core.c revision 3e2b9abda554e9f6105996dca77cca9ef98de17a
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/*
33 * struct regulator_map
34 *
35 * Used to provide symbolic supply names to devices.
36 */
37struct regulator_map {
38	struct list_head list;
39	struct device *dev;
40	const char *supply;
41	struct regulator_dev *regulator;
42};
43
44/*
45 * struct regulator
46 *
47 * One for each consumer device.
48 */
49struct regulator {
50	struct device *dev;
51	struct list_head list;
52	int uA_load;
53	int min_uV;
54	int max_uV;
55	int enabled; /* count of client enables */
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544	return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	/* constrain machine-level voltage specs to fit
696	 * the actual range supported by this regulator.
697	 */
698	if (ops->list_voltage && rdev->desc->n_voltages) {
699		int	count = rdev->desc->n_voltages;
700		int	i;
701		int	min_uV = INT_MAX;
702		int	max_uV = INT_MIN;
703		int	cmin = constraints->min_uV;
704		int	cmax = constraints->max_uV;
705
706		/* it's safe to autoconfigure fixed-voltage supplies */
707		if (count == 1 && !cmin) {
708			cmin = INT_MIN;
709			cmax = INT_MAX;
710		}
711
712		/* voltage constraints are optional */
713		if ((cmin == 0) && (cmax == 0))
714			goto out;
715
716		/* else require explicit machine-level constraints */
717		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
718			pr_err("%s: %s '%s' voltage constraints\n",
719				       __func__, "invalid", name);
720			ret = -EINVAL;
721			goto out;
722		}
723
724		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
725		for (i = 0; i < count; i++) {
726			int	value;
727
728			value = ops->list_voltage(rdev, i);
729			if (value <= 0)
730				continue;
731
732			/* maybe adjust [min_uV..max_uV] */
733			if (value >= cmin && value < min_uV)
734				min_uV = value;
735			if (value <= cmax && value > max_uV)
736				max_uV = value;
737		}
738
739		/* final: [min_uV..max_uV] valid iff constraints valid */
740		if (max_uV < min_uV) {
741			pr_err("%s: %s '%s' voltage constraints\n",
742				       __func__, "unsupportable", name);
743			ret = -EINVAL;
744			goto out;
745		}
746
747		/* use regulator's subset of machine constraints */
748		if (constraints->min_uV < min_uV) {
749			pr_debug("%s: override '%s' %s, %d -> %d\n",
750				       __func__, name, "min_uV",
751					constraints->min_uV, min_uV);
752			constraints->min_uV = min_uV;
753		}
754		if (constraints->max_uV > max_uV) {
755			pr_debug("%s: override '%s' %s, %d -> %d\n",
756				       __func__, name, "max_uV",
757					constraints->max_uV, max_uV);
758			constraints->max_uV = max_uV;
759		}
760	}
761
762	rdev->constraints = constraints;
763
764	/* do we need to apply the constraint voltage */
765	if (rdev->constraints->apply_uV &&
766		rdev->constraints->min_uV == rdev->constraints->max_uV &&
767		ops->set_voltage) {
768		ret = ops->set_voltage(rdev,
769			rdev->constraints->min_uV, rdev->constraints->max_uV);
770			if (ret < 0) {
771				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
772				       __func__,
773				       rdev->constraints->min_uV, name);
774				rdev->constraints = NULL;
775				goto out;
776			}
777	}
778
779	/* are we enabled at boot time by firmware / bootloader */
780	if (rdev->constraints->boot_on)
781		rdev->use_count = 1;
782
783	/* do we need to setup our suspend state */
784	if (constraints->initial_state) {
785		ret = suspend_prepare(rdev, constraints->initial_state);
786		if (ret < 0) {
787			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
788			       __func__, name);
789			rdev->constraints = NULL;
790			goto out;
791		}
792	}
793
794	if (constraints->initial_mode) {
795		if (!ops->set_mode) {
796			printk(KERN_ERR "%s: no set_mode operation for %s\n",
797			       __func__, name);
798			ret = -EINVAL;
799			goto out;
800		}
801
802		ret = ops->set_mode(rdev, constraints->initial_mode);
803		if (ret < 0) {
804			printk(KERN_ERR
805			       "%s: failed to set initial mode for %s: %d\n",
806			       __func__, name, ret);
807			goto out;
808		}
809	}
810
811	/* if always_on is set then turn the regulator on if it's not
812	 * already on. */
813	if (constraints->always_on && ops->enable &&
814	    ((ops->is_enabled && !ops->is_enabled(rdev)) ||
815	     (!ops->is_enabled && !constraints->boot_on))) {
816		ret = ops->enable(rdev);
817		if (ret < 0) {
818			printk(KERN_ERR "%s: failed to enable %s\n",
819			       __func__, name);
820			rdev->constraints = NULL;
821			goto out;
822		}
823	}
824
825	print_constraints(rdev);
826out:
827	return ret;
828}
829
830/**
831 * set_supply - set regulator supply regulator
832 * @rdev: regulator name
833 * @supply_rdev: supply regulator name
834 *
835 * Called by platform initialisation code to set the supply regulator for this
836 * regulator. This ensures that a regulators supply will also be enabled by the
837 * core if it's child is enabled.
838 */
839static int set_supply(struct regulator_dev *rdev,
840	struct regulator_dev *supply_rdev)
841{
842	int err;
843
844	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
845				"supply");
846	if (err) {
847		printk(KERN_ERR
848		       "%s: could not add device link %s err %d\n",
849		       __func__, supply_rdev->dev.kobj.name, err);
850		       goto out;
851	}
852	rdev->supply = supply_rdev;
853	list_add(&rdev->slist, &supply_rdev->supply_list);
854out:
855	return err;
856}
857
858/**
859 * set_consumer_device_supply: Bind a regulator to a symbolic supply
860 * @rdev:         regulator source
861 * @consumer_dev: device the supply applies to
862 * @supply:       symbolic name for supply
863 *
864 * Allows platform initialisation code to map physical regulator
865 * sources to symbolic names for supplies for use by devices.  Devices
866 * should use these symbolic names to request regulators, avoiding the
867 * need to provide board-specific regulator names as platform data.
868 */
869static int set_consumer_device_supply(struct regulator_dev *rdev,
870	struct device *consumer_dev, const char *supply)
871{
872	struct regulator_map *node;
873
874	if (supply == NULL)
875		return -EINVAL;
876
877	list_for_each_entry(node, &regulator_map_list, list) {
878		if (consumer_dev != node->dev)
879			continue;
880		if (strcmp(node->supply, supply) != 0)
881			continue;
882
883		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
884				dev_name(&node->regulator->dev),
885				node->regulator->desc->name,
886				supply,
887				dev_name(&rdev->dev), rdev->desc->name);
888		return -EBUSY;
889	}
890
891	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
892	if (node == NULL)
893		return -ENOMEM;
894
895	node->regulator = rdev;
896	node->dev = consumer_dev;
897	node->supply = supply;
898
899	list_add(&node->list, &regulator_map_list);
900	return 0;
901}
902
903static void unset_consumer_device_supply(struct regulator_dev *rdev,
904	struct device *consumer_dev)
905{
906	struct regulator_map *node, *n;
907
908	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
909		if (rdev == node->regulator &&
910			consumer_dev == node->dev) {
911			list_del(&node->list);
912			kfree(node);
913			return;
914		}
915	}
916}
917
918static void unset_regulator_supplies(struct regulator_dev *rdev)
919{
920	struct regulator_map *node, *n;
921
922	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
923		if (rdev == node->regulator) {
924			list_del(&node->list);
925			kfree(node);
926			return;
927		}
928	}
929}
930
931#define REG_STR_SIZE	32
932
933static struct regulator *create_regulator(struct regulator_dev *rdev,
934					  struct device *dev,
935					  const char *supply_name)
936{
937	struct regulator *regulator;
938	char buf[REG_STR_SIZE];
939	int err, size;
940
941	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
942	if (regulator == NULL)
943		return NULL;
944
945	mutex_lock(&rdev->mutex);
946	regulator->rdev = rdev;
947	list_add(&regulator->list, &rdev->consumer_list);
948
949	if (dev) {
950		/* create a 'requested_microamps_name' sysfs entry */
951		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
952			supply_name);
953		if (size >= REG_STR_SIZE)
954			goto overflow_err;
955
956		regulator->dev = dev;
957		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
958		if (regulator->dev_attr.attr.name == NULL)
959			goto attr_name_err;
960
961		regulator->dev_attr.attr.owner = THIS_MODULE;
962		regulator->dev_attr.attr.mode = 0444;
963		regulator->dev_attr.show = device_requested_uA_show;
964		err = device_create_file(dev, &regulator->dev_attr);
965		if (err < 0) {
966			printk(KERN_WARNING "%s: could not add regulator_dev"
967				" load sysfs\n", __func__);
968			goto attr_name_err;
969		}
970
971		/* also add a link to the device sysfs entry */
972		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
973				 dev->kobj.name, supply_name);
974		if (size >= REG_STR_SIZE)
975			goto attr_err;
976
977		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
978		if (regulator->supply_name == NULL)
979			goto attr_err;
980
981		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
982					buf);
983		if (err) {
984			printk(KERN_WARNING
985			       "%s: could not add device link %s err %d\n",
986			       __func__, dev->kobj.name, err);
987			device_remove_file(dev, &regulator->dev_attr);
988			goto link_name_err;
989		}
990	}
991	mutex_unlock(&rdev->mutex);
992	return regulator;
993link_name_err:
994	kfree(regulator->supply_name);
995attr_err:
996	device_remove_file(regulator->dev, &regulator->dev_attr);
997attr_name_err:
998	kfree(regulator->dev_attr.attr.name);
999overflow_err:
1000	list_del(&regulator->list);
1001	kfree(regulator);
1002	mutex_unlock(&rdev->mutex);
1003	return NULL;
1004}
1005
1006/**
1007 * regulator_get - lookup and obtain a reference to a regulator.
1008 * @dev: device for regulator "consumer"
1009 * @id: Supply name or regulator ID.
1010 *
1011 * Returns a struct regulator corresponding to the regulator producer,
1012 * or IS_ERR() condition containing errno.
1013 *
1014 * Use of supply names configured via regulator_set_device_supply() is
1015 * strongly encouraged.  It is recommended that the supply name used
1016 * should match the name used for the supply and/or the relevant
1017 * device pins in the datasheet.
1018 */
1019struct regulator *regulator_get(struct device *dev, const char *id)
1020{
1021	struct regulator_dev *rdev;
1022	struct regulator_map *map;
1023	struct regulator *regulator = ERR_PTR(-ENODEV);
1024
1025	if (id == NULL) {
1026		printk(KERN_ERR "regulator: get() with no identifier\n");
1027		return regulator;
1028	}
1029
1030	mutex_lock(&regulator_list_mutex);
1031
1032	list_for_each_entry(map, &regulator_map_list, list) {
1033		if (dev == map->dev &&
1034		    strcmp(map->supply, id) == 0) {
1035			rdev = map->regulator;
1036			goto found;
1037		}
1038	}
1039	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
1040	       id);
1041	mutex_unlock(&regulator_list_mutex);
1042	return regulator;
1043
1044found:
1045	if (!try_module_get(rdev->owner))
1046		goto out;
1047
1048	regulator = create_regulator(rdev, dev, id);
1049	if (regulator == NULL) {
1050		regulator = ERR_PTR(-ENOMEM);
1051		module_put(rdev->owner);
1052	}
1053
1054out:
1055	mutex_unlock(&regulator_list_mutex);
1056	return regulator;
1057}
1058EXPORT_SYMBOL_GPL(regulator_get);
1059
1060/**
1061 * regulator_put - "free" the regulator source
1062 * @regulator: regulator source
1063 *
1064 * Note: drivers must ensure that all regulator_enable calls made on this
1065 * regulator source are balanced by regulator_disable calls prior to calling
1066 * this function.
1067 */
1068void regulator_put(struct regulator *regulator)
1069{
1070	struct regulator_dev *rdev;
1071
1072	if (regulator == NULL || IS_ERR(regulator))
1073		return;
1074
1075	mutex_lock(&regulator_list_mutex);
1076	rdev = regulator->rdev;
1077
1078	if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
1079			       regulator->supply_name))
1080		_regulator_disable(rdev);
1081
1082	/* remove any sysfs entries */
1083	if (regulator->dev) {
1084		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1085		kfree(regulator->supply_name);
1086		device_remove_file(regulator->dev, &regulator->dev_attr);
1087		kfree(regulator->dev_attr.attr.name);
1088	}
1089	list_del(&regulator->list);
1090	kfree(regulator);
1091
1092	module_put(rdev->owner);
1093	mutex_unlock(&regulator_list_mutex);
1094}
1095EXPORT_SYMBOL_GPL(regulator_put);
1096
1097/* locks held by regulator_enable() */
1098static int _regulator_enable(struct regulator_dev *rdev)
1099{
1100	int ret = -EINVAL;
1101
1102	if (!rdev->constraints) {
1103		printk(KERN_ERR "%s: %s has no constraints\n",
1104		       __func__, rdev->desc->name);
1105		return ret;
1106	}
1107
1108	/* do we need to enable the supply regulator first */
1109	if (rdev->supply) {
1110		ret = _regulator_enable(rdev->supply);
1111		if (ret < 0) {
1112			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1113			       __func__, rdev->desc->name, ret);
1114			return ret;
1115		}
1116	}
1117
1118	/* check voltage and requested load before enabling */
1119	if (rdev->desc->ops->enable) {
1120
1121		if (rdev->constraints &&
1122			(rdev->constraints->valid_ops_mask &
1123			REGULATOR_CHANGE_DRMS))
1124			drms_uA_update(rdev);
1125
1126		ret = rdev->desc->ops->enable(rdev);
1127		if (ret < 0) {
1128			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1129			       __func__, rdev->desc->name, ret);
1130			return ret;
1131		}
1132		rdev->use_count++;
1133		return ret;
1134	}
1135
1136	return ret;
1137}
1138
1139/**
1140 * regulator_enable - enable regulator output
1141 * @regulator: regulator source
1142 *
1143 * Request that the regulator be enabled with the regulator output at
1144 * the predefined voltage or current value.  Calls to regulator_enable()
1145 * must be balanced with calls to regulator_disable().
1146 *
1147 * NOTE: the output value can be set by other drivers, boot loader or may be
1148 * hardwired in the regulator.
1149 */
1150int regulator_enable(struct regulator *regulator)
1151{
1152	struct regulator_dev *rdev = regulator->rdev;
1153	int ret = 0;
1154
1155	mutex_lock(&rdev->mutex);
1156	if (regulator->enabled == 0)
1157		ret = _regulator_enable(rdev);
1158	else if (regulator->enabled < 0)
1159		ret = -EIO;
1160	if (ret == 0)
1161		regulator->enabled++;
1162	mutex_unlock(&rdev->mutex);
1163	return ret;
1164}
1165EXPORT_SYMBOL_GPL(regulator_enable);
1166
1167/* locks held by regulator_disable() */
1168static int _regulator_disable(struct regulator_dev *rdev)
1169{
1170	int ret = 0;
1171
1172	/* are we the last user and permitted to disable ? */
1173	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1174
1175		/* we are last user */
1176		if (rdev->desc->ops->disable) {
1177			ret = rdev->desc->ops->disable(rdev);
1178			if (ret < 0) {
1179				printk(KERN_ERR "%s: failed to disable %s\n",
1180				       __func__, rdev->desc->name);
1181				return ret;
1182			}
1183		}
1184
1185		/* decrease our supplies ref count and disable if required */
1186		if (rdev->supply)
1187			_regulator_disable(rdev->supply);
1188
1189		rdev->use_count = 0;
1190	} else if (rdev->use_count > 1) {
1191
1192		if (rdev->constraints &&
1193			(rdev->constraints->valid_ops_mask &
1194			REGULATOR_CHANGE_DRMS))
1195			drms_uA_update(rdev);
1196
1197		rdev->use_count--;
1198	}
1199	return ret;
1200}
1201
1202/**
1203 * regulator_disable - disable regulator output
1204 * @regulator: regulator source
1205 *
1206 * Disable the regulator output voltage or current.  Calls to
1207 * regulator_enable() must be balanced with calls to
1208 * regulator_disable().
1209 *
1210 * NOTE: this will only disable the regulator output if no other consumer
1211 * devices have it enabled, the regulator device supports disabling and
1212 * machine constraints permit this operation.
1213 */
1214int regulator_disable(struct regulator *regulator)
1215{
1216	struct regulator_dev *rdev = regulator->rdev;
1217	int ret = 0;
1218
1219	mutex_lock(&rdev->mutex);
1220	if (regulator->enabled == 1) {
1221		ret = _regulator_disable(rdev);
1222		if (ret == 0)
1223			regulator->uA_load = 0;
1224	} else if (WARN(regulator->enabled <= 0,
1225			"unbalanced disables for supply %s\n",
1226			regulator->supply_name))
1227		ret = -EIO;
1228	if (ret == 0)
1229		regulator->enabled--;
1230	mutex_unlock(&rdev->mutex);
1231	return ret;
1232}
1233EXPORT_SYMBOL_GPL(regulator_disable);
1234
1235/* locks held by regulator_force_disable() */
1236static int _regulator_force_disable(struct regulator_dev *rdev)
1237{
1238	int ret = 0;
1239
1240	/* force disable */
1241	if (rdev->desc->ops->disable) {
1242		/* ah well, who wants to live forever... */
1243		ret = rdev->desc->ops->disable(rdev);
1244		if (ret < 0) {
1245			printk(KERN_ERR "%s: failed to force disable %s\n",
1246			       __func__, rdev->desc->name);
1247			return ret;
1248		}
1249		/* notify other consumers that power has been forced off */
1250		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1251			NULL);
1252	}
1253
1254	/* decrease our supplies ref count and disable if required */
1255	if (rdev->supply)
1256		_regulator_disable(rdev->supply);
1257
1258	rdev->use_count = 0;
1259	return ret;
1260}
1261
1262/**
1263 * regulator_force_disable - force disable regulator output
1264 * @regulator: regulator source
1265 *
1266 * Forcibly disable the regulator output voltage or current.
1267 * NOTE: this *will* disable the regulator output even if other consumer
1268 * devices have it enabled. This should be used for situations when device
1269 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1270 */
1271int regulator_force_disable(struct regulator *regulator)
1272{
1273	int ret;
1274
1275	mutex_lock(&regulator->rdev->mutex);
1276	regulator->enabled = 0;
1277	regulator->uA_load = 0;
1278	ret = _regulator_force_disable(regulator->rdev);
1279	mutex_unlock(&regulator->rdev->mutex);
1280	return ret;
1281}
1282EXPORT_SYMBOL_GPL(regulator_force_disable);
1283
1284static int _regulator_is_enabled(struct regulator_dev *rdev)
1285{
1286	int ret;
1287
1288	mutex_lock(&rdev->mutex);
1289
1290	/* sanity check */
1291	if (!rdev->desc->ops->is_enabled) {
1292		ret = -EINVAL;
1293		goto out;
1294	}
1295
1296	ret = rdev->desc->ops->is_enabled(rdev);
1297out:
1298	mutex_unlock(&rdev->mutex);
1299	return ret;
1300}
1301
1302/**
1303 * regulator_is_enabled - is the regulator output enabled
1304 * @regulator: regulator source
1305 *
1306 * Returns positive if the regulator driver backing the source/client
1307 * has requested that the device be enabled, zero if it hasn't, else a
1308 * negative errno code.
1309 *
1310 * Note that the device backing this regulator handle can have multiple
1311 * users, so it might be enabled even if regulator_enable() was never
1312 * called for this particular source.
1313 */
1314int regulator_is_enabled(struct regulator *regulator)
1315{
1316	return _regulator_is_enabled(regulator->rdev);
1317}
1318EXPORT_SYMBOL_GPL(regulator_is_enabled);
1319
1320/**
1321 * regulator_count_voltages - count regulator_list_voltage() selectors
1322 * @regulator: regulator source
1323 *
1324 * Returns number of selectors, or negative errno.  Selectors are
1325 * numbered starting at zero, and typically correspond to bitfields
1326 * in hardware registers.
1327 */
1328int regulator_count_voltages(struct regulator *regulator)
1329{
1330	struct regulator_dev	*rdev = regulator->rdev;
1331
1332	return rdev->desc->n_voltages ? : -EINVAL;
1333}
1334EXPORT_SYMBOL_GPL(regulator_count_voltages);
1335
1336/**
1337 * regulator_list_voltage - enumerate supported voltages
1338 * @regulator: regulator source
1339 * @selector: identify voltage to list
1340 * Context: can sleep
1341 *
1342 * Returns a voltage that can be passed to @regulator_set_voltage(),
1343 * zero if this selector code can't be used on this sytem, or a
1344 * negative errno.
1345 */
1346int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1347{
1348	struct regulator_dev	*rdev = regulator->rdev;
1349	struct regulator_ops	*ops = rdev->desc->ops;
1350	int			ret;
1351
1352	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1353		return -EINVAL;
1354
1355	mutex_lock(&rdev->mutex);
1356	ret = ops->list_voltage(rdev, selector);
1357	mutex_unlock(&rdev->mutex);
1358
1359	if (ret > 0) {
1360		if (ret < rdev->constraints->min_uV)
1361			ret = 0;
1362		else if (ret > rdev->constraints->max_uV)
1363			ret = 0;
1364	}
1365
1366	return ret;
1367}
1368EXPORT_SYMBOL_GPL(regulator_list_voltage);
1369
1370/**
1371 * regulator_set_voltage - set regulator output voltage
1372 * @regulator: regulator source
1373 * @min_uV: Minimum required voltage in uV
1374 * @max_uV: Maximum acceptable voltage in uV
1375 *
1376 * Sets a voltage regulator to the desired output voltage. This can be set
1377 * during any regulator state. IOW, regulator can be disabled or enabled.
1378 *
1379 * If the regulator is enabled then the voltage will change to the new value
1380 * immediately otherwise if the regulator is disabled the regulator will
1381 * output at the new voltage when enabled.
1382 *
1383 * NOTE: If the regulator is shared between several devices then the lowest
1384 * request voltage that meets the system constraints will be used.
1385 * Regulator system constraints must be set for this regulator before
1386 * calling this function otherwise this call will fail.
1387 */
1388int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1389{
1390	struct regulator_dev *rdev = regulator->rdev;
1391	int ret;
1392
1393	mutex_lock(&rdev->mutex);
1394
1395	/* sanity check */
1396	if (!rdev->desc->ops->set_voltage) {
1397		ret = -EINVAL;
1398		goto out;
1399	}
1400
1401	/* constraints check */
1402	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1403	if (ret < 0)
1404		goto out;
1405	regulator->min_uV = min_uV;
1406	regulator->max_uV = max_uV;
1407	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1408
1409out:
1410	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1411	mutex_unlock(&rdev->mutex);
1412	return ret;
1413}
1414EXPORT_SYMBOL_GPL(regulator_set_voltage);
1415
1416static int _regulator_get_voltage(struct regulator_dev *rdev)
1417{
1418	/* sanity check */
1419	if (rdev->desc->ops->get_voltage)
1420		return rdev->desc->ops->get_voltage(rdev);
1421	else
1422		return -EINVAL;
1423}
1424
1425/**
1426 * regulator_get_voltage - get regulator output voltage
1427 * @regulator: regulator source
1428 *
1429 * This returns the current regulator voltage in uV.
1430 *
1431 * NOTE: If the regulator is disabled it will return the voltage value. This
1432 * function should not be used to determine regulator state.
1433 */
1434int regulator_get_voltage(struct regulator *regulator)
1435{
1436	int ret;
1437
1438	mutex_lock(&regulator->rdev->mutex);
1439
1440	ret = _regulator_get_voltage(regulator->rdev);
1441
1442	mutex_unlock(&regulator->rdev->mutex);
1443
1444	return ret;
1445}
1446EXPORT_SYMBOL_GPL(regulator_get_voltage);
1447
1448/**
1449 * regulator_set_current_limit - set regulator output current limit
1450 * @regulator: regulator source
1451 * @min_uA: Minimuum supported current in uA
1452 * @max_uA: Maximum supported current in uA
1453 *
1454 * Sets current sink to the desired output current. This can be set during
1455 * any regulator state. IOW, regulator can be disabled or enabled.
1456 *
1457 * If the regulator is enabled then the current will change to the new value
1458 * immediately otherwise if the regulator is disabled the regulator will
1459 * output at the new current when enabled.
1460 *
1461 * NOTE: Regulator system constraints must be set for this regulator before
1462 * calling this function otherwise this call will fail.
1463 */
1464int regulator_set_current_limit(struct regulator *regulator,
1465			       int min_uA, int max_uA)
1466{
1467	struct regulator_dev *rdev = regulator->rdev;
1468	int ret;
1469
1470	mutex_lock(&rdev->mutex);
1471
1472	/* sanity check */
1473	if (!rdev->desc->ops->set_current_limit) {
1474		ret = -EINVAL;
1475		goto out;
1476	}
1477
1478	/* constraints check */
1479	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1480	if (ret < 0)
1481		goto out;
1482
1483	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1484out:
1485	mutex_unlock(&rdev->mutex);
1486	return ret;
1487}
1488EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1489
1490static int _regulator_get_current_limit(struct regulator_dev *rdev)
1491{
1492	int ret;
1493
1494	mutex_lock(&rdev->mutex);
1495
1496	/* sanity check */
1497	if (!rdev->desc->ops->get_current_limit) {
1498		ret = -EINVAL;
1499		goto out;
1500	}
1501
1502	ret = rdev->desc->ops->get_current_limit(rdev);
1503out:
1504	mutex_unlock(&rdev->mutex);
1505	return ret;
1506}
1507
1508/**
1509 * regulator_get_current_limit - get regulator output current
1510 * @regulator: regulator source
1511 *
1512 * This returns the current supplied by the specified current sink in uA.
1513 *
1514 * NOTE: If the regulator is disabled it will return the current value. This
1515 * function should not be used to determine regulator state.
1516 */
1517int regulator_get_current_limit(struct regulator *regulator)
1518{
1519	return _regulator_get_current_limit(regulator->rdev);
1520}
1521EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1522
1523/**
1524 * regulator_set_mode - set regulator operating mode
1525 * @regulator: regulator source
1526 * @mode: operating mode - one of the REGULATOR_MODE constants
1527 *
1528 * Set regulator operating mode to increase regulator efficiency or improve
1529 * regulation performance.
1530 *
1531 * NOTE: Regulator system constraints must be set for this regulator before
1532 * calling this function otherwise this call will fail.
1533 */
1534int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1535{
1536	struct regulator_dev *rdev = regulator->rdev;
1537	int ret;
1538
1539	mutex_lock(&rdev->mutex);
1540
1541	/* sanity check */
1542	if (!rdev->desc->ops->set_mode) {
1543		ret = -EINVAL;
1544		goto out;
1545	}
1546
1547	/* constraints check */
1548	ret = regulator_check_mode(rdev, mode);
1549	if (ret < 0)
1550		goto out;
1551
1552	ret = rdev->desc->ops->set_mode(rdev, mode);
1553out:
1554	mutex_unlock(&rdev->mutex);
1555	return ret;
1556}
1557EXPORT_SYMBOL_GPL(regulator_set_mode);
1558
1559static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1560{
1561	int ret;
1562
1563	mutex_lock(&rdev->mutex);
1564
1565	/* sanity check */
1566	if (!rdev->desc->ops->get_mode) {
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	ret = rdev->desc->ops->get_mode(rdev);
1572out:
1573	mutex_unlock(&rdev->mutex);
1574	return ret;
1575}
1576
1577/**
1578 * regulator_get_mode - get regulator operating mode
1579 * @regulator: regulator source
1580 *
1581 * Get the current regulator operating mode.
1582 */
1583unsigned int regulator_get_mode(struct regulator *regulator)
1584{
1585	return _regulator_get_mode(regulator->rdev);
1586}
1587EXPORT_SYMBOL_GPL(regulator_get_mode);
1588
1589/**
1590 * regulator_set_optimum_mode - set regulator optimum operating mode
1591 * @regulator: regulator source
1592 * @uA_load: load current
1593 *
1594 * Notifies the regulator core of a new device load. This is then used by
1595 * DRMS (if enabled by constraints) to set the most efficient regulator
1596 * operating mode for the new regulator loading.
1597 *
1598 * Consumer devices notify their supply regulator of the maximum power
1599 * they will require (can be taken from device datasheet in the power
1600 * consumption tables) when they change operational status and hence power
1601 * state. Examples of operational state changes that can affect power
1602 * consumption are :-
1603 *
1604 *    o Device is opened / closed.
1605 *    o Device I/O is about to begin or has just finished.
1606 *    o Device is idling in between work.
1607 *
1608 * This information is also exported via sysfs to userspace.
1609 *
1610 * DRMS will sum the total requested load on the regulator and change
1611 * to the most efficient operating mode if platform constraints allow.
1612 *
1613 * Returns the new regulator mode or error.
1614 */
1615int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1616{
1617	struct regulator_dev *rdev = regulator->rdev;
1618	struct regulator *consumer;
1619	int ret, output_uV, input_uV, total_uA_load = 0;
1620	unsigned int mode;
1621
1622	mutex_lock(&rdev->mutex);
1623
1624	regulator->uA_load = uA_load;
1625	ret = regulator_check_drms(rdev);
1626	if (ret < 0)
1627		goto out;
1628	ret = -EINVAL;
1629
1630	/* sanity check */
1631	if (!rdev->desc->ops->get_optimum_mode)
1632		goto out;
1633
1634	/* get output voltage */
1635	output_uV = rdev->desc->ops->get_voltage(rdev);
1636	if (output_uV <= 0) {
1637		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1638			__func__, rdev->desc->name);
1639		goto out;
1640	}
1641
1642	/* get input voltage */
1643	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1644		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1645	else
1646		input_uV = rdev->constraints->input_uV;
1647	if (input_uV <= 0) {
1648		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1649			__func__, rdev->desc->name);
1650		goto out;
1651	}
1652
1653	/* calc total requested load for this regulator */
1654	list_for_each_entry(consumer, &rdev->consumer_list, list)
1655	    total_uA_load += consumer->uA_load;
1656
1657	mode = rdev->desc->ops->get_optimum_mode(rdev,
1658						 input_uV, output_uV,
1659						 total_uA_load);
1660	ret = regulator_check_mode(rdev, mode);
1661	if (ret < 0) {
1662		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1663			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1664			total_uA_load, input_uV, output_uV);
1665		goto out;
1666	}
1667
1668	ret = rdev->desc->ops->set_mode(rdev, mode);
1669	if (ret < 0) {
1670		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1671			__func__, mode, rdev->desc->name);
1672		goto out;
1673	}
1674	ret = mode;
1675out:
1676	mutex_unlock(&rdev->mutex);
1677	return ret;
1678}
1679EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1680
1681/**
1682 * regulator_register_notifier - register regulator event notifier
1683 * @regulator: regulator source
1684 * @nb: notifier block
1685 *
1686 * Register notifier block to receive regulator events.
1687 */
1688int regulator_register_notifier(struct regulator *regulator,
1689			      struct notifier_block *nb)
1690{
1691	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1692						nb);
1693}
1694EXPORT_SYMBOL_GPL(regulator_register_notifier);
1695
1696/**
1697 * regulator_unregister_notifier - unregister regulator event notifier
1698 * @regulator: regulator source
1699 * @nb: notifier block
1700 *
1701 * Unregister regulator event notifier block.
1702 */
1703int regulator_unregister_notifier(struct regulator *regulator,
1704				struct notifier_block *nb)
1705{
1706	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1707						  nb);
1708}
1709EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1710
1711/* notify regulator consumers and downstream regulator consumers.
1712 * Note mutex must be held by caller.
1713 */
1714static void _notifier_call_chain(struct regulator_dev *rdev,
1715				  unsigned long event, void *data)
1716{
1717	struct regulator_dev *_rdev;
1718
1719	/* call rdev chain first */
1720	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1721
1722	/* now notify regulator we supply */
1723	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1724	  mutex_lock(&_rdev->mutex);
1725	  _notifier_call_chain(_rdev, event, data);
1726	  mutex_unlock(&_rdev->mutex);
1727	}
1728}
1729
1730/**
1731 * regulator_bulk_get - get multiple regulator consumers
1732 *
1733 * @dev:           Device to supply
1734 * @num_consumers: Number of consumers to register
1735 * @consumers:     Configuration of consumers; clients are stored here.
1736 *
1737 * @return 0 on success, an errno on failure.
1738 *
1739 * This helper function allows drivers to get several regulator
1740 * consumers in one operation.  If any of the regulators cannot be
1741 * acquired then any regulators that were allocated will be freed
1742 * before returning to the caller.
1743 */
1744int regulator_bulk_get(struct device *dev, int num_consumers,
1745		       struct regulator_bulk_data *consumers)
1746{
1747	int i;
1748	int ret;
1749
1750	for (i = 0; i < num_consumers; i++)
1751		consumers[i].consumer = NULL;
1752
1753	for (i = 0; i < num_consumers; i++) {
1754		consumers[i].consumer = regulator_get(dev,
1755						      consumers[i].supply);
1756		if (IS_ERR(consumers[i].consumer)) {
1757			dev_err(dev, "Failed to get supply '%s'\n",
1758				consumers[i].supply);
1759			ret = PTR_ERR(consumers[i].consumer);
1760			consumers[i].consumer = NULL;
1761			goto err;
1762		}
1763	}
1764
1765	return 0;
1766
1767err:
1768	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1769		regulator_put(consumers[i].consumer);
1770
1771	return ret;
1772}
1773EXPORT_SYMBOL_GPL(regulator_bulk_get);
1774
1775/**
1776 * regulator_bulk_enable - enable multiple regulator consumers
1777 *
1778 * @num_consumers: Number of consumers
1779 * @consumers:     Consumer data; clients are stored here.
1780 * @return         0 on success, an errno on failure
1781 *
1782 * This convenience API allows consumers to enable multiple regulator
1783 * clients in a single API call.  If any consumers cannot be enabled
1784 * then any others that were enabled will be disabled again prior to
1785 * return.
1786 */
1787int regulator_bulk_enable(int num_consumers,
1788			  struct regulator_bulk_data *consumers)
1789{
1790	int i;
1791	int ret;
1792
1793	for (i = 0; i < num_consumers; i++) {
1794		ret = regulator_enable(consumers[i].consumer);
1795		if (ret != 0)
1796			goto err;
1797	}
1798
1799	return 0;
1800
1801err:
1802	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1803	for (i = 0; i < num_consumers; i++)
1804		regulator_disable(consumers[i].consumer);
1805
1806	return ret;
1807}
1808EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1809
1810/**
1811 * regulator_bulk_disable - disable multiple regulator consumers
1812 *
1813 * @num_consumers: Number of consumers
1814 * @consumers:     Consumer data; clients are stored here.
1815 * @return         0 on success, an errno on failure
1816 *
1817 * This convenience API allows consumers to disable multiple regulator
1818 * clients in a single API call.  If any consumers cannot be enabled
1819 * then any others that were disabled will be disabled again prior to
1820 * return.
1821 */
1822int regulator_bulk_disable(int num_consumers,
1823			   struct regulator_bulk_data *consumers)
1824{
1825	int i;
1826	int ret;
1827
1828	for (i = 0; i < num_consumers; i++) {
1829		ret = regulator_disable(consumers[i].consumer);
1830		if (ret != 0)
1831			goto err;
1832	}
1833
1834	return 0;
1835
1836err:
1837	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1838	for (i = 0; i < num_consumers; i++)
1839		regulator_enable(consumers[i].consumer);
1840
1841	return ret;
1842}
1843EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1844
1845/**
1846 * regulator_bulk_free - free multiple regulator consumers
1847 *
1848 * @num_consumers: Number of consumers
1849 * @consumers:     Consumer data; clients are stored here.
1850 *
1851 * This convenience API allows consumers to free multiple regulator
1852 * clients in a single API call.
1853 */
1854void regulator_bulk_free(int num_consumers,
1855			 struct regulator_bulk_data *consumers)
1856{
1857	int i;
1858
1859	for (i = 0; i < num_consumers; i++) {
1860		regulator_put(consumers[i].consumer);
1861		consumers[i].consumer = NULL;
1862	}
1863}
1864EXPORT_SYMBOL_GPL(regulator_bulk_free);
1865
1866/**
1867 * regulator_notifier_call_chain - call regulator event notifier
1868 * @rdev: regulator source
1869 * @event: notifier block
1870 * @data: callback-specific data.
1871 *
1872 * Called by regulator drivers to notify clients a regulator event has
1873 * occurred. We also notify regulator clients downstream.
1874 * Note lock must be held by caller.
1875 */
1876int regulator_notifier_call_chain(struct regulator_dev *rdev,
1877				  unsigned long event, void *data)
1878{
1879	_notifier_call_chain(rdev, event, data);
1880	return NOTIFY_DONE;
1881
1882}
1883EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1884
1885/*
1886 * To avoid cluttering sysfs (and memory) with useless state, only
1887 * create attributes that can be meaningfully displayed.
1888 */
1889static int add_regulator_attributes(struct regulator_dev *rdev)
1890{
1891	struct device		*dev = &rdev->dev;
1892	struct regulator_ops	*ops = rdev->desc->ops;
1893	int			status = 0;
1894
1895	/* some attributes need specific methods to be displayed */
1896	if (ops->get_voltage) {
1897		status = device_create_file(dev, &dev_attr_microvolts);
1898		if (status < 0)
1899			return status;
1900	}
1901	if (ops->get_current_limit) {
1902		status = device_create_file(dev, &dev_attr_microamps);
1903		if (status < 0)
1904			return status;
1905	}
1906	if (ops->get_mode) {
1907		status = device_create_file(dev, &dev_attr_opmode);
1908		if (status < 0)
1909			return status;
1910	}
1911	if (ops->is_enabled) {
1912		status = device_create_file(dev, &dev_attr_state);
1913		if (status < 0)
1914			return status;
1915	}
1916	if (ops->get_status) {
1917		status = device_create_file(dev, &dev_attr_status);
1918		if (status < 0)
1919			return status;
1920	}
1921
1922	/* some attributes are type-specific */
1923	if (rdev->desc->type == REGULATOR_CURRENT) {
1924		status = device_create_file(dev, &dev_attr_requested_microamps);
1925		if (status < 0)
1926			return status;
1927	}
1928
1929	/* all the other attributes exist to support constraints;
1930	 * don't show them if there are no constraints, or if the
1931	 * relevant supporting methods are missing.
1932	 */
1933	if (!rdev->constraints)
1934		return status;
1935
1936	/* constraints need specific supporting methods */
1937	if (ops->set_voltage) {
1938		status = device_create_file(dev, &dev_attr_min_microvolts);
1939		if (status < 0)
1940			return status;
1941		status = device_create_file(dev, &dev_attr_max_microvolts);
1942		if (status < 0)
1943			return status;
1944	}
1945	if (ops->set_current_limit) {
1946		status = device_create_file(dev, &dev_attr_min_microamps);
1947		if (status < 0)
1948			return status;
1949		status = device_create_file(dev, &dev_attr_max_microamps);
1950		if (status < 0)
1951			return status;
1952	}
1953
1954	/* suspend mode constraints need multiple supporting methods */
1955	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1956		return status;
1957
1958	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1959	if (status < 0)
1960		return status;
1961	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1962	if (status < 0)
1963		return status;
1964	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1965	if (status < 0)
1966		return status;
1967
1968	if (ops->set_suspend_voltage) {
1969		status = device_create_file(dev,
1970				&dev_attr_suspend_standby_microvolts);
1971		if (status < 0)
1972			return status;
1973		status = device_create_file(dev,
1974				&dev_attr_suspend_mem_microvolts);
1975		if (status < 0)
1976			return status;
1977		status = device_create_file(dev,
1978				&dev_attr_suspend_disk_microvolts);
1979		if (status < 0)
1980			return status;
1981	}
1982
1983	if (ops->set_suspend_mode) {
1984		status = device_create_file(dev,
1985				&dev_attr_suspend_standby_mode);
1986		if (status < 0)
1987			return status;
1988		status = device_create_file(dev,
1989				&dev_attr_suspend_mem_mode);
1990		if (status < 0)
1991			return status;
1992		status = device_create_file(dev,
1993				&dev_attr_suspend_disk_mode);
1994		if (status < 0)
1995			return status;
1996	}
1997
1998	return status;
1999}
2000
2001/**
2002 * regulator_register - register regulator
2003 * @regulator_desc: regulator to register
2004 * @dev: struct device for the regulator
2005 * @init_data: platform provided init data, passed through by driver
2006 * @driver_data: private regulator data
2007 *
2008 * Called by regulator drivers to register a regulator.
2009 * Returns 0 on success.
2010 */
2011struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2012	struct device *dev, struct regulator_init_data *init_data,
2013	void *driver_data)
2014{
2015	static atomic_t regulator_no = ATOMIC_INIT(0);
2016	struct regulator_dev *rdev;
2017	int ret, i;
2018
2019	if (regulator_desc == NULL)
2020		return ERR_PTR(-EINVAL);
2021
2022	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2023		return ERR_PTR(-EINVAL);
2024
2025	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2026	    !regulator_desc->type == REGULATOR_CURRENT)
2027		return ERR_PTR(-EINVAL);
2028
2029	if (!init_data)
2030		return ERR_PTR(-EINVAL);
2031
2032	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2033	if (rdev == NULL)
2034		return ERR_PTR(-ENOMEM);
2035
2036	mutex_lock(&regulator_list_mutex);
2037
2038	mutex_init(&rdev->mutex);
2039	rdev->reg_data = driver_data;
2040	rdev->owner = regulator_desc->owner;
2041	rdev->desc = regulator_desc;
2042	INIT_LIST_HEAD(&rdev->consumer_list);
2043	INIT_LIST_HEAD(&rdev->supply_list);
2044	INIT_LIST_HEAD(&rdev->list);
2045	INIT_LIST_HEAD(&rdev->slist);
2046	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2047
2048	/* preform any regulator specific init */
2049	if (init_data->regulator_init) {
2050		ret = init_data->regulator_init(rdev->reg_data);
2051		if (ret < 0)
2052			goto clean;
2053	}
2054
2055	/* register with sysfs */
2056	rdev->dev.class = &regulator_class;
2057	rdev->dev.parent = dev;
2058	dev_set_name(&rdev->dev, "regulator.%d",
2059		     atomic_inc_return(&regulator_no) - 1);
2060	ret = device_register(&rdev->dev);
2061	if (ret != 0)
2062		goto clean;
2063
2064	dev_set_drvdata(&rdev->dev, rdev);
2065
2066	/* set regulator constraints */
2067	ret = set_machine_constraints(rdev, &init_data->constraints);
2068	if (ret < 0)
2069		goto scrub;
2070
2071	/* add attributes supported by this regulator */
2072	ret = add_regulator_attributes(rdev);
2073	if (ret < 0)
2074		goto scrub;
2075
2076	/* set supply regulator if it exists */
2077	if (init_data->supply_regulator_dev) {
2078		ret = set_supply(rdev,
2079			dev_get_drvdata(init_data->supply_regulator_dev));
2080		if (ret < 0)
2081			goto scrub;
2082	}
2083
2084	/* add consumers devices */
2085	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2086		ret = set_consumer_device_supply(rdev,
2087			init_data->consumer_supplies[i].dev,
2088			init_data->consumer_supplies[i].supply);
2089		if (ret < 0) {
2090			for (--i; i >= 0; i--)
2091				unset_consumer_device_supply(rdev,
2092					init_data->consumer_supplies[i].dev);
2093			goto scrub;
2094		}
2095	}
2096
2097	list_add(&rdev->list, &regulator_list);
2098out:
2099	mutex_unlock(&regulator_list_mutex);
2100	return rdev;
2101
2102scrub:
2103	device_unregister(&rdev->dev);
2104clean:
2105	kfree(rdev);
2106	rdev = ERR_PTR(ret);
2107	goto out;
2108}
2109EXPORT_SYMBOL_GPL(regulator_register);
2110
2111/**
2112 * regulator_unregister - unregister regulator
2113 * @rdev: regulator to unregister
2114 *
2115 * Called by regulator drivers to unregister a regulator.
2116 */
2117void regulator_unregister(struct regulator_dev *rdev)
2118{
2119	if (rdev == NULL)
2120		return;
2121
2122	mutex_lock(&regulator_list_mutex);
2123	unset_regulator_supplies(rdev);
2124	list_del(&rdev->list);
2125	if (rdev->supply)
2126		sysfs_remove_link(&rdev->dev.kobj, "supply");
2127	device_unregister(&rdev->dev);
2128	mutex_unlock(&regulator_list_mutex);
2129}
2130EXPORT_SYMBOL_GPL(regulator_unregister);
2131
2132/**
2133 * regulator_suspend_prepare - prepare regulators for system wide suspend
2134 * @state: system suspend state
2135 *
2136 * Configure each regulator with it's suspend operating parameters for state.
2137 * This will usually be called by machine suspend code prior to supending.
2138 */
2139int regulator_suspend_prepare(suspend_state_t state)
2140{
2141	struct regulator_dev *rdev;
2142	int ret = 0;
2143
2144	/* ON is handled by regulator active state */
2145	if (state == PM_SUSPEND_ON)
2146		return -EINVAL;
2147
2148	mutex_lock(&regulator_list_mutex);
2149	list_for_each_entry(rdev, &regulator_list, list) {
2150
2151		mutex_lock(&rdev->mutex);
2152		ret = suspend_prepare(rdev, state);
2153		mutex_unlock(&rdev->mutex);
2154
2155		if (ret < 0) {
2156			printk(KERN_ERR "%s: failed to prepare %s\n",
2157				__func__, rdev->desc->name);
2158			goto out;
2159		}
2160	}
2161out:
2162	mutex_unlock(&regulator_list_mutex);
2163	return ret;
2164}
2165EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2166
2167/**
2168 * rdev_get_drvdata - get rdev regulator driver data
2169 * @rdev: regulator
2170 *
2171 * Get rdev regulator driver private data. This call can be used in the
2172 * regulator driver context.
2173 */
2174void *rdev_get_drvdata(struct regulator_dev *rdev)
2175{
2176	return rdev->reg_data;
2177}
2178EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2179
2180/**
2181 * regulator_get_drvdata - get regulator driver data
2182 * @regulator: regulator
2183 *
2184 * Get regulator driver private data. This call can be used in the consumer
2185 * driver context when non API regulator specific functions need to be called.
2186 */
2187void *regulator_get_drvdata(struct regulator *regulator)
2188{
2189	return regulator->rdev->reg_data;
2190}
2191EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2192
2193/**
2194 * regulator_set_drvdata - set regulator driver data
2195 * @regulator: regulator
2196 * @data: data
2197 */
2198void regulator_set_drvdata(struct regulator *regulator, void *data)
2199{
2200	regulator->rdev->reg_data = data;
2201}
2202EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2203
2204/**
2205 * regulator_get_id - get regulator ID
2206 * @rdev: regulator
2207 */
2208int rdev_get_id(struct regulator_dev *rdev)
2209{
2210	return rdev->desc->id;
2211}
2212EXPORT_SYMBOL_GPL(rdev_get_id);
2213
2214struct device *rdev_get_dev(struct regulator_dev *rdev)
2215{
2216	return &rdev->dev;
2217}
2218EXPORT_SYMBOL_GPL(rdev_get_dev);
2219
2220void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2221{
2222	return reg_init_data->driver_data;
2223}
2224EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2225
2226static int __init regulator_init(void)
2227{
2228	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2229	return class_register(&regulator_class);
2230}
2231
2232/* init early to allow our consumers to complete system booting */
2233core_initcall(regulator_init);
2234