core.c revision 4367cfdc7c657ad8a797f51b9ffd3c64b31910e7
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/*
33 * struct regulator_map
34 *
35 * Used to provide symbolic supply names to devices.
36 */
37struct regulator_map {
38	struct list_head list;
39	struct device *dev;
40	const char *supply;
41	struct regulator_dev *regulator;
42};
43
44/*
45 * struct regulator
46 *
47 * One for each consumer device.
48 */
49struct regulator {
50	struct device *dev;
51	struct list_head list;
52	int uA_load;
53	int min_uV;
54	int max_uV;
55	int enabled; /* count of client enables */
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544	return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	/* constrain machine-level voltage specs to fit
696	 * the actual range supported by this regulator.
697	 */
698	if (ops->list_voltage && rdev->desc->n_voltages) {
699		int	count = rdev->desc->n_voltages;
700		int	i;
701		int	min_uV = INT_MAX;
702		int	max_uV = INT_MIN;
703		int	cmin = constraints->min_uV;
704		int	cmax = constraints->max_uV;
705
706		/* it's safe to autoconfigure fixed-voltage supplies */
707		if (count == 1 && !cmin) {
708			cmin = INT_MIN;
709			cmax = INT_MAX;
710		}
711
712		/* else require explicit machine-level constraints */
713		else if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
714			pr_err("%s: %s '%s' voltage constraints\n",
715				       __func__, "invalid", name);
716			ret = -EINVAL;
717			goto out;
718		}
719
720		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
721		for (i = 0; i < count; i++) {
722			int	value;
723
724			value = ops->list_voltage(rdev, i);
725			if (value <= 0)
726				continue;
727
728			/* maybe adjust [min_uV..max_uV] */
729			if (value >= cmin && value < min_uV)
730				min_uV = value;
731			if (value <= cmax && value > max_uV)
732				max_uV = value;
733		}
734
735		/* final: [min_uV..max_uV] valid iff constraints valid */
736		if (max_uV < min_uV) {
737			pr_err("%s: %s '%s' voltage constraints\n",
738				       __func__, "unsupportable", name);
739			ret = -EINVAL;
740			goto out;
741		}
742
743		/* use regulator's subset of machine constraints */
744		if (constraints->min_uV < min_uV) {
745			pr_debug("%s: override '%s' %s, %d -> %d\n",
746				       __func__, name, "min_uV",
747					constraints->min_uV, min_uV);
748			constraints->min_uV = min_uV;
749		}
750		if (constraints->max_uV > max_uV) {
751			pr_debug("%s: override '%s' %s, %d -> %d\n",
752				       __func__, name, "max_uV",
753					constraints->max_uV, max_uV);
754			constraints->max_uV = max_uV;
755		}
756	}
757
758	rdev->constraints = constraints;
759
760	/* do we need to apply the constraint voltage */
761	if (rdev->constraints->apply_uV &&
762		rdev->constraints->min_uV == rdev->constraints->max_uV &&
763		ops->set_voltage) {
764		ret = ops->set_voltage(rdev,
765			rdev->constraints->min_uV, rdev->constraints->max_uV);
766			if (ret < 0) {
767				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
768				       __func__,
769				       rdev->constraints->min_uV, name);
770				rdev->constraints = NULL;
771				goto out;
772			}
773	}
774
775	/* are we enabled at boot time by firmware / bootloader */
776	if (rdev->constraints->boot_on)
777		rdev->use_count = 1;
778
779	/* do we need to setup our suspend state */
780	if (constraints->initial_state) {
781		ret = suspend_prepare(rdev, constraints->initial_state);
782		if (ret < 0) {
783			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
784			       __func__, name);
785			rdev->constraints = NULL;
786			goto out;
787		}
788	}
789
790	if (constraints->initial_mode) {
791		if (!ops->set_mode) {
792			printk(KERN_ERR "%s: no set_mode operation for %s\n",
793			       __func__, name);
794			ret = -EINVAL;
795			goto out;
796		}
797
798		ret = ops->set_mode(rdev, constraints->initial_mode);
799		if (ret < 0) {
800			printk(KERN_ERR
801			       "%s: failed to set initial mode for %s: %d\n",
802			       __func__, name, ret);
803			goto out;
804		}
805	}
806
807	/* if always_on is set then turn the regulator on if it's not
808	 * already on. */
809	if (constraints->always_on && ops->enable &&
810	    ((ops->is_enabled && !ops->is_enabled(rdev)) ||
811	     (!ops->is_enabled && !constraints->boot_on))) {
812		ret = ops->enable(rdev);
813		if (ret < 0) {
814			printk(KERN_ERR "%s: failed to enable %s\n",
815			       __func__, name);
816			rdev->constraints = NULL;
817			goto out;
818		}
819	}
820
821	print_constraints(rdev);
822out:
823	return ret;
824}
825
826/**
827 * set_supply - set regulator supply regulator
828 * @rdev: regulator name
829 * @supply_rdev: supply regulator name
830 *
831 * Called by platform initialisation code to set the supply regulator for this
832 * regulator. This ensures that a regulators supply will also be enabled by the
833 * core if it's child is enabled.
834 */
835static int set_supply(struct regulator_dev *rdev,
836	struct regulator_dev *supply_rdev)
837{
838	int err;
839
840	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
841				"supply");
842	if (err) {
843		printk(KERN_ERR
844		       "%s: could not add device link %s err %d\n",
845		       __func__, supply_rdev->dev.kobj.name, err);
846		       goto out;
847	}
848	rdev->supply = supply_rdev;
849	list_add(&rdev->slist, &supply_rdev->supply_list);
850out:
851	return err;
852}
853
854/**
855 * set_consumer_device_supply: Bind a regulator to a symbolic supply
856 * @rdev:         regulator source
857 * @consumer_dev: device the supply applies to
858 * @supply:       symbolic name for supply
859 *
860 * Allows platform initialisation code to map physical regulator
861 * sources to symbolic names for supplies for use by devices.  Devices
862 * should use these symbolic names to request regulators, avoiding the
863 * need to provide board-specific regulator names as platform data.
864 */
865static int set_consumer_device_supply(struct regulator_dev *rdev,
866	struct device *consumer_dev, const char *supply)
867{
868	struct regulator_map *node;
869
870	if (supply == NULL)
871		return -EINVAL;
872
873	list_for_each_entry(node, &regulator_map_list, list) {
874		if (consumer_dev != node->dev)
875			continue;
876		if (strcmp(node->supply, supply) != 0)
877			continue;
878
879		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
880				dev_name(&node->regulator->dev),
881				node->regulator->desc->name,
882				supply,
883				dev_name(&rdev->dev), rdev->desc->name);
884		return -EBUSY;
885	}
886
887	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
888	if (node == NULL)
889		return -ENOMEM;
890
891	node->regulator = rdev;
892	node->dev = consumer_dev;
893	node->supply = supply;
894
895	list_add(&node->list, &regulator_map_list);
896	return 0;
897}
898
899static void unset_consumer_device_supply(struct regulator_dev *rdev,
900	struct device *consumer_dev)
901{
902	struct regulator_map *node, *n;
903
904	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
905		if (rdev == node->regulator &&
906			consumer_dev == node->dev) {
907			list_del(&node->list);
908			kfree(node);
909			return;
910		}
911	}
912}
913
914static void unset_regulator_supplies(struct regulator_dev *rdev)
915{
916	struct regulator_map *node, *n;
917
918	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
919		if (rdev == node->regulator) {
920			list_del(&node->list);
921			kfree(node);
922			return;
923		}
924	}
925}
926
927#define REG_STR_SIZE	32
928
929static struct regulator *create_regulator(struct regulator_dev *rdev,
930					  struct device *dev,
931					  const char *supply_name)
932{
933	struct regulator *regulator;
934	char buf[REG_STR_SIZE];
935	int err, size;
936
937	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
938	if (regulator == NULL)
939		return NULL;
940
941	mutex_lock(&rdev->mutex);
942	regulator->rdev = rdev;
943	list_add(&regulator->list, &rdev->consumer_list);
944
945	if (dev) {
946		/* create a 'requested_microamps_name' sysfs entry */
947		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
948			supply_name);
949		if (size >= REG_STR_SIZE)
950			goto overflow_err;
951
952		regulator->dev = dev;
953		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
954		if (regulator->dev_attr.attr.name == NULL)
955			goto attr_name_err;
956
957		regulator->dev_attr.attr.owner = THIS_MODULE;
958		regulator->dev_attr.attr.mode = 0444;
959		regulator->dev_attr.show = device_requested_uA_show;
960		err = device_create_file(dev, &regulator->dev_attr);
961		if (err < 0) {
962			printk(KERN_WARNING "%s: could not add regulator_dev"
963				" load sysfs\n", __func__);
964			goto attr_name_err;
965		}
966
967		/* also add a link to the device sysfs entry */
968		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
969				 dev->kobj.name, supply_name);
970		if (size >= REG_STR_SIZE)
971			goto attr_err;
972
973		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
974		if (regulator->supply_name == NULL)
975			goto attr_err;
976
977		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
978					buf);
979		if (err) {
980			printk(KERN_WARNING
981			       "%s: could not add device link %s err %d\n",
982			       __func__, dev->kobj.name, err);
983			device_remove_file(dev, &regulator->dev_attr);
984			goto link_name_err;
985		}
986	}
987	mutex_unlock(&rdev->mutex);
988	return regulator;
989link_name_err:
990	kfree(regulator->supply_name);
991attr_err:
992	device_remove_file(regulator->dev, &regulator->dev_attr);
993attr_name_err:
994	kfree(regulator->dev_attr.attr.name);
995overflow_err:
996	list_del(&regulator->list);
997	kfree(regulator);
998	mutex_unlock(&rdev->mutex);
999	return NULL;
1000}
1001
1002/**
1003 * regulator_get - lookup and obtain a reference to a regulator.
1004 * @dev: device for regulator "consumer"
1005 * @id: Supply name or regulator ID.
1006 *
1007 * Returns a struct regulator corresponding to the regulator producer,
1008 * or IS_ERR() condition containing errno.
1009 *
1010 * Use of supply names configured via regulator_set_device_supply() is
1011 * strongly encouraged.  It is recommended that the supply name used
1012 * should match the name used for the supply and/or the relevant
1013 * device pins in the datasheet.
1014 */
1015struct regulator *regulator_get(struct device *dev, const char *id)
1016{
1017	struct regulator_dev *rdev;
1018	struct regulator_map *map;
1019	struct regulator *regulator = ERR_PTR(-ENODEV);
1020
1021	if (id == NULL) {
1022		printk(KERN_ERR "regulator: get() with no identifier\n");
1023		return regulator;
1024	}
1025
1026	mutex_lock(&regulator_list_mutex);
1027
1028	list_for_each_entry(map, &regulator_map_list, list) {
1029		if (dev == map->dev &&
1030		    strcmp(map->supply, id) == 0) {
1031			rdev = map->regulator;
1032			goto found;
1033		}
1034	}
1035	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
1036	       id);
1037	mutex_unlock(&regulator_list_mutex);
1038	return regulator;
1039
1040found:
1041	if (!try_module_get(rdev->owner))
1042		goto out;
1043
1044	regulator = create_regulator(rdev, dev, id);
1045	if (regulator == NULL) {
1046		regulator = ERR_PTR(-ENOMEM);
1047		module_put(rdev->owner);
1048	}
1049
1050out:
1051	mutex_unlock(&regulator_list_mutex);
1052	return regulator;
1053}
1054EXPORT_SYMBOL_GPL(regulator_get);
1055
1056/**
1057 * regulator_put - "free" the regulator source
1058 * @regulator: regulator source
1059 *
1060 * Note: drivers must ensure that all regulator_enable calls made on this
1061 * regulator source are balanced by regulator_disable calls prior to calling
1062 * this function.
1063 */
1064void regulator_put(struct regulator *regulator)
1065{
1066	struct regulator_dev *rdev;
1067
1068	if (regulator == NULL || IS_ERR(regulator))
1069		return;
1070
1071	mutex_lock(&regulator_list_mutex);
1072	rdev = regulator->rdev;
1073
1074	if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
1075			       regulator->supply_name))
1076		_regulator_disable(rdev);
1077
1078	/* remove any sysfs entries */
1079	if (regulator->dev) {
1080		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1081		kfree(regulator->supply_name);
1082		device_remove_file(regulator->dev, &regulator->dev_attr);
1083		kfree(regulator->dev_attr.attr.name);
1084	}
1085	list_del(&regulator->list);
1086	kfree(regulator);
1087
1088	module_put(rdev->owner);
1089	mutex_unlock(&regulator_list_mutex);
1090}
1091EXPORT_SYMBOL_GPL(regulator_put);
1092
1093/* locks held by regulator_enable() */
1094static int _regulator_enable(struct regulator_dev *rdev)
1095{
1096	int ret = -EINVAL;
1097
1098	if (!rdev->constraints) {
1099		printk(KERN_ERR "%s: %s has no constraints\n",
1100		       __func__, rdev->desc->name);
1101		return ret;
1102	}
1103
1104	/* do we need to enable the supply regulator first */
1105	if (rdev->supply) {
1106		ret = _regulator_enable(rdev->supply);
1107		if (ret < 0) {
1108			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1109			       __func__, rdev->desc->name, ret);
1110			return ret;
1111		}
1112	}
1113
1114	/* check voltage and requested load before enabling */
1115	if (rdev->desc->ops->enable) {
1116
1117		if (rdev->constraints &&
1118			(rdev->constraints->valid_ops_mask &
1119			REGULATOR_CHANGE_DRMS))
1120			drms_uA_update(rdev);
1121
1122		ret = rdev->desc->ops->enable(rdev);
1123		if (ret < 0) {
1124			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1125			       __func__, rdev->desc->name, ret);
1126			return ret;
1127		}
1128		rdev->use_count++;
1129		return ret;
1130	}
1131
1132	return ret;
1133}
1134
1135/**
1136 * regulator_enable - enable regulator output
1137 * @regulator: regulator source
1138 *
1139 * Request that the regulator be enabled with the regulator output at
1140 * the predefined voltage or current value.  Calls to regulator_enable()
1141 * must be balanced with calls to regulator_disable().
1142 *
1143 * NOTE: the output value can be set by other drivers, boot loader or may be
1144 * hardwired in the regulator.
1145 */
1146int regulator_enable(struct regulator *regulator)
1147{
1148	struct regulator_dev *rdev = regulator->rdev;
1149	int ret = 0;
1150
1151	mutex_lock(&rdev->mutex);
1152	if (regulator->enabled == 0)
1153		ret = _regulator_enable(rdev);
1154	else if (regulator->enabled < 0)
1155		ret = -EIO;
1156	if (ret == 0)
1157		regulator->enabled++;
1158	mutex_unlock(&rdev->mutex);
1159	return ret;
1160}
1161EXPORT_SYMBOL_GPL(regulator_enable);
1162
1163/* locks held by regulator_disable() */
1164static int _regulator_disable(struct regulator_dev *rdev)
1165{
1166	int ret = 0;
1167
1168	/* are we the last user and permitted to disable ? */
1169	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1170
1171		/* we are last user */
1172		if (rdev->desc->ops->disable) {
1173			ret = rdev->desc->ops->disable(rdev);
1174			if (ret < 0) {
1175				printk(KERN_ERR "%s: failed to disable %s\n",
1176				       __func__, rdev->desc->name);
1177				return ret;
1178			}
1179		}
1180
1181		/* decrease our supplies ref count and disable if required */
1182		if (rdev->supply)
1183			_regulator_disable(rdev->supply);
1184
1185		rdev->use_count = 0;
1186	} else if (rdev->use_count > 1) {
1187
1188		if (rdev->constraints &&
1189			(rdev->constraints->valid_ops_mask &
1190			REGULATOR_CHANGE_DRMS))
1191			drms_uA_update(rdev);
1192
1193		rdev->use_count--;
1194	}
1195	return ret;
1196}
1197
1198/**
1199 * regulator_disable - disable regulator output
1200 * @regulator: regulator source
1201 *
1202 * Disable the regulator output voltage or current.  Calls to
1203 * regulator_enable() must be balanced with calls to
1204 * regulator_disable().
1205 *
1206 * NOTE: this will only disable the regulator output if no other consumer
1207 * devices have it enabled, the regulator device supports disabling and
1208 * machine constraints permit this operation.
1209 */
1210int regulator_disable(struct regulator *regulator)
1211{
1212	struct regulator_dev *rdev = regulator->rdev;
1213	int ret = 0;
1214
1215	mutex_lock(&rdev->mutex);
1216	if (regulator->enabled == 1) {
1217		ret = _regulator_disable(rdev);
1218		if (ret == 0)
1219			regulator->uA_load = 0;
1220	} else if (WARN(regulator->enabled <= 0,
1221			"unbalanced disables for supply %s\n",
1222			regulator->supply_name))
1223		ret = -EIO;
1224	if (ret == 0)
1225		regulator->enabled--;
1226	mutex_unlock(&rdev->mutex);
1227	return ret;
1228}
1229EXPORT_SYMBOL_GPL(regulator_disable);
1230
1231/* locks held by regulator_force_disable() */
1232static int _regulator_force_disable(struct regulator_dev *rdev)
1233{
1234	int ret = 0;
1235
1236	/* force disable */
1237	if (rdev->desc->ops->disable) {
1238		/* ah well, who wants to live forever... */
1239		ret = rdev->desc->ops->disable(rdev);
1240		if (ret < 0) {
1241			printk(KERN_ERR "%s: failed to force disable %s\n",
1242			       __func__, rdev->desc->name);
1243			return ret;
1244		}
1245		/* notify other consumers that power has been forced off */
1246		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1247			NULL);
1248	}
1249
1250	/* decrease our supplies ref count and disable if required */
1251	if (rdev->supply)
1252		_regulator_disable(rdev->supply);
1253
1254	rdev->use_count = 0;
1255	return ret;
1256}
1257
1258/**
1259 * regulator_force_disable - force disable regulator output
1260 * @regulator: regulator source
1261 *
1262 * Forcibly disable the regulator output voltage or current.
1263 * NOTE: this *will* disable the regulator output even if other consumer
1264 * devices have it enabled. This should be used for situations when device
1265 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1266 */
1267int regulator_force_disable(struct regulator *regulator)
1268{
1269	int ret;
1270
1271	mutex_lock(&regulator->rdev->mutex);
1272	regulator->enabled = 0;
1273	regulator->uA_load = 0;
1274	ret = _regulator_force_disable(regulator->rdev);
1275	mutex_unlock(&regulator->rdev->mutex);
1276	return ret;
1277}
1278EXPORT_SYMBOL_GPL(regulator_force_disable);
1279
1280static int _regulator_is_enabled(struct regulator_dev *rdev)
1281{
1282	int ret;
1283
1284	mutex_lock(&rdev->mutex);
1285
1286	/* sanity check */
1287	if (!rdev->desc->ops->is_enabled) {
1288		ret = -EINVAL;
1289		goto out;
1290	}
1291
1292	ret = rdev->desc->ops->is_enabled(rdev);
1293out:
1294	mutex_unlock(&rdev->mutex);
1295	return ret;
1296}
1297
1298/**
1299 * regulator_is_enabled - is the regulator output enabled
1300 * @regulator: regulator source
1301 *
1302 * Returns positive if the regulator driver backing the source/client
1303 * has requested that the device be enabled, zero if it hasn't, else a
1304 * negative errno code.
1305 *
1306 * Note that the device backing this regulator handle can have multiple
1307 * users, so it might be enabled even if regulator_enable() was never
1308 * called for this particular source.
1309 */
1310int regulator_is_enabled(struct regulator *regulator)
1311{
1312	return _regulator_is_enabled(regulator->rdev);
1313}
1314EXPORT_SYMBOL_GPL(regulator_is_enabled);
1315
1316/**
1317 * regulator_count_voltages - count regulator_list_voltage() selectors
1318 * @regulator: regulator source
1319 *
1320 * Returns number of selectors, or negative errno.  Selectors are
1321 * numbered starting at zero, and typically correspond to bitfields
1322 * in hardware registers.
1323 */
1324int regulator_count_voltages(struct regulator *regulator)
1325{
1326	struct regulator_dev	*rdev = regulator->rdev;
1327
1328	return rdev->desc->n_voltages ? : -EINVAL;
1329}
1330EXPORT_SYMBOL_GPL(regulator_count_voltages);
1331
1332/**
1333 * regulator_list_voltage - enumerate supported voltages
1334 * @regulator: regulator source
1335 * @selector: identify voltage to list
1336 * Context: can sleep
1337 *
1338 * Returns a voltage that can be passed to @regulator_set_voltage(),
1339 * zero if this selector code can't be used on this sytem, or a
1340 * negative errno.
1341 */
1342int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1343{
1344	struct regulator_dev	*rdev = regulator->rdev;
1345	struct regulator_ops	*ops = rdev->desc->ops;
1346	int			ret;
1347
1348	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1349		return -EINVAL;
1350
1351	mutex_lock(&rdev->mutex);
1352	ret = ops->list_voltage(rdev, selector);
1353	mutex_unlock(&rdev->mutex);
1354
1355	if (ret > 0) {
1356		if (ret < rdev->constraints->min_uV)
1357			ret = 0;
1358		else if (ret > rdev->constraints->max_uV)
1359			ret = 0;
1360	}
1361
1362	return ret;
1363}
1364EXPORT_SYMBOL_GPL(regulator_list_voltage);
1365
1366/**
1367 * regulator_set_voltage - set regulator output voltage
1368 * @regulator: regulator source
1369 * @min_uV: Minimum required voltage in uV
1370 * @max_uV: Maximum acceptable voltage in uV
1371 *
1372 * Sets a voltage regulator to the desired output voltage. This can be set
1373 * during any regulator state. IOW, regulator can be disabled or enabled.
1374 *
1375 * If the regulator is enabled then the voltage will change to the new value
1376 * immediately otherwise if the regulator is disabled the regulator will
1377 * output at the new voltage when enabled.
1378 *
1379 * NOTE: If the regulator is shared between several devices then the lowest
1380 * request voltage that meets the system constraints will be used.
1381 * Regulator system constraints must be set for this regulator before
1382 * calling this function otherwise this call will fail.
1383 */
1384int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1385{
1386	struct regulator_dev *rdev = regulator->rdev;
1387	int ret;
1388
1389	mutex_lock(&rdev->mutex);
1390
1391	/* sanity check */
1392	if (!rdev->desc->ops->set_voltage) {
1393		ret = -EINVAL;
1394		goto out;
1395	}
1396
1397	/* constraints check */
1398	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1399	if (ret < 0)
1400		goto out;
1401	regulator->min_uV = min_uV;
1402	regulator->max_uV = max_uV;
1403	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1404
1405out:
1406	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1407	mutex_unlock(&rdev->mutex);
1408	return ret;
1409}
1410EXPORT_SYMBOL_GPL(regulator_set_voltage);
1411
1412static int _regulator_get_voltage(struct regulator_dev *rdev)
1413{
1414	/* sanity check */
1415	if (rdev->desc->ops->get_voltage)
1416		return rdev->desc->ops->get_voltage(rdev);
1417	else
1418		return -EINVAL;
1419}
1420
1421/**
1422 * regulator_get_voltage - get regulator output voltage
1423 * @regulator: regulator source
1424 *
1425 * This returns the current regulator voltage in uV.
1426 *
1427 * NOTE: If the regulator is disabled it will return the voltage value. This
1428 * function should not be used to determine regulator state.
1429 */
1430int regulator_get_voltage(struct regulator *regulator)
1431{
1432	int ret;
1433
1434	mutex_lock(&regulator->rdev->mutex);
1435
1436	ret = _regulator_get_voltage(regulator->rdev);
1437
1438	mutex_unlock(&regulator->rdev->mutex);
1439
1440	return ret;
1441}
1442EXPORT_SYMBOL_GPL(regulator_get_voltage);
1443
1444/**
1445 * regulator_set_current_limit - set regulator output current limit
1446 * @regulator: regulator source
1447 * @min_uA: Minimuum supported current in uA
1448 * @max_uA: Maximum supported current in uA
1449 *
1450 * Sets current sink to the desired output current. This can be set during
1451 * any regulator state. IOW, regulator can be disabled or enabled.
1452 *
1453 * If the regulator is enabled then the current will change to the new value
1454 * immediately otherwise if the regulator is disabled the regulator will
1455 * output at the new current when enabled.
1456 *
1457 * NOTE: Regulator system constraints must be set for this regulator before
1458 * calling this function otherwise this call will fail.
1459 */
1460int regulator_set_current_limit(struct regulator *regulator,
1461			       int min_uA, int max_uA)
1462{
1463	struct regulator_dev *rdev = regulator->rdev;
1464	int ret;
1465
1466	mutex_lock(&rdev->mutex);
1467
1468	/* sanity check */
1469	if (!rdev->desc->ops->set_current_limit) {
1470		ret = -EINVAL;
1471		goto out;
1472	}
1473
1474	/* constraints check */
1475	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1476	if (ret < 0)
1477		goto out;
1478
1479	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1480out:
1481	mutex_unlock(&rdev->mutex);
1482	return ret;
1483}
1484EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1485
1486static int _regulator_get_current_limit(struct regulator_dev *rdev)
1487{
1488	int ret;
1489
1490	mutex_lock(&rdev->mutex);
1491
1492	/* sanity check */
1493	if (!rdev->desc->ops->get_current_limit) {
1494		ret = -EINVAL;
1495		goto out;
1496	}
1497
1498	ret = rdev->desc->ops->get_current_limit(rdev);
1499out:
1500	mutex_unlock(&rdev->mutex);
1501	return ret;
1502}
1503
1504/**
1505 * regulator_get_current_limit - get regulator output current
1506 * @regulator: regulator source
1507 *
1508 * This returns the current supplied by the specified current sink in uA.
1509 *
1510 * NOTE: If the regulator is disabled it will return the current value. This
1511 * function should not be used to determine regulator state.
1512 */
1513int regulator_get_current_limit(struct regulator *regulator)
1514{
1515	return _regulator_get_current_limit(regulator->rdev);
1516}
1517EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1518
1519/**
1520 * regulator_set_mode - set regulator operating mode
1521 * @regulator: regulator source
1522 * @mode: operating mode - one of the REGULATOR_MODE constants
1523 *
1524 * Set regulator operating mode to increase regulator efficiency or improve
1525 * regulation performance.
1526 *
1527 * NOTE: Regulator system constraints must be set for this regulator before
1528 * calling this function otherwise this call will fail.
1529 */
1530int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1531{
1532	struct regulator_dev *rdev = regulator->rdev;
1533	int ret;
1534
1535	mutex_lock(&rdev->mutex);
1536
1537	/* sanity check */
1538	if (!rdev->desc->ops->set_mode) {
1539		ret = -EINVAL;
1540		goto out;
1541	}
1542
1543	/* constraints check */
1544	ret = regulator_check_mode(rdev, mode);
1545	if (ret < 0)
1546		goto out;
1547
1548	ret = rdev->desc->ops->set_mode(rdev, mode);
1549out:
1550	mutex_unlock(&rdev->mutex);
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_set_mode);
1554
1555static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1556{
1557	int ret;
1558
1559	mutex_lock(&rdev->mutex);
1560
1561	/* sanity check */
1562	if (!rdev->desc->ops->get_mode) {
1563		ret = -EINVAL;
1564		goto out;
1565	}
1566
1567	ret = rdev->desc->ops->get_mode(rdev);
1568out:
1569	mutex_unlock(&rdev->mutex);
1570	return ret;
1571}
1572
1573/**
1574 * regulator_get_mode - get regulator operating mode
1575 * @regulator: regulator source
1576 *
1577 * Get the current regulator operating mode.
1578 */
1579unsigned int regulator_get_mode(struct regulator *regulator)
1580{
1581	return _regulator_get_mode(regulator->rdev);
1582}
1583EXPORT_SYMBOL_GPL(regulator_get_mode);
1584
1585/**
1586 * regulator_set_optimum_mode - set regulator optimum operating mode
1587 * @regulator: regulator source
1588 * @uA_load: load current
1589 *
1590 * Notifies the regulator core of a new device load. This is then used by
1591 * DRMS (if enabled by constraints) to set the most efficient regulator
1592 * operating mode for the new regulator loading.
1593 *
1594 * Consumer devices notify their supply regulator of the maximum power
1595 * they will require (can be taken from device datasheet in the power
1596 * consumption tables) when they change operational status and hence power
1597 * state. Examples of operational state changes that can affect power
1598 * consumption are :-
1599 *
1600 *    o Device is opened / closed.
1601 *    o Device I/O is about to begin or has just finished.
1602 *    o Device is idling in between work.
1603 *
1604 * This information is also exported via sysfs to userspace.
1605 *
1606 * DRMS will sum the total requested load on the regulator and change
1607 * to the most efficient operating mode if platform constraints allow.
1608 *
1609 * Returns the new regulator mode or error.
1610 */
1611int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1612{
1613	struct regulator_dev *rdev = regulator->rdev;
1614	struct regulator *consumer;
1615	int ret, output_uV, input_uV, total_uA_load = 0;
1616	unsigned int mode;
1617
1618	mutex_lock(&rdev->mutex);
1619
1620	regulator->uA_load = uA_load;
1621	ret = regulator_check_drms(rdev);
1622	if (ret < 0)
1623		goto out;
1624	ret = -EINVAL;
1625
1626	/* sanity check */
1627	if (!rdev->desc->ops->get_optimum_mode)
1628		goto out;
1629
1630	/* get output voltage */
1631	output_uV = rdev->desc->ops->get_voltage(rdev);
1632	if (output_uV <= 0) {
1633		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1634			__func__, rdev->desc->name);
1635		goto out;
1636	}
1637
1638	/* get input voltage */
1639	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1640		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1641	else
1642		input_uV = rdev->constraints->input_uV;
1643	if (input_uV <= 0) {
1644		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1645			__func__, rdev->desc->name);
1646		goto out;
1647	}
1648
1649	/* calc total requested load for this regulator */
1650	list_for_each_entry(consumer, &rdev->consumer_list, list)
1651	    total_uA_load += consumer->uA_load;
1652
1653	mode = rdev->desc->ops->get_optimum_mode(rdev,
1654						 input_uV, output_uV,
1655						 total_uA_load);
1656	ret = regulator_check_mode(rdev, mode);
1657	if (ret < 0) {
1658		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1659			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1660			total_uA_load, input_uV, output_uV);
1661		goto out;
1662	}
1663
1664	ret = rdev->desc->ops->set_mode(rdev, mode);
1665	if (ret < 0) {
1666		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1667			__func__, mode, rdev->desc->name);
1668		goto out;
1669	}
1670	ret = mode;
1671out:
1672	mutex_unlock(&rdev->mutex);
1673	return ret;
1674}
1675EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1676
1677/**
1678 * regulator_register_notifier - register regulator event notifier
1679 * @regulator: regulator source
1680 * @nb: notifier block
1681 *
1682 * Register notifier block to receive regulator events.
1683 */
1684int regulator_register_notifier(struct regulator *regulator,
1685			      struct notifier_block *nb)
1686{
1687	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1688						nb);
1689}
1690EXPORT_SYMBOL_GPL(regulator_register_notifier);
1691
1692/**
1693 * regulator_unregister_notifier - unregister regulator event notifier
1694 * @regulator: regulator source
1695 * @nb: notifier block
1696 *
1697 * Unregister regulator event notifier block.
1698 */
1699int regulator_unregister_notifier(struct regulator *regulator,
1700				struct notifier_block *nb)
1701{
1702	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1703						  nb);
1704}
1705EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1706
1707/* notify regulator consumers and downstream regulator consumers.
1708 * Note mutex must be held by caller.
1709 */
1710static void _notifier_call_chain(struct regulator_dev *rdev,
1711				  unsigned long event, void *data)
1712{
1713	struct regulator_dev *_rdev;
1714
1715	/* call rdev chain first */
1716	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1717
1718	/* now notify regulator we supply */
1719	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1720	  mutex_lock(&_rdev->mutex);
1721	  _notifier_call_chain(_rdev, event, data);
1722	  mutex_unlock(&_rdev->mutex);
1723	}
1724}
1725
1726/**
1727 * regulator_bulk_get - get multiple regulator consumers
1728 *
1729 * @dev:           Device to supply
1730 * @num_consumers: Number of consumers to register
1731 * @consumers:     Configuration of consumers; clients are stored here.
1732 *
1733 * @return 0 on success, an errno on failure.
1734 *
1735 * This helper function allows drivers to get several regulator
1736 * consumers in one operation.  If any of the regulators cannot be
1737 * acquired then any regulators that were allocated will be freed
1738 * before returning to the caller.
1739 */
1740int regulator_bulk_get(struct device *dev, int num_consumers,
1741		       struct regulator_bulk_data *consumers)
1742{
1743	int i;
1744	int ret;
1745
1746	for (i = 0; i < num_consumers; i++)
1747		consumers[i].consumer = NULL;
1748
1749	for (i = 0; i < num_consumers; i++) {
1750		consumers[i].consumer = regulator_get(dev,
1751						      consumers[i].supply);
1752		if (IS_ERR(consumers[i].consumer)) {
1753			dev_err(dev, "Failed to get supply '%s'\n",
1754				consumers[i].supply);
1755			ret = PTR_ERR(consumers[i].consumer);
1756			consumers[i].consumer = NULL;
1757			goto err;
1758		}
1759	}
1760
1761	return 0;
1762
1763err:
1764	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1765		regulator_put(consumers[i].consumer);
1766
1767	return ret;
1768}
1769EXPORT_SYMBOL_GPL(regulator_bulk_get);
1770
1771/**
1772 * regulator_bulk_enable - enable multiple regulator consumers
1773 *
1774 * @num_consumers: Number of consumers
1775 * @consumers:     Consumer data; clients are stored here.
1776 * @return         0 on success, an errno on failure
1777 *
1778 * This convenience API allows consumers to enable multiple regulator
1779 * clients in a single API call.  If any consumers cannot be enabled
1780 * then any others that were enabled will be disabled again prior to
1781 * return.
1782 */
1783int regulator_bulk_enable(int num_consumers,
1784			  struct regulator_bulk_data *consumers)
1785{
1786	int i;
1787	int ret;
1788
1789	for (i = 0; i < num_consumers; i++) {
1790		ret = regulator_enable(consumers[i].consumer);
1791		if (ret != 0)
1792			goto err;
1793	}
1794
1795	return 0;
1796
1797err:
1798	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1799	for (i = 0; i < num_consumers; i++)
1800		regulator_disable(consumers[i].consumer);
1801
1802	return ret;
1803}
1804EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1805
1806/**
1807 * regulator_bulk_disable - disable multiple regulator consumers
1808 *
1809 * @num_consumers: Number of consumers
1810 * @consumers:     Consumer data; clients are stored here.
1811 * @return         0 on success, an errno on failure
1812 *
1813 * This convenience API allows consumers to disable multiple regulator
1814 * clients in a single API call.  If any consumers cannot be enabled
1815 * then any others that were disabled will be disabled again prior to
1816 * return.
1817 */
1818int regulator_bulk_disable(int num_consumers,
1819			   struct regulator_bulk_data *consumers)
1820{
1821	int i;
1822	int ret;
1823
1824	for (i = 0; i < num_consumers; i++) {
1825		ret = regulator_disable(consumers[i].consumer);
1826		if (ret != 0)
1827			goto err;
1828	}
1829
1830	return 0;
1831
1832err:
1833	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1834	for (i = 0; i < num_consumers; i++)
1835		regulator_enable(consumers[i].consumer);
1836
1837	return ret;
1838}
1839EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1840
1841/**
1842 * regulator_bulk_free - free multiple regulator consumers
1843 *
1844 * @num_consumers: Number of consumers
1845 * @consumers:     Consumer data; clients are stored here.
1846 *
1847 * This convenience API allows consumers to free multiple regulator
1848 * clients in a single API call.
1849 */
1850void regulator_bulk_free(int num_consumers,
1851			 struct regulator_bulk_data *consumers)
1852{
1853	int i;
1854
1855	for (i = 0; i < num_consumers; i++) {
1856		regulator_put(consumers[i].consumer);
1857		consumers[i].consumer = NULL;
1858	}
1859}
1860EXPORT_SYMBOL_GPL(regulator_bulk_free);
1861
1862/**
1863 * regulator_notifier_call_chain - call regulator event notifier
1864 * @rdev: regulator source
1865 * @event: notifier block
1866 * @data: callback-specific data.
1867 *
1868 * Called by regulator drivers to notify clients a regulator event has
1869 * occurred. We also notify regulator clients downstream.
1870 * Note lock must be held by caller.
1871 */
1872int regulator_notifier_call_chain(struct regulator_dev *rdev,
1873				  unsigned long event, void *data)
1874{
1875	_notifier_call_chain(rdev, event, data);
1876	return NOTIFY_DONE;
1877
1878}
1879EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1880
1881/*
1882 * To avoid cluttering sysfs (and memory) with useless state, only
1883 * create attributes that can be meaningfully displayed.
1884 */
1885static int add_regulator_attributes(struct regulator_dev *rdev)
1886{
1887	struct device		*dev = &rdev->dev;
1888	struct regulator_ops	*ops = rdev->desc->ops;
1889	int			status = 0;
1890
1891	/* some attributes need specific methods to be displayed */
1892	if (ops->get_voltage) {
1893		status = device_create_file(dev, &dev_attr_microvolts);
1894		if (status < 0)
1895			return status;
1896	}
1897	if (ops->get_current_limit) {
1898		status = device_create_file(dev, &dev_attr_microamps);
1899		if (status < 0)
1900			return status;
1901	}
1902	if (ops->get_mode) {
1903		status = device_create_file(dev, &dev_attr_opmode);
1904		if (status < 0)
1905			return status;
1906	}
1907	if (ops->is_enabled) {
1908		status = device_create_file(dev, &dev_attr_state);
1909		if (status < 0)
1910			return status;
1911	}
1912	if (ops->get_status) {
1913		status = device_create_file(dev, &dev_attr_status);
1914		if (status < 0)
1915			return status;
1916	}
1917
1918	/* some attributes are type-specific */
1919	if (rdev->desc->type == REGULATOR_CURRENT) {
1920		status = device_create_file(dev, &dev_attr_requested_microamps);
1921		if (status < 0)
1922			return status;
1923	}
1924
1925	/* all the other attributes exist to support constraints;
1926	 * don't show them if there are no constraints, or if the
1927	 * relevant supporting methods are missing.
1928	 */
1929	if (!rdev->constraints)
1930		return status;
1931
1932	/* constraints need specific supporting methods */
1933	if (ops->set_voltage) {
1934		status = device_create_file(dev, &dev_attr_min_microvolts);
1935		if (status < 0)
1936			return status;
1937		status = device_create_file(dev, &dev_attr_max_microvolts);
1938		if (status < 0)
1939			return status;
1940	}
1941	if (ops->set_current_limit) {
1942		status = device_create_file(dev, &dev_attr_min_microamps);
1943		if (status < 0)
1944			return status;
1945		status = device_create_file(dev, &dev_attr_max_microamps);
1946		if (status < 0)
1947			return status;
1948	}
1949
1950	/* suspend mode constraints need multiple supporting methods */
1951	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1952		return status;
1953
1954	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1955	if (status < 0)
1956		return status;
1957	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1958	if (status < 0)
1959		return status;
1960	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1961	if (status < 0)
1962		return status;
1963
1964	if (ops->set_suspend_voltage) {
1965		status = device_create_file(dev,
1966				&dev_attr_suspend_standby_microvolts);
1967		if (status < 0)
1968			return status;
1969		status = device_create_file(dev,
1970				&dev_attr_suspend_mem_microvolts);
1971		if (status < 0)
1972			return status;
1973		status = device_create_file(dev,
1974				&dev_attr_suspend_disk_microvolts);
1975		if (status < 0)
1976			return status;
1977	}
1978
1979	if (ops->set_suspend_mode) {
1980		status = device_create_file(dev,
1981				&dev_attr_suspend_standby_mode);
1982		if (status < 0)
1983			return status;
1984		status = device_create_file(dev,
1985				&dev_attr_suspend_mem_mode);
1986		if (status < 0)
1987			return status;
1988		status = device_create_file(dev,
1989				&dev_attr_suspend_disk_mode);
1990		if (status < 0)
1991			return status;
1992	}
1993
1994	return status;
1995}
1996
1997/**
1998 * regulator_register - register regulator
1999 * @regulator_desc: regulator to register
2000 * @dev: struct device for the regulator
2001 * @init_data: platform provided init data, passed through by driver
2002 * @driver_data: private regulator data
2003 *
2004 * Called by regulator drivers to register a regulator.
2005 * Returns 0 on success.
2006 */
2007struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2008	struct device *dev, struct regulator_init_data *init_data,
2009	void *driver_data)
2010{
2011	static atomic_t regulator_no = ATOMIC_INIT(0);
2012	struct regulator_dev *rdev;
2013	int ret, i;
2014
2015	if (regulator_desc == NULL)
2016		return ERR_PTR(-EINVAL);
2017
2018	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2019		return ERR_PTR(-EINVAL);
2020
2021	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2022	    !regulator_desc->type == REGULATOR_CURRENT)
2023		return ERR_PTR(-EINVAL);
2024
2025	if (!init_data)
2026		return ERR_PTR(-EINVAL);
2027
2028	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2029	if (rdev == NULL)
2030		return ERR_PTR(-ENOMEM);
2031
2032	mutex_lock(&regulator_list_mutex);
2033
2034	mutex_init(&rdev->mutex);
2035	rdev->reg_data = driver_data;
2036	rdev->owner = regulator_desc->owner;
2037	rdev->desc = regulator_desc;
2038	INIT_LIST_HEAD(&rdev->consumer_list);
2039	INIT_LIST_HEAD(&rdev->supply_list);
2040	INIT_LIST_HEAD(&rdev->list);
2041	INIT_LIST_HEAD(&rdev->slist);
2042	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2043
2044	/* preform any regulator specific init */
2045	if (init_data->regulator_init) {
2046		ret = init_data->regulator_init(rdev->reg_data);
2047		if (ret < 0)
2048			goto clean;
2049	}
2050
2051	/* register with sysfs */
2052	rdev->dev.class = &regulator_class;
2053	rdev->dev.parent = dev;
2054	dev_set_name(&rdev->dev, "regulator.%d",
2055		     atomic_inc_return(&regulator_no) - 1);
2056	ret = device_register(&rdev->dev);
2057	if (ret != 0)
2058		goto clean;
2059
2060	dev_set_drvdata(&rdev->dev, rdev);
2061
2062	/* set regulator constraints */
2063	ret = set_machine_constraints(rdev, &init_data->constraints);
2064	if (ret < 0)
2065		goto scrub;
2066
2067	/* add attributes supported by this regulator */
2068	ret = add_regulator_attributes(rdev);
2069	if (ret < 0)
2070		goto scrub;
2071
2072	/* set supply regulator if it exists */
2073	if (init_data->supply_regulator_dev) {
2074		ret = set_supply(rdev,
2075			dev_get_drvdata(init_data->supply_regulator_dev));
2076		if (ret < 0)
2077			goto scrub;
2078	}
2079
2080	/* add consumers devices */
2081	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2082		ret = set_consumer_device_supply(rdev,
2083			init_data->consumer_supplies[i].dev,
2084			init_data->consumer_supplies[i].supply);
2085		if (ret < 0) {
2086			for (--i; i >= 0; i--)
2087				unset_consumer_device_supply(rdev,
2088					init_data->consumer_supplies[i].dev);
2089			goto scrub;
2090		}
2091	}
2092
2093	list_add(&rdev->list, &regulator_list);
2094out:
2095	mutex_unlock(&regulator_list_mutex);
2096	return rdev;
2097
2098scrub:
2099	device_unregister(&rdev->dev);
2100clean:
2101	kfree(rdev);
2102	rdev = ERR_PTR(ret);
2103	goto out;
2104}
2105EXPORT_SYMBOL_GPL(regulator_register);
2106
2107/**
2108 * regulator_unregister - unregister regulator
2109 * @rdev: regulator to unregister
2110 *
2111 * Called by regulator drivers to unregister a regulator.
2112 */
2113void regulator_unregister(struct regulator_dev *rdev)
2114{
2115	if (rdev == NULL)
2116		return;
2117
2118	mutex_lock(&regulator_list_mutex);
2119	unset_regulator_supplies(rdev);
2120	list_del(&rdev->list);
2121	if (rdev->supply)
2122		sysfs_remove_link(&rdev->dev.kobj, "supply");
2123	device_unregister(&rdev->dev);
2124	mutex_unlock(&regulator_list_mutex);
2125}
2126EXPORT_SYMBOL_GPL(regulator_unregister);
2127
2128/**
2129 * regulator_suspend_prepare - prepare regulators for system wide suspend
2130 * @state: system suspend state
2131 *
2132 * Configure each regulator with it's suspend operating parameters for state.
2133 * This will usually be called by machine suspend code prior to supending.
2134 */
2135int regulator_suspend_prepare(suspend_state_t state)
2136{
2137	struct regulator_dev *rdev;
2138	int ret = 0;
2139
2140	/* ON is handled by regulator active state */
2141	if (state == PM_SUSPEND_ON)
2142		return -EINVAL;
2143
2144	mutex_lock(&regulator_list_mutex);
2145	list_for_each_entry(rdev, &regulator_list, list) {
2146
2147		mutex_lock(&rdev->mutex);
2148		ret = suspend_prepare(rdev, state);
2149		mutex_unlock(&rdev->mutex);
2150
2151		if (ret < 0) {
2152			printk(KERN_ERR "%s: failed to prepare %s\n",
2153				__func__, rdev->desc->name);
2154			goto out;
2155		}
2156	}
2157out:
2158	mutex_unlock(&regulator_list_mutex);
2159	return ret;
2160}
2161EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2162
2163/**
2164 * rdev_get_drvdata - get rdev regulator driver data
2165 * @rdev: regulator
2166 *
2167 * Get rdev regulator driver private data. This call can be used in the
2168 * regulator driver context.
2169 */
2170void *rdev_get_drvdata(struct regulator_dev *rdev)
2171{
2172	return rdev->reg_data;
2173}
2174EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2175
2176/**
2177 * regulator_get_drvdata - get regulator driver data
2178 * @regulator: regulator
2179 *
2180 * Get regulator driver private data. This call can be used in the consumer
2181 * driver context when non API regulator specific functions need to be called.
2182 */
2183void *regulator_get_drvdata(struct regulator *regulator)
2184{
2185	return regulator->rdev->reg_data;
2186}
2187EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2188
2189/**
2190 * regulator_set_drvdata - set regulator driver data
2191 * @regulator: regulator
2192 * @data: data
2193 */
2194void regulator_set_drvdata(struct regulator *regulator, void *data)
2195{
2196	regulator->rdev->reg_data = data;
2197}
2198EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2199
2200/**
2201 * regulator_get_id - get regulator ID
2202 * @rdev: regulator
2203 */
2204int rdev_get_id(struct regulator_dev *rdev)
2205{
2206	return rdev->desc->id;
2207}
2208EXPORT_SYMBOL_GPL(rdev_get_id);
2209
2210struct device *rdev_get_dev(struct regulator_dev *rdev)
2211{
2212	return &rdev->dev;
2213}
2214EXPORT_SYMBOL_GPL(rdev_get_dev);
2215
2216void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2217{
2218	return reg_init_data->driver_data;
2219}
2220EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2221
2222static int __init regulator_init(void)
2223{
2224	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2225	return class_register(&regulator_class);
2226}
2227
2228/* init early to allow our consumers to complete system booting */
2229core_initcall(regulator_init);
2230