core.c revision 43f674a322aa8a3404df5785f84dc1351a5d84b6
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regulator/of_regulator.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31#include <linux/module.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/regulator.h>
35
36#include "dummy.h"
37
38#define rdev_crit(rdev, fmt, ...)					\
39	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_err(rdev, fmt, ...)					\
41	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_warn(rdev, fmt, ...)					\
43	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_info(rdev, fmt, ...)					\
45	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_dbg(rdev, fmt, ...)					\
47	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_list);
51static LIST_HEAD(regulator_map_list);
52static bool has_full_constraints;
53static bool board_wants_dummy_regulator;
54
55#ifdef CONFIG_DEBUG_FS
56static struct dentry *debugfs_root;
57#endif
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85#ifdef CONFIG_DEBUG_FS
86	struct dentry *debugfs;
87#endif
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/* gets the regulator for a given consumer device */
114static struct regulator *get_device_regulator(struct device *dev)
115{
116	struct regulator *regulator = NULL;
117	struct regulator_dev *rdev;
118
119	mutex_lock(&regulator_list_mutex);
120	list_for_each_entry(rdev, &regulator_list, list) {
121		mutex_lock(&rdev->mutex);
122		list_for_each_entry(regulator, &rdev->consumer_list, list) {
123			if (regulator->dev == dev) {
124				mutex_unlock(&rdev->mutex);
125				mutex_unlock(&regulator_list_mutex);
126				return regulator;
127			}
128		}
129		mutex_unlock(&rdev->mutex);
130	}
131	mutex_unlock(&regulator_list_mutex);
132	return NULL;
133}
134
135/**
136 * of_get_regulator - get a regulator device node based on supply name
137 * @dev: Device pointer for the consumer (of regulator) device
138 * @supply: regulator supply name
139 *
140 * Extract the regulator device node corresponding to the supply name.
141 * retruns the device node corresponding to the regulator if found, else
142 * returns NULL.
143 */
144static struct device_node *of_get_regulator(struct device *dev, const char *supply)
145{
146	struct device_node *regnode = NULL;
147	char prop_name[32]; /* 32 is max size of property name */
148
149	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
150
151	snprintf(prop_name, 32, "%s-supply", supply);
152	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
153
154	if (!regnode) {
155		dev_warn(dev, "%s property in node %s references invalid phandle",
156				prop_name, dev->of_node->full_name);
157		return NULL;
158	}
159	return regnode;
160}
161
162/* Platform voltage constraint check */
163static int regulator_check_voltage(struct regulator_dev *rdev,
164				   int *min_uV, int *max_uV)
165{
166	BUG_ON(*min_uV > *max_uV);
167
168	if (!rdev->constraints) {
169		rdev_err(rdev, "no constraints\n");
170		return -ENODEV;
171	}
172	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
173		rdev_err(rdev, "operation not allowed\n");
174		return -EPERM;
175	}
176
177	if (*max_uV > rdev->constraints->max_uV)
178		*max_uV = rdev->constraints->max_uV;
179	if (*min_uV < rdev->constraints->min_uV)
180		*min_uV = rdev->constraints->min_uV;
181
182	if (*min_uV > *max_uV) {
183		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
184			 *min_uV, *max_uV);
185		return -EINVAL;
186	}
187
188	return 0;
189}
190
191/* Make sure we select a voltage that suits the needs of all
192 * regulator consumers
193 */
194static int regulator_check_consumers(struct regulator_dev *rdev,
195				     int *min_uV, int *max_uV)
196{
197	struct regulator *regulator;
198
199	list_for_each_entry(regulator, &rdev->consumer_list, list) {
200		/*
201		 * Assume consumers that didn't say anything are OK
202		 * with anything in the constraint range.
203		 */
204		if (!regulator->min_uV && !regulator->max_uV)
205			continue;
206
207		if (*max_uV > regulator->max_uV)
208			*max_uV = regulator->max_uV;
209		if (*min_uV < regulator->min_uV)
210			*min_uV = regulator->min_uV;
211	}
212
213	if (*min_uV > *max_uV)
214		return -EINVAL;
215
216	return 0;
217}
218
219/* current constraint check */
220static int regulator_check_current_limit(struct regulator_dev *rdev,
221					int *min_uA, int *max_uA)
222{
223	BUG_ON(*min_uA > *max_uA);
224
225	if (!rdev->constraints) {
226		rdev_err(rdev, "no constraints\n");
227		return -ENODEV;
228	}
229	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
230		rdev_err(rdev, "operation not allowed\n");
231		return -EPERM;
232	}
233
234	if (*max_uA > rdev->constraints->max_uA)
235		*max_uA = rdev->constraints->max_uA;
236	if (*min_uA < rdev->constraints->min_uA)
237		*min_uA = rdev->constraints->min_uA;
238
239	if (*min_uA > *max_uA) {
240		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
241			 *min_uA, *max_uA);
242		return -EINVAL;
243	}
244
245	return 0;
246}
247
248/* operating mode constraint check */
249static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
250{
251	switch (*mode) {
252	case REGULATOR_MODE_FAST:
253	case REGULATOR_MODE_NORMAL:
254	case REGULATOR_MODE_IDLE:
255	case REGULATOR_MODE_STANDBY:
256		break;
257	default:
258		rdev_err(rdev, "invalid mode %x specified\n", *mode);
259		return -EINVAL;
260	}
261
262	if (!rdev->constraints) {
263		rdev_err(rdev, "no constraints\n");
264		return -ENODEV;
265	}
266	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
267		rdev_err(rdev, "operation not allowed\n");
268		return -EPERM;
269	}
270
271	/* The modes are bitmasks, the most power hungry modes having
272	 * the lowest values. If the requested mode isn't supported
273	 * try higher modes. */
274	while (*mode) {
275		if (rdev->constraints->valid_modes_mask & *mode)
276			return 0;
277		*mode /= 2;
278	}
279
280	return -EINVAL;
281}
282
283/* dynamic regulator mode switching constraint check */
284static int regulator_check_drms(struct regulator_dev *rdev)
285{
286	if (!rdev->constraints) {
287		rdev_err(rdev, "no constraints\n");
288		return -ENODEV;
289	}
290	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
291		rdev_err(rdev, "operation not allowed\n");
292		return -EPERM;
293	}
294	return 0;
295}
296
297static ssize_t device_requested_uA_show(struct device *dev,
298			     struct device_attribute *attr, char *buf)
299{
300	struct regulator *regulator;
301
302	regulator = get_device_regulator(dev);
303	if (regulator == NULL)
304		return 0;
305
306	return sprintf(buf, "%d\n", regulator->uA_load);
307}
308
309static ssize_t regulator_uV_show(struct device *dev,
310				struct device_attribute *attr, char *buf)
311{
312	struct regulator_dev *rdev = dev_get_drvdata(dev);
313	ssize_t ret;
314
315	mutex_lock(&rdev->mutex);
316	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317	mutex_unlock(&rdev->mutex);
318
319	return ret;
320}
321static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322
323static ssize_t regulator_uA_show(struct device *dev,
324				struct device_attribute *attr, char *buf)
325{
326	struct regulator_dev *rdev = dev_get_drvdata(dev);
327
328	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329}
330static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331
332static ssize_t regulator_name_show(struct device *dev,
333			     struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%s\n", rdev_get_name(rdev));
338}
339
340static ssize_t regulator_print_opmode(char *buf, int mode)
341{
342	switch (mode) {
343	case REGULATOR_MODE_FAST:
344		return sprintf(buf, "fast\n");
345	case REGULATOR_MODE_NORMAL:
346		return sprintf(buf, "normal\n");
347	case REGULATOR_MODE_IDLE:
348		return sprintf(buf, "idle\n");
349	case REGULATOR_MODE_STANDBY:
350		return sprintf(buf, "standby\n");
351	}
352	return sprintf(buf, "unknown\n");
353}
354
355static ssize_t regulator_opmode_show(struct device *dev,
356				    struct device_attribute *attr, char *buf)
357{
358	struct regulator_dev *rdev = dev_get_drvdata(dev);
359
360	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
361}
362static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
363
364static ssize_t regulator_print_state(char *buf, int state)
365{
366	if (state > 0)
367		return sprintf(buf, "enabled\n");
368	else if (state == 0)
369		return sprintf(buf, "disabled\n");
370	else
371		return sprintf(buf, "unknown\n");
372}
373
374static ssize_t regulator_state_show(struct device *dev,
375				   struct device_attribute *attr, char *buf)
376{
377	struct regulator_dev *rdev = dev_get_drvdata(dev);
378	ssize_t ret;
379
380	mutex_lock(&rdev->mutex);
381	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
382	mutex_unlock(&rdev->mutex);
383
384	return ret;
385}
386static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
387
388static ssize_t regulator_status_show(struct device *dev,
389				   struct device_attribute *attr, char *buf)
390{
391	struct regulator_dev *rdev = dev_get_drvdata(dev);
392	int status;
393	char *label;
394
395	status = rdev->desc->ops->get_status(rdev);
396	if (status < 0)
397		return status;
398
399	switch (status) {
400	case REGULATOR_STATUS_OFF:
401		label = "off";
402		break;
403	case REGULATOR_STATUS_ON:
404		label = "on";
405		break;
406	case REGULATOR_STATUS_ERROR:
407		label = "error";
408		break;
409	case REGULATOR_STATUS_FAST:
410		label = "fast";
411		break;
412	case REGULATOR_STATUS_NORMAL:
413		label = "normal";
414		break;
415	case REGULATOR_STATUS_IDLE:
416		label = "idle";
417		break;
418	case REGULATOR_STATUS_STANDBY:
419		label = "standby";
420		break;
421	default:
422		return -ERANGE;
423	}
424
425	return sprintf(buf, "%s\n", label);
426}
427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429static ssize_t regulator_min_uA_show(struct device *dev,
430				    struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434	if (!rdev->constraints)
435		return sprintf(buf, "constraint not defined\n");
436
437	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438}
439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441static ssize_t regulator_max_uA_show(struct device *dev,
442				    struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	if (!rdev->constraints)
447		return sprintf(buf, "constraint not defined\n");
448
449	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450}
451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453static ssize_t regulator_min_uV_show(struct device *dev,
454				    struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	if (!rdev->constraints)
459		return sprintf(buf, "constraint not defined\n");
460
461	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462}
463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465static ssize_t regulator_max_uV_show(struct device *dev,
466				    struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	if (!rdev->constraints)
471		return sprintf(buf, "constraint not defined\n");
472
473	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474}
475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477static ssize_t regulator_total_uA_show(struct device *dev,
478				      struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481	struct regulator *regulator;
482	int uA = 0;
483
484	mutex_lock(&rdev->mutex);
485	list_for_each_entry(regulator, &rdev->consumer_list, list)
486		uA += regulator->uA_load;
487	mutex_unlock(&rdev->mutex);
488	return sprintf(buf, "%d\n", uA);
489}
490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492static ssize_t regulator_num_users_show(struct device *dev,
493				      struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496	return sprintf(buf, "%d\n", rdev->use_count);
497}
498
499static ssize_t regulator_type_show(struct device *dev,
500				  struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	switch (rdev->desc->type) {
505	case REGULATOR_VOLTAGE:
506		return sprintf(buf, "voltage\n");
507	case REGULATOR_CURRENT:
508		return sprintf(buf, "current\n");
509	}
510	return sprintf(buf, "unknown\n");
511}
512
513static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514				struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519}
520static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521		regulator_suspend_mem_uV_show, NULL);
522
523static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529}
530static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531		regulator_suspend_disk_uV_show, NULL);
532
533static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534				struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539}
540static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541		regulator_suspend_standby_uV_show, NULL);
542
543static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544				struct device_attribute *attr, char *buf)
545{
546	struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548	return regulator_print_opmode(buf,
549		rdev->constraints->state_mem.mode);
550}
551static DEVICE_ATTR(suspend_mem_mode, 0444,
552		regulator_suspend_mem_mode_show, NULL);
553
554static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555				struct device_attribute *attr, char *buf)
556{
557	struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559	return regulator_print_opmode(buf,
560		rdev->constraints->state_disk.mode);
561}
562static DEVICE_ATTR(suspend_disk_mode, 0444,
563		regulator_suspend_disk_mode_show, NULL);
564
565static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566				struct device_attribute *attr, char *buf)
567{
568	struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570	return regulator_print_opmode(buf,
571		rdev->constraints->state_standby.mode);
572}
573static DEVICE_ATTR(suspend_standby_mode, 0444,
574		regulator_suspend_standby_mode_show, NULL);
575
576static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577				   struct device_attribute *attr, char *buf)
578{
579	struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581	return regulator_print_state(buf,
582			rdev->constraints->state_mem.enabled);
583}
584static DEVICE_ATTR(suspend_mem_state, 0444,
585		regulator_suspend_mem_state_show, NULL);
586
587static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588				   struct device_attribute *attr, char *buf)
589{
590	struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592	return regulator_print_state(buf,
593			rdev->constraints->state_disk.enabled);
594}
595static DEVICE_ATTR(suspend_disk_state, 0444,
596		regulator_suspend_disk_state_show, NULL);
597
598static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599				   struct device_attribute *attr, char *buf)
600{
601	struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603	return regulator_print_state(buf,
604			rdev->constraints->state_standby.enabled);
605}
606static DEVICE_ATTR(suspend_standby_state, 0444,
607		regulator_suspend_standby_state_show, NULL);
608
609
610/*
611 * These are the only attributes are present for all regulators.
612 * Other attributes are a function of regulator functionality.
613 */
614static struct device_attribute regulator_dev_attrs[] = {
615	__ATTR(name, 0444, regulator_name_show, NULL),
616	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
617	__ATTR(type, 0444, regulator_type_show, NULL),
618	__ATTR_NULL,
619};
620
621static void regulator_dev_release(struct device *dev)
622{
623	struct regulator_dev *rdev = dev_get_drvdata(dev);
624	kfree(rdev);
625}
626
627static struct class regulator_class = {
628	.name = "regulator",
629	.dev_release = regulator_dev_release,
630	.dev_attrs = regulator_dev_attrs,
631};
632
633/* Calculate the new optimum regulator operating mode based on the new total
634 * consumer load. All locks held by caller */
635static void drms_uA_update(struct regulator_dev *rdev)
636{
637	struct regulator *sibling;
638	int current_uA = 0, output_uV, input_uV, err;
639	unsigned int mode;
640
641	err = regulator_check_drms(rdev);
642	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
643	    (!rdev->desc->ops->get_voltage &&
644	     !rdev->desc->ops->get_voltage_sel) ||
645	    !rdev->desc->ops->set_mode)
646		return;
647
648	/* get output voltage */
649	output_uV = _regulator_get_voltage(rdev);
650	if (output_uV <= 0)
651		return;
652
653	/* get input voltage */
654	input_uV = 0;
655	if (rdev->supply)
656		input_uV = _regulator_get_voltage(rdev);
657	if (input_uV <= 0)
658		input_uV = rdev->constraints->input_uV;
659	if (input_uV <= 0)
660		return;
661
662	/* calc total requested load */
663	list_for_each_entry(sibling, &rdev->consumer_list, list)
664		current_uA += sibling->uA_load;
665
666	/* now get the optimum mode for our new total regulator load */
667	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
668						  output_uV, current_uA);
669
670	/* check the new mode is allowed */
671	err = regulator_mode_constrain(rdev, &mode);
672	if (err == 0)
673		rdev->desc->ops->set_mode(rdev, mode);
674}
675
676static int suspend_set_state(struct regulator_dev *rdev,
677	struct regulator_state *rstate)
678{
679	int ret = 0;
680	bool can_set_state;
681
682	can_set_state = rdev->desc->ops->set_suspend_enable &&
683		rdev->desc->ops->set_suspend_disable;
684
685	/* If we have no suspend mode configration don't set anything;
686	 * only warn if the driver actually makes the suspend mode
687	 * configurable.
688	 */
689	if (!rstate->enabled && !rstate->disabled) {
690		if (can_set_state)
691			rdev_warn(rdev, "No configuration\n");
692		return 0;
693	}
694
695	if (rstate->enabled && rstate->disabled) {
696		rdev_err(rdev, "invalid configuration\n");
697		return -EINVAL;
698	}
699
700	if (!can_set_state) {
701		rdev_err(rdev, "no way to set suspend state\n");
702		return -EINVAL;
703	}
704
705	if (rstate->enabled)
706		ret = rdev->desc->ops->set_suspend_enable(rdev);
707	else
708		ret = rdev->desc->ops->set_suspend_disable(rdev);
709	if (ret < 0) {
710		rdev_err(rdev, "failed to enabled/disable\n");
711		return ret;
712	}
713
714	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
715		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
716		if (ret < 0) {
717			rdev_err(rdev, "failed to set voltage\n");
718			return ret;
719		}
720	}
721
722	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
723		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
724		if (ret < 0) {
725			rdev_err(rdev, "failed to set mode\n");
726			return ret;
727		}
728	}
729	return ret;
730}
731
732/* locks held by caller */
733static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
734{
735	if (!rdev->constraints)
736		return -EINVAL;
737
738	switch (state) {
739	case PM_SUSPEND_STANDBY:
740		return suspend_set_state(rdev,
741			&rdev->constraints->state_standby);
742	case PM_SUSPEND_MEM:
743		return suspend_set_state(rdev,
744			&rdev->constraints->state_mem);
745	case PM_SUSPEND_MAX:
746		return suspend_set_state(rdev,
747			&rdev->constraints->state_disk);
748	default:
749		return -EINVAL;
750	}
751}
752
753static void print_constraints(struct regulator_dev *rdev)
754{
755	struct regulation_constraints *constraints = rdev->constraints;
756	char buf[80] = "";
757	int count = 0;
758	int ret;
759
760	if (constraints->min_uV && constraints->max_uV) {
761		if (constraints->min_uV == constraints->max_uV)
762			count += sprintf(buf + count, "%d mV ",
763					 constraints->min_uV / 1000);
764		else
765			count += sprintf(buf + count, "%d <--> %d mV ",
766					 constraints->min_uV / 1000,
767					 constraints->max_uV / 1000);
768	}
769
770	if (!constraints->min_uV ||
771	    constraints->min_uV != constraints->max_uV) {
772		ret = _regulator_get_voltage(rdev);
773		if (ret > 0)
774			count += sprintf(buf + count, "at %d mV ", ret / 1000);
775	}
776
777	if (constraints->uV_offset)
778		count += sprintf(buf, "%dmV offset ",
779				 constraints->uV_offset / 1000);
780
781	if (constraints->min_uA && constraints->max_uA) {
782		if (constraints->min_uA == constraints->max_uA)
783			count += sprintf(buf + count, "%d mA ",
784					 constraints->min_uA / 1000);
785		else
786			count += sprintf(buf + count, "%d <--> %d mA ",
787					 constraints->min_uA / 1000,
788					 constraints->max_uA / 1000);
789	}
790
791	if (!constraints->min_uA ||
792	    constraints->min_uA != constraints->max_uA) {
793		ret = _regulator_get_current_limit(rdev);
794		if (ret > 0)
795			count += sprintf(buf + count, "at %d mA ", ret / 1000);
796	}
797
798	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
799		count += sprintf(buf + count, "fast ");
800	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
801		count += sprintf(buf + count, "normal ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
803		count += sprintf(buf + count, "idle ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
805		count += sprintf(buf + count, "standby");
806
807	rdev_info(rdev, "%s\n", buf);
808}
809
810static int machine_constraints_voltage(struct regulator_dev *rdev,
811	struct regulation_constraints *constraints)
812{
813	struct regulator_ops *ops = rdev->desc->ops;
814	int ret;
815
816	/* do we need to apply the constraint voltage */
817	if (rdev->constraints->apply_uV &&
818	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
819		ret = _regulator_do_set_voltage(rdev,
820						rdev->constraints->min_uV,
821						rdev->constraints->max_uV);
822		if (ret < 0) {
823			rdev_err(rdev, "failed to apply %duV constraint\n",
824				 rdev->constraints->min_uV);
825			return ret;
826		}
827	}
828
829	/* constrain machine-level voltage specs to fit
830	 * the actual range supported by this regulator.
831	 */
832	if (ops->list_voltage && rdev->desc->n_voltages) {
833		int	count = rdev->desc->n_voltages;
834		int	i;
835		int	min_uV = INT_MAX;
836		int	max_uV = INT_MIN;
837		int	cmin = constraints->min_uV;
838		int	cmax = constraints->max_uV;
839
840		/* it's safe to autoconfigure fixed-voltage supplies
841		   and the constraints are used by list_voltage. */
842		if (count == 1 && !cmin) {
843			cmin = 1;
844			cmax = INT_MAX;
845			constraints->min_uV = cmin;
846			constraints->max_uV = cmax;
847		}
848
849		/* voltage constraints are optional */
850		if ((cmin == 0) && (cmax == 0))
851			return 0;
852
853		/* else require explicit machine-level constraints */
854		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
855			rdev_err(rdev, "invalid voltage constraints\n");
856			return -EINVAL;
857		}
858
859		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
860		for (i = 0; i < count; i++) {
861			int	value;
862
863			value = ops->list_voltage(rdev, i);
864			if (value <= 0)
865				continue;
866
867			/* maybe adjust [min_uV..max_uV] */
868			if (value >= cmin && value < min_uV)
869				min_uV = value;
870			if (value <= cmax && value > max_uV)
871				max_uV = value;
872		}
873
874		/* final: [min_uV..max_uV] valid iff constraints valid */
875		if (max_uV < min_uV) {
876			rdev_err(rdev, "unsupportable voltage constraints\n");
877			return -EINVAL;
878		}
879
880		/* use regulator's subset of machine constraints */
881		if (constraints->min_uV < min_uV) {
882			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
883				 constraints->min_uV, min_uV);
884			constraints->min_uV = min_uV;
885		}
886		if (constraints->max_uV > max_uV) {
887			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
888				 constraints->max_uV, max_uV);
889			constraints->max_uV = max_uV;
890		}
891	}
892
893	return 0;
894}
895
896/**
897 * set_machine_constraints - sets regulator constraints
898 * @rdev: regulator source
899 * @constraints: constraints to apply
900 *
901 * Allows platform initialisation code to define and constrain
902 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
903 * Constraints *must* be set by platform code in order for some
904 * regulator operations to proceed i.e. set_voltage, set_current_limit,
905 * set_mode.
906 */
907static int set_machine_constraints(struct regulator_dev *rdev,
908	const struct regulation_constraints *constraints)
909{
910	int ret = 0;
911	struct regulator_ops *ops = rdev->desc->ops;
912
913	if (constraints)
914		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
915					    GFP_KERNEL);
916	else
917		rdev->constraints = kzalloc(sizeof(*constraints),
918					    GFP_KERNEL);
919	if (!rdev->constraints)
920		return -ENOMEM;
921
922	ret = machine_constraints_voltage(rdev, rdev->constraints);
923	if (ret != 0)
924		goto out;
925
926	/* do we need to setup our suspend state */
927	if (rdev->constraints->initial_state) {
928		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
929		if (ret < 0) {
930			rdev_err(rdev, "failed to set suspend state\n");
931			goto out;
932		}
933	}
934
935	if (rdev->constraints->initial_mode) {
936		if (!ops->set_mode) {
937			rdev_err(rdev, "no set_mode operation\n");
938			ret = -EINVAL;
939			goto out;
940		}
941
942		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
943		if (ret < 0) {
944			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
945			goto out;
946		}
947	}
948
949	/* If the constraints say the regulator should be on at this point
950	 * and we have control then make sure it is enabled.
951	 */
952	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
953	    ops->enable) {
954		ret = ops->enable(rdev);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to enable\n");
957			goto out;
958		}
959	}
960
961	print_constraints(rdev);
962	return 0;
963out:
964	kfree(rdev->constraints);
965	rdev->constraints = NULL;
966	return ret;
967}
968
969/**
970 * set_supply - set regulator supply regulator
971 * @rdev: regulator name
972 * @supply_rdev: supply regulator name
973 *
974 * Called by platform initialisation code to set the supply regulator for this
975 * regulator. This ensures that a regulators supply will also be enabled by the
976 * core if it's child is enabled.
977 */
978static int set_supply(struct regulator_dev *rdev,
979		      struct regulator_dev *supply_rdev)
980{
981	int err;
982
983	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
984
985	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
986	if (rdev->supply == NULL) {
987		err = -ENOMEM;
988		return err;
989	}
990
991	return 0;
992}
993
994/**
995 * set_consumer_device_supply - Bind a regulator to a symbolic supply
996 * @rdev:         regulator source
997 * @consumer_dev: device the supply applies to
998 * @consumer_dev_name: dev_name() string for device supply applies to
999 * @supply:       symbolic name for supply
1000 *
1001 * Allows platform initialisation code to map physical regulator
1002 * sources to symbolic names for supplies for use by devices.  Devices
1003 * should use these symbolic names to request regulators, avoiding the
1004 * need to provide board-specific regulator names as platform data.
1005 *
1006 * Only one of consumer_dev and consumer_dev_name may be specified.
1007 */
1008static int set_consumer_device_supply(struct regulator_dev *rdev,
1009	struct device *consumer_dev, const char *consumer_dev_name,
1010	const char *supply)
1011{
1012	struct regulator_map *node;
1013	int has_dev;
1014
1015	if (consumer_dev && consumer_dev_name)
1016		return -EINVAL;
1017
1018	if (!consumer_dev_name && consumer_dev)
1019		consumer_dev_name = dev_name(consumer_dev);
1020
1021	if (supply == NULL)
1022		return -EINVAL;
1023
1024	if (consumer_dev_name != NULL)
1025		has_dev = 1;
1026	else
1027		has_dev = 0;
1028
1029	list_for_each_entry(node, &regulator_map_list, list) {
1030		if (node->dev_name && consumer_dev_name) {
1031			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032				continue;
1033		} else if (node->dev_name || consumer_dev_name) {
1034			continue;
1035		}
1036
1037		if (strcmp(node->supply, supply) != 0)
1038			continue;
1039
1040		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1041			dev_name(&node->regulator->dev),
1042			node->regulator->desc->name,
1043			supply,
1044			dev_name(&rdev->dev), rdev_get_name(rdev));
1045		return -EBUSY;
1046	}
1047
1048	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1049	if (node == NULL)
1050		return -ENOMEM;
1051
1052	node->regulator = rdev;
1053	node->supply = supply;
1054
1055	if (has_dev) {
1056		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1057		if (node->dev_name == NULL) {
1058			kfree(node);
1059			return -ENOMEM;
1060		}
1061	}
1062
1063	list_add(&node->list, &regulator_map_list);
1064	return 0;
1065}
1066
1067static void unset_regulator_supplies(struct regulator_dev *rdev)
1068{
1069	struct regulator_map *node, *n;
1070
1071	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1072		if (rdev == node->regulator) {
1073			list_del(&node->list);
1074			kfree(node->dev_name);
1075			kfree(node);
1076		}
1077	}
1078}
1079
1080#define REG_STR_SIZE	64
1081
1082static struct regulator *create_regulator(struct regulator_dev *rdev,
1083					  struct device *dev,
1084					  const char *supply_name)
1085{
1086	struct regulator *regulator;
1087	char buf[REG_STR_SIZE];
1088	int err, size;
1089
1090	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1091	if (regulator == NULL)
1092		return NULL;
1093
1094	mutex_lock(&rdev->mutex);
1095	regulator->rdev = rdev;
1096	list_add(&regulator->list, &rdev->consumer_list);
1097
1098	if (dev) {
1099		/* create a 'requested_microamps_name' sysfs entry */
1100		size = scnprintf(buf, REG_STR_SIZE,
1101				 "microamps_requested_%s-%s",
1102				 dev_name(dev), supply_name);
1103		if (size >= REG_STR_SIZE)
1104			goto overflow_err;
1105
1106		regulator->dev = dev;
1107		sysfs_attr_init(&regulator->dev_attr.attr);
1108		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1109		if (regulator->dev_attr.attr.name == NULL)
1110			goto attr_name_err;
1111
1112		regulator->dev_attr.attr.mode = 0444;
1113		regulator->dev_attr.show = device_requested_uA_show;
1114		err = device_create_file(dev, &regulator->dev_attr);
1115		if (err < 0) {
1116			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1117			goto attr_name_err;
1118		}
1119
1120		/* also add a link to the device sysfs entry */
1121		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1122				 dev->kobj.name, supply_name);
1123		if (size >= REG_STR_SIZE)
1124			goto attr_err;
1125
1126		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1127		if (regulator->supply_name == NULL)
1128			goto attr_err;
1129
1130		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1131					buf);
1132		if (err) {
1133			rdev_warn(rdev, "could not add device link %s err %d\n",
1134				  dev->kobj.name, err);
1135			goto link_name_err;
1136		}
1137	} else {
1138		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1139		if (regulator->supply_name == NULL)
1140			goto attr_err;
1141	}
1142
1143#ifdef CONFIG_DEBUG_FS
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148		regulator->debugfs = NULL;
1149	} else {
1150		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1151				   &regulator->uA_load);
1152		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1153				   &regulator->min_uV);
1154		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1155				   &regulator->max_uV);
1156	}
1157#endif
1158
1159	mutex_unlock(&rdev->mutex);
1160	return regulator;
1161link_name_err:
1162	kfree(regulator->supply_name);
1163attr_err:
1164	device_remove_file(regulator->dev, &regulator->dev_attr);
1165attr_name_err:
1166	kfree(regulator->dev_attr.attr.name);
1167overflow_err:
1168	list_del(&regulator->list);
1169	kfree(regulator);
1170	mutex_unlock(&rdev->mutex);
1171	return NULL;
1172}
1173
1174static int _regulator_get_enable_time(struct regulator_dev *rdev)
1175{
1176	if (!rdev->desc->ops->enable_time)
1177		return 0;
1178	return rdev->desc->ops->enable_time(rdev);
1179}
1180
1181static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1182							 const char *supply)
1183{
1184	struct regulator_dev *r;
1185	struct device_node *node;
1186
1187	/* first do a dt based lookup */
1188	if (dev && dev->of_node) {
1189		node = of_get_regulator(dev, supply);
1190		if (node)
1191			list_for_each_entry(r, &regulator_list, list)
1192				if (r->dev.parent &&
1193					node == r->dev.of_node)
1194					return r;
1195	}
1196
1197	/* if not found, try doing it non-dt way */
1198	list_for_each_entry(r, &regulator_list, list)
1199		if (strcmp(rdev_get_name(r), supply) == 0)
1200			return r;
1201
1202	return NULL;
1203}
1204
1205/* Internal regulator request function */
1206static struct regulator *_regulator_get(struct device *dev, const char *id,
1207					int exclusive)
1208{
1209	struct regulator_dev *rdev;
1210	struct regulator_map *map;
1211	struct regulator *regulator = ERR_PTR(-ENODEV);
1212	const char *devname = NULL;
1213	int ret;
1214
1215	if (id == NULL) {
1216		pr_err("get() with no identifier\n");
1217		return regulator;
1218	}
1219
1220	if (dev)
1221		devname = dev_name(dev);
1222
1223	mutex_lock(&regulator_list_mutex);
1224
1225	rdev = regulator_dev_lookup(dev, id);
1226	if (rdev)
1227		goto found;
1228
1229	list_for_each_entry(map, &regulator_map_list, list) {
1230		/* If the mapping has a device set up it must match */
1231		if (map->dev_name &&
1232		    (!devname || strcmp(map->dev_name, devname)))
1233			continue;
1234
1235		if (strcmp(map->supply, id) == 0) {
1236			rdev = map->regulator;
1237			goto found;
1238		}
1239	}
1240
1241	if (board_wants_dummy_regulator) {
1242		rdev = dummy_regulator_rdev;
1243		goto found;
1244	}
1245
1246#ifdef CONFIG_REGULATOR_DUMMY
1247	if (!devname)
1248		devname = "deviceless";
1249
1250	/* If the board didn't flag that it was fully constrained then
1251	 * substitute in a dummy regulator so consumers can continue.
1252	 */
1253	if (!has_full_constraints) {
1254		pr_warn("%s supply %s not found, using dummy regulator\n",
1255			devname, id);
1256		rdev = dummy_regulator_rdev;
1257		goto found;
1258	}
1259#endif
1260
1261	mutex_unlock(&regulator_list_mutex);
1262	return regulator;
1263
1264found:
1265	if (rdev->exclusive) {
1266		regulator = ERR_PTR(-EPERM);
1267		goto out;
1268	}
1269
1270	if (exclusive && rdev->open_count) {
1271		regulator = ERR_PTR(-EBUSY);
1272		goto out;
1273	}
1274
1275	if (!try_module_get(rdev->owner))
1276		goto out;
1277
1278	regulator = create_regulator(rdev, dev, id);
1279	if (regulator == NULL) {
1280		regulator = ERR_PTR(-ENOMEM);
1281		module_put(rdev->owner);
1282		goto out;
1283	}
1284
1285	rdev->open_count++;
1286	if (exclusive) {
1287		rdev->exclusive = 1;
1288
1289		ret = _regulator_is_enabled(rdev);
1290		if (ret > 0)
1291			rdev->use_count = 1;
1292		else
1293			rdev->use_count = 0;
1294	}
1295
1296out:
1297	mutex_unlock(&regulator_list_mutex);
1298
1299	return regulator;
1300}
1301
1302/**
1303 * regulator_get - lookup and obtain a reference to a regulator.
1304 * @dev: device for regulator "consumer"
1305 * @id: Supply name or regulator ID.
1306 *
1307 * Returns a struct regulator corresponding to the regulator producer,
1308 * or IS_ERR() condition containing errno.
1309 *
1310 * Use of supply names configured via regulator_set_device_supply() is
1311 * strongly encouraged.  It is recommended that the supply name used
1312 * should match the name used for the supply and/or the relevant
1313 * device pins in the datasheet.
1314 */
1315struct regulator *regulator_get(struct device *dev, const char *id)
1316{
1317	return _regulator_get(dev, id, 0);
1318}
1319EXPORT_SYMBOL_GPL(regulator_get);
1320
1321/**
1322 * regulator_get_exclusive - obtain exclusive access to a regulator.
1323 * @dev: device for regulator "consumer"
1324 * @id: Supply name or regulator ID.
1325 *
1326 * Returns a struct regulator corresponding to the regulator producer,
1327 * or IS_ERR() condition containing errno.  Other consumers will be
1328 * unable to obtain this reference is held and the use count for the
1329 * regulator will be initialised to reflect the current state of the
1330 * regulator.
1331 *
1332 * This is intended for use by consumers which cannot tolerate shared
1333 * use of the regulator such as those which need to force the
1334 * regulator off for correct operation of the hardware they are
1335 * controlling.
1336 *
1337 * Use of supply names configured via regulator_set_device_supply() is
1338 * strongly encouraged.  It is recommended that the supply name used
1339 * should match the name used for the supply and/or the relevant
1340 * device pins in the datasheet.
1341 */
1342struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1343{
1344	return _regulator_get(dev, id, 1);
1345}
1346EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1347
1348/**
1349 * regulator_put - "free" the regulator source
1350 * @regulator: regulator source
1351 *
1352 * Note: drivers must ensure that all regulator_enable calls made on this
1353 * regulator source are balanced by regulator_disable calls prior to calling
1354 * this function.
1355 */
1356void regulator_put(struct regulator *regulator)
1357{
1358	struct regulator_dev *rdev;
1359
1360	if (regulator == NULL || IS_ERR(regulator))
1361		return;
1362
1363	mutex_lock(&regulator_list_mutex);
1364	rdev = regulator->rdev;
1365
1366#ifdef CONFIG_DEBUG_FS
1367	debugfs_remove_recursive(regulator->debugfs);
1368#endif
1369
1370	/* remove any sysfs entries */
1371	if (regulator->dev) {
1372		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1373		device_remove_file(regulator->dev, &regulator->dev_attr);
1374		kfree(regulator->dev_attr.attr.name);
1375	}
1376	kfree(regulator->supply_name);
1377	list_del(&regulator->list);
1378	kfree(regulator);
1379
1380	rdev->open_count--;
1381	rdev->exclusive = 0;
1382
1383	module_put(rdev->owner);
1384	mutex_unlock(&regulator_list_mutex);
1385}
1386EXPORT_SYMBOL_GPL(regulator_put);
1387
1388static int _regulator_can_change_status(struct regulator_dev *rdev)
1389{
1390	if (!rdev->constraints)
1391		return 0;
1392
1393	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1394		return 1;
1395	else
1396		return 0;
1397}
1398
1399/* locks held by regulator_enable() */
1400static int _regulator_enable(struct regulator_dev *rdev)
1401{
1402	int ret, delay;
1403
1404	/* check voltage and requested load before enabling */
1405	if (rdev->constraints &&
1406	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1407		drms_uA_update(rdev);
1408
1409	if (rdev->use_count == 0) {
1410		/* The regulator may on if it's not switchable or left on */
1411		ret = _regulator_is_enabled(rdev);
1412		if (ret == -EINVAL || ret == 0) {
1413			if (!_regulator_can_change_status(rdev))
1414				return -EPERM;
1415
1416			if (!rdev->desc->ops->enable)
1417				return -EINVAL;
1418
1419			/* Query before enabling in case configuration
1420			 * dependent.  */
1421			ret = _regulator_get_enable_time(rdev);
1422			if (ret >= 0) {
1423				delay = ret;
1424			} else {
1425				rdev_warn(rdev, "enable_time() failed: %d\n",
1426					   ret);
1427				delay = 0;
1428			}
1429
1430			trace_regulator_enable(rdev_get_name(rdev));
1431
1432			/* Allow the regulator to ramp; it would be useful
1433			 * to extend this for bulk operations so that the
1434			 * regulators can ramp together.  */
1435			ret = rdev->desc->ops->enable(rdev);
1436			if (ret < 0)
1437				return ret;
1438
1439			trace_regulator_enable_delay(rdev_get_name(rdev));
1440
1441			if (delay >= 1000) {
1442				mdelay(delay / 1000);
1443				udelay(delay % 1000);
1444			} else if (delay) {
1445				udelay(delay);
1446			}
1447
1448			trace_regulator_enable_complete(rdev_get_name(rdev));
1449
1450		} else if (ret < 0) {
1451			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1452			return ret;
1453		}
1454		/* Fallthrough on positive return values - already enabled */
1455	}
1456
1457	rdev->use_count++;
1458
1459	return 0;
1460}
1461
1462/**
1463 * regulator_enable - enable regulator output
1464 * @regulator: regulator source
1465 *
1466 * Request that the regulator be enabled with the regulator output at
1467 * the predefined voltage or current value.  Calls to regulator_enable()
1468 * must be balanced with calls to regulator_disable().
1469 *
1470 * NOTE: the output value can be set by other drivers, boot loader or may be
1471 * hardwired in the regulator.
1472 */
1473int regulator_enable(struct regulator *regulator)
1474{
1475	struct regulator_dev *rdev = regulator->rdev;
1476	int ret = 0;
1477
1478	if (rdev->supply) {
1479		ret = regulator_enable(rdev->supply);
1480		if (ret != 0)
1481			return ret;
1482	}
1483
1484	mutex_lock(&rdev->mutex);
1485	ret = _regulator_enable(rdev);
1486	mutex_unlock(&rdev->mutex);
1487
1488	if (ret != 0 && rdev->supply)
1489		regulator_disable(rdev->supply);
1490
1491	return ret;
1492}
1493EXPORT_SYMBOL_GPL(regulator_enable);
1494
1495/* locks held by regulator_disable() */
1496static int _regulator_disable(struct regulator_dev *rdev)
1497{
1498	int ret = 0;
1499
1500	if (WARN(rdev->use_count <= 0,
1501		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1502		return -EIO;
1503
1504	/* are we the last user and permitted to disable ? */
1505	if (rdev->use_count == 1 &&
1506	    (rdev->constraints && !rdev->constraints->always_on)) {
1507
1508		/* we are last user */
1509		if (_regulator_can_change_status(rdev) &&
1510		    rdev->desc->ops->disable) {
1511			trace_regulator_disable(rdev_get_name(rdev));
1512
1513			ret = rdev->desc->ops->disable(rdev);
1514			if (ret < 0) {
1515				rdev_err(rdev, "failed to disable\n");
1516				return ret;
1517			}
1518
1519			trace_regulator_disable_complete(rdev_get_name(rdev));
1520
1521			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1522					     NULL);
1523		}
1524
1525		rdev->use_count = 0;
1526	} else if (rdev->use_count > 1) {
1527
1528		if (rdev->constraints &&
1529			(rdev->constraints->valid_ops_mask &
1530			REGULATOR_CHANGE_DRMS))
1531			drms_uA_update(rdev);
1532
1533		rdev->use_count--;
1534	}
1535
1536	return ret;
1537}
1538
1539/**
1540 * regulator_disable - disable regulator output
1541 * @regulator: regulator source
1542 *
1543 * Disable the regulator output voltage or current.  Calls to
1544 * regulator_enable() must be balanced with calls to
1545 * regulator_disable().
1546 *
1547 * NOTE: this will only disable the regulator output if no other consumer
1548 * devices have it enabled, the regulator device supports disabling and
1549 * machine constraints permit this operation.
1550 */
1551int regulator_disable(struct regulator *regulator)
1552{
1553	struct regulator_dev *rdev = regulator->rdev;
1554	int ret = 0;
1555
1556	mutex_lock(&rdev->mutex);
1557	ret = _regulator_disable(rdev);
1558	mutex_unlock(&rdev->mutex);
1559
1560	if (ret == 0 && rdev->supply)
1561		regulator_disable(rdev->supply);
1562
1563	return ret;
1564}
1565EXPORT_SYMBOL_GPL(regulator_disable);
1566
1567/* locks held by regulator_force_disable() */
1568static int _regulator_force_disable(struct regulator_dev *rdev)
1569{
1570	int ret = 0;
1571
1572	/* force disable */
1573	if (rdev->desc->ops->disable) {
1574		/* ah well, who wants to live forever... */
1575		ret = rdev->desc->ops->disable(rdev);
1576		if (ret < 0) {
1577			rdev_err(rdev, "failed to force disable\n");
1578			return ret;
1579		}
1580		/* notify other consumers that power has been forced off */
1581		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1582			REGULATOR_EVENT_DISABLE, NULL);
1583	}
1584
1585	return ret;
1586}
1587
1588/**
1589 * regulator_force_disable - force disable regulator output
1590 * @regulator: regulator source
1591 *
1592 * Forcibly disable the regulator output voltage or current.
1593 * NOTE: this *will* disable the regulator output even if other consumer
1594 * devices have it enabled. This should be used for situations when device
1595 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1596 */
1597int regulator_force_disable(struct regulator *regulator)
1598{
1599	struct regulator_dev *rdev = regulator->rdev;
1600	int ret;
1601
1602	mutex_lock(&rdev->mutex);
1603	regulator->uA_load = 0;
1604	ret = _regulator_force_disable(regulator->rdev);
1605	mutex_unlock(&rdev->mutex);
1606
1607	if (rdev->supply)
1608		while (rdev->open_count--)
1609			regulator_disable(rdev->supply);
1610
1611	return ret;
1612}
1613EXPORT_SYMBOL_GPL(regulator_force_disable);
1614
1615static void regulator_disable_work(struct work_struct *work)
1616{
1617	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1618						  disable_work.work);
1619	int count, i, ret;
1620
1621	mutex_lock(&rdev->mutex);
1622
1623	BUG_ON(!rdev->deferred_disables);
1624
1625	count = rdev->deferred_disables;
1626	rdev->deferred_disables = 0;
1627
1628	for (i = 0; i < count; i++) {
1629		ret = _regulator_disable(rdev);
1630		if (ret != 0)
1631			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1632	}
1633
1634	mutex_unlock(&rdev->mutex);
1635
1636	if (rdev->supply) {
1637		for (i = 0; i < count; i++) {
1638			ret = regulator_disable(rdev->supply);
1639			if (ret != 0) {
1640				rdev_err(rdev,
1641					 "Supply disable failed: %d\n", ret);
1642			}
1643		}
1644	}
1645}
1646
1647/**
1648 * regulator_disable_deferred - disable regulator output with delay
1649 * @regulator: regulator source
1650 * @ms: miliseconds until the regulator is disabled
1651 *
1652 * Execute regulator_disable() on the regulator after a delay.  This
1653 * is intended for use with devices that require some time to quiesce.
1654 *
1655 * NOTE: this will only disable the regulator output if no other consumer
1656 * devices have it enabled, the regulator device supports disabling and
1657 * machine constraints permit this operation.
1658 */
1659int regulator_disable_deferred(struct regulator *regulator, int ms)
1660{
1661	struct regulator_dev *rdev = regulator->rdev;
1662	int ret;
1663
1664	mutex_lock(&rdev->mutex);
1665	rdev->deferred_disables++;
1666	mutex_unlock(&rdev->mutex);
1667
1668	ret = schedule_delayed_work(&rdev->disable_work,
1669				    msecs_to_jiffies(ms));
1670	if (ret < 0)
1671		return ret;
1672	else
1673		return 0;
1674}
1675EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1676
1677static int _regulator_is_enabled(struct regulator_dev *rdev)
1678{
1679	/* If we don't know then assume that the regulator is always on */
1680	if (!rdev->desc->ops->is_enabled)
1681		return 1;
1682
1683	return rdev->desc->ops->is_enabled(rdev);
1684}
1685
1686/**
1687 * regulator_is_enabled - is the regulator output enabled
1688 * @regulator: regulator source
1689 *
1690 * Returns positive if the regulator driver backing the source/client
1691 * has requested that the device be enabled, zero if it hasn't, else a
1692 * negative errno code.
1693 *
1694 * Note that the device backing this regulator handle can have multiple
1695 * users, so it might be enabled even if regulator_enable() was never
1696 * called for this particular source.
1697 */
1698int regulator_is_enabled(struct regulator *regulator)
1699{
1700	int ret;
1701
1702	mutex_lock(&regulator->rdev->mutex);
1703	ret = _regulator_is_enabled(regulator->rdev);
1704	mutex_unlock(&regulator->rdev->mutex);
1705
1706	return ret;
1707}
1708EXPORT_SYMBOL_GPL(regulator_is_enabled);
1709
1710/**
1711 * regulator_count_voltages - count regulator_list_voltage() selectors
1712 * @regulator: regulator source
1713 *
1714 * Returns number of selectors, or negative errno.  Selectors are
1715 * numbered starting at zero, and typically correspond to bitfields
1716 * in hardware registers.
1717 */
1718int regulator_count_voltages(struct regulator *regulator)
1719{
1720	struct regulator_dev	*rdev = regulator->rdev;
1721
1722	return rdev->desc->n_voltages ? : -EINVAL;
1723}
1724EXPORT_SYMBOL_GPL(regulator_count_voltages);
1725
1726/**
1727 * regulator_list_voltage - enumerate supported voltages
1728 * @regulator: regulator source
1729 * @selector: identify voltage to list
1730 * Context: can sleep
1731 *
1732 * Returns a voltage that can be passed to @regulator_set_voltage(),
1733 * zero if this selector code can't be used on this system, or a
1734 * negative errno.
1735 */
1736int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1737{
1738	struct regulator_dev	*rdev = regulator->rdev;
1739	struct regulator_ops	*ops = rdev->desc->ops;
1740	int			ret;
1741
1742	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1743		return -EINVAL;
1744
1745	mutex_lock(&rdev->mutex);
1746	ret = ops->list_voltage(rdev, selector);
1747	mutex_unlock(&rdev->mutex);
1748
1749	if (ret > 0) {
1750		if (ret < rdev->constraints->min_uV)
1751			ret = 0;
1752		else if (ret > rdev->constraints->max_uV)
1753			ret = 0;
1754	}
1755
1756	return ret;
1757}
1758EXPORT_SYMBOL_GPL(regulator_list_voltage);
1759
1760/**
1761 * regulator_is_supported_voltage - check if a voltage range can be supported
1762 *
1763 * @regulator: Regulator to check.
1764 * @min_uV: Minimum required voltage in uV.
1765 * @max_uV: Maximum required voltage in uV.
1766 *
1767 * Returns a boolean or a negative error code.
1768 */
1769int regulator_is_supported_voltage(struct regulator *regulator,
1770				   int min_uV, int max_uV)
1771{
1772	int i, voltages, ret;
1773
1774	ret = regulator_count_voltages(regulator);
1775	if (ret < 0)
1776		return ret;
1777	voltages = ret;
1778
1779	for (i = 0; i < voltages; i++) {
1780		ret = regulator_list_voltage(regulator, i);
1781
1782		if (ret >= min_uV && ret <= max_uV)
1783			return 1;
1784	}
1785
1786	return 0;
1787}
1788EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1789
1790static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1791				     int min_uV, int max_uV)
1792{
1793	int ret;
1794	int delay = 0;
1795	unsigned int selector;
1796
1797	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1798
1799	min_uV += rdev->constraints->uV_offset;
1800	max_uV += rdev->constraints->uV_offset;
1801
1802	if (rdev->desc->ops->set_voltage) {
1803		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1804						   &selector);
1805
1806		if (rdev->desc->ops->list_voltage)
1807			selector = rdev->desc->ops->list_voltage(rdev,
1808								 selector);
1809		else
1810			selector = -1;
1811	} else if (rdev->desc->ops->set_voltage_sel) {
1812		int best_val = INT_MAX;
1813		int i;
1814
1815		selector = 0;
1816
1817		/* Find the smallest voltage that falls within the specified
1818		 * range.
1819		 */
1820		for (i = 0; i < rdev->desc->n_voltages; i++) {
1821			ret = rdev->desc->ops->list_voltage(rdev, i);
1822			if (ret < 0)
1823				continue;
1824
1825			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1826				best_val = ret;
1827				selector = i;
1828			}
1829		}
1830
1831		/*
1832		 * If we can't obtain the old selector there is not enough
1833		 * info to call set_voltage_time_sel().
1834		 */
1835		if (rdev->desc->ops->set_voltage_time_sel &&
1836		    rdev->desc->ops->get_voltage_sel) {
1837			unsigned int old_selector = 0;
1838
1839			ret = rdev->desc->ops->get_voltage_sel(rdev);
1840			if (ret < 0)
1841				return ret;
1842			old_selector = ret;
1843			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1844						old_selector, selector);
1845		}
1846
1847		if (best_val != INT_MAX) {
1848			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1849			selector = best_val;
1850		} else {
1851			ret = -EINVAL;
1852		}
1853	} else {
1854		ret = -EINVAL;
1855	}
1856
1857	/* Insert any necessary delays */
1858	if (delay >= 1000) {
1859		mdelay(delay / 1000);
1860		udelay(delay % 1000);
1861	} else if (delay) {
1862		udelay(delay);
1863	}
1864
1865	if (ret == 0)
1866		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1867				     NULL);
1868
1869	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1870
1871	return ret;
1872}
1873
1874/**
1875 * regulator_set_voltage - set regulator output voltage
1876 * @regulator: regulator source
1877 * @min_uV: Minimum required voltage in uV
1878 * @max_uV: Maximum acceptable voltage in uV
1879 *
1880 * Sets a voltage regulator to the desired output voltage. This can be set
1881 * during any regulator state. IOW, regulator can be disabled or enabled.
1882 *
1883 * If the regulator is enabled then the voltage will change to the new value
1884 * immediately otherwise if the regulator is disabled the regulator will
1885 * output at the new voltage when enabled.
1886 *
1887 * NOTE: If the regulator is shared between several devices then the lowest
1888 * request voltage that meets the system constraints will be used.
1889 * Regulator system constraints must be set for this regulator before
1890 * calling this function otherwise this call will fail.
1891 */
1892int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1893{
1894	struct regulator_dev *rdev = regulator->rdev;
1895	int ret = 0;
1896
1897	mutex_lock(&rdev->mutex);
1898
1899	/* If we're setting the same range as last time the change
1900	 * should be a noop (some cpufreq implementations use the same
1901	 * voltage for multiple frequencies, for example).
1902	 */
1903	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1904		goto out;
1905
1906	/* sanity check */
1907	if (!rdev->desc->ops->set_voltage &&
1908	    !rdev->desc->ops->set_voltage_sel) {
1909		ret = -EINVAL;
1910		goto out;
1911	}
1912
1913	/* constraints check */
1914	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1915	if (ret < 0)
1916		goto out;
1917	regulator->min_uV = min_uV;
1918	regulator->max_uV = max_uV;
1919
1920	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1921	if (ret < 0)
1922		goto out;
1923
1924	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1925
1926out:
1927	mutex_unlock(&rdev->mutex);
1928	return ret;
1929}
1930EXPORT_SYMBOL_GPL(regulator_set_voltage);
1931
1932/**
1933 * regulator_set_voltage_time - get raise/fall time
1934 * @regulator: regulator source
1935 * @old_uV: starting voltage in microvolts
1936 * @new_uV: target voltage in microvolts
1937 *
1938 * Provided with the starting and ending voltage, this function attempts to
1939 * calculate the time in microseconds required to rise or fall to this new
1940 * voltage.
1941 */
1942int regulator_set_voltage_time(struct regulator *regulator,
1943			       int old_uV, int new_uV)
1944{
1945	struct regulator_dev	*rdev = regulator->rdev;
1946	struct regulator_ops	*ops = rdev->desc->ops;
1947	int old_sel = -1;
1948	int new_sel = -1;
1949	int voltage;
1950	int i;
1951
1952	/* Currently requires operations to do this */
1953	if (!ops->list_voltage || !ops->set_voltage_time_sel
1954	    || !rdev->desc->n_voltages)
1955		return -EINVAL;
1956
1957	for (i = 0; i < rdev->desc->n_voltages; i++) {
1958		/* We only look for exact voltage matches here */
1959		voltage = regulator_list_voltage(regulator, i);
1960		if (voltage < 0)
1961			return -EINVAL;
1962		if (voltage == 0)
1963			continue;
1964		if (voltage == old_uV)
1965			old_sel = i;
1966		if (voltage == new_uV)
1967			new_sel = i;
1968	}
1969
1970	if (old_sel < 0 || new_sel < 0)
1971		return -EINVAL;
1972
1973	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1974}
1975EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1976
1977/**
1978 * regulator_sync_voltage - re-apply last regulator output voltage
1979 * @regulator: regulator source
1980 *
1981 * Re-apply the last configured voltage.  This is intended to be used
1982 * where some external control source the consumer is cooperating with
1983 * has caused the configured voltage to change.
1984 */
1985int regulator_sync_voltage(struct regulator *regulator)
1986{
1987	struct regulator_dev *rdev = regulator->rdev;
1988	int ret, min_uV, max_uV;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	if (!rdev->desc->ops->set_voltage &&
1993	    !rdev->desc->ops->set_voltage_sel) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	/* This is only going to work if we've had a voltage configured. */
1999	if (!regulator->min_uV && !regulator->max_uV) {
2000		ret = -EINVAL;
2001		goto out;
2002	}
2003
2004	min_uV = regulator->min_uV;
2005	max_uV = regulator->max_uV;
2006
2007	/* This should be a paranoia check... */
2008	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2009	if (ret < 0)
2010		goto out;
2011
2012	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2013	if (ret < 0)
2014		goto out;
2015
2016	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2017
2018out:
2019	mutex_unlock(&rdev->mutex);
2020	return ret;
2021}
2022EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2023
2024static int _regulator_get_voltage(struct regulator_dev *rdev)
2025{
2026	int sel, ret;
2027
2028	if (rdev->desc->ops->get_voltage_sel) {
2029		sel = rdev->desc->ops->get_voltage_sel(rdev);
2030		if (sel < 0)
2031			return sel;
2032		ret = rdev->desc->ops->list_voltage(rdev, sel);
2033	} else if (rdev->desc->ops->get_voltage) {
2034		ret = rdev->desc->ops->get_voltage(rdev);
2035	} else {
2036		return -EINVAL;
2037	}
2038
2039	if (ret < 0)
2040		return ret;
2041	return ret - rdev->constraints->uV_offset;
2042}
2043
2044/**
2045 * regulator_get_voltage - get regulator output voltage
2046 * @regulator: regulator source
2047 *
2048 * This returns the current regulator voltage in uV.
2049 *
2050 * NOTE: If the regulator is disabled it will return the voltage value. This
2051 * function should not be used to determine regulator state.
2052 */
2053int regulator_get_voltage(struct regulator *regulator)
2054{
2055	int ret;
2056
2057	mutex_lock(&regulator->rdev->mutex);
2058
2059	ret = _regulator_get_voltage(regulator->rdev);
2060
2061	mutex_unlock(&regulator->rdev->mutex);
2062
2063	return ret;
2064}
2065EXPORT_SYMBOL_GPL(regulator_get_voltage);
2066
2067/**
2068 * regulator_set_current_limit - set regulator output current limit
2069 * @regulator: regulator source
2070 * @min_uA: Minimuum supported current in uA
2071 * @max_uA: Maximum supported current in uA
2072 *
2073 * Sets current sink to the desired output current. This can be set during
2074 * any regulator state. IOW, regulator can be disabled or enabled.
2075 *
2076 * If the regulator is enabled then the current will change to the new value
2077 * immediately otherwise if the regulator is disabled the regulator will
2078 * output at the new current when enabled.
2079 *
2080 * NOTE: Regulator system constraints must be set for this regulator before
2081 * calling this function otherwise this call will fail.
2082 */
2083int regulator_set_current_limit(struct regulator *regulator,
2084			       int min_uA, int max_uA)
2085{
2086	struct regulator_dev *rdev = regulator->rdev;
2087	int ret;
2088
2089	mutex_lock(&rdev->mutex);
2090
2091	/* sanity check */
2092	if (!rdev->desc->ops->set_current_limit) {
2093		ret = -EINVAL;
2094		goto out;
2095	}
2096
2097	/* constraints check */
2098	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2099	if (ret < 0)
2100		goto out;
2101
2102	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2103out:
2104	mutex_unlock(&rdev->mutex);
2105	return ret;
2106}
2107EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2108
2109static int _regulator_get_current_limit(struct regulator_dev *rdev)
2110{
2111	int ret;
2112
2113	mutex_lock(&rdev->mutex);
2114
2115	/* sanity check */
2116	if (!rdev->desc->ops->get_current_limit) {
2117		ret = -EINVAL;
2118		goto out;
2119	}
2120
2121	ret = rdev->desc->ops->get_current_limit(rdev);
2122out:
2123	mutex_unlock(&rdev->mutex);
2124	return ret;
2125}
2126
2127/**
2128 * regulator_get_current_limit - get regulator output current
2129 * @regulator: regulator source
2130 *
2131 * This returns the current supplied by the specified current sink in uA.
2132 *
2133 * NOTE: If the regulator is disabled it will return the current value. This
2134 * function should not be used to determine regulator state.
2135 */
2136int regulator_get_current_limit(struct regulator *regulator)
2137{
2138	return _regulator_get_current_limit(regulator->rdev);
2139}
2140EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2141
2142/**
2143 * regulator_set_mode - set regulator operating mode
2144 * @regulator: regulator source
2145 * @mode: operating mode - one of the REGULATOR_MODE constants
2146 *
2147 * Set regulator operating mode to increase regulator efficiency or improve
2148 * regulation performance.
2149 *
2150 * NOTE: Regulator system constraints must be set for this regulator before
2151 * calling this function otherwise this call will fail.
2152 */
2153int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2154{
2155	struct regulator_dev *rdev = regulator->rdev;
2156	int ret;
2157	int regulator_curr_mode;
2158
2159	mutex_lock(&rdev->mutex);
2160
2161	/* sanity check */
2162	if (!rdev->desc->ops->set_mode) {
2163		ret = -EINVAL;
2164		goto out;
2165	}
2166
2167	/* return if the same mode is requested */
2168	if (rdev->desc->ops->get_mode) {
2169		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2170		if (regulator_curr_mode == mode) {
2171			ret = 0;
2172			goto out;
2173		}
2174	}
2175
2176	/* constraints check */
2177	ret = regulator_mode_constrain(rdev, &mode);
2178	if (ret < 0)
2179		goto out;
2180
2181	ret = rdev->desc->ops->set_mode(rdev, mode);
2182out:
2183	mutex_unlock(&rdev->mutex);
2184	return ret;
2185}
2186EXPORT_SYMBOL_GPL(regulator_set_mode);
2187
2188static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2189{
2190	int ret;
2191
2192	mutex_lock(&rdev->mutex);
2193
2194	/* sanity check */
2195	if (!rdev->desc->ops->get_mode) {
2196		ret = -EINVAL;
2197		goto out;
2198	}
2199
2200	ret = rdev->desc->ops->get_mode(rdev);
2201out:
2202	mutex_unlock(&rdev->mutex);
2203	return ret;
2204}
2205
2206/**
2207 * regulator_get_mode - get regulator operating mode
2208 * @regulator: regulator source
2209 *
2210 * Get the current regulator operating mode.
2211 */
2212unsigned int regulator_get_mode(struct regulator *regulator)
2213{
2214	return _regulator_get_mode(regulator->rdev);
2215}
2216EXPORT_SYMBOL_GPL(regulator_get_mode);
2217
2218/**
2219 * regulator_set_optimum_mode - set regulator optimum operating mode
2220 * @regulator: regulator source
2221 * @uA_load: load current
2222 *
2223 * Notifies the regulator core of a new device load. This is then used by
2224 * DRMS (if enabled by constraints) to set the most efficient regulator
2225 * operating mode for the new regulator loading.
2226 *
2227 * Consumer devices notify their supply regulator of the maximum power
2228 * they will require (can be taken from device datasheet in the power
2229 * consumption tables) when they change operational status and hence power
2230 * state. Examples of operational state changes that can affect power
2231 * consumption are :-
2232 *
2233 *    o Device is opened / closed.
2234 *    o Device I/O is about to begin or has just finished.
2235 *    o Device is idling in between work.
2236 *
2237 * This information is also exported via sysfs to userspace.
2238 *
2239 * DRMS will sum the total requested load on the regulator and change
2240 * to the most efficient operating mode if platform constraints allow.
2241 *
2242 * Returns the new regulator mode or error.
2243 */
2244int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2245{
2246	struct regulator_dev *rdev = regulator->rdev;
2247	struct regulator *consumer;
2248	int ret, output_uV, input_uV, total_uA_load = 0;
2249	unsigned int mode;
2250
2251	mutex_lock(&rdev->mutex);
2252
2253	/*
2254	 * first check to see if we can set modes at all, otherwise just
2255	 * tell the consumer everything is OK.
2256	 */
2257	regulator->uA_load = uA_load;
2258	ret = regulator_check_drms(rdev);
2259	if (ret < 0) {
2260		ret = 0;
2261		goto out;
2262	}
2263
2264	if (!rdev->desc->ops->get_optimum_mode)
2265		goto out;
2266
2267	/*
2268	 * we can actually do this so any errors are indicators of
2269	 * potential real failure.
2270	 */
2271	ret = -EINVAL;
2272
2273	/* get output voltage */
2274	output_uV = _regulator_get_voltage(rdev);
2275	if (output_uV <= 0) {
2276		rdev_err(rdev, "invalid output voltage found\n");
2277		goto out;
2278	}
2279
2280	/* get input voltage */
2281	input_uV = 0;
2282	if (rdev->supply)
2283		input_uV = regulator_get_voltage(rdev->supply);
2284	if (input_uV <= 0)
2285		input_uV = rdev->constraints->input_uV;
2286	if (input_uV <= 0) {
2287		rdev_err(rdev, "invalid input voltage found\n");
2288		goto out;
2289	}
2290
2291	/* calc total requested load for this regulator */
2292	list_for_each_entry(consumer, &rdev->consumer_list, list)
2293		total_uA_load += consumer->uA_load;
2294
2295	mode = rdev->desc->ops->get_optimum_mode(rdev,
2296						 input_uV, output_uV,
2297						 total_uA_load);
2298	ret = regulator_mode_constrain(rdev, &mode);
2299	if (ret < 0) {
2300		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2301			 total_uA_load, input_uV, output_uV);
2302		goto out;
2303	}
2304
2305	ret = rdev->desc->ops->set_mode(rdev, mode);
2306	if (ret < 0) {
2307		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2308		goto out;
2309	}
2310	ret = mode;
2311out:
2312	mutex_unlock(&rdev->mutex);
2313	return ret;
2314}
2315EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2316
2317/**
2318 * regulator_register_notifier - register regulator event notifier
2319 * @regulator: regulator source
2320 * @nb: notifier block
2321 *
2322 * Register notifier block to receive regulator events.
2323 */
2324int regulator_register_notifier(struct regulator *regulator,
2325			      struct notifier_block *nb)
2326{
2327	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2328						nb);
2329}
2330EXPORT_SYMBOL_GPL(regulator_register_notifier);
2331
2332/**
2333 * regulator_unregister_notifier - unregister regulator event notifier
2334 * @regulator: regulator source
2335 * @nb: notifier block
2336 *
2337 * Unregister regulator event notifier block.
2338 */
2339int regulator_unregister_notifier(struct regulator *regulator,
2340				struct notifier_block *nb)
2341{
2342	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2343						  nb);
2344}
2345EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2346
2347/* notify regulator consumers and downstream regulator consumers.
2348 * Note mutex must be held by caller.
2349 */
2350static void _notifier_call_chain(struct regulator_dev *rdev,
2351				  unsigned long event, void *data)
2352{
2353	/* call rdev chain first */
2354	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2355}
2356
2357/**
2358 * regulator_bulk_get - get multiple regulator consumers
2359 *
2360 * @dev:           Device to supply
2361 * @num_consumers: Number of consumers to register
2362 * @consumers:     Configuration of consumers; clients are stored here.
2363 *
2364 * @return 0 on success, an errno on failure.
2365 *
2366 * This helper function allows drivers to get several regulator
2367 * consumers in one operation.  If any of the regulators cannot be
2368 * acquired then any regulators that were allocated will be freed
2369 * before returning to the caller.
2370 */
2371int regulator_bulk_get(struct device *dev, int num_consumers,
2372		       struct regulator_bulk_data *consumers)
2373{
2374	int i;
2375	int ret;
2376
2377	for (i = 0; i < num_consumers; i++)
2378		consumers[i].consumer = NULL;
2379
2380	for (i = 0; i < num_consumers; i++) {
2381		consumers[i].consumer = regulator_get(dev,
2382						      consumers[i].supply);
2383		if (IS_ERR(consumers[i].consumer)) {
2384			ret = PTR_ERR(consumers[i].consumer);
2385			dev_err(dev, "Failed to get supply '%s': %d\n",
2386				consumers[i].supply, ret);
2387			consumers[i].consumer = NULL;
2388			goto err;
2389		}
2390	}
2391
2392	return 0;
2393
2394err:
2395	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2396		regulator_put(consumers[i].consumer);
2397
2398	return ret;
2399}
2400EXPORT_SYMBOL_GPL(regulator_bulk_get);
2401
2402static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2403{
2404	struct regulator_bulk_data *bulk = data;
2405
2406	bulk->ret = regulator_enable(bulk->consumer);
2407}
2408
2409/**
2410 * regulator_bulk_enable - enable multiple regulator consumers
2411 *
2412 * @num_consumers: Number of consumers
2413 * @consumers:     Consumer data; clients are stored here.
2414 * @return         0 on success, an errno on failure
2415 *
2416 * This convenience API allows consumers to enable multiple regulator
2417 * clients in a single API call.  If any consumers cannot be enabled
2418 * then any others that were enabled will be disabled again prior to
2419 * return.
2420 */
2421int regulator_bulk_enable(int num_consumers,
2422			  struct regulator_bulk_data *consumers)
2423{
2424	LIST_HEAD(async_domain);
2425	int i;
2426	int ret = 0;
2427
2428	for (i = 0; i < num_consumers; i++)
2429		async_schedule_domain(regulator_bulk_enable_async,
2430				      &consumers[i], &async_domain);
2431
2432	async_synchronize_full_domain(&async_domain);
2433
2434	/* If any consumer failed we need to unwind any that succeeded */
2435	for (i = 0; i < num_consumers; i++) {
2436		if (consumers[i].ret != 0) {
2437			ret = consumers[i].ret;
2438			goto err;
2439		}
2440	}
2441
2442	return 0;
2443
2444err:
2445	for (i = 0; i < num_consumers; i++)
2446		if (consumers[i].ret == 0)
2447			regulator_disable(consumers[i].consumer);
2448		else
2449			pr_err("Failed to enable %s: %d\n",
2450			       consumers[i].supply, consumers[i].ret);
2451
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2455
2456/**
2457 * regulator_bulk_disable - disable multiple regulator consumers
2458 *
2459 * @num_consumers: Number of consumers
2460 * @consumers:     Consumer data; clients are stored here.
2461 * @return         0 on success, an errno on failure
2462 *
2463 * This convenience API allows consumers to disable multiple regulator
2464 * clients in a single API call.  If any consumers cannot be disabled
2465 * then any others that were disabled will be enabled again prior to
2466 * return.
2467 */
2468int regulator_bulk_disable(int num_consumers,
2469			   struct regulator_bulk_data *consumers)
2470{
2471	int i;
2472	int ret;
2473
2474	for (i = num_consumers - 1; i >= 0; --i) {
2475		ret = regulator_disable(consumers[i].consumer);
2476		if (ret != 0)
2477			goto err;
2478	}
2479
2480	return 0;
2481
2482err:
2483	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2484	for (++i; i < num_consumers; ++i)
2485		regulator_enable(consumers[i].consumer);
2486
2487	return ret;
2488}
2489EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2490
2491/**
2492 * regulator_bulk_force_disable - force disable multiple regulator consumers
2493 *
2494 * @num_consumers: Number of consumers
2495 * @consumers:     Consumer data; clients are stored here.
2496 * @return         0 on success, an errno on failure
2497 *
2498 * This convenience API allows consumers to forcibly disable multiple regulator
2499 * clients in a single API call.
2500 * NOTE: This should be used for situations when device damage will
2501 * likely occur if the regulators are not disabled (e.g. over temp).
2502 * Although regulator_force_disable function call for some consumers can
2503 * return error numbers, the function is called for all consumers.
2504 */
2505int regulator_bulk_force_disable(int num_consumers,
2506			   struct regulator_bulk_data *consumers)
2507{
2508	int i;
2509	int ret;
2510
2511	for (i = 0; i < num_consumers; i++)
2512		consumers[i].ret =
2513			    regulator_force_disable(consumers[i].consumer);
2514
2515	for (i = 0; i < num_consumers; i++) {
2516		if (consumers[i].ret != 0) {
2517			ret = consumers[i].ret;
2518			goto out;
2519		}
2520	}
2521
2522	return 0;
2523out:
2524	return ret;
2525}
2526EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2527
2528/**
2529 * regulator_bulk_free - free multiple regulator consumers
2530 *
2531 * @num_consumers: Number of consumers
2532 * @consumers:     Consumer data; clients are stored here.
2533 *
2534 * This convenience API allows consumers to free multiple regulator
2535 * clients in a single API call.
2536 */
2537void regulator_bulk_free(int num_consumers,
2538			 struct regulator_bulk_data *consumers)
2539{
2540	int i;
2541
2542	for (i = 0; i < num_consumers; i++) {
2543		regulator_put(consumers[i].consumer);
2544		consumers[i].consumer = NULL;
2545	}
2546}
2547EXPORT_SYMBOL_GPL(regulator_bulk_free);
2548
2549/**
2550 * regulator_notifier_call_chain - call regulator event notifier
2551 * @rdev: regulator source
2552 * @event: notifier block
2553 * @data: callback-specific data.
2554 *
2555 * Called by regulator drivers to notify clients a regulator event has
2556 * occurred. We also notify regulator clients downstream.
2557 * Note lock must be held by caller.
2558 */
2559int regulator_notifier_call_chain(struct regulator_dev *rdev,
2560				  unsigned long event, void *data)
2561{
2562	_notifier_call_chain(rdev, event, data);
2563	return NOTIFY_DONE;
2564
2565}
2566EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2567
2568/**
2569 * regulator_mode_to_status - convert a regulator mode into a status
2570 *
2571 * @mode: Mode to convert
2572 *
2573 * Convert a regulator mode into a status.
2574 */
2575int regulator_mode_to_status(unsigned int mode)
2576{
2577	switch (mode) {
2578	case REGULATOR_MODE_FAST:
2579		return REGULATOR_STATUS_FAST;
2580	case REGULATOR_MODE_NORMAL:
2581		return REGULATOR_STATUS_NORMAL;
2582	case REGULATOR_MODE_IDLE:
2583		return REGULATOR_STATUS_IDLE;
2584	case REGULATOR_STATUS_STANDBY:
2585		return REGULATOR_STATUS_STANDBY;
2586	default:
2587		return 0;
2588	}
2589}
2590EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2591
2592/*
2593 * To avoid cluttering sysfs (and memory) with useless state, only
2594 * create attributes that can be meaningfully displayed.
2595 */
2596static int add_regulator_attributes(struct regulator_dev *rdev)
2597{
2598	struct device		*dev = &rdev->dev;
2599	struct regulator_ops	*ops = rdev->desc->ops;
2600	int			status = 0;
2601
2602	/* some attributes need specific methods to be displayed */
2603	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2604	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2605		status = device_create_file(dev, &dev_attr_microvolts);
2606		if (status < 0)
2607			return status;
2608	}
2609	if (ops->get_current_limit) {
2610		status = device_create_file(dev, &dev_attr_microamps);
2611		if (status < 0)
2612			return status;
2613	}
2614	if (ops->get_mode) {
2615		status = device_create_file(dev, &dev_attr_opmode);
2616		if (status < 0)
2617			return status;
2618	}
2619	if (ops->is_enabled) {
2620		status = device_create_file(dev, &dev_attr_state);
2621		if (status < 0)
2622			return status;
2623	}
2624	if (ops->get_status) {
2625		status = device_create_file(dev, &dev_attr_status);
2626		if (status < 0)
2627			return status;
2628	}
2629
2630	/* some attributes are type-specific */
2631	if (rdev->desc->type == REGULATOR_CURRENT) {
2632		status = device_create_file(dev, &dev_attr_requested_microamps);
2633		if (status < 0)
2634			return status;
2635	}
2636
2637	/* all the other attributes exist to support constraints;
2638	 * don't show them if there are no constraints, or if the
2639	 * relevant supporting methods are missing.
2640	 */
2641	if (!rdev->constraints)
2642		return status;
2643
2644	/* constraints need specific supporting methods */
2645	if (ops->set_voltage || ops->set_voltage_sel) {
2646		status = device_create_file(dev, &dev_attr_min_microvolts);
2647		if (status < 0)
2648			return status;
2649		status = device_create_file(dev, &dev_attr_max_microvolts);
2650		if (status < 0)
2651			return status;
2652	}
2653	if (ops->set_current_limit) {
2654		status = device_create_file(dev, &dev_attr_min_microamps);
2655		if (status < 0)
2656			return status;
2657		status = device_create_file(dev, &dev_attr_max_microamps);
2658		if (status < 0)
2659			return status;
2660	}
2661
2662	/* suspend mode constraints need multiple supporting methods */
2663	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2664		return status;
2665
2666	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2667	if (status < 0)
2668		return status;
2669	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2670	if (status < 0)
2671		return status;
2672	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2673	if (status < 0)
2674		return status;
2675
2676	if (ops->set_suspend_voltage) {
2677		status = device_create_file(dev,
2678				&dev_attr_suspend_standby_microvolts);
2679		if (status < 0)
2680			return status;
2681		status = device_create_file(dev,
2682				&dev_attr_suspend_mem_microvolts);
2683		if (status < 0)
2684			return status;
2685		status = device_create_file(dev,
2686				&dev_attr_suspend_disk_microvolts);
2687		if (status < 0)
2688			return status;
2689	}
2690
2691	if (ops->set_suspend_mode) {
2692		status = device_create_file(dev,
2693				&dev_attr_suspend_standby_mode);
2694		if (status < 0)
2695			return status;
2696		status = device_create_file(dev,
2697				&dev_attr_suspend_mem_mode);
2698		if (status < 0)
2699			return status;
2700		status = device_create_file(dev,
2701				&dev_attr_suspend_disk_mode);
2702		if (status < 0)
2703			return status;
2704	}
2705
2706	return status;
2707}
2708
2709static void rdev_init_debugfs(struct regulator_dev *rdev)
2710{
2711#ifdef CONFIG_DEBUG_FS
2712	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2713	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2714		rdev_warn(rdev, "Failed to create debugfs directory\n");
2715		rdev->debugfs = NULL;
2716		return;
2717	}
2718
2719	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2720			   &rdev->use_count);
2721	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2722			   &rdev->open_count);
2723#endif
2724}
2725
2726/**
2727 * regulator_register - register regulator
2728 * @regulator_desc: regulator to register
2729 * @dev: struct device for the regulator
2730 * @init_data: platform provided init data, passed through by driver
2731 * @driver_data: private regulator data
2732 *
2733 * Called by regulator drivers to register a regulator.
2734 * Returns 0 on success.
2735 */
2736struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2737	struct device *dev, const struct regulator_init_data *init_data,
2738	void *driver_data, struct device_node *of_node)
2739{
2740	const struct regulation_constraints *constraints = NULL;
2741	static atomic_t regulator_no = ATOMIC_INIT(0);
2742	struct regulator_dev *rdev;
2743	int ret, i;
2744	const char *supply = NULL;
2745
2746	if (regulator_desc == NULL)
2747		return ERR_PTR(-EINVAL);
2748
2749	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2750		return ERR_PTR(-EINVAL);
2751
2752	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2753	    regulator_desc->type != REGULATOR_CURRENT)
2754		return ERR_PTR(-EINVAL);
2755
2756	/* Only one of each should be implemented */
2757	WARN_ON(regulator_desc->ops->get_voltage &&
2758		regulator_desc->ops->get_voltage_sel);
2759	WARN_ON(regulator_desc->ops->set_voltage &&
2760		regulator_desc->ops->set_voltage_sel);
2761
2762	/* If we're using selectors we must implement list_voltage. */
2763	if (regulator_desc->ops->get_voltage_sel &&
2764	    !regulator_desc->ops->list_voltage) {
2765		return ERR_PTR(-EINVAL);
2766	}
2767	if (regulator_desc->ops->set_voltage_sel &&
2768	    !regulator_desc->ops->list_voltage) {
2769		return ERR_PTR(-EINVAL);
2770	}
2771
2772	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2773	if (rdev == NULL)
2774		return ERR_PTR(-ENOMEM);
2775
2776	mutex_lock(&regulator_list_mutex);
2777
2778	mutex_init(&rdev->mutex);
2779	rdev->reg_data = driver_data;
2780	rdev->owner = regulator_desc->owner;
2781	rdev->desc = regulator_desc;
2782	INIT_LIST_HEAD(&rdev->consumer_list);
2783	INIT_LIST_HEAD(&rdev->list);
2784	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2785	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2786
2787	/* preform any regulator specific init */
2788	if (init_data && init_data->regulator_init) {
2789		ret = init_data->regulator_init(rdev->reg_data);
2790		if (ret < 0)
2791			goto clean;
2792	}
2793
2794	/* register with sysfs */
2795	rdev->dev.class = &regulator_class;
2796	rdev->dev.of_node = of_node;
2797	rdev->dev.parent = dev;
2798	dev_set_name(&rdev->dev, "regulator.%d",
2799		     atomic_inc_return(&regulator_no) - 1);
2800	ret = device_register(&rdev->dev);
2801	if (ret != 0) {
2802		put_device(&rdev->dev);
2803		goto clean;
2804	}
2805
2806	dev_set_drvdata(&rdev->dev, rdev);
2807
2808	/* set regulator constraints */
2809	if (init_data)
2810		constraints = &init_data->constraints;
2811
2812	ret = set_machine_constraints(rdev, constraints);
2813	if (ret < 0)
2814		goto scrub;
2815
2816	/* add attributes supported by this regulator */
2817	ret = add_regulator_attributes(rdev);
2818	if (ret < 0)
2819		goto scrub;
2820
2821	if (init_data && init_data->supply_regulator)
2822		supply = init_data->supply_regulator;
2823	else if (regulator_desc->supply_name)
2824		supply = regulator_desc->supply_name;
2825
2826	if (supply) {
2827		struct regulator_dev *r;
2828
2829		r = regulator_dev_lookup(dev, supply);
2830
2831		if (!r) {
2832			dev_err(dev, "Failed to find supply %s\n", supply);
2833			ret = -ENODEV;
2834			goto scrub;
2835		}
2836
2837		ret = set_supply(rdev, r);
2838		if (ret < 0)
2839			goto scrub;
2840
2841		/* Enable supply if rail is enabled */
2842		if (rdev->desc->ops->is_enabled &&
2843				rdev->desc->ops->is_enabled(rdev)) {
2844			ret = regulator_enable(rdev->supply);
2845			if (ret < 0)
2846				goto scrub;
2847		}
2848	}
2849
2850	/* add consumers devices */
2851	if (init_data) {
2852		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2853			ret = set_consumer_device_supply(rdev,
2854				init_data->consumer_supplies[i].dev,
2855				init_data->consumer_supplies[i].dev_name,
2856				init_data->consumer_supplies[i].supply);
2857			if (ret < 0) {
2858				dev_err(dev, "Failed to set supply %s\n",
2859					init_data->consumer_supplies[i].supply);
2860				goto unset_supplies;
2861			}
2862		}
2863	}
2864
2865	list_add(&rdev->list, &regulator_list);
2866
2867	rdev_init_debugfs(rdev);
2868out:
2869	mutex_unlock(&regulator_list_mutex);
2870	return rdev;
2871
2872unset_supplies:
2873	unset_regulator_supplies(rdev);
2874
2875scrub:
2876	kfree(rdev->constraints);
2877	device_unregister(&rdev->dev);
2878	/* device core frees rdev */
2879	rdev = ERR_PTR(ret);
2880	goto out;
2881
2882clean:
2883	kfree(rdev);
2884	rdev = ERR_PTR(ret);
2885	goto out;
2886}
2887EXPORT_SYMBOL_GPL(regulator_register);
2888
2889/**
2890 * regulator_unregister - unregister regulator
2891 * @rdev: regulator to unregister
2892 *
2893 * Called by regulator drivers to unregister a regulator.
2894 */
2895void regulator_unregister(struct regulator_dev *rdev)
2896{
2897	if (rdev == NULL)
2898		return;
2899
2900	mutex_lock(&regulator_list_mutex);
2901#ifdef CONFIG_DEBUG_FS
2902	debugfs_remove_recursive(rdev->debugfs);
2903#endif
2904	flush_work_sync(&rdev->disable_work.work);
2905	WARN_ON(rdev->open_count);
2906	unset_regulator_supplies(rdev);
2907	list_del(&rdev->list);
2908	if (rdev->supply)
2909		regulator_put(rdev->supply);
2910	kfree(rdev->constraints);
2911	device_unregister(&rdev->dev);
2912	mutex_unlock(&regulator_list_mutex);
2913}
2914EXPORT_SYMBOL_GPL(regulator_unregister);
2915
2916/**
2917 * regulator_suspend_prepare - prepare regulators for system wide suspend
2918 * @state: system suspend state
2919 *
2920 * Configure each regulator with it's suspend operating parameters for state.
2921 * This will usually be called by machine suspend code prior to supending.
2922 */
2923int regulator_suspend_prepare(suspend_state_t state)
2924{
2925	struct regulator_dev *rdev;
2926	int ret = 0;
2927
2928	/* ON is handled by regulator active state */
2929	if (state == PM_SUSPEND_ON)
2930		return -EINVAL;
2931
2932	mutex_lock(&regulator_list_mutex);
2933	list_for_each_entry(rdev, &regulator_list, list) {
2934
2935		mutex_lock(&rdev->mutex);
2936		ret = suspend_prepare(rdev, state);
2937		mutex_unlock(&rdev->mutex);
2938
2939		if (ret < 0) {
2940			rdev_err(rdev, "failed to prepare\n");
2941			goto out;
2942		}
2943	}
2944out:
2945	mutex_unlock(&regulator_list_mutex);
2946	return ret;
2947}
2948EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2949
2950/**
2951 * regulator_suspend_finish - resume regulators from system wide suspend
2952 *
2953 * Turn on regulators that might be turned off by regulator_suspend_prepare
2954 * and that should be turned on according to the regulators properties.
2955 */
2956int regulator_suspend_finish(void)
2957{
2958	struct regulator_dev *rdev;
2959	int ret = 0, error;
2960
2961	mutex_lock(&regulator_list_mutex);
2962	list_for_each_entry(rdev, &regulator_list, list) {
2963		struct regulator_ops *ops = rdev->desc->ops;
2964
2965		mutex_lock(&rdev->mutex);
2966		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2967				ops->enable) {
2968			error = ops->enable(rdev);
2969			if (error)
2970				ret = error;
2971		} else {
2972			if (!has_full_constraints)
2973				goto unlock;
2974			if (!ops->disable)
2975				goto unlock;
2976			if (ops->is_enabled && !ops->is_enabled(rdev))
2977				goto unlock;
2978
2979			error = ops->disable(rdev);
2980			if (error)
2981				ret = error;
2982		}
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986	mutex_unlock(&regulator_list_mutex);
2987	return ret;
2988}
2989EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2990
2991/**
2992 * regulator_has_full_constraints - the system has fully specified constraints
2993 *
2994 * Calling this function will cause the regulator API to disable all
2995 * regulators which have a zero use count and don't have an always_on
2996 * constraint in a late_initcall.
2997 *
2998 * The intention is that this will become the default behaviour in a
2999 * future kernel release so users are encouraged to use this facility
3000 * now.
3001 */
3002void regulator_has_full_constraints(void)
3003{
3004	has_full_constraints = 1;
3005}
3006EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3007
3008/**
3009 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3010 *
3011 * Calling this function will cause the regulator API to provide a
3012 * dummy regulator to consumers if no physical regulator is found,
3013 * allowing most consumers to proceed as though a regulator were
3014 * configured.  This allows systems such as those with software
3015 * controllable regulators for the CPU core only to be brought up more
3016 * readily.
3017 */
3018void regulator_use_dummy_regulator(void)
3019{
3020	board_wants_dummy_regulator = true;
3021}
3022EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3023
3024/**
3025 * rdev_get_drvdata - get rdev regulator driver data
3026 * @rdev: regulator
3027 *
3028 * Get rdev regulator driver private data. This call can be used in the
3029 * regulator driver context.
3030 */
3031void *rdev_get_drvdata(struct regulator_dev *rdev)
3032{
3033	return rdev->reg_data;
3034}
3035EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3036
3037/**
3038 * regulator_get_drvdata - get regulator driver data
3039 * @regulator: regulator
3040 *
3041 * Get regulator driver private data. This call can be used in the consumer
3042 * driver context when non API regulator specific functions need to be called.
3043 */
3044void *regulator_get_drvdata(struct regulator *regulator)
3045{
3046	return regulator->rdev->reg_data;
3047}
3048EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3049
3050/**
3051 * regulator_set_drvdata - set regulator driver data
3052 * @regulator: regulator
3053 * @data: data
3054 */
3055void regulator_set_drvdata(struct regulator *regulator, void *data)
3056{
3057	regulator->rdev->reg_data = data;
3058}
3059EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3060
3061/**
3062 * regulator_get_id - get regulator ID
3063 * @rdev: regulator
3064 */
3065int rdev_get_id(struct regulator_dev *rdev)
3066{
3067	return rdev->desc->id;
3068}
3069EXPORT_SYMBOL_GPL(rdev_get_id);
3070
3071struct device *rdev_get_dev(struct regulator_dev *rdev)
3072{
3073	return &rdev->dev;
3074}
3075EXPORT_SYMBOL_GPL(rdev_get_dev);
3076
3077void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3078{
3079	return reg_init_data->driver_data;
3080}
3081EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3082
3083#ifdef CONFIG_DEBUG_FS
3084static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3085				    size_t count, loff_t *ppos)
3086{
3087	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3088	ssize_t len, ret = 0;
3089	struct regulator_map *map;
3090
3091	if (!buf)
3092		return -ENOMEM;
3093
3094	list_for_each_entry(map, &regulator_map_list, list) {
3095		len = snprintf(buf + ret, PAGE_SIZE - ret,
3096			       "%s -> %s.%s\n",
3097			       rdev_get_name(map->regulator), map->dev_name,
3098			       map->supply);
3099		if (len >= 0)
3100			ret += len;
3101		if (ret > PAGE_SIZE) {
3102			ret = PAGE_SIZE;
3103			break;
3104		}
3105	}
3106
3107	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3108
3109	kfree(buf);
3110
3111	return ret;
3112}
3113
3114static const struct file_operations supply_map_fops = {
3115	.read = supply_map_read_file,
3116	.llseek = default_llseek,
3117};
3118#endif
3119
3120static int __init regulator_init(void)
3121{
3122	int ret;
3123
3124	ret = class_register(&regulator_class);
3125
3126#ifdef CONFIG_DEBUG_FS
3127	debugfs_root = debugfs_create_dir("regulator", NULL);
3128	if (IS_ERR(debugfs_root) || !debugfs_root) {
3129		pr_warn("regulator: Failed to create debugfs directory\n");
3130		debugfs_root = NULL;
3131	}
3132
3133	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3134				       NULL, &supply_map_fops)))
3135		pr_warn("regulator: Failed to create supplies debugfs\n");
3136#endif
3137
3138	regulator_dummy_init();
3139
3140	return ret;
3141}
3142
3143/* init early to allow our consumers to complete system booting */
3144core_initcall(regulator_init);
3145
3146static int __init regulator_init_complete(void)
3147{
3148	struct regulator_dev *rdev;
3149	struct regulator_ops *ops;
3150	struct regulation_constraints *c;
3151	int enabled, ret;
3152
3153	mutex_lock(&regulator_list_mutex);
3154
3155	/* If we have a full configuration then disable any regulators
3156	 * which are not in use or always_on.  This will become the
3157	 * default behaviour in the future.
3158	 */
3159	list_for_each_entry(rdev, &regulator_list, list) {
3160		ops = rdev->desc->ops;
3161		c = rdev->constraints;
3162
3163		if (!ops->disable || (c && c->always_on))
3164			continue;
3165
3166		mutex_lock(&rdev->mutex);
3167
3168		if (rdev->use_count)
3169			goto unlock;
3170
3171		/* If we can't read the status assume it's on. */
3172		if (ops->is_enabled)
3173			enabled = ops->is_enabled(rdev);
3174		else
3175			enabled = 1;
3176
3177		if (!enabled)
3178			goto unlock;
3179
3180		if (has_full_constraints) {
3181			/* We log since this may kill the system if it
3182			 * goes wrong. */
3183			rdev_info(rdev, "disabling\n");
3184			ret = ops->disable(rdev);
3185			if (ret != 0) {
3186				rdev_err(rdev, "couldn't disable: %d\n", ret);
3187			}
3188		} else {
3189			/* The intention is that in future we will
3190			 * assume that full constraints are provided
3191			 * so warn even if we aren't going to do
3192			 * anything here.
3193			 */
3194			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3195		}
3196
3197unlock:
3198		mutex_unlock(&rdev->mutex);
3199	}
3200
3201	mutex_unlock(&regulator_list_mutex);
3202
3203	return 0;
3204}
3205late_initcall(regulator_init_complete);
3206