core.c revision 3f24f5ada638dd07705bd83ebcc80044d587f374
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regulator/of_regulator.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31#include <linux/module.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/regulator.h>
35
36#include "dummy.h"
37
38#define rdev_crit(rdev, fmt, ...)					\
39	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_err(rdev, fmt, ...)					\
41	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_warn(rdev, fmt, ...)					\
43	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_info(rdev, fmt, ...)					\
45	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_dbg(rdev, fmt, ...)					\
47	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_list);
51static LIST_HEAD(regulator_map_list);
52static bool has_full_constraints;
53static bool board_wants_dummy_regulator;
54
55static struct dentry *debugfs_root;
56
57/*
58 * struct regulator_map
59 *
60 * Used to provide symbolic supply names to devices.
61 */
62struct regulator_map {
63	struct list_head list;
64	const char *dev_name;   /* The dev_name() for the consumer */
65	const char *supply;
66	struct regulator_dev *regulator;
67};
68
69/*
70 * struct regulator
71 *
72 * One for each consumer device.
73 */
74struct regulator {
75	struct device *dev;
76	struct list_head list;
77	int uA_load;
78	int min_uV;
79	int max_uV;
80	char *supply_name;
81	struct device_attribute dev_attr;
82	struct regulator_dev *rdev;
83	struct dentry *debugfs;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator_dev *rdev);
88static int _regulator_get_voltage(struct regulator_dev *rdev);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static void _notifier_call_chain(struct regulator_dev *rdev,
92				  unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94				     int min_uV, int max_uV);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96					  struct device *dev,
97					  const char *supply_name);
98
99static const char *rdev_get_name(struct regulator_dev *rdev)
100{
101	if (rdev->constraints && rdev->constraints->name)
102		return rdev->constraints->name;
103	else if (rdev->desc->name)
104		return rdev->desc->name;
105	else
106		return "";
107}
108
109/* gets the regulator for a given consumer device */
110static struct regulator *get_device_regulator(struct device *dev)
111{
112	struct regulator *regulator = NULL;
113	struct regulator_dev *rdev;
114
115	mutex_lock(&regulator_list_mutex);
116	list_for_each_entry(rdev, &regulator_list, list) {
117		mutex_lock(&rdev->mutex);
118		list_for_each_entry(regulator, &rdev->consumer_list, list) {
119			if (regulator->dev == dev) {
120				mutex_unlock(&rdev->mutex);
121				mutex_unlock(&regulator_list_mutex);
122				return regulator;
123			}
124		}
125		mutex_unlock(&rdev->mutex);
126	}
127	mutex_unlock(&regulator_list_mutex);
128	return NULL;
129}
130
131/**
132 * of_get_regulator - get a regulator device node based on supply name
133 * @dev: Device pointer for the consumer (of regulator) device
134 * @supply: regulator supply name
135 *
136 * Extract the regulator device node corresponding to the supply name.
137 * retruns the device node corresponding to the regulator if found, else
138 * returns NULL.
139 */
140static struct device_node *of_get_regulator(struct device *dev, const char *supply)
141{
142	struct device_node *regnode = NULL;
143	char prop_name[32]; /* 32 is max size of property name */
144
145	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
146
147	snprintf(prop_name, 32, "%s-supply", supply);
148	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
149
150	if (!regnode) {
151		dev_dbg(dev, "Looking up %s property in node %s failed",
152				prop_name, dev->of_node->full_name);
153		return NULL;
154	}
155	return regnode;
156}
157
158/* Platform voltage constraint check */
159static int regulator_check_voltage(struct regulator_dev *rdev,
160				   int *min_uV, int *max_uV)
161{
162	BUG_ON(*min_uV > *max_uV);
163
164	if (!rdev->constraints) {
165		rdev_err(rdev, "no constraints\n");
166		return -ENODEV;
167	}
168	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169		rdev_err(rdev, "operation not allowed\n");
170		return -EPERM;
171	}
172
173	if (*max_uV > rdev->constraints->max_uV)
174		*max_uV = rdev->constraints->max_uV;
175	if (*min_uV < rdev->constraints->min_uV)
176		*min_uV = rdev->constraints->min_uV;
177
178	if (*min_uV > *max_uV) {
179		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180			 *min_uV, *max_uV);
181		return -EINVAL;
182	}
183
184	return 0;
185}
186
187/* Make sure we select a voltage that suits the needs of all
188 * regulator consumers
189 */
190static int regulator_check_consumers(struct regulator_dev *rdev,
191				     int *min_uV, int *max_uV)
192{
193	struct regulator *regulator;
194
195	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196		/*
197		 * Assume consumers that didn't say anything are OK
198		 * with anything in the constraint range.
199		 */
200		if (!regulator->min_uV && !regulator->max_uV)
201			continue;
202
203		if (*max_uV > regulator->max_uV)
204			*max_uV = regulator->max_uV;
205		if (*min_uV < regulator->min_uV)
206			*min_uV = regulator->min_uV;
207	}
208
209	if (*min_uV > *max_uV)
210		return -EINVAL;
211
212	return 0;
213}
214
215/* current constraint check */
216static int regulator_check_current_limit(struct regulator_dev *rdev,
217					int *min_uA, int *max_uA)
218{
219	BUG_ON(*min_uA > *max_uA);
220
221	if (!rdev->constraints) {
222		rdev_err(rdev, "no constraints\n");
223		return -ENODEV;
224	}
225	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226		rdev_err(rdev, "operation not allowed\n");
227		return -EPERM;
228	}
229
230	if (*max_uA > rdev->constraints->max_uA)
231		*max_uA = rdev->constraints->max_uA;
232	if (*min_uA < rdev->constraints->min_uA)
233		*min_uA = rdev->constraints->min_uA;
234
235	if (*min_uA > *max_uA) {
236		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237			 *min_uA, *max_uA);
238		return -EINVAL;
239	}
240
241	return 0;
242}
243
244/* operating mode constraint check */
245static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246{
247	switch (*mode) {
248	case REGULATOR_MODE_FAST:
249	case REGULATOR_MODE_NORMAL:
250	case REGULATOR_MODE_IDLE:
251	case REGULATOR_MODE_STANDBY:
252		break;
253	default:
254		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255		return -EINVAL;
256	}
257
258	if (!rdev->constraints) {
259		rdev_err(rdev, "no constraints\n");
260		return -ENODEV;
261	}
262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263		rdev_err(rdev, "operation not allowed\n");
264		return -EPERM;
265	}
266
267	/* The modes are bitmasks, the most power hungry modes having
268	 * the lowest values. If the requested mode isn't supported
269	 * try higher modes. */
270	while (*mode) {
271		if (rdev->constraints->valid_modes_mask & *mode)
272			return 0;
273		*mode /= 2;
274	}
275
276	return -EINVAL;
277}
278
279/* dynamic regulator mode switching constraint check */
280static int regulator_check_drms(struct regulator_dev *rdev)
281{
282	if (!rdev->constraints) {
283		rdev_err(rdev, "no constraints\n");
284		return -ENODEV;
285	}
286	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287		rdev_err(rdev, "operation not allowed\n");
288		return -EPERM;
289	}
290	return 0;
291}
292
293static ssize_t device_requested_uA_show(struct device *dev,
294			     struct device_attribute *attr, char *buf)
295{
296	struct regulator *regulator;
297
298	regulator = get_device_regulator(dev);
299	if (regulator == NULL)
300		return 0;
301
302	return sprintf(buf, "%d\n", regulator->uA_load);
303}
304
305static ssize_t regulator_uV_show(struct device *dev,
306				struct device_attribute *attr, char *buf)
307{
308	struct regulator_dev *rdev = dev_get_drvdata(dev);
309	ssize_t ret;
310
311	mutex_lock(&rdev->mutex);
312	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313	mutex_unlock(&rdev->mutex);
314
315	return ret;
316}
317static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318
319static ssize_t regulator_uA_show(struct device *dev,
320				struct device_attribute *attr, char *buf)
321{
322	struct regulator_dev *rdev = dev_get_drvdata(dev);
323
324	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325}
326static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327
328static ssize_t regulator_name_show(struct device *dev,
329			     struct device_attribute *attr, char *buf)
330{
331	struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334}
335
336static ssize_t regulator_print_opmode(char *buf, int mode)
337{
338	switch (mode) {
339	case REGULATOR_MODE_FAST:
340		return sprintf(buf, "fast\n");
341	case REGULATOR_MODE_NORMAL:
342		return sprintf(buf, "normal\n");
343	case REGULATOR_MODE_IDLE:
344		return sprintf(buf, "idle\n");
345	case REGULATOR_MODE_STANDBY:
346		return sprintf(buf, "standby\n");
347	}
348	return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_opmode_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357}
358static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360static ssize_t regulator_print_state(char *buf, int state)
361{
362	if (state > 0)
363		return sprintf(buf, "enabled\n");
364	else if (state == 0)
365		return sprintf(buf, "disabled\n");
366	else
367		return sprintf(buf, "unknown\n");
368}
369
370static ssize_t regulator_state_show(struct device *dev,
371				   struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374	ssize_t ret;
375
376	mutex_lock(&rdev->mutex);
377	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378	mutex_unlock(&rdev->mutex);
379
380	return ret;
381}
382static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384static ssize_t regulator_status_show(struct device *dev,
385				   struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	int status;
389	char *label;
390
391	status = rdev->desc->ops->get_status(rdev);
392	if (status < 0)
393		return status;
394
395	switch (status) {
396	case REGULATOR_STATUS_OFF:
397		label = "off";
398		break;
399	case REGULATOR_STATUS_ON:
400		label = "on";
401		break;
402	case REGULATOR_STATUS_ERROR:
403		label = "error";
404		break;
405	case REGULATOR_STATUS_FAST:
406		label = "fast";
407		break;
408	case REGULATOR_STATUS_NORMAL:
409		label = "normal";
410		break;
411	case REGULATOR_STATUS_IDLE:
412		label = "idle";
413		break;
414	case REGULATOR_STATUS_STANDBY:
415		label = "standby";
416		break;
417	default:
418		return -ERANGE;
419	}
420
421	return sprintf(buf, "%s\n", label);
422}
423static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424
425static ssize_t regulator_min_uA_show(struct device *dev,
426				    struct device_attribute *attr, char *buf)
427{
428	struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430	if (!rdev->constraints)
431		return sprintf(buf, "constraint not defined\n");
432
433	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434}
435static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436
437static ssize_t regulator_max_uA_show(struct device *dev,
438				    struct device_attribute *attr, char *buf)
439{
440	struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442	if (!rdev->constraints)
443		return sprintf(buf, "constraint not defined\n");
444
445	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446}
447static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448
449static ssize_t regulator_min_uV_show(struct device *dev,
450				    struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454	if (!rdev->constraints)
455		return sprintf(buf, "constraint not defined\n");
456
457	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458}
459static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460
461static ssize_t regulator_max_uV_show(struct device *dev,
462				    struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	if (!rdev->constraints)
467		return sprintf(buf, "constraint not defined\n");
468
469	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470}
471static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472
473static ssize_t regulator_total_uA_show(struct device *dev,
474				      struct device_attribute *attr, char *buf)
475{
476	struct regulator_dev *rdev = dev_get_drvdata(dev);
477	struct regulator *regulator;
478	int uA = 0;
479
480	mutex_lock(&rdev->mutex);
481	list_for_each_entry(regulator, &rdev->consumer_list, list)
482		uA += regulator->uA_load;
483	mutex_unlock(&rdev->mutex);
484	return sprintf(buf, "%d\n", uA);
485}
486static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487
488static ssize_t regulator_num_users_show(struct device *dev,
489				      struct device_attribute *attr, char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492	return sprintf(buf, "%d\n", rdev->use_count);
493}
494
495static ssize_t regulator_type_show(struct device *dev,
496				  struct device_attribute *attr, char *buf)
497{
498	struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500	switch (rdev->desc->type) {
501	case REGULATOR_VOLTAGE:
502		return sprintf(buf, "voltage\n");
503	case REGULATOR_CURRENT:
504		return sprintf(buf, "current\n");
505	}
506	return sprintf(buf, "unknown\n");
507}
508
509static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
515}
516static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517		regulator_suspend_mem_uV_show, NULL);
518
519static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
525}
526static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527		regulator_suspend_disk_uV_show, NULL);
528
529static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
535}
536static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537		regulator_suspend_standby_uV_show, NULL);
538
539static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540				struct device_attribute *attr, char *buf)
541{
542	struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544	return regulator_print_opmode(buf,
545		rdev->constraints->state_mem.mode);
546}
547static DEVICE_ATTR(suspend_mem_mode, 0444,
548		regulator_suspend_mem_mode_show, NULL);
549
550static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551				struct device_attribute *attr, char *buf)
552{
553	struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555	return regulator_print_opmode(buf,
556		rdev->constraints->state_disk.mode);
557}
558static DEVICE_ATTR(suspend_disk_mode, 0444,
559		regulator_suspend_disk_mode_show, NULL);
560
561static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562				struct device_attribute *attr, char *buf)
563{
564	struct regulator_dev *rdev = dev_get_drvdata(dev);
565
566	return regulator_print_opmode(buf,
567		rdev->constraints->state_standby.mode);
568}
569static DEVICE_ATTR(suspend_standby_mode, 0444,
570		regulator_suspend_standby_mode_show, NULL);
571
572static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573				   struct device_attribute *attr, char *buf)
574{
575	struct regulator_dev *rdev = dev_get_drvdata(dev);
576
577	return regulator_print_state(buf,
578			rdev->constraints->state_mem.enabled);
579}
580static DEVICE_ATTR(suspend_mem_state, 0444,
581		regulator_suspend_mem_state_show, NULL);
582
583static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584				   struct device_attribute *attr, char *buf)
585{
586	struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588	return regulator_print_state(buf,
589			rdev->constraints->state_disk.enabled);
590}
591static DEVICE_ATTR(suspend_disk_state, 0444,
592		regulator_suspend_disk_state_show, NULL);
593
594static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595				   struct device_attribute *attr, char *buf)
596{
597	struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599	return regulator_print_state(buf,
600			rdev->constraints->state_standby.enabled);
601}
602static DEVICE_ATTR(suspend_standby_state, 0444,
603		regulator_suspend_standby_state_show, NULL);
604
605
606/*
607 * These are the only attributes are present for all regulators.
608 * Other attributes are a function of regulator functionality.
609 */
610static struct device_attribute regulator_dev_attrs[] = {
611	__ATTR(name, 0444, regulator_name_show, NULL),
612	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
613	__ATTR(type, 0444, regulator_type_show, NULL),
614	__ATTR_NULL,
615};
616
617static void regulator_dev_release(struct device *dev)
618{
619	struct regulator_dev *rdev = dev_get_drvdata(dev);
620	kfree(rdev);
621}
622
623static struct class regulator_class = {
624	.name = "regulator",
625	.dev_release = regulator_dev_release,
626	.dev_attrs = regulator_dev_attrs,
627};
628
629/* Calculate the new optimum regulator operating mode based on the new total
630 * consumer load. All locks held by caller */
631static void drms_uA_update(struct regulator_dev *rdev)
632{
633	struct regulator *sibling;
634	int current_uA = 0, output_uV, input_uV, err;
635	unsigned int mode;
636
637	err = regulator_check_drms(rdev);
638	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639	    (!rdev->desc->ops->get_voltage &&
640	     !rdev->desc->ops->get_voltage_sel) ||
641	    !rdev->desc->ops->set_mode)
642		return;
643
644	/* get output voltage */
645	output_uV = _regulator_get_voltage(rdev);
646	if (output_uV <= 0)
647		return;
648
649	/* get input voltage */
650	input_uV = 0;
651	if (rdev->supply)
652		input_uV = regulator_get_voltage(rdev->supply);
653	if (input_uV <= 0)
654		input_uV = rdev->constraints->input_uV;
655	if (input_uV <= 0)
656		return;
657
658	/* calc total requested load */
659	list_for_each_entry(sibling, &rdev->consumer_list, list)
660		current_uA += sibling->uA_load;
661
662	/* now get the optimum mode for our new total regulator load */
663	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664						  output_uV, current_uA);
665
666	/* check the new mode is allowed */
667	err = regulator_mode_constrain(rdev, &mode);
668	if (err == 0)
669		rdev->desc->ops->set_mode(rdev, mode);
670}
671
672static int suspend_set_state(struct regulator_dev *rdev,
673	struct regulator_state *rstate)
674{
675	int ret = 0;
676	bool can_set_state;
677
678	can_set_state = rdev->desc->ops->set_suspend_enable &&
679		rdev->desc->ops->set_suspend_disable;
680
681	/* If we have no suspend mode configration don't set anything;
682	 * only warn if the driver actually makes the suspend mode
683	 * configurable.
684	 */
685	if (!rstate->enabled && !rstate->disabled) {
686		if (can_set_state)
687			rdev_warn(rdev, "No configuration\n");
688		return 0;
689	}
690
691	if (rstate->enabled && rstate->disabled) {
692		rdev_err(rdev, "invalid configuration\n");
693		return -EINVAL;
694	}
695
696	if (!can_set_state) {
697		rdev_err(rdev, "no way to set suspend state\n");
698		return -EINVAL;
699	}
700
701	if (rstate->enabled)
702		ret = rdev->desc->ops->set_suspend_enable(rdev);
703	else
704		ret = rdev->desc->ops->set_suspend_disable(rdev);
705	if (ret < 0) {
706		rdev_err(rdev, "failed to enabled/disable\n");
707		return ret;
708	}
709
710	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712		if (ret < 0) {
713			rdev_err(rdev, "failed to set voltage\n");
714			return ret;
715		}
716	}
717
718	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set mode\n");
722			return ret;
723		}
724	}
725	return ret;
726}
727
728/* locks held by caller */
729static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
730{
731	if (!rdev->constraints)
732		return -EINVAL;
733
734	switch (state) {
735	case PM_SUSPEND_STANDBY:
736		return suspend_set_state(rdev,
737			&rdev->constraints->state_standby);
738	case PM_SUSPEND_MEM:
739		return suspend_set_state(rdev,
740			&rdev->constraints->state_mem);
741	case PM_SUSPEND_MAX:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_disk);
744	default:
745		return -EINVAL;
746	}
747}
748
749static void print_constraints(struct regulator_dev *rdev)
750{
751	struct regulation_constraints *constraints = rdev->constraints;
752	char buf[80] = "";
753	int count = 0;
754	int ret;
755
756	if (constraints->min_uV && constraints->max_uV) {
757		if (constraints->min_uV == constraints->max_uV)
758			count += sprintf(buf + count, "%d mV ",
759					 constraints->min_uV / 1000);
760		else
761			count += sprintf(buf + count, "%d <--> %d mV ",
762					 constraints->min_uV / 1000,
763					 constraints->max_uV / 1000);
764	}
765
766	if (!constraints->min_uV ||
767	    constraints->min_uV != constraints->max_uV) {
768		ret = _regulator_get_voltage(rdev);
769		if (ret > 0)
770			count += sprintf(buf + count, "at %d mV ", ret / 1000);
771	}
772
773	if (constraints->uV_offset)
774		count += sprintf(buf, "%dmV offset ",
775				 constraints->uV_offset / 1000);
776
777	if (constraints->min_uA && constraints->max_uA) {
778		if (constraints->min_uA == constraints->max_uA)
779			count += sprintf(buf + count, "%d mA ",
780					 constraints->min_uA / 1000);
781		else
782			count += sprintf(buf + count, "%d <--> %d mA ",
783					 constraints->min_uA / 1000,
784					 constraints->max_uA / 1000);
785	}
786
787	if (!constraints->min_uA ||
788	    constraints->min_uA != constraints->max_uA) {
789		ret = _regulator_get_current_limit(rdev);
790		if (ret > 0)
791			count += sprintf(buf + count, "at %d mA ", ret / 1000);
792	}
793
794	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795		count += sprintf(buf + count, "fast ");
796	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797		count += sprintf(buf + count, "normal ");
798	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799		count += sprintf(buf + count, "idle ");
800	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801		count += sprintf(buf + count, "standby");
802
803	rdev_info(rdev, "%s\n", buf);
804
805	if ((constraints->min_uV != constraints->max_uV) &&
806	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807		rdev_warn(rdev,
808			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809}
810
811static int machine_constraints_voltage(struct regulator_dev *rdev,
812	struct regulation_constraints *constraints)
813{
814	struct regulator_ops *ops = rdev->desc->ops;
815	int ret;
816
817	/* do we need to apply the constraint voltage */
818	if (rdev->constraints->apply_uV &&
819	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
820		ret = _regulator_do_set_voltage(rdev,
821						rdev->constraints->min_uV,
822						rdev->constraints->max_uV);
823		if (ret < 0) {
824			rdev_err(rdev, "failed to apply %duV constraint\n",
825				 rdev->constraints->min_uV);
826			return ret;
827		}
828	}
829
830	/* constrain machine-level voltage specs to fit
831	 * the actual range supported by this regulator.
832	 */
833	if (ops->list_voltage && rdev->desc->n_voltages) {
834		int	count = rdev->desc->n_voltages;
835		int	i;
836		int	min_uV = INT_MAX;
837		int	max_uV = INT_MIN;
838		int	cmin = constraints->min_uV;
839		int	cmax = constraints->max_uV;
840
841		/* it's safe to autoconfigure fixed-voltage supplies
842		   and the constraints are used by list_voltage. */
843		if (count == 1 && !cmin) {
844			cmin = 1;
845			cmax = INT_MAX;
846			constraints->min_uV = cmin;
847			constraints->max_uV = cmax;
848		}
849
850		/* voltage constraints are optional */
851		if ((cmin == 0) && (cmax == 0))
852			return 0;
853
854		/* else require explicit machine-level constraints */
855		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856			rdev_err(rdev, "invalid voltage constraints\n");
857			return -EINVAL;
858		}
859
860		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861		for (i = 0; i < count; i++) {
862			int	value;
863
864			value = ops->list_voltage(rdev, i);
865			if (value <= 0)
866				continue;
867
868			/* maybe adjust [min_uV..max_uV] */
869			if (value >= cmin && value < min_uV)
870				min_uV = value;
871			if (value <= cmax && value > max_uV)
872				max_uV = value;
873		}
874
875		/* final: [min_uV..max_uV] valid iff constraints valid */
876		if (max_uV < min_uV) {
877			rdev_err(rdev, "unsupportable voltage constraints\n");
878			return -EINVAL;
879		}
880
881		/* use regulator's subset of machine constraints */
882		if (constraints->min_uV < min_uV) {
883			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884				 constraints->min_uV, min_uV);
885			constraints->min_uV = min_uV;
886		}
887		if (constraints->max_uV > max_uV) {
888			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889				 constraints->max_uV, max_uV);
890			constraints->max_uV = max_uV;
891		}
892	}
893
894	return 0;
895}
896
897/**
898 * set_machine_constraints - sets regulator constraints
899 * @rdev: regulator source
900 * @constraints: constraints to apply
901 *
902 * Allows platform initialisation code to define and constrain
903 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
904 * Constraints *must* be set by platform code in order for some
905 * regulator operations to proceed i.e. set_voltage, set_current_limit,
906 * set_mode.
907 */
908static int set_machine_constraints(struct regulator_dev *rdev,
909	const struct regulation_constraints *constraints)
910{
911	int ret = 0;
912	struct regulator_ops *ops = rdev->desc->ops;
913
914	if (constraints)
915		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916					    GFP_KERNEL);
917	else
918		rdev->constraints = kzalloc(sizeof(*constraints),
919					    GFP_KERNEL);
920	if (!rdev->constraints)
921		return -ENOMEM;
922
923	ret = machine_constraints_voltage(rdev, rdev->constraints);
924	if (ret != 0)
925		goto out;
926
927	/* do we need to setup our suspend state */
928	if (rdev->constraints->initial_state) {
929		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930		if (ret < 0) {
931			rdev_err(rdev, "failed to set suspend state\n");
932			goto out;
933		}
934	}
935
936	if (rdev->constraints->initial_mode) {
937		if (!ops->set_mode) {
938			rdev_err(rdev, "no set_mode operation\n");
939			ret = -EINVAL;
940			goto out;
941		}
942
943		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944		if (ret < 0) {
945			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946			goto out;
947		}
948	}
949
950	/* If the constraints say the regulator should be on at this point
951	 * and we have control then make sure it is enabled.
952	 */
953	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954	    ops->enable) {
955		ret = ops->enable(rdev);
956		if (ret < 0) {
957			rdev_err(rdev, "failed to enable\n");
958			goto out;
959		}
960	}
961
962	print_constraints(rdev);
963	return 0;
964out:
965	kfree(rdev->constraints);
966	rdev->constraints = NULL;
967	return ret;
968}
969
970/**
971 * set_supply - set regulator supply regulator
972 * @rdev: regulator name
973 * @supply_rdev: supply regulator name
974 *
975 * Called by platform initialisation code to set the supply regulator for this
976 * regulator. This ensures that a regulators supply will also be enabled by the
977 * core if it's child is enabled.
978 */
979static int set_supply(struct regulator_dev *rdev,
980		      struct regulator_dev *supply_rdev)
981{
982	int err;
983
984	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
985
986	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987	if (rdev->supply == NULL) {
988		err = -ENOMEM;
989		return err;
990	}
991
992	return 0;
993}
994
995/**
996 * set_consumer_device_supply - Bind a regulator to a symbolic supply
997 * @rdev:         regulator source
998 * @consumer_dev_name: dev_name() string for device supply applies to
999 * @supply:       symbolic name for supply
1000 *
1001 * Allows platform initialisation code to map physical regulator
1002 * sources to symbolic names for supplies for use by devices.  Devices
1003 * should use these symbolic names to request regulators, avoiding the
1004 * need to provide board-specific regulator names as platform data.
1005 */
1006static int set_consumer_device_supply(struct regulator_dev *rdev,
1007				      const char *consumer_dev_name,
1008				      const char *supply)
1009{
1010	struct regulator_map *node;
1011	int has_dev;
1012
1013	if (supply == NULL)
1014		return -EINVAL;
1015
1016	if (consumer_dev_name != NULL)
1017		has_dev = 1;
1018	else
1019		has_dev = 0;
1020
1021	list_for_each_entry(node, &regulator_map_list, list) {
1022		if (node->dev_name && consumer_dev_name) {
1023			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1024				continue;
1025		} else if (node->dev_name || consumer_dev_name) {
1026			continue;
1027		}
1028
1029		if (strcmp(node->supply, supply) != 0)
1030			continue;
1031
1032		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1033			 consumer_dev_name,
1034			 dev_name(&node->regulator->dev),
1035			 node->regulator->desc->name,
1036			 supply,
1037			 dev_name(&rdev->dev), rdev_get_name(rdev));
1038		return -EBUSY;
1039	}
1040
1041	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042	if (node == NULL)
1043		return -ENOMEM;
1044
1045	node->regulator = rdev;
1046	node->supply = supply;
1047
1048	if (has_dev) {
1049		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1050		if (node->dev_name == NULL) {
1051			kfree(node);
1052			return -ENOMEM;
1053		}
1054	}
1055
1056	list_add(&node->list, &regulator_map_list);
1057	return 0;
1058}
1059
1060static void unset_regulator_supplies(struct regulator_dev *rdev)
1061{
1062	struct regulator_map *node, *n;
1063
1064	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1065		if (rdev == node->regulator) {
1066			list_del(&node->list);
1067			kfree(node->dev_name);
1068			kfree(node);
1069		}
1070	}
1071}
1072
1073#define REG_STR_SIZE	64
1074
1075static struct regulator *create_regulator(struct regulator_dev *rdev,
1076					  struct device *dev,
1077					  const char *supply_name)
1078{
1079	struct regulator *regulator;
1080	char buf[REG_STR_SIZE];
1081	int err, size;
1082
1083	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1084	if (regulator == NULL)
1085		return NULL;
1086
1087	mutex_lock(&rdev->mutex);
1088	regulator->rdev = rdev;
1089	list_add(&regulator->list, &rdev->consumer_list);
1090
1091	if (dev) {
1092		/* create a 'requested_microamps_name' sysfs entry */
1093		size = scnprintf(buf, REG_STR_SIZE,
1094				 "microamps_requested_%s-%s",
1095				 dev_name(dev), supply_name);
1096		if (size >= REG_STR_SIZE)
1097			goto overflow_err;
1098
1099		regulator->dev = dev;
1100		sysfs_attr_init(&regulator->dev_attr.attr);
1101		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1102		if (regulator->dev_attr.attr.name == NULL)
1103			goto attr_name_err;
1104
1105		regulator->dev_attr.attr.mode = 0444;
1106		regulator->dev_attr.show = device_requested_uA_show;
1107		err = device_create_file(dev, &regulator->dev_attr);
1108		if (err < 0) {
1109			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110			goto attr_name_err;
1111		}
1112
1113		/* also add a link to the device sysfs entry */
1114		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1115				 dev->kobj.name, supply_name);
1116		if (size >= REG_STR_SIZE)
1117			goto attr_err;
1118
1119		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1120		if (regulator->supply_name == NULL)
1121			goto attr_err;
1122
1123		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1124					buf);
1125		if (err) {
1126			rdev_warn(rdev, "could not add device link %s err %d\n",
1127				  dev->kobj.name, err);
1128			goto link_name_err;
1129		}
1130	} else {
1131		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1132		if (regulator->supply_name == NULL)
1133			goto attr_err;
1134	}
1135
1136	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1137						rdev->debugfs);
1138	if (!regulator->debugfs) {
1139		rdev_warn(rdev, "Failed to create debugfs directory\n");
1140	} else {
1141		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1142				   &regulator->uA_load);
1143		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1144				   &regulator->min_uV);
1145		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1146				   &regulator->max_uV);
1147	}
1148
1149	mutex_unlock(&rdev->mutex);
1150	return regulator;
1151link_name_err:
1152	kfree(regulator->supply_name);
1153attr_err:
1154	device_remove_file(regulator->dev, &regulator->dev_attr);
1155attr_name_err:
1156	kfree(regulator->dev_attr.attr.name);
1157overflow_err:
1158	list_del(&regulator->list);
1159	kfree(regulator);
1160	mutex_unlock(&rdev->mutex);
1161	return NULL;
1162}
1163
1164static int _regulator_get_enable_time(struct regulator_dev *rdev)
1165{
1166	if (!rdev->desc->ops->enable_time)
1167		return 0;
1168	return rdev->desc->ops->enable_time(rdev);
1169}
1170
1171static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1172						  const char *supply,
1173						  int *ret)
1174{
1175	struct regulator_dev *r;
1176	struct device_node *node;
1177	struct regulator_map *map;
1178	const char *devname = NULL;
1179
1180	/* first do a dt based lookup */
1181	if (dev && dev->of_node) {
1182		node = of_get_regulator(dev, supply);
1183		if (node) {
1184			list_for_each_entry(r, &regulator_list, list)
1185				if (r->dev.parent &&
1186					node == r->dev.of_node)
1187					return r;
1188		} else {
1189			/*
1190			 * If we couldn't even get the node then it's
1191			 * not just that the device didn't register
1192			 * yet, there's no node and we'll never
1193			 * succeed.
1194			 */
1195			*ret = -ENODEV;
1196		}
1197	}
1198
1199	/* if not found, try doing it non-dt way */
1200	if (dev)
1201		devname = dev_name(dev);
1202
1203	list_for_each_entry(r, &regulator_list, list)
1204		if (strcmp(rdev_get_name(r), supply) == 0)
1205			return r;
1206
1207	list_for_each_entry(map, &regulator_map_list, list) {
1208		/* If the mapping has a device set up it must match */
1209		if (map->dev_name &&
1210		    (!devname || strcmp(map->dev_name, devname)))
1211			continue;
1212
1213		if (strcmp(map->supply, supply) == 0)
1214			return map->regulator;
1215	}
1216
1217
1218	return NULL;
1219}
1220
1221/* Internal regulator request function */
1222static struct regulator *_regulator_get(struct device *dev, const char *id,
1223					int exclusive)
1224{
1225	struct regulator_dev *rdev;
1226	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1227	const char *devname = NULL;
1228	int ret;
1229
1230	if (id == NULL) {
1231		pr_err("get() with no identifier\n");
1232		return regulator;
1233	}
1234
1235	if (dev)
1236		devname = dev_name(dev);
1237
1238	mutex_lock(&regulator_list_mutex);
1239
1240	rdev = regulator_dev_lookup(dev, id, &ret);
1241	if (rdev)
1242		goto found;
1243
1244	if (board_wants_dummy_regulator) {
1245		rdev = dummy_regulator_rdev;
1246		goto found;
1247	}
1248
1249#ifdef CONFIG_REGULATOR_DUMMY
1250	if (!devname)
1251		devname = "deviceless";
1252
1253	/* If the board didn't flag that it was fully constrained then
1254	 * substitute in a dummy regulator so consumers can continue.
1255	 */
1256	if (!has_full_constraints) {
1257		pr_warn("%s supply %s not found, using dummy regulator\n",
1258			devname, id);
1259		rdev = dummy_regulator_rdev;
1260		goto found;
1261	}
1262#endif
1263
1264	mutex_unlock(&regulator_list_mutex);
1265	return regulator;
1266
1267found:
1268	if (rdev->exclusive) {
1269		regulator = ERR_PTR(-EPERM);
1270		goto out;
1271	}
1272
1273	if (exclusive && rdev->open_count) {
1274		regulator = ERR_PTR(-EBUSY);
1275		goto out;
1276	}
1277
1278	if (!try_module_get(rdev->owner))
1279		goto out;
1280
1281	regulator = create_regulator(rdev, dev, id);
1282	if (regulator == NULL) {
1283		regulator = ERR_PTR(-ENOMEM);
1284		module_put(rdev->owner);
1285		goto out;
1286	}
1287
1288	rdev->open_count++;
1289	if (exclusive) {
1290		rdev->exclusive = 1;
1291
1292		ret = _regulator_is_enabled(rdev);
1293		if (ret > 0)
1294			rdev->use_count = 1;
1295		else
1296			rdev->use_count = 0;
1297	}
1298
1299out:
1300	mutex_unlock(&regulator_list_mutex);
1301
1302	return regulator;
1303}
1304
1305/**
1306 * regulator_get - lookup and obtain a reference to a regulator.
1307 * @dev: device for regulator "consumer"
1308 * @id: Supply name or regulator ID.
1309 *
1310 * Returns a struct regulator corresponding to the regulator producer,
1311 * or IS_ERR() condition containing errno.
1312 *
1313 * Use of supply names configured via regulator_set_device_supply() is
1314 * strongly encouraged.  It is recommended that the supply name used
1315 * should match the name used for the supply and/or the relevant
1316 * device pins in the datasheet.
1317 */
1318struct regulator *regulator_get(struct device *dev, const char *id)
1319{
1320	return _regulator_get(dev, id, 0);
1321}
1322EXPORT_SYMBOL_GPL(regulator_get);
1323
1324static void devm_regulator_release(struct device *dev, void *res)
1325{
1326	regulator_put(*(struct regulator **)res);
1327}
1328
1329/**
1330 * devm_regulator_get - Resource managed regulator_get()
1331 * @dev: device for regulator "consumer"
1332 * @id: Supply name or regulator ID.
1333 *
1334 * Managed regulator_get(). Regulators returned from this function are
1335 * automatically regulator_put() on driver detach. See regulator_get() for more
1336 * information.
1337 */
1338struct regulator *devm_regulator_get(struct device *dev, const char *id)
1339{
1340	struct regulator **ptr, *regulator;
1341
1342	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1343	if (!ptr)
1344		return ERR_PTR(-ENOMEM);
1345
1346	regulator = regulator_get(dev, id);
1347	if (!IS_ERR(regulator)) {
1348		*ptr = regulator;
1349		devres_add(dev, ptr);
1350	} else {
1351		devres_free(ptr);
1352	}
1353
1354	return regulator;
1355}
1356EXPORT_SYMBOL_GPL(devm_regulator_get);
1357
1358/**
1359 * regulator_get_exclusive - obtain exclusive access to a regulator.
1360 * @dev: device for regulator "consumer"
1361 * @id: Supply name or regulator ID.
1362 *
1363 * Returns a struct regulator corresponding to the regulator producer,
1364 * or IS_ERR() condition containing errno.  Other consumers will be
1365 * unable to obtain this reference is held and the use count for the
1366 * regulator will be initialised to reflect the current state of the
1367 * regulator.
1368 *
1369 * This is intended for use by consumers which cannot tolerate shared
1370 * use of the regulator such as those which need to force the
1371 * regulator off for correct operation of the hardware they are
1372 * controlling.
1373 *
1374 * Use of supply names configured via regulator_set_device_supply() is
1375 * strongly encouraged.  It is recommended that the supply name used
1376 * should match the name used for the supply and/or the relevant
1377 * device pins in the datasheet.
1378 */
1379struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1380{
1381	return _regulator_get(dev, id, 1);
1382}
1383EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1384
1385/**
1386 * regulator_put - "free" the regulator source
1387 * @regulator: regulator source
1388 *
1389 * Note: drivers must ensure that all regulator_enable calls made on this
1390 * regulator source are balanced by regulator_disable calls prior to calling
1391 * this function.
1392 */
1393void regulator_put(struct regulator *regulator)
1394{
1395	struct regulator_dev *rdev;
1396
1397	if (regulator == NULL || IS_ERR(regulator))
1398		return;
1399
1400	mutex_lock(&regulator_list_mutex);
1401	rdev = regulator->rdev;
1402
1403	debugfs_remove_recursive(regulator->debugfs);
1404
1405	/* remove any sysfs entries */
1406	if (regulator->dev) {
1407		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1408		device_remove_file(regulator->dev, &regulator->dev_attr);
1409		kfree(regulator->dev_attr.attr.name);
1410	}
1411	kfree(regulator->supply_name);
1412	list_del(&regulator->list);
1413	kfree(regulator);
1414
1415	rdev->open_count--;
1416	rdev->exclusive = 0;
1417
1418	module_put(rdev->owner);
1419	mutex_unlock(&regulator_list_mutex);
1420}
1421EXPORT_SYMBOL_GPL(regulator_put);
1422
1423static int devm_regulator_match(struct device *dev, void *res, void *data)
1424{
1425	struct regulator **r = res;
1426	if (!r || !*r) {
1427		WARN_ON(!r || !*r);
1428		return 0;
1429	}
1430	return *r == data;
1431}
1432
1433/**
1434 * devm_regulator_put - Resource managed regulator_put()
1435 * @regulator: regulator to free
1436 *
1437 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1438 * this function will not need to be called and the resource management
1439 * code will ensure that the resource is freed.
1440 */
1441void devm_regulator_put(struct regulator *regulator)
1442{
1443	int rc;
1444
1445	rc = devres_destroy(regulator->dev, devm_regulator_release,
1446			    devm_regulator_match, regulator);
1447	WARN_ON(rc);
1448}
1449EXPORT_SYMBOL_GPL(devm_regulator_put);
1450
1451static int _regulator_can_change_status(struct regulator_dev *rdev)
1452{
1453	if (!rdev->constraints)
1454		return 0;
1455
1456	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1457		return 1;
1458	else
1459		return 0;
1460}
1461
1462/* locks held by regulator_enable() */
1463static int _regulator_enable(struct regulator_dev *rdev)
1464{
1465	int ret, delay;
1466
1467	/* check voltage and requested load before enabling */
1468	if (rdev->constraints &&
1469	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1470		drms_uA_update(rdev);
1471
1472	if (rdev->use_count == 0) {
1473		/* The regulator may on if it's not switchable or left on */
1474		ret = _regulator_is_enabled(rdev);
1475		if (ret == -EINVAL || ret == 0) {
1476			if (!_regulator_can_change_status(rdev))
1477				return -EPERM;
1478
1479			if (!rdev->desc->ops->enable)
1480				return -EINVAL;
1481
1482			/* Query before enabling in case configuration
1483			 * dependent.  */
1484			ret = _regulator_get_enable_time(rdev);
1485			if (ret >= 0) {
1486				delay = ret;
1487			} else {
1488				rdev_warn(rdev, "enable_time() failed: %d\n",
1489					   ret);
1490				delay = 0;
1491			}
1492
1493			trace_regulator_enable(rdev_get_name(rdev));
1494
1495			/* Allow the regulator to ramp; it would be useful
1496			 * to extend this for bulk operations so that the
1497			 * regulators can ramp together.  */
1498			ret = rdev->desc->ops->enable(rdev);
1499			if (ret < 0)
1500				return ret;
1501
1502			trace_regulator_enable_delay(rdev_get_name(rdev));
1503
1504			if (delay >= 1000) {
1505				mdelay(delay / 1000);
1506				udelay(delay % 1000);
1507			} else if (delay) {
1508				udelay(delay);
1509			}
1510
1511			trace_regulator_enable_complete(rdev_get_name(rdev));
1512
1513		} else if (ret < 0) {
1514			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1515			return ret;
1516		}
1517		/* Fallthrough on positive return values - already enabled */
1518	}
1519
1520	rdev->use_count++;
1521
1522	return 0;
1523}
1524
1525/**
1526 * regulator_enable - enable regulator output
1527 * @regulator: regulator source
1528 *
1529 * Request that the regulator be enabled with the regulator output at
1530 * the predefined voltage or current value.  Calls to regulator_enable()
1531 * must be balanced with calls to regulator_disable().
1532 *
1533 * NOTE: the output value can be set by other drivers, boot loader or may be
1534 * hardwired in the regulator.
1535 */
1536int regulator_enable(struct regulator *regulator)
1537{
1538	struct regulator_dev *rdev = regulator->rdev;
1539	int ret = 0;
1540
1541	if (rdev->supply) {
1542		ret = regulator_enable(rdev->supply);
1543		if (ret != 0)
1544			return ret;
1545	}
1546
1547	mutex_lock(&rdev->mutex);
1548	ret = _regulator_enable(rdev);
1549	mutex_unlock(&rdev->mutex);
1550
1551	if (ret != 0 && rdev->supply)
1552		regulator_disable(rdev->supply);
1553
1554	return ret;
1555}
1556EXPORT_SYMBOL_GPL(regulator_enable);
1557
1558/* locks held by regulator_disable() */
1559static int _regulator_disable(struct regulator_dev *rdev)
1560{
1561	int ret = 0;
1562
1563	if (WARN(rdev->use_count <= 0,
1564		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1565		return -EIO;
1566
1567	/* are we the last user and permitted to disable ? */
1568	if (rdev->use_count == 1 &&
1569	    (rdev->constraints && !rdev->constraints->always_on)) {
1570
1571		/* we are last user */
1572		if (_regulator_can_change_status(rdev) &&
1573		    rdev->desc->ops->disable) {
1574			trace_regulator_disable(rdev_get_name(rdev));
1575
1576			ret = rdev->desc->ops->disable(rdev);
1577			if (ret < 0) {
1578				rdev_err(rdev, "failed to disable\n");
1579				return ret;
1580			}
1581
1582			trace_regulator_disable_complete(rdev_get_name(rdev));
1583
1584			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1585					     NULL);
1586		}
1587
1588		rdev->use_count = 0;
1589	} else if (rdev->use_count > 1) {
1590
1591		if (rdev->constraints &&
1592			(rdev->constraints->valid_ops_mask &
1593			REGULATOR_CHANGE_DRMS))
1594			drms_uA_update(rdev);
1595
1596		rdev->use_count--;
1597	}
1598
1599	return ret;
1600}
1601
1602/**
1603 * regulator_disable - disable regulator output
1604 * @regulator: regulator source
1605 *
1606 * Disable the regulator output voltage or current.  Calls to
1607 * regulator_enable() must be balanced with calls to
1608 * regulator_disable().
1609 *
1610 * NOTE: this will only disable the regulator output if no other consumer
1611 * devices have it enabled, the regulator device supports disabling and
1612 * machine constraints permit this operation.
1613 */
1614int regulator_disable(struct regulator *regulator)
1615{
1616	struct regulator_dev *rdev = regulator->rdev;
1617	int ret = 0;
1618
1619	mutex_lock(&rdev->mutex);
1620	ret = _regulator_disable(rdev);
1621	mutex_unlock(&rdev->mutex);
1622
1623	if (ret == 0 && rdev->supply)
1624		regulator_disable(rdev->supply);
1625
1626	return ret;
1627}
1628EXPORT_SYMBOL_GPL(regulator_disable);
1629
1630/* locks held by regulator_force_disable() */
1631static int _regulator_force_disable(struct regulator_dev *rdev)
1632{
1633	int ret = 0;
1634
1635	/* force disable */
1636	if (rdev->desc->ops->disable) {
1637		/* ah well, who wants to live forever... */
1638		ret = rdev->desc->ops->disable(rdev);
1639		if (ret < 0) {
1640			rdev_err(rdev, "failed to force disable\n");
1641			return ret;
1642		}
1643		/* notify other consumers that power has been forced off */
1644		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1645			REGULATOR_EVENT_DISABLE, NULL);
1646	}
1647
1648	return ret;
1649}
1650
1651/**
1652 * regulator_force_disable - force disable regulator output
1653 * @regulator: regulator source
1654 *
1655 * Forcibly disable the regulator output voltage or current.
1656 * NOTE: this *will* disable the regulator output even if other consumer
1657 * devices have it enabled. This should be used for situations when device
1658 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1659 */
1660int regulator_force_disable(struct regulator *regulator)
1661{
1662	struct regulator_dev *rdev = regulator->rdev;
1663	int ret;
1664
1665	mutex_lock(&rdev->mutex);
1666	regulator->uA_load = 0;
1667	ret = _regulator_force_disable(regulator->rdev);
1668	mutex_unlock(&rdev->mutex);
1669
1670	if (rdev->supply)
1671		while (rdev->open_count--)
1672			regulator_disable(rdev->supply);
1673
1674	return ret;
1675}
1676EXPORT_SYMBOL_GPL(regulator_force_disable);
1677
1678static void regulator_disable_work(struct work_struct *work)
1679{
1680	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1681						  disable_work.work);
1682	int count, i, ret;
1683
1684	mutex_lock(&rdev->mutex);
1685
1686	BUG_ON(!rdev->deferred_disables);
1687
1688	count = rdev->deferred_disables;
1689	rdev->deferred_disables = 0;
1690
1691	for (i = 0; i < count; i++) {
1692		ret = _regulator_disable(rdev);
1693		if (ret != 0)
1694			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1695	}
1696
1697	mutex_unlock(&rdev->mutex);
1698
1699	if (rdev->supply) {
1700		for (i = 0; i < count; i++) {
1701			ret = regulator_disable(rdev->supply);
1702			if (ret != 0) {
1703				rdev_err(rdev,
1704					 "Supply disable failed: %d\n", ret);
1705			}
1706		}
1707	}
1708}
1709
1710/**
1711 * regulator_disable_deferred - disable regulator output with delay
1712 * @regulator: regulator source
1713 * @ms: miliseconds until the regulator is disabled
1714 *
1715 * Execute regulator_disable() on the regulator after a delay.  This
1716 * is intended for use with devices that require some time to quiesce.
1717 *
1718 * NOTE: this will only disable the regulator output if no other consumer
1719 * devices have it enabled, the regulator device supports disabling and
1720 * machine constraints permit this operation.
1721 */
1722int regulator_disable_deferred(struct regulator *regulator, int ms)
1723{
1724	struct regulator_dev *rdev = regulator->rdev;
1725	int ret;
1726
1727	mutex_lock(&rdev->mutex);
1728	rdev->deferred_disables++;
1729	mutex_unlock(&rdev->mutex);
1730
1731	ret = schedule_delayed_work(&rdev->disable_work,
1732				    msecs_to_jiffies(ms));
1733	if (ret < 0)
1734		return ret;
1735	else
1736		return 0;
1737}
1738EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1739
1740static int _regulator_is_enabled(struct regulator_dev *rdev)
1741{
1742	/* If we don't know then assume that the regulator is always on */
1743	if (!rdev->desc->ops->is_enabled)
1744		return 1;
1745
1746	return rdev->desc->ops->is_enabled(rdev);
1747}
1748
1749/**
1750 * regulator_is_enabled - is the regulator output enabled
1751 * @regulator: regulator source
1752 *
1753 * Returns positive if the regulator driver backing the source/client
1754 * has requested that the device be enabled, zero if it hasn't, else a
1755 * negative errno code.
1756 *
1757 * Note that the device backing this regulator handle can have multiple
1758 * users, so it might be enabled even if regulator_enable() was never
1759 * called for this particular source.
1760 */
1761int regulator_is_enabled(struct regulator *regulator)
1762{
1763	int ret;
1764
1765	mutex_lock(&regulator->rdev->mutex);
1766	ret = _regulator_is_enabled(regulator->rdev);
1767	mutex_unlock(&regulator->rdev->mutex);
1768
1769	return ret;
1770}
1771EXPORT_SYMBOL_GPL(regulator_is_enabled);
1772
1773/**
1774 * regulator_count_voltages - count regulator_list_voltage() selectors
1775 * @regulator: regulator source
1776 *
1777 * Returns number of selectors, or negative errno.  Selectors are
1778 * numbered starting at zero, and typically correspond to bitfields
1779 * in hardware registers.
1780 */
1781int regulator_count_voltages(struct regulator *regulator)
1782{
1783	struct regulator_dev	*rdev = regulator->rdev;
1784
1785	return rdev->desc->n_voltages ? : -EINVAL;
1786}
1787EXPORT_SYMBOL_GPL(regulator_count_voltages);
1788
1789/**
1790 * regulator_list_voltage - enumerate supported voltages
1791 * @regulator: regulator source
1792 * @selector: identify voltage to list
1793 * Context: can sleep
1794 *
1795 * Returns a voltage that can be passed to @regulator_set_voltage(),
1796 * zero if this selector code can't be used on this system, or a
1797 * negative errno.
1798 */
1799int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1800{
1801	struct regulator_dev	*rdev = regulator->rdev;
1802	struct regulator_ops	*ops = rdev->desc->ops;
1803	int			ret;
1804
1805	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1806		return -EINVAL;
1807
1808	mutex_lock(&rdev->mutex);
1809	ret = ops->list_voltage(rdev, selector);
1810	mutex_unlock(&rdev->mutex);
1811
1812	if (ret > 0) {
1813		if (ret < rdev->constraints->min_uV)
1814			ret = 0;
1815		else if (ret > rdev->constraints->max_uV)
1816			ret = 0;
1817	}
1818
1819	return ret;
1820}
1821EXPORT_SYMBOL_GPL(regulator_list_voltage);
1822
1823/**
1824 * regulator_is_supported_voltage - check if a voltage range can be supported
1825 *
1826 * @regulator: Regulator to check.
1827 * @min_uV: Minimum required voltage in uV.
1828 * @max_uV: Maximum required voltage in uV.
1829 *
1830 * Returns a boolean or a negative error code.
1831 */
1832int regulator_is_supported_voltage(struct regulator *regulator,
1833				   int min_uV, int max_uV)
1834{
1835	int i, voltages, ret;
1836
1837	ret = regulator_count_voltages(regulator);
1838	if (ret < 0)
1839		return ret;
1840	voltages = ret;
1841
1842	for (i = 0; i < voltages; i++) {
1843		ret = regulator_list_voltage(regulator, i);
1844
1845		if (ret >= min_uV && ret <= max_uV)
1846			return 1;
1847	}
1848
1849	return 0;
1850}
1851EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1852
1853static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1854				     int min_uV, int max_uV)
1855{
1856	int ret;
1857	int delay = 0;
1858	unsigned int selector;
1859	int old_selector = -1;
1860	int best_val = INT_MAX;
1861
1862	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1863
1864	min_uV += rdev->constraints->uV_offset;
1865	max_uV += rdev->constraints->uV_offset;
1866
1867	/*
1868	 * If we can't obtain the old selector there is not enough
1869	 * info to call set_voltage_time_sel().
1870	 */
1871	if (rdev->desc->ops->set_voltage_time_sel &&
1872	    rdev->desc->ops->get_voltage_sel) {
1873		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
1874		if (old_selector < 0)
1875			return old_selector;
1876	}
1877
1878	if (rdev->desc->ops->set_voltage) {
1879		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1880						   &selector);
1881
1882		if (rdev->desc->ops->list_voltage)
1883			best_val = rdev->desc->ops->list_voltage(rdev,
1884								 selector);
1885		else
1886			best_val = -1;
1887	} else if (rdev->desc->ops->set_voltage_sel) {
1888		int i;
1889
1890		selector = 0;
1891
1892		/* Find the smallest voltage that falls within the specified
1893		 * range.
1894		 */
1895		for (i = 0; i < rdev->desc->n_voltages; i++) {
1896			ret = rdev->desc->ops->list_voltage(rdev, i);
1897			if (ret < 0)
1898				continue;
1899
1900			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1901				best_val = ret;
1902				selector = i;
1903			}
1904		}
1905
1906		if (best_val != INT_MAX)
1907			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1908		else
1909			ret = -EINVAL;
1910	} else {
1911		ret = -EINVAL;
1912	}
1913
1914	/* Call set_voltage_time_sel if successfully obtained old_selector */
1915	if (ret == 0 && old_selector >= 0 &&
1916	    rdev->desc->ops->set_voltage_time_sel) {
1917
1918		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1919						old_selector, selector);
1920		if (delay < 0) {
1921			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
1922				  delay);
1923			delay = 0;
1924		}
1925	}
1926
1927	/* Insert any necessary delays */
1928	if (delay >= 1000) {
1929		mdelay(delay / 1000);
1930		udelay(delay % 1000);
1931	} else if (delay) {
1932		udelay(delay);
1933	}
1934
1935	if (ret == 0)
1936		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1937				     NULL);
1938
1939	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
1940
1941	return ret;
1942}
1943
1944/**
1945 * regulator_set_voltage - set regulator output voltage
1946 * @regulator: regulator source
1947 * @min_uV: Minimum required voltage in uV
1948 * @max_uV: Maximum acceptable voltage in uV
1949 *
1950 * Sets a voltage regulator to the desired output voltage. This can be set
1951 * during any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the voltage will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new voltage when enabled.
1956 *
1957 * NOTE: If the regulator is shared between several devices then the lowest
1958 * request voltage that meets the system constraints will be used.
1959 * Regulator system constraints must be set for this regulator before
1960 * calling this function otherwise this call will fail.
1961 */
1962int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1963{
1964	struct regulator_dev *rdev = regulator->rdev;
1965	int ret = 0;
1966
1967	mutex_lock(&rdev->mutex);
1968
1969	/* If we're setting the same range as last time the change
1970	 * should be a noop (some cpufreq implementations use the same
1971	 * voltage for multiple frequencies, for example).
1972	 */
1973	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1974		goto out;
1975
1976	/* sanity check */
1977	if (!rdev->desc->ops->set_voltage &&
1978	    !rdev->desc->ops->set_voltage_sel) {
1979		ret = -EINVAL;
1980		goto out;
1981	}
1982
1983	/* constraints check */
1984	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1985	if (ret < 0)
1986		goto out;
1987	regulator->min_uV = min_uV;
1988	regulator->max_uV = max_uV;
1989
1990	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1991	if (ret < 0)
1992		goto out;
1993
1994	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1995
1996out:
1997	mutex_unlock(&rdev->mutex);
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(regulator_set_voltage);
2001
2002/**
2003 * regulator_set_voltage_time - get raise/fall time
2004 * @regulator: regulator source
2005 * @old_uV: starting voltage in microvolts
2006 * @new_uV: target voltage in microvolts
2007 *
2008 * Provided with the starting and ending voltage, this function attempts to
2009 * calculate the time in microseconds required to rise or fall to this new
2010 * voltage.
2011 */
2012int regulator_set_voltage_time(struct regulator *regulator,
2013			       int old_uV, int new_uV)
2014{
2015	struct regulator_dev	*rdev = regulator->rdev;
2016	struct regulator_ops	*ops = rdev->desc->ops;
2017	int old_sel = -1;
2018	int new_sel = -1;
2019	int voltage;
2020	int i;
2021
2022	/* Currently requires operations to do this */
2023	if (!ops->list_voltage || !ops->set_voltage_time_sel
2024	    || !rdev->desc->n_voltages)
2025		return -EINVAL;
2026
2027	for (i = 0; i < rdev->desc->n_voltages; i++) {
2028		/* We only look for exact voltage matches here */
2029		voltage = regulator_list_voltage(regulator, i);
2030		if (voltage < 0)
2031			return -EINVAL;
2032		if (voltage == 0)
2033			continue;
2034		if (voltage == old_uV)
2035			old_sel = i;
2036		if (voltage == new_uV)
2037			new_sel = i;
2038	}
2039
2040	if (old_sel < 0 || new_sel < 0)
2041		return -EINVAL;
2042
2043	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2044}
2045EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2046
2047/**
2048 * regulator_sync_voltage - re-apply last regulator output voltage
2049 * @regulator: regulator source
2050 *
2051 * Re-apply the last configured voltage.  This is intended to be used
2052 * where some external control source the consumer is cooperating with
2053 * has caused the configured voltage to change.
2054 */
2055int regulator_sync_voltage(struct regulator *regulator)
2056{
2057	struct regulator_dev *rdev = regulator->rdev;
2058	int ret, min_uV, max_uV;
2059
2060	mutex_lock(&rdev->mutex);
2061
2062	if (!rdev->desc->ops->set_voltage &&
2063	    !rdev->desc->ops->set_voltage_sel) {
2064		ret = -EINVAL;
2065		goto out;
2066	}
2067
2068	/* This is only going to work if we've had a voltage configured. */
2069	if (!regulator->min_uV && !regulator->max_uV) {
2070		ret = -EINVAL;
2071		goto out;
2072	}
2073
2074	min_uV = regulator->min_uV;
2075	max_uV = regulator->max_uV;
2076
2077	/* This should be a paranoia check... */
2078	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2079	if (ret < 0)
2080		goto out;
2081
2082	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2083	if (ret < 0)
2084		goto out;
2085
2086	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2087
2088out:
2089	mutex_unlock(&rdev->mutex);
2090	return ret;
2091}
2092EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2093
2094static int _regulator_get_voltage(struct regulator_dev *rdev)
2095{
2096	int sel, ret;
2097
2098	if (rdev->desc->ops->get_voltage_sel) {
2099		sel = rdev->desc->ops->get_voltage_sel(rdev);
2100		if (sel < 0)
2101			return sel;
2102		ret = rdev->desc->ops->list_voltage(rdev, sel);
2103	} else if (rdev->desc->ops->get_voltage) {
2104		ret = rdev->desc->ops->get_voltage(rdev);
2105	} else {
2106		return -EINVAL;
2107	}
2108
2109	if (ret < 0)
2110		return ret;
2111	return ret - rdev->constraints->uV_offset;
2112}
2113
2114/**
2115 * regulator_get_voltage - get regulator output voltage
2116 * @regulator: regulator source
2117 *
2118 * This returns the current regulator voltage in uV.
2119 *
2120 * NOTE: If the regulator is disabled it will return the voltage value. This
2121 * function should not be used to determine regulator state.
2122 */
2123int regulator_get_voltage(struct regulator *regulator)
2124{
2125	int ret;
2126
2127	mutex_lock(&regulator->rdev->mutex);
2128
2129	ret = _regulator_get_voltage(regulator->rdev);
2130
2131	mutex_unlock(&regulator->rdev->mutex);
2132
2133	return ret;
2134}
2135EXPORT_SYMBOL_GPL(regulator_get_voltage);
2136
2137/**
2138 * regulator_set_current_limit - set regulator output current limit
2139 * @regulator: regulator source
2140 * @min_uA: Minimuum supported current in uA
2141 * @max_uA: Maximum supported current in uA
2142 *
2143 * Sets current sink to the desired output current. This can be set during
2144 * any regulator state. IOW, regulator can be disabled or enabled.
2145 *
2146 * If the regulator is enabled then the current will change to the new value
2147 * immediately otherwise if the regulator is disabled the regulator will
2148 * output at the new current when enabled.
2149 *
2150 * NOTE: Regulator system constraints must be set for this regulator before
2151 * calling this function otherwise this call will fail.
2152 */
2153int regulator_set_current_limit(struct regulator *regulator,
2154			       int min_uA, int max_uA)
2155{
2156	struct regulator_dev *rdev = regulator->rdev;
2157	int ret;
2158
2159	mutex_lock(&rdev->mutex);
2160
2161	/* sanity check */
2162	if (!rdev->desc->ops->set_current_limit) {
2163		ret = -EINVAL;
2164		goto out;
2165	}
2166
2167	/* constraints check */
2168	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2169	if (ret < 0)
2170		goto out;
2171
2172	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2173out:
2174	mutex_unlock(&rdev->mutex);
2175	return ret;
2176}
2177EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2178
2179static int _regulator_get_current_limit(struct regulator_dev *rdev)
2180{
2181	int ret;
2182
2183	mutex_lock(&rdev->mutex);
2184
2185	/* sanity check */
2186	if (!rdev->desc->ops->get_current_limit) {
2187		ret = -EINVAL;
2188		goto out;
2189	}
2190
2191	ret = rdev->desc->ops->get_current_limit(rdev);
2192out:
2193	mutex_unlock(&rdev->mutex);
2194	return ret;
2195}
2196
2197/**
2198 * regulator_get_current_limit - get regulator output current
2199 * @regulator: regulator source
2200 *
2201 * This returns the current supplied by the specified current sink in uA.
2202 *
2203 * NOTE: If the regulator is disabled it will return the current value. This
2204 * function should not be used to determine regulator state.
2205 */
2206int regulator_get_current_limit(struct regulator *regulator)
2207{
2208	return _regulator_get_current_limit(regulator->rdev);
2209}
2210EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2211
2212/**
2213 * regulator_set_mode - set regulator operating mode
2214 * @regulator: regulator source
2215 * @mode: operating mode - one of the REGULATOR_MODE constants
2216 *
2217 * Set regulator operating mode to increase regulator efficiency or improve
2218 * regulation performance.
2219 *
2220 * NOTE: Regulator system constraints must be set for this regulator before
2221 * calling this function otherwise this call will fail.
2222 */
2223int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2224{
2225	struct regulator_dev *rdev = regulator->rdev;
2226	int ret;
2227	int regulator_curr_mode;
2228
2229	mutex_lock(&rdev->mutex);
2230
2231	/* sanity check */
2232	if (!rdev->desc->ops->set_mode) {
2233		ret = -EINVAL;
2234		goto out;
2235	}
2236
2237	/* return if the same mode is requested */
2238	if (rdev->desc->ops->get_mode) {
2239		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2240		if (regulator_curr_mode == mode) {
2241			ret = 0;
2242			goto out;
2243		}
2244	}
2245
2246	/* constraints check */
2247	ret = regulator_mode_constrain(rdev, &mode);
2248	if (ret < 0)
2249		goto out;
2250
2251	ret = rdev->desc->ops->set_mode(rdev, mode);
2252out:
2253	mutex_unlock(&rdev->mutex);
2254	return ret;
2255}
2256EXPORT_SYMBOL_GPL(regulator_set_mode);
2257
2258static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2259{
2260	int ret;
2261
2262	mutex_lock(&rdev->mutex);
2263
2264	/* sanity check */
2265	if (!rdev->desc->ops->get_mode) {
2266		ret = -EINVAL;
2267		goto out;
2268	}
2269
2270	ret = rdev->desc->ops->get_mode(rdev);
2271out:
2272	mutex_unlock(&rdev->mutex);
2273	return ret;
2274}
2275
2276/**
2277 * regulator_get_mode - get regulator operating mode
2278 * @regulator: regulator source
2279 *
2280 * Get the current regulator operating mode.
2281 */
2282unsigned int regulator_get_mode(struct regulator *regulator)
2283{
2284	return _regulator_get_mode(regulator->rdev);
2285}
2286EXPORT_SYMBOL_GPL(regulator_get_mode);
2287
2288/**
2289 * regulator_set_optimum_mode - set regulator optimum operating mode
2290 * @regulator: regulator source
2291 * @uA_load: load current
2292 *
2293 * Notifies the regulator core of a new device load. This is then used by
2294 * DRMS (if enabled by constraints) to set the most efficient regulator
2295 * operating mode for the new regulator loading.
2296 *
2297 * Consumer devices notify their supply regulator of the maximum power
2298 * they will require (can be taken from device datasheet in the power
2299 * consumption tables) when they change operational status and hence power
2300 * state. Examples of operational state changes that can affect power
2301 * consumption are :-
2302 *
2303 *    o Device is opened / closed.
2304 *    o Device I/O is about to begin or has just finished.
2305 *    o Device is idling in between work.
2306 *
2307 * This information is also exported via sysfs to userspace.
2308 *
2309 * DRMS will sum the total requested load on the regulator and change
2310 * to the most efficient operating mode if platform constraints allow.
2311 *
2312 * Returns the new regulator mode or error.
2313 */
2314int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2315{
2316	struct regulator_dev *rdev = regulator->rdev;
2317	struct regulator *consumer;
2318	int ret, output_uV, input_uV, total_uA_load = 0;
2319	unsigned int mode;
2320
2321	mutex_lock(&rdev->mutex);
2322
2323	/*
2324	 * first check to see if we can set modes at all, otherwise just
2325	 * tell the consumer everything is OK.
2326	 */
2327	regulator->uA_load = uA_load;
2328	ret = regulator_check_drms(rdev);
2329	if (ret < 0) {
2330		ret = 0;
2331		goto out;
2332	}
2333
2334	if (!rdev->desc->ops->get_optimum_mode)
2335		goto out;
2336
2337	/*
2338	 * we can actually do this so any errors are indicators of
2339	 * potential real failure.
2340	 */
2341	ret = -EINVAL;
2342
2343	/* get output voltage */
2344	output_uV = _regulator_get_voltage(rdev);
2345	if (output_uV <= 0) {
2346		rdev_err(rdev, "invalid output voltage found\n");
2347		goto out;
2348	}
2349
2350	/* get input voltage */
2351	input_uV = 0;
2352	if (rdev->supply)
2353		input_uV = regulator_get_voltage(rdev->supply);
2354	if (input_uV <= 0)
2355		input_uV = rdev->constraints->input_uV;
2356	if (input_uV <= 0) {
2357		rdev_err(rdev, "invalid input voltage found\n");
2358		goto out;
2359	}
2360
2361	/* calc total requested load for this regulator */
2362	list_for_each_entry(consumer, &rdev->consumer_list, list)
2363		total_uA_load += consumer->uA_load;
2364
2365	mode = rdev->desc->ops->get_optimum_mode(rdev,
2366						 input_uV, output_uV,
2367						 total_uA_load);
2368	ret = regulator_mode_constrain(rdev, &mode);
2369	if (ret < 0) {
2370		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2371			 total_uA_load, input_uV, output_uV);
2372		goto out;
2373	}
2374
2375	ret = rdev->desc->ops->set_mode(rdev, mode);
2376	if (ret < 0) {
2377		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2378		goto out;
2379	}
2380	ret = mode;
2381out:
2382	mutex_unlock(&rdev->mutex);
2383	return ret;
2384}
2385EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2386
2387/**
2388 * regulator_register_notifier - register regulator event notifier
2389 * @regulator: regulator source
2390 * @nb: notifier block
2391 *
2392 * Register notifier block to receive regulator events.
2393 */
2394int regulator_register_notifier(struct regulator *regulator,
2395			      struct notifier_block *nb)
2396{
2397	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2398						nb);
2399}
2400EXPORT_SYMBOL_GPL(regulator_register_notifier);
2401
2402/**
2403 * regulator_unregister_notifier - unregister regulator event notifier
2404 * @regulator: regulator source
2405 * @nb: notifier block
2406 *
2407 * Unregister regulator event notifier block.
2408 */
2409int regulator_unregister_notifier(struct regulator *regulator,
2410				struct notifier_block *nb)
2411{
2412	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2413						  nb);
2414}
2415EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2416
2417/* notify regulator consumers and downstream regulator consumers.
2418 * Note mutex must be held by caller.
2419 */
2420static void _notifier_call_chain(struct regulator_dev *rdev,
2421				  unsigned long event, void *data)
2422{
2423	/* call rdev chain first */
2424	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2425}
2426
2427/**
2428 * regulator_bulk_get - get multiple regulator consumers
2429 *
2430 * @dev:           Device to supply
2431 * @num_consumers: Number of consumers to register
2432 * @consumers:     Configuration of consumers; clients are stored here.
2433 *
2434 * @return 0 on success, an errno on failure.
2435 *
2436 * This helper function allows drivers to get several regulator
2437 * consumers in one operation.  If any of the regulators cannot be
2438 * acquired then any regulators that were allocated will be freed
2439 * before returning to the caller.
2440 */
2441int regulator_bulk_get(struct device *dev, int num_consumers,
2442		       struct regulator_bulk_data *consumers)
2443{
2444	int i;
2445	int ret;
2446
2447	for (i = 0; i < num_consumers; i++)
2448		consumers[i].consumer = NULL;
2449
2450	for (i = 0; i < num_consumers; i++) {
2451		consumers[i].consumer = regulator_get(dev,
2452						      consumers[i].supply);
2453		if (IS_ERR(consumers[i].consumer)) {
2454			ret = PTR_ERR(consumers[i].consumer);
2455			dev_err(dev, "Failed to get supply '%s': %d\n",
2456				consumers[i].supply, ret);
2457			consumers[i].consumer = NULL;
2458			goto err;
2459		}
2460	}
2461
2462	return 0;
2463
2464err:
2465	while (--i >= 0)
2466		regulator_put(consumers[i].consumer);
2467
2468	return ret;
2469}
2470EXPORT_SYMBOL_GPL(regulator_bulk_get);
2471
2472/**
2473 * devm_regulator_bulk_get - managed get multiple regulator consumers
2474 *
2475 * @dev:           Device to supply
2476 * @num_consumers: Number of consumers to register
2477 * @consumers:     Configuration of consumers; clients are stored here.
2478 *
2479 * @return 0 on success, an errno on failure.
2480 *
2481 * This helper function allows drivers to get several regulator
2482 * consumers in one operation with management, the regulators will
2483 * automatically be freed when the device is unbound.  If any of the
2484 * regulators cannot be acquired then any regulators that were
2485 * allocated will be freed before returning to the caller.
2486 */
2487int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2488			    struct regulator_bulk_data *consumers)
2489{
2490	int i;
2491	int ret;
2492
2493	for (i = 0; i < num_consumers; i++)
2494		consumers[i].consumer = NULL;
2495
2496	for (i = 0; i < num_consumers; i++) {
2497		consumers[i].consumer = devm_regulator_get(dev,
2498							   consumers[i].supply);
2499		if (IS_ERR(consumers[i].consumer)) {
2500			ret = PTR_ERR(consumers[i].consumer);
2501			dev_err(dev, "Failed to get supply '%s': %d\n",
2502				consumers[i].supply, ret);
2503			consumers[i].consumer = NULL;
2504			goto err;
2505		}
2506	}
2507
2508	return 0;
2509
2510err:
2511	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2512		devm_regulator_put(consumers[i].consumer);
2513
2514	return ret;
2515}
2516EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2517
2518static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2519{
2520	struct regulator_bulk_data *bulk = data;
2521
2522	bulk->ret = regulator_enable(bulk->consumer);
2523}
2524
2525/**
2526 * regulator_bulk_enable - enable multiple regulator consumers
2527 *
2528 * @num_consumers: Number of consumers
2529 * @consumers:     Consumer data; clients are stored here.
2530 * @return         0 on success, an errno on failure
2531 *
2532 * This convenience API allows consumers to enable multiple regulator
2533 * clients in a single API call.  If any consumers cannot be enabled
2534 * then any others that were enabled will be disabled again prior to
2535 * return.
2536 */
2537int regulator_bulk_enable(int num_consumers,
2538			  struct regulator_bulk_data *consumers)
2539{
2540	LIST_HEAD(async_domain);
2541	int i;
2542	int ret = 0;
2543
2544	for (i = 0; i < num_consumers; i++)
2545		async_schedule_domain(regulator_bulk_enable_async,
2546				      &consumers[i], &async_domain);
2547
2548	async_synchronize_full_domain(&async_domain);
2549
2550	/* If any consumer failed we need to unwind any that succeeded */
2551	for (i = 0; i < num_consumers; i++) {
2552		if (consumers[i].ret != 0) {
2553			ret = consumers[i].ret;
2554			goto err;
2555		}
2556	}
2557
2558	return 0;
2559
2560err:
2561	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2562	while (--i >= 0)
2563		regulator_disable(consumers[i].consumer);
2564
2565	return ret;
2566}
2567EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2568
2569/**
2570 * regulator_bulk_disable - disable multiple regulator consumers
2571 *
2572 * @num_consumers: Number of consumers
2573 * @consumers:     Consumer data; clients are stored here.
2574 * @return         0 on success, an errno on failure
2575 *
2576 * This convenience API allows consumers to disable multiple regulator
2577 * clients in a single API call.  If any consumers cannot be disabled
2578 * then any others that were disabled will be enabled again prior to
2579 * return.
2580 */
2581int regulator_bulk_disable(int num_consumers,
2582			   struct regulator_bulk_data *consumers)
2583{
2584	int i;
2585	int ret, r;
2586
2587	for (i = num_consumers - 1; i >= 0; --i) {
2588		ret = regulator_disable(consumers[i].consumer);
2589		if (ret != 0)
2590			goto err;
2591	}
2592
2593	return 0;
2594
2595err:
2596	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2597	for (++i; i < num_consumers; ++i) {
2598		r = regulator_enable(consumers[i].consumer);
2599		if (r != 0)
2600			pr_err("Failed to reename %s: %d\n",
2601			       consumers[i].supply, r);
2602	}
2603
2604	return ret;
2605}
2606EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2607
2608/**
2609 * regulator_bulk_force_disable - force disable multiple regulator consumers
2610 *
2611 * @num_consumers: Number of consumers
2612 * @consumers:     Consumer data; clients are stored here.
2613 * @return         0 on success, an errno on failure
2614 *
2615 * This convenience API allows consumers to forcibly disable multiple regulator
2616 * clients in a single API call.
2617 * NOTE: This should be used for situations when device damage will
2618 * likely occur if the regulators are not disabled (e.g. over temp).
2619 * Although regulator_force_disable function call for some consumers can
2620 * return error numbers, the function is called for all consumers.
2621 */
2622int regulator_bulk_force_disable(int num_consumers,
2623			   struct regulator_bulk_data *consumers)
2624{
2625	int i;
2626	int ret;
2627
2628	for (i = 0; i < num_consumers; i++)
2629		consumers[i].ret =
2630			    regulator_force_disable(consumers[i].consumer);
2631
2632	for (i = 0; i < num_consumers; i++) {
2633		if (consumers[i].ret != 0) {
2634			ret = consumers[i].ret;
2635			goto out;
2636		}
2637	}
2638
2639	return 0;
2640out:
2641	return ret;
2642}
2643EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2644
2645/**
2646 * regulator_bulk_free - free multiple regulator consumers
2647 *
2648 * @num_consumers: Number of consumers
2649 * @consumers:     Consumer data; clients are stored here.
2650 *
2651 * This convenience API allows consumers to free multiple regulator
2652 * clients in a single API call.
2653 */
2654void regulator_bulk_free(int num_consumers,
2655			 struct regulator_bulk_data *consumers)
2656{
2657	int i;
2658
2659	for (i = 0; i < num_consumers; i++) {
2660		regulator_put(consumers[i].consumer);
2661		consumers[i].consumer = NULL;
2662	}
2663}
2664EXPORT_SYMBOL_GPL(regulator_bulk_free);
2665
2666/**
2667 * regulator_notifier_call_chain - call regulator event notifier
2668 * @rdev: regulator source
2669 * @event: notifier block
2670 * @data: callback-specific data.
2671 *
2672 * Called by regulator drivers to notify clients a regulator event has
2673 * occurred. We also notify regulator clients downstream.
2674 * Note lock must be held by caller.
2675 */
2676int regulator_notifier_call_chain(struct regulator_dev *rdev,
2677				  unsigned long event, void *data)
2678{
2679	_notifier_call_chain(rdev, event, data);
2680	return NOTIFY_DONE;
2681
2682}
2683EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2684
2685/**
2686 * regulator_mode_to_status - convert a regulator mode into a status
2687 *
2688 * @mode: Mode to convert
2689 *
2690 * Convert a regulator mode into a status.
2691 */
2692int regulator_mode_to_status(unsigned int mode)
2693{
2694	switch (mode) {
2695	case REGULATOR_MODE_FAST:
2696		return REGULATOR_STATUS_FAST;
2697	case REGULATOR_MODE_NORMAL:
2698		return REGULATOR_STATUS_NORMAL;
2699	case REGULATOR_MODE_IDLE:
2700		return REGULATOR_STATUS_IDLE;
2701	case REGULATOR_STATUS_STANDBY:
2702		return REGULATOR_STATUS_STANDBY;
2703	default:
2704		return 0;
2705	}
2706}
2707EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2708
2709/*
2710 * To avoid cluttering sysfs (and memory) with useless state, only
2711 * create attributes that can be meaningfully displayed.
2712 */
2713static int add_regulator_attributes(struct regulator_dev *rdev)
2714{
2715	struct device		*dev = &rdev->dev;
2716	struct regulator_ops	*ops = rdev->desc->ops;
2717	int			status = 0;
2718
2719	/* some attributes need specific methods to be displayed */
2720	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2721	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2722		status = device_create_file(dev, &dev_attr_microvolts);
2723		if (status < 0)
2724			return status;
2725	}
2726	if (ops->get_current_limit) {
2727		status = device_create_file(dev, &dev_attr_microamps);
2728		if (status < 0)
2729			return status;
2730	}
2731	if (ops->get_mode) {
2732		status = device_create_file(dev, &dev_attr_opmode);
2733		if (status < 0)
2734			return status;
2735	}
2736	if (ops->is_enabled) {
2737		status = device_create_file(dev, &dev_attr_state);
2738		if (status < 0)
2739			return status;
2740	}
2741	if (ops->get_status) {
2742		status = device_create_file(dev, &dev_attr_status);
2743		if (status < 0)
2744			return status;
2745	}
2746
2747	/* some attributes are type-specific */
2748	if (rdev->desc->type == REGULATOR_CURRENT) {
2749		status = device_create_file(dev, &dev_attr_requested_microamps);
2750		if (status < 0)
2751			return status;
2752	}
2753
2754	/* all the other attributes exist to support constraints;
2755	 * don't show them if there are no constraints, or if the
2756	 * relevant supporting methods are missing.
2757	 */
2758	if (!rdev->constraints)
2759		return status;
2760
2761	/* constraints need specific supporting methods */
2762	if (ops->set_voltage || ops->set_voltage_sel) {
2763		status = device_create_file(dev, &dev_attr_min_microvolts);
2764		if (status < 0)
2765			return status;
2766		status = device_create_file(dev, &dev_attr_max_microvolts);
2767		if (status < 0)
2768			return status;
2769	}
2770	if (ops->set_current_limit) {
2771		status = device_create_file(dev, &dev_attr_min_microamps);
2772		if (status < 0)
2773			return status;
2774		status = device_create_file(dev, &dev_attr_max_microamps);
2775		if (status < 0)
2776			return status;
2777	}
2778
2779	/* suspend mode constraints need multiple supporting methods */
2780	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2781		return status;
2782
2783	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2784	if (status < 0)
2785		return status;
2786	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2787	if (status < 0)
2788		return status;
2789	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2790	if (status < 0)
2791		return status;
2792
2793	if (ops->set_suspend_voltage) {
2794		status = device_create_file(dev,
2795				&dev_attr_suspend_standby_microvolts);
2796		if (status < 0)
2797			return status;
2798		status = device_create_file(dev,
2799				&dev_attr_suspend_mem_microvolts);
2800		if (status < 0)
2801			return status;
2802		status = device_create_file(dev,
2803				&dev_attr_suspend_disk_microvolts);
2804		if (status < 0)
2805			return status;
2806	}
2807
2808	if (ops->set_suspend_mode) {
2809		status = device_create_file(dev,
2810				&dev_attr_suspend_standby_mode);
2811		if (status < 0)
2812			return status;
2813		status = device_create_file(dev,
2814				&dev_attr_suspend_mem_mode);
2815		if (status < 0)
2816			return status;
2817		status = device_create_file(dev,
2818				&dev_attr_suspend_disk_mode);
2819		if (status < 0)
2820			return status;
2821	}
2822
2823	return status;
2824}
2825
2826static void rdev_init_debugfs(struct regulator_dev *rdev)
2827{
2828	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2829	if (!rdev->debugfs) {
2830		rdev_warn(rdev, "Failed to create debugfs directory\n");
2831		return;
2832	}
2833
2834	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2835			   &rdev->use_count);
2836	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2837			   &rdev->open_count);
2838}
2839
2840/**
2841 * regulator_register - register regulator
2842 * @regulator_desc: regulator to register
2843 * @dev: struct device for the regulator
2844 * @init_data: platform provided init data, passed through by driver
2845 * @driver_data: private regulator data
2846 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2847 *           NULL).
2848 *
2849 * Called by regulator drivers to register a regulator.
2850 * Returns 0 on success.
2851 */
2852struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2853	struct device *dev, const struct regulator_init_data *init_data,
2854	void *driver_data, struct device_node *of_node)
2855{
2856	const struct regulation_constraints *constraints = NULL;
2857	static atomic_t regulator_no = ATOMIC_INIT(0);
2858	struct regulator_dev *rdev;
2859	int ret, i;
2860	const char *supply = NULL;
2861
2862	if (regulator_desc == NULL)
2863		return ERR_PTR(-EINVAL);
2864
2865	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2866		return ERR_PTR(-EINVAL);
2867
2868	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2869	    regulator_desc->type != REGULATOR_CURRENT)
2870		return ERR_PTR(-EINVAL);
2871
2872	/* Only one of each should be implemented */
2873	WARN_ON(regulator_desc->ops->get_voltage &&
2874		regulator_desc->ops->get_voltage_sel);
2875	WARN_ON(regulator_desc->ops->set_voltage &&
2876		regulator_desc->ops->set_voltage_sel);
2877
2878	/* If we're using selectors we must implement list_voltage. */
2879	if (regulator_desc->ops->get_voltage_sel &&
2880	    !regulator_desc->ops->list_voltage) {
2881		return ERR_PTR(-EINVAL);
2882	}
2883	if (regulator_desc->ops->set_voltage_sel &&
2884	    !regulator_desc->ops->list_voltage) {
2885		return ERR_PTR(-EINVAL);
2886	}
2887
2888	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2889	if (rdev == NULL)
2890		return ERR_PTR(-ENOMEM);
2891
2892	mutex_lock(&regulator_list_mutex);
2893
2894	mutex_init(&rdev->mutex);
2895	rdev->reg_data = driver_data;
2896	rdev->owner = regulator_desc->owner;
2897	rdev->desc = regulator_desc;
2898	INIT_LIST_HEAD(&rdev->consumer_list);
2899	INIT_LIST_HEAD(&rdev->list);
2900	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2901	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2902
2903	/* preform any regulator specific init */
2904	if (init_data && init_data->regulator_init) {
2905		ret = init_data->regulator_init(rdev->reg_data);
2906		if (ret < 0)
2907			goto clean;
2908	}
2909
2910	/* register with sysfs */
2911	rdev->dev.class = &regulator_class;
2912	rdev->dev.of_node = of_node;
2913	rdev->dev.parent = dev;
2914	dev_set_name(&rdev->dev, "regulator.%d",
2915		     atomic_inc_return(&regulator_no) - 1);
2916	ret = device_register(&rdev->dev);
2917	if (ret != 0) {
2918		put_device(&rdev->dev);
2919		goto clean;
2920	}
2921
2922	dev_set_drvdata(&rdev->dev, rdev);
2923
2924	/* set regulator constraints */
2925	if (init_data)
2926		constraints = &init_data->constraints;
2927
2928	ret = set_machine_constraints(rdev, constraints);
2929	if (ret < 0)
2930		goto scrub;
2931
2932	/* add attributes supported by this regulator */
2933	ret = add_regulator_attributes(rdev);
2934	if (ret < 0)
2935		goto scrub;
2936
2937	if (init_data && init_data->supply_regulator)
2938		supply = init_data->supply_regulator;
2939	else if (regulator_desc->supply_name)
2940		supply = regulator_desc->supply_name;
2941
2942	if (supply) {
2943		struct regulator_dev *r;
2944
2945		r = regulator_dev_lookup(dev, supply, &ret);
2946
2947		if (!r) {
2948			dev_err(dev, "Failed to find supply %s\n", supply);
2949			ret = -EPROBE_DEFER;
2950			goto scrub;
2951		}
2952
2953		ret = set_supply(rdev, r);
2954		if (ret < 0)
2955			goto scrub;
2956
2957		/* Enable supply if rail is enabled */
2958		if (rdev->desc->ops->is_enabled &&
2959				rdev->desc->ops->is_enabled(rdev)) {
2960			ret = regulator_enable(rdev->supply);
2961			if (ret < 0)
2962				goto scrub;
2963		}
2964	}
2965
2966	/* add consumers devices */
2967	if (init_data) {
2968		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2969			ret = set_consumer_device_supply(rdev,
2970				init_data->consumer_supplies[i].dev_name,
2971				init_data->consumer_supplies[i].supply);
2972			if (ret < 0) {
2973				dev_err(dev, "Failed to set supply %s\n",
2974					init_data->consumer_supplies[i].supply);
2975				goto unset_supplies;
2976			}
2977		}
2978	}
2979
2980	list_add(&rdev->list, &regulator_list);
2981
2982	rdev_init_debugfs(rdev);
2983out:
2984	mutex_unlock(&regulator_list_mutex);
2985	return rdev;
2986
2987unset_supplies:
2988	unset_regulator_supplies(rdev);
2989
2990scrub:
2991	kfree(rdev->constraints);
2992	device_unregister(&rdev->dev);
2993	/* device core frees rdev */
2994	rdev = ERR_PTR(ret);
2995	goto out;
2996
2997clean:
2998	kfree(rdev);
2999	rdev = ERR_PTR(ret);
3000	goto out;
3001}
3002EXPORT_SYMBOL_GPL(regulator_register);
3003
3004/**
3005 * regulator_unregister - unregister regulator
3006 * @rdev: regulator to unregister
3007 *
3008 * Called by regulator drivers to unregister a regulator.
3009 */
3010void regulator_unregister(struct regulator_dev *rdev)
3011{
3012	if (rdev == NULL)
3013		return;
3014
3015	mutex_lock(&regulator_list_mutex);
3016	debugfs_remove_recursive(rdev->debugfs);
3017	flush_work_sync(&rdev->disable_work.work);
3018	WARN_ON(rdev->open_count);
3019	unset_regulator_supplies(rdev);
3020	list_del(&rdev->list);
3021	if (rdev->supply)
3022		regulator_put(rdev->supply);
3023	kfree(rdev->constraints);
3024	device_unregister(&rdev->dev);
3025	mutex_unlock(&regulator_list_mutex);
3026}
3027EXPORT_SYMBOL_GPL(regulator_unregister);
3028
3029/**
3030 * regulator_suspend_prepare - prepare regulators for system wide suspend
3031 * @state: system suspend state
3032 *
3033 * Configure each regulator with it's suspend operating parameters for state.
3034 * This will usually be called by machine suspend code prior to supending.
3035 */
3036int regulator_suspend_prepare(suspend_state_t state)
3037{
3038	struct regulator_dev *rdev;
3039	int ret = 0;
3040
3041	/* ON is handled by regulator active state */
3042	if (state == PM_SUSPEND_ON)
3043		return -EINVAL;
3044
3045	mutex_lock(&regulator_list_mutex);
3046	list_for_each_entry(rdev, &regulator_list, list) {
3047
3048		mutex_lock(&rdev->mutex);
3049		ret = suspend_prepare(rdev, state);
3050		mutex_unlock(&rdev->mutex);
3051
3052		if (ret < 0) {
3053			rdev_err(rdev, "failed to prepare\n");
3054			goto out;
3055		}
3056	}
3057out:
3058	mutex_unlock(&regulator_list_mutex);
3059	return ret;
3060}
3061EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3062
3063/**
3064 * regulator_suspend_finish - resume regulators from system wide suspend
3065 *
3066 * Turn on regulators that might be turned off by regulator_suspend_prepare
3067 * and that should be turned on according to the regulators properties.
3068 */
3069int regulator_suspend_finish(void)
3070{
3071	struct regulator_dev *rdev;
3072	int ret = 0, error;
3073
3074	mutex_lock(&regulator_list_mutex);
3075	list_for_each_entry(rdev, &regulator_list, list) {
3076		struct regulator_ops *ops = rdev->desc->ops;
3077
3078		mutex_lock(&rdev->mutex);
3079		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3080				ops->enable) {
3081			error = ops->enable(rdev);
3082			if (error)
3083				ret = error;
3084		} else {
3085			if (!has_full_constraints)
3086				goto unlock;
3087			if (!ops->disable)
3088				goto unlock;
3089			if (ops->is_enabled && !ops->is_enabled(rdev))
3090				goto unlock;
3091
3092			error = ops->disable(rdev);
3093			if (error)
3094				ret = error;
3095		}
3096unlock:
3097		mutex_unlock(&rdev->mutex);
3098	}
3099	mutex_unlock(&regulator_list_mutex);
3100	return ret;
3101}
3102EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3103
3104/**
3105 * regulator_has_full_constraints - the system has fully specified constraints
3106 *
3107 * Calling this function will cause the regulator API to disable all
3108 * regulators which have a zero use count and don't have an always_on
3109 * constraint in a late_initcall.
3110 *
3111 * The intention is that this will become the default behaviour in a
3112 * future kernel release so users are encouraged to use this facility
3113 * now.
3114 */
3115void regulator_has_full_constraints(void)
3116{
3117	has_full_constraints = 1;
3118}
3119EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3120
3121/**
3122 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3123 *
3124 * Calling this function will cause the regulator API to provide a
3125 * dummy regulator to consumers if no physical regulator is found,
3126 * allowing most consumers to proceed as though a regulator were
3127 * configured.  This allows systems such as those with software
3128 * controllable regulators for the CPU core only to be brought up more
3129 * readily.
3130 */
3131void regulator_use_dummy_regulator(void)
3132{
3133	board_wants_dummy_regulator = true;
3134}
3135EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3136
3137/**
3138 * rdev_get_drvdata - get rdev regulator driver data
3139 * @rdev: regulator
3140 *
3141 * Get rdev regulator driver private data. This call can be used in the
3142 * regulator driver context.
3143 */
3144void *rdev_get_drvdata(struct regulator_dev *rdev)
3145{
3146	return rdev->reg_data;
3147}
3148EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3149
3150/**
3151 * regulator_get_drvdata - get regulator driver data
3152 * @regulator: regulator
3153 *
3154 * Get regulator driver private data. This call can be used in the consumer
3155 * driver context when non API regulator specific functions need to be called.
3156 */
3157void *regulator_get_drvdata(struct regulator *regulator)
3158{
3159	return regulator->rdev->reg_data;
3160}
3161EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3162
3163/**
3164 * regulator_set_drvdata - set regulator driver data
3165 * @regulator: regulator
3166 * @data: data
3167 */
3168void regulator_set_drvdata(struct regulator *regulator, void *data)
3169{
3170	regulator->rdev->reg_data = data;
3171}
3172EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3173
3174/**
3175 * regulator_get_id - get regulator ID
3176 * @rdev: regulator
3177 */
3178int rdev_get_id(struct regulator_dev *rdev)
3179{
3180	return rdev->desc->id;
3181}
3182EXPORT_SYMBOL_GPL(rdev_get_id);
3183
3184struct device *rdev_get_dev(struct regulator_dev *rdev)
3185{
3186	return &rdev->dev;
3187}
3188EXPORT_SYMBOL_GPL(rdev_get_dev);
3189
3190void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3191{
3192	return reg_init_data->driver_data;
3193}
3194EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3195
3196#ifdef CONFIG_DEBUG_FS
3197static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3198				    size_t count, loff_t *ppos)
3199{
3200	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3201	ssize_t len, ret = 0;
3202	struct regulator_map *map;
3203
3204	if (!buf)
3205		return -ENOMEM;
3206
3207	list_for_each_entry(map, &regulator_map_list, list) {
3208		len = snprintf(buf + ret, PAGE_SIZE - ret,
3209			       "%s -> %s.%s\n",
3210			       rdev_get_name(map->regulator), map->dev_name,
3211			       map->supply);
3212		if (len >= 0)
3213			ret += len;
3214		if (ret > PAGE_SIZE) {
3215			ret = PAGE_SIZE;
3216			break;
3217		}
3218	}
3219
3220	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3221
3222	kfree(buf);
3223
3224	return ret;
3225}
3226#endif
3227
3228static const struct file_operations supply_map_fops = {
3229#ifdef CONFIG_DEBUG_FS
3230	.read = supply_map_read_file,
3231	.llseek = default_llseek,
3232#endif
3233};
3234
3235static int __init regulator_init(void)
3236{
3237	int ret;
3238
3239	ret = class_register(&regulator_class);
3240
3241	debugfs_root = debugfs_create_dir("regulator", NULL);
3242	if (!debugfs_root)
3243		pr_warn("regulator: Failed to create debugfs directory\n");
3244
3245	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3246			    &supply_map_fops);
3247
3248	regulator_dummy_init();
3249
3250	return ret;
3251}
3252
3253/* init early to allow our consumers to complete system booting */
3254core_initcall(regulator_init);
3255
3256static int __init regulator_init_complete(void)
3257{
3258	struct regulator_dev *rdev;
3259	struct regulator_ops *ops;
3260	struct regulation_constraints *c;
3261	int enabled, ret;
3262
3263	mutex_lock(&regulator_list_mutex);
3264
3265	/* If we have a full configuration then disable any regulators
3266	 * which are not in use or always_on.  This will become the
3267	 * default behaviour in the future.
3268	 */
3269	list_for_each_entry(rdev, &regulator_list, list) {
3270		ops = rdev->desc->ops;
3271		c = rdev->constraints;
3272
3273		if (!ops->disable || (c && c->always_on))
3274			continue;
3275
3276		mutex_lock(&rdev->mutex);
3277
3278		if (rdev->use_count)
3279			goto unlock;
3280
3281		/* If we can't read the status assume it's on. */
3282		if (ops->is_enabled)
3283			enabled = ops->is_enabled(rdev);
3284		else
3285			enabled = 1;
3286
3287		if (!enabled)
3288			goto unlock;
3289
3290		if (has_full_constraints) {
3291			/* We log since this may kill the system if it
3292			 * goes wrong. */
3293			rdev_info(rdev, "disabling\n");
3294			ret = ops->disable(rdev);
3295			if (ret != 0) {
3296				rdev_err(rdev, "couldn't disable: %d\n", ret);
3297			}
3298		} else {
3299			/* The intention is that in future we will
3300			 * assume that full constraints are provided
3301			 * so warn even if we aren't going to do
3302			 * anything here.
3303			 */
3304			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3305		}
3306
3307unlock:
3308		mutex_unlock(&rdev->mutex);
3309	}
3310
3311	mutex_unlock(&regulator_list_mutex);
3312
3313	return 0;
3314}
3315late_initcall(regulator_init_complete);
3316