core.c revision 40f9244f4da8976eeb6d5ed6313c635ba238a9d3
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544		return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	/* constrain machine-level voltage specs to fit
696	 * the actual range supported by this regulator.
697	 */
698	if (ops->list_voltage && rdev->desc->n_voltages) {
699		int	count = rdev->desc->n_voltages;
700		int	i;
701		int	min_uV = INT_MAX;
702		int	max_uV = INT_MIN;
703		int	cmin = constraints->min_uV;
704		int	cmax = constraints->max_uV;
705
706		/* it's safe to autoconfigure fixed-voltage supplies
707		   and the constraints are used by list_voltage. */
708		if (count == 1 && !cmin) {
709			cmin = 1;
710			cmax = INT_MAX;
711			constraints->min_uV = cmin;
712			constraints->max_uV = cmax;
713		}
714
715		/* voltage constraints are optional */
716		if ((cmin == 0) && (cmax == 0))
717			goto out;
718
719		/* else require explicit machine-level constraints */
720		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721			pr_err("%s: %s '%s' voltage constraints\n",
722				       __func__, "invalid", name);
723			ret = -EINVAL;
724			goto out;
725		}
726
727		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728		for (i = 0; i < count; i++) {
729			int	value;
730
731			value = ops->list_voltage(rdev, i);
732			if (value <= 0)
733				continue;
734
735			/* maybe adjust [min_uV..max_uV] */
736			if (value >= cmin && value < min_uV)
737				min_uV = value;
738			if (value <= cmax && value > max_uV)
739				max_uV = value;
740		}
741
742		/* final: [min_uV..max_uV] valid iff constraints valid */
743		if (max_uV < min_uV) {
744			pr_err("%s: %s '%s' voltage constraints\n",
745				       __func__, "unsupportable", name);
746			ret = -EINVAL;
747			goto out;
748		}
749
750		/* use regulator's subset of machine constraints */
751		if (constraints->min_uV < min_uV) {
752			pr_debug("%s: override '%s' %s, %d -> %d\n",
753				       __func__, name, "min_uV",
754					constraints->min_uV, min_uV);
755			constraints->min_uV = min_uV;
756		}
757		if (constraints->max_uV > max_uV) {
758			pr_debug("%s: override '%s' %s, %d -> %d\n",
759				       __func__, name, "max_uV",
760					constraints->max_uV, max_uV);
761			constraints->max_uV = max_uV;
762		}
763	}
764
765	rdev->constraints = constraints;
766
767	/* do we need to apply the constraint voltage */
768	if (rdev->constraints->apply_uV &&
769		rdev->constraints->min_uV == rdev->constraints->max_uV &&
770		ops->set_voltage) {
771		ret = ops->set_voltage(rdev,
772			rdev->constraints->min_uV, rdev->constraints->max_uV);
773			if (ret < 0) {
774				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775				       __func__,
776				       rdev->constraints->min_uV, name);
777				rdev->constraints = NULL;
778				goto out;
779			}
780	}
781
782	/* do we need to setup our suspend state */
783	if (constraints->initial_state) {
784		ret = suspend_prepare(rdev, constraints->initial_state);
785		if (ret < 0) {
786			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787			       __func__, name);
788			rdev->constraints = NULL;
789			goto out;
790		}
791	}
792
793	if (constraints->initial_mode) {
794		if (!ops->set_mode) {
795			printk(KERN_ERR "%s: no set_mode operation for %s\n",
796			       __func__, name);
797			ret = -EINVAL;
798			goto out;
799		}
800
801		ret = ops->set_mode(rdev, constraints->initial_mode);
802		if (ret < 0) {
803			printk(KERN_ERR
804			       "%s: failed to set initial mode for %s: %d\n",
805			       __func__, name, ret);
806			goto out;
807		}
808	}
809
810	/* If the constraints say the regulator should be on at this point
811	 * and we have control then make sure it is enabled.
812	 */
813	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814		ret = ops->enable(rdev);
815		if (ret < 0) {
816			printk(KERN_ERR "%s: failed to enable %s\n",
817			       __func__, name);
818			rdev->constraints = NULL;
819			goto out;
820		}
821	}
822
823	print_constraints(rdev);
824out:
825	return ret;
826}
827
828/**
829 * set_supply - set regulator supply regulator
830 * @rdev: regulator name
831 * @supply_rdev: supply regulator name
832 *
833 * Called by platform initialisation code to set the supply regulator for this
834 * regulator. This ensures that a regulators supply will also be enabled by the
835 * core if it's child is enabled.
836 */
837static int set_supply(struct regulator_dev *rdev,
838	struct regulator_dev *supply_rdev)
839{
840	int err;
841
842	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843				"supply");
844	if (err) {
845		printk(KERN_ERR
846		       "%s: could not add device link %s err %d\n",
847		       __func__, supply_rdev->dev.kobj.name, err);
848		       goto out;
849	}
850	rdev->supply = supply_rdev;
851	list_add(&rdev->slist, &supply_rdev->supply_list);
852out:
853	return err;
854}
855
856/**
857 * set_consumer_device_supply: Bind a regulator to a symbolic supply
858 * @rdev:         regulator source
859 * @consumer_dev: device the supply applies to
860 * @consumer_dev_name: dev_name() string for device supply applies to
861 * @supply:       symbolic name for supply
862 *
863 * Allows platform initialisation code to map physical regulator
864 * sources to symbolic names for supplies for use by devices.  Devices
865 * should use these symbolic names to request regulators, avoiding the
866 * need to provide board-specific regulator names as platform data.
867 *
868 * Only one of consumer_dev and consumer_dev_name may be specified.
869 */
870static int set_consumer_device_supply(struct regulator_dev *rdev,
871	struct device *consumer_dev, const char *consumer_dev_name,
872	const char *supply)
873{
874	struct regulator_map *node;
875
876	if (consumer_dev && consumer_dev_name)
877		return -EINVAL;
878
879	if (!consumer_dev_name && consumer_dev)
880		consumer_dev_name = dev_name(consumer_dev);
881
882	if (supply == NULL)
883		return -EINVAL;
884
885	list_for_each_entry(node, &regulator_map_list, list) {
886		if (consumer_dev_name != node->dev_name)
887			continue;
888		if (strcmp(node->supply, supply) != 0)
889			continue;
890
891		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
892				dev_name(&node->regulator->dev),
893				node->regulator->desc->name,
894				supply,
895				dev_name(&rdev->dev), rdev->desc->name);
896		return -EBUSY;
897	}
898
899	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
900	if (node == NULL)
901		return -ENOMEM;
902
903	node->regulator = rdev;
904	node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
905	node->supply = supply;
906
907	if (node->dev_name == NULL) {
908		kfree(node);
909		return -ENOMEM;
910	}
911
912	list_add(&node->list, &regulator_map_list);
913	return 0;
914}
915
916static void unset_consumer_device_supply(struct regulator_dev *rdev,
917	const char *consumer_dev_name, struct device *consumer_dev)
918{
919	struct regulator_map *node, *n;
920
921	if (consumer_dev && !consumer_dev_name)
922		consumer_dev_name = dev_name(consumer_dev);
923
924	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
925		if (rdev != node->regulator)
926			continue;
927
928		if (consumer_dev_name && node->dev_name &&
929		    strcmp(consumer_dev_name, node->dev_name))
930			continue;
931
932		list_del(&node->list);
933		kfree(node->dev_name);
934		kfree(node);
935		return;
936	}
937}
938
939static void unset_regulator_supplies(struct regulator_dev *rdev)
940{
941	struct regulator_map *node, *n;
942
943	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
944		if (rdev == node->regulator) {
945			list_del(&node->list);
946			kfree(node->dev_name);
947			kfree(node);
948			return;
949		}
950	}
951}
952
953#define REG_STR_SIZE	32
954
955static struct regulator *create_regulator(struct regulator_dev *rdev,
956					  struct device *dev,
957					  const char *supply_name)
958{
959	struct regulator *regulator;
960	char buf[REG_STR_SIZE];
961	int err, size;
962
963	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
964	if (regulator == NULL)
965		return NULL;
966
967	mutex_lock(&rdev->mutex);
968	regulator->rdev = rdev;
969	list_add(&regulator->list, &rdev->consumer_list);
970
971	if (dev) {
972		/* create a 'requested_microamps_name' sysfs entry */
973		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
974			supply_name);
975		if (size >= REG_STR_SIZE)
976			goto overflow_err;
977
978		regulator->dev = dev;
979		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
980		if (regulator->dev_attr.attr.name == NULL)
981			goto attr_name_err;
982
983		regulator->dev_attr.attr.owner = THIS_MODULE;
984		regulator->dev_attr.attr.mode = 0444;
985		regulator->dev_attr.show = device_requested_uA_show;
986		err = device_create_file(dev, &regulator->dev_attr);
987		if (err < 0) {
988			printk(KERN_WARNING "%s: could not add regulator_dev"
989				" load sysfs\n", __func__);
990			goto attr_name_err;
991		}
992
993		/* also add a link to the device sysfs entry */
994		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
995				 dev->kobj.name, supply_name);
996		if (size >= REG_STR_SIZE)
997			goto attr_err;
998
999		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1000		if (regulator->supply_name == NULL)
1001			goto attr_err;
1002
1003		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1004					buf);
1005		if (err) {
1006			printk(KERN_WARNING
1007			       "%s: could not add device link %s err %d\n",
1008			       __func__, dev->kobj.name, err);
1009			device_remove_file(dev, &regulator->dev_attr);
1010			goto link_name_err;
1011		}
1012	}
1013	mutex_unlock(&rdev->mutex);
1014	return regulator;
1015link_name_err:
1016	kfree(regulator->supply_name);
1017attr_err:
1018	device_remove_file(regulator->dev, &regulator->dev_attr);
1019attr_name_err:
1020	kfree(regulator->dev_attr.attr.name);
1021overflow_err:
1022	list_del(&regulator->list);
1023	kfree(regulator);
1024	mutex_unlock(&rdev->mutex);
1025	return NULL;
1026}
1027
1028/**
1029 * regulator_get - lookup and obtain a reference to a regulator.
1030 * @dev: device for regulator "consumer"
1031 * @id: Supply name or regulator ID.
1032 *
1033 * Returns a struct regulator corresponding to the regulator producer,
1034 * or IS_ERR() condition containing errno.
1035 *
1036 * Use of supply names configured via regulator_set_device_supply() is
1037 * strongly encouraged.  It is recommended that the supply name used
1038 * should match the name used for the supply and/or the relevant
1039 * device pins in the datasheet.
1040 */
1041struct regulator *regulator_get(struct device *dev, const char *id)
1042{
1043	struct regulator_dev *rdev;
1044	struct regulator_map *map;
1045	struct regulator *regulator = ERR_PTR(-ENODEV);
1046	const char *devname = NULL;
1047
1048	if (id == NULL) {
1049		printk(KERN_ERR "regulator: get() with no identifier\n");
1050		return regulator;
1051	}
1052
1053	if (dev)
1054		devname = dev_name(dev);
1055
1056	mutex_lock(&regulator_list_mutex);
1057
1058	list_for_each_entry(map, &regulator_map_list, list) {
1059		/* If the mapping has a device set up it must match */
1060		if (map->dev_name &&
1061		    (!devname || strcmp(map->dev_name, devname)))
1062			continue;
1063
1064		if (strcmp(map->supply, id) == 0) {
1065			rdev = map->regulator;
1066			goto found;
1067		}
1068	}
1069	mutex_unlock(&regulator_list_mutex);
1070	return regulator;
1071
1072found:
1073	if (!try_module_get(rdev->owner))
1074		goto out;
1075
1076	regulator = create_regulator(rdev, dev, id);
1077	if (regulator == NULL) {
1078		regulator = ERR_PTR(-ENOMEM);
1079		module_put(rdev->owner);
1080	}
1081
1082out:
1083	mutex_unlock(&regulator_list_mutex);
1084	return regulator;
1085}
1086EXPORT_SYMBOL_GPL(regulator_get);
1087
1088/**
1089 * regulator_put - "free" the regulator source
1090 * @regulator: regulator source
1091 *
1092 * Note: drivers must ensure that all regulator_enable calls made on this
1093 * regulator source are balanced by regulator_disable calls prior to calling
1094 * this function.
1095 */
1096void regulator_put(struct regulator *regulator)
1097{
1098	struct regulator_dev *rdev;
1099
1100	if (regulator == NULL || IS_ERR(regulator))
1101		return;
1102
1103	mutex_lock(&regulator_list_mutex);
1104	rdev = regulator->rdev;
1105
1106	/* remove any sysfs entries */
1107	if (regulator->dev) {
1108		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1109		kfree(regulator->supply_name);
1110		device_remove_file(regulator->dev, &regulator->dev_attr);
1111		kfree(regulator->dev_attr.attr.name);
1112	}
1113	list_del(&regulator->list);
1114	kfree(regulator);
1115
1116	module_put(rdev->owner);
1117	mutex_unlock(&regulator_list_mutex);
1118}
1119EXPORT_SYMBOL_GPL(regulator_put);
1120
1121/* locks held by regulator_enable() */
1122static int _regulator_enable(struct regulator_dev *rdev)
1123{
1124	int ret = -EINVAL;
1125
1126	if (!rdev->constraints) {
1127		printk(KERN_ERR "%s: %s has no constraints\n",
1128		       __func__, rdev->desc->name);
1129		return ret;
1130	}
1131
1132	/* do we need to enable the supply regulator first */
1133	if (rdev->supply) {
1134		ret = _regulator_enable(rdev->supply);
1135		if (ret < 0) {
1136			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1137			       __func__, rdev->desc->name, ret);
1138			return ret;
1139		}
1140	}
1141
1142	/* check voltage and requested load before enabling */
1143	if (rdev->desc->ops->enable) {
1144
1145		if (rdev->constraints &&
1146			(rdev->constraints->valid_ops_mask &
1147			REGULATOR_CHANGE_DRMS))
1148			drms_uA_update(rdev);
1149
1150		ret = rdev->desc->ops->enable(rdev);
1151		if (ret < 0) {
1152			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1153			       __func__, rdev->desc->name, ret);
1154			return ret;
1155		}
1156		rdev->use_count++;
1157		return ret;
1158	}
1159
1160	return ret;
1161}
1162
1163/**
1164 * regulator_enable - enable regulator output
1165 * @regulator: regulator source
1166 *
1167 * Request that the regulator be enabled with the regulator output at
1168 * the predefined voltage or current value.  Calls to regulator_enable()
1169 * must be balanced with calls to regulator_disable().
1170 *
1171 * NOTE: the output value can be set by other drivers, boot loader or may be
1172 * hardwired in the regulator.
1173 */
1174int regulator_enable(struct regulator *regulator)
1175{
1176	struct regulator_dev *rdev = regulator->rdev;
1177	int ret = 0;
1178
1179	mutex_lock(&rdev->mutex);
1180	ret = _regulator_enable(rdev);
1181	mutex_unlock(&rdev->mutex);
1182	return ret;
1183}
1184EXPORT_SYMBOL_GPL(regulator_enable);
1185
1186/* locks held by regulator_disable() */
1187static int _regulator_disable(struct regulator_dev *rdev)
1188{
1189	int ret = 0;
1190
1191	if (WARN(rdev->use_count <= 0,
1192			"unbalanced disables for %s\n",
1193			rdev->desc->name))
1194		return -EIO;
1195
1196	/* are we the last user and permitted to disable ? */
1197	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1198
1199		/* we are last user */
1200		if (rdev->desc->ops->disable) {
1201			ret = rdev->desc->ops->disable(rdev);
1202			if (ret < 0) {
1203				printk(KERN_ERR "%s: failed to disable %s\n",
1204				       __func__, rdev->desc->name);
1205				return ret;
1206			}
1207		}
1208
1209		/* decrease our supplies ref count and disable if required */
1210		if (rdev->supply)
1211			_regulator_disable(rdev->supply);
1212
1213		rdev->use_count = 0;
1214	} else if (rdev->use_count > 1) {
1215
1216		if (rdev->constraints &&
1217			(rdev->constraints->valid_ops_mask &
1218			REGULATOR_CHANGE_DRMS))
1219			drms_uA_update(rdev);
1220
1221		rdev->use_count--;
1222	}
1223	return ret;
1224}
1225
1226/**
1227 * regulator_disable - disable regulator output
1228 * @regulator: regulator source
1229 *
1230 * Disable the regulator output voltage or current.  Calls to
1231 * regulator_enable() must be balanced with calls to
1232 * regulator_disable().
1233 *
1234 * NOTE: this will only disable the regulator output if no other consumer
1235 * devices have it enabled, the regulator device supports disabling and
1236 * machine constraints permit this operation.
1237 */
1238int regulator_disable(struct regulator *regulator)
1239{
1240	struct regulator_dev *rdev = regulator->rdev;
1241	int ret = 0;
1242
1243	mutex_lock(&rdev->mutex);
1244	ret = _regulator_disable(rdev);
1245	mutex_unlock(&rdev->mutex);
1246	return ret;
1247}
1248EXPORT_SYMBOL_GPL(regulator_disable);
1249
1250/* locks held by regulator_force_disable() */
1251static int _regulator_force_disable(struct regulator_dev *rdev)
1252{
1253	int ret = 0;
1254
1255	/* force disable */
1256	if (rdev->desc->ops->disable) {
1257		/* ah well, who wants to live forever... */
1258		ret = rdev->desc->ops->disable(rdev);
1259		if (ret < 0) {
1260			printk(KERN_ERR "%s: failed to force disable %s\n",
1261			       __func__, rdev->desc->name);
1262			return ret;
1263		}
1264		/* notify other consumers that power has been forced off */
1265		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1266			NULL);
1267	}
1268
1269	/* decrease our supplies ref count and disable if required */
1270	if (rdev->supply)
1271		_regulator_disable(rdev->supply);
1272
1273	rdev->use_count = 0;
1274	return ret;
1275}
1276
1277/**
1278 * regulator_force_disable - force disable regulator output
1279 * @regulator: regulator source
1280 *
1281 * Forcibly disable the regulator output voltage or current.
1282 * NOTE: this *will* disable the regulator output even if other consumer
1283 * devices have it enabled. This should be used for situations when device
1284 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1285 */
1286int regulator_force_disable(struct regulator *regulator)
1287{
1288	int ret;
1289
1290	mutex_lock(&regulator->rdev->mutex);
1291	regulator->uA_load = 0;
1292	ret = _regulator_force_disable(regulator->rdev);
1293	mutex_unlock(&regulator->rdev->mutex);
1294	return ret;
1295}
1296EXPORT_SYMBOL_GPL(regulator_force_disable);
1297
1298static int _regulator_is_enabled(struct regulator_dev *rdev)
1299{
1300	int ret;
1301
1302	mutex_lock(&rdev->mutex);
1303
1304	/* sanity check */
1305	if (!rdev->desc->ops->is_enabled) {
1306		ret = -EINVAL;
1307		goto out;
1308	}
1309
1310	ret = rdev->desc->ops->is_enabled(rdev);
1311out:
1312	mutex_unlock(&rdev->mutex);
1313	return ret;
1314}
1315
1316/**
1317 * regulator_is_enabled - is the regulator output enabled
1318 * @regulator: regulator source
1319 *
1320 * Returns positive if the regulator driver backing the source/client
1321 * has requested that the device be enabled, zero if it hasn't, else a
1322 * negative errno code.
1323 *
1324 * Note that the device backing this regulator handle can have multiple
1325 * users, so it might be enabled even if regulator_enable() was never
1326 * called for this particular source.
1327 */
1328int regulator_is_enabled(struct regulator *regulator)
1329{
1330	return _regulator_is_enabled(regulator->rdev);
1331}
1332EXPORT_SYMBOL_GPL(regulator_is_enabled);
1333
1334/**
1335 * regulator_count_voltages - count regulator_list_voltage() selectors
1336 * @regulator: regulator source
1337 *
1338 * Returns number of selectors, or negative errno.  Selectors are
1339 * numbered starting at zero, and typically correspond to bitfields
1340 * in hardware registers.
1341 */
1342int regulator_count_voltages(struct regulator *regulator)
1343{
1344	struct regulator_dev	*rdev = regulator->rdev;
1345
1346	return rdev->desc->n_voltages ? : -EINVAL;
1347}
1348EXPORT_SYMBOL_GPL(regulator_count_voltages);
1349
1350/**
1351 * regulator_list_voltage - enumerate supported voltages
1352 * @regulator: regulator source
1353 * @selector: identify voltage to list
1354 * Context: can sleep
1355 *
1356 * Returns a voltage that can be passed to @regulator_set_voltage(),
1357 * zero if this selector code can't be used on this sytem, or a
1358 * negative errno.
1359 */
1360int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1361{
1362	struct regulator_dev	*rdev = regulator->rdev;
1363	struct regulator_ops	*ops = rdev->desc->ops;
1364	int			ret;
1365
1366	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1367		return -EINVAL;
1368
1369	mutex_lock(&rdev->mutex);
1370	ret = ops->list_voltage(rdev, selector);
1371	mutex_unlock(&rdev->mutex);
1372
1373	if (ret > 0) {
1374		if (ret < rdev->constraints->min_uV)
1375			ret = 0;
1376		else if (ret > rdev->constraints->max_uV)
1377			ret = 0;
1378	}
1379
1380	return ret;
1381}
1382EXPORT_SYMBOL_GPL(regulator_list_voltage);
1383
1384/**
1385 * regulator_set_voltage - set regulator output voltage
1386 * @regulator: regulator source
1387 * @min_uV: Minimum required voltage in uV
1388 * @max_uV: Maximum acceptable voltage in uV
1389 *
1390 * Sets a voltage regulator to the desired output voltage. This can be set
1391 * during any regulator state. IOW, regulator can be disabled or enabled.
1392 *
1393 * If the regulator is enabled then the voltage will change to the new value
1394 * immediately otherwise if the regulator is disabled the regulator will
1395 * output at the new voltage when enabled.
1396 *
1397 * NOTE: If the regulator is shared between several devices then the lowest
1398 * request voltage that meets the system constraints will be used.
1399 * Regulator system constraints must be set for this regulator before
1400 * calling this function otherwise this call will fail.
1401 */
1402int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1403{
1404	struct regulator_dev *rdev = regulator->rdev;
1405	int ret;
1406
1407	mutex_lock(&rdev->mutex);
1408
1409	/* sanity check */
1410	if (!rdev->desc->ops->set_voltage) {
1411		ret = -EINVAL;
1412		goto out;
1413	}
1414
1415	/* constraints check */
1416	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1417	if (ret < 0)
1418		goto out;
1419	regulator->min_uV = min_uV;
1420	regulator->max_uV = max_uV;
1421	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1422
1423out:
1424	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1425	mutex_unlock(&rdev->mutex);
1426	return ret;
1427}
1428EXPORT_SYMBOL_GPL(regulator_set_voltage);
1429
1430static int _regulator_get_voltage(struct regulator_dev *rdev)
1431{
1432	/* sanity check */
1433	if (rdev->desc->ops->get_voltage)
1434		return rdev->desc->ops->get_voltage(rdev);
1435	else
1436		return -EINVAL;
1437}
1438
1439/**
1440 * regulator_get_voltage - get regulator output voltage
1441 * @regulator: regulator source
1442 *
1443 * This returns the current regulator voltage in uV.
1444 *
1445 * NOTE: If the regulator is disabled it will return the voltage value. This
1446 * function should not be used to determine regulator state.
1447 */
1448int regulator_get_voltage(struct regulator *regulator)
1449{
1450	int ret;
1451
1452	mutex_lock(&regulator->rdev->mutex);
1453
1454	ret = _regulator_get_voltage(regulator->rdev);
1455
1456	mutex_unlock(&regulator->rdev->mutex);
1457
1458	return ret;
1459}
1460EXPORT_SYMBOL_GPL(regulator_get_voltage);
1461
1462/**
1463 * regulator_set_current_limit - set regulator output current limit
1464 * @regulator: regulator source
1465 * @min_uA: Minimuum supported current in uA
1466 * @max_uA: Maximum supported current in uA
1467 *
1468 * Sets current sink to the desired output current. This can be set during
1469 * any regulator state. IOW, regulator can be disabled or enabled.
1470 *
1471 * If the regulator is enabled then the current will change to the new value
1472 * immediately otherwise if the regulator is disabled the regulator will
1473 * output at the new current when enabled.
1474 *
1475 * NOTE: Regulator system constraints must be set for this regulator before
1476 * calling this function otherwise this call will fail.
1477 */
1478int regulator_set_current_limit(struct regulator *regulator,
1479			       int min_uA, int max_uA)
1480{
1481	struct regulator_dev *rdev = regulator->rdev;
1482	int ret;
1483
1484	mutex_lock(&rdev->mutex);
1485
1486	/* sanity check */
1487	if (!rdev->desc->ops->set_current_limit) {
1488		ret = -EINVAL;
1489		goto out;
1490	}
1491
1492	/* constraints check */
1493	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1494	if (ret < 0)
1495		goto out;
1496
1497	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1498out:
1499	mutex_unlock(&rdev->mutex);
1500	return ret;
1501}
1502EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1503
1504static int _regulator_get_current_limit(struct regulator_dev *rdev)
1505{
1506	int ret;
1507
1508	mutex_lock(&rdev->mutex);
1509
1510	/* sanity check */
1511	if (!rdev->desc->ops->get_current_limit) {
1512		ret = -EINVAL;
1513		goto out;
1514	}
1515
1516	ret = rdev->desc->ops->get_current_limit(rdev);
1517out:
1518	mutex_unlock(&rdev->mutex);
1519	return ret;
1520}
1521
1522/**
1523 * regulator_get_current_limit - get regulator output current
1524 * @regulator: regulator source
1525 *
1526 * This returns the current supplied by the specified current sink in uA.
1527 *
1528 * NOTE: If the regulator is disabled it will return the current value. This
1529 * function should not be used to determine regulator state.
1530 */
1531int regulator_get_current_limit(struct regulator *regulator)
1532{
1533	return _regulator_get_current_limit(regulator->rdev);
1534}
1535EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1536
1537/**
1538 * regulator_set_mode - set regulator operating mode
1539 * @regulator: regulator source
1540 * @mode: operating mode - one of the REGULATOR_MODE constants
1541 *
1542 * Set regulator operating mode to increase regulator efficiency or improve
1543 * regulation performance.
1544 *
1545 * NOTE: Regulator system constraints must be set for this regulator before
1546 * calling this function otherwise this call will fail.
1547 */
1548int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1549{
1550	struct regulator_dev *rdev = regulator->rdev;
1551	int ret;
1552
1553	mutex_lock(&rdev->mutex);
1554
1555	/* sanity check */
1556	if (!rdev->desc->ops->set_mode) {
1557		ret = -EINVAL;
1558		goto out;
1559	}
1560
1561	/* constraints check */
1562	ret = regulator_check_mode(rdev, mode);
1563	if (ret < 0)
1564		goto out;
1565
1566	ret = rdev->desc->ops->set_mode(rdev, mode);
1567out:
1568	mutex_unlock(&rdev->mutex);
1569	return ret;
1570}
1571EXPORT_SYMBOL_GPL(regulator_set_mode);
1572
1573static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1574{
1575	int ret;
1576
1577	mutex_lock(&rdev->mutex);
1578
1579	/* sanity check */
1580	if (!rdev->desc->ops->get_mode) {
1581		ret = -EINVAL;
1582		goto out;
1583	}
1584
1585	ret = rdev->desc->ops->get_mode(rdev);
1586out:
1587	mutex_unlock(&rdev->mutex);
1588	return ret;
1589}
1590
1591/**
1592 * regulator_get_mode - get regulator operating mode
1593 * @regulator: regulator source
1594 *
1595 * Get the current regulator operating mode.
1596 */
1597unsigned int regulator_get_mode(struct regulator *regulator)
1598{
1599	return _regulator_get_mode(regulator->rdev);
1600}
1601EXPORT_SYMBOL_GPL(regulator_get_mode);
1602
1603/**
1604 * regulator_set_optimum_mode - set regulator optimum operating mode
1605 * @regulator: regulator source
1606 * @uA_load: load current
1607 *
1608 * Notifies the regulator core of a new device load. This is then used by
1609 * DRMS (if enabled by constraints) to set the most efficient regulator
1610 * operating mode for the new regulator loading.
1611 *
1612 * Consumer devices notify their supply regulator of the maximum power
1613 * they will require (can be taken from device datasheet in the power
1614 * consumption tables) when they change operational status and hence power
1615 * state. Examples of operational state changes that can affect power
1616 * consumption are :-
1617 *
1618 *    o Device is opened / closed.
1619 *    o Device I/O is about to begin or has just finished.
1620 *    o Device is idling in between work.
1621 *
1622 * This information is also exported via sysfs to userspace.
1623 *
1624 * DRMS will sum the total requested load on the regulator and change
1625 * to the most efficient operating mode if platform constraints allow.
1626 *
1627 * Returns the new regulator mode or error.
1628 */
1629int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1630{
1631	struct regulator_dev *rdev = regulator->rdev;
1632	struct regulator *consumer;
1633	int ret, output_uV, input_uV, total_uA_load = 0;
1634	unsigned int mode;
1635
1636	mutex_lock(&rdev->mutex);
1637
1638	regulator->uA_load = uA_load;
1639	ret = regulator_check_drms(rdev);
1640	if (ret < 0)
1641		goto out;
1642	ret = -EINVAL;
1643
1644	/* sanity check */
1645	if (!rdev->desc->ops->get_optimum_mode)
1646		goto out;
1647
1648	/* get output voltage */
1649	output_uV = rdev->desc->ops->get_voltage(rdev);
1650	if (output_uV <= 0) {
1651		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1652			__func__, rdev->desc->name);
1653		goto out;
1654	}
1655
1656	/* get input voltage */
1657	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1658		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1659	else
1660		input_uV = rdev->constraints->input_uV;
1661	if (input_uV <= 0) {
1662		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1663			__func__, rdev->desc->name);
1664		goto out;
1665	}
1666
1667	/* calc total requested load for this regulator */
1668	list_for_each_entry(consumer, &rdev->consumer_list, list)
1669	    total_uA_load += consumer->uA_load;
1670
1671	mode = rdev->desc->ops->get_optimum_mode(rdev,
1672						 input_uV, output_uV,
1673						 total_uA_load);
1674	ret = regulator_check_mode(rdev, mode);
1675	if (ret < 0) {
1676		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1677			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1678			total_uA_load, input_uV, output_uV);
1679		goto out;
1680	}
1681
1682	ret = rdev->desc->ops->set_mode(rdev, mode);
1683	if (ret < 0) {
1684		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1685			__func__, mode, rdev->desc->name);
1686		goto out;
1687	}
1688	ret = mode;
1689out:
1690	mutex_unlock(&rdev->mutex);
1691	return ret;
1692}
1693EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1694
1695/**
1696 * regulator_register_notifier - register regulator event notifier
1697 * @regulator: regulator source
1698 * @nb: notifier block
1699 *
1700 * Register notifier block to receive regulator events.
1701 */
1702int regulator_register_notifier(struct regulator *regulator,
1703			      struct notifier_block *nb)
1704{
1705	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1706						nb);
1707}
1708EXPORT_SYMBOL_GPL(regulator_register_notifier);
1709
1710/**
1711 * regulator_unregister_notifier - unregister regulator event notifier
1712 * @regulator: regulator source
1713 * @nb: notifier block
1714 *
1715 * Unregister regulator event notifier block.
1716 */
1717int regulator_unregister_notifier(struct regulator *regulator,
1718				struct notifier_block *nb)
1719{
1720	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1721						  nb);
1722}
1723EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1724
1725/* notify regulator consumers and downstream regulator consumers.
1726 * Note mutex must be held by caller.
1727 */
1728static void _notifier_call_chain(struct regulator_dev *rdev,
1729				  unsigned long event, void *data)
1730{
1731	struct regulator_dev *_rdev;
1732
1733	/* call rdev chain first */
1734	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1735
1736	/* now notify regulator we supply */
1737	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1738	  mutex_lock(&_rdev->mutex);
1739	  _notifier_call_chain(_rdev, event, data);
1740	  mutex_unlock(&_rdev->mutex);
1741	}
1742}
1743
1744/**
1745 * regulator_bulk_get - get multiple regulator consumers
1746 *
1747 * @dev:           Device to supply
1748 * @num_consumers: Number of consumers to register
1749 * @consumers:     Configuration of consumers; clients are stored here.
1750 *
1751 * @return 0 on success, an errno on failure.
1752 *
1753 * This helper function allows drivers to get several regulator
1754 * consumers in one operation.  If any of the regulators cannot be
1755 * acquired then any regulators that were allocated will be freed
1756 * before returning to the caller.
1757 */
1758int regulator_bulk_get(struct device *dev, int num_consumers,
1759		       struct regulator_bulk_data *consumers)
1760{
1761	int i;
1762	int ret;
1763
1764	for (i = 0; i < num_consumers; i++)
1765		consumers[i].consumer = NULL;
1766
1767	for (i = 0; i < num_consumers; i++) {
1768		consumers[i].consumer = regulator_get(dev,
1769						      consumers[i].supply);
1770		if (IS_ERR(consumers[i].consumer)) {
1771			dev_err(dev, "Failed to get supply '%s'\n",
1772				consumers[i].supply);
1773			ret = PTR_ERR(consumers[i].consumer);
1774			consumers[i].consumer = NULL;
1775			goto err;
1776		}
1777	}
1778
1779	return 0;
1780
1781err:
1782	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1783		regulator_put(consumers[i].consumer);
1784
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(regulator_bulk_get);
1788
1789/**
1790 * regulator_bulk_enable - enable multiple regulator consumers
1791 *
1792 * @num_consumers: Number of consumers
1793 * @consumers:     Consumer data; clients are stored here.
1794 * @return         0 on success, an errno on failure
1795 *
1796 * This convenience API allows consumers to enable multiple regulator
1797 * clients in a single API call.  If any consumers cannot be enabled
1798 * then any others that were enabled will be disabled again prior to
1799 * return.
1800 */
1801int regulator_bulk_enable(int num_consumers,
1802			  struct regulator_bulk_data *consumers)
1803{
1804	int i;
1805	int ret;
1806
1807	for (i = 0; i < num_consumers; i++) {
1808		ret = regulator_enable(consumers[i].consumer);
1809		if (ret != 0)
1810			goto err;
1811	}
1812
1813	return 0;
1814
1815err:
1816	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1817	for (i = 0; i < num_consumers; i++)
1818		regulator_disable(consumers[i].consumer);
1819
1820	return ret;
1821}
1822EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1823
1824/**
1825 * regulator_bulk_disable - disable multiple regulator consumers
1826 *
1827 * @num_consumers: Number of consumers
1828 * @consumers:     Consumer data; clients are stored here.
1829 * @return         0 on success, an errno on failure
1830 *
1831 * This convenience API allows consumers to disable multiple regulator
1832 * clients in a single API call.  If any consumers cannot be enabled
1833 * then any others that were disabled will be disabled again prior to
1834 * return.
1835 */
1836int regulator_bulk_disable(int num_consumers,
1837			   struct regulator_bulk_data *consumers)
1838{
1839	int i;
1840	int ret;
1841
1842	for (i = 0; i < num_consumers; i++) {
1843		ret = regulator_disable(consumers[i].consumer);
1844		if (ret != 0)
1845			goto err;
1846	}
1847
1848	return 0;
1849
1850err:
1851	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1852	for (i = 0; i < num_consumers; i++)
1853		regulator_enable(consumers[i].consumer);
1854
1855	return ret;
1856}
1857EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1858
1859/**
1860 * regulator_bulk_free - free multiple regulator consumers
1861 *
1862 * @num_consumers: Number of consumers
1863 * @consumers:     Consumer data; clients are stored here.
1864 *
1865 * This convenience API allows consumers to free multiple regulator
1866 * clients in a single API call.
1867 */
1868void regulator_bulk_free(int num_consumers,
1869			 struct regulator_bulk_data *consumers)
1870{
1871	int i;
1872
1873	for (i = 0; i < num_consumers; i++) {
1874		regulator_put(consumers[i].consumer);
1875		consumers[i].consumer = NULL;
1876	}
1877}
1878EXPORT_SYMBOL_GPL(regulator_bulk_free);
1879
1880/**
1881 * regulator_notifier_call_chain - call regulator event notifier
1882 * @rdev: regulator source
1883 * @event: notifier block
1884 * @data: callback-specific data.
1885 *
1886 * Called by regulator drivers to notify clients a regulator event has
1887 * occurred. We also notify regulator clients downstream.
1888 * Note lock must be held by caller.
1889 */
1890int regulator_notifier_call_chain(struct regulator_dev *rdev,
1891				  unsigned long event, void *data)
1892{
1893	_notifier_call_chain(rdev, event, data);
1894	return NOTIFY_DONE;
1895
1896}
1897EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1898
1899/**
1900 * regulator_mode_to_status - convert a regulator mode into a status
1901 *
1902 * @mode: Mode to convert
1903 *
1904 * Convert a regulator mode into a status.
1905 */
1906int regulator_mode_to_status(unsigned int mode)
1907{
1908	switch (mode) {
1909	case REGULATOR_MODE_FAST:
1910		return REGULATOR_STATUS_FAST;
1911	case REGULATOR_MODE_NORMAL:
1912		return REGULATOR_STATUS_NORMAL;
1913	case REGULATOR_MODE_IDLE:
1914		return REGULATOR_STATUS_IDLE;
1915	case REGULATOR_STATUS_STANDBY:
1916		return REGULATOR_STATUS_STANDBY;
1917	default:
1918		return 0;
1919	}
1920}
1921EXPORT_SYMBOL_GPL(regulator_mode_to_status);
1922
1923/*
1924 * To avoid cluttering sysfs (and memory) with useless state, only
1925 * create attributes that can be meaningfully displayed.
1926 */
1927static int add_regulator_attributes(struct regulator_dev *rdev)
1928{
1929	struct device		*dev = &rdev->dev;
1930	struct regulator_ops	*ops = rdev->desc->ops;
1931	int			status = 0;
1932
1933	/* some attributes need specific methods to be displayed */
1934	if (ops->get_voltage) {
1935		status = device_create_file(dev, &dev_attr_microvolts);
1936		if (status < 0)
1937			return status;
1938	}
1939	if (ops->get_current_limit) {
1940		status = device_create_file(dev, &dev_attr_microamps);
1941		if (status < 0)
1942			return status;
1943	}
1944	if (ops->get_mode) {
1945		status = device_create_file(dev, &dev_attr_opmode);
1946		if (status < 0)
1947			return status;
1948	}
1949	if (ops->is_enabled) {
1950		status = device_create_file(dev, &dev_attr_state);
1951		if (status < 0)
1952			return status;
1953	}
1954	if (ops->get_status) {
1955		status = device_create_file(dev, &dev_attr_status);
1956		if (status < 0)
1957			return status;
1958	}
1959
1960	/* some attributes are type-specific */
1961	if (rdev->desc->type == REGULATOR_CURRENT) {
1962		status = device_create_file(dev, &dev_attr_requested_microamps);
1963		if (status < 0)
1964			return status;
1965	}
1966
1967	/* all the other attributes exist to support constraints;
1968	 * don't show them if there are no constraints, or if the
1969	 * relevant supporting methods are missing.
1970	 */
1971	if (!rdev->constraints)
1972		return status;
1973
1974	/* constraints need specific supporting methods */
1975	if (ops->set_voltage) {
1976		status = device_create_file(dev, &dev_attr_min_microvolts);
1977		if (status < 0)
1978			return status;
1979		status = device_create_file(dev, &dev_attr_max_microvolts);
1980		if (status < 0)
1981			return status;
1982	}
1983	if (ops->set_current_limit) {
1984		status = device_create_file(dev, &dev_attr_min_microamps);
1985		if (status < 0)
1986			return status;
1987		status = device_create_file(dev, &dev_attr_max_microamps);
1988		if (status < 0)
1989			return status;
1990	}
1991
1992	/* suspend mode constraints need multiple supporting methods */
1993	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1994		return status;
1995
1996	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1997	if (status < 0)
1998		return status;
1999	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2000	if (status < 0)
2001		return status;
2002	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2003	if (status < 0)
2004		return status;
2005
2006	if (ops->set_suspend_voltage) {
2007		status = device_create_file(dev,
2008				&dev_attr_suspend_standby_microvolts);
2009		if (status < 0)
2010			return status;
2011		status = device_create_file(dev,
2012				&dev_attr_suspend_mem_microvolts);
2013		if (status < 0)
2014			return status;
2015		status = device_create_file(dev,
2016				&dev_attr_suspend_disk_microvolts);
2017		if (status < 0)
2018			return status;
2019	}
2020
2021	if (ops->set_suspend_mode) {
2022		status = device_create_file(dev,
2023				&dev_attr_suspend_standby_mode);
2024		if (status < 0)
2025			return status;
2026		status = device_create_file(dev,
2027				&dev_attr_suspend_mem_mode);
2028		if (status < 0)
2029			return status;
2030		status = device_create_file(dev,
2031				&dev_attr_suspend_disk_mode);
2032		if (status < 0)
2033			return status;
2034	}
2035
2036	return status;
2037}
2038
2039/**
2040 * regulator_register - register regulator
2041 * @regulator_desc: regulator to register
2042 * @dev: struct device for the regulator
2043 * @init_data: platform provided init data, passed through by driver
2044 * @driver_data: private regulator data
2045 *
2046 * Called by regulator drivers to register a regulator.
2047 * Returns 0 on success.
2048 */
2049struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2050	struct device *dev, struct regulator_init_data *init_data,
2051	void *driver_data)
2052{
2053	static atomic_t regulator_no = ATOMIC_INIT(0);
2054	struct regulator_dev *rdev;
2055	int ret, i;
2056
2057	if (regulator_desc == NULL)
2058		return ERR_PTR(-EINVAL);
2059
2060	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2061		return ERR_PTR(-EINVAL);
2062
2063	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2064	    regulator_desc->type != REGULATOR_CURRENT)
2065		return ERR_PTR(-EINVAL);
2066
2067	if (!init_data)
2068		return ERR_PTR(-EINVAL);
2069
2070	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2071	if (rdev == NULL)
2072		return ERR_PTR(-ENOMEM);
2073
2074	mutex_lock(&regulator_list_mutex);
2075
2076	mutex_init(&rdev->mutex);
2077	rdev->reg_data = driver_data;
2078	rdev->owner = regulator_desc->owner;
2079	rdev->desc = regulator_desc;
2080	INIT_LIST_HEAD(&rdev->consumer_list);
2081	INIT_LIST_HEAD(&rdev->supply_list);
2082	INIT_LIST_HEAD(&rdev->list);
2083	INIT_LIST_HEAD(&rdev->slist);
2084	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2085
2086	/* preform any regulator specific init */
2087	if (init_data->regulator_init) {
2088		ret = init_data->regulator_init(rdev->reg_data);
2089		if (ret < 0)
2090			goto clean;
2091	}
2092
2093	/* register with sysfs */
2094	rdev->dev.class = &regulator_class;
2095	rdev->dev.parent = dev;
2096	dev_set_name(&rdev->dev, "regulator.%d",
2097		     atomic_inc_return(&regulator_no) - 1);
2098	ret = device_register(&rdev->dev);
2099	if (ret != 0)
2100		goto clean;
2101
2102	dev_set_drvdata(&rdev->dev, rdev);
2103
2104	/* set regulator constraints */
2105	ret = set_machine_constraints(rdev, &init_data->constraints);
2106	if (ret < 0)
2107		goto scrub;
2108
2109	/* add attributes supported by this regulator */
2110	ret = add_regulator_attributes(rdev);
2111	if (ret < 0)
2112		goto scrub;
2113
2114	/* set supply regulator if it exists */
2115	if (init_data->supply_regulator_dev) {
2116		ret = set_supply(rdev,
2117			dev_get_drvdata(init_data->supply_regulator_dev));
2118		if (ret < 0)
2119			goto scrub;
2120	}
2121
2122	/* add consumers devices */
2123	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2124		ret = set_consumer_device_supply(rdev,
2125			init_data->consumer_supplies[i].dev,
2126			init_data->consumer_supplies[i].dev_name,
2127			init_data->consumer_supplies[i].supply);
2128		if (ret < 0) {
2129			for (--i; i >= 0; i--)
2130				unset_consumer_device_supply(rdev,
2131				    init_data->consumer_supplies[i].dev_name,
2132				    init_data->consumer_supplies[i].dev);
2133			goto scrub;
2134		}
2135	}
2136
2137	list_add(&rdev->list, &regulator_list);
2138out:
2139	mutex_unlock(&regulator_list_mutex);
2140	return rdev;
2141
2142scrub:
2143	device_unregister(&rdev->dev);
2144	/* device core frees rdev */
2145	rdev = ERR_PTR(ret);
2146	goto out;
2147
2148clean:
2149	kfree(rdev);
2150	rdev = ERR_PTR(ret);
2151	goto out;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register);
2154
2155/**
2156 * regulator_unregister - unregister regulator
2157 * @rdev: regulator to unregister
2158 *
2159 * Called by regulator drivers to unregister a regulator.
2160 */
2161void regulator_unregister(struct regulator_dev *rdev)
2162{
2163	if (rdev == NULL)
2164		return;
2165
2166	mutex_lock(&regulator_list_mutex);
2167	unset_regulator_supplies(rdev);
2168	list_del(&rdev->list);
2169	if (rdev->supply)
2170		sysfs_remove_link(&rdev->dev.kobj, "supply");
2171	device_unregister(&rdev->dev);
2172	mutex_unlock(&regulator_list_mutex);
2173}
2174EXPORT_SYMBOL_GPL(regulator_unregister);
2175
2176/**
2177 * regulator_suspend_prepare - prepare regulators for system wide suspend
2178 * @state: system suspend state
2179 *
2180 * Configure each regulator with it's suspend operating parameters for state.
2181 * This will usually be called by machine suspend code prior to supending.
2182 */
2183int regulator_suspend_prepare(suspend_state_t state)
2184{
2185	struct regulator_dev *rdev;
2186	int ret = 0;
2187
2188	/* ON is handled by regulator active state */
2189	if (state == PM_SUSPEND_ON)
2190		return -EINVAL;
2191
2192	mutex_lock(&regulator_list_mutex);
2193	list_for_each_entry(rdev, &regulator_list, list) {
2194
2195		mutex_lock(&rdev->mutex);
2196		ret = suspend_prepare(rdev, state);
2197		mutex_unlock(&rdev->mutex);
2198
2199		if (ret < 0) {
2200			printk(KERN_ERR "%s: failed to prepare %s\n",
2201				__func__, rdev->desc->name);
2202			goto out;
2203		}
2204	}
2205out:
2206	mutex_unlock(&regulator_list_mutex);
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2210
2211/**
2212 * regulator_has_full_constraints - the system has fully specified constraints
2213 *
2214 * Calling this function will cause the regulator API to disable all
2215 * regulators which have a zero use count and don't have an always_on
2216 * constraint in a late_initcall.
2217 *
2218 * The intention is that this will become the default behaviour in a
2219 * future kernel release so users are encouraged to use this facility
2220 * now.
2221 */
2222void regulator_has_full_constraints(void)
2223{
2224	has_full_constraints = 1;
2225}
2226EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2227
2228/**
2229 * rdev_get_drvdata - get rdev regulator driver data
2230 * @rdev: regulator
2231 *
2232 * Get rdev regulator driver private data. This call can be used in the
2233 * regulator driver context.
2234 */
2235void *rdev_get_drvdata(struct regulator_dev *rdev)
2236{
2237	return rdev->reg_data;
2238}
2239EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2240
2241/**
2242 * regulator_get_drvdata - get regulator driver data
2243 * @regulator: regulator
2244 *
2245 * Get regulator driver private data. This call can be used in the consumer
2246 * driver context when non API regulator specific functions need to be called.
2247 */
2248void *regulator_get_drvdata(struct regulator *regulator)
2249{
2250	return regulator->rdev->reg_data;
2251}
2252EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2253
2254/**
2255 * regulator_set_drvdata - set regulator driver data
2256 * @regulator: regulator
2257 * @data: data
2258 */
2259void regulator_set_drvdata(struct regulator *regulator, void *data)
2260{
2261	regulator->rdev->reg_data = data;
2262}
2263EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2264
2265/**
2266 * regulator_get_id - get regulator ID
2267 * @rdev: regulator
2268 */
2269int rdev_get_id(struct regulator_dev *rdev)
2270{
2271	return rdev->desc->id;
2272}
2273EXPORT_SYMBOL_GPL(rdev_get_id);
2274
2275struct device *rdev_get_dev(struct regulator_dev *rdev)
2276{
2277	return &rdev->dev;
2278}
2279EXPORT_SYMBOL_GPL(rdev_get_dev);
2280
2281void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2282{
2283	return reg_init_data->driver_data;
2284}
2285EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2286
2287static int __init regulator_init(void)
2288{
2289	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2290	return class_register(&regulator_class);
2291}
2292
2293/* init early to allow our consumers to complete system booting */
2294core_initcall(regulator_init);
2295
2296static int __init regulator_init_complete(void)
2297{
2298	struct regulator_dev *rdev;
2299	struct regulator_ops *ops;
2300	struct regulation_constraints *c;
2301	int enabled, ret;
2302	const char *name;
2303
2304	mutex_lock(&regulator_list_mutex);
2305
2306	/* If we have a full configuration then disable any regulators
2307	 * which are not in use or always_on.  This will become the
2308	 * default behaviour in the future.
2309	 */
2310	list_for_each_entry(rdev, &regulator_list, list) {
2311		ops = rdev->desc->ops;
2312		c = rdev->constraints;
2313
2314		if (c->name)
2315			name = c->name;
2316		else if (rdev->desc->name)
2317			name = rdev->desc->name;
2318		else
2319			name = "regulator";
2320
2321		if (!ops->disable || c->always_on)
2322			continue;
2323
2324		mutex_lock(&rdev->mutex);
2325
2326		if (rdev->use_count)
2327			goto unlock;
2328
2329		/* If we can't read the status assume it's on. */
2330		if (ops->is_enabled)
2331			enabled = ops->is_enabled(rdev);
2332		else
2333			enabled = 1;
2334
2335		if (!enabled)
2336			goto unlock;
2337
2338		if (has_full_constraints) {
2339			/* We log since this may kill the system if it
2340			 * goes wrong. */
2341			printk(KERN_INFO "%s: disabling %s\n",
2342			       __func__, name);
2343			ret = ops->disable(rdev);
2344			if (ret != 0) {
2345				printk(KERN_ERR
2346				       "%s: couldn't disable %s: %d\n",
2347				       __func__, name, ret);
2348			}
2349		} else {
2350			/* The intention is that in future we will
2351			 * assume that full constraints are provided
2352			 * so warn even if we aren't going to do
2353			 * anything here.
2354			 */
2355			printk(KERN_WARNING
2356			       "%s: incomplete constraints, leaving %s on\n",
2357			       __func__, name);
2358		}
2359
2360unlock:
2361		mutex_unlock(&rdev->mutex);
2362	}
2363
2364	mutex_unlock(&regulator_list_mutex);
2365
2366	return 0;
2367}
2368late_initcall(regulator_init_complete);
2369