core.c revision 476c2d83c7ffb2429b2a504fbdb4326fc8a9d0e8
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/regulator/consumer.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34
35#define rdev_err(rdev, fmt, ...)					\
36	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37#define rdev_warn(rdev, fmt, ...)					\
38	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_info(rdev, fmt, ...)					\
40	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_dbg(rdev, fmt, ...)					\
42	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44static DEFINE_MUTEX(regulator_list_mutex);
45static LIST_HEAD(regulator_list);
46static LIST_HEAD(regulator_map_list);
47static int has_full_constraints;
48static bool board_wants_dummy_regulator;
49
50/*
51 * struct regulator_map
52 *
53 * Used to provide symbolic supply names to devices.
54 */
55struct regulator_map {
56	struct list_head list;
57	const char *dev_name;   /* The dev_name() for the consumer */
58	const char *supply;
59	struct regulator_dev *regulator;
60};
61
62/*
63 * struct regulator
64 *
65 * One for each consumer device.
66 */
67struct regulator {
68	struct device *dev;
69	struct list_head list;
70	int uA_load;
71	int min_uV;
72	int max_uV;
73	char *supply_name;
74	struct device_attribute dev_attr;
75	struct regulator_dev *rdev;
76};
77
78static int _regulator_is_enabled(struct regulator_dev *rdev);
79static int _regulator_disable(struct regulator_dev *rdev,
80		struct regulator_dev **supply_rdev_ptr);
81static int _regulator_get_voltage(struct regulator_dev *rdev);
82static int _regulator_get_current_limit(struct regulator_dev *rdev);
83static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84static void _notifier_call_chain(struct regulator_dev *rdev,
85				  unsigned long event, void *data);
86
87static const char *rdev_get_name(struct regulator_dev *rdev)
88{
89	if (rdev->constraints && rdev->constraints->name)
90		return rdev->constraints->name;
91	else if (rdev->desc->name)
92		return rdev->desc->name;
93	else
94		return "";
95}
96
97/* gets the regulator for a given consumer device */
98static struct regulator *get_device_regulator(struct device *dev)
99{
100	struct regulator *regulator = NULL;
101	struct regulator_dev *rdev;
102
103	mutex_lock(&regulator_list_mutex);
104	list_for_each_entry(rdev, &regulator_list, list) {
105		mutex_lock(&rdev->mutex);
106		list_for_each_entry(regulator, &rdev->consumer_list, list) {
107			if (regulator->dev == dev) {
108				mutex_unlock(&rdev->mutex);
109				mutex_unlock(&regulator_list_mutex);
110				return regulator;
111			}
112		}
113		mutex_unlock(&rdev->mutex);
114	}
115	mutex_unlock(&regulator_list_mutex);
116	return NULL;
117}
118
119/* Platform voltage constraint check */
120static int regulator_check_voltage(struct regulator_dev *rdev,
121				   int *min_uV, int *max_uV)
122{
123	BUG_ON(*min_uV > *max_uV);
124
125	if (!rdev->constraints) {
126		rdev_err(rdev, "no constraints\n");
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130		rdev_err(rdev, "operation not allowed\n");
131		return -EPERM;
132	}
133
134	if (*max_uV > rdev->constraints->max_uV)
135		*max_uV = rdev->constraints->max_uV;
136	if (*min_uV < rdev->constraints->min_uV)
137		*min_uV = rdev->constraints->min_uV;
138
139	if (*min_uV > *max_uV)
140		return -EINVAL;
141
142	return 0;
143}
144
145/* Make sure we select a voltage that suits the needs of all
146 * regulator consumers
147 */
148static int regulator_check_consumers(struct regulator_dev *rdev,
149				     int *min_uV, int *max_uV)
150{
151	struct regulator *regulator;
152
153	list_for_each_entry(regulator, &rdev->consumer_list, list) {
154		if (*max_uV > regulator->max_uV)
155			*max_uV = regulator->max_uV;
156		if (*min_uV < regulator->min_uV)
157			*min_uV = regulator->min_uV;
158	}
159
160	if (*min_uV > *max_uV)
161		return -EINVAL;
162
163	return 0;
164}
165
166/* current constraint check */
167static int regulator_check_current_limit(struct regulator_dev *rdev,
168					int *min_uA, int *max_uA)
169{
170	BUG_ON(*min_uA > *max_uA);
171
172	if (!rdev->constraints) {
173		rdev_err(rdev, "no constraints\n");
174		return -ENODEV;
175	}
176	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177		rdev_err(rdev, "operation not allowed\n");
178		return -EPERM;
179	}
180
181	if (*max_uA > rdev->constraints->max_uA)
182		*max_uA = rdev->constraints->max_uA;
183	if (*min_uA < rdev->constraints->min_uA)
184		*min_uA = rdev->constraints->min_uA;
185
186	if (*min_uA > *max_uA)
187		return -EINVAL;
188
189	return 0;
190}
191
192/* operating mode constraint check */
193static int regulator_check_mode(struct regulator_dev *rdev, int mode)
194{
195	switch (mode) {
196	case REGULATOR_MODE_FAST:
197	case REGULATOR_MODE_NORMAL:
198	case REGULATOR_MODE_IDLE:
199	case REGULATOR_MODE_STANDBY:
200		break;
201	default:
202		return -EINVAL;
203	}
204
205	if (!rdev->constraints) {
206		rdev_err(rdev, "no constraints\n");
207		return -ENODEV;
208	}
209	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210		rdev_err(rdev, "operation not allowed\n");
211		return -EPERM;
212	}
213	if (!(rdev->constraints->valid_modes_mask & mode)) {
214		rdev_err(rdev, "invalid mode %x\n", mode);
215		return -EINVAL;
216	}
217	return 0;
218}
219
220/* dynamic regulator mode switching constraint check */
221static int regulator_check_drms(struct regulator_dev *rdev)
222{
223	if (!rdev->constraints) {
224		rdev_err(rdev, "no constraints\n");
225		return -ENODEV;
226	}
227	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228		rdev_err(rdev, "operation not allowed\n");
229		return -EPERM;
230	}
231	return 0;
232}
233
234static ssize_t device_requested_uA_show(struct device *dev,
235			     struct device_attribute *attr, char *buf)
236{
237	struct regulator *regulator;
238
239	regulator = get_device_regulator(dev);
240	if (regulator == NULL)
241		return 0;
242
243	return sprintf(buf, "%d\n", regulator->uA_load);
244}
245
246static ssize_t regulator_uV_show(struct device *dev,
247				struct device_attribute *attr, char *buf)
248{
249	struct regulator_dev *rdev = dev_get_drvdata(dev);
250	ssize_t ret;
251
252	mutex_lock(&rdev->mutex);
253	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254	mutex_unlock(&rdev->mutex);
255
256	return ret;
257}
258static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259
260static ssize_t regulator_uA_show(struct device *dev,
261				struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
266}
267static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268
269static ssize_t regulator_name_show(struct device *dev,
270			     struct device_attribute *attr, char *buf)
271{
272	struct regulator_dev *rdev = dev_get_drvdata(dev);
273
274	return sprintf(buf, "%s\n", rdev_get_name(rdev));
275}
276
277static ssize_t regulator_print_opmode(char *buf, int mode)
278{
279	switch (mode) {
280	case REGULATOR_MODE_FAST:
281		return sprintf(buf, "fast\n");
282	case REGULATOR_MODE_NORMAL:
283		return sprintf(buf, "normal\n");
284	case REGULATOR_MODE_IDLE:
285		return sprintf(buf, "idle\n");
286	case REGULATOR_MODE_STANDBY:
287		return sprintf(buf, "standby\n");
288	}
289	return sprintf(buf, "unknown\n");
290}
291
292static ssize_t regulator_opmode_show(struct device *dev,
293				    struct device_attribute *attr, char *buf)
294{
295	struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
298}
299static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
300
301static ssize_t regulator_print_state(char *buf, int state)
302{
303	if (state > 0)
304		return sprintf(buf, "enabled\n");
305	else if (state == 0)
306		return sprintf(buf, "disabled\n");
307	else
308		return sprintf(buf, "unknown\n");
309}
310
311static ssize_t regulator_state_show(struct device *dev,
312				   struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
324
325static ssize_t regulator_status_show(struct device *dev,
326				   struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329	int status;
330	char *label;
331
332	status = rdev->desc->ops->get_status(rdev);
333	if (status < 0)
334		return status;
335
336	switch (status) {
337	case REGULATOR_STATUS_OFF:
338		label = "off";
339		break;
340	case REGULATOR_STATUS_ON:
341		label = "on";
342		break;
343	case REGULATOR_STATUS_ERROR:
344		label = "error";
345		break;
346	case REGULATOR_STATUS_FAST:
347		label = "fast";
348		break;
349	case REGULATOR_STATUS_NORMAL:
350		label = "normal";
351		break;
352	case REGULATOR_STATUS_IDLE:
353		label = "idle";
354		break;
355	case REGULATOR_STATUS_STANDBY:
356		label = "standby";
357		break;
358	default:
359		return -ERANGE;
360	}
361
362	return sprintf(buf, "%s\n", label);
363}
364static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
365
366static ssize_t regulator_min_uA_show(struct device *dev,
367				    struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "constraint not defined\n");
373
374	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
375}
376static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377
378static ssize_t regulator_max_uA_show(struct device *dev,
379				    struct device_attribute *attr, char *buf)
380{
381	struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383	if (!rdev->constraints)
384		return sprintf(buf, "constraint not defined\n");
385
386	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
387}
388static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389
390static ssize_t regulator_min_uV_show(struct device *dev,
391				    struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394
395	if (!rdev->constraints)
396		return sprintf(buf, "constraint not defined\n");
397
398	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
399}
400static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401
402static ssize_t regulator_max_uV_show(struct device *dev,
403				    struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407	if (!rdev->constraints)
408		return sprintf(buf, "constraint not defined\n");
409
410	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
411}
412static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413
414static ssize_t regulator_total_uA_show(struct device *dev,
415				      struct device_attribute *attr, char *buf)
416{
417	struct regulator_dev *rdev = dev_get_drvdata(dev);
418	struct regulator *regulator;
419	int uA = 0;
420
421	mutex_lock(&rdev->mutex);
422	list_for_each_entry(regulator, &rdev->consumer_list, list)
423		uA += regulator->uA_load;
424	mutex_unlock(&rdev->mutex);
425	return sprintf(buf, "%d\n", uA);
426}
427static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428
429static ssize_t regulator_num_users_show(struct device *dev,
430				      struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433	return sprintf(buf, "%d\n", rdev->use_count);
434}
435
436static ssize_t regulator_type_show(struct device *dev,
437				  struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	switch (rdev->desc->type) {
442	case REGULATOR_VOLTAGE:
443		return sprintf(buf, "voltage\n");
444	case REGULATOR_CURRENT:
445		return sprintf(buf, "current\n");
446	}
447	return sprintf(buf, "unknown\n");
448}
449
450static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
456}
457static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458		regulator_suspend_mem_uV_show, NULL);
459
460static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461				struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
466}
467static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468		regulator_suspend_disk_uV_show, NULL);
469
470static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
476}
477static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478		regulator_suspend_standby_uV_show, NULL);
479
480static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481				struct device_attribute *attr, char *buf)
482{
483	struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485	return regulator_print_opmode(buf,
486		rdev->constraints->state_mem.mode);
487}
488static DEVICE_ATTR(suspend_mem_mode, 0444,
489		regulator_suspend_mem_mode_show, NULL);
490
491static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492				struct device_attribute *attr, char *buf)
493{
494	struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496	return regulator_print_opmode(buf,
497		rdev->constraints->state_disk.mode);
498}
499static DEVICE_ATTR(suspend_disk_mode, 0444,
500		regulator_suspend_disk_mode_show, NULL);
501
502static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503				struct device_attribute *attr, char *buf)
504{
505	struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507	return regulator_print_opmode(buf,
508		rdev->constraints->state_standby.mode);
509}
510static DEVICE_ATTR(suspend_standby_mode, 0444,
511		regulator_suspend_standby_mode_show, NULL);
512
513static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514				   struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return regulator_print_state(buf,
519			rdev->constraints->state_mem.enabled);
520}
521static DEVICE_ATTR(suspend_mem_state, 0444,
522		regulator_suspend_mem_state_show, NULL);
523
524static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525				   struct device_attribute *attr, char *buf)
526{
527	struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529	return regulator_print_state(buf,
530			rdev->constraints->state_disk.enabled);
531}
532static DEVICE_ATTR(suspend_disk_state, 0444,
533		regulator_suspend_disk_state_show, NULL);
534
535static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536				   struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return regulator_print_state(buf,
541			rdev->constraints->state_standby.enabled);
542}
543static DEVICE_ATTR(suspend_standby_state, 0444,
544		regulator_suspend_standby_state_show, NULL);
545
546
547/*
548 * These are the only attributes are present for all regulators.
549 * Other attributes are a function of regulator functionality.
550 */
551static struct device_attribute regulator_dev_attrs[] = {
552	__ATTR(name, 0444, regulator_name_show, NULL),
553	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
554	__ATTR(type, 0444, regulator_type_show, NULL),
555	__ATTR_NULL,
556};
557
558static void regulator_dev_release(struct device *dev)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561	kfree(rdev);
562}
563
564static struct class regulator_class = {
565	.name = "regulator",
566	.dev_release = regulator_dev_release,
567	.dev_attrs = regulator_dev_attrs,
568};
569
570/* Calculate the new optimum regulator operating mode based on the new total
571 * consumer load. All locks held by caller */
572static void drms_uA_update(struct regulator_dev *rdev)
573{
574	struct regulator *sibling;
575	int current_uA = 0, output_uV, input_uV, err;
576	unsigned int mode;
577
578	err = regulator_check_drms(rdev);
579	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580	    (!rdev->desc->ops->get_voltage &&
581	     !rdev->desc->ops->get_voltage_sel) ||
582	    !rdev->desc->ops->set_mode)
583		return;
584
585	/* get output voltage */
586	output_uV = _regulator_get_voltage(rdev);
587	if (output_uV <= 0)
588		return;
589
590	/* get input voltage */
591	input_uV = 0;
592	if (rdev->supply)
593		input_uV = _regulator_get_voltage(rdev);
594	if (input_uV <= 0)
595		input_uV = rdev->constraints->input_uV;
596	if (input_uV <= 0)
597		return;
598
599	/* calc total requested load */
600	list_for_each_entry(sibling, &rdev->consumer_list, list)
601		current_uA += sibling->uA_load;
602
603	/* now get the optimum mode for our new total regulator load */
604	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
605						  output_uV, current_uA);
606
607	/* check the new mode is allowed */
608	err = regulator_check_mode(rdev, mode);
609	if (err == 0)
610		rdev->desc->ops->set_mode(rdev, mode);
611}
612
613static int suspend_set_state(struct regulator_dev *rdev,
614	struct regulator_state *rstate)
615{
616	int ret = 0;
617	bool can_set_state;
618
619	can_set_state = rdev->desc->ops->set_suspend_enable &&
620		rdev->desc->ops->set_suspend_disable;
621
622	/* If we have no suspend mode configration don't set anything;
623	 * only warn if the driver actually makes the suspend mode
624	 * configurable.
625	 */
626	if (!rstate->enabled && !rstate->disabled) {
627		if (can_set_state)
628			rdev_warn(rdev, "No configuration\n");
629		return 0;
630	}
631
632	if (rstate->enabled && rstate->disabled) {
633		rdev_err(rdev, "invalid configuration\n");
634		return -EINVAL;
635	}
636
637	if (!can_set_state) {
638		rdev_err(rdev, "no way to set suspend state\n");
639		return -EINVAL;
640	}
641
642	if (rstate->enabled)
643		ret = rdev->desc->ops->set_suspend_enable(rdev);
644	else
645		ret = rdev->desc->ops->set_suspend_disable(rdev);
646	if (ret < 0) {
647		rdev_err(rdev, "failed to enabled/disable\n");
648		return ret;
649	}
650
651	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
652		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
653		if (ret < 0) {
654			rdev_err(rdev, "failed to set voltage\n");
655			return ret;
656		}
657	}
658
659	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
660		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
661		if (ret < 0) {
662			rdev_err(rdev, "failed to set mode\n");
663			return ret;
664		}
665	}
666	return ret;
667}
668
669/* locks held by caller */
670static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
671{
672	if (!rdev->constraints)
673		return -EINVAL;
674
675	switch (state) {
676	case PM_SUSPEND_STANDBY:
677		return suspend_set_state(rdev,
678			&rdev->constraints->state_standby);
679	case PM_SUSPEND_MEM:
680		return suspend_set_state(rdev,
681			&rdev->constraints->state_mem);
682	case PM_SUSPEND_MAX:
683		return suspend_set_state(rdev,
684			&rdev->constraints->state_disk);
685	default:
686		return -EINVAL;
687	}
688}
689
690static void print_constraints(struct regulator_dev *rdev)
691{
692	struct regulation_constraints *constraints = rdev->constraints;
693	char buf[80] = "";
694	int count = 0;
695	int ret;
696
697	if (constraints->min_uV && constraints->max_uV) {
698		if (constraints->min_uV == constraints->max_uV)
699			count += sprintf(buf + count, "%d mV ",
700					 constraints->min_uV / 1000);
701		else
702			count += sprintf(buf + count, "%d <--> %d mV ",
703					 constraints->min_uV / 1000,
704					 constraints->max_uV / 1000);
705	}
706
707	if (!constraints->min_uV ||
708	    constraints->min_uV != constraints->max_uV) {
709		ret = _regulator_get_voltage(rdev);
710		if (ret > 0)
711			count += sprintf(buf + count, "at %d mV ", ret / 1000);
712	}
713
714	if (constraints->min_uA && constraints->max_uA) {
715		if (constraints->min_uA == constraints->max_uA)
716			count += sprintf(buf + count, "%d mA ",
717					 constraints->min_uA / 1000);
718		else
719			count += sprintf(buf + count, "%d <--> %d mA ",
720					 constraints->min_uA / 1000,
721					 constraints->max_uA / 1000);
722	}
723
724	if (!constraints->min_uA ||
725	    constraints->min_uA != constraints->max_uA) {
726		ret = _regulator_get_current_limit(rdev);
727		if (ret > 0)
728			count += sprintf(buf + count, "at %d mA ", ret / 1000);
729	}
730
731	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
732		count += sprintf(buf + count, "fast ");
733	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
734		count += sprintf(buf + count, "normal ");
735	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
736		count += sprintf(buf + count, "idle ");
737	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
738		count += sprintf(buf + count, "standby");
739
740	rdev_info(rdev, "regulator: %s\n", buf);
741}
742
743static int machine_constraints_voltage(struct regulator_dev *rdev,
744	struct regulation_constraints *constraints)
745{
746	struct regulator_ops *ops = rdev->desc->ops;
747	int ret;
748	unsigned selector;
749
750	/* do we need to apply the constraint voltage */
751	if (rdev->constraints->apply_uV &&
752		rdev->constraints->min_uV == rdev->constraints->max_uV &&
753		ops->set_voltage) {
754		ret = ops->set_voltage(rdev,
755				       rdev->constraints->min_uV,
756				       rdev->constraints->max_uV,
757				       &selector);
758			if (ret < 0) {
759				rdev_err(rdev, "failed to apply %duV constraint\n",
760					 rdev->constraints->min_uV);
761				rdev->constraints = NULL;
762				return ret;
763			}
764	}
765
766	/* constrain machine-level voltage specs to fit
767	 * the actual range supported by this regulator.
768	 */
769	if (ops->list_voltage && rdev->desc->n_voltages) {
770		int	count = rdev->desc->n_voltages;
771		int	i;
772		int	min_uV = INT_MAX;
773		int	max_uV = INT_MIN;
774		int	cmin = constraints->min_uV;
775		int	cmax = constraints->max_uV;
776
777		/* it's safe to autoconfigure fixed-voltage supplies
778		   and the constraints are used by list_voltage. */
779		if (count == 1 && !cmin) {
780			cmin = 1;
781			cmax = INT_MAX;
782			constraints->min_uV = cmin;
783			constraints->max_uV = cmax;
784		}
785
786		/* voltage constraints are optional */
787		if ((cmin == 0) && (cmax == 0))
788			return 0;
789
790		/* else require explicit machine-level constraints */
791		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
792			rdev_err(rdev, "invalid voltage constraints\n");
793			return -EINVAL;
794		}
795
796		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
797		for (i = 0; i < count; i++) {
798			int	value;
799
800			value = ops->list_voltage(rdev, i);
801			if (value <= 0)
802				continue;
803
804			/* maybe adjust [min_uV..max_uV] */
805			if (value >= cmin && value < min_uV)
806				min_uV = value;
807			if (value <= cmax && value > max_uV)
808				max_uV = value;
809		}
810
811		/* final: [min_uV..max_uV] valid iff constraints valid */
812		if (max_uV < min_uV) {
813			rdev_err(rdev, "unsupportable voltage constraints\n");
814			return -EINVAL;
815		}
816
817		/* use regulator's subset of machine constraints */
818		if (constraints->min_uV < min_uV) {
819			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
820				 constraints->min_uV, min_uV);
821			constraints->min_uV = min_uV;
822		}
823		if (constraints->max_uV > max_uV) {
824			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
825				 constraints->max_uV, max_uV);
826			constraints->max_uV = max_uV;
827		}
828	}
829
830	return 0;
831}
832
833/**
834 * set_machine_constraints - sets regulator constraints
835 * @rdev: regulator source
836 * @constraints: constraints to apply
837 *
838 * Allows platform initialisation code to define and constrain
839 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
840 * Constraints *must* be set by platform code in order for some
841 * regulator operations to proceed i.e. set_voltage, set_current_limit,
842 * set_mode.
843 */
844static int set_machine_constraints(struct regulator_dev *rdev,
845	const struct regulation_constraints *constraints)
846{
847	int ret = 0;
848	struct regulator_ops *ops = rdev->desc->ops;
849
850	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
851				    GFP_KERNEL);
852	if (!rdev->constraints)
853		return -ENOMEM;
854
855	ret = machine_constraints_voltage(rdev, rdev->constraints);
856	if (ret != 0)
857		goto out;
858
859	/* do we need to setup our suspend state */
860	if (constraints->initial_state) {
861		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
862		if (ret < 0) {
863			rdev_err(rdev, "failed to set suspend state\n");
864			rdev->constraints = NULL;
865			goto out;
866		}
867	}
868
869	if (constraints->initial_mode) {
870		if (!ops->set_mode) {
871			rdev_err(rdev, "no set_mode operation\n");
872			ret = -EINVAL;
873			goto out;
874		}
875
876		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
877		if (ret < 0) {
878			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
879			goto out;
880		}
881	}
882
883	/* If the constraints say the regulator should be on at this point
884	 * and we have control then make sure it is enabled.
885	 */
886	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
887	    ops->enable) {
888		ret = ops->enable(rdev);
889		if (ret < 0) {
890			rdev_err(rdev, "failed to enable\n");
891			rdev->constraints = NULL;
892			goto out;
893		}
894	}
895
896	print_constraints(rdev);
897out:
898	return ret;
899}
900
901/**
902 * set_supply - set regulator supply regulator
903 * @rdev: regulator name
904 * @supply_rdev: supply regulator name
905 *
906 * Called by platform initialisation code to set the supply regulator for this
907 * regulator. This ensures that a regulators supply will also be enabled by the
908 * core if it's child is enabled.
909 */
910static int set_supply(struct regulator_dev *rdev,
911	struct regulator_dev *supply_rdev)
912{
913	int err;
914
915	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
916				"supply");
917	if (err) {
918		rdev_err(rdev, "could not add device link %s err %d\n",
919			 supply_rdev->dev.kobj.name, err);
920		       goto out;
921	}
922	rdev->supply = supply_rdev;
923	list_add(&rdev->slist, &supply_rdev->supply_list);
924out:
925	return err;
926}
927
928/**
929 * set_consumer_device_supply - Bind a regulator to a symbolic supply
930 * @rdev:         regulator source
931 * @consumer_dev: device the supply applies to
932 * @consumer_dev_name: dev_name() string for device supply applies to
933 * @supply:       symbolic name for supply
934 *
935 * Allows platform initialisation code to map physical regulator
936 * sources to symbolic names for supplies for use by devices.  Devices
937 * should use these symbolic names to request regulators, avoiding the
938 * need to provide board-specific regulator names as platform data.
939 *
940 * Only one of consumer_dev and consumer_dev_name may be specified.
941 */
942static int set_consumer_device_supply(struct regulator_dev *rdev,
943	struct device *consumer_dev, const char *consumer_dev_name,
944	const char *supply)
945{
946	struct regulator_map *node;
947	int has_dev;
948
949	if (consumer_dev && consumer_dev_name)
950		return -EINVAL;
951
952	if (!consumer_dev_name && consumer_dev)
953		consumer_dev_name = dev_name(consumer_dev);
954
955	if (supply == NULL)
956		return -EINVAL;
957
958	if (consumer_dev_name != NULL)
959		has_dev = 1;
960	else
961		has_dev = 0;
962
963	list_for_each_entry(node, &regulator_map_list, list) {
964		if (node->dev_name && consumer_dev_name) {
965			if (strcmp(node->dev_name, consumer_dev_name) != 0)
966				continue;
967		} else if (node->dev_name || consumer_dev_name) {
968			continue;
969		}
970
971		if (strcmp(node->supply, supply) != 0)
972			continue;
973
974		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
975			dev_name(&node->regulator->dev),
976			node->regulator->desc->name,
977			supply,
978			dev_name(&rdev->dev), rdev_get_name(rdev));
979		return -EBUSY;
980	}
981
982	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
983	if (node == NULL)
984		return -ENOMEM;
985
986	node->regulator = rdev;
987	node->supply = supply;
988
989	if (has_dev) {
990		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
991		if (node->dev_name == NULL) {
992			kfree(node);
993			return -ENOMEM;
994		}
995	}
996
997	list_add(&node->list, &regulator_map_list);
998	return 0;
999}
1000
1001static void unset_regulator_supplies(struct regulator_dev *rdev)
1002{
1003	struct regulator_map *node, *n;
1004
1005	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006		if (rdev == node->regulator) {
1007			list_del(&node->list);
1008			kfree(node->dev_name);
1009			kfree(node);
1010		}
1011	}
1012}
1013
1014#define REG_STR_SIZE	32
1015
1016static struct regulator *create_regulator(struct regulator_dev *rdev,
1017					  struct device *dev,
1018					  const char *supply_name)
1019{
1020	struct regulator *regulator;
1021	char buf[REG_STR_SIZE];
1022	int err, size;
1023
1024	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1025	if (regulator == NULL)
1026		return NULL;
1027
1028	mutex_lock(&rdev->mutex);
1029	regulator->rdev = rdev;
1030	list_add(&regulator->list, &rdev->consumer_list);
1031
1032	if (dev) {
1033		/* create a 'requested_microamps_name' sysfs entry */
1034		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1035			supply_name);
1036		if (size >= REG_STR_SIZE)
1037			goto overflow_err;
1038
1039		regulator->dev = dev;
1040		sysfs_attr_init(&regulator->dev_attr.attr);
1041		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1042		if (regulator->dev_attr.attr.name == NULL)
1043			goto attr_name_err;
1044
1045		regulator->dev_attr.attr.mode = 0444;
1046		regulator->dev_attr.show = device_requested_uA_show;
1047		err = device_create_file(dev, &regulator->dev_attr);
1048		if (err < 0) {
1049			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1050			goto attr_name_err;
1051		}
1052
1053		/* also add a link to the device sysfs entry */
1054		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1055				 dev->kobj.name, supply_name);
1056		if (size >= REG_STR_SIZE)
1057			goto attr_err;
1058
1059		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1060		if (regulator->supply_name == NULL)
1061			goto attr_err;
1062
1063		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1064					buf);
1065		if (err) {
1066			rdev_warn(rdev, "could not add device link %s err %d\n",
1067				  dev->kobj.name, err);
1068			goto link_name_err;
1069		}
1070	}
1071	mutex_unlock(&rdev->mutex);
1072	return regulator;
1073link_name_err:
1074	kfree(regulator->supply_name);
1075attr_err:
1076	device_remove_file(regulator->dev, &regulator->dev_attr);
1077attr_name_err:
1078	kfree(regulator->dev_attr.attr.name);
1079overflow_err:
1080	list_del(&regulator->list);
1081	kfree(regulator);
1082	mutex_unlock(&rdev->mutex);
1083	return NULL;
1084}
1085
1086static int _regulator_get_enable_time(struct regulator_dev *rdev)
1087{
1088	if (!rdev->desc->ops->enable_time)
1089		return 0;
1090	return rdev->desc->ops->enable_time(rdev);
1091}
1092
1093/* Internal regulator request function */
1094static struct regulator *_regulator_get(struct device *dev, const char *id,
1095					int exclusive)
1096{
1097	struct regulator_dev *rdev;
1098	struct regulator_map *map;
1099	struct regulator *regulator = ERR_PTR(-ENODEV);
1100	const char *devname = NULL;
1101	int ret;
1102
1103	if (id == NULL) {
1104		pr_err("get() with no identifier\n");
1105		return regulator;
1106	}
1107
1108	if (dev)
1109		devname = dev_name(dev);
1110
1111	mutex_lock(&regulator_list_mutex);
1112
1113	list_for_each_entry(map, &regulator_map_list, list) {
1114		/* If the mapping has a device set up it must match */
1115		if (map->dev_name &&
1116		    (!devname || strcmp(map->dev_name, devname)))
1117			continue;
1118
1119		if (strcmp(map->supply, id) == 0) {
1120			rdev = map->regulator;
1121			goto found;
1122		}
1123	}
1124
1125	if (board_wants_dummy_regulator) {
1126		rdev = dummy_regulator_rdev;
1127		goto found;
1128	}
1129
1130#ifdef CONFIG_REGULATOR_DUMMY
1131	if (!devname)
1132		devname = "deviceless";
1133
1134	/* If the board didn't flag that it was fully constrained then
1135	 * substitute in a dummy regulator so consumers can continue.
1136	 */
1137	if (!has_full_constraints) {
1138		pr_warn("%s supply %s not found, using dummy regulator\n",
1139			devname, id);
1140		rdev = dummy_regulator_rdev;
1141		goto found;
1142	}
1143#endif
1144
1145	mutex_unlock(&regulator_list_mutex);
1146	return regulator;
1147
1148found:
1149	if (rdev->exclusive) {
1150		regulator = ERR_PTR(-EPERM);
1151		goto out;
1152	}
1153
1154	if (exclusive && rdev->open_count) {
1155		regulator = ERR_PTR(-EBUSY);
1156		goto out;
1157	}
1158
1159	if (!try_module_get(rdev->owner))
1160		goto out;
1161
1162	regulator = create_regulator(rdev, dev, id);
1163	if (regulator == NULL) {
1164		regulator = ERR_PTR(-ENOMEM);
1165		module_put(rdev->owner);
1166	}
1167
1168	rdev->open_count++;
1169	if (exclusive) {
1170		rdev->exclusive = 1;
1171
1172		ret = _regulator_is_enabled(rdev);
1173		if (ret > 0)
1174			rdev->use_count = 1;
1175		else
1176			rdev->use_count = 0;
1177	}
1178
1179out:
1180	mutex_unlock(&regulator_list_mutex);
1181
1182	return regulator;
1183}
1184
1185/**
1186 * regulator_get - lookup and obtain a reference to a regulator.
1187 * @dev: device for regulator "consumer"
1188 * @id: Supply name or regulator ID.
1189 *
1190 * Returns a struct regulator corresponding to the regulator producer,
1191 * or IS_ERR() condition containing errno.
1192 *
1193 * Use of supply names configured via regulator_set_device_supply() is
1194 * strongly encouraged.  It is recommended that the supply name used
1195 * should match the name used for the supply and/or the relevant
1196 * device pins in the datasheet.
1197 */
1198struct regulator *regulator_get(struct device *dev, const char *id)
1199{
1200	return _regulator_get(dev, id, 0);
1201}
1202EXPORT_SYMBOL_GPL(regulator_get);
1203
1204/**
1205 * regulator_get_exclusive - obtain exclusive access to a regulator.
1206 * @dev: device for regulator "consumer"
1207 * @id: Supply name or regulator ID.
1208 *
1209 * Returns a struct regulator corresponding to the regulator producer,
1210 * or IS_ERR() condition containing errno.  Other consumers will be
1211 * unable to obtain this reference is held and the use count for the
1212 * regulator will be initialised to reflect the current state of the
1213 * regulator.
1214 *
1215 * This is intended for use by consumers which cannot tolerate shared
1216 * use of the regulator such as those which need to force the
1217 * regulator off for correct operation of the hardware they are
1218 * controlling.
1219 *
1220 * Use of supply names configured via regulator_set_device_supply() is
1221 * strongly encouraged.  It is recommended that the supply name used
1222 * should match the name used for the supply and/or the relevant
1223 * device pins in the datasheet.
1224 */
1225struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1226{
1227	return _regulator_get(dev, id, 1);
1228}
1229EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1230
1231/**
1232 * regulator_put - "free" the regulator source
1233 * @regulator: regulator source
1234 *
1235 * Note: drivers must ensure that all regulator_enable calls made on this
1236 * regulator source are balanced by regulator_disable calls prior to calling
1237 * this function.
1238 */
1239void regulator_put(struct regulator *regulator)
1240{
1241	struct regulator_dev *rdev;
1242
1243	if (regulator == NULL || IS_ERR(regulator))
1244		return;
1245
1246	mutex_lock(&regulator_list_mutex);
1247	rdev = regulator->rdev;
1248
1249	/* remove any sysfs entries */
1250	if (regulator->dev) {
1251		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1252		kfree(regulator->supply_name);
1253		device_remove_file(regulator->dev, &regulator->dev_attr);
1254		kfree(regulator->dev_attr.attr.name);
1255	}
1256	list_del(&regulator->list);
1257	kfree(regulator);
1258
1259	rdev->open_count--;
1260	rdev->exclusive = 0;
1261
1262	module_put(rdev->owner);
1263	mutex_unlock(&regulator_list_mutex);
1264}
1265EXPORT_SYMBOL_GPL(regulator_put);
1266
1267static int _regulator_can_change_status(struct regulator_dev *rdev)
1268{
1269	if (!rdev->constraints)
1270		return 0;
1271
1272	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1273		return 1;
1274	else
1275		return 0;
1276}
1277
1278/* locks held by regulator_enable() */
1279static int _regulator_enable(struct regulator_dev *rdev)
1280{
1281	int ret, delay;
1282
1283	if (rdev->use_count == 0) {
1284		/* do we need to enable the supply regulator first */
1285		if (rdev->supply) {
1286			mutex_lock(&rdev->supply->mutex);
1287			ret = _regulator_enable(rdev->supply);
1288			mutex_unlock(&rdev->supply->mutex);
1289			if (ret < 0) {
1290				rdev_err(rdev, "failed to enable: %d\n", ret);
1291				return ret;
1292			}
1293		}
1294	}
1295
1296	/* check voltage and requested load before enabling */
1297	if (rdev->constraints &&
1298	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1299		drms_uA_update(rdev);
1300
1301	if (rdev->use_count == 0) {
1302		/* The regulator may on if it's not switchable or left on */
1303		ret = _regulator_is_enabled(rdev);
1304		if (ret == -EINVAL || ret == 0) {
1305			if (!_regulator_can_change_status(rdev))
1306				return -EPERM;
1307
1308			if (!rdev->desc->ops->enable)
1309				return -EINVAL;
1310
1311			/* Query before enabling in case configuration
1312			 * dependant.  */
1313			ret = _regulator_get_enable_time(rdev);
1314			if (ret >= 0) {
1315				delay = ret;
1316			} else {
1317				rdev_warn(rdev, "enable_time() failed: %d\n",
1318					   ret);
1319				delay = 0;
1320			}
1321
1322			trace_regulator_enable(rdev_get_name(rdev));
1323
1324			/* Allow the regulator to ramp; it would be useful
1325			 * to extend this for bulk operations so that the
1326			 * regulators can ramp together.  */
1327			ret = rdev->desc->ops->enable(rdev);
1328			if (ret < 0)
1329				return ret;
1330
1331			trace_regulator_enable_delay(rdev_get_name(rdev));
1332
1333			if (delay >= 1000) {
1334				mdelay(delay / 1000);
1335				udelay(delay % 1000);
1336			} else if (delay) {
1337				udelay(delay);
1338			}
1339
1340			trace_regulator_enable_complete(rdev_get_name(rdev));
1341
1342		} else if (ret < 0) {
1343			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1344			return ret;
1345		}
1346		/* Fallthrough on positive return values - already enabled */
1347	}
1348
1349	rdev->use_count++;
1350
1351	return 0;
1352}
1353
1354/**
1355 * regulator_enable - enable regulator output
1356 * @regulator: regulator source
1357 *
1358 * Request that the regulator be enabled with the regulator output at
1359 * the predefined voltage or current value.  Calls to regulator_enable()
1360 * must be balanced with calls to regulator_disable().
1361 *
1362 * NOTE: the output value can be set by other drivers, boot loader or may be
1363 * hardwired in the regulator.
1364 */
1365int regulator_enable(struct regulator *regulator)
1366{
1367	struct regulator_dev *rdev = regulator->rdev;
1368	int ret = 0;
1369
1370	mutex_lock(&rdev->mutex);
1371	ret = _regulator_enable(rdev);
1372	mutex_unlock(&rdev->mutex);
1373	return ret;
1374}
1375EXPORT_SYMBOL_GPL(regulator_enable);
1376
1377/* locks held by regulator_disable() */
1378static int _regulator_disable(struct regulator_dev *rdev,
1379		struct regulator_dev **supply_rdev_ptr)
1380{
1381	int ret = 0;
1382	*supply_rdev_ptr = NULL;
1383
1384	if (WARN(rdev->use_count <= 0,
1385		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1386		return -EIO;
1387
1388	/* are we the last user and permitted to disable ? */
1389	if (rdev->use_count == 1 &&
1390	    (rdev->constraints && !rdev->constraints->always_on)) {
1391
1392		/* we are last user */
1393		if (_regulator_can_change_status(rdev) &&
1394		    rdev->desc->ops->disable) {
1395			trace_regulator_disable(rdev_get_name(rdev));
1396
1397			ret = rdev->desc->ops->disable(rdev);
1398			if (ret < 0) {
1399				rdev_err(rdev, "failed to disable\n");
1400				return ret;
1401			}
1402
1403			trace_regulator_disable_complete(rdev_get_name(rdev));
1404
1405			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1406					     NULL);
1407		}
1408
1409		/* decrease our supplies ref count and disable if required */
1410		*supply_rdev_ptr = rdev->supply;
1411
1412		rdev->use_count = 0;
1413	} else if (rdev->use_count > 1) {
1414
1415		if (rdev->constraints &&
1416			(rdev->constraints->valid_ops_mask &
1417			REGULATOR_CHANGE_DRMS))
1418			drms_uA_update(rdev);
1419
1420		rdev->use_count--;
1421	}
1422	return ret;
1423}
1424
1425/**
1426 * regulator_disable - disable regulator output
1427 * @regulator: regulator source
1428 *
1429 * Disable the regulator output voltage or current.  Calls to
1430 * regulator_enable() must be balanced with calls to
1431 * regulator_disable().
1432 *
1433 * NOTE: this will only disable the regulator output if no other consumer
1434 * devices have it enabled, the regulator device supports disabling and
1435 * machine constraints permit this operation.
1436 */
1437int regulator_disable(struct regulator *regulator)
1438{
1439	struct regulator_dev *rdev = regulator->rdev;
1440	struct regulator_dev *supply_rdev = NULL;
1441	int ret = 0;
1442
1443	mutex_lock(&rdev->mutex);
1444	ret = _regulator_disable(rdev, &supply_rdev);
1445	mutex_unlock(&rdev->mutex);
1446
1447	/* decrease our supplies ref count and disable if required */
1448	while (supply_rdev != NULL) {
1449		rdev = supply_rdev;
1450
1451		mutex_lock(&rdev->mutex);
1452		_regulator_disable(rdev, &supply_rdev);
1453		mutex_unlock(&rdev->mutex);
1454	}
1455
1456	return ret;
1457}
1458EXPORT_SYMBOL_GPL(regulator_disable);
1459
1460/* locks held by regulator_force_disable() */
1461static int _regulator_force_disable(struct regulator_dev *rdev,
1462		struct regulator_dev **supply_rdev_ptr)
1463{
1464	int ret = 0;
1465
1466	/* force disable */
1467	if (rdev->desc->ops->disable) {
1468		/* ah well, who wants to live forever... */
1469		ret = rdev->desc->ops->disable(rdev);
1470		if (ret < 0) {
1471			rdev_err(rdev, "failed to force disable\n");
1472			return ret;
1473		}
1474		/* notify other consumers that power has been forced off */
1475		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1476			REGULATOR_EVENT_DISABLE, NULL);
1477	}
1478
1479	/* decrease our supplies ref count and disable if required */
1480	*supply_rdev_ptr = rdev->supply;
1481
1482	rdev->use_count = 0;
1483	return ret;
1484}
1485
1486/**
1487 * regulator_force_disable - force disable regulator output
1488 * @regulator: regulator source
1489 *
1490 * Forcibly disable the regulator output voltage or current.
1491 * NOTE: this *will* disable the regulator output even if other consumer
1492 * devices have it enabled. This should be used for situations when device
1493 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1494 */
1495int regulator_force_disable(struct regulator *regulator)
1496{
1497	struct regulator_dev *supply_rdev = NULL;
1498	int ret;
1499
1500	mutex_lock(&regulator->rdev->mutex);
1501	regulator->uA_load = 0;
1502	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1503	mutex_unlock(&regulator->rdev->mutex);
1504
1505	if (supply_rdev)
1506		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1507
1508	return ret;
1509}
1510EXPORT_SYMBOL_GPL(regulator_force_disable);
1511
1512static int _regulator_is_enabled(struct regulator_dev *rdev)
1513{
1514	/* If we don't know then assume that the regulator is always on */
1515	if (!rdev->desc->ops->is_enabled)
1516		return 1;
1517
1518	return rdev->desc->ops->is_enabled(rdev);
1519}
1520
1521/**
1522 * regulator_is_enabled - is the regulator output enabled
1523 * @regulator: regulator source
1524 *
1525 * Returns positive if the regulator driver backing the source/client
1526 * has requested that the device be enabled, zero if it hasn't, else a
1527 * negative errno code.
1528 *
1529 * Note that the device backing this regulator handle can have multiple
1530 * users, so it might be enabled even if regulator_enable() was never
1531 * called for this particular source.
1532 */
1533int regulator_is_enabled(struct regulator *regulator)
1534{
1535	int ret;
1536
1537	mutex_lock(&regulator->rdev->mutex);
1538	ret = _regulator_is_enabled(regulator->rdev);
1539	mutex_unlock(&regulator->rdev->mutex);
1540
1541	return ret;
1542}
1543EXPORT_SYMBOL_GPL(regulator_is_enabled);
1544
1545/**
1546 * regulator_count_voltages - count regulator_list_voltage() selectors
1547 * @regulator: regulator source
1548 *
1549 * Returns number of selectors, or negative errno.  Selectors are
1550 * numbered starting at zero, and typically correspond to bitfields
1551 * in hardware registers.
1552 */
1553int regulator_count_voltages(struct regulator *regulator)
1554{
1555	struct regulator_dev	*rdev = regulator->rdev;
1556
1557	return rdev->desc->n_voltages ? : -EINVAL;
1558}
1559EXPORT_SYMBOL_GPL(regulator_count_voltages);
1560
1561/**
1562 * regulator_list_voltage - enumerate supported voltages
1563 * @regulator: regulator source
1564 * @selector: identify voltage to list
1565 * Context: can sleep
1566 *
1567 * Returns a voltage that can be passed to @regulator_set_voltage(),
1568 * zero if this selector code can't be used on this system, or a
1569 * negative errno.
1570 */
1571int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1572{
1573	struct regulator_dev	*rdev = regulator->rdev;
1574	struct regulator_ops	*ops = rdev->desc->ops;
1575	int			ret;
1576
1577	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1578		return -EINVAL;
1579
1580	mutex_lock(&rdev->mutex);
1581	ret = ops->list_voltage(rdev, selector);
1582	mutex_unlock(&rdev->mutex);
1583
1584	if (ret > 0) {
1585		if (ret < rdev->constraints->min_uV)
1586			ret = 0;
1587		else if (ret > rdev->constraints->max_uV)
1588			ret = 0;
1589	}
1590
1591	return ret;
1592}
1593EXPORT_SYMBOL_GPL(regulator_list_voltage);
1594
1595/**
1596 * regulator_is_supported_voltage - check if a voltage range can be supported
1597 *
1598 * @regulator: Regulator to check.
1599 * @min_uV: Minimum required voltage in uV.
1600 * @max_uV: Maximum required voltage in uV.
1601 *
1602 * Returns a boolean or a negative error code.
1603 */
1604int regulator_is_supported_voltage(struct regulator *regulator,
1605				   int min_uV, int max_uV)
1606{
1607	int i, voltages, ret;
1608
1609	ret = regulator_count_voltages(regulator);
1610	if (ret < 0)
1611		return ret;
1612	voltages = ret;
1613
1614	for (i = 0; i < voltages; i++) {
1615		ret = regulator_list_voltage(regulator, i);
1616
1617		if (ret >= min_uV && ret <= max_uV)
1618			return 1;
1619	}
1620
1621	return 0;
1622}
1623
1624/**
1625 * regulator_set_voltage - set regulator output voltage
1626 * @regulator: regulator source
1627 * @min_uV: Minimum required voltage in uV
1628 * @max_uV: Maximum acceptable voltage in uV
1629 *
1630 * Sets a voltage regulator to the desired output voltage. This can be set
1631 * during any regulator state. IOW, regulator can be disabled or enabled.
1632 *
1633 * If the regulator is enabled then the voltage will change to the new value
1634 * immediately otherwise if the regulator is disabled the regulator will
1635 * output at the new voltage when enabled.
1636 *
1637 * NOTE: If the regulator is shared between several devices then the lowest
1638 * request voltage that meets the system constraints will be used.
1639 * Regulator system constraints must be set for this regulator before
1640 * calling this function otherwise this call will fail.
1641 */
1642int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1643{
1644	struct regulator_dev *rdev = regulator->rdev;
1645	int ret;
1646	unsigned selector;
1647
1648	mutex_lock(&rdev->mutex);
1649
1650	/* sanity check */
1651	if (!rdev->desc->ops->set_voltage) {
1652		ret = -EINVAL;
1653		goto out;
1654	}
1655
1656	/* constraints check */
1657	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1658	if (ret < 0)
1659		goto out;
1660	regulator->min_uV = min_uV;
1661	regulator->max_uV = max_uV;
1662
1663	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1664	if (ret < 0)
1665		goto out;
1666
1667	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1668
1669	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1670
1671	if (rdev->desc->ops->list_voltage)
1672		selector = rdev->desc->ops->list_voltage(rdev, selector);
1673	else
1674		selector = -1;
1675
1676	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1677
1678out:
1679	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1680	mutex_unlock(&rdev->mutex);
1681	return ret;
1682}
1683EXPORT_SYMBOL_GPL(regulator_set_voltage);
1684
1685static int _regulator_get_voltage(struct regulator_dev *rdev)
1686{
1687	int sel;
1688
1689	if (rdev->desc->ops->get_voltage_sel) {
1690		sel = rdev->desc->ops->get_voltage_sel(rdev);
1691		if (sel < 0)
1692			return sel;
1693		return rdev->desc->ops->list_voltage(rdev, sel);
1694	}
1695	if (rdev->desc->ops->get_voltage)
1696		return rdev->desc->ops->get_voltage(rdev);
1697	else
1698		return -EINVAL;
1699}
1700
1701/**
1702 * regulator_get_voltage - get regulator output voltage
1703 * @regulator: regulator source
1704 *
1705 * This returns the current regulator voltage in uV.
1706 *
1707 * NOTE: If the regulator is disabled it will return the voltage value. This
1708 * function should not be used to determine regulator state.
1709 */
1710int regulator_get_voltage(struct regulator *regulator)
1711{
1712	int ret;
1713
1714	mutex_lock(&regulator->rdev->mutex);
1715
1716	ret = _regulator_get_voltage(regulator->rdev);
1717
1718	mutex_unlock(&regulator->rdev->mutex);
1719
1720	return ret;
1721}
1722EXPORT_SYMBOL_GPL(regulator_get_voltage);
1723
1724/**
1725 * regulator_set_current_limit - set regulator output current limit
1726 * @regulator: regulator source
1727 * @min_uA: Minimuum supported current in uA
1728 * @max_uA: Maximum supported current in uA
1729 *
1730 * Sets current sink to the desired output current. This can be set during
1731 * any regulator state. IOW, regulator can be disabled or enabled.
1732 *
1733 * If the regulator is enabled then the current will change to the new value
1734 * immediately otherwise if the regulator is disabled the regulator will
1735 * output at the new current when enabled.
1736 *
1737 * NOTE: Regulator system constraints must be set for this regulator before
1738 * calling this function otherwise this call will fail.
1739 */
1740int regulator_set_current_limit(struct regulator *regulator,
1741			       int min_uA, int max_uA)
1742{
1743	struct regulator_dev *rdev = regulator->rdev;
1744	int ret;
1745
1746	mutex_lock(&rdev->mutex);
1747
1748	/* sanity check */
1749	if (!rdev->desc->ops->set_current_limit) {
1750		ret = -EINVAL;
1751		goto out;
1752	}
1753
1754	/* constraints check */
1755	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1756	if (ret < 0)
1757		goto out;
1758
1759	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1760out:
1761	mutex_unlock(&rdev->mutex);
1762	return ret;
1763}
1764EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1765
1766static int _regulator_get_current_limit(struct regulator_dev *rdev)
1767{
1768	int ret;
1769
1770	mutex_lock(&rdev->mutex);
1771
1772	/* sanity check */
1773	if (!rdev->desc->ops->get_current_limit) {
1774		ret = -EINVAL;
1775		goto out;
1776	}
1777
1778	ret = rdev->desc->ops->get_current_limit(rdev);
1779out:
1780	mutex_unlock(&rdev->mutex);
1781	return ret;
1782}
1783
1784/**
1785 * regulator_get_current_limit - get regulator output current
1786 * @regulator: regulator source
1787 *
1788 * This returns the current supplied by the specified current sink in uA.
1789 *
1790 * NOTE: If the regulator is disabled it will return the current value. This
1791 * function should not be used to determine regulator state.
1792 */
1793int regulator_get_current_limit(struct regulator *regulator)
1794{
1795	return _regulator_get_current_limit(regulator->rdev);
1796}
1797EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1798
1799/**
1800 * regulator_set_mode - set regulator operating mode
1801 * @regulator: regulator source
1802 * @mode: operating mode - one of the REGULATOR_MODE constants
1803 *
1804 * Set regulator operating mode to increase regulator efficiency or improve
1805 * regulation performance.
1806 *
1807 * NOTE: Regulator system constraints must be set for this regulator before
1808 * calling this function otherwise this call will fail.
1809 */
1810int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1811{
1812	struct regulator_dev *rdev = regulator->rdev;
1813	int ret;
1814	int regulator_curr_mode;
1815
1816	mutex_lock(&rdev->mutex);
1817
1818	/* sanity check */
1819	if (!rdev->desc->ops->set_mode) {
1820		ret = -EINVAL;
1821		goto out;
1822	}
1823
1824	/* return if the same mode is requested */
1825	if (rdev->desc->ops->get_mode) {
1826		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1827		if (regulator_curr_mode == mode) {
1828			ret = 0;
1829			goto out;
1830		}
1831	}
1832
1833	/* constraints check */
1834	ret = regulator_check_mode(rdev, mode);
1835	if (ret < 0)
1836		goto out;
1837
1838	ret = rdev->desc->ops->set_mode(rdev, mode);
1839out:
1840	mutex_unlock(&rdev->mutex);
1841	return ret;
1842}
1843EXPORT_SYMBOL_GPL(regulator_set_mode);
1844
1845static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1846{
1847	int ret;
1848
1849	mutex_lock(&rdev->mutex);
1850
1851	/* sanity check */
1852	if (!rdev->desc->ops->get_mode) {
1853		ret = -EINVAL;
1854		goto out;
1855	}
1856
1857	ret = rdev->desc->ops->get_mode(rdev);
1858out:
1859	mutex_unlock(&rdev->mutex);
1860	return ret;
1861}
1862
1863/**
1864 * regulator_get_mode - get regulator operating mode
1865 * @regulator: regulator source
1866 *
1867 * Get the current regulator operating mode.
1868 */
1869unsigned int regulator_get_mode(struct regulator *regulator)
1870{
1871	return _regulator_get_mode(regulator->rdev);
1872}
1873EXPORT_SYMBOL_GPL(regulator_get_mode);
1874
1875/**
1876 * regulator_set_optimum_mode - set regulator optimum operating mode
1877 * @regulator: regulator source
1878 * @uA_load: load current
1879 *
1880 * Notifies the regulator core of a new device load. This is then used by
1881 * DRMS (if enabled by constraints) to set the most efficient regulator
1882 * operating mode for the new regulator loading.
1883 *
1884 * Consumer devices notify their supply regulator of the maximum power
1885 * they will require (can be taken from device datasheet in the power
1886 * consumption tables) when they change operational status and hence power
1887 * state. Examples of operational state changes that can affect power
1888 * consumption are :-
1889 *
1890 *    o Device is opened / closed.
1891 *    o Device I/O is about to begin or has just finished.
1892 *    o Device is idling in between work.
1893 *
1894 * This information is also exported via sysfs to userspace.
1895 *
1896 * DRMS will sum the total requested load on the regulator and change
1897 * to the most efficient operating mode if platform constraints allow.
1898 *
1899 * Returns the new regulator mode or error.
1900 */
1901int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1902{
1903	struct regulator_dev *rdev = regulator->rdev;
1904	struct regulator *consumer;
1905	int ret, output_uV, input_uV, total_uA_load = 0;
1906	unsigned int mode;
1907
1908	mutex_lock(&rdev->mutex);
1909
1910	regulator->uA_load = uA_load;
1911	ret = regulator_check_drms(rdev);
1912	if (ret < 0)
1913		goto out;
1914	ret = -EINVAL;
1915
1916	/* sanity check */
1917	if (!rdev->desc->ops->get_optimum_mode)
1918		goto out;
1919
1920	/* get output voltage */
1921	output_uV = _regulator_get_voltage(rdev);
1922	if (output_uV <= 0) {
1923		rdev_err(rdev, "invalid output voltage found\n");
1924		goto out;
1925	}
1926
1927	/* get input voltage */
1928	input_uV = 0;
1929	if (rdev->supply)
1930		input_uV = _regulator_get_voltage(rdev->supply);
1931	if (input_uV <= 0)
1932		input_uV = rdev->constraints->input_uV;
1933	if (input_uV <= 0) {
1934		rdev_err(rdev, "invalid input voltage found\n");
1935		goto out;
1936	}
1937
1938	/* calc total requested load for this regulator */
1939	list_for_each_entry(consumer, &rdev->consumer_list, list)
1940		total_uA_load += consumer->uA_load;
1941
1942	mode = rdev->desc->ops->get_optimum_mode(rdev,
1943						 input_uV, output_uV,
1944						 total_uA_load);
1945	ret = regulator_check_mode(rdev, mode);
1946	if (ret < 0) {
1947		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1948			 total_uA_load, input_uV, output_uV);
1949		goto out;
1950	}
1951
1952	ret = rdev->desc->ops->set_mode(rdev, mode);
1953	if (ret < 0) {
1954		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1955		goto out;
1956	}
1957	ret = mode;
1958out:
1959	mutex_unlock(&rdev->mutex);
1960	return ret;
1961}
1962EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1963
1964/**
1965 * regulator_register_notifier - register regulator event notifier
1966 * @regulator: regulator source
1967 * @nb: notifier block
1968 *
1969 * Register notifier block to receive regulator events.
1970 */
1971int regulator_register_notifier(struct regulator *regulator,
1972			      struct notifier_block *nb)
1973{
1974	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1975						nb);
1976}
1977EXPORT_SYMBOL_GPL(regulator_register_notifier);
1978
1979/**
1980 * regulator_unregister_notifier - unregister regulator event notifier
1981 * @regulator: regulator source
1982 * @nb: notifier block
1983 *
1984 * Unregister regulator event notifier block.
1985 */
1986int regulator_unregister_notifier(struct regulator *regulator,
1987				struct notifier_block *nb)
1988{
1989	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1990						  nb);
1991}
1992EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1993
1994/* notify regulator consumers and downstream regulator consumers.
1995 * Note mutex must be held by caller.
1996 */
1997static void _notifier_call_chain(struct regulator_dev *rdev,
1998				  unsigned long event, void *data)
1999{
2000	struct regulator_dev *_rdev;
2001
2002	/* call rdev chain first */
2003	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2004
2005	/* now notify regulator we supply */
2006	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2007		mutex_lock(&_rdev->mutex);
2008		_notifier_call_chain(_rdev, event, data);
2009		mutex_unlock(&_rdev->mutex);
2010	}
2011}
2012
2013/**
2014 * regulator_bulk_get - get multiple regulator consumers
2015 *
2016 * @dev:           Device to supply
2017 * @num_consumers: Number of consumers to register
2018 * @consumers:     Configuration of consumers; clients are stored here.
2019 *
2020 * @return 0 on success, an errno on failure.
2021 *
2022 * This helper function allows drivers to get several regulator
2023 * consumers in one operation.  If any of the regulators cannot be
2024 * acquired then any regulators that were allocated will be freed
2025 * before returning to the caller.
2026 */
2027int regulator_bulk_get(struct device *dev, int num_consumers,
2028		       struct regulator_bulk_data *consumers)
2029{
2030	int i;
2031	int ret;
2032
2033	for (i = 0; i < num_consumers; i++)
2034		consumers[i].consumer = NULL;
2035
2036	for (i = 0; i < num_consumers; i++) {
2037		consumers[i].consumer = regulator_get(dev,
2038						      consumers[i].supply);
2039		if (IS_ERR(consumers[i].consumer)) {
2040			ret = PTR_ERR(consumers[i].consumer);
2041			dev_err(dev, "Failed to get supply '%s': %d\n",
2042				consumers[i].supply, ret);
2043			consumers[i].consumer = NULL;
2044			goto err;
2045		}
2046	}
2047
2048	return 0;
2049
2050err:
2051	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2052		regulator_put(consumers[i].consumer);
2053
2054	return ret;
2055}
2056EXPORT_SYMBOL_GPL(regulator_bulk_get);
2057
2058/**
2059 * regulator_bulk_enable - enable multiple regulator consumers
2060 *
2061 * @num_consumers: Number of consumers
2062 * @consumers:     Consumer data; clients are stored here.
2063 * @return         0 on success, an errno on failure
2064 *
2065 * This convenience API allows consumers to enable multiple regulator
2066 * clients in a single API call.  If any consumers cannot be enabled
2067 * then any others that were enabled will be disabled again prior to
2068 * return.
2069 */
2070int regulator_bulk_enable(int num_consumers,
2071			  struct regulator_bulk_data *consumers)
2072{
2073	int i;
2074	int ret;
2075
2076	for (i = 0; i < num_consumers; i++) {
2077		ret = regulator_enable(consumers[i].consumer);
2078		if (ret != 0)
2079			goto err;
2080	}
2081
2082	return 0;
2083
2084err:
2085	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2086	for (--i; i >= 0; --i)
2087		regulator_disable(consumers[i].consumer);
2088
2089	return ret;
2090}
2091EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2092
2093/**
2094 * regulator_bulk_disable - disable multiple regulator consumers
2095 *
2096 * @num_consumers: Number of consumers
2097 * @consumers:     Consumer data; clients are stored here.
2098 * @return         0 on success, an errno on failure
2099 *
2100 * This convenience API allows consumers to disable multiple regulator
2101 * clients in a single API call.  If any consumers cannot be enabled
2102 * then any others that were disabled will be disabled again prior to
2103 * return.
2104 */
2105int regulator_bulk_disable(int num_consumers,
2106			   struct regulator_bulk_data *consumers)
2107{
2108	int i;
2109	int ret;
2110
2111	for (i = 0; i < num_consumers; i++) {
2112		ret = regulator_disable(consumers[i].consumer);
2113		if (ret != 0)
2114			goto err;
2115	}
2116
2117	return 0;
2118
2119err:
2120	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2121	for (--i; i >= 0; --i)
2122		regulator_enable(consumers[i].consumer);
2123
2124	return ret;
2125}
2126EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2127
2128/**
2129 * regulator_bulk_free - free multiple regulator consumers
2130 *
2131 * @num_consumers: Number of consumers
2132 * @consumers:     Consumer data; clients are stored here.
2133 *
2134 * This convenience API allows consumers to free multiple regulator
2135 * clients in a single API call.
2136 */
2137void regulator_bulk_free(int num_consumers,
2138			 struct regulator_bulk_data *consumers)
2139{
2140	int i;
2141
2142	for (i = 0; i < num_consumers; i++) {
2143		regulator_put(consumers[i].consumer);
2144		consumers[i].consumer = NULL;
2145	}
2146}
2147EXPORT_SYMBOL_GPL(regulator_bulk_free);
2148
2149/**
2150 * regulator_notifier_call_chain - call regulator event notifier
2151 * @rdev: regulator source
2152 * @event: notifier block
2153 * @data: callback-specific data.
2154 *
2155 * Called by regulator drivers to notify clients a regulator event has
2156 * occurred. We also notify regulator clients downstream.
2157 * Note lock must be held by caller.
2158 */
2159int regulator_notifier_call_chain(struct regulator_dev *rdev,
2160				  unsigned long event, void *data)
2161{
2162	_notifier_call_chain(rdev, event, data);
2163	return NOTIFY_DONE;
2164
2165}
2166EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2167
2168/**
2169 * regulator_mode_to_status - convert a regulator mode into a status
2170 *
2171 * @mode: Mode to convert
2172 *
2173 * Convert a regulator mode into a status.
2174 */
2175int regulator_mode_to_status(unsigned int mode)
2176{
2177	switch (mode) {
2178	case REGULATOR_MODE_FAST:
2179		return REGULATOR_STATUS_FAST;
2180	case REGULATOR_MODE_NORMAL:
2181		return REGULATOR_STATUS_NORMAL;
2182	case REGULATOR_MODE_IDLE:
2183		return REGULATOR_STATUS_IDLE;
2184	case REGULATOR_STATUS_STANDBY:
2185		return REGULATOR_STATUS_STANDBY;
2186	default:
2187		return 0;
2188	}
2189}
2190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2191
2192/*
2193 * To avoid cluttering sysfs (and memory) with useless state, only
2194 * create attributes that can be meaningfully displayed.
2195 */
2196static int add_regulator_attributes(struct regulator_dev *rdev)
2197{
2198	struct device		*dev = &rdev->dev;
2199	struct regulator_ops	*ops = rdev->desc->ops;
2200	int			status = 0;
2201
2202	/* some attributes need specific methods to be displayed */
2203	if (ops->get_voltage || ops->get_voltage_sel) {
2204		status = device_create_file(dev, &dev_attr_microvolts);
2205		if (status < 0)
2206			return status;
2207	}
2208	if (ops->get_current_limit) {
2209		status = device_create_file(dev, &dev_attr_microamps);
2210		if (status < 0)
2211			return status;
2212	}
2213	if (ops->get_mode) {
2214		status = device_create_file(dev, &dev_attr_opmode);
2215		if (status < 0)
2216			return status;
2217	}
2218	if (ops->is_enabled) {
2219		status = device_create_file(dev, &dev_attr_state);
2220		if (status < 0)
2221			return status;
2222	}
2223	if (ops->get_status) {
2224		status = device_create_file(dev, &dev_attr_status);
2225		if (status < 0)
2226			return status;
2227	}
2228
2229	/* some attributes are type-specific */
2230	if (rdev->desc->type == REGULATOR_CURRENT) {
2231		status = device_create_file(dev, &dev_attr_requested_microamps);
2232		if (status < 0)
2233			return status;
2234	}
2235
2236	/* all the other attributes exist to support constraints;
2237	 * don't show them if there are no constraints, or if the
2238	 * relevant supporting methods are missing.
2239	 */
2240	if (!rdev->constraints)
2241		return status;
2242
2243	/* constraints need specific supporting methods */
2244	if (ops->set_voltage) {
2245		status = device_create_file(dev, &dev_attr_min_microvolts);
2246		if (status < 0)
2247			return status;
2248		status = device_create_file(dev, &dev_attr_max_microvolts);
2249		if (status < 0)
2250			return status;
2251	}
2252	if (ops->set_current_limit) {
2253		status = device_create_file(dev, &dev_attr_min_microamps);
2254		if (status < 0)
2255			return status;
2256		status = device_create_file(dev, &dev_attr_max_microamps);
2257		if (status < 0)
2258			return status;
2259	}
2260
2261	/* suspend mode constraints need multiple supporting methods */
2262	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2263		return status;
2264
2265	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2266	if (status < 0)
2267		return status;
2268	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2269	if (status < 0)
2270		return status;
2271	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2272	if (status < 0)
2273		return status;
2274
2275	if (ops->set_suspend_voltage) {
2276		status = device_create_file(dev,
2277				&dev_attr_suspend_standby_microvolts);
2278		if (status < 0)
2279			return status;
2280		status = device_create_file(dev,
2281				&dev_attr_suspend_mem_microvolts);
2282		if (status < 0)
2283			return status;
2284		status = device_create_file(dev,
2285				&dev_attr_suspend_disk_microvolts);
2286		if (status < 0)
2287			return status;
2288	}
2289
2290	if (ops->set_suspend_mode) {
2291		status = device_create_file(dev,
2292				&dev_attr_suspend_standby_mode);
2293		if (status < 0)
2294			return status;
2295		status = device_create_file(dev,
2296				&dev_attr_suspend_mem_mode);
2297		if (status < 0)
2298			return status;
2299		status = device_create_file(dev,
2300				&dev_attr_suspend_disk_mode);
2301		if (status < 0)
2302			return status;
2303	}
2304
2305	return status;
2306}
2307
2308/**
2309 * regulator_register - register regulator
2310 * @regulator_desc: regulator to register
2311 * @dev: struct device for the regulator
2312 * @init_data: platform provided init data, passed through by driver
2313 * @driver_data: private regulator data
2314 *
2315 * Called by regulator drivers to register a regulator.
2316 * Returns 0 on success.
2317 */
2318struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2319	struct device *dev, const struct regulator_init_data *init_data,
2320	void *driver_data)
2321{
2322	static atomic_t regulator_no = ATOMIC_INIT(0);
2323	struct regulator_dev *rdev;
2324	int ret, i;
2325
2326	if (regulator_desc == NULL)
2327		return ERR_PTR(-EINVAL);
2328
2329	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2330		return ERR_PTR(-EINVAL);
2331
2332	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2333	    regulator_desc->type != REGULATOR_CURRENT)
2334		return ERR_PTR(-EINVAL);
2335
2336	if (!init_data)
2337		return ERR_PTR(-EINVAL);
2338
2339	/* Only one of each should be implemented */
2340	WARN_ON(regulator_desc->ops->get_voltage &&
2341		regulator_desc->ops->get_voltage_sel);
2342
2343	/* If we're using selectors we must implement list_voltage. */
2344	if (regulator_desc->ops->get_voltage_sel &&
2345	    !regulator_desc->ops->list_voltage) {
2346		return ERR_PTR(-EINVAL);
2347	}
2348
2349	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2350	if (rdev == NULL)
2351		return ERR_PTR(-ENOMEM);
2352
2353	mutex_lock(&regulator_list_mutex);
2354
2355	mutex_init(&rdev->mutex);
2356	rdev->reg_data = driver_data;
2357	rdev->owner = regulator_desc->owner;
2358	rdev->desc = regulator_desc;
2359	INIT_LIST_HEAD(&rdev->consumer_list);
2360	INIT_LIST_HEAD(&rdev->supply_list);
2361	INIT_LIST_HEAD(&rdev->list);
2362	INIT_LIST_HEAD(&rdev->slist);
2363	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2364
2365	/* preform any regulator specific init */
2366	if (init_data->regulator_init) {
2367		ret = init_data->regulator_init(rdev->reg_data);
2368		if (ret < 0)
2369			goto clean;
2370	}
2371
2372	/* register with sysfs */
2373	rdev->dev.class = &regulator_class;
2374	rdev->dev.parent = dev;
2375	dev_set_name(&rdev->dev, "regulator.%d",
2376		     atomic_inc_return(&regulator_no) - 1);
2377	ret = device_register(&rdev->dev);
2378	if (ret != 0) {
2379		put_device(&rdev->dev);
2380		goto clean;
2381	}
2382
2383	dev_set_drvdata(&rdev->dev, rdev);
2384
2385	/* set regulator constraints */
2386	ret = set_machine_constraints(rdev, &init_data->constraints);
2387	if (ret < 0)
2388		goto scrub;
2389
2390	/* add attributes supported by this regulator */
2391	ret = add_regulator_attributes(rdev);
2392	if (ret < 0)
2393		goto scrub;
2394
2395	/* set supply regulator if it exists */
2396	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2397		dev_err(dev,
2398			"Supply regulator specified by both name and dev\n");
2399		ret = -EINVAL;
2400		goto scrub;
2401	}
2402
2403	if (init_data->supply_regulator) {
2404		struct regulator_dev *r;
2405		int found = 0;
2406
2407		list_for_each_entry(r, &regulator_list, list) {
2408			if (strcmp(rdev_get_name(r),
2409				   init_data->supply_regulator) == 0) {
2410				found = 1;
2411				break;
2412			}
2413		}
2414
2415		if (!found) {
2416			dev_err(dev, "Failed to find supply %s\n",
2417				init_data->supply_regulator);
2418			ret = -ENODEV;
2419			goto scrub;
2420		}
2421
2422		ret = set_supply(rdev, r);
2423		if (ret < 0)
2424			goto scrub;
2425	}
2426
2427	if (init_data->supply_regulator_dev) {
2428		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2429		ret = set_supply(rdev,
2430			dev_get_drvdata(init_data->supply_regulator_dev));
2431		if (ret < 0)
2432			goto scrub;
2433	}
2434
2435	/* add consumers devices */
2436	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2437		ret = set_consumer_device_supply(rdev,
2438			init_data->consumer_supplies[i].dev,
2439			init_data->consumer_supplies[i].dev_name,
2440			init_data->consumer_supplies[i].supply);
2441		if (ret < 0)
2442			goto unset_supplies;
2443	}
2444
2445	list_add(&rdev->list, &regulator_list);
2446out:
2447	mutex_unlock(&regulator_list_mutex);
2448	return rdev;
2449
2450unset_supplies:
2451	unset_regulator_supplies(rdev);
2452
2453scrub:
2454	device_unregister(&rdev->dev);
2455	/* device core frees rdev */
2456	rdev = ERR_PTR(ret);
2457	goto out;
2458
2459clean:
2460	kfree(rdev);
2461	rdev = ERR_PTR(ret);
2462	goto out;
2463}
2464EXPORT_SYMBOL_GPL(regulator_register);
2465
2466/**
2467 * regulator_unregister - unregister regulator
2468 * @rdev: regulator to unregister
2469 *
2470 * Called by regulator drivers to unregister a regulator.
2471 */
2472void regulator_unregister(struct regulator_dev *rdev)
2473{
2474	if (rdev == NULL)
2475		return;
2476
2477	mutex_lock(&regulator_list_mutex);
2478	WARN_ON(rdev->open_count);
2479	unset_regulator_supplies(rdev);
2480	list_del(&rdev->list);
2481	if (rdev->supply)
2482		sysfs_remove_link(&rdev->dev.kobj, "supply");
2483	device_unregister(&rdev->dev);
2484	kfree(rdev->constraints);
2485	mutex_unlock(&regulator_list_mutex);
2486}
2487EXPORT_SYMBOL_GPL(regulator_unregister);
2488
2489/**
2490 * regulator_suspend_prepare - prepare regulators for system wide suspend
2491 * @state: system suspend state
2492 *
2493 * Configure each regulator with it's suspend operating parameters for state.
2494 * This will usually be called by machine suspend code prior to supending.
2495 */
2496int regulator_suspend_prepare(suspend_state_t state)
2497{
2498	struct regulator_dev *rdev;
2499	int ret = 0;
2500
2501	/* ON is handled by regulator active state */
2502	if (state == PM_SUSPEND_ON)
2503		return -EINVAL;
2504
2505	mutex_lock(&regulator_list_mutex);
2506	list_for_each_entry(rdev, &regulator_list, list) {
2507
2508		mutex_lock(&rdev->mutex);
2509		ret = suspend_prepare(rdev, state);
2510		mutex_unlock(&rdev->mutex);
2511
2512		if (ret < 0) {
2513			rdev_err(rdev, "failed to prepare\n");
2514			goto out;
2515		}
2516	}
2517out:
2518	mutex_unlock(&regulator_list_mutex);
2519	return ret;
2520}
2521EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2522
2523/**
2524 * regulator_has_full_constraints - the system has fully specified constraints
2525 *
2526 * Calling this function will cause the regulator API to disable all
2527 * regulators which have a zero use count and don't have an always_on
2528 * constraint in a late_initcall.
2529 *
2530 * The intention is that this will become the default behaviour in a
2531 * future kernel release so users are encouraged to use this facility
2532 * now.
2533 */
2534void regulator_has_full_constraints(void)
2535{
2536	has_full_constraints = 1;
2537}
2538EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2539
2540/**
2541 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2542 *
2543 * Calling this function will cause the regulator API to provide a
2544 * dummy regulator to consumers if no physical regulator is found,
2545 * allowing most consumers to proceed as though a regulator were
2546 * configured.  This allows systems such as those with software
2547 * controllable regulators for the CPU core only to be brought up more
2548 * readily.
2549 */
2550void regulator_use_dummy_regulator(void)
2551{
2552	board_wants_dummy_regulator = true;
2553}
2554EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2555
2556/**
2557 * rdev_get_drvdata - get rdev regulator driver data
2558 * @rdev: regulator
2559 *
2560 * Get rdev regulator driver private data. This call can be used in the
2561 * regulator driver context.
2562 */
2563void *rdev_get_drvdata(struct regulator_dev *rdev)
2564{
2565	return rdev->reg_data;
2566}
2567EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2568
2569/**
2570 * regulator_get_drvdata - get regulator driver data
2571 * @regulator: regulator
2572 *
2573 * Get regulator driver private data. This call can be used in the consumer
2574 * driver context when non API regulator specific functions need to be called.
2575 */
2576void *regulator_get_drvdata(struct regulator *regulator)
2577{
2578	return regulator->rdev->reg_data;
2579}
2580EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2581
2582/**
2583 * regulator_set_drvdata - set regulator driver data
2584 * @regulator: regulator
2585 * @data: data
2586 */
2587void regulator_set_drvdata(struct regulator *regulator, void *data)
2588{
2589	regulator->rdev->reg_data = data;
2590}
2591EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2592
2593/**
2594 * regulator_get_id - get regulator ID
2595 * @rdev: regulator
2596 */
2597int rdev_get_id(struct regulator_dev *rdev)
2598{
2599	return rdev->desc->id;
2600}
2601EXPORT_SYMBOL_GPL(rdev_get_id);
2602
2603struct device *rdev_get_dev(struct regulator_dev *rdev)
2604{
2605	return &rdev->dev;
2606}
2607EXPORT_SYMBOL_GPL(rdev_get_dev);
2608
2609void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2610{
2611	return reg_init_data->driver_data;
2612}
2613EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2614
2615static int __init regulator_init(void)
2616{
2617	int ret;
2618
2619	ret = class_register(&regulator_class);
2620
2621	regulator_dummy_init();
2622
2623	return ret;
2624}
2625
2626/* init early to allow our consumers to complete system booting */
2627core_initcall(regulator_init);
2628
2629static int __init regulator_init_complete(void)
2630{
2631	struct regulator_dev *rdev;
2632	struct regulator_ops *ops;
2633	struct regulation_constraints *c;
2634	int enabled, ret;
2635
2636	mutex_lock(&regulator_list_mutex);
2637
2638	/* If we have a full configuration then disable any regulators
2639	 * which are not in use or always_on.  This will become the
2640	 * default behaviour in the future.
2641	 */
2642	list_for_each_entry(rdev, &regulator_list, list) {
2643		ops = rdev->desc->ops;
2644		c = rdev->constraints;
2645
2646		if (!ops->disable || (c && c->always_on))
2647			continue;
2648
2649		mutex_lock(&rdev->mutex);
2650
2651		if (rdev->use_count)
2652			goto unlock;
2653
2654		/* If we can't read the status assume it's on. */
2655		if (ops->is_enabled)
2656			enabled = ops->is_enabled(rdev);
2657		else
2658			enabled = 1;
2659
2660		if (!enabled)
2661			goto unlock;
2662
2663		if (has_full_constraints) {
2664			/* We log since this may kill the system if it
2665			 * goes wrong. */
2666			rdev_info(rdev, "disabling\n");
2667			ret = ops->disable(rdev);
2668			if (ret != 0) {
2669				rdev_err(rdev, "couldn't disable: %d\n", ret);
2670			}
2671		} else {
2672			/* The intention is that in future we will
2673			 * assume that full constraints are provided
2674			 * so warn even if we aren't going to do
2675			 * anything here.
2676			 */
2677			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2678		}
2679
2680unlock:
2681		mutex_unlock(&rdev->mutex);
2682	}
2683
2684	mutex_unlock(&regulator_list_mutex);
2685
2686	return 0;
2687}
2688late_initcall(regulator_init_complete);
2689