max_uA) {
247		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248			 *min_uA, *max_uA);
249		return -EINVAL;
250	}
251
252	return 0;
253}
254
255/* operating mode constraint check */
256static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257{
258	switch (*mode) {
259	case REGULATOR_MODE_FAST:
260	case REGULATOR_MODE_NORMAL:
261	case REGULATOR_MODE_IDLE:
262	case REGULATOR_MODE_STANDBY:
263		break;
264	default:
265		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266		return -EINVAL;
267	}
268
269	if (!rdev->constraints) {
270		rdev_err(rdev, "no constraints\n");
271		return -ENODEV;
272	}
273	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274		rdev_err(rdev, "operation not allowed\n");
275		return -EPERM;
276	}
277
278	/* The modes are bitmasks, the most power hungry modes having
279	 * the lowest values. If the requested mode isn't supported
280	 * try higher modes. */
281	while (*mode) {
282		if (rdev->constraints->valid_modes_mask & *mode)
283			return 0;
284		*mode /= 2;
285	}
286
287	return -EINVAL;
288}
289
290/* dynamic regulator mode switching constraint check */
291static int regulator_check_drms(struct regulator_dev *rdev)
292{
293	if (!rdev->constraints) {
294		rdev_err(rdev, "no constraints\n");
295		return -ENODEV;
296	}
297	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298		rdev_err(rdev, "operation not allowed\n");
299		return -EPERM;
300	}
301	return 0;
302}
303
304static ssize_t regulator_uV_show(struct device *dev,
305				struct device_attribute *attr, char *buf)
306{
307	struct regulator_dev *rdev = dev_get_drvdata(dev);
308	ssize_t ret;
309
310	mutex_lock(&rdev->mutex);
311	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312	mutex_unlock(&rdev->mutex);
313
314	return ret;
315}
316static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318static ssize_t regulator_uA_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324}
325static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328			 char *buf)
329{
330	struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333}
334static DEVICE_ATTR_RO(name);
335
336static ssize_t regulator_print_opmode(char *buf, int mode)
337{
338	switch (mode) {
339	case REGULATOR_MODE_FAST:
340		return sprintf(buf, "fast\n");
341	case REGULATOR_MODE_NORMAL:
342		return sprintf(buf, "normal\n");
343	case REGULATOR_MODE_IDLE:
344		return sprintf(buf, "idle\n");
345	case REGULATOR_MODE_STANDBY:
346		return sprintf(buf, "standby\n");
347	}
348	return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_opmode_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357}
358static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360static ssize_t regulator_print_state(char *buf, int state)
361{
362	if (state > 0)
363		return sprintf(buf, "enabled\n");
364	else if (state == 0)
365		return sprintf(buf, "disabled\n");
366	else
367		return sprintf(buf, "unknown\n");
368}
369
370static ssize_t regulator_state_show(struct device *dev,
371				   struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374	ssize_t ret;
375
376	mutex_lock(&rdev->mutex);
377	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378	mutex_unlock(&rdev->mutex);
379
380	return ret;
381}
382static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384static ssize_t regulator_status_show(struct device *dev,
385				   struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	int status;
389	char *label;
390
391	status = rdev->desc->ops->get_status(rdev);
392	if (status < 0)
393		return status;
394
395	switch (status) {
396	case REGULATOR_STATUS_OFF:
397		label = "off";
398		break;
399	case REGULATOR_STATUS_ON:
400		label = "on";
401		break;
402	case REGULATOR_STATUS_ERROR:
403		label = "error";
404		break;
405	case REGULATOR_STATUS_FAST:
406		label = "fast";
407		break;
408	case REGULATOR_STATUS_NORMAL:
409		label = "normal";
410		break;
411	case REGULATOR_STATUS_IDLE:
412		label = "idle";
413		break;
414	case REGULATOR_STATUS_STANDBY:
415		label = "standby";
416		break;
417	case REGULATOR_STATUS_BYPASS:
418		label = "bypass";
419		break;
420	case REGULATOR_STATUS_UNDEFINED:
421		label = "undefined";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495			      char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500static DEVICE_ATTR_RO(num_users);
501
502static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503			 char *buf)
504{
505	struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507	switch (rdev->desc->type) {
508	case REGULATOR_VOLTAGE:
509		return sprintf(buf, "voltage\n");
510	case REGULATOR_CURRENT:
511		return sprintf(buf, "current\n");
512	}
513	return sprintf(buf, "unknown\n");
514}
515static DEVICE_ATTR_RO(type);
516
517static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518				struct device_attribute *attr, char *buf)
519{
520	struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523}
524static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525		regulator_suspend_mem_uV_show, NULL);
526
527static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528				struct device_attribute *attr, char *buf)
529{
530	struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533}
534static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535		regulator_suspend_disk_uV_show, NULL);
536
537static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538				struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543}
544static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545		regulator_suspend_standby_uV_show, NULL);
546
547static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548				struct device_attribute *attr, char *buf)
549{
550	struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552	return regulator_print_opmode(buf,
553		rdev->constraints->state_mem.mode);
554}
555static DEVICE_ATTR(suspend_mem_mode, 0444,
556		regulator_suspend_mem_mode_show, NULL);
557
558static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559				struct device_attribute *attr, char *buf)
560{
561	struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563	return regulator_print_opmode(buf,
564		rdev->constraints->state_disk.mode);
565}
566static DEVICE_ATTR(suspend_disk_mode, 0444,
567		regulator_suspend_disk_mode_show, NULL);
568
569static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570				struct device_attribute *attr, char *buf)
571{
572	struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574	return regulator_print_opmode(buf,
575		rdev->constraints->state_standby.mode);
576}
577static DEVICE_ATTR(suspend_standby_mode, 0444,
578		regulator_suspend_standby_mode_show, NULL);
579
580static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581				   struct device_attribute *attr, char *buf)
582{
583	struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585	return regulator_print_state(buf,
586			rdev->constraints->state_mem.enabled);
587}
588static DEVICE_ATTR(suspend_mem_state, 0444,
589		regulator_suspend_mem_state_show, NULL);
590
591static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592				   struct device_attribute *attr, char *buf)
593{
594	struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596	return regulator_print_state(buf,
597			rdev->constraints->state_disk.enabled);
598}
599static DEVICE_ATTR(suspend_disk_state, 0444,
600		regulator_suspend_disk_state_show, NULL);
601
602static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603				   struct device_attribute *attr, char *buf)
604{
605	struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607	return regulator_print_state(buf,
608			rdev->constraints->state_standby.enabled);
609}
610static DEVICE_ATTR(suspend_standby_state, 0444,
611		regulator_suspend_standby_state_show, NULL);
612
613static ssize_t regulator_bypass_show(struct device *dev,
614				     struct device_attribute *attr, char *buf)
615{
616	struct regulator_dev *rdev = dev_get_drvdata(dev);
617	const char *report;
618	bool bypass;
619	int ret;
620
621	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623	if (ret != 0)
624		report = "unknown";
625	else if (bypass)
626		report = "enabled";
627	else
628		report = "disabled";
629
630	return sprintf(buf, "%s\n", report);
631}
632static DEVICE_ATTR(bypass, 0444,
633		   regulator_bypass_show, NULL);
634
635/*
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
638 */
639static struct attribute *regulator_dev_attrs[] = {
640	&dev_attr_name.attr,
641	&dev_attr_num_users.attr,
642	&dev_attr_type.attr,
643	NULL,
644};
645ATTRIBUTE_GROUPS(regulator_dev);
646
647static void regulator_dev_release(struct device *dev)
648{
649	struct regulator_dev *rdev = dev_get_drvdata(dev);
650	kfree(rdev);
651}
652
653static struct class regulator_class = {
654	.name = "regulator",
655	.dev_release = regulator_dev_release,
656	.dev_groups = regulator_dev_groups,
657};
658
659/* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661static void drms_uA_update(struct regulator_dev *rdev)
662{
663	struct regulator *sibling;
664	int current_uA = 0, output_uV, input_uV, err;
665	unsigned int mode;
666
667	err = regulator_check_drms(rdev);
668	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669	    (!rdev->desc->ops->get_voltage &&
670	     !rdev->desc->ops->get_voltage_sel) ||
671	    !rdev->desc->ops->set_mode)
672		return;
673
674	/* get output voltage */
675	output_uV = _regulator_get_voltage(rdev);
676	if (output_uV <= 0)
677		return;
678
679	/* get input voltage */
680	input_uV = 0;
681	if (rdev->supply)
682		input_uV = regulator_get_voltage(rdev->supply);
683	if (input_uV <= 0)
684		input_uV = rdev->constraints->input_uV;
685	if (input_uV <= 0)
686		return;
687
688	/* calc total requested load */
689	list_for_each_entry(sibling, &rdev->consumer_list, list)
690		current_uA += sibling->uA_load;
691
692	/* now get the optimum mode for our new total regulator load */
693	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694						  output_uV, current_uA);
695
696	/* check the new mode is allowed */
697	err = regulator_mode_constrain(rdev, &mode);
698	if (err == 0)
699		rdev->desc->ops->set_mode(rdev, mode);
700}
701
702static int suspend_set_state(struct regulator_dev *rdev,
703	struct regulator_state *rstate)
704{
705	int ret = 0;
706
707	/* If we have no suspend mode configration don't set anything;
708	 * only warn if the driver implements set_suspend_voltage or
709	 * set_suspend_mode callback.
710	 */
711	if (!rstate->enabled && !rstate->disabled) {
712		if (rdev->desc->ops->set_suspend_voltage ||
713		    rdev->desc->ops->set_suspend_mode)
714			rdev_warn(rdev, "No configuration\n");
715		return 0;
716	}
717
718	if (rstate->enabled && rstate->disabled) {
719		rdev_err(rdev, "invalid configuration\n");
720		return -EINVAL;
721	}
722
723	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724		ret = rdev->desc->ops->set_suspend_enable(rdev);
725	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726		ret = rdev->desc->ops->set_suspend_disable(rdev);
727	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728		ret = 0;
729
730	if (ret < 0) {
731		rdev_err(rdev, "failed to enabled/disable\n");
732		return ret;
733	}
734
735	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737		if (ret < 0) {
738			rdev_err(rdev, "failed to set voltage\n");
739			return ret;
740		}
741	}
742
743	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745		if (ret < 0) {
746			rdev_err(rdev, "failed to set mode\n");
747			return ret;
748		}
749	}
750	return ret;
751}
752
753/* locks held by caller */
754static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755{
756	if (!rdev->constraints)
757		return -EINVAL;
758
759	switch (state) {
760	case PM_SUSPEND_STANDBY:
761		return suspend_set_state(rdev,
762			&rdev->constraints->state_standby);
763	case PM_SUSPEND_MEM:
764		return suspend_set_state(rdev,
765			&rdev->constraints->state_mem);
766	case PM_SUSPEND_MAX:
767		return suspend_set_state(rdev,
768			&rdev->constraints->state_disk);
769	default:
770		return -EINVAL;
771	}
772}
773
774static void print_constraints(struct regulator_dev *rdev)
775{
776	struct regulation_constraints *constraints = rdev->constraints;
777	char buf[80] = "";
778	int count = 0;
779	int ret;
780
781	if (constraints->min_uV && constraints->max_uV) {
782		if (constraints->min_uV == constraints->max_uV)
783			count += sprintf(buf + count, "%d mV ",
784					 constraints->min_uV / 1000);
785		else
786			count += sprintf(buf + count, "%d <--> %d mV ",
787					 constraints->min_uV / 1000,
788					 constraints->max_uV / 1000);
789	}
790
791	if (!constraints->min_uV ||
792	    constraints->min_uV != constraints->max_uV) {
793		ret = _regulator_get_voltage(rdev);
794		if (ret > 0)
795			count += sprintf(buf + count, "at %d mV ", ret / 1000);
796	}
797
798	if (constraints->uV_offset)
799		count += sprintf(buf, "%dmV offset ",
800				 constraints->uV_offset / 1000);
801
802	if (constraints->min_uA && constraints->max_uA) {
803		if (constraints->min_uA == constraints->max_uA)
804			count += sprintf(buf + count, "%d mA ",
805					 constraints->min_uA / 1000);
806		else
807			count += sprintf(buf + count, "%d <--> %d mA ",
808					 constraints->min_uA / 1000,
809					 constraints->max_uA / 1000);
810	}
811
812	if (!constraints->min_uA ||
813	    constraints->min_uA != constraints->max_uA) {
814		ret = _regulator_get_current_limit(rdev);
815		if (ret > 0)
816			count += sprintf(buf + count, "at %d mA ", ret / 1000);
817	}
818
819	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820		count += sprintf(buf + count, "fast ");
821	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822		count += sprintf(buf + count, "normal ");
823	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824		count += sprintf(buf + count, "idle ");
825	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826		count += sprintf(buf + count, "standby");
827
828	if (!count)
829		sprintf(buf, "no parameters");
830
831	rdev_info(rdev, "%s\n", buf);
832
833	if ((constraints->min_uV != constraints->max_uV) &&
834	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835		rdev_warn(rdev,
836			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837}
838
839static int machine_constraints_voltage(struct regulator_dev *rdev,
840	struct regulation_constraints *constraints)
841{
842	const struct regulator_ops *ops = rdev->desc->ops;
843	int ret;
844
845	/* do we need to apply the constraint voltage */
846	if (rdev->constraints->apply_uV &&
847	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
848		int current_uV = _regulator_get_voltage(rdev);
849		if (current_uV < 0) {
850			rdev_err(rdev,
851				 "failed to get the current voltage(%d)\n",
852				 current_uV);
853			return current_uV;
854		}
855		if (current_uV < rdev->constraints->min_uV ||
856		    current_uV > rdev->constraints->max_uV) {
857			ret = _regulator_do_set_voltage(
858				rdev, rdev->constraints->min_uV,
859				rdev->constraints->max_uV);
860			if (ret < 0) {
861				rdev_err(rdev,
862					"failed to apply %duV constraint(%d)\n",
863					rdev->constraints->min_uV, ret);
864				return ret;
865			}
866		}
867	}
868
869	/* constrain machine-level voltage specs to fit
870	 * the actual range supported by this regulator.
871	 */
872	if (ops->list_voltage && rdev->desc->n_voltages) {
873		int	count = rdev->desc->n_voltages;
874		int	i;
875		int	min_uV = INT_MAX;
876		int	max_uV = INT_MIN;
877		int	cmin = constraints->min_uV;
878		int	cmax = constraints->max_uV;
879
880		/* it's safe to autoconfigure fixed-voltage supplies
881		   and the constraints are used by list_voltage. */
882		if (count == 1 && !cmin) {
883			cmin = 1;
884			cmax = INT_MAX;
885			constraints->min_uV = cmin;
886			constraints->max_uV = cmax;
887		}
888
889		/* voltage constraints are optional */
890		if ((cmin == 0) && (cmax == 0))
891			return 0;
892
893		/* else require explicit machine-level constraints */
894		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895			rdev_err(rdev, "invalid voltage constraints\n");
896			return -EINVAL;
897		}
898
899		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900		for (i = 0; i < count; i++) {
901			int	value;
902
903			value = ops->list_voltage(rdev, i);
904			if (value <= 0)
905				continue;
906
907			/* maybe adjust [min_uV..max_uV] */
908			if (value >= cmin && value < min_uV)
909				min_uV = value;
910			if (value <= cmax && value > max_uV)
911				max_uV = value;
912		}
913
914		/* final: [min_uV..max_uV] valid iff constraints valid */
915		if (max_uV < min_uV) {
916			rdev_err(rdev,
917				 "unsupportable voltage constraints %u-%uuV\n",
918				 min_uV, max_uV);
919			return -EINVAL;
920		}
921
922		/* use regulator's subset of machine constraints */
923		if (constraints->min_uV < min_uV) {
924			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925				 constraints->min_uV, min_uV);
926			constraints->min_uV = min_uV;
927		}
928		if (constraints->max_uV > max_uV) {
929			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930				 constraints->max_uV, max_uV);
931			constraints->max_uV = max_uV;
932		}
933	}
934
935	return 0;
936}
937
938static int machine_constraints_current(struct regulator_dev *rdev,
939	struct regulation_constraints *constraints)
940{
941	const struct regulator_ops *ops = rdev->desc->ops;
942	int ret;
943
944	if (!constraints->min_uA && !constraints->max_uA)
945		return 0;
946
947	if (constraints->min_uA > constraints->max_uA) {
948		rdev_err(rdev, "Invalid current constraints\n");
949		return -EINVAL;
950	}
951
952	if (!ops->set_current_limit || !ops->get_current_limit) {
953		rdev_warn(rdev, "Operation of current configuration missing\n");
954		return 0;
955	}
956
957	/* Set regulator current in constraints range */
958	ret = ops->set_current_limit(rdev, constraints->min_uA,
959			constraints->max_uA);
960	if (ret < 0) {
961		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962		return ret;
963	}
964
965	return 0;
966}
967
968static int _regulator_do_enable(struct regulator_dev *rdev);
969
970/**
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
974 *
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
979 * set_mode.
980 */
981static int set_machine_constraints(struct regulator_dev *rdev,
982	const struct regulation_constraints *constraints)
983{
984	int ret = 0;
985	const struct regulator_ops *ops = rdev->desc->ops;
986
987	if (constraints)
988		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989					    GFP_KERNEL);
990	else
991		rdev->constraints = kzalloc(sizeof(*constraints),
992					    GFP_KERNEL);
993	if (!rdev->constraints)
994		return -ENOMEM;
995
996	ret = machine_constraints_voltage(rdev, rdev->constraints);
997	if (ret != 0)
998		goto out;
999
1000	ret = machine_constraints_current(rdev, rdev->constraints);
1001	if (ret != 0)
1002		goto out;
1003
1004	/* do we need to setup our suspend state */
1005	if (rdev->constraints->initial_state) {
1006		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007		if (ret < 0) {
1008			rdev_err(rdev, "failed to set suspend state\n");
1009			goto out;
1010		}
1011	}
1012
1013	if (rdev->constraints->initial_mode) {
1014		if (!ops->set_mode) {
1015			rdev_err(rdev, "no set_mode operation\n");
1016			ret = -EINVAL;
1017			goto out;
1018		}
1019
1020		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021		if (ret < 0) {
1022			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023			goto out;
1024		}
1025	}
1026
1027	/* If the constraints say the regulator should be on at this point
1028	 * and we have control then make sure it is enabled.
1029	 */
1030	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031		ret = _regulator_do_enable(rdev);
1032		if (ret < 0 && ret != -EINVAL) {
1033			rdev_err(rdev, "failed to enable\n");
1034			goto out;
1035		}
1036	}
1037
1038	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039		&& ops->set_ramp_delay) {
1040		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041		if (ret < 0) {
1042			rdev_err(rdev, "failed to set ramp_delay\n");
1043			goto out;
1044		}
1045	}
1046
1047	print_constraints(rdev);
1048	return 0;
1049out:
1050	kfree(rdev->constraints);
1051	rdev->constraints = NULL;
1052	return ret;
1053}
1054
1055/**
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1059 *
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1063 */
1064static int set_supply(struct regulator_dev *rdev,
1065		      struct regulator_dev *supply_rdev)
1066{
1067	int err;
1068
1069	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072	if (rdev->supply == NULL) {
1073		err = -ENOMEM;
1074		return err;
1075	}
1076	supply_rdev->open_count++;
1077
1078	return 0;
1079}
1080
1081/**
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev:         regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply:       symbolic name for supply
1086 *
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices.  Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1091 */
1092static int set_consumer_device_supply(struct regulator_dev *rdev,
1093				      const char *consumer_dev_name,
1094				      const char *supply)
1095{
1096	struct regulator_map *node;
1097	int has_dev;
1098
1099	if (supply == NULL)
1100		return -EINVAL;
1101
1102	if (consumer_dev_name != NULL)
1103		has_dev = 1;
1104	else
1105		has_dev = 0;
1106
1107	list_for_each_entry(node, &regulator_map_list, list) {
1108		if (node->dev_name && consumer_dev_name) {
1109			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110				continue;
1111		} else if (node->dev_name || consumer_dev_name) {
1112			continue;
1113		}
1114
1115		if (strcmp(node->supply, supply) != 0)
1116			continue;
1117
1118		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119			 consumer_dev_name,
1120			 dev_name(&node->regulator->dev),
1121			 node->regulator->desc->name,
1122			 supply,
1123			 dev_name(&rdev->dev), rdev_get_name(rdev));
1124		return -EBUSY;
1125	}
1126
1127	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128	if (node == NULL)
1129		return -ENOMEM;
1130
1131	node->regulator = rdev;
1132	node->supply = supply;
1133
1134	if (has_dev) {
1135		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136		if (node->dev_name == NULL) {
1137			kfree(node);
1138			return -ENOMEM;
1139		}
1140	}
1141
1142	list_add(&node->list, &regulator_map_list);
1143	return 0;
1144}
1145
1146static void unset_regulator_supplies(struct regulator_dev *rdev)
1147{
1148	struct regulator_map *node, *n;
1149
1150	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151		if (rdev == node->regulator) {
1152			list_del(&node->list);
1153			kfree(node->dev_name);
1154			kfree(node);
1155		}
1156	}
1157}
1158
1159#define REG_STR_SIZE	64
1160
1161static struct regulator *create_regulator(struct regulator_dev *rdev,
1162					  struct device *dev,
1163					  const char *supply_name)
1164{
1165	struct regulator *regulator;
1166	char buf[REG_STR_SIZE];
1167	int err, size;
1168
1169	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170	if (regulator == NULL)
1171		return NULL;
1172
1173	mutex_lock(&rdev->mutex);
1174	regulator->rdev = rdev;
1175	list_add(&regulator->list, &rdev->consumer_list);
1176
1177	if (dev) {
1178		regulator->dev = dev;
1179
1180		/* Add a link to the device sysfs entry */
1181		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182				 dev->kobj.name, supply_name);
1183		if (size >= REG_STR_SIZE)
1184			goto overflow_err;
1185
1186		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187		if (regulator->supply_name == NULL)
1188			goto overflow_err;
1189
1190		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191					buf);
1192		if (err) {
1193			rdev_warn(rdev, "could not add device link %s err %d\n",
1194				  dev->kobj.name, err);
1195			/* non-fatal */
1196		}
1197	} else {
1198		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199		if (regulator->supply_name == NULL)
1200			goto overflow_err;
1201	}
1202
1203	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204						rdev->debugfs);
1205	if (!regulator->debugfs) {
1206		rdev_warn(rdev, "Failed to create debugfs directory\n");
1207	} else {
1208		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209				   &regulator->uA_load);
1210		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211				   &regulator->min_uV);
1212		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213				   &regulator->max_uV);
1214	}
1215
1216	/*
1217	 * Check now if the regulator is an always on regulator - if
1218	 * it is then we don't need to do nearly so much work for
1219	 * enable/disable calls.
1220	 */
1221	if (!_regulator_can_change_status(rdev) &&
1222	    _regulator_is_enabled(rdev))
1223		regulator->always_on = true;
1224
1225	mutex_unlock(&rdev->mutex);
1226	return regulator;
1227overflow_err:
1228	list_del(&regulator->list);
1229	kfree(regulator);
1230	mutex_unlock(&rdev->mutex);
1231	return NULL;
1232}
1233
1234static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235{
1236	if (rdev->constraints && rdev->constraints->enable_time)
1237		return rdev->constraints->enable_time;
1238	if (!rdev->desc->ops->enable_time)
1239		return rdev->desc->enable_time;
1240	return rdev->desc->ops->enable_time(rdev);
1241}
1242
1243static struct regulator_supply_alias *regulator_find_supply_alias(
1244		struct device *dev, const char *supply)
1245{
1246	struct regulator_supply_alias *map;
1247
1248	list_for_each_entry(map, &regulator_supply_alias_list, list)
1249		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250			return map;
1251
1252	return NULL;
1253}
1254
1255static void regulator_supply_alias(struct device **dev, const char **supply)
1256{
1257	struct regulator_supply_alias *map;
1258
1259	map = regulator_find_supply_alias(*dev, *supply);
1260	if (map) {
1261		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262				*supply, map->alias_supply,
1263				dev_name(map->alias_dev));
1264		*dev = map->alias_dev;
1265		*supply = map->alias_supply;
1266	}
1267}
1268
1269static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270						  const char *supply,
1271						  int *ret)
1272{
1273	struct regulator_dev *r;
1274	struct device_node *node;
1275	struct regulator_map *map;
1276	const char *devname = NULL;
1277
1278	regulator_supply_alias(&dev, &supply);
1279
1280	/* first do a dt based lookup */
1281	if (dev && dev->of_node) {
1282		node = of_get_regulator(dev, supply);
1283		if (node) {
1284			list_for_each_entry(r, &regulator_list, list)
1285				if (r->dev.parent &&
1286					node == r->dev.of_node)
1287					return r;
1288			*ret = -EPROBE_DEFER;
1289			return NULL;
1290		} else {
1291			/*
1292			 * If we couldn't even get the node then it's
1293			 * not just that the device didn't register
1294			 * yet, there's no node and we'll never
1295			 * succeed.
1296			 */
1297			*ret = -ENODEV;
1298		}
1299	}
1300
1301	/* if not found, try doing it non-dt way */
1302	if (dev)
1303		devname = dev_name(dev);
1304
1305	list_for_each_entry(r, &regulator_list, list)
1306		if (strcmp(rdev_get_name(r), supply) == 0)
1307			return r;
1308
1309	list_for_each_entry(map, &regulator_map_list, list) {
1310		/* If the mapping has a device set up it must match */
1311		if (map->dev_name &&
1312		    (!devname || strcmp(map->dev_name, devname)))
1313			continue;
1314
1315		if (strcmp(map->supply, supply) == 0)
1316			return map->regulator;
1317	}
1318
1319
1320	return NULL;
1321}
1322
1323/* Internal regulator request function */
1324static struct regulator *_regulator_get(struct device *dev, const char *id,
1325					bool exclusive, bool allow_dummy)
1326{
1327	struct regulator_dev *rdev;
1328	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329	const char *devname = NULL;
1330	int ret;
1331
1332	if (id == NULL) {
1333		pr_err("get() with no identifier\n");
1334		return ERR_PTR(-EINVAL);
1335	}
1336
1337	if (dev)
1338		devname = dev_name(dev);
1339
1340	if (have_full_constraints())
1341		ret = -ENODEV;
1342	else
1343		ret = -EPROBE_DEFER;
1344
1345	mutex_lock(&regulator_list_mutex);
1346
1347	rdev = regulator_dev_lookup(dev, id, &ret);
1348	if (rdev)
1349		goto found;
1350
1351	regulator = ERR_PTR(ret);
1352
1353	/*
1354	 * If we have return value from dev_lookup fail, we do not expect to
1355	 * succeed, so, quit with appropriate error value
1356	 */
1357	if (ret && ret != -ENODEV)
1358		goto out;
1359
1360	if (!devname)
1361		devname = "deviceless";
1362
1363	/*
1364	 * Assume that a regulator is physically present and enabled
1365	 * even if it isn't hooked up and just provide a dummy.
1366	 */
1367	if (have_full_constraints() && allow_dummy) {
1368		pr_warn("%s supply %s not found, using dummy regulator\n",
1369			devname, id);
1370
1371		rdev = dummy_regulator_rdev;
1372		goto found;
1373	/* Don't log an error when called from regulator_get_optional() */
1374	} else if (!have_full_constraints() || exclusive) {
1375		dev_warn(dev, "dummy supplies not allowed\n");
1376	}
1377
1378	mutex_unlock(&regulator_list_mutex);
1379	return regulator;
1380
1381found:
1382	if (rdev->exclusive) {
1383		regulator = ERR_PTR(-EPERM);
1384		goto out;
1385	}
1386
1387	if (exclusive && rdev->open_count) {
1388		regulator = ERR_PTR(-EBUSY);
1389		goto out;
1390	}
1391
1392	if (!try_module_get(rdev->owner))
1393		goto out;
1394
1395	regulator = create_regulator(rdev, dev, id);
1396	if (regulator == NULL) {
1397		regulator = ERR_PTR(-ENOMEM);
1398		module_put(rdev->owner);
1399		goto out;
1400	}
1401
1402	rdev->open_count++;
1403	if (exclusive) {
1404		rdev->exclusive = 1;
1405
1406		ret = _regulator_is_enabled(rdev);
1407		if (ret > 0)
1408			rdev->use_count = 1;
1409		else
1410			rdev->use_count = 0;
1411	}
1412
1413out:
1414	mutex_unlock(&regulator_list_mutex);
1415
1416	return regulator;
1417}
1418
1419/**
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1426 *
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged.  It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1431 */
1432struct regulator *regulator_get(struct device *dev, const char *id)
1433{
1434	return _regulator_get(dev, id, false, true);
1435}
1436EXPORT_SYMBOL_GPL(regulator_get);
1437
1438/**
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1442 *
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno.  Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1448 *
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1452 * controlling.
1453 *
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged.  It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1458 */
1459struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460{
1461	return _regulator_get(dev, id, true, false);
1462}
1463EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465/**
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1469 *
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1472 *
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1478 * supplies.
1479 *
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged.  It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1484 */
1485struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486{
1487	return _regulator_get(dev, id, false, false);
1488}
1489EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491/* Locks held by regulator_put() */
1492static void _regulator_put(struct regulator *regulator)
1493{
1494	struct regulator_dev *rdev;
1495
1496	if (regulator == NULL || IS_ERR(regulator))
1497		return;
1498
1499	rdev = regulator->rdev;
1500
1501	debugfs_remove_recursive(regulator->debugfs);
1502
1503	/* remove any sysfs entries */
1504	if (regulator->dev)
1505		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506	kfree(regulator->supply_name);
1507	list_del(&regulator->list);
1508	kfree(regulator);
1509
1510	rdev->open_count--;
1511	rdev->exclusive = 0;
1512
1513	module_put(rdev->owner);
1514}
1515
1516/**
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1519 *
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1522 * this function.
1523 */
1524void regulator_put(struct regulator *regulator)
1525{
1526	mutex_lock(&regulator_list_mutex);
1527	_regulator_put(regulator);
1528	mutex_unlock(&regulator_list_mutex);
1529}
1530EXPORT_SYMBOL_GPL(regulator_put);
1531
1532/**
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 *
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1539 * supply
1540 *
1541 * All lookups for id on dev will instead be conducted for alias_id on
1542 * alias_dev.
1543 */
1544int regulator_register_supply_alias(struct device *dev, const char *id,
1545				    struct device *alias_dev,
1546				    const char *alias_id)
1547{
1548	struct regulator_supply_alias *map;
1549
1550	map = regulator_find_supply_alias(dev, id);
1551	if (map)
1552		return -EEXIST;
1553
1554	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555	if (!map)
1556		return -ENOMEM;
1557
1558	map->src_dev = dev;
1559	map->src_supply = id;
1560	map->alias_dev = alias_dev;
1561	map->alias_supply = alias_id;
1562
1563	list_add(&map->list, &regulator_supply_alias_list);
1564
1565	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566		id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568	return 0;
1569}
1570EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572/**
1573 * regulator_unregister_supply_alias - Remove device alias
1574 *
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1577 *
1578 * Remove a lookup alias if one exists for id on dev.
1579 */
1580void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581{
1582	struct regulator_supply_alias *map;
1583
1584	map = regulator_find_supply_alias(dev, id);
1585	if (map) {
1586		list_del(&map->list);
1587		kfree(map);
1588	}
1589}
1590EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592/**
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1594 *
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * lookup the supply
1600 * @num_id: Number of aliases to register
1601 *
1602 * @return 0 on success, an errno on failure.
1603 *
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation.  If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1608 */
1609int regulator_bulk_register_supply_alias(struct device *dev,
1610					 const char *const *id,
1611					 struct device *alias_dev,
1612					 const char *const *alias_id,
1613					 int num_id)
1614{
1615	int i;
1616	int ret;
1617
1618	for (i = 0; i < num_id; ++i) {
1619		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620						      alias_id[i]);
1621		if (ret < 0)
1622			goto err;
1623	}
1624
1625	return 0;
1626
1627err:
1628	dev_err(dev,
1629		"Failed to create supply alias %s,%s -> %s,%s\n",
1630		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632	while (--i >= 0)
1633		regulator_unregister_supply_alias(dev, id[i]);
1634
1635	return ret;
1636}
1637EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639/**
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 *
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1645 *
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1648 */
1649void regulator_bulk_unregister_supply_alias(struct device *dev,
1650					    const char *const *id,
1651					    int num_id)
1652{
1653	int i;
1654
1655	for (i = 0; i < num_id; ++i)
1656		regulator_unregister_supply_alias(dev, id[i]);
1657}
1658EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663				const struct regulator_config *config)
1664{
1665	struct regulator_enable_gpio *pin;
1666	struct gpio_desc *gpiod;
1667	int ret;
1668
1669	gpiod = gpio_to_desc(config->ena_gpio);
1670
1671	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672		if (pin->gpiod == gpiod) {
1673			rdev_dbg(rdev, "GPIO %d is already used\n",
1674				config->ena_gpio);
1675			goto update_ena_gpio_to_rdev;
1676		}
1677	}
1678
1679	ret = gpio_request_one(config->ena_gpio,
1680				GPIOF_DIR_OUT | config->ena_gpio_flags,
1681				rdev_get_name(rdev));
1682	if (ret)
1683		return ret;
1684
1685	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686	if (pin == NULL) {
1687		gpio_free(config->ena_gpio);
1688		return -ENOMEM;
1689	}
1690
1691	pin->gpiod = gpiod;
1692	pin->ena_gpio_invert = config->ena_gpio_invert;
1693	list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695update_ena_gpio_to_rdev:
1696	pin->request_count++;
1697	rdev->ena_pin = pin;
1698	return 0;
1699}
1700
1701static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702{
1703	struct regulator_enable_gpio *pin, *n;
1704
1705	if (!rdev->ena_pin)
1706		return;
1707
1708	/* Free the GPIO only in case of no use */
1709	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710		if (pin->gpiod == rdev->ena_pin->gpiod) {
1711			if (pin->request_count <= 1) {
1712				pin->request_count = 0;
1713				gpiod_put(pin->gpiod);
1714				list_del(&pin->list);
1715				kfree(pin);
1716			} else {
1717				pin->request_count--;
1718			}
1719		}
1720	}
1721}
1722
1723/**
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1727 *
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730 */
1731static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732{
1733	struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735	if (!pin)
1736		return -EINVAL;
1737
1738	if (enable) {
1739		/* Enable GPIO at initial use */
1740		if (pin->enable_count == 0)
1741			gpiod_set_value_cansleep(pin->gpiod,
1742						 !pin->ena_gpio_invert);
1743
1744		pin->enable_count++;
1745	} else {
1746		if (pin->enable_count > 1) {
1747			pin->enable_count--;
1748			return 0;
1749		}
1750
1751		/* Disable GPIO if not used */
1752		if (pin->enable_count <= 1) {
1753			gpiod_set_value_cansleep(pin->gpiod,
1754						 pin->ena_gpio_invert);
1755			pin->enable_count = 0;
1756		}
1757	}
1758
1759	return 0;
1760}
1761
1762/**
1763 * _regulator_enable_delay - a delay helper function
1764 * @delay: time to delay in microseconds
1765 *
1766 * Delay for the requested amount of time as per the guidelines in:
1767 *
1768 *     Documentation/timers/timers-howto.txt
1769 *
1770 * The assumption here is that regulators will never be enabled in
1771 * atomic context and therefore sleeping functions can be used.
1772 */
1773static void _regulator_enable_delay(unsigned int delay)
1774{
1775	unsigned int ms = delay / 1000;
1776	unsigned int us = delay % 1000;
1777
1778	if (ms > 0) {
1779		/*
1780		 * For small enough values, handle super-millisecond
1781		 * delays in the usleep_range() call below.
1782		 */
1783		if (ms < 20)
1784			us += ms * 1000;
1785		else
1786			msleep(ms);
1787	}
1788
1789	/*
1790	 * Give the scheduler some room to coalesce with any other
1791	 * wakeup sources. For delays shorter than 10 us, don't even
1792	 * bother setting up high-resolution timers and just busy-
1793	 * loop.
1794	 */
1795	if (us >= 10)
1796		usleep_range(us, us + 100);
1797	else
1798		udelay(us);
1799}
1800
1801static int _regulator_do_enable(struct regulator_dev *rdev)
1802{
1803	int ret, delay;
1804
1805	/* Query before enabling in case configuration dependent.  */
1806	ret = _regulator_get_enable_time(rdev);
1807	if (ret >= 0) {
1808		delay = ret;
1809	} else {
1810		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811		delay = 0;
1812	}
1813
1814	trace_regulator_enable(rdev_get_name(rdev));
1815
1816	if (rdev->desc->off_on_delay) {
1817		/* if needed, keep a distance of off_on_delay from last time
1818		 * this regulator was disabled.
1819		 */
1820		unsigned long start_jiffy = jiffies;
1821		unsigned long intended, max_delay, remaining;
1822
1823		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824		intended = rdev->last_off_jiffy + max_delay;
1825
1826		if (time_before(start_jiffy, intended)) {
1827			/* calc remaining jiffies to deal with one-time
1828			 * timer wrapping.
1829			 * in case of multiple timer wrapping, either it can be
1830			 * detected by out-of-range remaining, or it cannot be
1831			 * detected and we gets a panelty of
1832			 * _regulator_enable_delay().
1833			 */
1834			remaining = intended - start_jiffy;
1835			if (remaining <= max_delay)
1836				_regulator_enable_delay(
1837						jiffies_to_usecs(remaining));
1838		}
1839	}
1840
1841	if (rdev->ena_pin) {
1842		ret = regulator_ena_gpio_ctrl(rdev, true);
1843		if (ret < 0)
1844			return ret;
1845		rdev->ena_gpio_state = 1;
1846	} else if (rdev->desc->ops->enable) {
1847		ret = rdev->desc->ops->enable(rdev);
1848		if (ret < 0)
1849			return ret;
1850	} else {
1851		return -EINVAL;
1852	}
1853
1854	/* Allow the regulator to ramp; it would be useful to extend
1855	 * this for bulk operations so that the regulators can ramp
1856	 * together.  */
1857	trace_regulator_enable_delay(rdev_get_name(rdev));
1858
1859	_regulator_enable_delay(delay);
1860
1861	trace_regulator_enable_complete(rdev_get_name(rdev));
1862
1863	return 0;
1864}
1865
1866/* locks held by regulator_enable() */
1867static int _regulator_enable(struct regulator_dev *rdev)
1868{
1869	int ret;
1870
1871	/* check voltage and requested load before enabling */
1872	if (rdev->constraints &&
1873	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1874		drms_uA_update(rdev);
1875
1876	if (rdev->use_count == 0) {
1877		/* The regulator may on if it's not switchable or left on */
1878		ret = _regulator_is_enabled(rdev);
1879		if (ret == -EINVAL || ret == 0) {
1880			if (!_regulator_can_change_status(rdev))
1881				return -EPERM;
1882
1883			ret = _regulator_do_enable(rdev);
1884			if (ret < 0)
1885				return ret;
1886
1887		} else if (ret < 0) {
1888			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1889			return ret;
1890		}
1891		/* Fallthrough on positive return values - already enabled */
1892	}
1893
1894	rdev->use_count++;
1895
1896	return 0;
1897}
1898
1899/**
1900 * regulator_enable - enable regulator output
1901 * @regulator: regulator source
1902 *
1903 * Request that the regulator be enabled with the regulator output at
1904 * the predefined voltage or current value.  Calls to regulator_enable()
1905 * must be balanced with calls to regulator_disable().
1906 *
1907 * NOTE: the output value can be set by other drivers, boot loader or may be
1908 * hardwired in the regulator.
1909 */
1910int regulator_enable(struct regulator *regulator)
1911{
1912	struct regulator_dev *rdev = regulator->rdev;
1913	int ret = 0;
1914
1915	if (regulator->always_on)
1916		return 0;
1917
1918	if (rdev->supply) {
1919		ret = regulator_enable(rdev->supply);
1920		if (ret != 0)
1921			return ret;
1922	}
1923
1924	mutex_lock(&rdev->mutex);
1925	ret = _regulator_enable(rdev);
1926	mutex_unlock(&rdev->mutex);
1927
1928	if (ret != 0 && rdev->supply)
1929		regulator_disable(rdev->supply);
1930
1931	return ret;
1932}
1933EXPORT_SYMBOL_GPL(regulator_enable);
1934
1935static int _regulator_do_disable(struct regulator_dev *rdev)
1936{
1937	int ret;
1938
1939	trace_regulator_disable(rdev_get_name(rdev));
1940
1941	if (rdev->ena_pin) {
1942		ret = regulator_ena_gpio_ctrl(rdev, false);
1943		if (ret < 0)
1944			return ret;
1945		rdev->ena_gpio_state = 0;
1946
1947	} else if (rdev->desc->ops->disable) {
1948		ret = rdev->desc->ops->disable(rdev);
1949		if (ret != 0)
1950			return ret;
1951	}
1952
1953	/* cares about last_off_jiffy only if off_on_delay is required by
1954	 * device.
1955	 */
1956	if (rdev->desc->off_on_delay)
1957		rdev->last_off_jiffy = jiffies;
1958
1959	trace_regulator_disable_complete(rdev_get_name(rdev));
1960
1961	return 0;
1962}
1963
1964/* locks held by regulator_disable() */
1965static int _regulator_disable(struct regulator_dev *rdev)
1966{
1967	int ret = 0;
1968
1969	if (WARN(rdev->use_count <= 0,
1970		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1971		return -EIO;
1972
1973	/* are we the last user and permitted to disable ? */
1974	if (rdev->use_count == 1 &&
1975	    (rdev->constraints && !rdev->constraints->always_on)) {
1976
1977		/* we are last user */
1978		if (_regulator_can_change_status(rdev)) {
1979			ret = _regulator_do_disable(rdev);
1980			if (ret < 0) {
1981				rdev_err(rdev, "failed to disable\n");
1982				return ret;
1983			}
1984			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1985					NULL);
1986		}
1987
1988		rdev->use_count = 0;
1989	} else if (rdev->use_count > 1) {
1990
1991		if (rdev->constraints &&
1992			(rdev->constraints->valid_ops_mask &
1993			REGULATOR_CHANGE_DRMS))
1994			drms_uA_update(rdev);
1995
1996		rdev->use_count--;
1997	}
1998
1999	return ret;
2000}
2001
2002/**
2003 * regulator_disable - disable regulator output
2004 * @regulator: regulator source
2005 *
2006 * Disable the regulator output voltage or current.  Calls to
2007 * regulator_enable() must be balanced with calls to
2008 * regulator_disable().
2009 *
2010 * NOTE: this will only disable the regulator output if no other consumer
2011 * devices have it enabled, the regulator device supports disabling and
2012 * machine constraints permit this operation.
2013 */
2014int regulator_disable(struct regulator *regulator)
2015{
2016	struct regulator_dev *rdev = regulator->rdev;
2017	int ret = 0;
2018
2019	if (regulator->always_on)
2020		return 0;
2021
2022	mutex_lock(&rdev->mutex);
2023	ret = _regulator_disable(rdev);
2024	mutex_unlock(&rdev->mutex);
2025
2026	if (ret == 0 && rdev->supply)
2027		regulator_disable(rdev->supply);
2028
2029	return ret;
2030}
2031EXPORT_SYMBOL_GPL(regulator_disable);
2032
2033/* locks held by regulator_force_disable() */
2034static int _regulator_force_disable(struct regulator_dev *rdev)
2035{
2036	int ret = 0;
2037
2038	ret = _regulator_do_disable(rdev);
2039	if (ret < 0) {
2040		rdev_err(rdev, "failed to force disable\n");
2041		return ret;
2042	}
2043
2044	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2045			REGULATOR_EVENT_DISABLE, NULL);
2046
2047	return 0;
2048}
2049
2050/**
2051 * regulator_force_disable - force disable regulator output
2052 * @regulator: regulator source
2053 *
2054 * Forcibly disable the regulator output voltage or current.
2055 * NOTE: this *will* disable the regulator output even if other consumer
2056 * devices have it enabled. This should be used for situations when device
2057 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2058 */
2059int regulator_force_disable(struct regulator *regulator)
2060{
2061	struct regulator_dev *rdev = regulator->rdev;
2062	int ret;
2063
2064	mutex_lock(&rdev->mutex);
2065	regulator->uA_load = 0;
2066	ret = _regulator_force_disable(regulator->rdev);
2067	mutex_unlock(&rdev->mutex);
2068
2069	if (rdev->supply)
2070		while (rdev->open_count--)
2071			regulator_disable(rdev->supply);
2072
2073	return ret;
2074}
2075EXPORT_SYMBOL_GPL(regulator_force_disable);
2076
2077static void regulator_disable_work(struct work_struct *work)
2078{
2079	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2080						  disable_work.work);
2081	int count, i, ret;
2082
2083	mutex_lock(&rdev->mutex);
2084
2085	BUG_ON(!rdev->deferred_disables);
2086
2087	count = rdev->deferred_disables;
2088	rdev->deferred_disables = 0;
2089
2090	for (i = 0; i < count; i++) {
2091		ret = _regulator_disable(rdev);
2092		if (ret != 0)
2093			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2094	}
2095
2096	mutex_unlock(&rdev->mutex);
2097
2098	if (rdev->supply) {
2099		for (i = 0; i < count; i++) {
2100			ret = regulator_disable(rdev->supply);
2101			if (ret != 0) {
2102				rdev_err(rdev,
2103					 "Supply disable failed: %d\n", ret);
2104			}
2105		}
2106	}
2107}
2108
2109/**
2110 * regulator_disable_deferred - disable regulator output with delay
2111 * @regulator: regulator source
2112 * @ms: miliseconds until the regulator is disabled
2113 *
2114 * Execute regulator_disable() on the regulator after a delay.  This
2115 * is intended for use with devices that require some time to quiesce.
2116 *
2117 * NOTE: this will only disable the regulator output if no other consumer
2118 * devices have it enabled, the regulator device supports disabling and
2119 * machine constraints permit this operation.
2120 */
2121int regulator_disable_deferred(struct regulator *regulator, int ms)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	int ret;
2125
2126	if (regulator->always_on)
2127		return 0;
2128
2129	if (!ms)
2130		return regulator_disable(regulator);
2131
2132	mutex_lock(&rdev->mutex);
2133	rdev->deferred_disables++;
2134	mutex_unlock(&rdev->mutex);
2135
2136	ret = queue_delayed_work(system_power_efficient_wq,
2137				 &rdev->disable_work,
2138				 msecs_to_jiffies(ms));
2139	if (ret < 0)
2140		return ret;
2141	else
2142		return 0;
2143}
2144EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2145
2146static int _regulator_is_enabled(struct regulator_dev *rdev)
2147{
2148	/* A GPIO control always takes precedence */
2149	if (rdev->ena_pin)
2150		return rdev->ena_gpio_state;
2151
2152	/* If we don't know then assume that the regulator is always on */
2153	if (!rdev->desc->ops->is_enabled)
2154		return 1;
2155
2156	return rdev->desc->ops->is_enabled(rdev);
2157}
2158
2159/**
2160 * regulator_is_enabled - is the regulator output enabled
2161 * @regulator: regulator source
2162 *
2163 * Returns positive if the regulator driver backing the source/client
2164 * has requested that the device be enabled, zero if it hasn't, else a
2165 * negative errno code.
2166 *
2167 * Note that the device backing this regulator handle can have multiple
2168 * users, so it might be enabled even if regulator_enable() was never
2169 * called for this particular source.
2170 */
2171int regulator_is_enabled(struct regulator *regulator)
2172{
2173	int ret;
2174
2175	if (regulator->always_on)
2176		return 1;
2177
2178	mutex_lock(&regulator->rdev->mutex);
2179	ret = _regulator_is_enabled(regulator->rdev);
2180	mutex_unlock(&regulator->rdev->mutex);
2181
2182	return ret;
2183}
2184EXPORT_SYMBOL_GPL(regulator_is_enabled);
2185
2186/**
2187 * regulator_can_change_voltage - check if regulator can change voltage
2188 * @regulator: regulator source
2189 *
2190 * Returns positive if the regulator driver backing the source/client
2191 * can change its voltage, false otherwise. Useful for detecting fixed
2192 * or dummy regulators and disabling voltage change logic in the client
2193 * driver.
2194 */
2195int regulator_can_change_voltage(struct regulator *regulator)
2196{
2197	struct regulator_dev	*rdev = regulator->rdev;
2198
2199	if (rdev->constraints &&
2200	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2201		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2202			return 1;
2203
2204		if (rdev->desc->continuous_voltage_range &&
2205		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2206		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2207			return 1;
2208	}
2209
2210	return 0;
2211}
2212EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2213
2214/**
2215 * regulator_count_voltages - count regulator_list_voltage() selectors
2216 * @regulator: regulator source
2217 *
2218 * Returns number of selectors, or negative errno.  Selectors are
2219 * numbered starting at zero, and typically correspond to bitfields
2220 * in hardware registers.
2221 */
2222int regulator_count_voltages(struct regulator *regulator)
2223{
2224	struct regulator_dev	*rdev = regulator->rdev;
2225
2226	if (rdev->desc->n_voltages)
2227		return rdev->desc->n_voltages;
2228
2229	if (!rdev->supply)
2230		return -EINVAL;
2231
2232	return regulator_count_voltages(rdev->supply);
2233}
2234EXPORT_SYMBOL_GPL(regulator_count_voltages);
2235
2236/**
2237 * regulator_list_voltage - enumerate supported voltages
2238 * @regulator: regulator source
2239 * @selector: identify voltage to list
2240 * Context: can sleep
2241 *
2242 * Returns a voltage that can be passed to @regulator_set_voltage(),
2243 * zero if this selector code can't be used on this system, or a
2244 * negative errno.
2245 */
2246int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2247{
2248	struct regulator_dev *rdev = regulator->rdev;
2249	const struct regulator_ops *ops = rdev->desc->ops;
2250	int ret;
2251
2252	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2253		return rdev->desc->fixed_uV;
2254
2255	if (ops->list_voltage) {
2256		if (selector >= rdev->desc->n_voltages)
2257			return -EINVAL;
2258		mutex_lock(&rdev->mutex);
2259		ret = ops->list_voltage(rdev, selector);
2260		mutex_unlock(&rdev->mutex);
2261	} else if (rdev->supply) {
2262		ret = regulator_list_voltage(rdev->supply, selector);
2263	} else {
2264		return -EINVAL;
2265	}
2266
2267	if (ret > 0) {
2268		if (ret < rdev->constraints->min_uV)
2269			ret = 0;
2270		else if (ret > rdev->constraints->max_uV)
2271			ret = 0;
2272	}
2273
2274	return ret;
2275}
2276EXPORT_SYMBOL_GPL(regulator_list_voltage);
2277
2278/**
2279 * regulator_get_regmap - get the regulator's register map
2280 * @regulator: regulator source
2281 *
2282 * Returns the register map for the given regulator, or an ERR_PTR value
2283 * if the regulator doesn't use regmap.
2284 */
2285struct regmap *regulator_get_regmap(struct regulator *regulator)
2286{
2287	struct regmap *map = regulator->rdev->regmap;
2288
2289	return map ? map : ERR_PTR(-EOPNOTSUPP);
2290}
2291
2292/**
2293 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2294 * @regulator: regulator source
2295 * @vsel_reg: voltage selector register, output parameter
2296 * @vsel_mask: mask for voltage selector bitfield, output parameter
2297 *
2298 * Returns the hardware register offset and bitmask used for setting the
2299 * regulator voltage. This might be useful when configuring voltage-scaling
2300 * hardware or firmware that can make I2C requests behind the kernel's back,
2301 * for example.
2302 *
2303 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2304 * and 0 is returned, otherwise a negative errno is returned.
2305 */
2306int regulator_get_hardware_vsel_register(struct regulator *regulator,
2307					 unsigned *vsel_reg,
2308					 unsigned *vsel_mask)
2309{
2310	struct regulator_dev *rdev = regulator->rdev;
2311	const struct regulator_ops *ops = rdev->desc->ops;
2312
2313	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2314		return -EOPNOTSUPP;
2315
2316	 *vsel_reg = rdev->desc->vsel_reg;
2317	 *vsel_mask = rdev->desc->vsel_mask;
2318
2319	 return 0;
2320}
2321EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2322
2323/**
2324 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2325 * @regulator: regulator source
2326 * @selector: identify voltage to list
2327 *
2328 * Converts the selector to a hardware-specific voltage selector that can be
2329 * directly written to the regulator registers. The address of the voltage
2330 * register can be determined by calling @regulator_get_hardware_vsel_register.
2331 *
2332 * On error a negative errno is returned.
2333 */
2334int regulator_list_hardware_vsel(struct regulator *regulator,
2335				 unsigned selector)
2336{
2337	struct regulator_dev *rdev = regulator->rdev;
2338	const struct regulator_ops *ops = rdev->desc->ops;
2339
2340	if (selector >= rdev->desc->n_voltages)
2341		return -EINVAL;
2342	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2343		return -EOPNOTSUPP;
2344
2345	return selector;
2346}
2347EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2348
2349/**
2350 * regulator_get_linear_step - return the voltage step size between VSEL values
2351 * @regulator: regulator source
2352 *
2353 * Returns the voltage step size between VSEL values for linear
2354 * regulators, or return 0 if the regulator isn't a linear regulator.
2355 */
2356unsigned int regulator_get_linear_step(struct regulator *regulator)
2357{
2358	struct regulator_dev *rdev = regulator->rdev;
2359
2360	return rdev->desc->uV_step;
2361}
2362EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2363
2364/**
2365 * regulator_is_supported_voltage - check if a voltage range can be supported
2366 *
2367 * @regulator: Regulator to check.
2368 * @min_uV: Minimum required voltage in uV.
2369 * @max_uV: Maximum required voltage in uV.
2370 *
2371 * Returns a boolean or a negative error code.
2372 */
2373int regulator_is_supported_voltage(struct regulator *regulator,
2374				   int min_uV, int max_uV)
2375{
2376	struct regulator_dev *rdev = regulator->rdev;
2377	int i, voltages, ret;
2378
2379	/* If we can't change voltage check the current voltage */
2380	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2381		ret = regulator_get_voltage(regulator);
2382		if (ret >= 0)
2383			return min_uV <= ret && ret <= max_uV;
2384		else
2385			return ret;
2386	}
2387
2388	/* Any voltage within constrains range is fine? */
2389	if (rdev->desc->continuous_voltage_range)
2390		return min_uV >= rdev->constraints->min_uV &&
2391				max_uV <= rdev->constraints->max_uV;
2392
2393	ret = regulator_count_voltages(regulator);
2394	if (ret < 0)
2395		return ret;
2396	voltages = ret;
2397
2398	for (i = 0; i < voltages; i++) {
2399		ret = regulator_list_voltage(regulator, i);
2400
2401		if (ret >= min_uV && ret <= max_uV)
2402			return 1;
2403	}
2404
2405	return 0;
2406}
2407EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2408
2409static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2410				     int min_uV, int max_uV)
2411{
2412	int ret;
2413	int delay = 0;
2414	int best_val = 0;
2415	unsigned int selector;
2416	int old_selector = -1;
2417
2418	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2419
2420	min_uV += rdev->constraints->uV_offset;
2421	max_uV += rdev->constraints->uV_offset;
2422
2423	/*
2424	 * If we can't obtain the old selector there is not enough
2425	 * info to call set_voltage_time_sel().
2426	 */
2427	if (_regulator_is_enabled(rdev) &&
2428	    rdev->desc->ops->set_voltage_time_sel &&
2429	    rdev->desc->ops->get_voltage_sel) {
2430		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2431		if (old_selector < 0)
2432			return old_selector;
2433	}
2434
2435	if (rdev->desc->ops->set_voltage) {
2436		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2437						   &selector);
2438
2439		if (ret >= 0) {
2440			if (rdev->desc->ops->list_voltage)
2441				best_val = rdev->desc->ops->list_voltage(rdev,
2442									 selector);
2443			else
2444				best_val = _regulator_get_voltage(rdev);
2445		}
2446
2447	} else if (rdev->desc->ops->set_voltage_sel) {
2448		if (rdev->desc->ops->map_voltage) {
2449			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2450							   max_uV);
2451		} else {
2452			if (rdev->desc->ops->list_voltage ==
2453			    regulator_list_voltage_linear)
2454				ret = regulator_map_voltage_linear(rdev,
2455								min_uV, max_uV);
2456			else if (rdev->desc->ops->list_voltage ==
2457				 regulator_list_voltage_linear_range)
2458				ret = regulator_map_voltage_linear_range(rdev,
2459								min_uV, max_uV);
2460			else
2461				ret = regulator_map_voltage_iterate(rdev,
2462								min_uV, max_uV);
2463		}
2464
2465		if (ret >= 0) {
2466			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2467			if (min_uV <= best_val && max_uV >= best_val) {
2468				selector = ret;
2469				if (old_selector == selector)
2470					ret = 0;
2471				else
2472					ret = rdev->desc->ops->set_voltage_sel(
2473								rdev, ret);
2474			} else {
2475				ret = -EINVAL;
2476			}
2477		}
2478	} else {
2479		ret = -EINVAL;
2480	}
2481
2482	/* Call set_voltage_time_sel if successfully obtained old_selector */
2483	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2484		&& old_selector != selector) {
2485
2486		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2487						old_selector, selector);
2488		if (delay < 0) {
2489			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2490				  delay);
2491			delay = 0;
2492		}
2493
2494		/* Insert any necessary delays */
2495		if (delay >= 1000) {
2496			mdelay(delay / 1000);
2497			udelay(delay % 1000);
2498		} else if (delay) {
2499			udelay(delay);
2500		}
2501	}
2502
2503	if (ret == 0 && best_val >= 0) {
2504		unsigned long data = best_val;
2505
2506		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2507				     (void *)data);
2508	}
2509
2510	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2511
2512	return ret;
2513}
2514
2515/**
2516 * regulator_set_voltage - set regulator output voltage
2517 * @regulator: regulator source
2518 * @min_uV: Minimum required voltage in uV
2519 * @max_uV: Maximum acceptable voltage in uV
2520 *
2521 * Sets a voltage regulator to the desired output voltage. This can be set
2522 * during any regulator state. IOW, regulator can be disabled or enabled.
2523 *
2524 * If the regulator is enabled then the voltage will change to the new value
2525 * immediately otherwise if the regulator is disabled the regulator will
2526 * output at the new voltage when enabled.
2527 *
2528 * NOTE: If the regulator is shared between several devices then the lowest
2529 * request voltage that meets the system constraints will be used.
2530 * Regulator system constraints must be set for this regulator before
2531 * calling this function otherwise this call will fail.
2532 */
2533int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2534{
2535	struct regulator_dev *rdev = regulator->rdev;
2536	int ret = 0;
2537	int old_min_uV, old_max_uV;
2538	int current_uV;
2539
2540	mutex_lock(&rdev->mutex);
2541
2542	/* If we're setting the same range as last time the change
2543	 * should be a noop (some cpufreq implementations use the same
2544	 * voltage for multiple frequencies, for example).
2545	 */
2546	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2547		goto out;
2548
2549	/* If we're trying to set a range that overlaps the current voltage,
2550	 * return succesfully even though the regulator does not support
2551	 * changing the voltage.
2552	 */
2553	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2554		current_uV = _regulator_get_voltage(rdev);
2555		if (min_uV <= current_uV && current_uV <= max_uV) {
2556			regulator->min_uV = min_uV;
2557			regulator->max_uV = max_uV;
2558			goto out;
2559		}
2560	}
2561
2562	/* sanity check */
2563	if (!rdev->desc->ops->set_voltage &&
2564	    !rdev->desc->ops->set_voltage_sel) {
2565		ret = -EINVAL;
2566		goto out;
2567	}
2568
2569	/* constraints check */
2570	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2571	if (ret < 0)
2572		goto out;
2573
2574	/* restore original values in case of error */
2575	old_min_uV = regulator->min_uV;
2576	old_max_uV = regulator->max_uV;
2577	regulator->min_uV = min_uV;
2578	regulator->max_uV = max_uV;
2579
2580	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2581	if (ret < 0)
2582		goto out2;
2583
2584	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2585	if (ret < 0)
2586		goto out2;
2587
2588out:
2589	mutex_unlock(&rdev->mutex);
2590	return ret;
2591out2:
2592	regulator->min_uV = old_min_uV;
2593	regulator->max_uV = old_max_uV;
2594	mutex_unlock(&rdev->mutex);
2595	return ret;
2596}
2597EXPORT_SYMBOL_GPL(regulator_set_voltage);
2598
2599/**
2600 * regulator_set_voltage_time - get raise/fall time
2601 * @regulator: regulator source
2602 * @old_uV: starting voltage in microvolts
2603 * @new_uV: target voltage in microvolts
2604 *
2605 * Provided with the starting and ending voltage, this function attempts to
2606 * calculate the time in microseconds required to rise or fall to this new
2607 * voltage.
2608 */
2609int regulator_set_voltage_time(struct regulator *regulator,
2610			       int old_uV, int new_uV)
2611{
2612	struct regulator_dev *rdev = regulator->rdev;
2613	const struct regulator_ops *ops = rdev->desc->ops;
2614	int old_sel = -1;
2615	int new_sel = -1;
2616	int voltage;
2617	int i;
2618
2619	/* Currently requires operations to do this */
2620	if (!ops->list_voltage || !ops->set_voltage_time_sel
2621	    || !rdev->desc->n_voltages)
2622		return -EINVAL;
2623
2624	for (i = 0; i < rdev->desc->n_voltages; i++) {
2625		/* We only look for exact voltage matches here */
2626		voltage = regulator_list_voltage(regulator, i);
2627		if (voltage < 0)
2628			return -EINVAL;
2629		if (voltage == 0)
2630			continue;
2631		if (voltage == old_uV)
2632			old_sel = i;
2633		if (voltage == new_uV)
2634			new_sel = i;
2635	}
2636
2637	if (old_sel < 0 || new_sel < 0)
2638		return -EINVAL;
2639
2640	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2641}
2642EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2643
2644/**
2645 * regulator_set_voltage_time_sel - get raise/fall time
2646 * @rdev: regulator source device
2647 * @old_selector: selector for starting voltage
2648 * @new_selector: selector for target voltage
2649 *
2650 * Provided with the starting and target voltage selectors, this function
2651 * returns time in microseconds required to rise or fall to this new voltage
2652 *
2653 * Drivers providing ramp_delay in regulation_constraints can use this as their
2654 * set_voltage_time_sel() operation.
2655 */
2656int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2657				   unsigned int old_selector,
2658				   unsigned int new_selector)
2659{
2660	unsigned int ramp_delay = 0;
2661	int old_volt, new_volt;
2662
2663	if (rdev->constraints->ramp_delay)
2664		ramp_delay = rdev->constraints->ramp_delay;
2665	else if (rdev->desc->ramp_delay)
2666		ramp_delay = rdev->desc->ramp_delay;
2667
2668	if (ramp_delay == 0) {
2669		rdev_warn(rdev, "ramp_delay not set\n");
2670		return 0;
2671	}
2672
2673	/* sanity check */
2674	if (!rdev->desc->ops->list_voltage)
2675		return -EINVAL;
2676
2677	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2678	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2679
2680	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2683
2684/**
2685 * regulator_sync_voltage - re-apply last regulator output voltage
2686 * @regulator: regulator source
2687 *
2688 * Re-apply the last configured voltage.  This is intended to be used
2689 * where some external control source the consumer is cooperating with
2690 * has caused the configured voltage to change.
2691 */
2692int regulator_sync_voltage(struct regulator *regulator)
2693{
2694	struct regulator_dev *rdev = regulator->rdev;
2695	int ret, min_uV, max_uV;
2696
2697	mutex_lock(&rdev->mutex);
2698
2699	if (!rdev->desc->ops->set_voltage &&
2700	    !rdev->desc->ops->set_voltage_sel) {
2701		ret = -EINVAL;
2702		goto out;
2703	}
2704
2705	/* This is only going to work if we've had a voltage configured. */
2706	if (!regulator->min_uV && !regulator->max_uV) {
2707		ret = -EINVAL;
2708		goto out;
2709	}
2710
2711	min_uV = regulator->min_uV;
2712	max_uV = regulator->max_uV;
2713
2714	/* This should be a paranoia check... */
2715	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2716	if (ret < 0)
2717		goto out;
2718
2719	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2720	if (ret < 0)
2721		goto out;
2722
2723	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2724
2725out:
2726	mutex_unlock(&rdev->mutex);
2727	return ret;
2728}
2729EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2730
2731static int _regulator_get_voltage(struct regulator_dev *rdev)
2732{
2733	int sel, ret;
2734
2735	if (rdev->desc->ops->get_voltage_sel) {
2736		sel = rdev->desc->ops->get_voltage_sel(rdev);
2737		if (sel < 0)
2738			return sel;
2739		ret = rdev->desc->ops->list_voltage(rdev, sel);
2740	} else if (rdev->desc->ops->get_voltage) {
2741		ret = rdev->desc->ops->get_voltage(rdev);
2742	} else if (rdev->desc->ops->list_voltage) {
2743		ret = rdev->desc->ops->list_voltage(rdev, 0);
2744	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2745		ret = rdev->desc->fixed_uV;
2746	} else if (rdev->supply) {
2747		ret = regulator_get_voltage(rdev->supply);
2748	} else {
2749		return -EINVAL;
2750	}
2751
2752	if (ret < 0)
2753		return ret;
2754	return ret - rdev->constraints->uV_offset;
2755}
2756
2757/**
2758 * regulator_get_voltage - get regulator output voltage
2759 * @regulator: regulator source
2760 *
2761 * This returns the current regulator voltage in uV.
2762 *
2763 * NOTE: If the regulator is disabled it will return the voltage value. This
2764 * function should not be used to determine regulator state.
2765 */
2766int regulator_get_voltage(struct regulator *regulator)
2767{
2768	int ret;
2769
2770	mutex_lock(&regulator->rdev->mutex);
2771
2772	ret = _regulator_get_voltage(regulator->rdev);
2773
2774	mutex_unlock(&regulator->rdev->mutex);
2775
2776	return ret;
2777}
2778EXPORT_SYMBOL_GPL(regulator_get_voltage);
2779
2780/**
2781 * regulator_set_current_limit - set regulator output current limit
2782 * @regulator: regulator source
2783 * @min_uA: Minimum supported current in uA
2784 * @max_uA: Maximum supported current in uA
2785 *
2786 * Sets current sink to the desired output current. This can be set during
2787 * any regulator state. IOW, regulator can be disabled or enabled.
2788 *
2789 * If the regulator is enabled then the current will change to the new value
2790 * immediately otherwise if the regulator is disabled the regulator will
2791 * output at the new current when enabled.
2792 *
2793 * NOTE: Regulator system constraints must be set for this regulator before
2794 * calling this function otherwise this call will fail.
2795 */
2796int regulator_set_current_limit(struct regulator *regulator,
2797			       int min_uA, int max_uA)
2798{
2799	struct regulator_dev *rdev = regulator->rdev;
2800	int ret;
2801
2802	mutex_lock(&rdev->mutex);
2803
2804	/* sanity check */
2805	if (!rdev->desc->ops->set_current_limit) {
2806		ret = -EINVAL;
2807		goto out;
2808	}
2809
2810	/* constraints check */
2811	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2812	if (ret < 0)
2813		goto out;
2814
2815	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2816out:
2817	mutex_unlock(&rdev->mutex);
2818	return ret;
2819}
2820EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2821
2822static int _regulator_get_current_limit(struct regulator_dev *rdev)
2823{
2824	int ret;
2825
2826	mutex_lock(&rdev->mutex);
2827
2828	/* sanity check */
2829	if (!rdev->desc->ops->get_current_limit) {
2830		ret = -EINVAL;
2831		goto out;
2832	}
2833
2834	ret = rdev->desc->ops->get_current_limit(rdev);
2835out:
2836	mutex_unlock(&rdev->mutex);
2837	return ret;
2838}
2839
2840/**
2841 * regulator_get_current_limit - get regulator output current
2842 * @regulator: regulator source
2843 *
2844 * This returns the current supplied by the specified current sink in uA.
2845 *
2846 * NOTE: If the regulator is disabled it will return the current value. This
2847 * function should not be used to determine regulator state.
2848 */
2849int regulator_get_current_limit(struct regulator *regulator)
2850{
2851	return _regulator_get_current_limit(regulator->rdev);
2852}
2853EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2854
2855/**
2856 * regulator_set_mode - set regulator operating mode
2857 * @regulator: regulator source
2858 * @mode: operating mode - one of the REGULATOR_MODE constants
2859 *
2860 * Set regulator operating mode to increase regulator efficiency or improve
2861 * regulation performance.
2862 *
2863 * NOTE: Regulator system constraints must be set for this regulator before
2864 * calling this function otherwise this call will fail.
2865 */
2866int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2867{
2868	struct regulator_dev *rdev = regulator->rdev;
2869	int ret;
2870	int regulator_curr_mode;
2871
2872	mutex_lock(&rdev->mutex);
2873
2874	/* sanity check */
2875	if (!rdev->desc->ops->set_mode) {
2876		ret = -EINVAL;
2877		goto out;
2878	}
2879
2880	/* return if the same mode is requested */
2881	if (rdev->desc->ops->get_mode) {
2882		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2883		if (regulator_curr_mode == mode) {
2884			ret = 0;
2885			goto out;
2886		}
2887	}
2888
2889	/* constraints check */
2890	ret = regulator_mode_constrain(rdev, &mode);
2891	if (ret < 0)
2892		goto out;
2893
2894	ret = rdev->desc->ops->set_mode(rdev, mode);
2895out:
2896	mutex_unlock(&rdev->mutex);
2897	return ret;
2898}
2899EXPORT_SYMBOL_GPL(regulator_set_mode);
2900
2901static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2902{
2903	int ret;
2904
2905	mutex_lock(&rdev->mutex);
2906
2907	/* sanity check */
2908	if (!rdev->desc->ops->get_mode) {
2909		ret = -EINVAL;
2910		goto out;
2911	}
2912
2913	ret = rdev->desc->ops->get_mode(rdev);
2914out:
2915	mutex_unlock(&rdev->mutex);
2916	return ret;
2917}
2918
2919/**
2920 * regulator_get_mode - get regulator operating mode
2921 * @regulator: regulator source
2922 *
2923 * Get the current regulator operating mode.
2924 */
2925unsigned int regulator_get_mode(struct regulator *regulator)
2926{
2927	return _regulator_get_mode(regulator->rdev);
2928}
2929EXPORT_SYMBOL_GPL(regulator_get_mode);
2930
2931/**
2932 * regulator_set_optimum_mode - set regulator optimum operating mode
2933 * @regulator: regulator source
2934 * @uA_load: load current
2935 *
2936 * Notifies the regulator core of a new device load. This is then used by
2937 * DRMS (if enabled by constraints) to set the most efficient regulator
2938 * operating mode for the new regulator loading.
2939 *
2940 * Consumer devices notify their supply regulator of the maximum power
2941 * they will require (can be taken from device datasheet in the power
2942 * consumption tables) when they change operational status and hence power
2943 * state. Examples of operational state changes that can affect power
2944 * consumption are :-
2945 *
2946 *    o Device is opened / closed.
2947 *    o Device I/O is about to begin or has just finished.
2948 *    o Device is idling in between work.
2949 *
2950 * This information is also exported via sysfs to userspace.
2951 *
2952 * DRMS will sum the total requested load on the regulator and change
2953 * to the most efficient operating mode if platform constraints allow.
2954 *
2955 * Returns the new regulator mode or error.
2956 */
2957int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2958{
2959	struct regulator_dev *rdev = regulator->rdev;
2960	struct regulator *consumer;
2961	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2962	unsigned int mode;
2963
2964	if (rdev->supply)
2965		input_uV = regulator_get_voltage(rdev->supply);
2966
2967	mutex_lock(&rdev->mutex);
2968
2969	/*
2970	 * first check to see if we can set modes at all, otherwise just
2971	 * tell the consumer everything is OK.
2972	 */
2973	regulator->uA_load = uA_load;
2974	ret = regulator_check_drms(rdev);
2975	if (ret < 0) {
2976		ret = 0;
2977		goto out;
2978	}
2979
2980	if (!rdev->desc->ops->get_optimum_mode)
2981		goto out;
2982
2983	/*
2984	 * we can actually do this so any errors are indicators of
2985	 * potential real failure.
2986	 */
2987	ret = -EINVAL;
2988
2989	if (!rdev->desc->ops->set_mode)
2990		goto out;
2991
2992	/* get output voltage */
2993	output_uV = _regulator_get_voltage(rdev);
2994	if (output_uV <= 0) {
2995		rdev_err(rdev, "invalid output voltage found\n");
2996		goto out;
2997	}
2998
2999	/* No supply? Use constraint voltage */
3000	if (input_uV <= 0)
3001		input_uV = rdev->constraints->input_uV;
3002	if (input_uV <= 0) {
3003		rdev_err(rdev, "invalid input voltage found\n");
3004		goto out;
3005	}
3006
3007	/* calc total requested load for this regulator */
3008	list_for_each_entry(consumer, &rdev->consumer_list, list)
3009		total_uA_load += consumer->uA_load;
3010
3011	mode = rdev->desc->ops->get_optimum_mode(rdev,
3012						 input_uV, output_uV,
3013						 total_uA_load);
3014	ret = regulator_mode_constrain(rdev, &mode);
3015	if (ret < 0) {
3016		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3017			 total_uA_load, input_uV, output_uV);
3018		goto out;
3019	}
3020
3021	ret = rdev->desc->ops->set_mode(rdev, mode);
3022	if (ret < 0) {
3023		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3024		goto out;
3025	}
3026	ret = mode;
3027out:
3028	mutex_unlock(&rdev->mutex);
3029	return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3032
3033/**
3034 * regulator_allow_bypass - allow the regulator to go into bypass mode
3035 *
3036 * @regulator: Regulator to configure
3037 * @enable: enable or disable bypass mode
3038 *
3039 * Allow the regulator to go into bypass mode if all other consumers
3040 * for the regulator also enable bypass mode and the machine
3041 * constraints allow this.  Bypass mode means that the regulator is
3042 * simply passing the input directly to the output with no regulation.
3043 */
3044int regulator_allow_bypass(struct regulator *regulator, bool enable)
3045{
3046	struct regulator_dev *rdev = regulator->rdev;
3047	int ret = 0;
3048
3049	if (!rdev->desc->ops->set_bypass)
3050		return 0;
3051
3052	if (rdev->constraints &&
3053	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3054		return 0;
3055
3056	mutex_lock(&rdev->mutex);
3057
3058	if (enable && !regulator->bypass) {
3059		rdev->bypass_count++;
3060
3061		if (rdev->bypass_count == rdev->open_count) {
3062			ret = rdev->desc->ops->set_bypass(rdev, enable);
3063			if (ret != 0)
3064				rdev->bypass_count--;
3065		}
3066
3067	} else if (!enable && regulator->bypass) {
3068		rdev->bypass_count--;
3069
3070		if (rdev->bypass_count != rdev->open_count) {
3071			ret = rdev->desc->ops->set_bypass(rdev, enable);
3072			if (ret != 0)
3073				rdev->bypass_count++;
3074		}
3075	}
3076
3077	if (ret == 0)
3078		regulator->bypass = enable;
3079
3080	mutex_unlock(&rdev->mutex);
3081
3082	return ret;
3083}
3084EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3085
3086/**
3087 * regulator_register_notifier - register regulator event notifier
3088 * @regulator: regulator source
3089 * @nb: notifier block
3090 *
3091 * Register notifier block to receive regulator events.
3092 */
3093int regulator_register_notifier(struct regulator *regulator,
3094			      struct notifier_block *nb)
3095{
3096	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3097						nb);
3098}
3099EXPORT_SYMBOL_GPL(regulator_register_notifier);
3100
3101/**
3102 * regulator_unregister_notifier - unregister regulator event notifier
3103 * @regulator: regulator source
3104 * @nb: notifier block
3105 *
3106 * Unregister regulator event notifier block.
3107 */
3108int regulator_unregister_notifier(struct regulator *regulator,
3109				struct notifier_block *nb)
3110{
3111	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3112						  nb);
3113}
3114EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3115
3116/* notify regulator consumers and downstream regulator consumers.
3117 * Note mutex must be held by caller.
3118 */
3119static void _notifier_call_chain(struct regulator_dev *rdev,
3120				  unsigned long event, void *data)
3121{
3122	/* call rdev chain first */
3123	blocking_notifier_call_chain(&rdev->notifier, event, data);
3124}
3125
3126/**
3127 * regulator_bulk_get - get multiple regulator consumers
3128 *
3129 * @dev:           Device to supply
3130 * @num_consumers: Number of consumers to register
3131 * @consumers:     Configuration of consumers; clients are stored here.
3132 *
3133 * @return 0 on success, an errno on failure.
3134 *
3135 * This helper function allows drivers to get several regulator
3136 * consumers in one operation.  If any of the regulators cannot be
3137 * acquired then any regulators that were allocated will be freed
3138 * before returning to the caller.
3139 */
3140int regulator_bulk_get(struct device *dev, int num_consumers,
3141		       struct regulator_bulk_data *consumers)
3142{
3143	int i;
3144	int ret;
3145
3146	for (i = 0; i < num_consumers; i++)
3147		consumers[i].consumer = NULL;
3148
3149	for (i = 0; i < num_consumers; i++) {
3150		consumers[i].consumer = regulator_get(dev,
3151						      consumers[i].supply);
3152		if (IS_ERR(consumers[i].consumer)) {
3153			ret = PTR_ERR(consumers[i].consumer);
3154			dev_err(dev, "Failed to get supply '%s': %d\n",
3155				consumers[i].supply, ret);
3156			consumers[i].consumer = NULL;
3157			goto err;
3158		}
3159	}
3160
3161	return 0;
3162
3163err:
3164	while (--i >= 0)
3165		regulator_put(consumers[i].consumer);
3166
3167	return ret;
3168}
3169EXPORT_SYMBOL_GPL(regulator_bulk_get);
3170
3171static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3172{
3173	struct regulator_bulk_data *bulk = data;
3174
3175	bulk->ret = regulator_enable(bulk->consumer);
3176}
3177
3178/**
3179 * regulator_bulk_enable - enable multiple regulator consumers
3180 *
3181 * @num_consumers: Number of consumers
3182 * @consumers:     Consumer data; clients are stored here.
3183 * @return         0 on success, an errno on failure
3184 *
3185 * This convenience API allows consumers to enable multiple regulator
3186 * clients in a single API call.  If any consumers cannot be enabled
3187 * then any others that were enabled will be disabled again prior to
3188 * return.
3189 */
3190int regulator_bulk_enable(int num_consumers,
3191			  struct regulator_bulk_data *consumers)
3192{
3193	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3194	int i;
3195	int ret = 0;
3196
3197	for (i = 0; i < num_consumers; i++) {
3198		if (consumers[i].consumer->always_on)
3199			consumers[i].ret = 0;
3200		else
3201			async_schedule_domain(regulator_bulk_enable_async,
3202					      &consumers[i], &async_domain);
3203	}
3204
3205	async_synchronize_full_domain(&async_domain);
3206
3207	/* If any consumer failed we need to unwind any that succeeded */
3208	for (i = 0; i < num_consumers; i++) {
3209		if (consumers[i].ret != 0) {
3210			ret = consumers[i].ret;
3211			goto err;
3212		}
3213	}
3214
3215	return 0;
3216
3217err:
3218	for (i = 0; i < num_consumers; i++) {
3219		if (consumers[i].ret < 0)
3220			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3221			       consumers[i].ret);
3222		else
3223			regulator_disable(consumers[i].consumer);
3224	}
3225
3226	return ret;
3227}
3228EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3229
3230/**
3231 * regulator_bulk_disable - disable multiple regulator consumers
3232 *
3233 * @num_consumers: Number of consumers
3234 * @consumers:     Consumer data; clients are stored here.
3235 * @return         0 on success, an errno on failure
3236 *
3237 * This convenience API allows consumers to disable multiple regulator
3238 * clients in a single API call.  If any consumers cannot be disabled
3239 * then any others that were disabled will be enabled again prior to
3240 * return.
3241 */
3242int regulator_bulk_disable(int num_consumers,
3243			   struct regulator_bulk_data *consumers)
3244{
3245	int i;
3246	int ret, r;
3247
3248	for (i = num_consumers - 1; i >= 0; --i) {
3249		ret = regulator_disable(consumers[i].consumer);
3250		if (ret != 0)
3251			goto err;
3252	}
3253
3254	return 0;
3255
3256err:
3257	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3258	for (++i; i < num_consumers; ++i) {
3259		r = regulator_enable(consumers[i].consumer);
3260		if (r != 0)
3261			pr_err("Failed to reename %s: %d\n",
3262			       consumers[i].supply, r);
3263	}
3264
3265	return ret;
3266}
3267EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3268
3269/**
3270 * regulator_bulk_force_disable - force disable multiple regulator consumers
3271 *
3272 * @num_consumers: Number of consumers
3273 * @consumers:     Consumer data; clients are stored here.
3274 * @return         0 on success, an errno on failure
3275 *
3276 * This convenience API allows consumers to forcibly disable multiple regulator
3277 * clients in a single API call.
3278 * NOTE: This should be used for situations when device damage will
3279 * likely occur if the regulators are not disabled (e.g. over temp).
3280 * Although regulator_force_disable function call for some consumers can
3281 * return error numbers, the function is called for all consumers.
3282 */
3283int regulator_bulk_force_disable(int num_consumers,
3284			   struct regulator_bulk_data *consumers)
3285{
3286	int i;
3287	int ret;
3288
3289	for (i = 0; i < num_consumers; i++)
3290		consumers[i].ret =
3291			    regulator_force_disable(consumers[i].consumer);
3292
3293	for (i = 0; i < num_consumers; i++) {
3294		if (consumers[i].ret != 0) {
3295			ret = consumers[i].ret;
3296			goto out;
3297		}
3298	}
3299
3300	return 0;
3301out:
3302	return ret;
3303}
3304EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3305
3306/**
3307 * regulator_bulk_free - free multiple regulator consumers
3308 *
3309 * @num_consumers: Number of consumers
3310 * @consumers:     Consumer data; clients are stored here.
3311 *
3312 * This convenience API allows consumers to free multiple regulator
3313 * clients in a single API call.
3314 */
3315void regulator_bulk_free(int num_consumers,
3316			 struct regulator_bulk_data *consumers)
3317{
3318	int i;
3319
3320	for (i = 0; i < num_consumers; i++) {
3321		regulator_put(consumers[i].consumer);
3322		consumers[i].consumer = NULL;
3323	}
3324}
3325EXPORT_SYMBOL_GPL(regulator_bulk_free);
3326
3327/**
3328 * regulator_notifier_call_chain - call regulator event notifier
3329 * @rdev: regulator source
3330 * @event: notifier block
3331 * @data: callback-specific data.
3332 *
3333 * Called by regulator drivers to notify clients a regulator event has
3334 * occurred. We also notify regulator clients downstream.
3335 * Note lock must be held by caller.
3336 */
3337int regulator_notifier_call_chain(struct regulator_dev *rdev,
3338				  unsigned long event, void *data)
3339{
3340	_notifier_call_chain(rdev, event, data);
3341	return NOTIFY_DONE;
3342
3343}
3344EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3345
3346/**
3347 * regulator_mode_to_status - convert a regulator mode into a status
3348 *
3349 * @mode: Mode to convert
3350 *
3351 * Convert a regulator mode into a status.
3352 */
3353int regulator_mode_to_status(unsigned int mode)
3354{
3355	switch (mode) {
3356	case REGULATOR_MODE_FAST:
3357		return REGULATOR_STATUS_FAST;
3358	case REGULATOR_MODE_NORMAL:
3359		return REGULATOR_STATUS_NORMAL;
3360	case REGULATOR_MODE_IDLE:
3361		return REGULATOR_STATUS_IDLE;
3362	case REGULATOR_MODE_STANDBY:
3363		return REGULATOR_STATUS_STANDBY;
3364	default:
3365		return REGULATOR_STATUS_UNDEFINED;
3366	}
3367}
3368EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3369
3370/*
3371 * To avoid cluttering sysfs (and memory) with useless state, only
3372 * create attributes that can be meaningfully displayed.
3373 */
3374static int add_regulator_attributes(struct regulator_dev *rdev)
3375{
3376	struct device *dev = &rdev->dev;
3377	const struct regulator_ops *ops = rdev->desc->ops;
3378	int status = 0;
3379
3380	/* some attributes need specific methods to be displayed */
3381	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3382	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3383	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3384		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3385		status = device_create_file(dev, &dev_attr_microvolts);
3386		if (status < 0)
3387			return status;
3388	}
3389	if (ops->get_current_limit) {
3390		status = device_create_file(dev, &dev_attr_microamps);
3391		if (status < 0)
3392			return status;
3393	}
3394	if (ops->get_mode) {
3395		status = device_create_file(dev, &dev_attr_opmode);
3396		if (status < 0)
3397			return status;
3398	}
3399	if (rdev->ena_pin || ops->is_enabled) {
3400		status = device_create_file(dev, &dev_attr_state);
3401		if (status < 0)
3402			return status;
3403	}
3404	if (ops->get_status) {
3405		status = device_create_file(dev, &dev_attr_status);
3406		if (status < 0)
3407			return status;
3408	}
3409	if (ops->get_bypass) {
3410		status = device_create_file(dev, &dev_attr_bypass);
3411		if (status < 0)
3412			return status;
3413	}
3414
3415	/* some attributes are type-specific */
3416	if (rdev->desc->type == REGULATOR_CURRENT) {
3417		status = device_create_file(dev, &dev_attr_requested_microamps);
3418		if (status < 0)
3419			return status;
3420	}
3421
3422	/* all the other attributes exist to support constraints;
3423	 * don't show them if there are no constraints, or if the
3424	 * relevant supporting methods are missing.
3425	 */
3426	if (!rdev->constraints)
3427		return status;
3428
3429	/* constraints need specific supporting methods */
3430	if (ops->set_voltage || ops->set_voltage_sel) {
3431		status = device_create_file(dev, &dev_attr_min_microvolts);
3432		if (status < 0)
3433			return status;
3434		status = device_create_file(dev, &dev_attr_max_microvolts);
3435		if (status < 0)
3436			return status;
3437	}
3438	if (ops->set_current_limit) {
3439		status = device_create_file(dev, &dev_attr_min_microamps);
3440		if (status < 0)
3441			return status;
3442		status = device_create_file(dev, &dev_attr_max_microamps);
3443		if (status < 0)
3444			return status;
3445	}
3446
3447	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3448	if (status < 0)
3449		return status;
3450	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3451	if (status < 0)
3452		return status;
3453	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3454	if (status < 0)
3455		return status;
3456
3457	if (ops->set_suspend_voltage) {
3458		status = device_create_file(dev,
3459				&dev_attr_suspend_standby_microvolts);
3460		if (status < 0)
3461			return status;
3462		status = device_create_file(dev,
3463				&dev_attr_suspend_mem_microvolts);
3464		if (status < 0)
3465			return status;
3466		status = device_create_file(dev,
3467				&dev_attr_suspend_disk_microvolts);
3468		if (status < 0)
3469			return status;
3470	}
3471
3472	if (ops->set_suspend_mode) {
3473		status = device_create_file(dev,
3474				&dev_attr_suspend_standby_mode);
3475		if (status < 0)
3476			return status;
3477		status = device_create_file(dev,
3478				&dev_attr_suspend_mem_mode);
3479		if (status < 0)
3480			return status;
3481		status = device_create_file(dev,
3482				&dev_attr_suspend_disk_mode);
3483		if (status < 0)
3484			return status;
3485	}
3486
3487	return status;
3488}
3489
3490static void rdev_init_debugfs(struct regulator_dev *rdev)
3491{
3492	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3493	if (!rdev->debugfs) {
3494		rdev_warn(rdev, "Failed to create debugfs directory\n");
3495		return;
3496	}
3497
3498	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3499			   &rdev->use_count);
3500	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3501			   &rdev->open_count);
3502	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3503			   &rdev->bypass_count);
3504}
3505
3506/**
3507 * regulator_register - register regulator
3508 * @regulator_desc: regulator to register
3509 * @config: runtime configuration for regulator
3510 *
3511 * Called by regulator drivers to register a regulator.
3512 * Returns a valid pointer to struct regulator_dev on success
3513 * or an ERR_PTR() on error.
3514 */
3515struct regulator_dev *
3516regulator_register(const struct regulator_desc *regulator_desc,
3517		   const struct regulator_config *config)
3518{
3519	const struct regulation_constraints *constraints = NULL;
3520	const struct regulator_init_data *init_data;
3521	static atomic_t regulator_no = ATOMIC_INIT(0);
3522	struct regulator_dev *rdev;
3523	struct device *dev;
3524	int ret, i;
3525	const char *supply = NULL;
3526
3527	if (regulator_desc == NULL || config == NULL)
3528		return ERR_PTR(-EINVAL);
3529
3530	dev = config->dev;
3531	WARN_ON(!dev);
3532
3533	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3534		return ERR_PTR(-EINVAL);
3535
3536	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3537	    regulator_desc->type != REGULATOR_CURRENT)
3538		return ERR_PTR(-EINVAL);
3539
3540	/* Only one of each should be implemented */
3541	WARN_ON(regulator_desc->ops->get_voltage &&
3542		regulator_desc->ops->get_voltage_sel);
3543	WARN_ON(regulator_desc->ops->set_voltage &&
3544		regulator_desc->ops->set_voltage_sel);
3545
3546	/* If we're using selectors we must implement list_voltage. */
3547	if (regulator_desc->ops->get_voltage_sel &&
3548	    !regulator_desc->ops->list_voltage) {
3549		return ERR_PTR(-EINVAL);
3550	}
3551	if (regulator_desc->ops->set_voltage_sel &&
3552	    !regulator_desc->ops->list_voltage) {
3553		return ERR_PTR(-EINVAL);
3554	}
3555
3556	init_data = config->init_data;
3557
3558	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3559	if (rdev == NULL)
3560		return ERR_PTR(-ENOMEM);
3561
3562	mutex_lock(&regulator_list_mutex);
3563
3564	mutex_init(&rdev->mutex);
3565	rdev->reg_data = config->driver_data;
3566	rdev->owner = regulator_desc->owner;
3567	rdev->desc = regulator_desc;
3568	if (config->regmap)
3569		rdev->regmap = config->regmap;
3570	else if (dev_get_regmap(dev, NULL))
3571		rdev->regmap = dev_get_regmap(dev, NULL);
3572	else if (dev->parent)
3573		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3574	INIT_LIST_HEAD(&rdev->consumer_list);
3575	INIT_LIST_HEAD(&rdev->list);
3576	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3577	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3578
3579	/* preform any regulator specific init */
3580	if (init_data && init_data->regulator_init) {
3581		ret = init_data->regulator_init(rdev->reg_data);
3582		if (ret < 0)
3583			goto clean;
3584	}
3585
3586	/* register with sysfs */
3587	rdev->dev.class = &regulator_class;
3588	rdev->dev.of_node = of_node_get(config->of_node);
3589	rdev->dev.parent = dev;
3590	dev_set_name(&rdev->dev, "regulator.%d",
3591		     atomic_inc_return(&regulator_no) - 1);
3592	ret = device_register(&rdev->dev);
3593	if (ret != 0) {
3594		put_device(&rdev->dev);
3595		goto clean;
3596	}
3597
3598	dev_set_drvdata(&rdev->dev, rdev);
3599
3600	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3601		ret = regulator_ena_gpio_request(rdev, config);
3602		if (ret != 0) {
3603			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3604				 config->ena_gpio, ret);
3605			goto wash;
3606		}
3607
3608		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3609			rdev->ena_gpio_state = 1;
3610
3611		if (config->ena_gpio_invert)
3612			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3613	}
3614
3615	/* set regulator constraints */
3616	if (init_data)
3617		constraints = &init_data->constraints;
3618
3619	ret = set_machine_constraints(rdev, constraints);
3620	if (ret < 0)
3621		goto scrub;
3622
3623	/* add attributes supported by this regulator */
3624	ret = add_regulator_attributes(rdev);
3625	if (ret < 0)
3626		goto scrub;
3627
3628	if (init_data && init_data->supply_regulator)
3629		supply = init_data->supply_regulator;
3630	else if (regulator_desc->supply_name)
3631		supply = regulator_desc->supply_name;
3632
3633	if (supply) {
3634		struct regulator_dev *r;
3635
3636		r = regulator_dev_lookup(dev, supply, &ret);
3637
3638		if (ret == -ENODEV) {
3639			/*
3640			 * No supply was specified for this regulator and
3641			 * there will never be one.
3642			 */
3643			ret = 0;
3644			goto add_dev;
3645		} else if (!r) {
3646			dev_err(dev, "Failed to find supply %s\n", supply);
3647			ret = -EPROBE_DEFER;
3648			goto scrub;
3649		}
3650
3651		ret = set_supply(rdev, r);
3652		if (ret < 0)
3653			goto scrub;
3654
3655		/* Enable supply if rail is enabled */
3656		if (_regulator_is_enabled(rdev)) {
3657			ret = regulator_enable(rdev->supply);
3658			if (ret < 0)
3659				goto scrub;
3660		}
3661	}
3662
3663add_dev:
3664	/* add consumers devices */
3665	if (init_data) {
3666		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3667			ret = set_consumer_device_supply(rdev,
3668				init_data->consumer_supplies[i].dev_name,
3669				init_data->consumer_supplies[i].supply);
3670			if (ret < 0) {
3671				dev_err(dev, "Failed to set supply %s\n",
3672					init_data->consumer_supplies[i].supply);
3673				goto unset_supplies;
3674			}
3675		}
3676	}
3677
3678	list_add(&rdev->list, &regulator_list);
3679
3680	rdev_init_debugfs(rdev);
3681out:
3682	mutex_unlock(&regulator_list_mutex);
3683	return rdev;
3684
3685unset_supplies:
3686	unset_regulator_supplies(rdev);
3687
3688scrub:
3689	if (rdev->supply)
3690		_regulator_put(rdev->supply);
3691	regulator_ena_gpio_free(rdev);
3692	kfree(rdev->constraints);
3693wash:
3694	device_unregister(&rdev->dev);
3695	/* device core frees rdev */
3696	rdev = ERR_PTR(ret);
3697	goto out;
3698
3699clean:
3700	kfree(rdev);
3701	rdev = ERR_PTR(ret);
3702	goto out;
3703}
3704EXPORT_SYMBOL_GPL(regulator_register);
3705
3706/**
3707 * regulator_unregister - unregister regulator
3708 * @rdev: regulator to unregister
3709 *
3710 * Called by regulator drivers to unregister a regulator.
3711 */
3712void regulator_unregister(struct regulator_dev *rdev)
3713{
3714	if (rdev == NULL)
3715		return;
3716
3717	if (rdev->supply) {
3718		while (rdev->use_count--)
3719			regulator_disable(rdev->supply);
3720		regulator_put(rdev->supply);
3721	}
3722	mutex_lock(&regulator_list_mutex);
3723	debugfs_remove_recursive(rdev->debugfs);
3724	flush_work(&rdev->disable_work.work);
3725	WARN_ON(rdev->open_count);
3726	unset_regulator_supplies(rdev);
3727	list_del(&rdev->list);
3728	kfree(rdev->constraints);
3729	regulator_ena_gpio_free(rdev);
3730	of_node_put(rdev->dev.of_node);
3731	device_unregister(&rdev->dev);
3732	mutex_unlock(&regulator_list_mutex);
3733}
3734EXPORT_SYMBOL_GPL(regulator_unregister);
3735
3736/**
3737 * regulator_suspend_prepare - prepare regulators for system wide suspend
3738 * @state: system suspend state
3739 *
3740 * Configure each regulator with it's suspend operating parameters for state.
3741 * This will usually be called by machine suspend code prior to supending.
3742 */
3743int regulator_suspend_prepare(suspend_state_t state)
3744{
3745	struct regulator_dev *rdev;
3746	int ret = 0;
3747
3748	/* ON is handled by regulator active state */
3749	if (state == PM_SUSPEND_ON)
3750		return -EINVAL;
3751
3752	mutex_lock(&regulator_list_mutex);
3753	list_for_each_entry(rdev, &regulator_list, list) {
3754
3755		mutex_lock(&rdev->mutex);
3756		ret = suspend_prepare(rdev, state);
3757		mutex_unlock(&rdev->mutex);
3758
3759		if (ret < 0) {
3760			rdev_err(rdev, "failed to prepare\n");
3761			goto out;
3762		}
3763	}
3764out:
3765	mutex_unlock(&regulator_list_mutex);
3766	return ret;
3767}
3768EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3769
3770/**
3771 * regulator_suspend_finish - resume regulators from system wide suspend
3772 *
3773 * Turn on regulators that might be turned off by regulator_suspend_prepare
3774 * and that should be turned on according to the regulators properties.
3775 */
3776int regulator_suspend_finish(void)
3777{
3778	struct regulator_dev *rdev;
3779	int ret = 0, error;
3780
3781	mutex_lock(&regulator_list_mutex);
3782	list_for_each_entry(rdev, &regulator_list, list) {
3783		mutex_lock(&rdev->mutex);
3784		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3785			error = _regulator_do_enable(rdev);
3786			if (error)
3787				ret = error;
3788		} else {
3789			if (!have_full_constraints())
3790				goto unlock;
3791			if (!_regulator_is_enabled(rdev))
3792				goto unlock;
3793
3794			error = _regulator_do_disable(rdev);
3795			if (error)
3796				ret = error;
3797		}
3798unlock:
3799		mutex_unlock(&rdev->mutex);
3800	}
3801	mutex_unlock(&regulator_list_mutex);
3802	return ret;
3803}
3804EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3805
3806/**
3807 * regulator_has_full_constraints - the system has fully specified constraints
3808 *
3809 * Calling this function will cause the regulator API to disable all
3810 * regulators which have a zero use count and don't have an always_on
3811 * constraint in a late_initcall.
3812 *
3813 * The intention is that this will become the default behaviour in a
3814 * future kernel release so users are encouraged to use this facility
3815 * now.
3816 */
3817void regulator_has_full_constraints(void)
3818{
3819	has_full_constraints = 1;
3820}
3821EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3822
3823/**
3824 * rdev_get_drvdata - get rdev regulator driver data
3825 * @rdev: regulator
3826 *
3827 * Get rdev regulator driver private data. This call can be used in the
3828 * regulator driver context.
3829 */
3830void *rdev_get_drvdata(struct regulator_dev *rdev)
3831{
3832	return rdev->reg_data;
3833}
3834EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3835
3836/**
3837 * regulator_get_drvdata - get regulator driver data
3838 * @regulator: regulator
3839 *
3840 * Get regulator driver private data. This call can be used in the consumer
3841 * driver context when non API regulator specific functions need to be called.
3842 */
3843void *regulator_get_drvdata(struct regulator *regulator)
3844{
3845	return regulator->rdev->reg_data;
3846}
3847EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3848
3849/**
3850 * regulator_set_drvdata - set regulator driver data
3851 * @regulator: regulator
3852 * @data: data
3853 */
3854void regulator_set_drvdata(struct regulator *regulator, void *data)
3855{
3856	regulator->rdev->reg_data = data;
3857}
3858EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3859
3860/**
3861 * regulator_get_id - get regulator ID
3862 * @rdev: regulator
3863 */
3864int rdev_get_id(struct regulator_dev *rdev)
3865{
3866	return rdev->desc->id;
3867}
3868EXPORT_SYMBOL_GPL(rdev_get_id);
3869
3870struct device *rdev_get_dev(struct regulator_dev *rdev)
3871{
3872	return &rdev->dev;
3873}
3874EXPORT_SYMBOL_GPL(rdev_get_dev);
3875
3876void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3877{
3878	return reg_init_data->driver_data;
3879}
3880EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3881
3882#ifdef CONFIG_DEBUG_FS
3883static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3884				    size_t count, loff_t *ppos)
3885{
3886	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3887	ssize_t len, ret = 0;
3888	struct regulator_map *map;
3889
3890	if (!buf)
3891		return -ENOMEM;
3892
3893	list_for_each_entry(map, &regulator_map_list, list) {
3894		len = snprintf(buf + ret, PAGE_SIZE - ret,
3895			       "%s -> %s.%s\n",
3896			       rdev_get_name(map->regulator), map->dev_name,
3897			       map->supply);
3898		if (len >= 0)
3899			ret += len;
3900		if (ret > PAGE_SIZE) {
3901			ret = PAGE_SIZE;
3902			break;
3903		}
3904	}
3905
3906	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3907
3908	kfree(buf);
3909
3910	return ret;
3911}
3912#endif
3913
3914static const struct file_operations supply_map_fops = {
3915#ifdef CONFIG_DEBUG_FS
3916	.read = supply_map_read_file,
3917	.llseek = default_llseek,
3918#endif
3919};
3920
3921static int __init regulator_init(void)
3922{
3923	int ret;
3924
3925	ret = class_register(&regulator_class);
3926
3927	debugfs_root = debugfs_create_dir("regulator", NULL);
3928	if (!debugfs_root)
3929		pr_warn("regulator: Failed to create debugfs directory\n");
3930
3931	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3932			    &supply_map_fops);
3933
3934	regulator_dummy_init();
3935
3936	return ret;
3937}
3938
3939/* init early to allow our consumers to complete system booting */
3940core_initcall(regulator_init);
3941
3942static int __init regulator_init_complete(void)
3943{
3944	struct regulator_dev *rdev;
3945	const struct regulator_ops *ops;
3946	struct regulation_constraints *c;
3947	int enabled, ret;
3948
3949	/*
3950	 * Since DT doesn't provide an idiomatic mechanism for
3951	 * enabling full constraints and since it's much more natural
3952	 * with DT to provide them just assume that a DT enabled
3953	 * system has full constraints.
3954	 */
3955	if (of_have_populated_dt())
3956		has_full_constraints = true;
3957
3958	mutex_lock(&regulator_list_mutex);
3959
3960	/* If we have a full configuration then disable any regulators
3961	 * we have permission to change the status for and which are
3962	 * not in use or always_on.  This is effectively the default
3963	 * for DT and ACPI as they have full constraints.
3964	 */
3965	list_for_each_entry(rdev, &regulator_list, list) {
3966		ops = rdev->desc->ops;
3967		c = rdev->constraints;
3968
3969		if (c && c->always_on)
3970			continue;
3971
3972		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3973			continue;
3974
3975		mutex_lock(&rdev->mutex);
3976
3977		if (rdev->use_count)
3978			goto unlock;
3979
3980		/* If we can't read the status assume it's on. */
3981		if (ops->is_enabled)
3982			enabled = ops->is_enabled(rdev);
3983		else
3984			enabled = 1;
3985
3986		if (!enabled)
3987			goto unlock;
3988
3989		if (have_full_constraints()) {
3990			/* We log since this may kill the system if it
3991			 * goes wrong. */
3992			rdev_info(rdev, "disabling\n");
3993			ret = _regulator_do_disable(rdev);
3994			if (ret != 0)
3995				rdev_err(rdev, "couldn't disable: %d\n", ret);
3996		} else {
3997			/* The intention is that in future we will
3998			 * assume that full constraints are provided
3999			 * so warn even if we aren't going to do
4000			 * anything here.
4001			 */
4002			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4003		}
4004
4005unlock:
4006		mutex_unlock(&rdev->mutex);
4007	}
4008
4009	mutex_unlock(&regulator_list_mutex);
4010
4011	return 0;
4012}
4013late_initcall_sync(regulator_init_complete);
4014