core.c revision 4040394e12cb1eed21d1306cacdc8a6f0464c8e2
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static LIST_HEAD(regulator_ena_gpio_list);
55static bool has_full_constraints;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator_enable_gpio
73 *
74 * Management for shared enable GPIO pin
75 */
76struct regulator_enable_gpio {
77	struct list_head list;
78	int gpio;
79	u32 enable_count;	/* a number of enabled shared GPIO */
80	u32 request_count;	/* a number of requested shared GPIO */
81	unsigned int ena_gpio_invert:1;
82};
83
84/*
85 * struct regulator
86 *
87 * One for each consumer device.
88 */
89struct regulator {
90	struct device *dev;
91	struct list_head list;
92	unsigned int always_on:1;
93	unsigned int bypass:1;
94	int uA_load;
95	int min_uV;
96	int max_uV;
97	char *supply_name;
98	struct device_attribute dev_attr;
99	struct regulator_dev *rdev;
100	struct dentry *debugfs;
101};
102
103static int _regulator_is_enabled(struct regulator_dev *rdev);
104static int _regulator_disable(struct regulator_dev *rdev);
105static int _regulator_get_voltage(struct regulator_dev *rdev);
106static int _regulator_get_current_limit(struct regulator_dev *rdev);
107static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
108static void _notifier_call_chain(struct regulator_dev *rdev,
109				  unsigned long event, void *data);
110static int _regulator_do_set_voltage(struct regulator_dev *rdev,
111				     int min_uV, int max_uV);
112static struct regulator *create_regulator(struct regulator_dev *rdev,
113					  struct device *dev,
114					  const char *supply_name);
115
116static const char *rdev_get_name(struct regulator_dev *rdev)
117{
118	if (rdev->constraints && rdev->constraints->name)
119		return rdev->constraints->name;
120	else if (rdev->desc->name)
121		return rdev->desc->name;
122	else
123		return "";
124}
125
126/**
127 * of_get_regulator - get a regulator device node based on supply name
128 * @dev: Device pointer for the consumer (of regulator) device
129 * @supply: regulator supply name
130 *
131 * Extract the regulator device node corresponding to the supply name.
132 * returns the device node corresponding to the regulator if found, else
133 * returns NULL.
134 */
135static struct device_node *of_get_regulator(struct device *dev, const char *supply)
136{
137	struct device_node *regnode = NULL;
138	char prop_name[32]; /* 32 is max size of property name */
139
140	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
141
142	snprintf(prop_name, 32, "%s-supply", supply);
143	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
144
145	if (!regnode) {
146		dev_dbg(dev, "Looking up %s property in node %s failed",
147				prop_name, dev->of_node->full_name);
148		return NULL;
149	}
150	return regnode;
151}
152
153static int _regulator_can_change_status(struct regulator_dev *rdev)
154{
155	if (!rdev->constraints)
156		return 0;
157
158	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
159		return 1;
160	else
161		return 0;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV) {
216		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
217			*min_uV, *max_uV);
218		return -EINVAL;
219	}
220
221	return 0;
222}
223
224/* current constraint check */
225static int regulator_check_current_limit(struct regulator_dev *rdev,
226					int *min_uA, int *max_uA)
227{
228	BUG_ON(*min_uA > *max_uA);
229
230	if (!rdev->constraints) {
231		rdev_err(rdev, "no constraints\n");
232		return -ENODEV;
233	}
234	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
235		rdev_err(rdev, "operation not allowed\n");
236		return -EPERM;
237	}
238
239	if (*max_uA > rdev->constraints->max_uA)
240		*max_uA = rdev->constraints->max_uA;
241	if (*min_uA < rdev->constraints->min_uA)
242		*min_uA = rdev->constraints->min_uA;
243
244	if (*min_uA > *max_uA) {
245		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
246			 *min_uA, *max_uA);
247		return -EINVAL;
248	}
249
250	return 0;
251}
252
253/* operating mode constraint check */
254static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
255{
256	switch (*mode) {
257	case REGULATOR_MODE_FAST:
258	case REGULATOR_MODE_NORMAL:
259	case REGULATOR_MODE_IDLE:
260	case REGULATOR_MODE_STANDBY:
261		break;
262	default:
263		rdev_err(rdev, "invalid mode %x specified\n", *mode);
264		return -EINVAL;
265	}
266
267	if (!rdev->constraints) {
268		rdev_err(rdev, "no constraints\n");
269		return -ENODEV;
270	}
271	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
272		rdev_err(rdev, "operation not allowed\n");
273		return -EPERM;
274	}
275
276	/* The modes are bitmasks, the most power hungry modes having
277	 * the lowest values. If the requested mode isn't supported
278	 * try higher modes. */
279	while (*mode) {
280		if (rdev->constraints->valid_modes_mask & *mode)
281			return 0;
282		*mode /= 2;
283	}
284
285	return -EINVAL;
286}
287
288/* dynamic regulator mode switching constraint check */
289static int regulator_check_drms(struct regulator_dev *rdev)
290{
291	if (!rdev->constraints) {
292		rdev_err(rdev, "no constraints\n");
293		return -ENODEV;
294	}
295	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
296		rdev_err(rdev, "operation not allowed\n");
297		return -EPERM;
298	}
299	return 0;
300}
301
302static ssize_t regulator_uV_show(struct device *dev,
303				struct device_attribute *attr, char *buf)
304{
305	struct regulator_dev *rdev = dev_get_drvdata(dev);
306	ssize_t ret;
307
308	mutex_lock(&rdev->mutex);
309	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
310	mutex_unlock(&rdev->mutex);
311
312	return ret;
313}
314static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
315
316static ssize_t regulator_uA_show(struct device *dev,
317				struct device_attribute *attr, char *buf)
318{
319	struct regulator_dev *rdev = dev_get_drvdata(dev);
320
321	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
322}
323static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
324
325static ssize_t name_show(struct device *dev, struct device_attribute *attr,
326			 char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%s\n", rdev_get_name(rdev));
331}
332static DEVICE_ATTR_RO(name);
333
334static ssize_t regulator_print_opmode(char *buf, int mode)
335{
336	switch (mode) {
337	case REGULATOR_MODE_FAST:
338		return sprintf(buf, "fast\n");
339	case REGULATOR_MODE_NORMAL:
340		return sprintf(buf, "normal\n");
341	case REGULATOR_MODE_IDLE:
342		return sprintf(buf, "idle\n");
343	case REGULATOR_MODE_STANDBY:
344		return sprintf(buf, "standby\n");
345	}
346	return sprintf(buf, "unknown\n");
347}
348
349static ssize_t regulator_opmode_show(struct device *dev,
350				    struct device_attribute *attr, char *buf)
351{
352	struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355}
356static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358static ssize_t regulator_print_state(char *buf, int state)
359{
360	if (state > 0)
361		return sprintf(buf, "enabled\n");
362	else if (state == 0)
363		return sprintf(buf, "disabled\n");
364	else
365		return sprintf(buf, "unknown\n");
366}
367
368static ssize_t regulator_state_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	ssize_t ret;
373
374	mutex_lock(&rdev->mutex);
375	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376	mutex_unlock(&rdev->mutex);
377
378	return ret;
379}
380static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382static ssize_t regulator_status_show(struct device *dev,
383				   struct device_attribute *attr, char *buf)
384{
385	struct regulator_dev *rdev = dev_get_drvdata(dev);
386	int status;
387	char *label;
388
389	status = rdev->desc->ops->get_status(rdev);
390	if (status < 0)
391		return status;
392
393	switch (status) {
394	case REGULATOR_STATUS_OFF:
395		label = "off";
396		break;
397	case REGULATOR_STATUS_ON:
398		label = "on";
399		break;
400	case REGULATOR_STATUS_ERROR:
401		label = "error";
402		break;
403	case REGULATOR_STATUS_FAST:
404		label = "fast";
405		break;
406	case REGULATOR_STATUS_NORMAL:
407		label = "normal";
408		break;
409	case REGULATOR_STATUS_IDLE:
410		label = "idle";
411		break;
412	case REGULATOR_STATUS_STANDBY:
413		label = "standby";
414		break;
415	case REGULATOR_STATUS_BYPASS:
416		label = "bypass";
417		break;
418	case REGULATOR_STATUS_UNDEFINED:
419		label = "undefined";
420		break;
421	default:
422		return -ERANGE;
423	}
424
425	return sprintf(buf, "%s\n", label);
426}
427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429static ssize_t regulator_min_uA_show(struct device *dev,
430				    struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434	if (!rdev->constraints)
435		return sprintf(buf, "constraint not defined\n");
436
437	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438}
439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441static ssize_t regulator_max_uA_show(struct device *dev,
442				    struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	if (!rdev->constraints)
447		return sprintf(buf, "constraint not defined\n");
448
449	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450}
451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453static ssize_t regulator_min_uV_show(struct device *dev,
454				    struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	if (!rdev->constraints)
459		return sprintf(buf, "constraint not defined\n");
460
461	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462}
463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465static ssize_t regulator_max_uV_show(struct device *dev,
466				    struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	if (!rdev->constraints)
471		return sprintf(buf, "constraint not defined\n");
472
473	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474}
475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477static ssize_t regulator_total_uA_show(struct device *dev,
478				      struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481	struct regulator *regulator;
482	int uA = 0;
483
484	mutex_lock(&rdev->mutex);
485	list_for_each_entry(regulator, &rdev->consumer_list, list)
486		uA += regulator->uA_load;
487	mutex_unlock(&rdev->mutex);
488	return sprintf(buf, "%d\n", uA);
489}
490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
493			      char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496	return sprintf(buf, "%d\n", rdev->use_count);
497}
498static DEVICE_ATTR_RO(num_users);
499
500static ssize_t type_show(struct device *dev, struct device_attribute *attr,
501			 char *buf)
502{
503	struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505	switch (rdev->desc->type) {
506	case REGULATOR_VOLTAGE:
507		return sprintf(buf, "voltage\n");
508	case REGULATOR_CURRENT:
509		return sprintf(buf, "current\n");
510	}
511	return sprintf(buf, "unknown\n");
512}
513static DEVICE_ATTR_RO(type);
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611static ssize_t regulator_bypass_show(struct device *dev,
612				     struct device_attribute *attr, char *buf)
613{
614	struct regulator_dev *rdev = dev_get_drvdata(dev);
615	const char *report;
616	bool bypass;
617	int ret;
618
619	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
620
621	if (ret != 0)
622		report = "unknown";
623	else if (bypass)
624		report = "enabled";
625	else
626		report = "disabled";
627
628	return sprintf(buf, "%s\n", report);
629}
630static DEVICE_ATTR(bypass, 0444,
631		   regulator_bypass_show, NULL);
632
633/*
634 * These are the only attributes are present for all regulators.
635 * Other attributes are a function of regulator functionality.
636 */
637static struct attribute *regulator_dev_attrs[] = {
638	&dev_attr_name.attr,
639	&dev_attr_num_users.attr,
640	&dev_attr_type.attr,
641	NULL,
642};
643ATTRIBUTE_GROUPS(regulator_dev);
644
645static void regulator_dev_release(struct device *dev)
646{
647	struct regulator_dev *rdev = dev_get_drvdata(dev);
648	kfree(rdev);
649}
650
651static struct class regulator_class = {
652	.name = "regulator",
653	.dev_release = regulator_dev_release,
654	.dev_groups = regulator_dev_groups,
655};
656
657/* Calculate the new optimum regulator operating mode based on the new total
658 * consumer load. All locks held by caller */
659static void drms_uA_update(struct regulator_dev *rdev)
660{
661	struct regulator *sibling;
662	int current_uA = 0, output_uV, input_uV, err;
663	unsigned int mode;
664
665	err = regulator_check_drms(rdev);
666	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
667	    (!rdev->desc->ops->get_voltage &&
668	     !rdev->desc->ops->get_voltage_sel) ||
669	    !rdev->desc->ops->set_mode)
670		return;
671
672	/* get output voltage */
673	output_uV = _regulator_get_voltage(rdev);
674	if (output_uV <= 0)
675		return;
676
677	/* get input voltage */
678	input_uV = 0;
679	if (rdev->supply)
680		input_uV = regulator_get_voltage(rdev->supply);
681	if (input_uV <= 0)
682		input_uV = rdev->constraints->input_uV;
683	if (input_uV <= 0)
684		return;
685
686	/* calc total requested load */
687	list_for_each_entry(sibling, &rdev->consumer_list, list)
688		current_uA += sibling->uA_load;
689
690	/* now get the optimum mode for our new total regulator load */
691	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
692						  output_uV, current_uA);
693
694	/* check the new mode is allowed */
695	err = regulator_mode_constrain(rdev, &mode);
696	if (err == 0)
697		rdev->desc->ops->set_mode(rdev, mode);
698}
699
700static int suspend_set_state(struct regulator_dev *rdev,
701	struct regulator_state *rstate)
702{
703	int ret = 0;
704
705	/* If we have no suspend mode configration don't set anything;
706	 * only warn if the driver implements set_suspend_voltage or
707	 * set_suspend_mode callback.
708	 */
709	if (!rstate->enabled && !rstate->disabled) {
710		if (rdev->desc->ops->set_suspend_voltage ||
711		    rdev->desc->ops->set_suspend_mode)
712			rdev_warn(rdev, "No configuration\n");
713		return 0;
714	}
715
716	if (rstate->enabled && rstate->disabled) {
717		rdev_err(rdev, "invalid configuration\n");
718		return -EINVAL;
719	}
720
721	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
722		ret = rdev->desc->ops->set_suspend_enable(rdev);
723	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
724		ret = rdev->desc->ops->set_suspend_disable(rdev);
725	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
726		ret = 0;
727
728	if (ret < 0) {
729		rdev_err(rdev, "failed to enabled/disable\n");
730		return ret;
731	}
732
733	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
734		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
735		if (ret < 0) {
736			rdev_err(rdev, "failed to set voltage\n");
737			return ret;
738		}
739	}
740
741	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
742		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
743		if (ret < 0) {
744			rdev_err(rdev, "failed to set mode\n");
745			return ret;
746		}
747	}
748	return ret;
749}
750
751/* locks held by caller */
752static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
753{
754	if (!rdev->constraints)
755		return -EINVAL;
756
757	switch (state) {
758	case PM_SUSPEND_STANDBY:
759		return suspend_set_state(rdev,
760			&rdev->constraints->state_standby);
761	case PM_SUSPEND_MEM:
762		return suspend_set_state(rdev,
763			&rdev->constraints->state_mem);
764	case PM_SUSPEND_MAX:
765		return suspend_set_state(rdev,
766			&rdev->constraints->state_disk);
767	default:
768		return -EINVAL;
769	}
770}
771
772static void print_constraints(struct regulator_dev *rdev)
773{
774	struct regulation_constraints *constraints = rdev->constraints;
775	char buf[80] = "";
776	int count = 0;
777	int ret;
778
779	if (constraints->min_uV && constraints->max_uV) {
780		if (constraints->min_uV == constraints->max_uV)
781			count += sprintf(buf + count, "%d mV ",
782					 constraints->min_uV / 1000);
783		else
784			count += sprintf(buf + count, "%d <--> %d mV ",
785					 constraints->min_uV / 1000,
786					 constraints->max_uV / 1000);
787	}
788
789	if (!constraints->min_uV ||
790	    constraints->min_uV != constraints->max_uV) {
791		ret = _regulator_get_voltage(rdev);
792		if (ret > 0)
793			count += sprintf(buf + count, "at %d mV ", ret / 1000);
794	}
795
796	if (constraints->uV_offset)
797		count += sprintf(buf, "%dmV offset ",
798				 constraints->uV_offset / 1000);
799
800	if (constraints->min_uA && constraints->max_uA) {
801		if (constraints->min_uA == constraints->max_uA)
802			count += sprintf(buf + count, "%d mA ",
803					 constraints->min_uA / 1000);
804		else
805			count += sprintf(buf + count, "%d <--> %d mA ",
806					 constraints->min_uA / 1000,
807					 constraints->max_uA / 1000);
808	}
809
810	if (!constraints->min_uA ||
811	    constraints->min_uA != constraints->max_uA) {
812		ret = _regulator_get_current_limit(rdev);
813		if (ret > 0)
814			count += sprintf(buf + count, "at %d mA ", ret / 1000);
815	}
816
817	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
818		count += sprintf(buf + count, "fast ");
819	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
820		count += sprintf(buf + count, "normal ");
821	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
822		count += sprintf(buf + count, "idle ");
823	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
824		count += sprintf(buf + count, "standby");
825
826	if (!count)
827		sprintf(buf, "no parameters");
828
829	rdev_info(rdev, "%s\n", buf);
830
831	if ((constraints->min_uV != constraints->max_uV) &&
832	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
833		rdev_warn(rdev,
834			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
835}
836
837static int machine_constraints_voltage(struct regulator_dev *rdev,
838	struct regulation_constraints *constraints)
839{
840	struct regulator_ops *ops = rdev->desc->ops;
841	int ret;
842
843	/* do we need to apply the constraint voltage */
844	if (rdev->constraints->apply_uV &&
845	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
846		ret = _regulator_do_set_voltage(rdev,
847						rdev->constraints->min_uV,
848						rdev->constraints->max_uV);
849		if (ret < 0) {
850			rdev_err(rdev, "failed to apply %duV constraint\n",
851				 rdev->constraints->min_uV);
852			return ret;
853		}
854	}
855
856	/* constrain machine-level voltage specs to fit
857	 * the actual range supported by this regulator.
858	 */
859	if (ops->list_voltage && rdev->desc->n_voltages) {
860		int	count = rdev->desc->n_voltages;
861		int	i;
862		int	min_uV = INT_MAX;
863		int	max_uV = INT_MIN;
864		int	cmin = constraints->min_uV;
865		int	cmax = constraints->max_uV;
866
867		/* it's safe to autoconfigure fixed-voltage supplies
868		   and the constraints are used by list_voltage. */
869		if (count == 1 && !cmin) {
870			cmin = 1;
871			cmax = INT_MAX;
872			constraints->min_uV = cmin;
873			constraints->max_uV = cmax;
874		}
875
876		/* voltage constraints are optional */
877		if ((cmin == 0) && (cmax == 0))
878			return 0;
879
880		/* else require explicit machine-level constraints */
881		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
882			rdev_err(rdev, "invalid voltage constraints\n");
883			return -EINVAL;
884		}
885
886		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
887		for (i = 0; i < count; i++) {
888			int	value;
889
890			value = ops->list_voltage(rdev, i);
891			if (value <= 0)
892				continue;
893
894			/* maybe adjust [min_uV..max_uV] */
895			if (value >= cmin && value < min_uV)
896				min_uV = value;
897			if (value <= cmax && value > max_uV)
898				max_uV = value;
899		}
900
901		/* final: [min_uV..max_uV] valid iff constraints valid */
902		if (max_uV < min_uV) {
903			rdev_err(rdev,
904				 "unsupportable voltage constraints %u-%uuV\n",
905				 min_uV, max_uV);
906			return -EINVAL;
907		}
908
909		/* use regulator's subset of machine constraints */
910		if (constraints->min_uV < min_uV) {
911			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
912				 constraints->min_uV, min_uV);
913			constraints->min_uV = min_uV;
914		}
915		if (constraints->max_uV > max_uV) {
916			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
917				 constraints->max_uV, max_uV);
918			constraints->max_uV = max_uV;
919		}
920	}
921
922	return 0;
923}
924
925/**
926 * set_machine_constraints - sets regulator constraints
927 * @rdev: regulator source
928 * @constraints: constraints to apply
929 *
930 * Allows platform initialisation code to define and constrain
931 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
932 * Constraints *must* be set by platform code in order for some
933 * regulator operations to proceed i.e. set_voltage, set_current_limit,
934 * set_mode.
935 */
936static int set_machine_constraints(struct regulator_dev *rdev,
937	const struct regulation_constraints *constraints)
938{
939	int ret = 0;
940	struct regulator_ops *ops = rdev->desc->ops;
941
942	if (constraints)
943		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
944					    GFP_KERNEL);
945	else
946		rdev->constraints = kzalloc(sizeof(*constraints),
947					    GFP_KERNEL);
948	if (!rdev->constraints)
949		return -ENOMEM;
950
951	ret = machine_constraints_voltage(rdev, rdev->constraints);
952	if (ret != 0)
953		goto out;
954
955	/* do we need to setup our suspend state */
956	if (rdev->constraints->initial_state) {
957		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
958		if (ret < 0) {
959			rdev_err(rdev, "failed to set suspend state\n");
960			goto out;
961		}
962	}
963
964	if (rdev->constraints->initial_mode) {
965		if (!ops->set_mode) {
966			rdev_err(rdev, "no set_mode operation\n");
967			ret = -EINVAL;
968			goto out;
969		}
970
971		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
972		if (ret < 0) {
973			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
974			goto out;
975		}
976	}
977
978	/* If the constraints say the regulator should be on at this point
979	 * and we have control then make sure it is enabled.
980	 */
981	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
982	    ops->enable) {
983		ret = ops->enable(rdev);
984		if (ret < 0) {
985			rdev_err(rdev, "failed to enable\n");
986			goto out;
987		}
988	}
989
990	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
991		&& ops->set_ramp_delay) {
992		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
993		if (ret < 0) {
994			rdev_err(rdev, "failed to set ramp_delay\n");
995			goto out;
996		}
997	}
998
999	print_constraints(rdev);
1000	return 0;
1001out:
1002	kfree(rdev->constraints);
1003	rdev->constraints = NULL;
1004	return ret;
1005}
1006
1007/**
1008 * set_supply - set regulator supply regulator
1009 * @rdev: regulator name
1010 * @supply_rdev: supply regulator name
1011 *
1012 * Called by platform initialisation code to set the supply regulator for this
1013 * regulator. This ensures that a regulators supply will also be enabled by the
1014 * core if it's child is enabled.
1015 */
1016static int set_supply(struct regulator_dev *rdev,
1017		      struct regulator_dev *supply_rdev)
1018{
1019	int err;
1020
1021	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1022
1023	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024	if (rdev->supply == NULL) {
1025		err = -ENOMEM;
1026		return err;
1027	}
1028	supply_rdev->open_count++;
1029
1030	return 0;
1031}
1032
1033/**
1034 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035 * @rdev:         regulator source
1036 * @consumer_dev_name: dev_name() string for device supply applies to
1037 * @supply:       symbolic name for supply
1038 *
1039 * Allows platform initialisation code to map physical regulator
1040 * sources to symbolic names for supplies for use by devices.  Devices
1041 * should use these symbolic names to request regulators, avoiding the
1042 * need to provide board-specific regulator names as platform data.
1043 */
1044static int set_consumer_device_supply(struct regulator_dev *rdev,
1045				      const char *consumer_dev_name,
1046				      const char *supply)
1047{
1048	struct regulator_map *node;
1049	int has_dev;
1050
1051	if (supply == NULL)
1052		return -EINVAL;
1053
1054	if (consumer_dev_name != NULL)
1055		has_dev = 1;
1056	else
1057		has_dev = 0;
1058
1059	list_for_each_entry(node, &regulator_map_list, list) {
1060		if (node->dev_name && consumer_dev_name) {
1061			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1062				continue;
1063		} else if (node->dev_name || consumer_dev_name) {
1064			continue;
1065		}
1066
1067		if (strcmp(node->supply, supply) != 0)
1068			continue;
1069
1070		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1071			 consumer_dev_name,
1072			 dev_name(&node->regulator->dev),
1073			 node->regulator->desc->name,
1074			 supply,
1075			 dev_name(&rdev->dev), rdev_get_name(rdev));
1076		return -EBUSY;
1077	}
1078
1079	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080	if (node == NULL)
1081		return -ENOMEM;
1082
1083	node->regulator = rdev;
1084	node->supply = supply;
1085
1086	if (has_dev) {
1087		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088		if (node->dev_name == NULL) {
1089			kfree(node);
1090			return -ENOMEM;
1091		}
1092	}
1093
1094	list_add(&node->list, &regulator_map_list);
1095	return 0;
1096}
1097
1098static void unset_regulator_supplies(struct regulator_dev *rdev)
1099{
1100	struct regulator_map *node, *n;
1101
1102	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1103		if (rdev == node->regulator) {
1104			list_del(&node->list);
1105			kfree(node->dev_name);
1106			kfree(node);
1107		}
1108	}
1109}
1110
1111#define REG_STR_SIZE	64
1112
1113static struct regulator *create_regulator(struct regulator_dev *rdev,
1114					  struct device *dev,
1115					  const char *supply_name)
1116{
1117	struct regulator *regulator;
1118	char buf[REG_STR_SIZE];
1119	int err, size;
1120
1121	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122	if (regulator == NULL)
1123		return NULL;
1124
1125	mutex_lock(&rdev->mutex);
1126	regulator->rdev = rdev;
1127	list_add(&regulator->list, &rdev->consumer_list);
1128
1129	if (dev) {
1130		regulator->dev = dev;
1131
1132		/* Add a link to the device sysfs entry */
1133		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134				 dev->kobj.name, supply_name);
1135		if (size >= REG_STR_SIZE)
1136			goto overflow_err;
1137
1138		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139		if (regulator->supply_name == NULL)
1140			goto overflow_err;
1141
1142		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1143					buf);
1144		if (err) {
1145			rdev_warn(rdev, "could not add device link %s err %d\n",
1146				  dev->kobj.name, err);
1147			/* non-fatal */
1148		}
1149	} else {
1150		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151		if (regulator->supply_name == NULL)
1152			goto overflow_err;
1153	}
1154
1155	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1156						rdev->debugfs);
1157	if (!regulator->debugfs) {
1158		rdev_warn(rdev, "Failed to create debugfs directory\n");
1159	} else {
1160		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161				   &regulator->uA_load);
1162		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163				   &regulator->min_uV);
1164		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165				   &regulator->max_uV);
1166	}
1167
1168	/*
1169	 * Check now if the regulator is an always on regulator - if
1170	 * it is then we don't need to do nearly so much work for
1171	 * enable/disable calls.
1172	 */
1173	if (!_regulator_can_change_status(rdev) &&
1174	    _regulator_is_enabled(rdev))
1175		regulator->always_on = true;
1176
1177	mutex_unlock(&rdev->mutex);
1178	return regulator;
1179overflow_err:
1180	list_del(&regulator->list);
1181	kfree(regulator);
1182	mutex_unlock(&rdev->mutex);
1183	return NULL;
1184}
1185
1186static int _regulator_get_enable_time(struct regulator_dev *rdev)
1187{
1188	if (!rdev->desc->ops->enable_time)
1189		return rdev->desc->enable_time;
1190	return rdev->desc->ops->enable_time(rdev);
1191}
1192
1193static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194						  const char *supply,
1195						  int *ret)
1196{
1197	struct regulator_dev *r;
1198	struct device_node *node;
1199	struct regulator_map *map;
1200	const char *devname = NULL;
1201
1202	/* first do a dt based lookup */
1203	if (dev && dev->of_node) {
1204		node = of_get_regulator(dev, supply);
1205		if (node) {
1206			list_for_each_entry(r, &regulator_list, list)
1207				if (r->dev.parent &&
1208					node == r->dev.of_node)
1209					return r;
1210		} else {
1211			/*
1212			 * If we couldn't even get the node then it's
1213			 * not just that the device didn't register
1214			 * yet, there's no node and we'll never
1215			 * succeed.
1216			 */
1217			*ret = -ENODEV;
1218		}
1219	}
1220
1221	/* if not found, try doing it non-dt way */
1222	if (dev)
1223		devname = dev_name(dev);
1224
1225	list_for_each_entry(r, &regulator_list, list)
1226		if (strcmp(rdev_get_name(r), supply) == 0)
1227			return r;
1228
1229	list_for_each_entry(map, &regulator_map_list, list) {
1230		/* If the mapping has a device set up it must match */
1231		if (map->dev_name &&
1232		    (!devname || strcmp(map->dev_name, devname)))
1233			continue;
1234
1235		if (strcmp(map->supply, supply) == 0)
1236			return map->regulator;
1237	}
1238
1239
1240	return NULL;
1241}
1242
1243/* Internal regulator request function */
1244static struct regulator *_regulator_get(struct device *dev, const char *id,
1245					bool exclusive, bool allow_dummy)
1246{
1247	struct regulator_dev *rdev;
1248	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249	const char *devname = NULL;
1250	int ret = -EPROBE_DEFER;
1251
1252	if (id == NULL) {
1253		pr_err("get() with no identifier\n");
1254		return regulator;
1255	}
1256
1257	if (dev)
1258		devname = dev_name(dev);
1259
1260	mutex_lock(&regulator_list_mutex);
1261
1262	rdev = regulator_dev_lookup(dev, id, &ret);
1263	if (rdev)
1264		goto found;
1265
1266	regulator = ERR_PTR(ret);
1267
1268	/*
1269	 * If we have return value from dev_lookup fail, we do not expect to
1270	 * succeed, so, quit with appropriate error value
1271	 */
1272	if (ret && ret != -ENODEV) {
1273		goto out;
1274	}
1275
1276	if (!devname)
1277		devname = "deviceless";
1278
1279	/*
1280	 * Assume that a regulator is physically present and enabled
1281	 * even if it isn't hooked up and just provide a dummy.
1282	 */
1283	if (has_full_constraints && allow_dummy) {
1284		pr_warn("%s supply %s not found, using dummy regulator\n",
1285			devname, id);
1286
1287		rdev = dummy_regulator_rdev;
1288		goto found;
1289	} else {
1290		dev_err(dev, "dummy supplies not allowed\n");
1291	}
1292
1293	mutex_unlock(&regulator_list_mutex);
1294	return regulator;
1295
1296found:
1297	if (rdev->exclusive) {
1298		regulator = ERR_PTR(-EPERM);
1299		goto out;
1300	}
1301
1302	if (exclusive && rdev->open_count) {
1303		regulator = ERR_PTR(-EBUSY);
1304		goto out;
1305	}
1306
1307	if (!try_module_get(rdev->owner))
1308		goto out;
1309
1310	regulator = create_regulator(rdev, dev, id);
1311	if (regulator == NULL) {
1312		regulator = ERR_PTR(-ENOMEM);
1313		module_put(rdev->owner);
1314		goto out;
1315	}
1316
1317	rdev->open_count++;
1318	if (exclusive) {
1319		rdev->exclusive = 1;
1320
1321		ret = _regulator_is_enabled(rdev);
1322		if (ret > 0)
1323			rdev->use_count = 1;
1324		else
1325			rdev->use_count = 0;
1326	}
1327
1328out:
1329	mutex_unlock(&regulator_list_mutex);
1330
1331	return regulator;
1332}
1333
1334/**
1335 * regulator_get - lookup and obtain a reference to a regulator.
1336 * @dev: device for regulator "consumer"
1337 * @id: Supply name or regulator ID.
1338 *
1339 * Returns a struct regulator corresponding to the regulator producer,
1340 * or IS_ERR() condition containing errno.
1341 *
1342 * Use of supply names configured via regulator_set_device_supply() is
1343 * strongly encouraged.  It is recommended that the supply name used
1344 * should match the name used for the supply and/or the relevant
1345 * device pins in the datasheet.
1346 */
1347struct regulator *regulator_get(struct device *dev, const char *id)
1348{
1349	return _regulator_get(dev, id, false, true);
1350}
1351EXPORT_SYMBOL_GPL(regulator_get);
1352
1353static void devm_regulator_release(struct device *dev, void *res)
1354{
1355	regulator_put(*(struct regulator **)res);
1356}
1357
1358/**
1359 * devm_regulator_get - Resource managed regulator_get()
1360 * @dev: device for regulator "consumer"
1361 * @id: Supply name or regulator ID.
1362 *
1363 * Managed regulator_get(). Regulators returned from this function are
1364 * automatically regulator_put() on driver detach. See regulator_get() for more
1365 * information.
1366 */
1367struct regulator *devm_regulator_get(struct device *dev, const char *id)
1368{
1369	struct regulator **ptr, *regulator;
1370
1371	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1372	if (!ptr)
1373		return ERR_PTR(-ENOMEM);
1374
1375	regulator = regulator_get(dev, id);
1376	if (!IS_ERR(regulator)) {
1377		*ptr = regulator;
1378		devres_add(dev, ptr);
1379	} else {
1380		devres_free(ptr);
1381	}
1382
1383	return regulator;
1384}
1385EXPORT_SYMBOL_GPL(devm_regulator_get);
1386
1387/**
1388 * regulator_get_exclusive - obtain exclusive access to a regulator.
1389 * @dev: device for regulator "consumer"
1390 * @id: Supply name or regulator ID.
1391 *
1392 * Returns a struct regulator corresponding to the regulator producer,
1393 * or IS_ERR() condition containing errno.  Other consumers will be
1394 * unable to obtain this reference is held and the use count for the
1395 * regulator will be initialised to reflect the current state of the
1396 * regulator.
1397 *
1398 * This is intended for use by consumers which cannot tolerate shared
1399 * use of the regulator such as those which need to force the
1400 * regulator off for correct operation of the hardware they are
1401 * controlling.
1402 *
1403 * Use of supply names configured via regulator_set_device_supply() is
1404 * strongly encouraged.  It is recommended that the supply name used
1405 * should match the name used for the supply and/or the relevant
1406 * device pins in the datasheet.
1407 */
1408struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1409{
1410	return _regulator_get(dev, id, true, false);
1411}
1412EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1413
1414/**
1415 * regulator_get_optional - obtain optional access to a regulator.
1416 * @dev: device for regulator "consumer"
1417 * @id: Supply name or regulator ID.
1418 *
1419 * Returns a struct regulator corresponding to the regulator producer,
1420 * or IS_ERR() condition containing errno.  Other consumers will be
1421 * unable to obtain this reference is held and the use count for the
1422 * regulator will be initialised to reflect the current state of the
1423 * regulator.
1424 *
1425 * This is intended for use by consumers for devices which can have
1426 * some supplies unconnected in normal use, such as some MMC devices.
1427 * It can allow the regulator core to provide stub supplies for other
1428 * supplies requested using normal regulator_get() calls without
1429 * disrupting the operation of drivers that can handle absent
1430 * supplies.
1431 *
1432 * Use of supply names configured via regulator_set_device_supply() is
1433 * strongly encouraged.  It is recommended that the supply name used
1434 * should match the name used for the supply and/or the relevant
1435 * device pins in the datasheet.
1436 */
1437struct regulator *regulator_get_optional(struct device *dev, const char *id)
1438{
1439	return _regulator_get(dev, id, false, false);
1440}
1441EXPORT_SYMBOL_GPL(regulator_get_optional);
1442
1443/**
1444 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1445 * @dev: device for regulator "consumer"
1446 * @id: Supply name or regulator ID.
1447 *
1448 * Managed regulator_get_optional(). Regulators returned from this
1449 * function are automatically regulator_put() on driver detach. See
1450 * regulator_get_optional() for more information.
1451 */
1452struct regulator *devm_regulator_get_optional(struct device *dev,
1453					      const char *id)
1454{
1455	struct regulator **ptr, *regulator;
1456
1457	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1458	if (!ptr)
1459		return ERR_PTR(-ENOMEM);
1460
1461	regulator = regulator_get_optional(dev, id);
1462	if (!IS_ERR(regulator)) {
1463		*ptr = regulator;
1464		devres_add(dev, ptr);
1465	} else {
1466		devres_free(ptr);
1467	}
1468
1469	return regulator;
1470}
1471EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1472
1473/* Locks held by regulator_put() */
1474static void _regulator_put(struct regulator *regulator)
1475{
1476	struct regulator_dev *rdev;
1477
1478	if (regulator == NULL || IS_ERR(regulator))
1479		return;
1480
1481	rdev = regulator->rdev;
1482
1483	debugfs_remove_recursive(regulator->debugfs);
1484
1485	/* remove any sysfs entries */
1486	if (regulator->dev)
1487		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1488	kfree(regulator->supply_name);
1489	list_del(&regulator->list);
1490	kfree(regulator);
1491
1492	rdev->open_count--;
1493	rdev->exclusive = 0;
1494
1495	module_put(rdev->owner);
1496}
1497
1498/**
1499 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1500 * @dev: device for regulator "consumer"
1501 * @id: Supply name or regulator ID.
1502 *
1503 * Managed regulator_get_exclusive(). Regulators returned from this function
1504 * are automatically regulator_put() on driver detach. See regulator_get() for
1505 * more information.
1506 */
1507struct regulator *devm_regulator_get_exclusive(struct device *dev,
1508					       const char *id)
1509{
1510	struct regulator **ptr, *regulator;
1511
1512	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1513	if (!ptr)
1514		return ERR_PTR(-ENOMEM);
1515
1516	regulator = _regulator_get(dev, id, 1);
1517	if (!IS_ERR(regulator)) {
1518		*ptr = regulator;
1519		devres_add(dev, ptr);
1520	} else {
1521		devres_free(ptr);
1522	}
1523
1524	return regulator;
1525}
1526EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1527
1528/**
1529 * regulator_put - "free" the regulator source
1530 * @regulator: regulator source
1531 *
1532 * Note: drivers must ensure that all regulator_enable calls made on this
1533 * regulator source are balanced by regulator_disable calls prior to calling
1534 * this function.
1535 */
1536void regulator_put(struct regulator *regulator)
1537{
1538	mutex_lock(&regulator_list_mutex);
1539	_regulator_put(regulator);
1540	mutex_unlock(&regulator_list_mutex);
1541}
1542EXPORT_SYMBOL_GPL(regulator_put);
1543
1544static int devm_regulator_match(struct device *dev, void *res, void *data)
1545{
1546	struct regulator **r = res;
1547	if (!r || !*r) {
1548		WARN_ON(!r || !*r);
1549		return 0;
1550	}
1551	return *r == data;
1552}
1553
1554/**
1555 * devm_regulator_put - Resource managed regulator_put()
1556 * @regulator: regulator to free
1557 *
1558 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1559 * this function will not need to be called and the resource management
1560 * code will ensure that the resource is freed.
1561 */
1562void devm_regulator_put(struct regulator *regulator)
1563{
1564	int rc;
1565
1566	rc = devres_release(regulator->dev, devm_regulator_release,
1567			    devm_regulator_match, regulator);
1568	if (rc != 0)
1569		WARN_ON(rc);
1570}
1571EXPORT_SYMBOL_GPL(devm_regulator_put);
1572
1573/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1574static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1575				const struct regulator_config *config)
1576{
1577	struct regulator_enable_gpio *pin;
1578	int ret;
1579
1580	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1581		if (pin->gpio == config->ena_gpio) {
1582			rdev_dbg(rdev, "GPIO %d is already used\n",
1583				config->ena_gpio);
1584			goto update_ena_gpio_to_rdev;
1585		}
1586	}
1587
1588	ret = gpio_request_one(config->ena_gpio,
1589				GPIOF_DIR_OUT | config->ena_gpio_flags,
1590				rdev_get_name(rdev));
1591	if (ret)
1592		return ret;
1593
1594	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1595	if (pin == NULL) {
1596		gpio_free(config->ena_gpio);
1597		return -ENOMEM;
1598	}
1599
1600	pin->gpio = config->ena_gpio;
1601	pin->ena_gpio_invert = config->ena_gpio_invert;
1602	list_add(&pin->list, &regulator_ena_gpio_list);
1603
1604update_ena_gpio_to_rdev:
1605	pin->request_count++;
1606	rdev->ena_pin = pin;
1607	return 0;
1608}
1609
1610static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1611{
1612	struct regulator_enable_gpio *pin, *n;
1613
1614	if (!rdev->ena_pin)
1615		return;
1616
1617	/* Free the GPIO only in case of no use */
1618	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1619		if (pin->gpio == rdev->ena_pin->gpio) {
1620			if (pin->request_count <= 1) {
1621				pin->request_count = 0;
1622				gpio_free(pin->gpio);
1623				list_del(&pin->list);
1624				kfree(pin);
1625			} else {
1626				pin->request_count--;
1627			}
1628		}
1629	}
1630}
1631
1632/**
1633 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1634 * @rdev: regulator_dev structure
1635 * @enable: enable GPIO at initial use?
1636 *
1637 * GPIO is enabled in case of initial use. (enable_count is 0)
1638 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1639 */
1640static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1641{
1642	struct regulator_enable_gpio *pin = rdev->ena_pin;
1643
1644	if (!pin)
1645		return -EINVAL;
1646
1647	if (enable) {
1648		/* Enable GPIO at initial use */
1649		if (pin->enable_count == 0)
1650			gpio_set_value_cansleep(pin->gpio,
1651						!pin->ena_gpio_invert);
1652
1653		pin->enable_count++;
1654	} else {
1655		if (pin->enable_count > 1) {
1656			pin->enable_count--;
1657			return 0;
1658		}
1659
1660		/* Disable GPIO if not used */
1661		if (pin->enable_count <= 1) {
1662			gpio_set_value_cansleep(pin->gpio,
1663						pin->ena_gpio_invert);
1664			pin->enable_count = 0;
1665		}
1666	}
1667
1668	return 0;
1669}
1670
1671static int _regulator_do_enable(struct regulator_dev *rdev)
1672{
1673	int ret, delay;
1674
1675	/* Query before enabling in case configuration dependent.  */
1676	ret = _regulator_get_enable_time(rdev);
1677	if (ret >= 0) {
1678		delay = ret;
1679	} else {
1680		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1681		delay = 0;
1682	}
1683
1684	trace_regulator_enable(rdev_get_name(rdev));
1685
1686	if (rdev->ena_pin) {
1687		ret = regulator_ena_gpio_ctrl(rdev, true);
1688		if (ret < 0)
1689			return ret;
1690		rdev->ena_gpio_state = 1;
1691	} else if (rdev->desc->ops->enable) {
1692		ret = rdev->desc->ops->enable(rdev);
1693		if (ret < 0)
1694			return ret;
1695	} else {
1696		return -EINVAL;
1697	}
1698
1699	/* Allow the regulator to ramp; it would be useful to extend
1700	 * this for bulk operations so that the regulators can ramp
1701	 * together.  */
1702	trace_regulator_enable_delay(rdev_get_name(rdev));
1703
1704	if (delay >= 1000) {
1705		mdelay(delay / 1000);
1706		udelay(delay % 1000);
1707	} else if (delay) {
1708		udelay(delay);
1709	}
1710
1711	trace_regulator_enable_complete(rdev_get_name(rdev));
1712
1713	return 0;
1714}
1715
1716/* locks held by regulator_enable() */
1717static int _regulator_enable(struct regulator_dev *rdev)
1718{
1719	int ret;
1720
1721	/* check voltage and requested load before enabling */
1722	if (rdev->constraints &&
1723	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1724		drms_uA_update(rdev);
1725
1726	if (rdev->use_count == 0) {
1727		/* The regulator may on if it's not switchable or left on */
1728		ret = _regulator_is_enabled(rdev);
1729		if (ret == -EINVAL || ret == 0) {
1730			if (!_regulator_can_change_status(rdev))
1731				return -EPERM;
1732
1733			ret = _regulator_do_enable(rdev);
1734			if (ret < 0)
1735				return ret;
1736
1737		} else if (ret < 0) {
1738			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1739			return ret;
1740		}
1741		/* Fallthrough on positive return values - already enabled */
1742	}
1743
1744	rdev->use_count++;
1745
1746	return 0;
1747}
1748
1749/**
1750 * regulator_enable - enable regulator output
1751 * @regulator: regulator source
1752 *
1753 * Request that the regulator be enabled with the regulator output at
1754 * the predefined voltage or current value.  Calls to regulator_enable()
1755 * must be balanced with calls to regulator_disable().
1756 *
1757 * NOTE: the output value can be set by other drivers, boot loader or may be
1758 * hardwired in the regulator.
1759 */
1760int regulator_enable(struct regulator *regulator)
1761{
1762	struct regulator_dev *rdev = regulator->rdev;
1763	int ret = 0;
1764
1765	if (regulator->always_on)
1766		return 0;
1767
1768	if (rdev->supply) {
1769		ret = regulator_enable(rdev->supply);
1770		if (ret != 0)
1771			return ret;
1772	}
1773
1774	mutex_lock(&rdev->mutex);
1775	ret = _regulator_enable(rdev);
1776	mutex_unlock(&rdev->mutex);
1777
1778	if (ret != 0 && rdev->supply)
1779		regulator_disable(rdev->supply);
1780
1781	return ret;
1782}
1783EXPORT_SYMBOL_GPL(regulator_enable);
1784
1785static int _regulator_do_disable(struct regulator_dev *rdev)
1786{
1787	int ret;
1788
1789	trace_regulator_disable(rdev_get_name(rdev));
1790
1791	if (rdev->ena_pin) {
1792		ret = regulator_ena_gpio_ctrl(rdev, false);
1793		if (ret < 0)
1794			return ret;
1795		rdev->ena_gpio_state = 0;
1796
1797	} else if (rdev->desc->ops->disable) {
1798		ret = rdev->desc->ops->disable(rdev);
1799		if (ret != 0)
1800			return ret;
1801	}
1802
1803	trace_regulator_disable_complete(rdev_get_name(rdev));
1804
1805	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1806			     NULL);
1807	return 0;
1808}
1809
1810/* locks held by regulator_disable() */
1811static int _regulator_disable(struct regulator_dev *rdev)
1812{
1813	int ret = 0;
1814
1815	if (WARN(rdev->use_count <= 0,
1816		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1817		return -EIO;
1818
1819	/* are we the last user and permitted to disable ? */
1820	if (rdev->use_count == 1 &&
1821	    (rdev->constraints && !rdev->constraints->always_on)) {
1822
1823		/* we are last user */
1824		if (_regulator_can_change_status(rdev)) {
1825			ret = _regulator_do_disable(rdev);
1826			if (ret < 0) {
1827				rdev_err(rdev, "failed to disable\n");
1828				return ret;
1829			}
1830		}
1831
1832		rdev->use_count = 0;
1833	} else if (rdev->use_count > 1) {
1834
1835		if (rdev->constraints &&
1836			(rdev->constraints->valid_ops_mask &
1837			REGULATOR_CHANGE_DRMS))
1838			drms_uA_update(rdev);
1839
1840		rdev->use_count--;
1841	}
1842
1843	return ret;
1844}
1845
1846/**
1847 * regulator_disable - disable regulator output
1848 * @regulator: regulator source
1849 *
1850 * Disable the regulator output voltage or current.  Calls to
1851 * regulator_enable() must be balanced with calls to
1852 * regulator_disable().
1853 *
1854 * NOTE: this will only disable the regulator output if no other consumer
1855 * devices have it enabled, the regulator device supports disabling and
1856 * machine constraints permit this operation.
1857 */
1858int regulator_disable(struct regulator *regulator)
1859{
1860	struct regulator_dev *rdev = regulator->rdev;
1861	int ret = 0;
1862
1863	if (regulator->always_on)
1864		return 0;
1865
1866	mutex_lock(&rdev->mutex);
1867	ret = _regulator_disable(rdev);
1868	mutex_unlock(&rdev->mutex);
1869
1870	if (ret == 0 && rdev->supply)
1871		regulator_disable(rdev->supply);
1872
1873	return ret;
1874}
1875EXPORT_SYMBOL_GPL(regulator_disable);
1876
1877/* locks held by regulator_force_disable() */
1878static int _regulator_force_disable(struct regulator_dev *rdev)
1879{
1880	int ret = 0;
1881
1882	/* force disable */
1883	if (rdev->desc->ops->disable) {
1884		/* ah well, who wants to live forever... */
1885		ret = rdev->desc->ops->disable(rdev);
1886		if (ret < 0) {
1887			rdev_err(rdev, "failed to force disable\n");
1888			return ret;
1889		}
1890		/* notify other consumers that power has been forced off */
1891		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1892			REGULATOR_EVENT_DISABLE, NULL);
1893	}
1894
1895	return ret;
1896}
1897
1898/**
1899 * regulator_force_disable - force disable regulator output
1900 * @regulator: regulator source
1901 *
1902 * Forcibly disable the regulator output voltage or current.
1903 * NOTE: this *will* disable the regulator output even if other consumer
1904 * devices have it enabled. This should be used for situations when device
1905 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1906 */
1907int regulator_force_disable(struct regulator *regulator)
1908{
1909	struct regulator_dev *rdev = regulator->rdev;
1910	int ret;
1911
1912	mutex_lock(&rdev->mutex);
1913	regulator->uA_load = 0;
1914	ret = _regulator_force_disable(regulator->rdev);
1915	mutex_unlock(&rdev->mutex);
1916
1917	if (rdev->supply)
1918		while (rdev->open_count--)
1919			regulator_disable(rdev->supply);
1920
1921	return ret;
1922}
1923EXPORT_SYMBOL_GPL(regulator_force_disable);
1924
1925static void regulator_disable_work(struct work_struct *work)
1926{
1927	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1928						  disable_work.work);
1929	int count, i, ret;
1930
1931	mutex_lock(&rdev->mutex);
1932
1933	BUG_ON(!rdev->deferred_disables);
1934
1935	count = rdev->deferred_disables;
1936	rdev->deferred_disables = 0;
1937
1938	for (i = 0; i < count; i++) {
1939		ret = _regulator_disable(rdev);
1940		if (ret != 0)
1941			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1942	}
1943
1944	mutex_unlock(&rdev->mutex);
1945
1946	if (rdev->supply) {
1947		for (i = 0; i < count; i++) {
1948			ret = regulator_disable(rdev->supply);
1949			if (ret != 0) {
1950				rdev_err(rdev,
1951					 "Supply disable failed: %d\n", ret);
1952			}
1953		}
1954	}
1955}
1956
1957/**
1958 * regulator_disable_deferred - disable regulator output with delay
1959 * @regulator: regulator source
1960 * @ms: miliseconds until the regulator is disabled
1961 *
1962 * Execute regulator_disable() on the regulator after a delay.  This
1963 * is intended for use with devices that require some time to quiesce.
1964 *
1965 * NOTE: this will only disable the regulator output if no other consumer
1966 * devices have it enabled, the regulator device supports disabling and
1967 * machine constraints permit this operation.
1968 */
1969int regulator_disable_deferred(struct regulator *regulator, int ms)
1970{
1971	struct regulator_dev *rdev = regulator->rdev;
1972	int ret;
1973
1974	if (regulator->always_on)
1975		return 0;
1976
1977	if (!ms)
1978		return regulator_disable(regulator);
1979
1980	mutex_lock(&rdev->mutex);
1981	rdev->deferred_disables++;
1982	mutex_unlock(&rdev->mutex);
1983
1984	ret = queue_delayed_work(system_power_efficient_wq,
1985				 &rdev->disable_work,
1986				 msecs_to_jiffies(ms));
1987	if (ret < 0)
1988		return ret;
1989	else
1990		return 0;
1991}
1992EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1993
1994static int _regulator_is_enabled(struct regulator_dev *rdev)
1995{
1996	/* A GPIO control always takes precedence */
1997	if (rdev->ena_pin)
1998		return rdev->ena_gpio_state;
1999
2000	/* If we don't know then assume that the regulator is always on */
2001	if (!rdev->desc->ops->is_enabled)
2002		return 1;
2003
2004	return rdev->desc->ops->is_enabled(rdev);
2005}
2006
2007/**
2008 * regulator_is_enabled - is the regulator output enabled
2009 * @regulator: regulator source
2010 *
2011 * Returns positive if the regulator driver backing the source/client
2012 * has requested that the device be enabled, zero if it hasn't, else a
2013 * negative errno code.
2014 *
2015 * Note that the device backing this regulator handle can have multiple
2016 * users, so it might be enabled even if regulator_enable() was never
2017 * called for this particular source.
2018 */
2019int regulator_is_enabled(struct regulator *regulator)
2020{
2021	int ret;
2022
2023	if (regulator->always_on)
2024		return 1;
2025
2026	mutex_lock(&regulator->rdev->mutex);
2027	ret = _regulator_is_enabled(regulator->rdev);
2028	mutex_unlock(&regulator->rdev->mutex);
2029
2030	return ret;
2031}
2032EXPORT_SYMBOL_GPL(regulator_is_enabled);
2033
2034/**
2035 * regulator_can_change_voltage - check if regulator can change voltage
2036 * @regulator: regulator source
2037 *
2038 * Returns positive if the regulator driver backing the source/client
2039 * can change its voltage, false otherwise. Usefull for detecting fixed
2040 * or dummy regulators and disabling voltage change logic in the client
2041 * driver.
2042 */
2043int regulator_can_change_voltage(struct regulator *regulator)
2044{
2045	struct regulator_dev	*rdev = regulator->rdev;
2046
2047	if (rdev->constraints &&
2048	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2049		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2050			return 1;
2051
2052		if (rdev->desc->continuous_voltage_range &&
2053		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2054		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2055			return 1;
2056	}
2057
2058	return 0;
2059}
2060EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2061
2062/**
2063 * regulator_count_voltages - count regulator_list_voltage() selectors
2064 * @regulator: regulator source
2065 *
2066 * Returns number of selectors, or negative errno.  Selectors are
2067 * numbered starting at zero, and typically correspond to bitfields
2068 * in hardware registers.
2069 */
2070int regulator_count_voltages(struct regulator *regulator)
2071{
2072	struct regulator_dev	*rdev = regulator->rdev;
2073
2074	return rdev->desc->n_voltages ? : -EINVAL;
2075}
2076EXPORT_SYMBOL_GPL(regulator_count_voltages);
2077
2078/**
2079 * regulator_list_voltage - enumerate supported voltages
2080 * @regulator: regulator source
2081 * @selector: identify voltage to list
2082 * Context: can sleep
2083 *
2084 * Returns a voltage that can be passed to @regulator_set_voltage(),
2085 * zero if this selector code can't be used on this system, or a
2086 * negative errno.
2087 */
2088int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2089{
2090	struct regulator_dev	*rdev = regulator->rdev;
2091	struct regulator_ops	*ops = rdev->desc->ops;
2092	int			ret;
2093
2094	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2095		return -EINVAL;
2096
2097	mutex_lock(&rdev->mutex);
2098	ret = ops->list_voltage(rdev, selector);
2099	mutex_unlock(&rdev->mutex);
2100
2101	if (ret > 0) {
2102		if (ret < rdev->constraints->min_uV)
2103			ret = 0;
2104		else if (ret > rdev->constraints->max_uV)
2105			ret = 0;
2106	}
2107
2108	return ret;
2109}
2110EXPORT_SYMBOL_GPL(regulator_list_voltage);
2111
2112/**
2113 * regulator_get_linear_step - return the voltage step size between VSEL values
2114 * @regulator: regulator source
2115 *
2116 * Returns the voltage step size between VSEL values for linear
2117 * regulators, or return 0 if the regulator isn't a linear regulator.
2118 */
2119unsigned int regulator_get_linear_step(struct regulator *regulator)
2120{
2121	struct regulator_dev *rdev = regulator->rdev;
2122
2123	return rdev->desc->uV_step;
2124}
2125EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2126
2127/**
2128 * regulator_is_supported_voltage - check if a voltage range can be supported
2129 *
2130 * @regulator: Regulator to check.
2131 * @min_uV: Minimum required voltage in uV.
2132 * @max_uV: Maximum required voltage in uV.
2133 *
2134 * Returns a boolean or a negative error code.
2135 */
2136int regulator_is_supported_voltage(struct regulator *regulator,
2137				   int min_uV, int max_uV)
2138{
2139	struct regulator_dev *rdev = regulator->rdev;
2140	int i, voltages, ret;
2141
2142	/* If we can't change voltage check the current voltage */
2143	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2144		ret = regulator_get_voltage(regulator);
2145		if (ret >= 0)
2146			return (min_uV <= ret && ret <= max_uV);
2147		else
2148			return ret;
2149	}
2150
2151	/* Any voltage within constrains range is fine? */
2152	if (rdev->desc->continuous_voltage_range)
2153		return min_uV >= rdev->constraints->min_uV &&
2154				max_uV <= rdev->constraints->max_uV;
2155
2156	ret = regulator_count_voltages(regulator);
2157	if (ret < 0)
2158		return ret;
2159	voltages = ret;
2160
2161	for (i = 0; i < voltages; i++) {
2162		ret = regulator_list_voltage(regulator, i);
2163
2164		if (ret >= min_uV && ret <= max_uV)
2165			return 1;
2166	}
2167
2168	return 0;
2169}
2170EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2171
2172static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2173				     int min_uV, int max_uV)
2174{
2175	int ret;
2176	int delay = 0;
2177	int best_val = 0;
2178	unsigned int selector;
2179	int old_selector = -1;
2180
2181	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2182
2183	min_uV += rdev->constraints->uV_offset;
2184	max_uV += rdev->constraints->uV_offset;
2185
2186	/*
2187	 * If we can't obtain the old selector there is not enough
2188	 * info to call set_voltage_time_sel().
2189	 */
2190	if (_regulator_is_enabled(rdev) &&
2191	    rdev->desc->ops->set_voltage_time_sel &&
2192	    rdev->desc->ops->get_voltage_sel) {
2193		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2194		if (old_selector < 0)
2195			return old_selector;
2196	}
2197
2198	if (rdev->desc->ops->set_voltage) {
2199		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2200						   &selector);
2201
2202		if (ret >= 0) {
2203			if (rdev->desc->ops->list_voltage)
2204				best_val = rdev->desc->ops->list_voltage(rdev,
2205									 selector);
2206			else
2207				best_val = _regulator_get_voltage(rdev);
2208		}
2209
2210	} else if (rdev->desc->ops->set_voltage_sel) {
2211		if (rdev->desc->ops->map_voltage) {
2212			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2213							   max_uV);
2214		} else {
2215			if (rdev->desc->ops->list_voltage ==
2216			    regulator_list_voltage_linear)
2217				ret = regulator_map_voltage_linear(rdev,
2218								min_uV, max_uV);
2219			else
2220				ret = regulator_map_voltage_iterate(rdev,
2221								min_uV, max_uV);
2222		}
2223
2224		if (ret >= 0) {
2225			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2226			if (min_uV <= best_val && max_uV >= best_val) {
2227				selector = ret;
2228				if (old_selector == selector)
2229					ret = 0;
2230				else
2231					ret = rdev->desc->ops->set_voltage_sel(
2232								rdev, ret);
2233			} else {
2234				ret = -EINVAL;
2235			}
2236		}
2237	} else {
2238		ret = -EINVAL;
2239	}
2240
2241	/* Call set_voltage_time_sel if successfully obtained old_selector */
2242	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2243		&& old_selector != selector) {
2244
2245		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2246						old_selector, selector);
2247		if (delay < 0) {
2248			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2249				  delay);
2250			delay = 0;
2251		}
2252
2253		/* Insert any necessary delays */
2254		if (delay >= 1000) {
2255			mdelay(delay / 1000);
2256			udelay(delay % 1000);
2257		} else if (delay) {
2258			udelay(delay);
2259		}
2260	}
2261
2262	if (ret == 0 && best_val >= 0) {
2263		unsigned long data = best_val;
2264
2265		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2266				     (void *)data);
2267	}
2268
2269	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2270
2271	return ret;
2272}
2273
2274/**
2275 * regulator_set_voltage - set regulator output voltage
2276 * @regulator: regulator source
2277 * @min_uV: Minimum required voltage in uV
2278 * @max_uV: Maximum acceptable voltage in uV
2279 *
2280 * Sets a voltage regulator to the desired output voltage. This can be set
2281 * during any regulator state. IOW, regulator can be disabled or enabled.
2282 *
2283 * If the regulator is enabled then the voltage will change to the new value
2284 * immediately otherwise if the regulator is disabled the regulator will
2285 * output at the new voltage when enabled.
2286 *
2287 * NOTE: If the regulator is shared between several devices then the lowest
2288 * request voltage that meets the system constraints will be used.
2289 * Regulator system constraints must be set for this regulator before
2290 * calling this function otherwise this call will fail.
2291 */
2292int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2293{
2294	struct regulator_dev *rdev = regulator->rdev;
2295	int ret = 0;
2296	int old_min_uV, old_max_uV;
2297
2298	mutex_lock(&rdev->mutex);
2299
2300	/* If we're setting the same range as last time the change
2301	 * should be a noop (some cpufreq implementations use the same
2302	 * voltage for multiple frequencies, for example).
2303	 */
2304	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2305		goto out;
2306
2307	/* sanity check */
2308	if (!rdev->desc->ops->set_voltage &&
2309	    !rdev->desc->ops->set_voltage_sel) {
2310		ret = -EINVAL;
2311		goto out;
2312	}
2313
2314	/* constraints check */
2315	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2316	if (ret < 0)
2317		goto out;
2318
2319	/* restore original values in case of error */
2320	old_min_uV = regulator->min_uV;
2321	old_max_uV = regulator->max_uV;
2322	regulator->min_uV = min_uV;
2323	regulator->max_uV = max_uV;
2324
2325	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2326	if (ret < 0)
2327		goto out2;
2328
2329	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2330	if (ret < 0)
2331		goto out2;
2332
2333out:
2334	mutex_unlock(&rdev->mutex);
2335	return ret;
2336out2:
2337	regulator->min_uV = old_min_uV;
2338	regulator->max_uV = old_max_uV;
2339	mutex_unlock(&rdev->mutex);
2340	return ret;
2341}
2342EXPORT_SYMBOL_GPL(regulator_set_voltage);
2343
2344/**
2345 * regulator_set_voltage_time - get raise/fall time
2346 * @regulator: regulator source
2347 * @old_uV: starting voltage in microvolts
2348 * @new_uV: target voltage in microvolts
2349 *
2350 * Provided with the starting and ending voltage, this function attempts to
2351 * calculate the time in microseconds required to rise or fall to this new
2352 * voltage.
2353 */
2354int regulator_set_voltage_time(struct regulator *regulator,
2355			       int old_uV, int new_uV)
2356{
2357	struct regulator_dev	*rdev = regulator->rdev;
2358	struct regulator_ops	*ops = rdev->desc->ops;
2359	int old_sel = -1;
2360	int new_sel = -1;
2361	int voltage;
2362	int i;
2363
2364	/* Currently requires operations to do this */
2365	if (!ops->list_voltage || !ops->set_voltage_time_sel
2366	    || !rdev->desc->n_voltages)
2367		return -EINVAL;
2368
2369	for (i = 0; i < rdev->desc->n_voltages; i++) {
2370		/* We only look for exact voltage matches here */
2371		voltage = regulator_list_voltage(regulator, i);
2372		if (voltage < 0)
2373			return -EINVAL;
2374		if (voltage == 0)
2375			continue;
2376		if (voltage == old_uV)
2377			old_sel = i;
2378		if (voltage == new_uV)
2379			new_sel = i;
2380	}
2381
2382	if (old_sel < 0 || new_sel < 0)
2383		return -EINVAL;
2384
2385	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2386}
2387EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2388
2389/**
2390 * regulator_set_voltage_time_sel - get raise/fall time
2391 * @rdev: regulator source device
2392 * @old_selector: selector for starting voltage
2393 * @new_selector: selector for target voltage
2394 *
2395 * Provided with the starting and target voltage selectors, this function
2396 * returns time in microseconds required to rise or fall to this new voltage
2397 *
2398 * Drivers providing ramp_delay in regulation_constraints can use this as their
2399 * set_voltage_time_sel() operation.
2400 */
2401int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2402				   unsigned int old_selector,
2403				   unsigned int new_selector)
2404{
2405	unsigned int ramp_delay = 0;
2406	int old_volt, new_volt;
2407
2408	if (rdev->constraints->ramp_delay)
2409		ramp_delay = rdev->constraints->ramp_delay;
2410	else if (rdev->desc->ramp_delay)
2411		ramp_delay = rdev->desc->ramp_delay;
2412
2413	if (ramp_delay == 0) {
2414		rdev_warn(rdev, "ramp_delay not set\n");
2415		return 0;
2416	}
2417
2418	/* sanity check */
2419	if (!rdev->desc->ops->list_voltage)
2420		return -EINVAL;
2421
2422	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2423	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2424
2425	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2426}
2427EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2428
2429/**
2430 * regulator_sync_voltage - re-apply last regulator output voltage
2431 * @regulator: regulator source
2432 *
2433 * Re-apply the last configured voltage.  This is intended to be used
2434 * where some external control source the consumer is cooperating with
2435 * has caused the configured voltage to change.
2436 */
2437int regulator_sync_voltage(struct regulator *regulator)
2438{
2439	struct regulator_dev *rdev = regulator->rdev;
2440	int ret, min_uV, max_uV;
2441
2442	mutex_lock(&rdev->mutex);
2443
2444	if (!rdev->desc->ops->set_voltage &&
2445	    !rdev->desc->ops->set_voltage_sel) {
2446		ret = -EINVAL;
2447		goto out;
2448	}
2449
2450	/* This is only going to work if we've had a voltage configured. */
2451	if (!regulator->min_uV && !regulator->max_uV) {
2452		ret = -EINVAL;
2453		goto out;
2454	}
2455
2456	min_uV = regulator->min_uV;
2457	max_uV = regulator->max_uV;
2458
2459	/* This should be a paranoia check... */
2460	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2461	if (ret < 0)
2462		goto out;
2463
2464	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2465	if (ret < 0)
2466		goto out;
2467
2468	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2469
2470out:
2471	mutex_unlock(&rdev->mutex);
2472	return ret;
2473}
2474EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2475
2476static int _regulator_get_voltage(struct regulator_dev *rdev)
2477{
2478	int sel, ret;
2479
2480	if (rdev->desc->ops->get_voltage_sel) {
2481		sel = rdev->desc->ops->get_voltage_sel(rdev);
2482		if (sel < 0)
2483			return sel;
2484		ret = rdev->desc->ops->list_voltage(rdev, sel);
2485	} else if (rdev->desc->ops->get_voltage) {
2486		ret = rdev->desc->ops->get_voltage(rdev);
2487	} else if (rdev->desc->ops->list_voltage) {
2488		ret = rdev->desc->ops->list_voltage(rdev, 0);
2489	} else {
2490		return -EINVAL;
2491	}
2492
2493	if (ret < 0)
2494		return ret;
2495	return ret - rdev->constraints->uV_offset;
2496}
2497
2498/**
2499 * regulator_get_voltage - get regulator output voltage
2500 * @regulator: regulator source
2501 *
2502 * This returns the current regulator voltage in uV.
2503 *
2504 * NOTE: If the regulator is disabled it will return the voltage value. This
2505 * function should not be used to determine regulator state.
2506 */
2507int regulator_get_voltage(struct regulator *regulator)
2508{
2509	int ret;
2510
2511	mutex_lock(&regulator->rdev->mutex);
2512
2513	ret = _regulator_get_voltage(regulator->rdev);
2514
2515	mutex_unlock(&regulator->rdev->mutex);
2516
2517	return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_get_voltage);
2520
2521/**
2522 * regulator_set_current_limit - set regulator output current limit
2523 * @regulator: regulator source
2524 * @min_uA: Minimum supported current in uA
2525 * @max_uA: Maximum supported current in uA
2526 *
2527 * Sets current sink to the desired output current. This can be set during
2528 * any regulator state. IOW, regulator can be disabled or enabled.
2529 *
2530 * If the regulator is enabled then the current will change to the new value
2531 * immediately otherwise if the regulator is disabled the regulator will
2532 * output at the new current when enabled.
2533 *
2534 * NOTE: Regulator system constraints must be set for this regulator before
2535 * calling this function otherwise this call will fail.
2536 */
2537int regulator_set_current_limit(struct regulator *regulator,
2538			       int min_uA, int max_uA)
2539{
2540	struct regulator_dev *rdev = regulator->rdev;
2541	int ret;
2542
2543	mutex_lock(&rdev->mutex);
2544
2545	/* sanity check */
2546	if (!rdev->desc->ops->set_current_limit) {
2547		ret = -EINVAL;
2548		goto out;
2549	}
2550
2551	/* constraints check */
2552	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2553	if (ret < 0)
2554		goto out;
2555
2556	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2557out:
2558	mutex_unlock(&rdev->mutex);
2559	return ret;
2560}
2561EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2562
2563static int _regulator_get_current_limit(struct regulator_dev *rdev)
2564{
2565	int ret;
2566
2567	mutex_lock(&rdev->mutex);
2568
2569	/* sanity check */
2570	if (!rdev->desc->ops->get_current_limit) {
2571		ret = -EINVAL;
2572		goto out;
2573	}
2574
2575	ret = rdev->desc->ops->get_current_limit(rdev);
2576out:
2577	mutex_unlock(&rdev->mutex);
2578	return ret;
2579}
2580
2581/**
2582 * regulator_get_current_limit - get regulator output current
2583 * @regulator: regulator source
2584 *
2585 * This returns the current supplied by the specified current sink in uA.
2586 *
2587 * NOTE: If the regulator is disabled it will return the current value. This
2588 * function should not be used to determine regulator state.
2589 */
2590int regulator_get_current_limit(struct regulator *regulator)
2591{
2592	return _regulator_get_current_limit(regulator->rdev);
2593}
2594EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2595
2596/**
2597 * regulator_set_mode - set regulator operating mode
2598 * @regulator: regulator source
2599 * @mode: operating mode - one of the REGULATOR_MODE constants
2600 *
2601 * Set regulator operating mode to increase regulator efficiency or improve
2602 * regulation performance.
2603 *
2604 * NOTE: Regulator system constraints must be set for this regulator before
2605 * calling this function otherwise this call will fail.
2606 */
2607int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2608{
2609	struct regulator_dev *rdev = regulator->rdev;
2610	int ret;
2611	int regulator_curr_mode;
2612
2613	mutex_lock(&rdev->mutex);
2614
2615	/* sanity check */
2616	if (!rdev->desc->ops->set_mode) {
2617		ret = -EINVAL;
2618		goto out;
2619	}
2620
2621	/* return if the same mode is requested */
2622	if (rdev->desc->ops->get_mode) {
2623		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2624		if (regulator_curr_mode == mode) {
2625			ret = 0;
2626			goto out;
2627		}
2628	}
2629
2630	/* constraints check */
2631	ret = regulator_mode_constrain(rdev, &mode);
2632	if (ret < 0)
2633		goto out;
2634
2635	ret = rdev->desc->ops->set_mode(rdev, mode);
2636out:
2637	mutex_unlock(&rdev->mutex);
2638	return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_set_mode);
2641
2642static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2643{
2644	int ret;
2645
2646	mutex_lock(&rdev->mutex);
2647
2648	/* sanity check */
2649	if (!rdev->desc->ops->get_mode) {
2650		ret = -EINVAL;
2651		goto out;
2652	}
2653
2654	ret = rdev->desc->ops->get_mode(rdev);
2655out:
2656	mutex_unlock(&rdev->mutex);
2657	return ret;
2658}
2659
2660/**
2661 * regulator_get_mode - get regulator operating mode
2662 * @regulator: regulator source
2663 *
2664 * Get the current regulator operating mode.
2665 */
2666unsigned int regulator_get_mode(struct regulator *regulator)
2667{
2668	return _regulator_get_mode(regulator->rdev);
2669}
2670EXPORT_SYMBOL_GPL(regulator_get_mode);
2671
2672/**
2673 * regulator_set_optimum_mode - set regulator optimum operating mode
2674 * @regulator: regulator source
2675 * @uA_load: load current
2676 *
2677 * Notifies the regulator core of a new device load. This is then used by
2678 * DRMS (if enabled by constraints) to set the most efficient regulator
2679 * operating mode for the new regulator loading.
2680 *
2681 * Consumer devices notify their supply regulator of the maximum power
2682 * they will require (can be taken from device datasheet in the power
2683 * consumption tables) when they change operational status and hence power
2684 * state. Examples of operational state changes that can affect power
2685 * consumption are :-
2686 *
2687 *    o Device is opened / closed.
2688 *    o Device I/O is about to begin or has just finished.
2689 *    o Device is idling in between work.
2690 *
2691 * This information is also exported via sysfs to userspace.
2692 *
2693 * DRMS will sum the total requested load on the regulator and change
2694 * to the most efficient operating mode if platform constraints allow.
2695 *
2696 * Returns the new regulator mode or error.
2697 */
2698int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2699{
2700	struct regulator_dev *rdev = regulator->rdev;
2701	struct regulator *consumer;
2702	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2703	unsigned int mode;
2704
2705	if (rdev->supply)
2706		input_uV = regulator_get_voltage(rdev->supply);
2707
2708	mutex_lock(&rdev->mutex);
2709
2710	/*
2711	 * first check to see if we can set modes at all, otherwise just
2712	 * tell the consumer everything is OK.
2713	 */
2714	regulator->uA_load = uA_load;
2715	ret = regulator_check_drms(rdev);
2716	if (ret < 0) {
2717		ret = 0;
2718		goto out;
2719	}
2720
2721	if (!rdev->desc->ops->get_optimum_mode)
2722		goto out;
2723
2724	/*
2725	 * we can actually do this so any errors are indicators of
2726	 * potential real failure.
2727	 */
2728	ret = -EINVAL;
2729
2730	if (!rdev->desc->ops->set_mode)
2731		goto out;
2732
2733	/* get output voltage */
2734	output_uV = _regulator_get_voltage(rdev);
2735	if (output_uV <= 0) {
2736		rdev_err(rdev, "invalid output voltage found\n");
2737		goto out;
2738	}
2739
2740	/* No supply? Use constraint voltage */
2741	if (input_uV <= 0)
2742		input_uV = rdev->constraints->input_uV;
2743	if (input_uV <= 0) {
2744		rdev_err(rdev, "invalid input voltage found\n");
2745		goto out;
2746	}
2747
2748	/* calc total requested load for this regulator */
2749	list_for_each_entry(consumer, &rdev->consumer_list, list)
2750		total_uA_load += consumer->uA_load;
2751
2752	mode = rdev->desc->ops->get_optimum_mode(rdev,
2753						 input_uV, output_uV,
2754						 total_uA_load);
2755	ret = regulator_mode_constrain(rdev, &mode);
2756	if (ret < 0) {
2757		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2758			 total_uA_load, input_uV, output_uV);
2759		goto out;
2760	}
2761
2762	ret = rdev->desc->ops->set_mode(rdev, mode);
2763	if (ret < 0) {
2764		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2765		goto out;
2766	}
2767	ret = mode;
2768out:
2769	mutex_unlock(&rdev->mutex);
2770	return ret;
2771}
2772EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2773
2774/**
2775 * regulator_allow_bypass - allow the regulator to go into bypass mode
2776 *
2777 * @regulator: Regulator to configure
2778 * @enable: enable or disable bypass mode
2779 *
2780 * Allow the regulator to go into bypass mode if all other consumers
2781 * for the regulator also enable bypass mode and the machine
2782 * constraints allow this.  Bypass mode means that the regulator is
2783 * simply passing the input directly to the output with no regulation.
2784 */
2785int regulator_allow_bypass(struct regulator *regulator, bool enable)
2786{
2787	struct regulator_dev *rdev = regulator->rdev;
2788	int ret = 0;
2789
2790	if (!rdev->desc->ops->set_bypass)
2791		return 0;
2792
2793	if (rdev->constraints &&
2794	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2795		return 0;
2796
2797	mutex_lock(&rdev->mutex);
2798
2799	if (enable && !regulator->bypass) {
2800		rdev->bypass_count++;
2801
2802		if (rdev->bypass_count == rdev->open_count) {
2803			ret = rdev->desc->ops->set_bypass(rdev, enable);
2804			if (ret != 0)
2805				rdev->bypass_count--;
2806		}
2807
2808	} else if (!enable && regulator->bypass) {
2809		rdev->bypass_count--;
2810
2811		if (rdev->bypass_count != rdev->open_count) {
2812			ret = rdev->desc->ops->set_bypass(rdev, enable);
2813			if (ret != 0)
2814				rdev->bypass_count++;
2815		}
2816	}
2817
2818	if (ret == 0)
2819		regulator->bypass = enable;
2820
2821	mutex_unlock(&rdev->mutex);
2822
2823	return ret;
2824}
2825EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2826
2827/**
2828 * regulator_register_notifier - register regulator event notifier
2829 * @regulator: regulator source
2830 * @nb: notifier block
2831 *
2832 * Register notifier block to receive regulator events.
2833 */
2834int regulator_register_notifier(struct regulator *regulator,
2835			      struct notifier_block *nb)
2836{
2837	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2838						nb);
2839}
2840EXPORT_SYMBOL_GPL(regulator_register_notifier);
2841
2842/**
2843 * regulator_unregister_notifier - unregister regulator event notifier
2844 * @regulator: regulator source
2845 * @nb: notifier block
2846 *
2847 * Unregister regulator event notifier block.
2848 */
2849int regulator_unregister_notifier(struct regulator *regulator,
2850				struct notifier_block *nb)
2851{
2852	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2853						  nb);
2854}
2855EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2856
2857/* notify regulator consumers and downstream regulator consumers.
2858 * Note mutex must be held by caller.
2859 */
2860static void _notifier_call_chain(struct regulator_dev *rdev,
2861				  unsigned long event, void *data)
2862{
2863	/* call rdev chain first */
2864	blocking_notifier_call_chain(&rdev->notifier, event, data);
2865}
2866
2867/**
2868 * regulator_bulk_get - get multiple regulator consumers
2869 *
2870 * @dev:           Device to supply
2871 * @num_consumers: Number of consumers to register
2872 * @consumers:     Configuration of consumers; clients are stored here.
2873 *
2874 * @return 0 on success, an errno on failure.
2875 *
2876 * This helper function allows drivers to get several regulator
2877 * consumers in one operation.  If any of the regulators cannot be
2878 * acquired then any regulators that were allocated will be freed
2879 * before returning to the caller.
2880 */
2881int regulator_bulk_get(struct device *dev, int num_consumers,
2882		       struct regulator_bulk_data *consumers)
2883{
2884	int i;
2885	int ret;
2886
2887	for (i = 0; i < num_consumers; i++)
2888		consumers[i].consumer = NULL;
2889
2890	for (i = 0; i < num_consumers; i++) {
2891		consumers[i].consumer = regulator_get(dev,
2892						      consumers[i].supply);
2893		if (IS_ERR(consumers[i].consumer)) {
2894			ret = PTR_ERR(consumers[i].consumer);
2895			dev_err(dev, "Failed to get supply '%s': %d\n",
2896				consumers[i].supply, ret);
2897			consumers[i].consumer = NULL;
2898			goto err;
2899		}
2900	}
2901
2902	return 0;
2903
2904err:
2905	while (--i >= 0)
2906		regulator_put(consumers[i].consumer);
2907
2908	return ret;
2909}
2910EXPORT_SYMBOL_GPL(regulator_bulk_get);
2911
2912/**
2913 * devm_regulator_bulk_get - managed get multiple regulator consumers
2914 *
2915 * @dev:           Device to supply
2916 * @num_consumers: Number of consumers to register
2917 * @consumers:     Configuration of consumers; clients are stored here.
2918 *
2919 * @return 0 on success, an errno on failure.
2920 *
2921 * This helper function allows drivers to get several regulator
2922 * consumers in one operation with management, the regulators will
2923 * automatically be freed when the device is unbound.  If any of the
2924 * regulators cannot be acquired then any regulators that were
2925 * allocated will be freed before returning to the caller.
2926 */
2927int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2928			    struct regulator_bulk_data *consumers)
2929{
2930	int i;
2931	int ret;
2932
2933	for (i = 0; i < num_consumers; i++)
2934		consumers[i].consumer = NULL;
2935
2936	for (i = 0; i < num_consumers; i++) {
2937		consumers[i].consumer = devm_regulator_get(dev,
2938							   consumers[i].supply);
2939		if (IS_ERR(consumers[i].consumer)) {
2940			ret = PTR_ERR(consumers[i].consumer);
2941			dev_err(dev, "Failed to get supply '%s': %d\n",
2942				consumers[i].supply, ret);
2943			consumers[i].consumer = NULL;
2944			goto err;
2945		}
2946	}
2947
2948	return 0;
2949
2950err:
2951	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2952		devm_regulator_put(consumers[i].consumer);
2953
2954	return ret;
2955}
2956EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2957
2958static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2959{
2960	struct regulator_bulk_data *bulk = data;
2961
2962	bulk->ret = regulator_enable(bulk->consumer);
2963}
2964
2965/**
2966 * regulator_bulk_enable - enable multiple regulator consumers
2967 *
2968 * @num_consumers: Number of consumers
2969 * @consumers:     Consumer data; clients are stored here.
2970 * @return         0 on success, an errno on failure
2971 *
2972 * This convenience API allows consumers to enable multiple regulator
2973 * clients in a single API call.  If any consumers cannot be enabled
2974 * then any others that were enabled will be disabled again prior to
2975 * return.
2976 */
2977int regulator_bulk_enable(int num_consumers,
2978			  struct regulator_bulk_data *consumers)
2979{
2980	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2981	int i;
2982	int ret = 0;
2983
2984	for (i = 0; i < num_consumers; i++) {
2985		if (consumers[i].consumer->always_on)
2986			consumers[i].ret = 0;
2987		else
2988			async_schedule_domain(regulator_bulk_enable_async,
2989					      &consumers[i], &async_domain);
2990	}
2991
2992	async_synchronize_full_domain(&async_domain);
2993
2994	/* If any consumer failed we need to unwind any that succeeded */
2995	for (i = 0; i < num_consumers; i++) {
2996		if (consumers[i].ret != 0) {
2997			ret = consumers[i].ret;
2998			goto err;
2999		}
3000	}
3001
3002	return 0;
3003
3004err:
3005	for (i = 0; i < num_consumers; i++) {
3006		if (consumers[i].ret < 0)
3007			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3008			       consumers[i].ret);
3009		else
3010			regulator_disable(consumers[i].consumer);
3011	}
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3016
3017/**
3018 * regulator_bulk_disable - disable multiple regulator consumers
3019 *
3020 * @num_consumers: Number of consumers
3021 * @consumers:     Consumer data; clients are stored here.
3022 * @return         0 on success, an errno on failure
3023 *
3024 * This convenience API allows consumers to disable multiple regulator
3025 * clients in a single API call.  If any consumers cannot be disabled
3026 * then any others that were disabled will be enabled again prior to
3027 * return.
3028 */
3029int regulator_bulk_disable(int num_consumers,
3030			   struct regulator_bulk_data *consumers)
3031{
3032	int i;
3033	int ret, r;
3034
3035	for (i = num_consumers - 1; i >= 0; --i) {
3036		ret = regulator_disable(consumers[i].consumer);
3037		if (ret != 0)
3038			goto err;
3039	}
3040
3041	return 0;
3042
3043err:
3044	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3045	for (++i; i < num_consumers; ++i) {
3046		r = regulator_enable(consumers[i].consumer);
3047		if (r != 0)
3048			pr_err("Failed to reename %s: %d\n",
3049			       consumers[i].supply, r);
3050	}
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3055
3056/**
3057 * regulator_bulk_force_disable - force disable multiple regulator consumers
3058 *
3059 * @num_consumers: Number of consumers
3060 * @consumers:     Consumer data; clients are stored here.
3061 * @return         0 on success, an errno on failure
3062 *
3063 * This convenience API allows consumers to forcibly disable multiple regulator
3064 * clients in a single API call.
3065 * NOTE: This should be used for situations when device damage will
3066 * likely occur if the regulators are not disabled (e.g. over temp).
3067 * Although regulator_force_disable function call for some consumers can
3068 * return error numbers, the function is called for all consumers.
3069 */
3070int regulator_bulk_force_disable(int num_consumers,
3071			   struct regulator_bulk_data *consumers)
3072{
3073	int i;
3074	int ret;
3075
3076	for (i = 0; i < num_consumers; i++)
3077		consumers[i].ret =
3078			    regulator_force_disable(consumers[i].consumer);
3079
3080	for (i = 0; i < num_consumers; i++) {
3081		if (consumers[i].ret != 0) {
3082			ret = consumers[i].ret;
3083			goto out;
3084		}
3085	}
3086
3087	return 0;
3088out:
3089	return ret;
3090}
3091EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3092
3093/**
3094 * regulator_bulk_free - free multiple regulator consumers
3095 *
3096 * @num_consumers: Number of consumers
3097 * @consumers:     Consumer data; clients are stored here.
3098 *
3099 * This convenience API allows consumers to free multiple regulator
3100 * clients in a single API call.
3101 */
3102void regulator_bulk_free(int num_consumers,
3103			 struct regulator_bulk_data *consumers)
3104{
3105	int i;
3106
3107	for (i = 0; i < num_consumers; i++) {
3108		regulator_put(consumers[i].consumer);
3109		consumers[i].consumer = NULL;
3110	}
3111}
3112EXPORT_SYMBOL_GPL(regulator_bulk_free);
3113
3114/**
3115 * regulator_notifier_call_chain - call regulator event notifier
3116 * @rdev: regulator source
3117 * @event: notifier block
3118 * @data: callback-specific data.
3119 *
3120 * Called by regulator drivers to notify clients a regulator event has
3121 * occurred. We also notify regulator clients downstream.
3122 * Note lock must be held by caller.
3123 */
3124int regulator_notifier_call_chain(struct regulator_dev *rdev,
3125				  unsigned long event, void *data)
3126{
3127	_notifier_call_chain(rdev, event, data);
3128	return NOTIFY_DONE;
3129
3130}
3131EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3132
3133/**
3134 * regulator_mode_to_status - convert a regulator mode into a status
3135 *
3136 * @mode: Mode to convert
3137 *
3138 * Convert a regulator mode into a status.
3139 */
3140int regulator_mode_to_status(unsigned int mode)
3141{
3142	switch (mode) {
3143	case REGULATOR_MODE_FAST:
3144		return REGULATOR_STATUS_FAST;
3145	case REGULATOR_MODE_NORMAL:
3146		return REGULATOR_STATUS_NORMAL;
3147	case REGULATOR_MODE_IDLE:
3148		return REGULATOR_STATUS_IDLE;
3149	case REGULATOR_MODE_STANDBY:
3150		return REGULATOR_STATUS_STANDBY;
3151	default:
3152		return REGULATOR_STATUS_UNDEFINED;
3153	}
3154}
3155EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3156
3157/*
3158 * To avoid cluttering sysfs (and memory) with useless state, only
3159 * create attributes that can be meaningfully displayed.
3160 */
3161static int add_regulator_attributes(struct regulator_dev *rdev)
3162{
3163	struct device		*dev = &rdev->dev;
3164	struct regulator_ops	*ops = rdev->desc->ops;
3165	int			status = 0;
3166
3167	/* some attributes need specific methods to be displayed */
3168	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3169	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3170	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3171		status = device_create_file(dev, &dev_attr_microvolts);
3172		if (status < 0)
3173			return status;
3174	}
3175	if (ops->get_current_limit) {
3176		status = device_create_file(dev, &dev_attr_microamps);
3177		if (status < 0)
3178			return status;
3179	}
3180	if (ops->get_mode) {
3181		status = device_create_file(dev, &dev_attr_opmode);
3182		if (status < 0)
3183			return status;
3184	}
3185	if (rdev->ena_pin || ops->is_enabled) {
3186		status = device_create_file(dev, &dev_attr_state);
3187		if (status < 0)
3188			return status;
3189	}
3190	if (ops->get_status) {
3191		status = device_create_file(dev, &dev_attr_status);
3192		if (status < 0)
3193			return status;
3194	}
3195	if (ops->get_bypass) {
3196		status = device_create_file(dev, &dev_attr_bypass);
3197		if (status < 0)
3198			return status;
3199	}
3200
3201	/* some attributes are type-specific */
3202	if (rdev->desc->type == REGULATOR_CURRENT) {
3203		status = device_create_file(dev, &dev_attr_requested_microamps);
3204		if (status < 0)
3205			return status;
3206	}
3207
3208	/* all the other attributes exist to support constraints;
3209	 * don't show them if there are no constraints, or if the
3210	 * relevant supporting methods are missing.
3211	 */
3212	if (!rdev->constraints)
3213		return status;
3214
3215	/* constraints need specific supporting methods */
3216	if (ops->set_voltage || ops->set_voltage_sel) {
3217		status = device_create_file(dev, &dev_attr_min_microvolts);
3218		if (status < 0)
3219			return status;
3220		status = device_create_file(dev, &dev_attr_max_microvolts);
3221		if (status < 0)
3222			return status;
3223	}
3224	if (ops->set_current_limit) {
3225		status = device_create_file(dev, &dev_attr_min_microamps);
3226		if (status < 0)
3227			return status;
3228		status = device_create_file(dev, &dev_attr_max_microamps);
3229		if (status < 0)
3230			return status;
3231	}
3232
3233	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3234	if (status < 0)
3235		return status;
3236	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3237	if (status < 0)
3238		return status;
3239	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3240	if (status < 0)
3241		return status;
3242
3243	if (ops->set_suspend_voltage) {
3244		status = device_create_file(dev,
3245				&dev_attr_suspend_standby_microvolts);
3246		if (status < 0)
3247			return status;
3248		status = device_create_file(dev,
3249				&dev_attr_suspend_mem_microvolts);
3250		if (status < 0)
3251			return status;
3252		status = device_create_file(dev,
3253				&dev_attr_suspend_disk_microvolts);
3254		if (status < 0)
3255			return status;
3256	}
3257
3258	if (ops->set_suspend_mode) {
3259		status = device_create_file(dev,
3260				&dev_attr_suspend_standby_mode);
3261		if (status < 0)
3262			return status;
3263		status = device_create_file(dev,
3264				&dev_attr_suspend_mem_mode);
3265		if (status < 0)
3266			return status;
3267		status = device_create_file(dev,
3268				&dev_attr_suspend_disk_mode);
3269		if (status < 0)
3270			return status;
3271	}
3272
3273	return status;
3274}
3275
3276static void rdev_init_debugfs(struct regulator_dev *rdev)
3277{
3278	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3279	if (!rdev->debugfs) {
3280		rdev_warn(rdev, "Failed to create debugfs directory\n");
3281		return;
3282	}
3283
3284	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3285			   &rdev->use_count);
3286	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3287			   &rdev->open_count);
3288	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3289			   &rdev->bypass_count);
3290}
3291
3292/**
3293 * regulator_register - register regulator
3294 * @regulator_desc: regulator to register
3295 * @config: runtime configuration for regulator
3296 *
3297 * Called by regulator drivers to register a regulator.
3298 * Returns a valid pointer to struct regulator_dev on success
3299 * or an ERR_PTR() on error.
3300 */
3301struct regulator_dev *
3302regulator_register(const struct regulator_desc *regulator_desc,
3303		   const struct regulator_config *config)
3304{
3305	const struct regulation_constraints *constraints = NULL;
3306	const struct regulator_init_data *init_data;
3307	static atomic_t regulator_no = ATOMIC_INIT(0);
3308	struct regulator_dev *rdev;
3309	struct device *dev;
3310	int ret, i;
3311	const char *supply = NULL;
3312
3313	if (regulator_desc == NULL || config == NULL)
3314		return ERR_PTR(-EINVAL);
3315
3316	dev = config->dev;
3317	WARN_ON(!dev);
3318
3319	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3320		return ERR_PTR(-EINVAL);
3321
3322	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3323	    regulator_desc->type != REGULATOR_CURRENT)
3324		return ERR_PTR(-EINVAL);
3325
3326	/* Only one of each should be implemented */
3327	WARN_ON(regulator_desc->ops->get_voltage &&
3328		regulator_desc->ops->get_voltage_sel);
3329	WARN_ON(regulator_desc->ops->set_voltage &&
3330		regulator_desc->ops->set_voltage_sel);
3331
3332	/* If we're using selectors we must implement list_voltage. */
3333	if (regulator_desc->ops->get_voltage_sel &&
3334	    !regulator_desc->ops->list_voltage) {
3335		return ERR_PTR(-EINVAL);
3336	}
3337	if (regulator_desc->ops->set_voltage_sel &&
3338	    !regulator_desc->ops->list_voltage) {
3339		return ERR_PTR(-EINVAL);
3340	}
3341
3342	init_data = config->init_data;
3343
3344	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3345	if (rdev == NULL)
3346		return ERR_PTR(-ENOMEM);
3347
3348	mutex_lock(&regulator_list_mutex);
3349
3350	mutex_init(&rdev->mutex);
3351	rdev->reg_data = config->driver_data;
3352	rdev->owner = regulator_desc->owner;
3353	rdev->desc = regulator_desc;
3354	if (config->regmap)
3355		rdev->regmap = config->regmap;
3356	else if (dev_get_regmap(dev, NULL))
3357		rdev->regmap = dev_get_regmap(dev, NULL);
3358	else if (dev->parent)
3359		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3360	INIT_LIST_HEAD(&rdev->consumer_list);
3361	INIT_LIST_HEAD(&rdev->list);
3362	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3363	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3364
3365	/* preform any regulator specific init */
3366	if (init_data && init_data->regulator_init) {
3367		ret = init_data->regulator_init(rdev->reg_data);
3368		if (ret < 0)
3369			goto clean;
3370	}
3371
3372	/* register with sysfs */
3373	rdev->dev.class = &regulator_class;
3374	rdev->dev.of_node = config->of_node;
3375	rdev->dev.parent = dev;
3376	dev_set_name(&rdev->dev, "regulator.%d",
3377		     atomic_inc_return(&regulator_no) - 1);
3378	ret = device_register(&rdev->dev);
3379	if (ret != 0) {
3380		put_device(&rdev->dev);
3381		goto clean;
3382	}
3383
3384	dev_set_drvdata(&rdev->dev, rdev);
3385
3386	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3387		ret = regulator_ena_gpio_request(rdev, config);
3388		if (ret != 0) {
3389			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3390				 config->ena_gpio, ret);
3391			goto wash;
3392		}
3393
3394		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3395			rdev->ena_gpio_state = 1;
3396
3397		if (config->ena_gpio_invert)
3398			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3399	}
3400
3401	/* set regulator constraints */
3402	if (init_data)
3403		constraints = &init_data->constraints;
3404
3405	ret = set_machine_constraints(rdev, constraints);
3406	if (ret < 0)
3407		goto scrub;
3408
3409	/* add attributes supported by this regulator */
3410	ret = add_regulator_attributes(rdev);
3411	if (ret < 0)
3412		goto scrub;
3413
3414	if (init_data && init_data->supply_regulator)
3415		supply = init_data->supply_regulator;
3416	else if (regulator_desc->supply_name)
3417		supply = regulator_desc->supply_name;
3418
3419	if (supply) {
3420		struct regulator_dev *r;
3421
3422		r = regulator_dev_lookup(dev, supply, &ret);
3423
3424		if (ret == -ENODEV) {
3425			/*
3426			 * No supply was specified for this regulator and
3427			 * there will never be one.
3428			 */
3429			ret = 0;
3430			goto add_dev;
3431		} else if (!r) {
3432			dev_err(dev, "Failed to find supply %s\n", supply);
3433			ret = -EPROBE_DEFER;
3434			goto scrub;
3435		}
3436
3437		ret = set_supply(rdev, r);
3438		if (ret < 0)
3439			goto scrub;
3440
3441		/* Enable supply if rail is enabled */
3442		if (_regulator_is_enabled(rdev)) {
3443			ret = regulator_enable(rdev->supply);
3444			if (ret < 0)
3445				goto scrub;
3446		}
3447	}
3448
3449add_dev:
3450	/* add consumers devices */
3451	if (init_data) {
3452		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3453			ret = set_consumer_device_supply(rdev,
3454				init_data->consumer_supplies[i].dev_name,
3455				init_data->consumer_supplies[i].supply);
3456			if (ret < 0) {
3457				dev_err(dev, "Failed to set supply %s\n",
3458					init_data->consumer_supplies[i].supply);
3459				goto unset_supplies;
3460			}
3461		}
3462	}
3463
3464	list_add(&rdev->list, &regulator_list);
3465
3466	rdev_init_debugfs(rdev);
3467out:
3468	mutex_unlock(&regulator_list_mutex);
3469	return rdev;
3470
3471unset_supplies:
3472	unset_regulator_supplies(rdev);
3473
3474scrub:
3475	if (rdev->supply)
3476		_regulator_put(rdev->supply);
3477	regulator_ena_gpio_free(rdev);
3478	kfree(rdev->constraints);
3479wash:
3480	device_unregister(&rdev->dev);
3481	/* device core frees rdev */
3482	rdev = ERR_PTR(ret);
3483	goto out;
3484
3485clean:
3486	kfree(rdev);
3487	rdev = ERR_PTR(ret);
3488	goto out;
3489}
3490EXPORT_SYMBOL_GPL(regulator_register);
3491
3492/**
3493 * regulator_unregister - unregister regulator
3494 * @rdev: regulator to unregister
3495 *
3496 * Called by regulator drivers to unregister a regulator.
3497 */
3498void regulator_unregister(struct regulator_dev *rdev)
3499{
3500	if (rdev == NULL)
3501		return;
3502
3503	if (rdev->supply) {
3504		while (rdev->use_count--)
3505			regulator_disable(rdev->supply);
3506		regulator_put(rdev->supply);
3507	}
3508	mutex_lock(&regulator_list_mutex);
3509	debugfs_remove_recursive(rdev->debugfs);
3510	flush_work(&rdev->disable_work.work);
3511	WARN_ON(rdev->open_count);
3512	unset_regulator_supplies(rdev);
3513	list_del(&rdev->list);
3514	kfree(rdev->constraints);
3515	regulator_ena_gpio_free(rdev);
3516	device_unregister(&rdev->dev);
3517	mutex_unlock(&regulator_list_mutex);
3518}
3519EXPORT_SYMBOL_GPL(regulator_unregister);
3520
3521/**
3522 * regulator_suspend_prepare - prepare regulators for system wide suspend
3523 * @state: system suspend state
3524 *
3525 * Configure each regulator with it's suspend operating parameters for state.
3526 * This will usually be called by machine suspend code prior to supending.
3527 */
3528int regulator_suspend_prepare(suspend_state_t state)
3529{
3530	struct regulator_dev *rdev;
3531	int ret = 0;
3532
3533	/* ON is handled by regulator active state */
3534	if (state == PM_SUSPEND_ON)
3535		return -EINVAL;
3536
3537	mutex_lock(&regulator_list_mutex);
3538	list_for_each_entry(rdev, &regulator_list, list) {
3539
3540		mutex_lock(&rdev->mutex);
3541		ret = suspend_prepare(rdev, state);
3542		mutex_unlock(&rdev->mutex);
3543
3544		if (ret < 0) {
3545			rdev_err(rdev, "failed to prepare\n");
3546			goto out;
3547		}
3548	}
3549out:
3550	mutex_unlock(&regulator_list_mutex);
3551	return ret;
3552}
3553EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3554
3555/**
3556 * regulator_suspend_finish - resume regulators from system wide suspend
3557 *
3558 * Turn on regulators that might be turned off by regulator_suspend_prepare
3559 * and that should be turned on according to the regulators properties.
3560 */
3561int regulator_suspend_finish(void)
3562{
3563	struct regulator_dev *rdev;
3564	int ret = 0, error;
3565
3566	mutex_lock(&regulator_list_mutex);
3567	list_for_each_entry(rdev, &regulator_list, list) {
3568		struct regulator_ops *ops = rdev->desc->ops;
3569
3570		mutex_lock(&rdev->mutex);
3571		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3572				ops->enable) {
3573			error = ops->enable(rdev);
3574			if (error)
3575				ret = error;
3576		} else {
3577			if (!has_full_constraints)
3578				goto unlock;
3579			if (!ops->disable)
3580				goto unlock;
3581			if (!_regulator_is_enabled(rdev))
3582				goto unlock;
3583
3584			error = ops->disable(rdev);
3585			if (error)
3586				ret = error;
3587		}
3588unlock:
3589		mutex_unlock(&rdev->mutex);
3590	}
3591	mutex_unlock(&regulator_list_mutex);
3592	return ret;
3593}
3594EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3595
3596/**
3597 * regulator_has_full_constraints - the system has fully specified constraints
3598 *
3599 * Calling this function will cause the regulator API to disable all
3600 * regulators which have a zero use count and don't have an always_on
3601 * constraint in a late_initcall.
3602 *
3603 * The intention is that this will become the default behaviour in a
3604 * future kernel release so users are encouraged to use this facility
3605 * now.
3606 */
3607void regulator_has_full_constraints(void)
3608{
3609	has_full_constraints = 1;
3610}
3611EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3612
3613/**
3614 * rdev_get_drvdata - get rdev regulator driver data
3615 * @rdev: regulator
3616 *
3617 * Get rdev regulator driver private data. This call can be used in the
3618 * regulator driver context.
3619 */
3620void *rdev_get_drvdata(struct regulator_dev *rdev)
3621{
3622	return rdev->reg_data;
3623}
3624EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3625
3626/**
3627 * regulator_get_drvdata - get regulator driver data
3628 * @regulator: regulator
3629 *
3630 * Get regulator driver private data. This call can be used in the consumer
3631 * driver context when non API regulator specific functions need to be called.
3632 */
3633void *regulator_get_drvdata(struct regulator *regulator)
3634{
3635	return regulator->rdev->reg_data;
3636}
3637EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3638
3639/**
3640 * regulator_set_drvdata - set regulator driver data
3641 * @regulator: regulator
3642 * @data: data
3643 */
3644void regulator_set_drvdata(struct regulator *regulator, void *data)
3645{
3646	regulator->rdev->reg_data = data;
3647}
3648EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3649
3650/**
3651 * regulator_get_id - get regulator ID
3652 * @rdev: regulator
3653 */
3654int rdev_get_id(struct regulator_dev *rdev)
3655{
3656	return rdev->desc->id;
3657}
3658EXPORT_SYMBOL_GPL(rdev_get_id);
3659
3660struct device *rdev_get_dev(struct regulator_dev *rdev)
3661{
3662	return &rdev->dev;
3663}
3664EXPORT_SYMBOL_GPL(rdev_get_dev);
3665
3666void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3667{
3668	return reg_init_data->driver_data;
3669}
3670EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3671
3672#ifdef CONFIG_DEBUG_FS
3673static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3674				    size_t count, loff_t *ppos)
3675{
3676	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3677	ssize_t len, ret = 0;
3678	struct regulator_map *map;
3679
3680	if (!buf)
3681		return -ENOMEM;
3682
3683	list_for_each_entry(map, &regulator_map_list, list) {
3684		len = snprintf(buf + ret, PAGE_SIZE - ret,
3685			       "%s -> %s.%s\n",
3686			       rdev_get_name(map->regulator), map->dev_name,
3687			       map->supply);
3688		if (len >= 0)
3689			ret += len;
3690		if (ret > PAGE_SIZE) {
3691			ret = PAGE_SIZE;
3692			break;
3693		}
3694	}
3695
3696	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3697
3698	kfree(buf);
3699
3700	return ret;
3701}
3702#endif
3703
3704static const struct file_operations supply_map_fops = {
3705#ifdef CONFIG_DEBUG_FS
3706	.read = supply_map_read_file,
3707	.llseek = default_llseek,
3708#endif
3709};
3710
3711static int __init regulator_init(void)
3712{
3713	int ret;
3714
3715	ret = class_register(&regulator_class);
3716
3717	debugfs_root = debugfs_create_dir("regulator", NULL);
3718	if (!debugfs_root)
3719		pr_warn("regulator: Failed to create debugfs directory\n");
3720
3721	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3722			    &supply_map_fops);
3723
3724	regulator_dummy_init();
3725
3726	return ret;
3727}
3728
3729/* init early to allow our consumers to complete system booting */
3730core_initcall(regulator_init);
3731
3732static int __init regulator_init_complete(void)
3733{
3734	struct regulator_dev *rdev;
3735	struct regulator_ops *ops;
3736	struct regulation_constraints *c;
3737	int enabled, ret;
3738
3739	/*
3740	 * Since DT doesn't provide an idiomatic mechanism for
3741	 * enabling full constraints and since it's much more natural
3742	 * with DT to provide them just assume that a DT enabled
3743	 * system has full constraints.
3744	 */
3745	if (of_have_populated_dt())
3746		has_full_constraints = true;
3747
3748	mutex_lock(&regulator_list_mutex);
3749
3750	/* If we have a full configuration then disable any regulators
3751	 * which are not in use or always_on.  This will become the
3752	 * default behaviour in the future.
3753	 */
3754	list_for_each_entry(rdev, &regulator_list, list) {
3755		ops = rdev->desc->ops;
3756		c = rdev->constraints;
3757
3758		if (!ops->disable || (c && c->always_on))
3759			continue;
3760
3761		mutex_lock(&rdev->mutex);
3762
3763		if (rdev->use_count)
3764			goto unlock;
3765
3766		/* If we can't read the status assume it's on. */
3767		if (ops->is_enabled)
3768			enabled = ops->is_enabled(rdev);
3769		else
3770			enabled = 1;
3771
3772		if (!enabled)
3773			goto unlock;
3774
3775		if (has_full_constraints) {
3776			/* We log since this may kill the system if it
3777			 * goes wrong. */
3778			rdev_info(rdev, "disabling\n");
3779			ret = ops->disable(rdev);
3780			if (ret != 0) {
3781				rdev_err(rdev, "couldn't disable: %d\n", ret);
3782			}
3783		} else {
3784			/* The intention is that in future we will
3785			 * assume that full constraints are provided
3786			 * so warn even if we aren't going to do
3787			 * anything here.
3788			 */
3789			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3790		}
3791
3792unlock:
3793		mutex_unlock(&rdev->mutex);
3794	}
3795
3796	mutex_unlock(&regulator_list_mutex);
3797
3798	return 0;
3799}
3800late_initcall(regulator_init_complete);
3801