core.c revision 3a93f2a9f4d8f73d74c0e552feb68a10f778a219
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/slab.h>
20#include <linux/err.h>
21#include <linux/mutex.h>
22#include <linux/suspend.h>
23#include <linux/delay.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/driver.h>
26#include <linux/regulator/machine.h>
27
28#include "dummy.h"
29
30#define REGULATOR_VERSION "0.5"
31
32static DEFINE_MUTEX(regulator_list_mutex);
33static LIST_HEAD(regulator_list);
34static LIST_HEAD(regulator_map_list);
35static int has_full_constraints;
36static bool board_wants_dummy_regulator;
37
38/*
39 * struct regulator_map
40 *
41 * Used to provide symbolic supply names to devices.
42 */
43struct regulator_map {
44	struct list_head list;
45	const char *dev_name;   /* The dev_name() for the consumer */
46	const char *supply;
47	struct regulator_dev *regulator;
48};
49
50/*
51 * struct regulator
52 *
53 * One for each consumer device.
54 */
55struct regulator {
56	struct device *dev;
57	struct list_head list;
58	int uA_load;
59	int min_uV;
60	int max_uV;
61	char *supply_name;
62	struct device_attribute dev_attr;
63	struct regulator_dev *rdev;
64};
65
66static int _regulator_is_enabled(struct regulator_dev *rdev);
67static int _regulator_disable(struct regulator_dev *rdev,
68		struct regulator_dev **supply_rdev_ptr);
69static int _regulator_get_voltage(struct regulator_dev *rdev);
70static int _regulator_get_current_limit(struct regulator_dev *rdev);
71static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72static void _notifier_call_chain(struct regulator_dev *rdev,
73				  unsigned long event, void *data);
74
75static const char *rdev_get_name(struct regulator_dev *rdev)
76{
77	if (rdev->constraints && rdev->constraints->name)
78		return rdev->constraints->name;
79	else if (rdev->desc->name)
80		return rdev->desc->name;
81	else
82		return "";
83}
84
85/* gets the regulator for a given consumer device */
86static struct regulator *get_device_regulator(struct device *dev)
87{
88	struct regulator *regulator = NULL;
89	struct regulator_dev *rdev;
90
91	mutex_lock(&regulator_list_mutex);
92	list_for_each_entry(rdev, &regulator_list, list) {
93		mutex_lock(&rdev->mutex);
94		list_for_each_entry(regulator, &rdev->consumer_list, list) {
95			if (regulator->dev == dev) {
96				mutex_unlock(&rdev->mutex);
97				mutex_unlock(&regulator_list_mutex);
98				return regulator;
99			}
100		}
101		mutex_unlock(&rdev->mutex);
102	}
103	mutex_unlock(&regulator_list_mutex);
104	return NULL;
105}
106
107/* Platform voltage constraint check */
108static int regulator_check_voltage(struct regulator_dev *rdev,
109				   int *min_uV, int *max_uV)
110{
111	BUG_ON(*min_uV > *max_uV);
112
113	if (!rdev->constraints) {
114		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115		       rdev_get_name(rdev));
116		return -ENODEV;
117	}
118	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119		printk(KERN_ERR "%s: operation not allowed for %s\n",
120		       __func__, rdev_get_name(rdev));
121		return -EPERM;
122	}
123
124	if (*max_uV > rdev->constraints->max_uV)
125		*max_uV = rdev->constraints->max_uV;
126	if (*min_uV < rdev->constraints->min_uV)
127		*min_uV = rdev->constraints->min_uV;
128
129	if (*min_uV > *max_uV)
130		return -EINVAL;
131
132	return 0;
133}
134
135/* current constraint check */
136static int regulator_check_current_limit(struct regulator_dev *rdev,
137					int *min_uA, int *max_uA)
138{
139	BUG_ON(*min_uA > *max_uA);
140
141	if (!rdev->constraints) {
142		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143		       rdev_get_name(rdev));
144		return -ENODEV;
145	}
146	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147		printk(KERN_ERR "%s: operation not allowed for %s\n",
148		       __func__, rdev_get_name(rdev));
149		return -EPERM;
150	}
151
152	if (*max_uA > rdev->constraints->max_uA)
153		*max_uA = rdev->constraints->max_uA;
154	if (*min_uA < rdev->constraints->min_uA)
155		*min_uA = rdev->constraints->min_uA;
156
157	if (*min_uA > *max_uA)
158		return -EINVAL;
159
160	return 0;
161}
162
163/* operating mode constraint check */
164static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165{
166	switch (mode) {
167	case REGULATOR_MODE_FAST:
168	case REGULATOR_MODE_NORMAL:
169	case REGULATOR_MODE_IDLE:
170	case REGULATOR_MODE_STANDBY:
171		break;
172	default:
173		return -EINVAL;
174	}
175
176	if (!rdev->constraints) {
177		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178		       rdev_get_name(rdev));
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182		printk(KERN_ERR "%s: operation not allowed for %s\n",
183		       __func__, rdev_get_name(rdev));
184		return -EPERM;
185	}
186	if (!(rdev->constraints->valid_modes_mask & mode)) {
187		printk(KERN_ERR "%s: invalid mode %x for %s\n",
188		       __func__, mode, rdev_get_name(rdev));
189		return -EINVAL;
190	}
191	return 0;
192}
193
194/* dynamic regulator mode switching constraint check */
195static int regulator_check_drms(struct regulator_dev *rdev)
196{
197	if (!rdev->constraints) {
198		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199		       rdev_get_name(rdev));
200		return -ENODEV;
201	}
202	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203		printk(KERN_ERR "%s: operation not allowed for %s\n",
204		       __func__, rdev_get_name(rdev));
205		return -EPERM;
206	}
207	return 0;
208}
209
210static ssize_t device_requested_uA_show(struct device *dev,
211			     struct device_attribute *attr, char *buf)
212{
213	struct regulator *regulator;
214
215	regulator = get_device_regulator(dev);
216	if (regulator == NULL)
217		return 0;
218
219	return sprintf(buf, "%d\n", regulator->uA_load);
220}
221
222static ssize_t regulator_uV_show(struct device *dev,
223				struct device_attribute *attr, char *buf)
224{
225	struct regulator_dev *rdev = dev_get_drvdata(dev);
226	ssize_t ret;
227
228	mutex_lock(&rdev->mutex);
229	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230	mutex_unlock(&rdev->mutex);
231
232	return ret;
233}
234static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236static ssize_t regulator_uA_show(struct device *dev,
237				struct device_attribute *attr, char *buf)
238{
239	struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242}
243static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245static ssize_t regulator_name_show(struct device *dev,
246			     struct device_attribute *attr, char *buf)
247{
248	struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250	return sprintf(buf, "%s\n", rdev_get_name(rdev));
251}
252
253static ssize_t regulator_print_opmode(char *buf, int mode)
254{
255	switch (mode) {
256	case REGULATOR_MODE_FAST:
257		return sprintf(buf, "fast\n");
258	case REGULATOR_MODE_NORMAL:
259		return sprintf(buf, "normal\n");
260	case REGULATOR_MODE_IDLE:
261		return sprintf(buf, "idle\n");
262	case REGULATOR_MODE_STANDBY:
263		return sprintf(buf, "standby\n");
264	}
265	return sprintf(buf, "unknown\n");
266}
267
268static ssize_t regulator_opmode_show(struct device *dev,
269				    struct device_attribute *attr, char *buf)
270{
271	struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274}
275static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277static ssize_t regulator_print_state(char *buf, int state)
278{
279	if (state > 0)
280		return sprintf(buf, "enabled\n");
281	else if (state == 0)
282		return sprintf(buf, "disabled\n");
283	else
284		return sprintf(buf, "unknown\n");
285}
286
287static ssize_t regulator_state_show(struct device *dev,
288				   struct device_attribute *attr, char *buf)
289{
290	struct regulator_dev *rdev = dev_get_drvdata(dev);
291	ssize_t ret;
292
293	mutex_lock(&rdev->mutex);
294	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295	mutex_unlock(&rdev->mutex);
296
297	return ret;
298}
299static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301static ssize_t regulator_status_show(struct device *dev,
302				   struct device_attribute *attr, char *buf)
303{
304	struct regulator_dev *rdev = dev_get_drvdata(dev);
305	int status;
306	char *label;
307
308	status = rdev->desc->ops->get_status(rdev);
309	if (status < 0)
310		return status;
311
312	switch (status) {
313	case REGULATOR_STATUS_OFF:
314		label = "off";
315		break;
316	case REGULATOR_STATUS_ON:
317		label = "on";
318		break;
319	case REGULATOR_STATUS_ERROR:
320		label = "error";
321		break;
322	case REGULATOR_STATUS_FAST:
323		label = "fast";
324		break;
325	case REGULATOR_STATUS_NORMAL:
326		label = "normal";
327		break;
328	case REGULATOR_STATUS_IDLE:
329		label = "idle";
330		break;
331	case REGULATOR_STATUS_STANDBY:
332		label = "standby";
333		break;
334	default:
335		return -ERANGE;
336	}
337
338	return sprintf(buf, "%s\n", label);
339}
340static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342static ssize_t regulator_min_uA_show(struct device *dev,
343				    struct device_attribute *attr, char *buf)
344{
345	struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347	if (!rdev->constraints)
348		return sprintf(buf, "constraint not defined\n");
349
350	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351}
352static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354static ssize_t regulator_max_uA_show(struct device *dev,
355				    struct device_attribute *attr, char *buf)
356{
357	struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359	if (!rdev->constraints)
360		return sprintf(buf, "constraint not defined\n");
361
362	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363}
364static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366static ssize_t regulator_min_uV_show(struct device *dev,
367				    struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "constraint not defined\n");
373
374	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375}
376static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378static ssize_t regulator_max_uV_show(struct device *dev,
379				    struct device_attribute *attr, char *buf)
380{
381	struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383	if (!rdev->constraints)
384		return sprintf(buf, "constraint not defined\n");
385
386	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387}
388static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390static ssize_t regulator_total_uA_show(struct device *dev,
391				      struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	struct regulator *regulator;
395	int uA = 0;
396
397	mutex_lock(&rdev->mutex);
398	list_for_each_entry(regulator, &rdev->consumer_list, list)
399		uA += regulator->uA_load;
400	mutex_unlock(&rdev->mutex);
401	return sprintf(buf, "%d\n", uA);
402}
403static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405static ssize_t regulator_num_users_show(struct device *dev,
406				      struct device_attribute *attr, char *buf)
407{
408	struct regulator_dev *rdev = dev_get_drvdata(dev);
409	return sprintf(buf, "%d\n", rdev->use_count);
410}
411
412static ssize_t regulator_type_show(struct device *dev,
413				  struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	switch (rdev->desc->type) {
418	case REGULATOR_VOLTAGE:
419		return sprintf(buf, "voltage\n");
420	case REGULATOR_CURRENT:
421		return sprintf(buf, "current\n");
422	}
423	return sprintf(buf, "unknown\n");
424}
425
426static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427				struct device_attribute *attr, char *buf)
428{
429	struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432}
433static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434		regulator_suspend_mem_uV_show, NULL);
435
436static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437				struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442}
443static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444		regulator_suspend_disk_uV_show, NULL);
445
446static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447				struct device_attribute *attr, char *buf)
448{
449	struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452}
453static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454		regulator_suspend_standby_uV_show, NULL);
455
456static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457				struct device_attribute *attr, char *buf)
458{
459	struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461	return regulator_print_opmode(buf,
462		rdev->constraints->state_mem.mode);
463}
464static DEVICE_ATTR(suspend_mem_mode, 0444,
465		regulator_suspend_mem_mode_show, NULL);
466
467static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468				struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	return regulator_print_opmode(buf,
473		rdev->constraints->state_disk.mode);
474}
475static DEVICE_ATTR(suspend_disk_mode, 0444,
476		regulator_suspend_disk_mode_show, NULL);
477
478static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479				struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483	return regulator_print_opmode(buf,
484		rdev->constraints->state_standby.mode);
485}
486static DEVICE_ATTR(suspend_standby_mode, 0444,
487		regulator_suspend_standby_mode_show, NULL);
488
489static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490				   struct device_attribute *attr, char *buf)
491{
492	struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494	return regulator_print_state(buf,
495			rdev->constraints->state_mem.enabled);
496}
497static DEVICE_ATTR(suspend_mem_state, 0444,
498		regulator_suspend_mem_state_show, NULL);
499
500static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501				   struct device_attribute *attr, char *buf)
502{
503	struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505	return regulator_print_state(buf,
506			rdev->constraints->state_disk.enabled);
507}
508static DEVICE_ATTR(suspend_disk_state, 0444,
509		regulator_suspend_disk_state_show, NULL);
510
511static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512				   struct device_attribute *attr, char *buf)
513{
514	struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516	return regulator_print_state(buf,
517			rdev->constraints->state_standby.enabled);
518}
519static DEVICE_ATTR(suspend_standby_state, 0444,
520		regulator_suspend_standby_state_show, NULL);
521
522
523/*
524 * These are the only attributes are present for all regulators.
525 * Other attributes are a function of regulator functionality.
526 */
527static struct device_attribute regulator_dev_attrs[] = {
528	__ATTR(name, 0444, regulator_name_show, NULL),
529	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
530	__ATTR(type, 0444, regulator_type_show, NULL),
531	__ATTR_NULL,
532};
533
534static void regulator_dev_release(struct device *dev)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537	kfree(rdev);
538}
539
540static struct class regulator_class = {
541	.name = "regulator",
542	.dev_release = regulator_dev_release,
543	.dev_attrs = regulator_dev_attrs,
544};
545
546/* Calculate the new optimum regulator operating mode based on the new total
547 * consumer load. All locks held by caller */
548static void drms_uA_update(struct regulator_dev *rdev)
549{
550	struct regulator *sibling;
551	int current_uA = 0, output_uV, input_uV, err;
552	unsigned int mode;
553
554	err = regulator_check_drms(rdev);
555	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557		return;
558
559	/* get output voltage */
560	output_uV = rdev->desc->ops->get_voltage(rdev);
561	if (output_uV <= 0)
562		return;
563
564	/* get input voltage */
565	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567	else
568		input_uV = rdev->constraints->input_uV;
569	if (input_uV <= 0)
570		return;
571
572	/* calc total requested load */
573	list_for_each_entry(sibling, &rdev->consumer_list, list)
574		current_uA += sibling->uA_load;
575
576	/* now get the optimum mode for our new total regulator load */
577	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578						  output_uV, current_uA);
579
580	/* check the new mode is allowed */
581	err = regulator_check_mode(rdev, mode);
582	if (err == 0)
583		rdev->desc->ops->set_mode(rdev, mode);
584}
585
586static int suspend_set_state(struct regulator_dev *rdev,
587	struct regulator_state *rstate)
588{
589	int ret = 0;
590	bool can_set_state;
591
592	can_set_state = rdev->desc->ops->set_suspend_enable &&
593		rdev->desc->ops->set_suspend_disable;
594
595	/* If we have no suspend mode configration don't set anything;
596	 * only warn if the driver actually makes the suspend mode
597	 * configurable.
598	 */
599	if (!rstate->enabled && !rstate->disabled) {
600		if (can_set_state)
601			printk(KERN_WARNING "%s: No configuration for %s\n",
602			       __func__, rdev_get_name(rdev));
603		return 0;
604	}
605
606	if (rstate->enabled && rstate->disabled) {
607		printk(KERN_ERR "%s: invalid configuration for %s\n",
608		       __func__, rdev_get_name(rdev));
609		return -EINVAL;
610	}
611
612	if (!can_set_state) {
613		printk(KERN_ERR "%s: no way to set suspend state\n",
614			__func__);
615		return -EINVAL;
616	}
617
618	if (rstate->enabled)
619		ret = rdev->desc->ops->set_suspend_enable(rdev);
620	else
621		ret = rdev->desc->ops->set_suspend_disable(rdev);
622	if (ret < 0) {
623		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624		return ret;
625	}
626
627	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629		if (ret < 0) {
630			printk(KERN_ERR "%s: failed to set voltage\n",
631				__func__);
632			return ret;
633		}
634	}
635
636	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638		if (ret < 0) {
639			printk(KERN_ERR "%s: failed to set mode\n", __func__);
640			return ret;
641		}
642	}
643	return ret;
644}
645
646/* locks held by caller */
647static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648{
649	if (!rdev->constraints)
650		return -EINVAL;
651
652	switch (state) {
653	case PM_SUSPEND_STANDBY:
654		return suspend_set_state(rdev,
655			&rdev->constraints->state_standby);
656	case PM_SUSPEND_MEM:
657		return suspend_set_state(rdev,
658			&rdev->constraints->state_mem);
659	case PM_SUSPEND_MAX:
660		return suspend_set_state(rdev,
661			&rdev->constraints->state_disk);
662	default:
663		return -EINVAL;
664	}
665}
666
667static void print_constraints(struct regulator_dev *rdev)
668{
669	struct regulation_constraints *constraints = rdev->constraints;
670	char buf[80] = "";
671	int count = 0;
672	int ret;
673
674	if (constraints->min_uV && constraints->max_uV) {
675		if (constraints->min_uV == constraints->max_uV)
676			count += sprintf(buf + count, "%d mV ",
677					 constraints->min_uV / 1000);
678		else
679			count += sprintf(buf + count, "%d <--> %d mV ",
680					 constraints->min_uV / 1000,
681					 constraints->max_uV / 1000);
682	}
683
684	if (!constraints->min_uV ||
685	    constraints->min_uV != constraints->max_uV) {
686		ret = _regulator_get_voltage(rdev);
687		if (ret > 0)
688			count += sprintf(buf + count, "at %d mV ", ret / 1000);
689	}
690
691	if (constraints->min_uA && constraints->max_uA) {
692		if (constraints->min_uA == constraints->max_uA)
693			count += sprintf(buf + count, "%d mA ",
694					 constraints->min_uA / 1000);
695		else
696			count += sprintf(buf + count, "%d <--> %d mA ",
697					 constraints->min_uA / 1000,
698					 constraints->max_uA / 1000);
699	}
700
701	if (!constraints->min_uA ||
702	    constraints->min_uA != constraints->max_uA) {
703		ret = _regulator_get_current_limit(rdev);
704		if (ret > 0)
705			count += sprintf(buf + count, "at %d mA ", ret / 1000);
706	}
707
708	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709		count += sprintf(buf + count, "fast ");
710	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711		count += sprintf(buf + count, "normal ");
712	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713		count += sprintf(buf + count, "idle ");
714	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715		count += sprintf(buf + count, "standby");
716
717	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718}
719
720static int machine_constraints_voltage(struct regulator_dev *rdev,
721	struct regulation_constraints *constraints)
722{
723	struct regulator_ops *ops = rdev->desc->ops;
724	const char *name = rdev_get_name(rdev);
725	int ret;
726	unsigned selector;
727
728	/* do we need to apply the constraint voltage */
729	if (rdev->constraints->apply_uV &&
730		rdev->constraints->min_uV == rdev->constraints->max_uV &&
731		ops->set_voltage) {
732		ret = ops->set_voltage(rdev,
733				       rdev->constraints->min_uV,
734				       rdev->constraints->max_uV,
735				       &selector);
736			if (ret < 0) {
737				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
738				       __func__,
739				       rdev->constraints->min_uV, name);
740				rdev->constraints = NULL;
741				return ret;
742			}
743	}
744
745	/* constrain machine-level voltage specs to fit
746	 * the actual range supported by this regulator.
747	 */
748	if (ops->list_voltage && rdev->desc->n_voltages) {
749		int	count = rdev->desc->n_voltages;
750		int	i;
751		int	min_uV = INT_MAX;
752		int	max_uV = INT_MIN;
753		int	cmin = constraints->min_uV;
754		int	cmax = constraints->max_uV;
755
756		/* it's safe to autoconfigure fixed-voltage supplies
757		   and the constraints are used by list_voltage. */
758		if (count == 1 && !cmin) {
759			cmin = 1;
760			cmax = INT_MAX;
761			constraints->min_uV = cmin;
762			constraints->max_uV = cmax;
763		}
764
765		/* voltage constraints are optional */
766		if ((cmin == 0) && (cmax == 0))
767			return 0;
768
769		/* else require explicit machine-level constraints */
770		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
771			pr_err("%s: %s '%s' voltage constraints\n",
772				       __func__, "invalid", name);
773			return -EINVAL;
774		}
775
776		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
777		for (i = 0; i < count; i++) {
778			int	value;
779
780			value = ops->list_voltage(rdev, i);
781			if (value <= 0)
782				continue;
783
784			/* maybe adjust [min_uV..max_uV] */
785			if (value >= cmin && value < min_uV)
786				min_uV = value;
787			if (value <= cmax && value > max_uV)
788				max_uV = value;
789		}
790
791		/* final: [min_uV..max_uV] valid iff constraints valid */
792		if (max_uV < min_uV) {
793			pr_err("%s: %s '%s' voltage constraints\n",
794				       __func__, "unsupportable", name);
795			return -EINVAL;
796		}
797
798		/* use regulator's subset of machine constraints */
799		if (constraints->min_uV < min_uV) {
800			pr_debug("%s: override '%s' %s, %d -> %d\n",
801				       __func__, name, "min_uV",
802					constraints->min_uV, min_uV);
803			constraints->min_uV = min_uV;
804		}
805		if (constraints->max_uV > max_uV) {
806			pr_debug("%s: override '%s' %s, %d -> %d\n",
807				       __func__, name, "max_uV",
808					constraints->max_uV, max_uV);
809			constraints->max_uV = max_uV;
810		}
811	}
812
813	return 0;
814}
815
816/**
817 * set_machine_constraints - sets regulator constraints
818 * @rdev: regulator source
819 * @constraints: constraints to apply
820 *
821 * Allows platform initialisation code to define and constrain
822 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
823 * Constraints *must* be set by platform code in order for some
824 * regulator operations to proceed i.e. set_voltage, set_current_limit,
825 * set_mode.
826 */
827static int set_machine_constraints(struct regulator_dev *rdev,
828	struct regulation_constraints *constraints)
829{
830	int ret = 0;
831	const char *name;
832	struct regulator_ops *ops = rdev->desc->ops;
833
834	rdev->constraints = constraints;
835
836	name = rdev_get_name(rdev);
837
838	ret = machine_constraints_voltage(rdev, constraints);
839	if (ret != 0)
840		goto out;
841
842	/* do we need to setup our suspend state */
843	if (constraints->initial_state) {
844		ret = suspend_prepare(rdev, constraints->initial_state);
845		if (ret < 0) {
846			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
847			       __func__, name);
848			rdev->constraints = NULL;
849			goto out;
850		}
851	}
852
853	if (constraints->initial_mode) {
854		if (!ops->set_mode) {
855			printk(KERN_ERR "%s: no set_mode operation for %s\n",
856			       __func__, name);
857			ret = -EINVAL;
858			goto out;
859		}
860
861		ret = ops->set_mode(rdev, constraints->initial_mode);
862		if (ret < 0) {
863			printk(KERN_ERR
864			       "%s: failed to set initial mode for %s: %d\n",
865			       __func__, name, ret);
866			goto out;
867		}
868	}
869
870	/* If the constraints say the regulator should be on at this point
871	 * and we have control then make sure it is enabled.
872	 */
873	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
874		ret = ops->enable(rdev);
875		if (ret < 0) {
876			printk(KERN_ERR "%s: failed to enable %s\n",
877			       __func__, name);
878			rdev->constraints = NULL;
879			goto out;
880		}
881	}
882
883	print_constraints(rdev);
884out:
885	return ret;
886}
887
888/**
889 * set_supply - set regulator supply regulator
890 * @rdev: regulator name
891 * @supply_rdev: supply regulator name
892 *
893 * Called by platform initialisation code to set the supply regulator for this
894 * regulator. This ensures that a regulators supply will also be enabled by the
895 * core if it's child is enabled.
896 */
897static int set_supply(struct regulator_dev *rdev,
898	struct regulator_dev *supply_rdev)
899{
900	int err;
901
902	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
903				"supply");
904	if (err) {
905		printk(KERN_ERR
906		       "%s: could not add device link %s err %d\n",
907		       __func__, supply_rdev->dev.kobj.name, err);
908		       goto out;
909	}
910	rdev->supply = supply_rdev;
911	list_add(&rdev->slist, &supply_rdev->supply_list);
912out:
913	return err;
914}
915
916/**
917 * set_consumer_device_supply - Bind a regulator to a symbolic supply
918 * @rdev:         regulator source
919 * @consumer_dev: device the supply applies to
920 * @consumer_dev_name: dev_name() string for device supply applies to
921 * @supply:       symbolic name for supply
922 *
923 * Allows platform initialisation code to map physical regulator
924 * sources to symbolic names for supplies for use by devices.  Devices
925 * should use these symbolic names to request regulators, avoiding the
926 * need to provide board-specific regulator names as platform data.
927 *
928 * Only one of consumer_dev and consumer_dev_name may be specified.
929 */
930static int set_consumer_device_supply(struct regulator_dev *rdev,
931	struct device *consumer_dev, const char *consumer_dev_name,
932	const char *supply)
933{
934	struct regulator_map *node;
935	int has_dev;
936
937	if (consumer_dev && consumer_dev_name)
938		return -EINVAL;
939
940	if (!consumer_dev_name && consumer_dev)
941		consumer_dev_name = dev_name(consumer_dev);
942
943	if (supply == NULL)
944		return -EINVAL;
945
946	if (consumer_dev_name != NULL)
947		has_dev = 1;
948	else
949		has_dev = 0;
950
951	list_for_each_entry(node, &regulator_map_list, list) {
952		if (node->dev_name && consumer_dev_name) {
953			if (strcmp(node->dev_name, consumer_dev_name) != 0)
954				continue;
955		} else if (node->dev_name || consumer_dev_name) {
956			continue;
957		}
958
959		if (strcmp(node->supply, supply) != 0)
960			continue;
961
962		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
963				dev_name(&node->regulator->dev),
964				node->regulator->desc->name,
965				supply,
966				dev_name(&rdev->dev), rdev_get_name(rdev));
967		return -EBUSY;
968	}
969
970	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
971	if (node == NULL)
972		return -ENOMEM;
973
974	node->regulator = rdev;
975	node->supply = supply;
976
977	if (has_dev) {
978		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
979		if (node->dev_name == NULL) {
980			kfree(node);
981			return -ENOMEM;
982		}
983	}
984
985	list_add(&node->list, &regulator_map_list);
986	return 0;
987}
988
989static void unset_regulator_supplies(struct regulator_dev *rdev)
990{
991	struct regulator_map *node, *n;
992
993	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
994		if (rdev == node->regulator) {
995			list_del(&node->list);
996			kfree(node->dev_name);
997			kfree(node);
998		}
999	}
1000}
1001
1002#define REG_STR_SIZE	32
1003
1004static struct regulator *create_regulator(struct regulator_dev *rdev,
1005					  struct device *dev,
1006					  const char *supply_name)
1007{
1008	struct regulator *regulator;
1009	char buf[REG_STR_SIZE];
1010	int err, size;
1011
1012	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1013	if (regulator == NULL)
1014		return NULL;
1015
1016	mutex_lock(&rdev->mutex);
1017	regulator->rdev = rdev;
1018	list_add(&regulator->list, &rdev->consumer_list);
1019
1020	if (dev) {
1021		/* create a 'requested_microamps_name' sysfs entry */
1022		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1023			supply_name);
1024		if (size >= REG_STR_SIZE)
1025			goto overflow_err;
1026
1027		regulator->dev = dev;
1028		sysfs_attr_init(&regulator->dev_attr.attr);
1029		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1030		if (regulator->dev_attr.attr.name == NULL)
1031			goto attr_name_err;
1032
1033		regulator->dev_attr.attr.mode = 0444;
1034		regulator->dev_attr.show = device_requested_uA_show;
1035		err = device_create_file(dev, &regulator->dev_attr);
1036		if (err < 0) {
1037			printk(KERN_WARNING "%s: could not add regulator_dev"
1038				" load sysfs\n", __func__);
1039			goto attr_name_err;
1040		}
1041
1042		/* also add a link to the device sysfs entry */
1043		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1044				 dev->kobj.name, supply_name);
1045		if (size >= REG_STR_SIZE)
1046			goto attr_err;
1047
1048		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1049		if (regulator->supply_name == NULL)
1050			goto attr_err;
1051
1052		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1053					buf);
1054		if (err) {
1055			printk(KERN_WARNING
1056			       "%s: could not add device link %s err %d\n",
1057			       __func__, dev->kobj.name, err);
1058			goto link_name_err;
1059		}
1060	}
1061	mutex_unlock(&rdev->mutex);
1062	return regulator;
1063link_name_err:
1064	kfree(regulator->supply_name);
1065attr_err:
1066	device_remove_file(regulator->dev, &regulator->dev_attr);
1067attr_name_err:
1068	kfree(regulator->dev_attr.attr.name);
1069overflow_err:
1070	list_del(&regulator->list);
1071	kfree(regulator);
1072	mutex_unlock(&rdev->mutex);
1073	return NULL;
1074}
1075
1076static int _regulator_get_enable_time(struct regulator_dev *rdev)
1077{
1078	if (!rdev->desc->ops->enable_time)
1079		return 0;
1080	return rdev->desc->ops->enable_time(rdev);
1081}
1082
1083/* Internal regulator request function */
1084static struct regulator *_regulator_get(struct device *dev, const char *id,
1085					int exclusive)
1086{
1087	struct regulator_dev *rdev;
1088	struct regulator_map *map;
1089	struct regulator *regulator = ERR_PTR(-ENODEV);
1090	const char *devname = NULL;
1091	int ret;
1092
1093	if (id == NULL) {
1094		printk(KERN_ERR "regulator: get() with no identifier\n");
1095		return regulator;
1096	}
1097
1098	if (dev)
1099		devname = dev_name(dev);
1100
1101	mutex_lock(&regulator_list_mutex);
1102
1103	list_for_each_entry(map, &regulator_map_list, list) {
1104		/* If the mapping has a device set up it must match */
1105		if (map->dev_name &&
1106		    (!devname || strcmp(map->dev_name, devname)))
1107			continue;
1108
1109		if (strcmp(map->supply, id) == 0) {
1110			rdev = map->regulator;
1111			goto found;
1112		}
1113	}
1114
1115	if (board_wants_dummy_regulator) {
1116		rdev = dummy_regulator_rdev;
1117		goto found;
1118	}
1119
1120#ifdef CONFIG_REGULATOR_DUMMY
1121	if (!devname)
1122		devname = "deviceless";
1123
1124	/* If the board didn't flag that it was fully constrained then
1125	 * substitute in a dummy regulator so consumers can continue.
1126	 */
1127	if (!has_full_constraints) {
1128		pr_warning("%s supply %s not found, using dummy regulator\n",
1129			   devname, id);
1130		rdev = dummy_regulator_rdev;
1131		goto found;
1132	}
1133#endif
1134
1135	mutex_unlock(&regulator_list_mutex);
1136	return regulator;
1137
1138found:
1139	if (rdev->exclusive) {
1140		regulator = ERR_PTR(-EPERM);
1141		goto out;
1142	}
1143
1144	if (exclusive && rdev->open_count) {
1145		regulator = ERR_PTR(-EBUSY);
1146		goto out;
1147	}
1148
1149	if (!try_module_get(rdev->owner))
1150		goto out;
1151
1152	regulator = create_regulator(rdev, dev, id);
1153	if (regulator == NULL) {
1154		regulator = ERR_PTR(-ENOMEM);
1155		module_put(rdev->owner);
1156	}
1157
1158	rdev->open_count++;
1159	if (exclusive) {
1160		rdev->exclusive = 1;
1161
1162		ret = _regulator_is_enabled(rdev);
1163		if (ret > 0)
1164			rdev->use_count = 1;
1165		else
1166			rdev->use_count = 0;
1167	}
1168
1169out:
1170	mutex_unlock(&regulator_list_mutex);
1171
1172	return regulator;
1173}
1174
1175/**
1176 * regulator_get - lookup and obtain a reference to a regulator.
1177 * @dev: device for regulator "consumer"
1178 * @id: Supply name or regulator ID.
1179 *
1180 * Returns a struct regulator corresponding to the regulator producer,
1181 * or IS_ERR() condition containing errno.
1182 *
1183 * Use of supply names configured via regulator_set_device_supply() is
1184 * strongly encouraged.  It is recommended that the supply name used
1185 * should match the name used for the supply and/or the relevant
1186 * device pins in the datasheet.
1187 */
1188struct regulator *regulator_get(struct device *dev, const char *id)
1189{
1190	return _regulator_get(dev, id, 0);
1191}
1192EXPORT_SYMBOL_GPL(regulator_get);
1193
1194/**
1195 * regulator_get_exclusive - obtain exclusive access to a regulator.
1196 * @dev: device for regulator "consumer"
1197 * @id: Supply name or regulator ID.
1198 *
1199 * Returns a struct regulator corresponding to the regulator producer,
1200 * or IS_ERR() condition containing errno.  Other consumers will be
1201 * unable to obtain this reference is held and the use count for the
1202 * regulator will be initialised to reflect the current state of the
1203 * regulator.
1204 *
1205 * This is intended for use by consumers which cannot tolerate shared
1206 * use of the regulator such as those which need to force the
1207 * regulator off for correct operation of the hardware they are
1208 * controlling.
1209 *
1210 * Use of supply names configured via regulator_set_device_supply() is
1211 * strongly encouraged.  It is recommended that the supply name used
1212 * should match the name used for the supply and/or the relevant
1213 * device pins in the datasheet.
1214 */
1215struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1216{
1217	return _regulator_get(dev, id, 1);
1218}
1219EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1220
1221/**
1222 * regulator_put - "free" the regulator source
1223 * @regulator: regulator source
1224 *
1225 * Note: drivers must ensure that all regulator_enable calls made on this
1226 * regulator source are balanced by regulator_disable calls prior to calling
1227 * this function.
1228 */
1229void regulator_put(struct regulator *regulator)
1230{
1231	struct regulator_dev *rdev;
1232
1233	if (regulator == NULL || IS_ERR(regulator))
1234		return;
1235
1236	mutex_lock(&regulator_list_mutex);
1237	rdev = regulator->rdev;
1238
1239	/* remove any sysfs entries */
1240	if (regulator->dev) {
1241		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1242		kfree(regulator->supply_name);
1243		device_remove_file(regulator->dev, &regulator->dev_attr);
1244		kfree(regulator->dev_attr.attr.name);
1245	}
1246	list_del(&regulator->list);
1247	kfree(regulator);
1248
1249	rdev->open_count--;
1250	rdev->exclusive = 0;
1251
1252	module_put(rdev->owner);
1253	mutex_unlock(&regulator_list_mutex);
1254}
1255EXPORT_SYMBOL_GPL(regulator_put);
1256
1257static int _regulator_can_change_status(struct regulator_dev *rdev)
1258{
1259	if (!rdev->constraints)
1260		return 0;
1261
1262	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1263		return 1;
1264	else
1265		return 0;
1266}
1267
1268/* locks held by regulator_enable() */
1269static int _regulator_enable(struct regulator_dev *rdev)
1270{
1271	int ret, delay;
1272
1273	/* do we need to enable the supply regulator first */
1274	if (rdev->supply) {
1275		mutex_lock(&rdev->supply->mutex);
1276		ret = _regulator_enable(rdev->supply);
1277		mutex_unlock(&rdev->supply->mutex);
1278		if (ret < 0) {
1279			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1280			       __func__, rdev_get_name(rdev), ret);
1281			return ret;
1282		}
1283	}
1284
1285	/* check voltage and requested load before enabling */
1286	if (rdev->constraints &&
1287	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1288		drms_uA_update(rdev);
1289
1290	if (rdev->use_count == 0) {
1291		/* The regulator may on if it's not switchable or left on */
1292		ret = _regulator_is_enabled(rdev);
1293		if (ret == -EINVAL || ret == 0) {
1294			if (!_regulator_can_change_status(rdev))
1295				return -EPERM;
1296
1297			if (!rdev->desc->ops->enable)
1298				return -EINVAL;
1299
1300			/* Query before enabling in case configuration
1301			 * dependant.  */
1302			ret = _regulator_get_enable_time(rdev);
1303			if (ret >= 0) {
1304				delay = ret;
1305			} else {
1306				printk(KERN_WARNING
1307					"%s: enable_time() failed for %s: %d\n",
1308					__func__, rdev_get_name(rdev),
1309					ret);
1310				delay = 0;
1311			}
1312
1313			/* Allow the regulator to ramp; it would be useful
1314			 * to extend this for bulk operations so that the
1315			 * regulators can ramp together.  */
1316			ret = rdev->desc->ops->enable(rdev);
1317			if (ret < 0)
1318				return ret;
1319
1320			if (delay >= 1000) {
1321				mdelay(delay / 1000);
1322				udelay(delay % 1000);
1323			} else if (delay) {
1324				udelay(delay);
1325			}
1326
1327		} else if (ret < 0) {
1328			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1329			       __func__, rdev_get_name(rdev), ret);
1330			return ret;
1331		}
1332		/* Fallthrough on positive return values - already enabled */
1333	}
1334
1335	rdev->use_count++;
1336
1337	return 0;
1338}
1339
1340/**
1341 * regulator_enable - enable regulator output
1342 * @regulator: regulator source
1343 *
1344 * Request that the regulator be enabled with the regulator output at
1345 * the predefined voltage or current value.  Calls to regulator_enable()
1346 * must be balanced with calls to regulator_disable().
1347 *
1348 * NOTE: the output value can be set by other drivers, boot loader or may be
1349 * hardwired in the regulator.
1350 */
1351int regulator_enable(struct regulator *regulator)
1352{
1353	struct regulator_dev *rdev = regulator->rdev;
1354	int ret = 0;
1355
1356	mutex_lock(&rdev->mutex);
1357	ret = _regulator_enable(rdev);
1358	mutex_unlock(&rdev->mutex);
1359	return ret;
1360}
1361EXPORT_SYMBOL_GPL(regulator_enable);
1362
1363/* locks held by regulator_disable() */
1364static int _regulator_disable(struct regulator_dev *rdev,
1365		struct regulator_dev **supply_rdev_ptr)
1366{
1367	int ret = 0;
1368	*supply_rdev_ptr = NULL;
1369
1370	if (WARN(rdev->use_count <= 0,
1371			"unbalanced disables for %s\n",
1372			rdev_get_name(rdev)))
1373		return -EIO;
1374
1375	/* are we the last user and permitted to disable ? */
1376	if (rdev->use_count == 1 &&
1377	    (rdev->constraints && !rdev->constraints->always_on)) {
1378
1379		/* we are last user */
1380		if (_regulator_can_change_status(rdev) &&
1381		    rdev->desc->ops->disable) {
1382			ret = rdev->desc->ops->disable(rdev);
1383			if (ret < 0) {
1384				printk(KERN_ERR "%s: failed to disable %s\n",
1385				       __func__, rdev_get_name(rdev));
1386				return ret;
1387			}
1388
1389			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1390					     NULL);
1391		}
1392
1393		/* decrease our supplies ref count and disable if required */
1394		*supply_rdev_ptr = rdev->supply;
1395
1396		rdev->use_count = 0;
1397	} else if (rdev->use_count > 1) {
1398
1399		if (rdev->constraints &&
1400			(rdev->constraints->valid_ops_mask &
1401			REGULATOR_CHANGE_DRMS))
1402			drms_uA_update(rdev);
1403
1404		rdev->use_count--;
1405	}
1406	return ret;
1407}
1408
1409/**
1410 * regulator_disable - disable regulator output
1411 * @regulator: regulator source
1412 *
1413 * Disable the regulator output voltage or current.  Calls to
1414 * regulator_enable() must be balanced with calls to
1415 * regulator_disable().
1416 *
1417 * NOTE: this will only disable the regulator output if no other consumer
1418 * devices have it enabled, the regulator device supports disabling and
1419 * machine constraints permit this operation.
1420 */
1421int regulator_disable(struct regulator *regulator)
1422{
1423	struct regulator_dev *rdev = regulator->rdev;
1424	struct regulator_dev *supply_rdev = NULL;
1425	int ret = 0;
1426
1427	mutex_lock(&rdev->mutex);
1428	ret = _regulator_disable(rdev, &supply_rdev);
1429	mutex_unlock(&rdev->mutex);
1430
1431	/* decrease our supplies ref count and disable if required */
1432	while (supply_rdev != NULL) {
1433		rdev = supply_rdev;
1434
1435		mutex_lock(&rdev->mutex);
1436		_regulator_disable(rdev, &supply_rdev);
1437		mutex_unlock(&rdev->mutex);
1438	}
1439
1440	return ret;
1441}
1442EXPORT_SYMBOL_GPL(regulator_disable);
1443
1444/* locks held by regulator_force_disable() */
1445static int _regulator_force_disable(struct regulator_dev *rdev,
1446		struct regulator_dev **supply_rdev_ptr)
1447{
1448	int ret = 0;
1449
1450	/* force disable */
1451	if (rdev->desc->ops->disable) {
1452		/* ah well, who wants to live forever... */
1453		ret = rdev->desc->ops->disable(rdev);
1454		if (ret < 0) {
1455			printk(KERN_ERR "%s: failed to force disable %s\n",
1456			       __func__, rdev_get_name(rdev));
1457			return ret;
1458		}
1459		/* notify other consumers that power has been forced off */
1460		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1461			REGULATOR_EVENT_DISABLE, NULL);
1462	}
1463
1464	/* decrease our supplies ref count and disable if required */
1465	*supply_rdev_ptr = rdev->supply;
1466
1467	rdev->use_count = 0;
1468	return ret;
1469}
1470
1471/**
1472 * regulator_force_disable - force disable regulator output
1473 * @regulator: regulator source
1474 *
1475 * Forcibly disable the regulator output voltage or current.
1476 * NOTE: this *will* disable the regulator output even if other consumer
1477 * devices have it enabled. This should be used for situations when device
1478 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1479 */
1480int regulator_force_disable(struct regulator *regulator)
1481{
1482	struct regulator_dev *supply_rdev = NULL;
1483	int ret;
1484
1485	mutex_lock(&regulator->rdev->mutex);
1486	regulator->uA_load = 0;
1487	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1488	mutex_unlock(&regulator->rdev->mutex);
1489
1490	if (supply_rdev)
1491		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1492
1493	return ret;
1494}
1495EXPORT_SYMBOL_GPL(regulator_force_disable);
1496
1497static int _regulator_is_enabled(struct regulator_dev *rdev)
1498{
1499	/* If we don't know then assume that the regulator is always on */
1500	if (!rdev->desc->ops->is_enabled)
1501		return 1;
1502
1503	return rdev->desc->ops->is_enabled(rdev);
1504}
1505
1506/**
1507 * regulator_is_enabled - is the regulator output enabled
1508 * @regulator: regulator source
1509 *
1510 * Returns positive if the regulator driver backing the source/client
1511 * has requested that the device be enabled, zero if it hasn't, else a
1512 * negative errno code.
1513 *
1514 * Note that the device backing this regulator handle can have multiple
1515 * users, so it might be enabled even if regulator_enable() was never
1516 * called for this particular source.
1517 */
1518int regulator_is_enabled(struct regulator *regulator)
1519{
1520	int ret;
1521
1522	mutex_lock(&regulator->rdev->mutex);
1523	ret = _regulator_is_enabled(regulator->rdev);
1524	mutex_unlock(&regulator->rdev->mutex);
1525
1526	return ret;
1527}
1528EXPORT_SYMBOL_GPL(regulator_is_enabled);
1529
1530/**
1531 * regulator_count_voltages - count regulator_list_voltage() selectors
1532 * @regulator: regulator source
1533 *
1534 * Returns number of selectors, or negative errno.  Selectors are
1535 * numbered starting at zero, and typically correspond to bitfields
1536 * in hardware registers.
1537 */
1538int regulator_count_voltages(struct regulator *regulator)
1539{
1540	struct regulator_dev	*rdev = regulator->rdev;
1541
1542	return rdev->desc->n_voltages ? : -EINVAL;
1543}
1544EXPORT_SYMBOL_GPL(regulator_count_voltages);
1545
1546/**
1547 * regulator_list_voltage - enumerate supported voltages
1548 * @regulator: regulator source
1549 * @selector: identify voltage to list
1550 * Context: can sleep
1551 *
1552 * Returns a voltage that can be passed to @regulator_set_voltage(),
1553 * zero if this selector code can't be used on this system, or a
1554 * negative errno.
1555 */
1556int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1557{
1558	struct regulator_dev	*rdev = regulator->rdev;
1559	struct regulator_ops	*ops = rdev->desc->ops;
1560	int			ret;
1561
1562	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1563		return -EINVAL;
1564
1565	mutex_lock(&rdev->mutex);
1566	ret = ops->list_voltage(rdev, selector);
1567	mutex_unlock(&rdev->mutex);
1568
1569	if (ret > 0) {
1570		if (ret < rdev->constraints->min_uV)
1571			ret = 0;
1572		else if (ret > rdev->constraints->max_uV)
1573			ret = 0;
1574	}
1575
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(regulator_list_voltage);
1579
1580/**
1581 * regulator_is_supported_voltage - check if a voltage range can be supported
1582 *
1583 * @regulator: Regulator to check.
1584 * @min_uV: Minimum required voltage in uV.
1585 * @max_uV: Maximum required voltage in uV.
1586 *
1587 * Returns a boolean or a negative error code.
1588 */
1589int regulator_is_supported_voltage(struct regulator *regulator,
1590				   int min_uV, int max_uV)
1591{
1592	int i, voltages, ret;
1593
1594	ret = regulator_count_voltages(regulator);
1595	if (ret < 0)
1596		return ret;
1597	voltages = ret;
1598
1599	for (i = 0; i < voltages; i++) {
1600		ret = regulator_list_voltage(regulator, i);
1601
1602		if (ret >= min_uV && ret <= max_uV)
1603			return 1;
1604	}
1605
1606	return 0;
1607}
1608
1609/**
1610 * regulator_set_voltage - set regulator output voltage
1611 * @regulator: regulator source
1612 * @min_uV: Minimum required voltage in uV
1613 * @max_uV: Maximum acceptable voltage in uV
1614 *
1615 * Sets a voltage regulator to the desired output voltage. This can be set
1616 * during any regulator state. IOW, regulator can be disabled or enabled.
1617 *
1618 * If the regulator is enabled then the voltage will change to the new value
1619 * immediately otherwise if the regulator is disabled the regulator will
1620 * output at the new voltage when enabled.
1621 *
1622 * NOTE: If the regulator is shared between several devices then the lowest
1623 * request voltage that meets the system constraints will be used.
1624 * Regulator system constraints must be set for this regulator before
1625 * calling this function otherwise this call will fail.
1626 */
1627int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1628{
1629	struct regulator_dev *rdev = regulator->rdev;
1630	int ret;
1631	unsigned selector;
1632
1633	mutex_lock(&rdev->mutex);
1634
1635	/* sanity check */
1636	if (!rdev->desc->ops->set_voltage) {
1637		ret = -EINVAL;
1638		goto out;
1639	}
1640
1641	/* constraints check */
1642	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1643	if (ret < 0)
1644		goto out;
1645	regulator->min_uV = min_uV;
1646	regulator->max_uV = max_uV;
1647
1648	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1649
1650	if (rdev->desc->ops->list_voltage)
1651		selector = rdev->desc->ops->list_voltage(rdev, selector);
1652	else
1653		selector = -1;
1654
1655out:
1656	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1657	mutex_unlock(&rdev->mutex);
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regulator_set_voltage);
1661
1662static int _regulator_get_voltage(struct regulator_dev *rdev)
1663{
1664	/* sanity check */
1665	if (rdev->desc->ops->get_voltage)
1666		return rdev->desc->ops->get_voltage(rdev);
1667	else
1668		return -EINVAL;
1669}
1670
1671/**
1672 * regulator_get_voltage - get regulator output voltage
1673 * @regulator: regulator source
1674 *
1675 * This returns the current regulator voltage in uV.
1676 *
1677 * NOTE: If the regulator is disabled it will return the voltage value. This
1678 * function should not be used to determine regulator state.
1679 */
1680int regulator_get_voltage(struct regulator *regulator)
1681{
1682	int ret;
1683
1684	mutex_lock(&regulator->rdev->mutex);
1685
1686	ret = _regulator_get_voltage(regulator->rdev);
1687
1688	mutex_unlock(&regulator->rdev->mutex);
1689
1690	return ret;
1691}
1692EXPORT_SYMBOL_GPL(regulator_get_voltage);
1693
1694/**
1695 * regulator_set_current_limit - set regulator output current limit
1696 * @regulator: regulator source
1697 * @min_uA: Minimuum supported current in uA
1698 * @max_uA: Maximum supported current in uA
1699 *
1700 * Sets current sink to the desired output current. This can be set during
1701 * any regulator state. IOW, regulator can be disabled or enabled.
1702 *
1703 * If the regulator is enabled then the current will change to the new value
1704 * immediately otherwise if the regulator is disabled the regulator will
1705 * output at the new current when enabled.
1706 *
1707 * NOTE: Regulator system constraints must be set for this regulator before
1708 * calling this function otherwise this call will fail.
1709 */
1710int regulator_set_current_limit(struct regulator *regulator,
1711			       int min_uA, int max_uA)
1712{
1713	struct regulator_dev *rdev = regulator->rdev;
1714	int ret;
1715
1716	mutex_lock(&rdev->mutex);
1717
1718	/* sanity check */
1719	if (!rdev->desc->ops->set_current_limit) {
1720		ret = -EINVAL;
1721		goto out;
1722	}
1723
1724	/* constraints check */
1725	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1726	if (ret < 0)
1727		goto out;
1728
1729	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1730out:
1731	mutex_unlock(&rdev->mutex);
1732	return ret;
1733}
1734EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1735
1736static int _regulator_get_current_limit(struct regulator_dev *rdev)
1737{
1738	int ret;
1739
1740	mutex_lock(&rdev->mutex);
1741
1742	/* sanity check */
1743	if (!rdev->desc->ops->get_current_limit) {
1744		ret = -EINVAL;
1745		goto out;
1746	}
1747
1748	ret = rdev->desc->ops->get_current_limit(rdev);
1749out:
1750	mutex_unlock(&rdev->mutex);
1751	return ret;
1752}
1753
1754/**
1755 * regulator_get_current_limit - get regulator output current
1756 * @regulator: regulator source
1757 *
1758 * This returns the current supplied by the specified current sink in uA.
1759 *
1760 * NOTE: If the regulator is disabled it will return the current value. This
1761 * function should not be used to determine regulator state.
1762 */
1763int regulator_get_current_limit(struct regulator *regulator)
1764{
1765	return _regulator_get_current_limit(regulator->rdev);
1766}
1767EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1768
1769/**
1770 * regulator_set_mode - set regulator operating mode
1771 * @regulator: regulator source
1772 * @mode: operating mode - one of the REGULATOR_MODE constants
1773 *
1774 * Set regulator operating mode to increase regulator efficiency or improve
1775 * regulation performance.
1776 *
1777 * NOTE: Regulator system constraints must be set for this regulator before
1778 * calling this function otherwise this call will fail.
1779 */
1780int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1781{
1782	struct regulator_dev *rdev = regulator->rdev;
1783	int ret;
1784	int regulator_curr_mode;
1785
1786	mutex_lock(&rdev->mutex);
1787
1788	/* sanity check */
1789	if (!rdev->desc->ops->set_mode) {
1790		ret = -EINVAL;
1791		goto out;
1792	}
1793
1794	/* return if the same mode is requested */
1795	if (rdev->desc->ops->get_mode) {
1796		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1797		if (regulator_curr_mode == mode) {
1798			ret = 0;
1799			goto out;
1800		}
1801	}
1802
1803	/* constraints check */
1804	ret = regulator_check_mode(rdev, mode);
1805	if (ret < 0)
1806		goto out;
1807
1808	ret = rdev->desc->ops->set_mode(rdev, mode);
1809out:
1810	mutex_unlock(&rdev->mutex);
1811	return ret;
1812}
1813EXPORT_SYMBOL_GPL(regulator_set_mode);
1814
1815static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1816{
1817	int ret;
1818
1819	mutex_lock(&rdev->mutex);
1820
1821	/* sanity check */
1822	if (!rdev->desc->ops->get_mode) {
1823		ret = -EINVAL;
1824		goto out;
1825	}
1826
1827	ret = rdev->desc->ops->get_mode(rdev);
1828out:
1829	mutex_unlock(&rdev->mutex);
1830	return ret;
1831}
1832
1833/**
1834 * regulator_get_mode - get regulator operating mode
1835 * @regulator: regulator source
1836 *
1837 * Get the current regulator operating mode.
1838 */
1839unsigned int regulator_get_mode(struct regulator *regulator)
1840{
1841	return _regulator_get_mode(regulator->rdev);
1842}
1843EXPORT_SYMBOL_GPL(regulator_get_mode);
1844
1845/**
1846 * regulator_set_optimum_mode - set regulator optimum operating mode
1847 * @regulator: regulator source
1848 * @uA_load: load current
1849 *
1850 * Notifies the regulator core of a new device load. This is then used by
1851 * DRMS (if enabled by constraints) to set the most efficient regulator
1852 * operating mode for the new regulator loading.
1853 *
1854 * Consumer devices notify their supply regulator of the maximum power
1855 * they will require (can be taken from device datasheet in the power
1856 * consumption tables) when they change operational status and hence power
1857 * state. Examples of operational state changes that can affect power
1858 * consumption are :-
1859 *
1860 *    o Device is opened / closed.
1861 *    o Device I/O is about to begin or has just finished.
1862 *    o Device is idling in between work.
1863 *
1864 * This information is also exported via sysfs to userspace.
1865 *
1866 * DRMS will sum the total requested load on the regulator and change
1867 * to the most efficient operating mode if platform constraints allow.
1868 *
1869 * Returns the new regulator mode or error.
1870 */
1871int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1872{
1873	struct regulator_dev *rdev = regulator->rdev;
1874	struct regulator *consumer;
1875	int ret, output_uV, input_uV, total_uA_load = 0;
1876	unsigned int mode;
1877
1878	mutex_lock(&rdev->mutex);
1879
1880	regulator->uA_load = uA_load;
1881	ret = regulator_check_drms(rdev);
1882	if (ret < 0)
1883		goto out;
1884	ret = -EINVAL;
1885
1886	/* sanity check */
1887	if (!rdev->desc->ops->get_optimum_mode)
1888		goto out;
1889
1890	/* get output voltage */
1891	output_uV = rdev->desc->ops->get_voltage(rdev);
1892	if (output_uV <= 0) {
1893		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1894			__func__, rdev_get_name(rdev));
1895		goto out;
1896	}
1897
1898	/* get input voltage */
1899	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1900		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1901	else
1902		input_uV = rdev->constraints->input_uV;
1903	if (input_uV <= 0) {
1904		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1905			__func__, rdev_get_name(rdev));
1906		goto out;
1907	}
1908
1909	/* calc total requested load for this regulator */
1910	list_for_each_entry(consumer, &rdev->consumer_list, list)
1911		total_uA_load += consumer->uA_load;
1912
1913	mode = rdev->desc->ops->get_optimum_mode(rdev,
1914						 input_uV, output_uV,
1915						 total_uA_load);
1916	ret = regulator_check_mode(rdev, mode);
1917	if (ret < 0) {
1918		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1919			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1920			total_uA_load, input_uV, output_uV);
1921		goto out;
1922	}
1923
1924	ret = rdev->desc->ops->set_mode(rdev, mode);
1925	if (ret < 0) {
1926		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1927			__func__, mode, rdev_get_name(rdev));
1928		goto out;
1929	}
1930	ret = mode;
1931out:
1932	mutex_unlock(&rdev->mutex);
1933	return ret;
1934}
1935EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1936
1937/**
1938 * regulator_register_notifier - register regulator event notifier
1939 * @regulator: regulator source
1940 * @nb: notifier block
1941 *
1942 * Register notifier block to receive regulator events.
1943 */
1944int regulator_register_notifier(struct regulator *regulator,
1945			      struct notifier_block *nb)
1946{
1947	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1948						nb);
1949}
1950EXPORT_SYMBOL_GPL(regulator_register_notifier);
1951
1952/**
1953 * regulator_unregister_notifier - unregister regulator event notifier
1954 * @regulator: regulator source
1955 * @nb: notifier block
1956 *
1957 * Unregister regulator event notifier block.
1958 */
1959int regulator_unregister_notifier(struct regulator *regulator,
1960				struct notifier_block *nb)
1961{
1962	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1963						  nb);
1964}
1965EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1966
1967/* notify regulator consumers and downstream regulator consumers.
1968 * Note mutex must be held by caller.
1969 */
1970static void _notifier_call_chain(struct regulator_dev *rdev,
1971				  unsigned long event, void *data)
1972{
1973	struct regulator_dev *_rdev;
1974
1975	/* call rdev chain first */
1976	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1977
1978	/* now notify regulator we supply */
1979	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1980		mutex_lock(&_rdev->mutex);
1981		_notifier_call_chain(_rdev, event, data);
1982		mutex_unlock(&_rdev->mutex);
1983	}
1984}
1985
1986/**
1987 * regulator_bulk_get - get multiple regulator consumers
1988 *
1989 * @dev:           Device to supply
1990 * @num_consumers: Number of consumers to register
1991 * @consumers:     Configuration of consumers; clients are stored here.
1992 *
1993 * @return 0 on success, an errno on failure.
1994 *
1995 * This helper function allows drivers to get several regulator
1996 * consumers in one operation.  If any of the regulators cannot be
1997 * acquired then any regulators that were allocated will be freed
1998 * before returning to the caller.
1999 */
2000int regulator_bulk_get(struct device *dev, int num_consumers,
2001		       struct regulator_bulk_data *consumers)
2002{
2003	int i;
2004	int ret;
2005
2006	for (i = 0; i < num_consumers; i++)
2007		consumers[i].consumer = NULL;
2008
2009	for (i = 0; i < num_consumers; i++) {
2010		consumers[i].consumer = regulator_get(dev,
2011						      consumers[i].supply);
2012		if (IS_ERR(consumers[i].consumer)) {
2013			ret = PTR_ERR(consumers[i].consumer);
2014			dev_err(dev, "Failed to get supply '%s': %d\n",
2015				consumers[i].supply, ret);
2016			consumers[i].consumer = NULL;
2017			goto err;
2018		}
2019	}
2020
2021	return 0;
2022
2023err:
2024	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2025		regulator_put(consumers[i].consumer);
2026
2027	return ret;
2028}
2029EXPORT_SYMBOL_GPL(regulator_bulk_get);
2030
2031/**
2032 * regulator_bulk_enable - enable multiple regulator consumers
2033 *
2034 * @num_consumers: Number of consumers
2035 * @consumers:     Consumer data; clients are stored here.
2036 * @return         0 on success, an errno on failure
2037 *
2038 * This convenience API allows consumers to enable multiple regulator
2039 * clients in a single API call.  If any consumers cannot be enabled
2040 * then any others that were enabled will be disabled again prior to
2041 * return.
2042 */
2043int regulator_bulk_enable(int num_consumers,
2044			  struct regulator_bulk_data *consumers)
2045{
2046	int i;
2047	int ret;
2048
2049	for (i = 0; i < num_consumers; i++) {
2050		ret = regulator_enable(consumers[i].consumer);
2051		if (ret != 0)
2052			goto err;
2053	}
2054
2055	return 0;
2056
2057err:
2058	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2059	for (--i; i >= 0; --i)
2060		regulator_disable(consumers[i].consumer);
2061
2062	return ret;
2063}
2064EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2065
2066/**
2067 * regulator_bulk_disable - disable multiple regulator consumers
2068 *
2069 * @num_consumers: Number of consumers
2070 * @consumers:     Consumer data; clients are stored here.
2071 * @return         0 on success, an errno on failure
2072 *
2073 * This convenience API allows consumers to disable multiple regulator
2074 * clients in a single API call.  If any consumers cannot be enabled
2075 * then any others that were disabled will be disabled again prior to
2076 * return.
2077 */
2078int regulator_bulk_disable(int num_consumers,
2079			   struct regulator_bulk_data *consumers)
2080{
2081	int i;
2082	int ret;
2083
2084	for (i = 0; i < num_consumers; i++) {
2085		ret = regulator_disable(consumers[i].consumer);
2086		if (ret != 0)
2087			goto err;
2088	}
2089
2090	return 0;
2091
2092err:
2093	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2094	       ret);
2095	for (--i; i >= 0; --i)
2096		regulator_enable(consumers[i].consumer);
2097
2098	return ret;
2099}
2100EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2101
2102/**
2103 * regulator_bulk_free - free multiple regulator consumers
2104 *
2105 * @num_consumers: Number of consumers
2106 * @consumers:     Consumer data; clients are stored here.
2107 *
2108 * This convenience API allows consumers to free multiple regulator
2109 * clients in a single API call.
2110 */
2111void regulator_bulk_free(int num_consumers,
2112			 struct regulator_bulk_data *consumers)
2113{
2114	int i;
2115
2116	for (i = 0; i < num_consumers; i++) {
2117		regulator_put(consumers[i].consumer);
2118		consumers[i].consumer = NULL;
2119	}
2120}
2121EXPORT_SYMBOL_GPL(regulator_bulk_free);
2122
2123/**
2124 * regulator_notifier_call_chain - call regulator event notifier
2125 * @rdev: regulator source
2126 * @event: notifier block
2127 * @data: callback-specific data.
2128 *
2129 * Called by regulator drivers to notify clients a regulator event has
2130 * occurred. We also notify regulator clients downstream.
2131 * Note lock must be held by caller.
2132 */
2133int regulator_notifier_call_chain(struct regulator_dev *rdev,
2134				  unsigned long event, void *data)
2135{
2136	_notifier_call_chain(rdev, event, data);
2137	return NOTIFY_DONE;
2138
2139}
2140EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2141
2142/**
2143 * regulator_mode_to_status - convert a regulator mode into a status
2144 *
2145 * @mode: Mode to convert
2146 *
2147 * Convert a regulator mode into a status.
2148 */
2149int regulator_mode_to_status(unsigned int mode)
2150{
2151	switch (mode) {
2152	case REGULATOR_MODE_FAST:
2153		return REGULATOR_STATUS_FAST;
2154	case REGULATOR_MODE_NORMAL:
2155		return REGULATOR_STATUS_NORMAL;
2156	case REGULATOR_MODE_IDLE:
2157		return REGULATOR_STATUS_IDLE;
2158	case REGULATOR_STATUS_STANDBY:
2159		return REGULATOR_STATUS_STANDBY;
2160	default:
2161		return 0;
2162	}
2163}
2164EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2165
2166/*
2167 * To avoid cluttering sysfs (and memory) with useless state, only
2168 * create attributes that can be meaningfully displayed.
2169 */
2170static int add_regulator_attributes(struct regulator_dev *rdev)
2171{
2172	struct device		*dev = &rdev->dev;
2173	struct regulator_ops	*ops = rdev->desc->ops;
2174	int			status = 0;
2175
2176	/* some attributes need specific methods to be displayed */
2177	if (ops->get_voltage) {
2178		status = device_create_file(dev, &dev_attr_microvolts);
2179		if (status < 0)
2180			return status;
2181	}
2182	if (ops->get_current_limit) {
2183		status = device_create_file(dev, &dev_attr_microamps);
2184		if (status < 0)
2185			return status;
2186	}
2187	if (ops->get_mode) {
2188		status = device_create_file(dev, &dev_attr_opmode);
2189		if (status < 0)
2190			return status;
2191	}
2192	if (ops->is_enabled) {
2193		status = device_create_file(dev, &dev_attr_state);
2194		if (status < 0)
2195			return status;
2196	}
2197	if (ops->get_status) {
2198		status = device_create_file(dev, &dev_attr_status);
2199		if (status < 0)
2200			return status;
2201	}
2202
2203	/* some attributes are type-specific */
2204	if (rdev->desc->type == REGULATOR_CURRENT) {
2205		status = device_create_file(dev, &dev_attr_requested_microamps);
2206		if (status < 0)
2207			return status;
2208	}
2209
2210	/* all the other attributes exist to support constraints;
2211	 * don't show them if there are no constraints, or if the
2212	 * relevant supporting methods are missing.
2213	 */
2214	if (!rdev->constraints)
2215		return status;
2216
2217	/* constraints need specific supporting methods */
2218	if (ops->set_voltage) {
2219		status = device_create_file(dev, &dev_attr_min_microvolts);
2220		if (status < 0)
2221			return status;
2222		status = device_create_file(dev, &dev_attr_max_microvolts);
2223		if (status < 0)
2224			return status;
2225	}
2226	if (ops->set_current_limit) {
2227		status = device_create_file(dev, &dev_attr_min_microamps);
2228		if (status < 0)
2229			return status;
2230		status = device_create_file(dev, &dev_attr_max_microamps);
2231		if (status < 0)
2232			return status;
2233	}
2234
2235	/* suspend mode constraints need multiple supporting methods */
2236	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2237		return status;
2238
2239	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2240	if (status < 0)
2241		return status;
2242	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2243	if (status < 0)
2244		return status;
2245	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2246	if (status < 0)
2247		return status;
2248
2249	if (ops->set_suspend_voltage) {
2250		status = device_create_file(dev,
2251				&dev_attr_suspend_standby_microvolts);
2252		if (status < 0)
2253			return status;
2254		status = device_create_file(dev,
2255				&dev_attr_suspend_mem_microvolts);
2256		if (status < 0)
2257			return status;
2258		status = device_create_file(dev,
2259				&dev_attr_suspend_disk_microvolts);
2260		if (status < 0)
2261			return status;
2262	}
2263
2264	if (ops->set_suspend_mode) {
2265		status = device_create_file(dev,
2266				&dev_attr_suspend_standby_mode);
2267		if (status < 0)
2268			return status;
2269		status = device_create_file(dev,
2270				&dev_attr_suspend_mem_mode);
2271		if (status < 0)
2272			return status;
2273		status = device_create_file(dev,
2274				&dev_attr_suspend_disk_mode);
2275		if (status < 0)
2276			return status;
2277	}
2278
2279	return status;
2280}
2281
2282/**
2283 * regulator_register - register regulator
2284 * @regulator_desc: regulator to register
2285 * @dev: struct device for the regulator
2286 * @init_data: platform provided init data, passed through by driver
2287 * @driver_data: private regulator data
2288 *
2289 * Called by regulator drivers to register a regulator.
2290 * Returns 0 on success.
2291 */
2292struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2293	struct device *dev, struct regulator_init_data *init_data,
2294	void *driver_data)
2295{
2296	static atomic_t regulator_no = ATOMIC_INIT(0);
2297	struct regulator_dev *rdev;
2298	int ret, i;
2299
2300	if (regulator_desc == NULL)
2301		return ERR_PTR(-EINVAL);
2302
2303	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2304		return ERR_PTR(-EINVAL);
2305
2306	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2307	    regulator_desc->type != REGULATOR_CURRENT)
2308		return ERR_PTR(-EINVAL);
2309
2310	if (!init_data)
2311		return ERR_PTR(-EINVAL);
2312
2313	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2314	if (rdev == NULL)
2315		return ERR_PTR(-ENOMEM);
2316
2317	mutex_lock(&regulator_list_mutex);
2318
2319	mutex_init(&rdev->mutex);
2320	rdev->reg_data = driver_data;
2321	rdev->owner = regulator_desc->owner;
2322	rdev->desc = regulator_desc;
2323	INIT_LIST_HEAD(&rdev->consumer_list);
2324	INIT_LIST_HEAD(&rdev->supply_list);
2325	INIT_LIST_HEAD(&rdev->list);
2326	INIT_LIST_HEAD(&rdev->slist);
2327	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2328
2329	/* preform any regulator specific init */
2330	if (init_data->regulator_init) {
2331		ret = init_data->regulator_init(rdev->reg_data);
2332		if (ret < 0)
2333			goto clean;
2334	}
2335
2336	/* register with sysfs */
2337	rdev->dev.class = &regulator_class;
2338	rdev->dev.parent = dev;
2339	dev_set_name(&rdev->dev, "regulator.%d",
2340		     atomic_inc_return(&regulator_no) - 1);
2341	ret = device_register(&rdev->dev);
2342	if (ret != 0) {
2343		put_device(&rdev->dev);
2344		goto clean;
2345	}
2346
2347	dev_set_drvdata(&rdev->dev, rdev);
2348
2349	/* set regulator constraints */
2350	ret = set_machine_constraints(rdev, &init_data->constraints);
2351	if (ret < 0)
2352		goto scrub;
2353
2354	/* add attributes supported by this regulator */
2355	ret = add_regulator_attributes(rdev);
2356	if (ret < 0)
2357		goto scrub;
2358
2359	/* set supply regulator if it exists */
2360	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2361		dev_err(dev,
2362			"Supply regulator specified by both name and dev\n");
2363		ret = -EINVAL;
2364		goto scrub;
2365	}
2366
2367	if (init_data->supply_regulator) {
2368		struct regulator_dev *r;
2369		int found = 0;
2370
2371		list_for_each_entry(r, &regulator_list, list) {
2372			if (strcmp(rdev_get_name(r),
2373				   init_data->supply_regulator) == 0) {
2374				found = 1;
2375				break;
2376			}
2377		}
2378
2379		if (!found) {
2380			dev_err(dev, "Failed to find supply %s\n",
2381				init_data->supply_regulator);
2382			ret = -ENODEV;
2383			goto scrub;
2384		}
2385
2386		ret = set_supply(rdev, r);
2387		if (ret < 0)
2388			goto scrub;
2389	}
2390
2391	if (init_data->supply_regulator_dev) {
2392		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2393		ret = set_supply(rdev,
2394			dev_get_drvdata(init_data->supply_regulator_dev));
2395		if (ret < 0)
2396			goto scrub;
2397	}
2398
2399	/* add consumers devices */
2400	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2401		ret = set_consumer_device_supply(rdev,
2402			init_data->consumer_supplies[i].dev,
2403			init_data->consumer_supplies[i].dev_name,
2404			init_data->consumer_supplies[i].supply);
2405		if (ret < 0)
2406			goto unset_supplies;
2407	}
2408
2409	list_add(&rdev->list, &regulator_list);
2410out:
2411	mutex_unlock(&regulator_list_mutex);
2412	return rdev;
2413
2414unset_supplies:
2415	unset_regulator_supplies(rdev);
2416
2417scrub:
2418	device_unregister(&rdev->dev);
2419	/* device core frees rdev */
2420	rdev = ERR_PTR(ret);
2421	goto out;
2422
2423clean:
2424	kfree(rdev);
2425	rdev = ERR_PTR(ret);
2426	goto out;
2427}
2428EXPORT_SYMBOL_GPL(regulator_register);
2429
2430/**
2431 * regulator_unregister - unregister regulator
2432 * @rdev: regulator to unregister
2433 *
2434 * Called by regulator drivers to unregister a regulator.
2435 */
2436void regulator_unregister(struct regulator_dev *rdev)
2437{
2438	if (rdev == NULL)
2439		return;
2440
2441	mutex_lock(&regulator_list_mutex);
2442	WARN_ON(rdev->open_count);
2443	unset_regulator_supplies(rdev);
2444	list_del(&rdev->list);
2445	if (rdev->supply)
2446		sysfs_remove_link(&rdev->dev.kobj, "supply");
2447	device_unregister(&rdev->dev);
2448	mutex_unlock(&regulator_list_mutex);
2449}
2450EXPORT_SYMBOL_GPL(regulator_unregister);
2451
2452/**
2453 * regulator_suspend_prepare - prepare regulators for system wide suspend
2454 * @state: system suspend state
2455 *
2456 * Configure each regulator with it's suspend operating parameters for state.
2457 * This will usually be called by machine suspend code prior to supending.
2458 */
2459int regulator_suspend_prepare(suspend_state_t state)
2460{
2461	struct regulator_dev *rdev;
2462	int ret = 0;
2463
2464	/* ON is handled by regulator active state */
2465	if (state == PM_SUSPEND_ON)
2466		return -EINVAL;
2467
2468	mutex_lock(&regulator_list_mutex);
2469	list_for_each_entry(rdev, &regulator_list, list) {
2470
2471		mutex_lock(&rdev->mutex);
2472		ret = suspend_prepare(rdev, state);
2473		mutex_unlock(&rdev->mutex);
2474
2475		if (ret < 0) {
2476			printk(KERN_ERR "%s: failed to prepare %s\n",
2477				__func__, rdev_get_name(rdev));
2478			goto out;
2479		}
2480	}
2481out:
2482	mutex_unlock(&regulator_list_mutex);
2483	return ret;
2484}
2485EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2486
2487/**
2488 * regulator_has_full_constraints - the system has fully specified constraints
2489 *
2490 * Calling this function will cause the regulator API to disable all
2491 * regulators which have a zero use count and don't have an always_on
2492 * constraint in a late_initcall.
2493 *
2494 * The intention is that this will become the default behaviour in a
2495 * future kernel release so users are encouraged to use this facility
2496 * now.
2497 */
2498void regulator_has_full_constraints(void)
2499{
2500	has_full_constraints = 1;
2501}
2502EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2503
2504/**
2505 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2506 *
2507 * Calling this function will cause the regulator API to provide a
2508 * dummy regulator to consumers if no physical regulator is found,
2509 * allowing most consumers to proceed as though a regulator were
2510 * configured.  This allows systems such as those with software
2511 * controllable regulators for the CPU core only to be brought up more
2512 * readily.
2513 */
2514void regulator_use_dummy_regulator(void)
2515{
2516	board_wants_dummy_regulator = true;
2517}
2518EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2519
2520/**
2521 * rdev_get_drvdata - get rdev regulator driver data
2522 * @rdev: regulator
2523 *
2524 * Get rdev regulator driver private data. This call can be used in the
2525 * regulator driver context.
2526 */
2527void *rdev_get_drvdata(struct regulator_dev *rdev)
2528{
2529	return rdev->reg_data;
2530}
2531EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2532
2533/**
2534 * regulator_get_drvdata - get regulator driver data
2535 * @regulator: regulator
2536 *
2537 * Get regulator driver private data. This call can be used in the consumer
2538 * driver context when non API regulator specific functions need to be called.
2539 */
2540void *regulator_get_drvdata(struct regulator *regulator)
2541{
2542	return regulator->rdev->reg_data;
2543}
2544EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2545
2546/**
2547 * regulator_set_drvdata - set regulator driver data
2548 * @regulator: regulator
2549 * @data: data
2550 */
2551void regulator_set_drvdata(struct regulator *regulator, void *data)
2552{
2553	regulator->rdev->reg_data = data;
2554}
2555EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2556
2557/**
2558 * regulator_get_id - get regulator ID
2559 * @rdev: regulator
2560 */
2561int rdev_get_id(struct regulator_dev *rdev)
2562{
2563	return rdev->desc->id;
2564}
2565EXPORT_SYMBOL_GPL(rdev_get_id);
2566
2567struct device *rdev_get_dev(struct regulator_dev *rdev)
2568{
2569	return &rdev->dev;
2570}
2571EXPORT_SYMBOL_GPL(rdev_get_dev);
2572
2573void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2574{
2575	return reg_init_data->driver_data;
2576}
2577EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2578
2579static int __init regulator_init(void)
2580{
2581	int ret;
2582
2583	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2584
2585	ret = class_register(&regulator_class);
2586
2587	regulator_dummy_init();
2588
2589	return ret;
2590}
2591
2592/* init early to allow our consumers to complete system booting */
2593core_initcall(regulator_init);
2594
2595static int __init regulator_init_complete(void)
2596{
2597	struct regulator_dev *rdev;
2598	struct regulator_ops *ops;
2599	struct regulation_constraints *c;
2600	int enabled, ret;
2601	const char *name;
2602
2603	mutex_lock(&regulator_list_mutex);
2604
2605	/* If we have a full configuration then disable any regulators
2606	 * which are not in use or always_on.  This will become the
2607	 * default behaviour in the future.
2608	 */
2609	list_for_each_entry(rdev, &regulator_list, list) {
2610		ops = rdev->desc->ops;
2611		c = rdev->constraints;
2612
2613		name = rdev_get_name(rdev);
2614
2615		if (!ops->disable || (c && c->always_on))
2616			continue;
2617
2618		mutex_lock(&rdev->mutex);
2619
2620		if (rdev->use_count)
2621			goto unlock;
2622
2623		/* If we can't read the status assume it's on. */
2624		if (ops->is_enabled)
2625			enabled = ops->is_enabled(rdev);
2626		else
2627			enabled = 1;
2628
2629		if (!enabled)
2630			goto unlock;
2631
2632		if (has_full_constraints) {
2633			/* We log since this may kill the system if it
2634			 * goes wrong. */
2635			printk(KERN_INFO "%s: disabling %s\n",
2636			       __func__, name);
2637			ret = ops->disable(rdev);
2638			if (ret != 0) {
2639				printk(KERN_ERR
2640				       "%s: couldn't disable %s: %d\n",
2641				       __func__, name, ret);
2642			}
2643		} else {
2644			/* The intention is that in future we will
2645			 * assume that full constraints are provided
2646			 * so warn even if we aren't going to do
2647			 * anything here.
2648			 */
2649			printk(KERN_WARNING
2650			       "%s: incomplete constraints, leaving %s on\n",
2651			       __func__, name);
2652		}
2653
2654unlock:
2655		mutex_unlock(&rdev->mutex);
2656	}
2657
2658	mutex_unlock(&regulator_list_mutex);
2659
2660	return 0;
2661}
2662late_initcall(regulator_init_complete);
2663