core.c revision 43829731dd372d04d6706c51052b9dabab9ca356
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	int uA_load;
81	int min_uV;
82	int max_uV;
83	char *supply_name;
84	struct device_attribute dev_attr;
85	struct regulator_dev *rdev;
86	struct dentry *debugfs;
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95				  unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97				     int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99					  struct device *dev,
100					  const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104	if (rdev->constraints && rdev->constraints->name)
105		return rdev->constraints->name;
106	else if (rdev->desc->name)
107		return rdev->desc->name;
108	else
109		return "";
110}
111
112/**
113 * of_get_regulator - get a regulator device node based on supply name
114 * @dev: Device pointer for the consumer (of regulator) device
115 * @supply: regulator supply name
116 *
117 * Extract the regulator device node corresponding to the supply name.
118 * retruns the device node corresponding to the regulator if found, else
119 * returns NULL.
120 */
121static struct device_node *of_get_regulator(struct device *dev, const char *supply)
122{
123	struct device_node *regnode = NULL;
124	char prop_name[32]; /* 32 is max size of property name */
125
126	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
127
128	snprintf(prop_name, 32, "%s-supply", supply);
129	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
130
131	if (!regnode) {
132		dev_dbg(dev, "Looking up %s property in node %s failed",
133				prop_name, dev->of_node->full_name);
134		return NULL;
135	}
136	return regnode;
137}
138
139static int _regulator_can_change_status(struct regulator_dev *rdev)
140{
141	if (!rdev->constraints)
142		return 0;
143
144	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
145		return 1;
146	else
147		return 0;
148}
149
150/* Platform voltage constraint check */
151static int regulator_check_voltage(struct regulator_dev *rdev,
152				   int *min_uV, int *max_uV)
153{
154	BUG_ON(*min_uV > *max_uV);
155
156	if (!rdev->constraints) {
157		rdev_err(rdev, "no constraints\n");
158		return -ENODEV;
159	}
160	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161		rdev_err(rdev, "operation not allowed\n");
162		return -EPERM;
163	}
164
165	if (*max_uV > rdev->constraints->max_uV)
166		*max_uV = rdev->constraints->max_uV;
167	if (*min_uV < rdev->constraints->min_uV)
168		*min_uV = rdev->constraints->min_uV;
169
170	if (*min_uV > *max_uV) {
171		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172			 *min_uV, *max_uV);
173		return -EINVAL;
174	}
175
176	return 0;
177}
178
179/* Make sure we select a voltage that suits the needs of all
180 * regulator consumers
181 */
182static int regulator_check_consumers(struct regulator_dev *rdev,
183				     int *min_uV, int *max_uV)
184{
185	struct regulator *regulator;
186
187	list_for_each_entry(regulator, &rdev->consumer_list, list) {
188		/*
189		 * Assume consumers that didn't say anything are OK
190		 * with anything in the constraint range.
191		 */
192		if (!regulator->min_uV && !regulator->max_uV)
193			continue;
194
195		if (*max_uV > regulator->max_uV)
196			*max_uV = regulator->max_uV;
197		if (*min_uV < regulator->min_uV)
198			*min_uV = regulator->min_uV;
199	}
200
201	if (*min_uV > *max_uV)
202		return -EINVAL;
203
204	return 0;
205}
206
207/* current constraint check */
208static int regulator_check_current_limit(struct regulator_dev *rdev,
209					int *min_uA, int *max_uA)
210{
211	BUG_ON(*min_uA > *max_uA);
212
213	if (!rdev->constraints) {
214		rdev_err(rdev, "no constraints\n");
215		return -ENODEV;
216	}
217	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218		rdev_err(rdev, "operation not allowed\n");
219		return -EPERM;
220	}
221
222	if (*max_uA > rdev->constraints->max_uA)
223		*max_uA = rdev->constraints->max_uA;
224	if (*min_uA < rdev->constraints->min_uA)
225		*min_uA = rdev->constraints->min_uA;
226
227	if (*min_uA > *max_uA) {
228		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229			 *min_uA, *max_uA);
230		return -EINVAL;
231	}
232
233	return 0;
234}
235
236/* operating mode constraint check */
237static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238{
239	switch (*mode) {
240	case REGULATOR_MODE_FAST:
241	case REGULATOR_MODE_NORMAL:
242	case REGULATOR_MODE_IDLE:
243	case REGULATOR_MODE_STANDBY:
244		break;
245	default:
246		rdev_err(rdev, "invalid mode %x specified\n", *mode);
247		return -EINVAL;
248	}
249
250	if (!rdev->constraints) {
251		rdev_err(rdev, "no constraints\n");
252		return -ENODEV;
253	}
254	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255		rdev_err(rdev, "operation not allowed\n");
256		return -EPERM;
257	}
258
259	/* The modes are bitmasks, the most power hungry modes having
260	 * the lowest values. If the requested mode isn't supported
261	 * try higher modes. */
262	while (*mode) {
263		if (rdev->constraints->valid_modes_mask & *mode)
264			return 0;
265		*mode /= 2;
266	}
267
268	return -EINVAL;
269}
270
271/* dynamic regulator mode switching constraint check */
272static int regulator_check_drms(struct regulator_dev *rdev)
273{
274	if (!rdev->constraints) {
275		rdev_err(rdev, "no constraints\n");
276		return -ENODEV;
277	}
278	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279		rdev_err(rdev, "operation not allowed\n");
280		return -EPERM;
281	}
282	return 0;
283}
284
285static ssize_t regulator_uV_show(struct device *dev,
286				struct device_attribute *attr, char *buf)
287{
288	struct regulator_dev *rdev = dev_get_drvdata(dev);
289	ssize_t ret;
290
291	mutex_lock(&rdev->mutex);
292	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
293	mutex_unlock(&rdev->mutex);
294
295	return ret;
296}
297static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298
299static ssize_t regulator_uA_show(struct device *dev,
300				struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
305}
306static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307
308static ssize_t regulator_name_show(struct device *dev,
309			     struct device_attribute *attr, char *buf)
310{
311	struct regulator_dev *rdev = dev_get_drvdata(dev);
312
313	return sprintf(buf, "%s\n", rdev_get_name(rdev));
314}
315
316static ssize_t regulator_print_opmode(char *buf, int mode)
317{
318	switch (mode) {
319	case REGULATOR_MODE_FAST:
320		return sprintf(buf, "fast\n");
321	case REGULATOR_MODE_NORMAL:
322		return sprintf(buf, "normal\n");
323	case REGULATOR_MODE_IDLE:
324		return sprintf(buf, "idle\n");
325	case REGULATOR_MODE_STANDBY:
326		return sprintf(buf, "standby\n");
327	}
328	return sprintf(buf, "unknown\n");
329}
330
331static ssize_t regulator_opmode_show(struct device *dev,
332				    struct device_attribute *attr, char *buf)
333{
334	struct regulator_dev *rdev = dev_get_drvdata(dev);
335
336	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
337}
338static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
339
340static ssize_t regulator_print_state(char *buf, int state)
341{
342	if (state > 0)
343		return sprintf(buf, "enabled\n");
344	else if (state == 0)
345		return sprintf(buf, "disabled\n");
346	else
347		return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_state_show(struct device *dev,
351				   struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354	ssize_t ret;
355
356	mutex_lock(&rdev->mutex);
357	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
358	mutex_unlock(&rdev->mutex);
359
360	return ret;
361}
362static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
363
364static ssize_t regulator_status_show(struct device *dev,
365				   struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368	int status;
369	char *label;
370
371	status = rdev->desc->ops->get_status(rdev);
372	if (status < 0)
373		return status;
374
375	switch (status) {
376	case REGULATOR_STATUS_OFF:
377		label = "off";
378		break;
379	case REGULATOR_STATUS_ON:
380		label = "on";
381		break;
382	case REGULATOR_STATUS_ERROR:
383		label = "error";
384		break;
385	case REGULATOR_STATUS_FAST:
386		label = "fast";
387		break;
388	case REGULATOR_STATUS_NORMAL:
389		label = "normal";
390		break;
391	case REGULATOR_STATUS_IDLE:
392		label = "idle";
393		break;
394	case REGULATOR_STATUS_STANDBY:
395		label = "standby";
396		break;
397	case REGULATOR_STATUS_UNDEFINED:
398		label = "undefined";
399		break;
400	default:
401		return -ERANGE;
402	}
403
404	return sprintf(buf, "%s\n", label);
405}
406static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
407
408static ssize_t regulator_min_uA_show(struct device *dev,
409				    struct device_attribute *attr, char *buf)
410{
411	struct regulator_dev *rdev = dev_get_drvdata(dev);
412
413	if (!rdev->constraints)
414		return sprintf(buf, "constraint not defined\n");
415
416	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
417}
418static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
419
420static ssize_t regulator_max_uA_show(struct device *dev,
421				    struct device_attribute *attr, char *buf)
422{
423	struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425	if (!rdev->constraints)
426		return sprintf(buf, "constraint not defined\n");
427
428	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
429}
430static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
431
432static ssize_t regulator_min_uV_show(struct device *dev,
433				    struct device_attribute *attr, char *buf)
434{
435	struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437	if (!rdev->constraints)
438		return sprintf(buf, "constraint not defined\n");
439
440	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
441}
442static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
443
444static ssize_t regulator_max_uV_show(struct device *dev,
445				    struct device_attribute *attr, char *buf)
446{
447	struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449	if (!rdev->constraints)
450		return sprintf(buf, "constraint not defined\n");
451
452	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
453}
454static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
455
456static ssize_t regulator_total_uA_show(struct device *dev,
457				      struct device_attribute *attr, char *buf)
458{
459	struct regulator_dev *rdev = dev_get_drvdata(dev);
460	struct regulator *regulator;
461	int uA = 0;
462
463	mutex_lock(&rdev->mutex);
464	list_for_each_entry(regulator, &rdev->consumer_list, list)
465		uA += regulator->uA_load;
466	mutex_unlock(&rdev->mutex);
467	return sprintf(buf, "%d\n", uA);
468}
469static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
470
471static ssize_t regulator_num_users_show(struct device *dev,
472				      struct device_attribute *attr, char *buf)
473{
474	struct regulator_dev *rdev = dev_get_drvdata(dev);
475	return sprintf(buf, "%d\n", rdev->use_count);
476}
477
478static ssize_t regulator_type_show(struct device *dev,
479				  struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483	switch (rdev->desc->type) {
484	case REGULATOR_VOLTAGE:
485		return sprintf(buf, "voltage\n");
486	case REGULATOR_CURRENT:
487		return sprintf(buf, "current\n");
488	}
489	return sprintf(buf, "unknown\n");
490}
491
492static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
493				struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
498}
499static DEVICE_ATTR(suspend_mem_microvolts, 0444,
500		regulator_suspend_mem_uV_show, NULL);
501
502static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
503				struct device_attribute *attr, char *buf)
504{
505	struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
508}
509static DEVICE_ATTR(suspend_disk_microvolts, 0444,
510		regulator_suspend_disk_uV_show, NULL);
511
512static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
513				struct device_attribute *attr, char *buf)
514{
515	struct regulator_dev *rdev = dev_get_drvdata(dev);
516
517	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
518}
519static DEVICE_ATTR(suspend_standby_microvolts, 0444,
520		regulator_suspend_standby_uV_show, NULL);
521
522static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return regulator_print_opmode(buf,
528		rdev->constraints->state_mem.mode);
529}
530static DEVICE_ATTR(suspend_mem_mode, 0444,
531		regulator_suspend_mem_mode_show, NULL);
532
533static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
534				struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return regulator_print_opmode(buf,
539		rdev->constraints->state_disk.mode);
540}
541static DEVICE_ATTR(suspend_disk_mode, 0444,
542		regulator_suspend_disk_mode_show, NULL);
543
544static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
545				struct device_attribute *attr, char *buf)
546{
547	struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549	return regulator_print_opmode(buf,
550		rdev->constraints->state_standby.mode);
551}
552static DEVICE_ATTR(suspend_standby_mode, 0444,
553		regulator_suspend_standby_mode_show, NULL);
554
555static ssize_t regulator_suspend_mem_state_show(struct device *dev,
556				   struct device_attribute *attr, char *buf)
557{
558	struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560	return regulator_print_state(buf,
561			rdev->constraints->state_mem.enabled);
562}
563static DEVICE_ATTR(suspend_mem_state, 0444,
564		regulator_suspend_mem_state_show, NULL);
565
566static ssize_t regulator_suspend_disk_state_show(struct device *dev,
567				   struct device_attribute *attr, char *buf)
568{
569	struct regulator_dev *rdev = dev_get_drvdata(dev);
570
571	return regulator_print_state(buf,
572			rdev->constraints->state_disk.enabled);
573}
574static DEVICE_ATTR(suspend_disk_state, 0444,
575		regulator_suspend_disk_state_show, NULL);
576
577static ssize_t regulator_suspend_standby_state_show(struct device *dev,
578				   struct device_attribute *attr, char *buf)
579{
580	struct regulator_dev *rdev = dev_get_drvdata(dev);
581
582	return regulator_print_state(buf,
583			rdev->constraints->state_standby.enabled);
584}
585static DEVICE_ATTR(suspend_standby_state, 0444,
586		regulator_suspend_standby_state_show, NULL);
587
588
589/*
590 * These are the only attributes are present for all regulators.
591 * Other attributes are a function of regulator functionality.
592 */
593static struct device_attribute regulator_dev_attrs[] = {
594	__ATTR(name, 0444, regulator_name_show, NULL),
595	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
596	__ATTR(type, 0444, regulator_type_show, NULL),
597	__ATTR_NULL,
598};
599
600static void regulator_dev_release(struct device *dev)
601{
602	struct regulator_dev *rdev = dev_get_drvdata(dev);
603	kfree(rdev);
604}
605
606static struct class regulator_class = {
607	.name = "regulator",
608	.dev_release = regulator_dev_release,
609	.dev_attrs = regulator_dev_attrs,
610};
611
612/* Calculate the new optimum regulator operating mode based on the new total
613 * consumer load. All locks held by caller */
614static void drms_uA_update(struct regulator_dev *rdev)
615{
616	struct regulator *sibling;
617	int current_uA = 0, output_uV, input_uV, err;
618	unsigned int mode;
619
620	err = regulator_check_drms(rdev);
621	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622	    (!rdev->desc->ops->get_voltage &&
623	     !rdev->desc->ops->get_voltage_sel) ||
624	    !rdev->desc->ops->set_mode)
625		return;
626
627	/* get output voltage */
628	output_uV = _regulator_get_voltage(rdev);
629	if (output_uV <= 0)
630		return;
631
632	/* get input voltage */
633	input_uV = 0;
634	if (rdev->supply)
635		input_uV = regulator_get_voltage(rdev->supply);
636	if (input_uV <= 0)
637		input_uV = rdev->constraints->input_uV;
638	if (input_uV <= 0)
639		return;
640
641	/* calc total requested load */
642	list_for_each_entry(sibling, &rdev->consumer_list, list)
643		current_uA += sibling->uA_load;
644
645	/* now get the optimum mode for our new total regulator load */
646	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
647						  output_uV, current_uA);
648
649	/* check the new mode is allowed */
650	err = regulator_mode_constrain(rdev, &mode);
651	if (err == 0)
652		rdev->desc->ops->set_mode(rdev, mode);
653}
654
655static int suspend_set_state(struct regulator_dev *rdev,
656	struct regulator_state *rstate)
657{
658	int ret = 0;
659
660	/* If we have no suspend mode configration don't set anything;
661	 * only warn if the driver implements set_suspend_voltage or
662	 * set_suspend_mode callback.
663	 */
664	if (!rstate->enabled && !rstate->disabled) {
665		if (rdev->desc->ops->set_suspend_voltage ||
666		    rdev->desc->ops->set_suspend_mode)
667			rdev_warn(rdev, "No configuration\n");
668		return 0;
669	}
670
671	if (rstate->enabled && rstate->disabled) {
672		rdev_err(rdev, "invalid configuration\n");
673		return -EINVAL;
674	}
675
676	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677		ret = rdev->desc->ops->set_suspend_enable(rdev);
678	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679		ret = rdev->desc->ops->set_suspend_disable(rdev);
680	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
681		ret = 0;
682
683	if (ret < 0) {
684		rdev_err(rdev, "failed to enabled/disable\n");
685		return ret;
686	}
687
688	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
689		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
690		if (ret < 0) {
691			rdev_err(rdev, "failed to set voltage\n");
692			return ret;
693		}
694	}
695
696	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
697		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
698		if (ret < 0) {
699			rdev_err(rdev, "failed to set mode\n");
700			return ret;
701		}
702	}
703	return ret;
704}
705
706/* locks held by caller */
707static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
708{
709	if (!rdev->constraints)
710		return -EINVAL;
711
712	switch (state) {
713	case PM_SUSPEND_STANDBY:
714		return suspend_set_state(rdev,
715			&rdev->constraints->state_standby);
716	case PM_SUSPEND_MEM:
717		return suspend_set_state(rdev,
718			&rdev->constraints->state_mem);
719	case PM_SUSPEND_MAX:
720		return suspend_set_state(rdev,
721			&rdev->constraints->state_disk);
722	default:
723		return -EINVAL;
724	}
725}
726
727static void print_constraints(struct regulator_dev *rdev)
728{
729	struct regulation_constraints *constraints = rdev->constraints;
730	char buf[80] = "";
731	int count = 0;
732	int ret;
733
734	if (constraints->min_uV && constraints->max_uV) {
735		if (constraints->min_uV == constraints->max_uV)
736			count += sprintf(buf + count, "%d mV ",
737					 constraints->min_uV / 1000);
738		else
739			count += sprintf(buf + count, "%d <--> %d mV ",
740					 constraints->min_uV / 1000,
741					 constraints->max_uV / 1000);
742	}
743
744	if (!constraints->min_uV ||
745	    constraints->min_uV != constraints->max_uV) {
746		ret = _regulator_get_voltage(rdev);
747		if (ret > 0)
748			count += sprintf(buf + count, "at %d mV ", ret / 1000);
749	}
750
751	if (constraints->uV_offset)
752		count += sprintf(buf, "%dmV offset ",
753				 constraints->uV_offset / 1000);
754
755	if (constraints->min_uA && constraints->max_uA) {
756		if (constraints->min_uA == constraints->max_uA)
757			count += sprintf(buf + count, "%d mA ",
758					 constraints->min_uA / 1000);
759		else
760			count += sprintf(buf + count, "%d <--> %d mA ",
761					 constraints->min_uA / 1000,
762					 constraints->max_uA / 1000);
763	}
764
765	if (!constraints->min_uA ||
766	    constraints->min_uA != constraints->max_uA) {
767		ret = _regulator_get_current_limit(rdev);
768		if (ret > 0)
769			count += sprintf(buf + count, "at %d mA ", ret / 1000);
770	}
771
772	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
773		count += sprintf(buf + count, "fast ");
774	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
775		count += sprintf(buf + count, "normal ");
776	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
777		count += sprintf(buf + count, "idle ");
778	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
779		count += sprintf(buf + count, "standby");
780
781	rdev_info(rdev, "%s\n", buf);
782
783	if ((constraints->min_uV != constraints->max_uV) &&
784	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
785		rdev_warn(rdev,
786			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
787}
788
789static int machine_constraints_voltage(struct regulator_dev *rdev,
790	struct regulation_constraints *constraints)
791{
792	struct regulator_ops *ops = rdev->desc->ops;
793	int ret;
794
795	/* do we need to apply the constraint voltage */
796	if (rdev->constraints->apply_uV &&
797	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
798		ret = _regulator_do_set_voltage(rdev,
799						rdev->constraints->min_uV,
800						rdev->constraints->max_uV);
801		if (ret < 0) {
802			rdev_err(rdev, "failed to apply %duV constraint\n",
803				 rdev->constraints->min_uV);
804			return ret;
805		}
806	}
807
808	/* constrain machine-level voltage specs to fit
809	 * the actual range supported by this regulator.
810	 */
811	if (ops->list_voltage && rdev->desc->n_voltages) {
812		int	count = rdev->desc->n_voltages;
813		int	i;
814		int	min_uV = INT_MAX;
815		int	max_uV = INT_MIN;
816		int	cmin = constraints->min_uV;
817		int	cmax = constraints->max_uV;
818
819		/* it's safe to autoconfigure fixed-voltage supplies
820		   and the constraints are used by list_voltage. */
821		if (count == 1 && !cmin) {
822			cmin = 1;
823			cmax = INT_MAX;
824			constraints->min_uV = cmin;
825			constraints->max_uV = cmax;
826		}
827
828		/* voltage constraints are optional */
829		if ((cmin == 0) && (cmax == 0))
830			return 0;
831
832		/* else require explicit machine-level constraints */
833		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
834			rdev_err(rdev, "invalid voltage constraints\n");
835			return -EINVAL;
836		}
837
838		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
839		for (i = 0; i < count; i++) {
840			int	value;
841
842			value = ops->list_voltage(rdev, i);
843			if (value <= 0)
844				continue;
845
846			/* maybe adjust [min_uV..max_uV] */
847			if (value >= cmin && value < min_uV)
848				min_uV = value;
849			if (value <= cmax && value > max_uV)
850				max_uV = value;
851		}
852
853		/* final: [min_uV..max_uV] valid iff constraints valid */
854		if (max_uV < min_uV) {
855			rdev_err(rdev, "unsupportable voltage constraints\n");
856			return -EINVAL;
857		}
858
859		/* use regulator's subset of machine constraints */
860		if (constraints->min_uV < min_uV) {
861			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
862				 constraints->min_uV, min_uV);
863			constraints->min_uV = min_uV;
864		}
865		if (constraints->max_uV > max_uV) {
866			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
867				 constraints->max_uV, max_uV);
868			constraints->max_uV = max_uV;
869		}
870	}
871
872	return 0;
873}
874
875/**
876 * set_machine_constraints - sets regulator constraints
877 * @rdev: regulator source
878 * @constraints: constraints to apply
879 *
880 * Allows platform initialisation code to define and constrain
881 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
882 * Constraints *must* be set by platform code in order for some
883 * regulator operations to proceed i.e. set_voltage, set_current_limit,
884 * set_mode.
885 */
886static int set_machine_constraints(struct regulator_dev *rdev,
887	const struct regulation_constraints *constraints)
888{
889	int ret = 0;
890	struct regulator_ops *ops = rdev->desc->ops;
891
892	if (constraints)
893		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
894					    GFP_KERNEL);
895	else
896		rdev->constraints = kzalloc(sizeof(*constraints),
897					    GFP_KERNEL);
898	if (!rdev->constraints)
899		return -ENOMEM;
900
901	ret = machine_constraints_voltage(rdev, rdev->constraints);
902	if (ret != 0)
903		goto out;
904
905	/* do we need to setup our suspend state */
906	if (rdev->constraints->initial_state) {
907		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
908		if (ret < 0) {
909			rdev_err(rdev, "failed to set suspend state\n");
910			goto out;
911		}
912	}
913
914	if (rdev->constraints->initial_mode) {
915		if (!ops->set_mode) {
916			rdev_err(rdev, "no set_mode operation\n");
917			ret = -EINVAL;
918			goto out;
919		}
920
921		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
922		if (ret < 0) {
923			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
924			goto out;
925		}
926	}
927
928	/* If the constraints say the regulator should be on at this point
929	 * and we have control then make sure it is enabled.
930	 */
931	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
932	    ops->enable) {
933		ret = ops->enable(rdev);
934		if (ret < 0) {
935			rdev_err(rdev, "failed to enable\n");
936			goto out;
937		}
938	}
939
940	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
941		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
942		if (ret < 0) {
943			rdev_err(rdev, "failed to set ramp_delay\n");
944			goto out;
945		}
946	}
947
948	print_constraints(rdev);
949	return 0;
950out:
951	kfree(rdev->constraints);
952	rdev->constraints = NULL;
953	return ret;
954}
955
956/**
957 * set_supply - set regulator supply regulator
958 * @rdev: regulator name
959 * @supply_rdev: supply regulator name
960 *
961 * Called by platform initialisation code to set the supply regulator for this
962 * regulator. This ensures that a regulators supply will also be enabled by the
963 * core if it's child is enabled.
964 */
965static int set_supply(struct regulator_dev *rdev,
966		      struct regulator_dev *supply_rdev)
967{
968	int err;
969
970	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
971
972	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
973	if (rdev->supply == NULL) {
974		err = -ENOMEM;
975		return err;
976	}
977
978	return 0;
979}
980
981/**
982 * set_consumer_device_supply - Bind a regulator to a symbolic supply
983 * @rdev:         regulator source
984 * @consumer_dev_name: dev_name() string for device supply applies to
985 * @supply:       symbolic name for supply
986 *
987 * Allows platform initialisation code to map physical regulator
988 * sources to symbolic names for supplies for use by devices.  Devices
989 * should use these symbolic names to request regulators, avoiding the
990 * need to provide board-specific regulator names as platform data.
991 */
992static int set_consumer_device_supply(struct regulator_dev *rdev,
993				      const char *consumer_dev_name,
994				      const char *supply)
995{
996	struct regulator_map *node;
997	int has_dev;
998
999	if (supply == NULL)
1000		return -EINVAL;
1001
1002	if (consumer_dev_name != NULL)
1003		has_dev = 1;
1004	else
1005		has_dev = 0;
1006
1007	list_for_each_entry(node, &regulator_map_list, list) {
1008		if (node->dev_name && consumer_dev_name) {
1009			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1010				continue;
1011		} else if (node->dev_name || consumer_dev_name) {
1012			continue;
1013		}
1014
1015		if (strcmp(node->supply, supply) != 0)
1016			continue;
1017
1018		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1019			 consumer_dev_name,
1020			 dev_name(&node->regulator->dev),
1021			 node->regulator->desc->name,
1022			 supply,
1023			 dev_name(&rdev->dev), rdev_get_name(rdev));
1024		return -EBUSY;
1025	}
1026
1027	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1028	if (node == NULL)
1029		return -ENOMEM;
1030
1031	node->regulator = rdev;
1032	node->supply = supply;
1033
1034	if (has_dev) {
1035		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1036		if (node->dev_name == NULL) {
1037			kfree(node);
1038			return -ENOMEM;
1039		}
1040	}
1041
1042	list_add(&node->list, &regulator_map_list);
1043	return 0;
1044}
1045
1046static void unset_regulator_supplies(struct regulator_dev *rdev)
1047{
1048	struct regulator_map *node, *n;
1049
1050	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1051		if (rdev == node->regulator) {
1052			list_del(&node->list);
1053			kfree(node->dev_name);
1054			kfree(node);
1055		}
1056	}
1057}
1058
1059#define REG_STR_SIZE	64
1060
1061static struct regulator *create_regulator(struct regulator_dev *rdev,
1062					  struct device *dev,
1063					  const char *supply_name)
1064{
1065	struct regulator *regulator;
1066	char buf[REG_STR_SIZE];
1067	int err, size;
1068
1069	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1070	if (regulator == NULL)
1071		return NULL;
1072
1073	mutex_lock(&rdev->mutex);
1074	regulator->rdev = rdev;
1075	list_add(&regulator->list, &rdev->consumer_list);
1076
1077	if (dev) {
1078		regulator->dev = dev;
1079
1080		/* Add a link to the device sysfs entry */
1081		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1082				 dev->kobj.name, supply_name);
1083		if (size >= REG_STR_SIZE)
1084			goto overflow_err;
1085
1086		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1087		if (regulator->supply_name == NULL)
1088			goto overflow_err;
1089
1090		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1091					buf);
1092		if (err) {
1093			rdev_warn(rdev, "could not add device link %s err %d\n",
1094				  dev->kobj.name, err);
1095			/* non-fatal */
1096		}
1097	} else {
1098		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1099		if (regulator->supply_name == NULL)
1100			goto overflow_err;
1101	}
1102
1103	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1104						rdev->debugfs);
1105	if (!regulator->debugfs) {
1106		rdev_warn(rdev, "Failed to create debugfs directory\n");
1107	} else {
1108		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1109				   &regulator->uA_load);
1110		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1111				   &regulator->min_uV);
1112		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1113				   &regulator->max_uV);
1114	}
1115
1116	/*
1117	 * Check now if the regulator is an always on regulator - if
1118	 * it is then we don't need to do nearly so much work for
1119	 * enable/disable calls.
1120	 */
1121	if (!_regulator_can_change_status(rdev) &&
1122	    _regulator_is_enabled(rdev))
1123		regulator->always_on = true;
1124
1125	mutex_unlock(&rdev->mutex);
1126	return regulator;
1127overflow_err:
1128	list_del(&regulator->list);
1129	kfree(regulator);
1130	mutex_unlock(&rdev->mutex);
1131	return NULL;
1132}
1133
1134static int _regulator_get_enable_time(struct regulator_dev *rdev)
1135{
1136	if (!rdev->desc->ops->enable_time)
1137		return rdev->desc->enable_time;
1138	return rdev->desc->ops->enable_time(rdev);
1139}
1140
1141static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1142						  const char *supply,
1143						  int *ret)
1144{
1145	struct regulator_dev *r;
1146	struct device_node *node;
1147	struct regulator_map *map;
1148	const char *devname = NULL;
1149
1150	/* first do a dt based lookup */
1151	if (dev && dev->of_node) {
1152		node = of_get_regulator(dev, supply);
1153		if (node) {
1154			list_for_each_entry(r, &regulator_list, list)
1155				if (r->dev.parent &&
1156					node == r->dev.of_node)
1157					return r;
1158		} else {
1159			/*
1160			 * If we couldn't even get the node then it's
1161			 * not just that the device didn't register
1162			 * yet, there's no node and we'll never
1163			 * succeed.
1164			 */
1165			*ret = -ENODEV;
1166		}
1167	}
1168
1169	/* if not found, try doing it non-dt way */
1170	if (dev)
1171		devname = dev_name(dev);
1172
1173	list_for_each_entry(r, &regulator_list, list)
1174		if (strcmp(rdev_get_name(r), supply) == 0)
1175			return r;
1176
1177	list_for_each_entry(map, &regulator_map_list, list) {
1178		/* If the mapping has a device set up it must match */
1179		if (map->dev_name &&
1180		    (!devname || strcmp(map->dev_name, devname)))
1181			continue;
1182
1183		if (strcmp(map->supply, supply) == 0)
1184			return map->regulator;
1185	}
1186
1187
1188	return NULL;
1189}
1190
1191/* Internal regulator request function */
1192static struct regulator *_regulator_get(struct device *dev, const char *id,
1193					int exclusive)
1194{
1195	struct regulator_dev *rdev;
1196	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1197	const char *devname = NULL;
1198	int ret;
1199
1200	if (id == NULL) {
1201		pr_err("get() with no identifier\n");
1202		return regulator;
1203	}
1204
1205	if (dev)
1206		devname = dev_name(dev);
1207
1208	mutex_lock(&regulator_list_mutex);
1209
1210	rdev = regulator_dev_lookup(dev, id, &ret);
1211	if (rdev)
1212		goto found;
1213
1214	if (board_wants_dummy_regulator) {
1215		rdev = dummy_regulator_rdev;
1216		goto found;
1217	}
1218
1219#ifdef CONFIG_REGULATOR_DUMMY
1220	if (!devname)
1221		devname = "deviceless";
1222
1223	/* If the board didn't flag that it was fully constrained then
1224	 * substitute in a dummy regulator so consumers can continue.
1225	 */
1226	if (!has_full_constraints) {
1227		pr_warn("%s supply %s not found, using dummy regulator\n",
1228			devname, id);
1229		rdev = dummy_regulator_rdev;
1230		goto found;
1231	}
1232#endif
1233
1234	mutex_unlock(&regulator_list_mutex);
1235	return regulator;
1236
1237found:
1238	if (rdev->exclusive) {
1239		regulator = ERR_PTR(-EPERM);
1240		goto out;
1241	}
1242
1243	if (exclusive && rdev->open_count) {
1244		regulator = ERR_PTR(-EBUSY);
1245		goto out;
1246	}
1247
1248	if (!try_module_get(rdev->owner))
1249		goto out;
1250
1251	regulator = create_regulator(rdev, dev, id);
1252	if (regulator == NULL) {
1253		regulator = ERR_PTR(-ENOMEM);
1254		module_put(rdev->owner);
1255		goto out;
1256	}
1257
1258	rdev->open_count++;
1259	if (exclusive) {
1260		rdev->exclusive = 1;
1261
1262		ret = _regulator_is_enabled(rdev);
1263		if (ret > 0)
1264			rdev->use_count = 1;
1265		else
1266			rdev->use_count = 0;
1267	}
1268
1269out:
1270	mutex_unlock(&regulator_list_mutex);
1271
1272	return regulator;
1273}
1274
1275/**
1276 * regulator_get - lookup and obtain a reference to a regulator.
1277 * @dev: device for regulator "consumer"
1278 * @id: Supply name or regulator ID.
1279 *
1280 * Returns a struct regulator corresponding to the regulator producer,
1281 * or IS_ERR() condition containing errno.
1282 *
1283 * Use of supply names configured via regulator_set_device_supply() is
1284 * strongly encouraged.  It is recommended that the supply name used
1285 * should match the name used for the supply and/or the relevant
1286 * device pins in the datasheet.
1287 */
1288struct regulator *regulator_get(struct device *dev, const char *id)
1289{
1290	return _regulator_get(dev, id, 0);
1291}
1292EXPORT_SYMBOL_GPL(regulator_get);
1293
1294static void devm_regulator_release(struct device *dev, void *res)
1295{
1296	regulator_put(*(struct regulator **)res);
1297}
1298
1299/**
1300 * devm_regulator_get - Resource managed regulator_get()
1301 * @dev: device for regulator "consumer"
1302 * @id: Supply name or regulator ID.
1303 *
1304 * Managed regulator_get(). Regulators returned from this function are
1305 * automatically regulator_put() on driver detach. See regulator_get() for more
1306 * information.
1307 */
1308struct regulator *devm_regulator_get(struct device *dev, const char *id)
1309{
1310	struct regulator **ptr, *regulator;
1311
1312	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1313	if (!ptr)
1314		return ERR_PTR(-ENOMEM);
1315
1316	regulator = regulator_get(dev, id);
1317	if (!IS_ERR(regulator)) {
1318		*ptr = regulator;
1319		devres_add(dev, ptr);
1320	} else {
1321		devres_free(ptr);
1322	}
1323
1324	return regulator;
1325}
1326EXPORT_SYMBOL_GPL(devm_regulator_get);
1327
1328/**
1329 * regulator_get_exclusive - obtain exclusive access to a regulator.
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Returns a struct regulator corresponding to the regulator producer,
1334 * or IS_ERR() condition containing errno.  Other consumers will be
1335 * unable to obtain this reference is held and the use count for the
1336 * regulator will be initialised to reflect the current state of the
1337 * regulator.
1338 *
1339 * This is intended for use by consumers which cannot tolerate shared
1340 * use of the regulator such as those which need to force the
1341 * regulator off for correct operation of the hardware they are
1342 * controlling.
1343 *
1344 * Use of supply names configured via regulator_set_device_supply() is
1345 * strongly encouraged.  It is recommended that the supply name used
1346 * should match the name used for the supply and/or the relevant
1347 * device pins in the datasheet.
1348 */
1349struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1350{
1351	return _regulator_get(dev, id, 1);
1352}
1353EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1354
1355/**
1356 * regulator_put - "free" the regulator source
1357 * @regulator: regulator source
1358 *
1359 * Note: drivers must ensure that all regulator_enable calls made on this
1360 * regulator source are balanced by regulator_disable calls prior to calling
1361 * this function.
1362 */
1363void regulator_put(struct regulator *regulator)
1364{
1365	struct regulator_dev *rdev;
1366
1367	if (regulator == NULL || IS_ERR(regulator))
1368		return;
1369
1370	mutex_lock(&regulator_list_mutex);
1371	rdev = regulator->rdev;
1372
1373	debugfs_remove_recursive(regulator->debugfs);
1374
1375	/* remove any sysfs entries */
1376	if (regulator->dev)
1377		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378	kfree(regulator->supply_name);
1379	list_del(&regulator->list);
1380	kfree(regulator);
1381
1382	rdev->open_count--;
1383	rdev->exclusive = 0;
1384
1385	module_put(rdev->owner);
1386	mutex_unlock(&regulator_list_mutex);
1387}
1388EXPORT_SYMBOL_GPL(regulator_put);
1389
1390static int devm_regulator_match(struct device *dev, void *res, void *data)
1391{
1392	struct regulator **r = res;
1393	if (!r || !*r) {
1394		WARN_ON(!r || !*r);
1395		return 0;
1396	}
1397	return *r == data;
1398}
1399
1400/**
1401 * devm_regulator_put - Resource managed regulator_put()
1402 * @regulator: regulator to free
1403 *
1404 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1405 * this function will not need to be called and the resource management
1406 * code will ensure that the resource is freed.
1407 */
1408void devm_regulator_put(struct regulator *regulator)
1409{
1410	int rc;
1411
1412	rc = devres_release(regulator->dev, devm_regulator_release,
1413			    devm_regulator_match, regulator);
1414	if (rc != 0)
1415		WARN_ON(rc);
1416}
1417EXPORT_SYMBOL_GPL(devm_regulator_put);
1418
1419static int _regulator_do_enable(struct regulator_dev *rdev)
1420{
1421	int ret, delay;
1422
1423	/* Query before enabling in case configuration dependent.  */
1424	ret = _regulator_get_enable_time(rdev);
1425	if (ret >= 0) {
1426		delay = ret;
1427	} else {
1428		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1429		delay = 0;
1430	}
1431
1432	trace_regulator_enable(rdev_get_name(rdev));
1433
1434	if (rdev->ena_gpio) {
1435		gpio_set_value_cansleep(rdev->ena_gpio,
1436					!rdev->ena_gpio_invert);
1437		rdev->ena_gpio_state = 1;
1438	} else if (rdev->desc->ops->enable) {
1439		ret = rdev->desc->ops->enable(rdev);
1440		if (ret < 0)
1441			return ret;
1442	} else {
1443		return -EINVAL;
1444	}
1445
1446	/* Allow the regulator to ramp; it would be useful to extend
1447	 * this for bulk operations so that the regulators can ramp
1448	 * together.  */
1449	trace_regulator_enable_delay(rdev_get_name(rdev));
1450
1451	if (delay >= 1000) {
1452		mdelay(delay / 1000);
1453		udelay(delay % 1000);
1454	} else if (delay) {
1455		udelay(delay);
1456	}
1457
1458	trace_regulator_enable_complete(rdev_get_name(rdev));
1459
1460	return 0;
1461}
1462
1463/* locks held by regulator_enable() */
1464static int _regulator_enable(struct regulator_dev *rdev)
1465{
1466	int ret;
1467
1468	/* check voltage and requested load before enabling */
1469	if (rdev->constraints &&
1470	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471		drms_uA_update(rdev);
1472
1473	if (rdev->use_count == 0) {
1474		/* The regulator may on if it's not switchable or left on */
1475		ret = _regulator_is_enabled(rdev);
1476		if (ret == -EINVAL || ret == 0) {
1477			if (!_regulator_can_change_status(rdev))
1478				return -EPERM;
1479
1480			ret = _regulator_do_enable(rdev);
1481			if (ret < 0)
1482				return ret;
1483
1484		} else if (ret < 0) {
1485			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1486			return ret;
1487		}
1488		/* Fallthrough on positive return values - already enabled */
1489	}
1490
1491	rdev->use_count++;
1492
1493	return 0;
1494}
1495
1496/**
1497 * regulator_enable - enable regulator output
1498 * @regulator: regulator source
1499 *
1500 * Request that the regulator be enabled with the regulator output at
1501 * the predefined voltage or current value.  Calls to regulator_enable()
1502 * must be balanced with calls to regulator_disable().
1503 *
1504 * NOTE: the output value can be set by other drivers, boot loader or may be
1505 * hardwired in the regulator.
1506 */
1507int regulator_enable(struct regulator *regulator)
1508{
1509	struct regulator_dev *rdev = regulator->rdev;
1510	int ret = 0;
1511
1512	if (regulator->always_on)
1513		return 0;
1514
1515	if (rdev->supply) {
1516		ret = regulator_enable(rdev->supply);
1517		if (ret != 0)
1518			return ret;
1519	}
1520
1521	mutex_lock(&rdev->mutex);
1522	ret = _regulator_enable(rdev);
1523	mutex_unlock(&rdev->mutex);
1524
1525	if (ret != 0 && rdev->supply)
1526		regulator_disable(rdev->supply);
1527
1528	return ret;
1529}
1530EXPORT_SYMBOL_GPL(regulator_enable);
1531
1532static int _regulator_do_disable(struct regulator_dev *rdev)
1533{
1534	int ret;
1535
1536	trace_regulator_disable(rdev_get_name(rdev));
1537
1538	if (rdev->ena_gpio) {
1539		gpio_set_value_cansleep(rdev->ena_gpio,
1540					rdev->ena_gpio_invert);
1541		rdev->ena_gpio_state = 0;
1542
1543	} else if (rdev->desc->ops->disable) {
1544		ret = rdev->desc->ops->disable(rdev);
1545		if (ret != 0)
1546			return ret;
1547	}
1548
1549	trace_regulator_disable_complete(rdev_get_name(rdev));
1550
1551	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1552			     NULL);
1553	return 0;
1554}
1555
1556/* locks held by regulator_disable() */
1557static int _regulator_disable(struct regulator_dev *rdev)
1558{
1559	int ret = 0;
1560
1561	if (WARN(rdev->use_count <= 0,
1562		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1563		return -EIO;
1564
1565	/* are we the last user and permitted to disable ? */
1566	if (rdev->use_count == 1 &&
1567	    (rdev->constraints && !rdev->constraints->always_on)) {
1568
1569		/* we are last user */
1570		if (_regulator_can_change_status(rdev)) {
1571			ret = _regulator_do_disable(rdev);
1572			if (ret < 0) {
1573				rdev_err(rdev, "failed to disable\n");
1574				return ret;
1575			}
1576		}
1577
1578		rdev->use_count = 0;
1579	} else if (rdev->use_count > 1) {
1580
1581		if (rdev->constraints &&
1582			(rdev->constraints->valid_ops_mask &
1583			REGULATOR_CHANGE_DRMS))
1584			drms_uA_update(rdev);
1585
1586		rdev->use_count--;
1587	}
1588
1589	return ret;
1590}
1591
1592/**
1593 * regulator_disable - disable regulator output
1594 * @regulator: regulator source
1595 *
1596 * Disable the regulator output voltage or current.  Calls to
1597 * regulator_enable() must be balanced with calls to
1598 * regulator_disable().
1599 *
1600 * NOTE: this will only disable the regulator output if no other consumer
1601 * devices have it enabled, the regulator device supports disabling and
1602 * machine constraints permit this operation.
1603 */
1604int regulator_disable(struct regulator *regulator)
1605{
1606	struct regulator_dev *rdev = regulator->rdev;
1607	int ret = 0;
1608
1609	if (regulator->always_on)
1610		return 0;
1611
1612	mutex_lock(&rdev->mutex);
1613	ret = _regulator_disable(rdev);
1614	mutex_unlock(&rdev->mutex);
1615
1616	if (ret == 0 && rdev->supply)
1617		regulator_disable(rdev->supply);
1618
1619	return ret;
1620}
1621EXPORT_SYMBOL_GPL(regulator_disable);
1622
1623/* locks held by regulator_force_disable() */
1624static int _regulator_force_disable(struct regulator_dev *rdev)
1625{
1626	int ret = 0;
1627
1628	/* force disable */
1629	if (rdev->desc->ops->disable) {
1630		/* ah well, who wants to live forever... */
1631		ret = rdev->desc->ops->disable(rdev);
1632		if (ret < 0) {
1633			rdev_err(rdev, "failed to force disable\n");
1634			return ret;
1635		}
1636		/* notify other consumers that power has been forced off */
1637		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1638			REGULATOR_EVENT_DISABLE, NULL);
1639	}
1640
1641	return ret;
1642}
1643
1644/**
1645 * regulator_force_disable - force disable regulator output
1646 * @regulator: regulator source
1647 *
1648 * Forcibly disable the regulator output voltage or current.
1649 * NOTE: this *will* disable the regulator output even if other consumer
1650 * devices have it enabled. This should be used for situations when device
1651 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1652 */
1653int regulator_force_disable(struct regulator *regulator)
1654{
1655	struct regulator_dev *rdev = regulator->rdev;
1656	int ret;
1657
1658	mutex_lock(&rdev->mutex);
1659	regulator->uA_load = 0;
1660	ret = _regulator_force_disable(regulator->rdev);
1661	mutex_unlock(&rdev->mutex);
1662
1663	if (rdev->supply)
1664		while (rdev->open_count--)
1665			regulator_disable(rdev->supply);
1666
1667	return ret;
1668}
1669EXPORT_SYMBOL_GPL(regulator_force_disable);
1670
1671static void regulator_disable_work(struct work_struct *work)
1672{
1673	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1674						  disable_work.work);
1675	int count, i, ret;
1676
1677	mutex_lock(&rdev->mutex);
1678
1679	BUG_ON(!rdev->deferred_disables);
1680
1681	count = rdev->deferred_disables;
1682	rdev->deferred_disables = 0;
1683
1684	for (i = 0; i < count; i++) {
1685		ret = _regulator_disable(rdev);
1686		if (ret != 0)
1687			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1688	}
1689
1690	mutex_unlock(&rdev->mutex);
1691
1692	if (rdev->supply) {
1693		for (i = 0; i < count; i++) {
1694			ret = regulator_disable(rdev->supply);
1695			if (ret != 0) {
1696				rdev_err(rdev,
1697					 "Supply disable failed: %d\n", ret);
1698			}
1699		}
1700	}
1701}
1702
1703/**
1704 * regulator_disable_deferred - disable regulator output with delay
1705 * @regulator: regulator source
1706 * @ms: miliseconds until the regulator is disabled
1707 *
1708 * Execute regulator_disable() on the regulator after a delay.  This
1709 * is intended for use with devices that require some time to quiesce.
1710 *
1711 * NOTE: this will only disable the regulator output if no other consumer
1712 * devices have it enabled, the regulator device supports disabling and
1713 * machine constraints permit this operation.
1714 */
1715int regulator_disable_deferred(struct regulator *regulator, int ms)
1716{
1717	struct regulator_dev *rdev = regulator->rdev;
1718	int ret;
1719
1720	if (regulator->always_on)
1721		return 0;
1722
1723	mutex_lock(&rdev->mutex);
1724	rdev->deferred_disables++;
1725	mutex_unlock(&rdev->mutex);
1726
1727	ret = schedule_delayed_work(&rdev->disable_work,
1728				    msecs_to_jiffies(ms));
1729	if (ret < 0)
1730		return ret;
1731	else
1732		return 0;
1733}
1734EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1735
1736/**
1737 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1738 *
1739 * @rdev: regulator to operate on
1740 *
1741 * Regulators that use regmap for their register I/O can set the
1742 * enable_reg and enable_mask fields in their descriptor and then use
1743 * this as their is_enabled operation, saving some code.
1744 */
1745int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1746{
1747	unsigned int val;
1748	int ret;
1749
1750	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1751	if (ret != 0)
1752		return ret;
1753
1754	return (val & rdev->desc->enable_mask) != 0;
1755}
1756EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1757
1758/**
1759 * regulator_enable_regmap - standard enable() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their enable() operation, saving some code.
1766 */
1767int regulator_enable_regmap(struct regulator_dev *rdev)
1768{
1769	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1770				  rdev->desc->enable_mask,
1771				  rdev->desc->enable_mask);
1772}
1773EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1774
1775/**
1776 * regulator_disable_regmap - standard disable() for regmap users
1777 *
1778 * @rdev: regulator to operate on
1779 *
1780 * Regulators that use regmap for their register I/O can set the
1781 * enable_reg and enable_mask fields in their descriptor and then use
1782 * this as their disable() operation, saving some code.
1783 */
1784int regulator_disable_regmap(struct regulator_dev *rdev)
1785{
1786	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1787				  rdev->desc->enable_mask, 0);
1788}
1789EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1790
1791static int _regulator_is_enabled(struct regulator_dev *rdev)
1792{
1793	/* A GPIO control always takes precedence */
1794	if (rdev->ena_gpio)
1795		return rdev->ena_gpio_state;
1796
1797	/* If we don't know then assume that the regulator is always on */
1798	if (!rdev->desc->ops->is_enabled)
1799		return 1;
1800
1801	return rdev->desc->ops->is_enabled(rdev);
1802}
1803
1804/**
1805 * regulator_is_enabled - is the regulator output enabled
1806 * @regulator: regulator source
1807 *
1808 * Returns positive if the regulator driver backing the source/client
1809 * has requested that the device be enabled, zero if it hasn't, else a
1810 * negative errno code.
1811 *
1812 * Note that the device backing this regulator handle can have multiple
1813 * users, so it might be enabled even if regulator_enable() was never
1814 * called for this particular source.
1815 */
1816int regulator_is_enabled(struct regulator *regulator)
1817{
1818	int ret;
1819
1820	if (regulator->always_on)
1821		return 1;
1822
1823	mutex_lock(&regulator->rdev->mutex);
1824	ret = _regulator_is_enabled(regulator->rdev);
1825	mutex_unlock(&regulator->rdev->mutex);
1826
1827	return ret;
1828}
1829EXPORT_SYMBOL_GPL(regulator_is_enabled);
1830
1831/**
1832 * regulator_count_voltages - count regulator_list_voltage() selectors
1833 * @regulator: regulator source
1834 *
1835 * Returns number of selectors, or negative errno.  Selectors are
1836 * numbered starting at zero, and typically correspond to bitfields
1837 * in hardware registers.
1838 */
1839int regulator_count_voltages(struct regulator *regulator)
1840{
1841	struct regulator_dev	*rdev = regulator->rdev;
1842
1843	return rdev->desc->n_voltages ? : -EINVAL;
1844}
1845EXPORT_SYMBOL_GPL(regulator_count_voltages);
1846
1847/**
1848 * regulator_list_voltage_linear - List voltages with simple calculation
1849 *
1850 * @rdev: Regulator device
1851 * @selector: Selector to convert into a voltage
1852 *
1853 * Regulators with a simple linear mapping between voltages and
1854 * selectors can set min_uV and uV_step in the regulator descriptor
1855 * and then use this function as their list_voltage() operation,
1856 */
1857int regulator_list_voltage_linear(struct regulator_dev *rdev,
1858				  unsigned int selector)
1859{
1860	if (selector >= rdev->desc->n_voltages)
1861		return -EINVAL;
1862
1863	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1864}
1865EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1866
1867/**
1868 * regulator_list_voltage_table - List voltages with table based mapping
1869 *
1870 * @rdev: Regulator device
1871 * @selector: Selector to convert into a voltage
1872 *
1873 * Regulators with table based mapping between voltages and
1874 * selectors can set volt_table in the regulator descriptor
1875 * and then use this function as their list_voltage() operation.
1876 */
1877int regulator_list_voltage_table(struct regulator_dev *rdev,
1878				 unsigned int selector)
1879{
1880	if (!rdev->desc->volt_table) {
1881		BUG_ON(!rdev->desc->volt_table);
1882		return -EINVAL;
1883	}
1884
1885	if (selector >= rdev->desc->n_voltages)
1886		return -EINVAL;
1887
1888	return rdev->desc->volt_table[selector];
1889}
1890EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1891
1892/**
1893 * regulator_list_voltage - enumerate supported voltages
1894 * @regulator: regulator source
1895 * @selector: identify voltage to list
1896 * Context: can sleep
1897 *
1898 * Returns a voltage that can be passed to @regulator_set_voltage(),
1899 * zero if this selector code can't be used on this system, or a
1900 * negative errno.
1901 */
1902int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1903{
1904	struct regulator_dev	*rdev = regulator->rdev;
1905	struct regulator_ops	*ops = rdev->desc->ops;
1906	int			ret;
1907
1908	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1909		return -EINVAL;
1910
1911	mutex_lock(&rdev->mutex);
1912	ret = ops->list_voltage(rdev, selector);
1913	mutex_unlock(&rdev->mutex);
1914
1915	if (ret > 0) {
1916		if (ret < rdev->constraints->min_uV)
1917			ret = 0;
1918		else if (ret > rdev->constraints->max_uV)
1919			ret = 0;
1920	}
1921
1922	return ret;
1923}
1924EXPORT_SYMBOL_GPL(regulator_list_voltage);
1925
1926/**
1927 * regulator_is_supported_voltage - check if a voltage range can be supported
1928 *
1929 * @regulator: Regulator to check.
1930 * @min_uV: Minimum required voltage in uV.
1931 * @max_uV: Maximum required voltage in uV.
1932 *
1933 * Returns a boolean or a negative error code.
1934 */
1935int regulator_is_supported_voltage(struct regulator *regulator,
1936				   int min_uV, int max_uV)
1937{
1938	struct regulator_dev *rdev = regulator->rdev;
1939	int i, voltages, ret;
1940
1941	/* If we can't change voltage check the current voltage */
1942	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1943		ret = regulator_get_voltage(regulator);
1944		if (ret >= 0)
1945			return (min_uV >= ret && ret <= max_uV);
1946		else
1947			return ret;
1948	}
1949
1950	ret = regulator_count_voltages(regulator);
1951	if (ret < 0)
1952		return ret;
1953	voltages = ret;
1954
1955	for (i = 0; i < voltages; i++) {
1956		ret = regulator_list_voltage(regulator, i);
1957
1958		if (ret >= min_uV && ret <= max_uV)
1959			return 1;
1960	}
1961
1962	return 0;
1963}
1964EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1965
1966/**
1967 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1968 *
1969 * @rdev: regulator to operate on
1970 *
1971 * Regulators that use regmap for their register I/O can set the
1972 * vsel_reg and vsel_mask fields in their descriptor and then use this
1973 * as their get_voltage_vsel operation, saving some code.
1974 */
1975int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1976{
1977	unsigned int val;
1978	int ret;
1979
1980	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1981	if (ret != 0)
1982		return ret;
1983
1984	val &= rdev->desc->vsel_mask;
1985	val >>= ffs(rdev->desc->vsel_mask) - 1;
1986
1987	return val;
1988}
1989EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1990
1991/**
1992 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1993 *
1994 * @rdev: regulator to operate on
1995 * @sel: Selector to set
1996 *
1997 * Regulators that use regmap for their register I/O can set the
1998 * vsel_reg and vsel_mask fields in their descriptor and then use this
1999 * as their set_voltage_vsel operation, saving some code.
2000 */
2001int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2002{
2003	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2004
2005	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2006				  rdev->desc->vsel_mask, sel);
2007}
2008EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2009
2010/**
2011 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2012 *
2013 * @rdev: Regulator to operate on
2014 * @min_uV: Lower bound for voltage
2015 * @max_uV: Upper bound for voltage
2016 *
2017 * Drivers implementing set_voltage_sel() and list_voltage() can use
2018 * this as their map_voltage() operation.  It will find a suitable
2019 * voltage by calling list_voltage() until it gets something in bounds
2020 * for the requested voltages.
2021 */
2022int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2023				  int min_uV, int max_uV)
2024{
2025	int best_val = INT_MAX;
2026	int selector = 0;
2027	int i, ret;
2028
2029	/* Find the smallest voltage that falls within the specified
2030	 * range.
2031	 */
2032	for (i = 0; i < rdev->desc->n_voltages; i++) {
2033		ret = rdev->desc->ops->list_voltage(rdev, i);
2034		if (ret < 0)
2035			continue;
2036
2037		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2038			best_val = ret;
2039			selector = i;
2040		}
2041	}
2042
2043	if (best_val != INT_MAX)
2044		return selector;
2045	else
2046		return -EINVAL;
2047}
2048EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2049
2050/**
2051 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2052 *
2053 * @rdev: Regulator to operate on
2054 * @min_uV: Lower bound for voltage
2055 * @max_uV: Upper bound for voltage
2056 *
2057 * Drivers providing min_uV and uV_step in their regulator_desc can
2058 * use this as their map_voltage() operation.
2059 */
2060int regulator_map_voltage_linear(struct regulator_dev *rdev,
2061				 int min_uV, int max_uV)
2062{
2063	int ret, voltage;
2064
2065	/* Allow uV_step to be 0 for fixed voltage */
2066	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2067		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2068			return 0;
2069		else
2070			return -EINVAL;
2071	}
2072
2073	if (!rdev->desc->uV_step) {
2074		BUG_ON(!rdev->desc->uV_step);
2075		return -EINVAL;
2076	}
2077
2078	if (min_uV < rdev->desc->min_uV)
2079		min_uV = rdev->desc->min_uV;
2080
2081	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2082	if (ret < 0)
2083		return ret;
2084
2085	/* Map back into a voltage to verify we're still in bounds */
2086	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2087	if (voltage < min_uV || voltage > max_uV)
2088		return -EINVAL;
2089
2090	return ret;
2091}
2092EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2093
2094static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2095				     int min_uV, int max_uV)
2096{
2097	int ret;
2098	int delay = 0;
2099	int best_val = 0;
2100	unsigned int selector;
2101	int old_selector = -1;
2102
2103	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2104
2105	min_uV += rdev->constraints->uV_offset;
2106	max_uV += rdev->constraints->uV_offset;
2107
2108	/*
2109	 * If we can't obtain the old selector there is not enough
2110	 * info to call set_voltage_time_sel().
2111	 */
2112	if (_regulator_is_enabled(rdev) &&
2113	    rdev->desc->ops->set_voltage_time_sel &&
2114	    rdev->desc->ops->get_voltage_sel) {
2115		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2116		if (old_selector < 0)
2117			return old_selector;
2118	}
2119
2120	if (rdev->desc->ops->set_voltage) {
2121		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2122						   &selector);
2123
2124		if (ret >= 0) {
2125			if (rdev->desc->ops->list_voltage)
2126				best_val = rdev->desc->ops->list_voltage(rdev,
2127									 selector);
2128			else
2129				best_val = _regulator_get_voltage(rdev);
2130		}
2131
2132	} else if (rdev->desc->ops->set_voltage_sel) {
2133		if (rdev->desc->ops->map_voltage) {
2134			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2135							   max_uV);
2136		} else {
2137			if (rdev->desc->ops->list_voltage ==
2138			    regulator_list_voltage_linear)
2139				ret = regulator_map_voltage_linear(rdev,
2140								min_uV, max_uV);
2141			else
2142				ret = regulator_map_voltage_iterate(rdev,
2143								min_uV, max_uV);
2144		}
2145
2146		if (ret >= 0) {
2147			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2148			if (min_uV <= best_val && max_uV >= best_val) {
2149				selector = ret;
2150				ret = rdev->desc->ops->set_voltage_sel(rdev,
2151								       ret);
2152			} else {
2153				ret = -EINVAL;
2154			}
2155		}
2156	} else {
2157		ret = -EINVAL;
2158	}
2159
2160	/* Call set_voltage_time_sel if successfully obtained old_selector */
2161	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2162	    rdev->desc->ops->set_voltage_time_sel) {
2163
2164		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165						old_selector, selector);
2166		if (delay < 0) {
2167			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168				  delay);
2169			delay = 0;
2170		}
2171
2172		/* Insert any necessary delays */
2173		if (delay >= 1000) {
2174			mdelay(delay / 1000);
2175			udelay(delay % 1000);
2176		} else if (delay) {
2177			udelay(delay);
2178		}
2179	}
2180
2181	if (ret == 0 && best_val >= 0)
2182		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183				     (void *)best_val);
2184
2185	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2186
2187	return ret;
2188}
2189
2190/**
2191 * regulator_set_voltage - set regulator output voltage
2192 * @regulator: regulator source
2193 * @min_uV: Minimum required voltage in uV
2194 * @max_uV: Maximum acceptable voltage in uV
2195 *
2196 * Sets a voltage regulator to the desired output voltage. This can be set
2197 * during any regulator state. IOW, regulator can be disabled or enabled.
2198 *
2199 * If the regulator is enabled then the voltage will change to the new value
2200 * immediately otherwise if the regulator is disabled the regulator will
2201 * output at the new voltage when enabled.
2202 *
2203 * NOTE: If the regulator is shared between several devices then the lowest
2204 * request voltage that meets the system constraints will be used.
2205 * Regulator system constraints must be set for this regulator before
2206 * calling this function otherwise this call will fail.
2207 */
2208int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2209{
2210	struct regulator_dev *rdev = regulator->rdev;
2211	int ret = 0;
2212
2213	mutex_lock(&rdev->mutex);
2214
2215	/* If we're setting the same range as last time the change
2216	 * should be a noop (some cpufreq implementations use the same
2217	 * voltage for multiple frequencies, for example).
2218	 */
2219	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220		goto out;
2221
2222	/* sanity check */
2223	if (!rdev->desc->ops->set_voltage &&
2224	    !rdev->desc->ops->set_voltage_sel) {
2225		ret = -EINVAL;
2226		goto out;
2227	}
2228
2229	/* constraints check */
2230	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231	if (ret < 0)
2232		goto out;
2233	regulator->min_uV = min_uV;
2234	regulator->max_uV = max_uV;
2235
2236	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237	if (ret < 0)
2238		goto out;
2239
2240	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2241
2242out:
2243	mutex_unlock(&rdev->mutex);
2244	return ret;
2245}
2246EXPORT_SYMBOL_GPL(regulator_set_voltage);
2247
2248/**
2249 * regulator_set_voltage_time - get raise/fall time
2250 * @regulator: regulator source
2251 * @old_uV: starting voltage in microvolts
2252 * @new_uV: target voltage in microvolts
2253 *
2254 * Provided with the starting and ending voltage, this function attempts to
2255 * calculate the time in microseconds required to rise or fall to this new
2256 * voltage.
2257 */
2258int regulator_set_voltage_time(struct regulator *regulator,
2259			       int old_uV, int new_uV)
2260{
2261	struct regulator_dev	*rdev = regulator->rdev;
2262	struct regulator_ops	*ops = rdev->desc->ops;
2263	int old_sel = -1;
2264	int new_sel = -1;
2265	int voltage;
2266	int i;
2267
2268	/* Currently requires operations to do this */
2269	if (!ops->list_voltage || !ops->set_voltage_time_sel
2270	    || !rdev->desc->n_voltages)
2271		return -EINVAL;
2272
2273	for (i = 0; i < rdev->desc->n_voltages; i++) {
2274		/* We only look for exact voltage matches here */
2275		voltage = regulator_list_voltage(regulator, i);
2276		if (voltage < 0)
2277			return -EINVAL;
2278		if (voltage == 0)
2279			continue;
2280		if (voltage == old_uV)
2281			old_sel = i;
2282		if (voltage == new_uV)
2283			new_sel = i;
2284	}
2285
2286	if (old_sel < 0 || new_sel < 0)
2287		return -EINVAL;
2288
2289	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2290}
2291EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2292
2293/**
2294 *regulator_set_voltage_time_sel - get raise/fall time
2295 * @regulator: regulator source
2296 * @old_selector: selector for starting voltage
2297 * @new_selector: selector for target voltage
2298 *
2299 * Provided with the starting and target voltage selectors, this function
2300 * returns time in microseconds required to rise or fall to this new voltage
2301 *
2302 * Drivers providing ramp_delay in regulation_constraints can use this as their
2303 * set_voltage_time_sel() operation.
2304 */
2305int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306				   unsigned int old_selector,
2307				   unsigned int new_selector)
2308{
2309	unsigned int ramp_delay = 0;
2310	int old_volt, new_volt;
2311
2312	if (rdev->constraints->ramp_delay)
2313		ramp_delay = rdev->constraints->ramp_delay;
2314	else if (rdev->desc->ramp_delay)
2315		ramp_delay = rdev->desc->ramp_delay;
2316
2317	if (ramp_delay == 0) {
2318		rdev_warn(rdev, "ramp_delay not set\n");
2319		return 0;
2320	}
2321
2322	/* sanity check */
2323	if (!rdev->desc->ops->list_voltage)
2324		return -EINVAL;
2325
2326	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2328
2329	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2330}
2331EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2332
2333/**
2334 * regulator_sync_voltage - re-apply last regulator output voltage
2335 * @regulator: regulator source
2336 *
2337 * Re-apply the last configured voltage.  This is intended to be used
2338 * where some external control source the consumer is cooperating with
2339 * has caused the configured voltage to change.
2340 */
2341int regulator_sync_voltage(struct regulator *regulator)
2342{
2343	struct regulator_dev *rdev = regulator->rdev;
2344	int ret, min_uV, max_uV;
2345
2346	mutex_lock(&rdev->mutex);
2347
2348	if (!rdev->desc->ops->set_voltage &&
2349	    !rdev->desc->ops->set_voltage_sel) {
2350		ret = -EINVAL;
2351		goto out;
2352	}
2353
2354	/* This is only going to work if we've had a voltage configured. */
2355	if (!regulator->min_uV && !regulator->max_uV) {
2356		ret = -EINVAL;
2357		goto out;
2358	}
2359
2360	min_uV = regulator->min_uV;
2361	max_uV = regulator->max_uV;
2362
2363	/* This should be a paranoia check... */
2364	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365	if (ret < 0)
2366		goto out;
2367
2368	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369	if (ret < 0)
2370		goto out;
2371
2372	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2373
2374out:
2375	mutex_unlock(&rdev->mutex);
2376	return ret;
2377}
2378EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2379
2380static int _regulator_get_voltage(struct regulator_dev *rdev)
2381{
2382	int sel, ret;
2383
2384	if (rdev->desc->ops->get_voltage_sel) {
2385		sel = rdev->desc->ops->get_voltage_sel(rdev);
2386		if (sel < 0)
2387			return sel;
2388		ret = rdev->desc->ops->list_voltage(rdev, sel);
2389	} else if (rdev->desc->ops->get_voltage) {
2390		ret = rdev->desc->ops->get_voltage(rdev);
2391	} else {
2392		return -EINVAL;
2393	}
2394
2395	if (ret < 0)
2396		return ret;
2397	return ret - rdev->constraints->uV_offset;
2398}
2399
2400/**
2401 * regulator_get_voltage - get regulator output voltage
2402 * @regulator: regulator source
2403 *
2404 * This returns the current regulator voltage in uV.
2405 *
2406 * NOTE: If the regulator is disabled it will return the voltage value. This
2407 * function should not be used to determine regulator state.
2408 */
2409int regulator_get_voltage(struct regulator *regulator)
2410{
2411	int ret;
2412
2413	mutex_lock(&regulator->rdev->mutex);
2414
2415	ret = _regulator_get_voltage(regulator->rdev);
2416
2417	mutex_unlock(&regulator->rdev->mutex);
2418
2419	return ret;
2420}
2421EXPORT_SYMBOL_GPL(regulator_get_voltage);
2422
2423/**
2424 * regulator_set_current_limit - set regulator output current limit
2425 * @regulator: regulator source
2426 * @min_uA: Minimuum supported current in uA
2427 * @max_uA: Maximum supported current in uA
2428 *
2429 * Sets current sink to the desired output current. This can be set during
2430 * any regulator state. IOW, regulator can be disabled or enabled.
2431 *
2432 * If the regulator is enabled then the current will change to the new value
2433 * immediately otherwise if the regulator is disabled the regulator will
2434 * output at the new current when enabled.
2435 *
2436 * NOTE: Regulator system constraints must be set for this regulator before
2437 * calling this function otherwise this call will fail.
2438 */
2439int regulator_set_current_limit(struct regulator *regulator,
2440			       int min_uA, int max_uA)
2441{
2442	struct regulator_dev *rdev = regulator->rdev;
2443	int ret;
2444
2445	mutex_lock(&rdev->mutex);
2446
2447	/* sanity check */
2448	if (!rdev->desc->ops->set_current_limit) {
2449		ret = -EINVAL;
2450		goto out;
2451	}
2452
2453	/* constraints check */
2454	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455	if (ret < 0)
2456		goto out;
2457
2458	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459out:
2460	mutex_unlock(&rdev->mutex);
2461	return ret;
2462}
2463EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2464
2465static int _regulator_get_current_limit(struct regulator_dev *rdev)
2466{
2467	int ret;
2468
2469	mutex_lock(&rdev->mutex);
2470
2471	/* sanity check */
2472	if (!rdev->desc->ops->get_current_limit) {
2473		ret = -EINVAL;
2474		goto out;
2475	}
2476
2477	ret = rdev->desc->ops->get_current_limit(rdev);
2478out:
2479	mutex_unlock(&rdev->mutex);
2480	return ret;
2481}
2482
2483/**
2484 * regulator_get_current_limit - get regulator output current
2485 * @regulator: regulator source
2486 *
2487 * This returns the current supplied by the specified current sink in uA.
2488 *
2489 * NOTE: If the regulator is disabled it will return the current value. This
2490 * function should not be used to determine regulator state.
2491 */
2492int regulator_get_current_limit(struct regulator *regulator)
2493{
2494	return _regulator_get_current_limit(regulator->rdev);
2495}
2496EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2497
2498/**
2499 * regulator_set_mode - set regulator operating mode
2500 * @regulator: regulator source
2501 * @mode: operating mode - one of the REGULATOR_MODE constants
2502 *
2503 * Set regulator operating mode to increase regulator efficiency or improve
2504 * regulation performance.
2505 *
2506 * NOTE: Regulator system constraints must be set for this regulator before
2507 * calling this function otherwise this call will fail.
2508 */
2509int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2510{
2511	struct regulator_dev *rdev = regulator->rdev;
2512	int ret;
2513	int regulator_curr_mode;
2514
2515	mutex_lock(&rdev->mutex);
2516
2517	/* sanity check */
2518	if (!rdev->desc->ops->set_mode) {
2519		ret = -EINVAL;
2520		goto out;
2521	}
2522
2523	/* return if the same mode is requested */
2524	if (rdev->desc->ops->get_mode) {
2525		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526		if (regulator_curr_mode == mode) {
2527			ret = 0;
2528			goto out;
2529		}
2530	}
2531
2532	/* constraints check */
2533	ret = regulator_mode_constrain(rdev, &mode);
2534	if (ret < 0)
2535		goto out;
2536
2537	ret = rdev->desc->ops->set_mode(rdev, mode);
2538out:
2539	mutex_unlock(&rdev->mutex);
2540	return ret;
2541}
2542EXPORT_SYMBOL_GPL(regulator_set_mode);
2543
2544static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2545{
2546	int ret;
2547
2548	mutex_lock(&rdev->mutex);
2549
2550	/* sanity check */
2551	if (!rdev->desc->ops->get_mode) {
2552		ret = -EINVAL;
2553		goto out;
2554	}
2555
2556	ret = rdev->desc->ops->get_mode(rdev);
2557out:
2558	mutex_unlock(&rdev->mutex);
2559	return ret;
2560}
2561
2562/**
2563 * regulator_get_mode - get regulator operating mode
2564 * @regulator: regulator source
2565 *
2566 * Get the current regulator operating mode.
2567 */
2568unsigned int regulator_get_mode(struct regulator *regulator)
2569{
2570	return _regulator_get_mode(regulator->rdev);
2571}
2572EXPORT_SYMBOL_GPL(regulator_get_mode);
2573
2574/**
2575 * regulator_set_optimum_mode - set regulator optimum operating mode
2576 * @regulator: regulator source
2577 * @uA_load: load current
2578 *
2579 * Notifies the regulator core of a new device load. This is then used by
2580 * DRMS (if enabled by constraints) to set the most efficient regulator
2581 * operating mode for the new regulator loading.
2582 *
2583 * Consumer devices notify their supply regulator of the maximum power
2584 * they will require (can be taken from device datasheet in the power
2585 * consumption tables) when they change operational status and hence power
2586 * state. Examples of operational state changes that can affect power
2587 * consumption are :-
2588 *
2589 *    o Device is opened / closed.
2590 *    o Device I/O is about to begin or has just finished.
2591 *    o Device is idling in between work.
2592 *
2593 * This information is also exported via sysfs to userspace.
2594 *
2595 * DRMS will sum the total requested load on the regulator and change
2596 * to the most efficient operating mode if platform constraints allow.
2597 *
2598 * Returns the new regulator mode or error.
2599 */
2600int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2601{
2602	struct regulator_dev *rdev = regulator->rdev;
2603	struct regulator *consumer;
2604	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2605	unsigned int mode;
2606
2607	if (rdev->supply)
2608		input_uV = regulator_get_voltage(rdev->supply);
2609
2610	mutex_lock(&rdev->mutex);
2611
2612	/*
2613	 * first check to see if we can set modes at all, otherwise just
2614	 * tell the consumer everything is OK.
2615	 */
2616	regulator->uA_load = uA_load;
2617	ret = regulator_check_drms(rdev);
2618	if (ret < 0) {
2619		ret = 0;
2620		goto out;
2621	}
2622
2623	if (!rdev->desc->ops->get_optimum_mode)
2624		goto out;
2625
2626	/*
2627	 * we can actually do this so any errors are indicators of
2628	 * potential real failure.
2629	 */
2630	ret = -EINVAL;
2631
2632	if (!rdev->desc->ops->set_mode)
2633		goto out;
2634
2635	/* get output voltage */
2636	output_uV = _regulator_get_voltage(rdev);
2637	if (output_uV <= 0) {
2638		rdev_err(rdev, "invalid output voltage found\n");
2639		goto out;
2640	}
2641
2642	/* No supply? Use constraint voltage */
2643	if (input_uV <= 0)
2644		input_uV = rdev->constraints->input_uV;
2645	if (input_uV <= 0) {
2646		rdev_err(rdev, "invalid input voltage found\n");
2647		goto out;
2648	}
2649
2650	/* calc total requested load for this regulator */
2651	list_for_each_entry(consumer, &rdev->consumer_list, list)
2652		total_uA_load += consumer->uA_load;
2653
2654	mode = rdev->desc->ops->get_optimum_mode(rdev,
2655						 input_uV, output_uV,
2656						 total_uA_load);
2657	ret = regulator_mode_constrain(rdev, &mode);
2658	if (ret < 0) {
2659		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660			 total_uA_load, input_uV, output_uV);
2661		goto out;
2662	}
2663
2664	ret = rdev->desc->ops->set_mode(rdev, mode);
2665	if (ret < 0) {
2666		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667		goto out;
2668	}
2669	ret = mode;
2670out:
2671	mutex_unlock(&rdev->mutex);
2672	return ret;
2673}
2674EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2675
2676/**
2677 * regulator_register_notifier - register regulator event notifier
2678 * @regulator: regulator source
2679 * @nb: notifier block
2680 *
2681 * Register notifier block to receive regulator events.
2682 */
2683int regulator_register_notifier(struct regulator *regulator,
2684			      struct notifier_block *nb)
2685{
2686	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687						nb);
2688}
2689EXPORT_SYMBOL_GPL(regulator_register_notifier);
2690
2691/**
2692 * regulator_unregister_notifier - unregister regulator event notifier
2693 * @regulator: regulator source
2694 * @nb: notifier block
2695 *
2696 * Unregister regulator event notifier block.
2697 */
2698int regulator_unregister_notifier(struct regulator *regulator,
2699				struct notifier_block *nb)
2700{
2701	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702						  nb);
2703}
2704EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2705
2706/* notify regulator consumers and downstream regulator consumers.
2707 * Note mutex must be held by caller.
2708 */
2709static void _notifier_call_chain(struct regulator_dev *rdev,
2710				  unsigned long event, void *data)
2711{
2712	/* call rdev chain first */
2713	blocking_notifier_call_chain(&rdev->notifier, event, data);
2714}
2715
2716/**
2717 * regulator_bulk_get - get multiple regulator consumers
2718 *
2719 * @dev:           Device to supply
2720 * @num_consumers: Number of consumers to register
2721 * @consumers:     Configuration of consumers; clients are stored here.
2722 *
2723 * @return 0 on success, an errno on failure.
2724 *
2725 * This helper function allows drivers to get several regulator
2726 * consumers in one operation.  If any of the regulators cannot be
2727 * acquired then any regulators that were allocated will be freed
2728 * before returning to the caller.
2729 */
2730int regulator_bulk_get(struct device *dev, int num_consumers,
2731		       struct regulator_bulk_data *consumers)
2732{
2733	int i;
2734	int ret;
2735
2736	for (i = 0; i < num_consumers; i++)
2737		consumers[i].consumer = NULL;
2738
2739	for (i = 0; i < num_consumers; i++) {
2740		consumers[i].consumer = regulator_get(dev,
2741						      consumers[i].supply);
2742		if (IS_ERR(consumers[i].consumer)) {
2743			ret = PTR_ERR(consumers[i].consumer);
2744			dev_err(dev, "Failed to get supply '%s': %d\n",
2745				consumers[i].supply, ret);
2746			consumers[i].consumer = NULL;
2747			goto err;
2748		}
2749	}
2750
2751	return 0;
2752
2753err:
2754	while (--i >= 0)
2755		regulator_put(consumers[i].consumer);
2756
2757	return ret;
2758}
2759EXPORT_SYMBOL_GPL(regulator_bulk_get);
2760
2761/**
2762 * devm_regulator_bulk_get - managed get multiple regulator consumers
2763 *
2764 * @dev:           Device to supply
2765 * @num_consumers: Number of consumers to register
2766 * @consumers:     Configuration of consumers; clients are stored here.
2767 *
2768 * @return 0 on success, an errno on failure.
2769 *
2770 * This helper function allows drivers to get several regulator
2771 * consumers in one operation with management, the regulators will
2772 * automatically be freed when the device is unbound.  If any of the
2773 * regulators cannot be acquired then any regulators that were
2774 * allocated will be freed before returning to the caller.
2775 */
2776int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777			    struct regulator_bulk_data *consumers)
2778{
2779	int i;
2780	int ret;
2781
2782	for (i = 0; i < num_consumers; i++)
2783		consumers[i].consumer = NULL;
2784
2785	for (i = 0; i < num_consumers; i++) {
2786		consumers[i].consumer = devm_regulator_get(dev,
2787							   consumers[i].supply);
2788		if (IS_ERR(consumers[i].consumer)) {
2789			ret = PTR_ERR(consumers[i].consumer);
2790			dev_err(dev, "Failed to get supply '%s': %d\n",
2791				consumers[i].supply, ret);
2792			consumers[i].consumer = NULL;
2793			goto err;
2794		}
2795	}
2796
2797	return 0;
2798
2799err:
2800	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801		devm_regulator_put(consumers[i].consumer);
2802
2803	return ret;
2804}
2805EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2806
2807static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2808{
2809	struct regulator_bulk_data *bulk = data;
2810
2811	bulk->ret = regulator_enable(bulk->consumer);
2812}
2813
2814/**
2815 * regulator_bulk_enable - enable multiple regulator consumers
2816 *
2817 * @num_consumers: Number of consumers
2818 * @consumers:     Consumer data; clients are stored here.
2819 * @return         0 on success, an errno on failure
2820 *
2821 * This convenience API allows consumers to enable multiple regulator
2822 * clients in a single API call.  If any consumers cannot be enabled
2823 * then any others that were enabled will be disabled again prior to
2824 * return.
2825 */
2826int regulator_bulk_enable(int num_consumers,
2827			  struct regulator_bulk_data *consumers)
2828{
2829	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2830	int i;
2831	int ret = 0;
2832
2833	for (i = 0; i < num_consumers; i++) {
2834		if (consumers[i].consumer->always_on)
2835			consumers[i].ret = 0;
2836		else
2837			async_schedule_domain(regulator_bulk_enable_async,
2838					      &consumers[i], &async_domain);
2839	}
2840
2841	async_synchronize_full_domain(&async_domain);
2842
2843	/* If any consumer failed we need to unwind any that succeeded */
2844	for (i = 0; i < num_consumers; i++) {
2845		if (consumers[i].ret != 0) {
2846			ret = consumers[i].ret;
2847			goto err;
2848		}
2849	}
2850
2851	return 0;
2852
2853err:
2854	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855	while (--i >= 0)
2856		regulator_disable(consumers[i].consumer);
2857
2858	return ret;
2859}
2860EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2861
2862/**
2863 * regulator_bulk_disable - disable multiple regulator consumers
2864 *
2865 * @num_consumers: Number of consumers
2866 * @consumers:     Consumer data; clients are stored here.
2867 * @return         0 on success, an errno on failure
2868 *
2869 * This convenience API allows consumers to disable multiple regulator
2870 * clients in a single API call.  If any consumers cannot be disabled
2871 * then any others that were disabled will be enabled again prior to
2872 * return.
2873 */
2874int regulator_bulk_disable(int num_consumers,
2875			   struct regulator_bulk_data *consumers)
2876{
2877	int i;
2878	int ret, r;
2879
2880	for (i = num_consumers - 1; i >= 0; --i) {
2881		ret = regulator_disable(consumers[i].consumer);
2882		if (ret != 0)
2883			goto err;
2884	}
2885
2886	return 0;
2887
2888err:
2889	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890	for (++i; i < num_consumers; ++i) {
2891		r = regulator_enable(consumers[i].consumer);
2892		if (r != 0)
2893			pr_err("Failed to reename %s: %d\n",
2894			       consumers[i].supply, r);
2895	}
2896
2897	return ret;
2898}
2899EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2900
2901/**
2902 * regulator_bulk_force_disable - force disable multiple regulator consumers
2903 *
2904 * @num_consumers: Number of consumers
2905 * @consumers:     Consumer data; clients are stored here.
2906 * @return         0 on success, an errno on failure
2907 *
2908 * This convenience API allows consumers to forcibly disable multiple regulator
2909 * clients in a single API call.
2910 * NOTE: This should be used for situations when device damage will
2911 * likely occur if the regulators are not disabled (e.g. over temp).
2912 * Although regulator_force_disable function call for some consumers can
2913 * return error numbers, the function is called for all consumers.
2914 */
2915int regulator_bulk_force_disable(int num_consumers,
2916			   struct regulator_bulk_data *consumers)
2917{
2918	int i;
2919	int ret;
2920
2921	for (i = 0; i < num_consumers; i++)
2922		consumers[i].ret =
2923			    regulator_force_disable(consumers[i].consumer);
2924
2925	for (i = 0; i < num_consumers; i++) {
2926		if (consumers[i].ret != 0) {
2927			ret = consumers[i].ret;
2928			goto out;
2929		}
2930	}
2931
2932	return 0;
2933out:
2934	return ret;
2935}
2936EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2937
2938/**
2939 * regulator_bulk_free - free multiple regulator consumers
2940 *
2941 * @num_consumers: Number of consumers
2942 * @consumers:     Consumer data; clients are stored here.
2943 *
2944 * This convenience API allows consumers to free multiple regulator
2945 * clients in a single API call.
2946 */
2947void regulator_bulk_free(int num_consumers,
2948			 struct regulator_bulk_data *consumers)
2949{
2950	int i;
2951
2952	for (i = 0; i < num_consumers; i++) {
2953		regulator_put(consumers[i].consumer);
2954		consumers[i].consumer = NULL;
2955	}
2956}
2957EXPORT_SYMBOL_GPL(regulator_bulk_free);
2958
2959/**
2960 * regulator_notifier_call_chain - call regulator event notifier
2961 * @rdev: regulator source
2962 * @event: notifier block
2963 * @data: callback-specific data.
2964 *
2965 * Called by regulator drivers to notify clients a regulator event has
2966 * occurred. We also notify regulator clients downstream.
2967 * Note lock must be held by caller.
2968 */
2969int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970				  unsigned long event, void *data)
2971{
2972	_notifier_call_chain(rdev, event, data);
2973	return NOTIFY_DONE;
2974
2975}
2976EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2977
2978/**
2979 * regulator_mode_to_status - convert a regulator mode into a status
2980 *
2981 * @mode: Mode to convert
2982 *
2983 * Convert a regulator mode into a status.
2984 */
2985int regulator_mode_to_status(unsigned int mode)
2986{
2987	switch (mode) {
2988	case REGULATOR_MODE_FAST:
2989		return REGULATOR_STATUS_FAST;
2990	case REGULATOR_MODE_NORMAL:
2991		return REGULATOR_STATUS_NORMAL;
2992	case REGULATOR_MODE_IDLE:
2993		return REGULATOR_STATUS_IDLE;
2994	case REGULATOR_MODE_STANDBY:
2995		return REGULATOR_STATUS_STANDBY;
2996	default:
2997		return REGULATOR_STATUS_UNDEFINED;
2998	}
2999}
3000EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3001
3002/*
3003 * To avoid cluttering sysfs (and memory) with useless state, only
3004 * create attributes that can be meaningfully displayed.
3005 */
3006static int add_regulator_attributes(struct regulator_dev *rdev)
3007{
3008	struct device		*dev = &rdev->dev;
3009	struct regulator_ops	*ops = rdev->desc->ops;
3010	int			status = 0;
3011
3012	/* some attributes need specific methods to be displayed */
3013	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015		status = device_create_file(dev, &dev_attr_microvolts);
3016		if (status < 0)
3017			return status;
3018	}
3019	if (ops->get_current_limit) {
3020		status = device_create_file(dev, &dev_attr_microamps);
3021		if (status < 0)
3022			return status;
3023	}
3024	if (ops->get_mode) {
3025		status = device_create_file(dev, &dev_attr_opmode);
3026		if (status < 0)
3027			return status;
3028	}
3029	if (ops->is_enabled) {
3030		status = device_create_file(dev, &dev_attr_state);
3031		if (status < 0)
3032			return status;
3033	}
3034	if (ops->get_status) {
3035		status = device_create_file(dev, &dev_attr_status);
3036		if (status < 0)
3037			return status;
3038	}
3039
3040	/* some attributes are type-specific */
3041	if (rdev->desc->type == REGULATOR_CURRENT) {
3042		status = device_create_file(dev, &dev_attr_requested_microamps);
3043		if (status < 0)
3044			return status;
3045	}
3046
3047	/* all the other attributes exist to support constraints;
3048	 * don't show them if there are no constraints, or if the
3049	 * relevant supporting methods are missing.
3050	 */
3051	if (!rdev->constraints)
3052		return status;
3053
3054	/* constraints need specific supporting methods */
3055	if (ops->set_voltage || ops->set_voltage_sel) {
3056		status = device_create_file(dev, &dev_attr_min_microvolts);
3057		if (status < 0)
3058			return status;
3059		status = device_create_file(dev, &dev_attr_max_microvolts);
3060		if (status < 0)
3061			return status;
3062	}
3063	if (ops->set_current_limit) {
3064		status = device_create_file(dev, &dev_attr_min_microamps);
3065		if (status < 0)
3066			return status;
3067		status = device_create_file(dev, &dev_attr_max_microamps);
3068		if (status < 0)
3069			return status;
3070	}
3071
3072	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073	if (status < 0)
3074		return status;
3075	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076	if (status < 0)
3077		return status;
3078	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079	if (status < 0)
3080		return status;
3081
3082	if (ops->set_suspend_voltage) {
3083		status = device_create_file(dev,
3084				&dev_attr_suspend_standby_microvolts);
3085		if (status < 0)
3086			return status;
3087		status = device_create_file(dev,
3088				&dev_attr_suspend_mem_microvolts);
3089		if (status < 0)
3090			return status;
3091		status = device_create_file(dev,
3092				&dev_attr_suspend_disk_microvolts);
3093		if (status < 0)
3094			return status;
3095	}
3096
3097	if (ops->set_suspend_mode) {
3098		status = device_create_file(dev,
3099				&dev_attr_suspend_standby_mode);
3100		if (status < 0)
3101			return status;
3102		status = device_create_file(dev,
3103				&dev_attr_suspend_mem_mode);
3104		if (status < 0)
3105			return status;
3106		status = device_create_file(dev,
3107				&dev_attr_suspend_disk_mode);
3108		if (status < 0)
3109			return status;
3110	}
3111
3112	return status;
3113}
3114
3115static void rdev_init_debugfs(struct regulator_dev *rdev)
3116{
3117	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118	if (!rdev->debugfs) {
3119		rdev_warn(rdev, "Failed to create debugfs directory\n");
3120		return;
3121	}
3122
3123	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124			   &rdev->use_count);
3125	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126			   &rdev->open_count);
3127}
3128
3129/**
3130 * regulator_register - register regulator
3131 * @regulator_desc: regulator to register
3132 * @config: runtime configuration for regulator
3133 *
3134 * Called by regulator drivers to register a regulator.
3135 * Returns 0 on success.
3136 */
3137struct regulator_dev *
3138regulator_register(const struct regulator_desc *regulator_desc,
3139		   const struct regulator_config *config)
3140{
3141	const struct regulation_constraints *constraints = NULL;
3142	const struct regulator_init_data *init_data;
3143	static atomic_t regulator_no = ATOMIC_INIT(0);
3144	struct regulator_dev *rdev;
3145	struct device *dev;
3146	int ret, i;
3147	const char *supply = NULL;
3148
3149	if (regulator_desc == NULL || config == NULL)
3150		return ERR_PTR(-EINVAL);
3151
3152	dev = config->dev;
3153	WARN_ON(!dev);
3154
3155	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156		return ERR_PTR(-EINVAL);
3157
3158	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159	    regulator_desc->type != REGULATOR_CURRENT)
3160		return ERR_PTR(-EINVAL);
3161
3162	/* Only one of each should be implemented */
3163	WARN_ON(regulator_desc->ops->get_voltage &&
3164		regulator_desc->ops->get_voltage_sel);
3165	WARN_ON(regulator_desc->ops->set_voltage &&
3166		regulator_desc->ops->set_voltage_sel);
3167
3168	/* If we're using selectors we must implement list_voltage. */
3169	if (regulator_desc->ops->get_voltage_sel &&
3170	    !regulator_desc->ops->list_voltage) {
3171		return ERR_PTR(-EINVAL);
3172	}
3173	if (regulator_desc->ops->set_voltage_sel &&
3174	    !regulator_desc->ops->list_voltage) {
3175		return ERR_PTR(-EINVAL);
3176	}
3177
3178	init_data = config->init_data;
3179
3180	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181	if (rdev == NULL)
3182		return ERR_PTR(-ENOMEM);
3183
3184	mutex_lock(&regulator_list_mutex);
3185
3186	mutex_init(&rdev->mutex);
3187	rdev->reg_data = config->driver_data;
3188	rdev->owner = regulator_desc->owner;
3189	rdev->desc = regulator_desc;
3190	if (config->regmap)
3191		rdev->regmap = config->regmap;
3192	else
3193		rdev->regmap = dev_get_regmap(dev, NULL);
3194	INIT_LIST_HEAD(&rdev->consumer_list);
3195	INIT_LIST_HEAD(&rdev->list);
3196	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3198
3199	/* preform any regulator specific init */
3200	if (init_data && init_data->regulator_init) {
3201		ret = init_data->regulator_init(rdev->reg_data);
3202		if (ret < 0)
3203			goto clean;
3204	}
3205
3206	/* register with sysfs */
3207	rdev->dev.class = &regulator_class;
3208	rdev->dev.of_node = config->of_node;
3209	rdev->dev.parent = dev;
3210	dev_set_name(&rdev->dev, "regulator.%d",
3211		     atomic_inc_return(&regulator_no) - 1);
3212	ret = device_register(&rdev->dev);
3213	if (ret != 0) {
3214		put_device(&rdev->dev);
3215		goto clean;
3216	}
3217
3218	dev_set_drvdata(&rdev->dev, rdev);
3219
3220	if (config->ena_gpio) {
3221		ret = gpio_request_one(config->ena_gpio,
3222				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3223				       rdev_get_name(rdev));
3224		if (ret != 0) {
3225			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3226				 config->ena_gpio, ret);
3227			goto clean;
3228		}
3229
3230		rdev->ena_gpio = config->ena_gpio;
3231		rdev->ena_gpio_invert = config->ena_gpio_invert;
3232
3233		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3234			rdev->ena_gpio_state = 1;
3235
3236		if (rdev->ena_gpio_invert)
3237			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3238	}
3239
3240	/* set regulator constraints */
3241	if (init_data)
3242		constraints = &init_data->constraints;
3243
3244	ret = set_machine_constraints(rdev, constraints);
3245	if (ret < 0)
3246		goto scrub;
3247
3248	/* add attributes supported by this regulator */
3249	ret = add_regulator_attributes(rdev);
3250	if (ret < 0)
3251		goto scrub;
3252
3253	if (init_data && init_data->supply_regulator)
3254		supply = init_data->supply_regulator;
3255	else if (regulator_desc->supply_name)
3256		supply = regulator_desc->supply_name;
3257
3258	if (supply) {
3259		struct regulator_dev *r;
3260
3261		r = regulator_dev_lookup(dev, supply, &ret);
3262
3263		if (!r) {
3264			dev_err(dev, "Failed to find supply %s\n", supply);
3265			ret = -EPROBE_DEFER;
3266			goto scrub;
3267		}
3268
3269		ret = set_supply(rdev, r);
3270		if (ret < 0)
3271			goto scrub;
3272
3273		/* Enable supply if rail is enabled */
3274		if (_regulator_is_enabled(rdev)) {
3275			ret = regulator_enable(rdev->supply);
3276			if (ret < 0)
3277				goto scrub;
3278		}
3279	}
3280
3281	/* add consumers devices */
3282	if (init_data) {
3283		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3284			ret = set_consumer_device_supply(rdev,
3285				init_data->consumer_supplies[i].dev_name,
3286				init_data->consumer_supplies[i].supply);
3287			if (ret < 0) {
3288				dev_err(dev, "Failed to set supply %s\n",
3289					init_data->consumer_supplies[i].supply);
3290				goto unset_supplies;
3291			}
3292		}
3293	}
3294
3295	list_add(&rdev->list, &regulator_list);
3296
3297	rdev_init_debugfs(rdev);
3298out:
3299	mutex_unlock(&regulator_list_mutex);
3300	return rdev;
3301
3302unset_supplies:
3303	unset_regulator_supplies(rdev);
3304
3305scrub:
3306	if (rdev->supply)
3307		regulator_put(rdev->supply);
3308	if (rdev->ena_gpio)
3309		gpio_free(rdev->ena_gpio);
3310	kfree(rdev->constraints);
3311	device_unregister(&rdev->dev);
3312	/* device core frees rdev */
3313	rdev = ERR_PTR(ret);
3314	goto out;
3315
3316clean:
3317	kfree(rdev);
3318	rdev = ERR_PTR(ret);
3319	goto out;
3320}
3321EXPORT_SYMBOL_GPL(regulator_register);
3322
3323/**
3324 * regulator_unregister - unregister regulator
3325 * @rdev: regulator to unregister
3326 *
3327 * Called by regulator drivers to unregister a regulator.
3328 */
3329void regulator_unregister(struct regulator_dev *rdev)
3330{
3331	if (rdev == NULL)
3332		return;
3333
3334	if (rdev->supply)
3335		regulator_put(rdev->supply);
3336	mutex_lock(&regulator_list_mutex);
3337	debugfs_remove_recursive(rdev->debugfs);
3338	flush_work(&rdev->disable_work.work);
3339	WARN_ON(rdev->open_count);
3340	unset_regulator_supplies(rdev);
3341	list_del(&rdev->list);
3342	kfree(rdev->constraints);
3343	if (rdev->ena_gpio)
3344		gpio_free(rdev->ena_gpio);
3345	device_unregister(&rdev->dev);
3346	mutex_unlock(&regulator_list_mutex);
3347}
3348EXPORT_SYMBOL_GPL(regulator_unregister);
3349
3350/**
3351 * regulator_suspend_prepare - prepare regulators for system wide suspend
3352 * @state: system suspend state
3353 *
3354 * Configure each regulator with it's suspend operating parameters for state.
3355 * This will usually be called by machine suspend code prior to supending.
3356 */
3357int regulator_suspend_prepare(suspend_state_t state)
3358{
3359	struct regulator_dev *rdev;
3360	int ret = 0;
3361
3362	/* ON is handled by regulator active state */
3363	if (state == PM_SUSPEND_ON)
3364		return -EINVAL;
3365
3366	mutex_lock(&regulator_list_mutex);
3367	list_for_each_entry(rdev, &regulator_list, list) {
3368
3369		mutex_lock(&rdev->mutex);
3370		ret = suspend_prepare(rdev, state);
3371		mutex_unlock(&rdev->mutex);
3372
3373		if (ret < 0) {
3374			rdev_err(rdev, "failed to prepare\n");
3375			goto out;
3376		}
3377	}
3378out:
3379	mutex_unlock(&regulator_list_mutex);
3380	return ret;
3381}
3382EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3383
3384/**
3385 * regulator_suspend_finish - resume regulators from system wide suspend
3386 *
3387 * Turn on regulators that might be turned off by regulator_suspend_prepare
3388 * and that should be turned on according to the regulators properties.
3389 */
3390int regulator_suspend_finish(void)
3391{
3392	struct regulator_dev *rdev;
3393	int ret = 0, error;
3394
3395	mutex_lock(&regulator_list_mutex);
3396	list_for_each_entry(rdev, &regulator_list, list) {
3397		struct regulator_ops *ops = rdev->desc->ops;
3398
3399		mutex_lock(&rdev->mutex);
3400		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3401				ops->enable) {
3402			error = ops->enable(rdev);
3403			if (error)
3404				ret = error;
3405		} else {
3406			if (!has_full_constraints)
3407				goto unlock;
3408			if (!ops->disable)
3409				goto unlock;
3410			if (!_regulator_is_enabled(rdev))
3411				goto unlock;
3412
3413			error = ops->disable(rdev);
3414			if (error)
3415				ret = error;
3416		}
3417unlock:
3418		mutex_unlock(&rdev->mutex);
3419	}
3420	mutex_unlock(&regulator_list_mutex);
3421	return ret;
3422}
3423EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3424
3425/**
3426 * regulator_has_full_constraints - the system has fully specified constraints
3427 *
3428 * Calling this function will cause the regulator API to disable all
3429 * regulators which have a zero use count and don't have an always_on
3430 * constraint in a late_initcall.
3431 *
3432 * The intention is that this will become the default behaviour in a
3433 * future kernel release so users are encouraged to use this facility
3434 * now.
3435 */
3436void regulator_has_full_constraints(void)
3437{
3438	has_full_constraints = 1;
3439}
3440EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3441
3442/**
3443 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3444 *
3445 * Calling this function will cause the regulator API to provide a
3446 * dummy regulator to consumers if no physical regulator is found,
3447 * allowing most consumers to proceed as though a regulator were
3448 * configured.  This allows systems such as those with software
3449 * controllable regulators for the CPU core only to be brought up more
3450 * readily.
3451 */
3452void regulator_use_dummy_regulator(void)
3453{
3454	board_wants_dummy_regulator = true;
3455}
3456EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3457
3458/**
3459 * rdev_get_drvdata - get rdev regulator driver data
3460 * @rdev: regulator
3461 *
3462 * Get rdev regulator driver private data. This call can be used in the
3463 * regulator driver context.
3464 */
3465void *rdev_get_drvdata(struct regulator_dev *rdev)
3466{
3467	return rdev->reg_data;
3468}
3469EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3470
3471/**
3472 * regulator_get_drvdata - get regulator driver data
3473 * @regulator: regulator
3474 *
3475 * Get regulator driver private data. This call can be used in the consumer
3476 * driver context when non API regulator specific functions need to be called.
3477 */
3478void *regulator_get_drvdata(struct regulator *regulator)
3479{
3480	return regulator->rdev->reg_data;
3481}
3482EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3483
3484/**
3485 * regulator_set_drvdata - set regulator driver data
3486 * @regulator: regulator
3487 * @data: data
3488 */
3489void regulator_set_drvdata(struct regulator *regulator, void *data)
3490{
3491	regulator->rdev->reg_data = data;
3492}
3493EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3494
3495/**
3496 * regulator_get_id - get regulator ID
3497 * @rdev: regulator
3498 */
3499int rdev_get_id(struct regulator_dev *rdev)
3500{
3501	return rdev->desc->id;
3502}
3503EXPORT_SYMBOL_GPL(rdev_get_id);
3504
3505struct device *rdev_get_dev(struct regulator_dev *rdev)
3506{
3507	return &rdev->dev;
3508}
3509EXPORT_SYMBOL_GPL(rdev_get_dev);
3510
3511void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3512{
3513	return reg_init_data->driver_data;
3514}
3515EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3516
3517#ifdef CONFIG_DEBUG_FS
3518static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3519				    size_t count, loff_t *ppos)
3520{
3521	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3522	ssize_t len, ret = 0;
3523	struct regulator_map *map;
3524
3525	if (!buf)
3526		return -ENOMEM;
3527
3528	list_for_each_entry(map, &regulator_map_list, list) {
3529		len = snprintf(buf + ret, PAGE_SIZE - ret,
3530			       "%s -> %s.%s\n",
3531			       rdev_get_name(map->regulator), map->dev_name,
3532			       map->supply);
3533		if (len >= 0)
3534			ret += len;
3535		if (ret > PAGE_SIZE) {
3536			ret = PAGE_SIZE;
3537			break;
3538		}
3539	}
3540
3541	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3542
3543	kfree(buf);
3544
3545	return ret;
3546}
3547#endif
3548
3549static const struct file_operations supply_map_fops = {
3550#ifdef CONFIG_DEBUG_FS
3551	.read = supply_map_read_file,
3552	.llseek = default_llseek,
3553#endif
3554};
3555
3556static int __init regulator_init(void)
3557{
3558	int ret;
3559
3560	ret = class_register(&regulator_class);
3561
3562	debugfs_root = debugfs_create_dir("regulator", NULL);
3563	if (!debugfs_root)
3564		pr_warn("regulator: Failed to create debugfs directory\n");
3565
3566	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3567			    &supply_map_fops);
3568
3569	regulator_dummy_init();
3570
3571	return ret;
3572}
3573
3574/* init early to allow our consumers to complete system booting */
3575core_initcall(regulator_init);
3576
3577static int __init regulator_init_complete(void)
3578{
3579	struct regulator_dev *rdev;
3580	struct regulator_ops *ops;
3581	struct regulation_constraints *c;
3582	int enabled, ret;
3583
3584	/*
3585	 * Since DT doesn't provide an idiomatic mechanism for
3586	 * enabling full constraints and since it's much more natural
3587	 * with DT to provide them just assume that a DT enabled
3588	 * system has full constraints.
3589	 */
3590	if (of_have_populated_dt())
3591		has_full_constraints = true;
3592
3593	mutex_lock(&regulator_list_mutex);
3594
3595	/* If we have a full configuration then disable any regulators
3596	 * which are not in use or always_on.  This will become the
3597	 * default behaviour in the future.
3598	 */
3599	list_for_each_entry(rdev, &regulator_list, list) {
3600		ops = rdev->desc->ops;
3601		c = rdev->constraints;
3602
3603		if (!ops->disable || (c && c->always_on))
3604			continue;
3605
3606		mutex_lock(&rdev->mutex);
3607
3608		if (rdev->use_count)
3609			goto unlock;
3610
3611		/* If we can't read the status assume it's on. */
3612		if (ops->is_enabled)
3613			enabled = ops->is_enabled(rdev);
3614		else
3615			enabled = 1;
3616
3617		if (!enabled)
3618			goto unlock;
3619
3620		if (has_full_constraints) {
3621			/* We log since this may kill the system if it
3622			 * goes wrong. */
3623			rdev_info(rdev, "disabling\n");
3624			ret = ops->disable(rdev);
3625			if (ret != 0) {
3626				rdev_err(rdev, "couldn't disable: %d\n", ret);
3627			}
3628		} else {
3629			/* The intention is that in future we will
3630			 * assume that full constraints are provided
3631			 * so warn even if we aren't going to do
3632			 * anything here.
3633			 */
3634			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3635		}
3636
3637unlock:
3638		mutex_unlock(&rdev->mutex);
3639	}
3640
3641	mutex_unlock(&regulator_list_mutex);
3642
3643	return 0;
3644}
3645late_initcall(regulator_init_complete);
3646