core.c revision 4aa922c024b2a194d7b68b22a66dfcf86e7838b3
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/err.h>
24#include <linux/mutex.h>
25#include <linux/suspend.h>
26#include <linux/delay.h>
27#include <linux/regulator/consumer.h>
28#include <linux/regulator/driver.h>
29#include <linux/regulator/machine.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35
36#define rdev_err(rdev, fmt, ...)					\
37	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_warn(rdev, fmt, ...)					\
39	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_info(rdev, fmt, ...)					\
41	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_dbg(rdev, fmt, ...)					\
43	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45static DEFINE_MUTEX(regulator_list_mutex);
46static LIST_HEAD(regulator_list);
47static LIST_HEAD(regulator_map_list);
48static bool has_full_constraints;
49static bool board_wants_dummy_regulator;
50
51#ifdef CONFIG_DEBUG_FS
52static struct dentry *debugfs_root;
53#endif
54
55/*
56 * struct regulator_map
57 *
58 * Used to provide symbolic supply names to devices.
59 */
60struct regulator_map {
61	struct list_head list;
62	const char *dev_name;   /* The dev_name() for the consumer */
63	const char *supply;
64	struct regulator_dev *regulator;
65};
66
67/*
68 * struct regulator
69 *
70 * One for each consumer device.
71 */
72struct regulator {
73	struct device *dev;
74	struct list_head list;
75	int uA_load;
76	int min_uV;
77	int max_uV;
78	char *supply_name;
79	struct device_attribute dev_attr;
80	struct regulator_dev *rdev;
81};
82
83static int _regulator_is_enabled(struct regulator_dev *rdev);
84static int _regulator_disable(struct regulator_dev *rdev,
85		struct regulator_dev **supply_rdev_ptr);
86static int _regulator_get_voltage(struct regulator_dev *rdev);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static void _notifier_call_chain(struct regulator_dev *rdev,
90				  unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92				     int min_uV, int max_uV);
93
94static const char *rdev_get_name(struct regulator_dev *rdev)
95{
96	if (rdev->constraints && rdev->constraints->name)
97		return rdev->constraints->name;
98	else if (rdev->desc->name)
99		return rdev->desc->name;
100	else
101		return "";
102}
103
104/* gets the regulator for a given consumer device */
105static struct regulator *get_device_regulator(struct device *dev)
106{
107	struct regulator *regulator = NULL;
108	struct regulator_dev *rdev;
109
110	mutex_lock(&regulator_list_mutex);
111	list_for_each_entry(rdev, &regulator_list, list) {
112		mutex_lock(&rdev->mutex);
113		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114			if (regulator->dev == dev) {
115				mutex_unlock(&rdev->mutex);
116				mutex_unlock(&regulator_list_mutex);
117				return regulator;
118			}
119		}
120		mutex_unlock(&rdev->mutex);
121	}
122	mutex_unlock(&regulator_list_mutex);
123	return NULL;
124}
125
126/* Platform voltage constraint check */
127static int regulator_check_voltage(struct regulator_dev *rdev,
128				   int *min_uV, int *max_uV)
129{
130	BUG_ON(*min_uV > *max_uV);
131
132	if (!rdev->constraints) {
133		rdev_err(rdev, "no constraints\n");
134		return -ENODEV;
135	}
136	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137		rdev_err(rdev, "operation not allowed\n");
138		return -EPERM;
139	}
140
141	if (*max_uV > rdev->constraints->max_uV)
142		*max_uV = rdev->constraints->max_uV;
143	if (*min_uV < rdev->constraints->min_uV)
144		*min_uV = rdev->constraints->min_uV;
145
146	if (*min_uV > *max_uV)
147		return -EINVAL;
148
149	return 0;
150}
151
152/* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
154 */
155static int regulator_check_consumers(struct regulator_dev *rdev,
156				     int *min_uV, int *max_uV)
157{
158	struct regulator *regulator;
159
160	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161		/*
162		 * Assume consumers that didn't say anything are OK
163		 * with anything in the constraint range.
164		 */
165		if (!regulator->min_uV && !regulator->max_uV)
166			continue;
167
168		if (*max_uV > regulator->max_uV)
169			*max_uV = regulator->max_uV;
170		if (*min_uV < regulator->min_uV)
171			*min_uV = regulator->min_uV;
172	}
173
174	if (*min_uV > *max_uV)
175		return -EINVAL;
176
177	return 0;
178}
179
180/* current constraint check */
181static int regulator_check_current_limit(struct regulator_dev *rdev,
182					int *min_uA, int *max_uA)
183{
184	BUG_ON(*min_uA > *max_uA);
185
186	if (!rdev->constraints) {
187		rdev_err(rdev, "no constraints\n");
188		return -ENODEV;
189	}
190	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
191		rdev_err(rdev, "operation not allowed\n");
192		return -EPERM;
193	}
194
195	if (*max_uA > rdev->constraints->max_uA)
196		*max_uA = rdev->constraints->max_uA;
197	if (*min_uA < rdev->constraints->min_uA)
198		*min_uA = rdev->constraints->min_uA;
199
200	if (*min_uA > *max_uA)
201		return -EINVAL;
202
203	return 0;
204}
205
206/* operating mode constraint check */
207static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
208{
209	switch (*mode) {
210	case REGULATOR_MODE_FAST:
211	case REGULATOR_MODE_NORMAL:
212	case REGULATOR_MODE_IDLE:
213	case REGULATOR_MODE_STANDBY:
214		break;
215	default:
216		return -EINVAL;
217	}
218
219	if (!rdev->constraints) {
220		rdev_err(rdev, "no constraints\n");
221		return -ENODEV;
222	}
223	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
224		rdev_err(rdev, "operation not allowed\n");
225		return -EPERM;
226	}
227
228	/* The modes are bitmasks, the most power hungry modes having
229	 * the lowest values. If the requested mode isn't supported
230	 * try higher modes. */
231	while (*mode) {
232		if (rdev->constraints->valid_modes_mask & *mode)
233			return 0;
234		*mode /= 2;
235	}
236
237	return -EINVAL;
238}
239
240/* dynamic regulator mode switching constraint check */
241static int regulator_check_drms(struct regulator_dev *rdev)
242{
243	if (!rdev->constraints) {
244		rdev_err(rdev, "no constraints\n");
245		return -ENODEV;
246	}
247	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
248		rdev_err(rdev, "operation not allowed\n");
249		return -EPERM;
250	}
251	return 0;
252}
253
254static ssize_t device_requested_uA_show(struct device *dev,
255			     struct device_attribute *attr, char *buf)
256{
257	struct regulator *regulator;
258
259	regulator = get_device_regulator(dev);
260	if (regulator == NULL)
261		return 0;
262
263	return sprintf(buf, "%d\n", regulator->uA_load);
264}
265
266static ssize_t regulator_uV_show(struct device *dev,
267				struct device_attribute *attr, char *buf)
268{
269	struct regulator_dev *rdev = dev_get_drvdata(dev);
270	ssize_t ret;
271
272	mutex_lock(&rdev->mutex);
273	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
274	mutex_unlock(&rdev->mutex);
275
276	return ret;
277}
278static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
279
280static ssize_t regulator_uA_show(struct device *dev,
281				struct device_attribute *attr, char *buf)
282{
283	struct regulator_dev *rdev = dev_get_drvdata(dev);
284
285	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
286}
287static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
288
289static ssize_t regulator_name_show(struct device *dev,
290			     struct device_attribute *attr, char *buf)
291{
292	struct regulator_dev *rdev = dev_get_drvdata(dev);
293
294	return sprintf(buf, "%s\n", rdev_get_name(rdev));
295}
296
297static ssize_t regulator_print_opmode(char *buf, int mode)
298{
299	switch (mode) {
300	case REGULATOR_MODE_FAST:
301		return sprintf(buf, "fast\n");
302	case REGULATOR_MODE_NORMAL:
303		return sprintf(buf, "normal\n");
304	case REGULATOR_MODE_IDLE:
305		return sprintf(buf, "idle\n");
306	case REGULATOR_MODE_STANDBY:
307		return sprintf(buf, "standby\n");
308	}
309	return sprintf(buf, "unknown\n");
310}
311
312static ssize_t regulator_opmode_show(struct device *dev,
313				    struct device_attribute *attr, char *buf)
314{
315	struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
318}
319static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
320
321static ssize_t regulator_print_state(char *buf, int state)
322{
323	if (state > 0)
324		return sprintf(buf, "enabled\n");
325	else if (state == 0)
326		return sprintf(buf, "disabled\n");
327	else
328		return sprintf(buf, "unknown\n");
329}
330
331static ssize_t regulator_state_show(struct device *dev,
332				   struct device_attribute *attr, char *buf)
333{
334	struct regulator_dev *rdev = dev_get_drvdata(dev);
335	ssize_t ret;
336
337	mutex_lock(&rdev->mutex);
338	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
339	mutex_unlock(&rdev->mutex);
340
341	return ret;
342}
343static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
344
345static ssize_t regulator_status_show(struct device *dev,
346				   struct device_attribute *attr, char *buf)
347{
348	struct regulator_dev *rdev = dev_get_drvdata(dev);
349	int status;
350	char *label;
351
352	status = rdev->desc->ops->get_status(rdev);
353	if (status < 0)
354		return status;
355
356	switch (status) {
357	case REGULATOR_STATUS_OFF:
358		label = "off";
359		break;
360	case REGULATOR_STATUS_ON:
361		label = "on";
362		break;
363	case REGULATOR_STATUS_ERROR:
364		label = "error";
365		break;
366	case REGULATOR_STATUS_FAST:
367		label = "fast";
368		break;
369	case REGULATOR_STATUS_NORMAL:
370		label = "normal";
371		break;
372	case REGULATOR_STATUS_IDLE:
373		label = "idle";
374		break;
375	case REGULATOR_STATUS_STANDBY:
376		label = "standby";
377		break;
378	default:
379		return -ERANGE;
380	}
381
382	return sprintf(buf, "%s\n", label);
383}
384static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
385
386static ssize_t regulator_min_uA_show(struct device *dev,
387				    struct device_attribute *attr, char *buf)
388{
389	struct regulator_dev *rdev = dev_get_drvdata(dev);
390
391	if (!rdev->constraints)
392		return sprintf(buf, "constraint not defined\n");
393
394	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
395}
396static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
397
398static ssize_t regulator_max_uA_show(struct device *dev,
399				    struct device_attribute *attr, char *buf)
400{
401	struct regulator_dev *rdev = dev_get_drvdata(dev);
402
403	if (!rdev->constraints)
404		return sprintf(buf, "constraint not defined\n");
405
406	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
407}
408static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
409
410static ssize_t regulator_min_uV_show(struct device *dev,
411				    struct device_attribute *attr, char *buf)
412{
413	struct regulator_dev *rdev = dev_get_drvdata(dev);
414
415	if (!rdev->constraints)
416		return sprintf(buf, "constraint not defined\n");
417
418	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
419}
420static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
421
422static ssize_t regulator_max_uV_show(struct device *dev,
423				    struct device_attribute *attr, char *buf)
424{
425	struct regulator_dev *rdev = dev_get_drvdata(dev);
426
427	if (!rdev->constraints)
428		return sprintf(buf, "constraint not defined\n");
429
430	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
431}
432static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
433
434static ssize_t regulator_total_uA_show(struct device *dev,
435				      struct device_attribute *attr, char *buf)
436{
437	struct regulator_dev *rdev = dev_get_drvdata(dev);
438	struct regulator *regulator;
439	int uA = 0;
440
441	mutex_lock(&rdev->mutex);
442	list_for_each_entry(regulator, &rdev->consumer_list, list)
443		uA += regulator->uA_load;
444	mutex_unlock(&rdev->mutex);
445	return sprintf(buf, "%d\n", uA);
446}
447static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
448
449static ssize_t regulator_num_users_show(struct device *dev,
450				      struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453	return sprintf(buf, "%d\n", rdev->use_count);
454}
455
456static ssize_t regulator_type_show(struct device *dev,
457				  struct device_attribute *attr, char *buf)
458{
459	struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461	switch (rdev->desc->type) {
462	case REGULATOR_VOLTAGE:
463		return sprintf(buf, "voltage\n");
464	case REGULATOR_CURRENT:
465		return sprintf(buf, "current\n");
466	}
467	return sprintf(buf, "unknown\n");
468}
469
470static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
476}
477static DEVICE_ATTR(suspend_mem_microvolts, 0444,
478		regulator_suspend_mem_uV_show, NULL);
479
480static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
481				struct device_attribute *attr, char *buf)
482{
483	struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
486}
487static DEVICE_ATTR(suspend_disk_microvolts, 0444,
488		regulator_suspend_disk_uV_show, NULL);
489
490static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
491				struct device_attribute *attr, char *buf)
492{
493	struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
496}
497static DEVICE_ATTR(suspend_standby_microvolts, 0444,
498		regulator_suspend_standby_uV_show, NULL);
499
500static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
501				struct device_attribute *attr, char *buf)
502{
503	struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505	return regulator_print_opmode(buf,
506		rdev->constraints->state_mem.mode);
507}
508static DEVICE_ATTR(suspend_mem_mode, 0444,
509		regulator_suspend_mem_mode_show, NULL);
510
511static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
512				struct device_attribute *attr, char *buf)
513{
514	struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516	return regulator_print_opmode(buf,
517		rdev->constraints->state_disk.mode);
518}
519static DEVICE_ATTR(suspend_disk_mode, 0444,
520		regulator_suspend_disk_mode_show, NULL);
521
522static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return regulator_print_opmode(buf,
528		rdev->constraints->state_standby.mode);
529}
530static DEVICE_ATTR(suspend_standby_mode, 0444,
531		regulator_suspend_standby_mode_show, NULL);
532
533static ssize_t regulator_suspend_mem_state_show(struct device *dev,
534				   struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return regulator_print_state(buf,
539			rdev->constraints->state_mem.enabled);
540}
541static DEVICE_ATTR(suspend_mem_state, 0444,
542		regulator_suspend_mem_state_show, NULL);
543
544static ssize_t regulator_suspend_disk_state_show(struct device *dev,
545				   struct device_attribute *attr, char *buf)
546{
547	struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549	return regulator_print_state(buf,
550			rdev->constraints->state_disk.enabled);
551}
552static DEVICE_ATTR(suspend_disk_state, 0444,
553		regulator_suspend_disk_state_show, NULL);
554
555static ssize_t regulator_suspend_standby_state_show(struct device *dev,
556				   struct device_attribute *attr, char *buf)
557{
558	struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560	return regulator_print_state(buf,
561			rdev->constraints->state_standby.enabled);
562}
563static DEVICE_ATTR(suspend_standby_state, 0444,
564		regulator_suspend_standby_state_show, NULL);
565
566
567/*
568 * These are the only attributes are present for all regulators.
569 * Other attributes are a function of regulator functionality.
570 */
571static struct device_attribute regulator_dev_attrs[] = {
572	__ATTR(name, 0444, regulator_name_show, NULL),
573	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
574	__ATTR(type, 0444, regulator_type_show, NULL),
575	__ATTR_NULL,
576};
577
578static void regulator_dev_release(struct device *dev)
579{
580	struct regulator_dev *rdev = dev_get_drvdata(dev);
581	kfree(rdev);
582}
583
584static struct class regulator_class = {
585	.name = "regulator",
586	.dev_release = regulator_dev_release,
587	.dev_attrs = regulator_dev_attrs,
588};
589
590/* Calculate the new optimum regulator operating mode based on the new total
591 * consumer load. All locks held by caller */
592static void drms_uA_update(struct regulator_dev *rdev)
593{
594	struct regulator *sibling;
595	int current_uA = 0, output_uV, input_uV, err;
596	unsigned int mode;
597
598	err = regulator_check_drms(rdev);
599	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
600	    (!rdev->desc->ops->get_voltage &&
601	     !rdev->desc->ops->get_voltage_sel) ||
602	    !rdev->desc->ops->set_mode)
603		return;
604
605	/* get output voltage */
606	output_uV = _regulator_get_voltage(rdev);
607	if (output_uV <= 0)
608		return;
609
610	/* get input voltage */
611	input_uV = 0;
612	if (rdev->supply)
613		input_uV = _regulator_get_voltage(rdev);
614	if (input_uV <= 0)
615		input_uV = rdev->constraints->input_uV;
616	if (input_uV <= 0)
617		return;
618
619	/* calc total requested load */
620	list_for_each_entry(sibling, &rdev->consumer_list, list)
621		current_uA += sibling->uA_load;
622
623	/* now get the optimum mode for our new total regulator load */
624	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
625						  output_uV, current_uA);
626
627	/* check the new mode is allowed */
628	err = regulator_mode_constrain(rdev, &mode);
629	if (err == 0)
630		rdev->desc->ops->set_mode(rdev, mode);
631}
632
633static int suspend_set_state(struct regulator_dev *rdev,
634	struct regulator_state *rstate)
635{
636	int ret = 0;
637	bool can_set_state;
638
639	can_set_state = rdev->desc->ops->set_suspend_enable &&
640		rdev->desc->ops->set_suspend_disable;
641
642	/* If we have no suspend mode configration don't set anything;
643	 * only warn if the driver actually makes the suspend mode
644	 * configurable.
645	 */
646	if (!rstate->enabled && !rstate->disabled) {
647		if (can_set_state)
648			rdev_warn(rdev, "No configuration\n");
649		return 0;
650	}
651
652	if (rstate->enabled && rstate->disabled) {
653		rdev_err(rdev, "invalid configuration\n");
654		return -EINVAL;
655	}
656
657	if (!can_set_state) {
658		rdev_err(rdev, "no way to set suspend state\n");
659		return -EINVAL;
660	}
661
662	if (rstate->enabled)
663		ret = rdev->desc->ops->set_suspend_enable(rdev);
664	else
665		ret = rdev->desc->ops->set_suspend_disable(rdev);
666	if (ret < 0) {
667		rdev_err(rdev, "failed to enabled/disable\n");
668		return ret;
669	}
670
671	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
672		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
673		if (ret < 0) {
674			rdev_err(rdev, "failed to set voltage\n");
675			return ret;
676		}
677	}
678
679	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
680		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
681		if (ret < 0) {
682			rdev_err(rdev, "failed to set mode\n");
683			return ret;
684		}
685	}
686	return ret;
687}
688
689/* locks held by caller */
690static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
691{
692	if (!rdev->constraints)
693		return -EINVAL;
694
695	switch (state) {
696	case PM_SUSPEND_STANDBY:
697		return suspend_set_state(rdev,
698			&rdev->constraints->state_standby);
699	case PM_SUSPEND_MEM:
700		return suspend_set_state(rdev,
701			&rdev->constraints->state_mem);
702	case PM_SUSPEND_MAX:
703		return suspend_set_state(rdev,
704			&rdev->constraints->state_disk);
705	default:
706		return -EINVAL;
707	}
708}
709
710static void print_constraints(struct regulator_dev *rdev)
711{
712	struct regulation_constraints *constraints = rdev->constraints;
713	char buf[80] = "";
714	int count = 0;
715	int ret;
716
717	if (constraints->min_uV && constraints->max_uV) {
718		if (constraints->min_uV == constraints->max_uV)
719			count += sprintf(buf + count, "%d mV ",
720					 constraints->min_uV / 1000);
721		else
722			count += sprintf(buf + count, "%d <--> %d mV ",
723					 constraints->min_uV / 1000,
724					 constraints->max_uV / 1000);
725	}
726
727	if (!constraints->min_uV ||
728	    constraints->min_uV != constraints->max_uV) {
729		ret = _regulator_get_voltage(rdev);
730		if (ret > 0)
731			count += sprintf(buf + count, "at %d mV ", ret / 1000);
732	}
733
734	if (constraints->uV_offset)
735		count += sprintf(buf, "%dmV offset ",
736				 constraints->uV_offset / 1000);
737
738	if (constraints->min_uA && constraints->max_uA) {
739		if (constraints->min_uA == constraints->max_uA)
740			count += sprintf(buf + count, "%d mA ",
741					 constraints->min_uA / 1000);
742		else
743			count += sprintf(buf + count, "%d <--> %d mA ",
744					 constraints->min_uA / 1000,
745					 constraints->max_uA / 1000);
746	}
747
748	if (!constraints->min_uA ||
749	    constraints->min_uA != constraints->max_uA) {
750		ret = _regulator_get_current_limit(rdev);
751		if (ret > 0)
752			count += sprintf(buf + count, "at %d mA ", ret / 1000);
753	}
754
755	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
756		count += sprintf(buf + count, "fast ");
757	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
758		count += sprintf(buf + count, "normal ");
759	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
760		count += sprintf(buf + count, "idle ");
761	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
762		count += sprintf(buf + count, "standby");
763
764	rdev_info(rdev, "%s\n", buf);
765}
766
767static int machine_constraints_voltage(struct regulator_dev *rdev,
768	struct regulation_constraints *constraints)
769{
770	struct regulator_ops *ops = rdev->desc->ops;
771	int ret;
772
773	/* do we need to apply the constraint voltage */
774	if (rdev->constraints->apply_uV &&
775	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
776		ret = _regulator_do_set_voltage(rdev,
777						rdev->constraints->min_uV,
778						rdev->constraints->max_uV);
779		if (ret < 0) {
780			rdev_err(rdev, "failed to apply %duV constraint\n",
781				 rdev->constraints->min_uV);
782			rdev->constraints = NULL;
783			return ret;
784		}
785	}
786
787	/* constrain machine-level voltage specs to fit
788	 * the actual range supported by this regulator.
789	 */
790	if (ops->list_voltage && rdev->desc->n_voltages) {
791		int	count = rdev->desc->n_voltages;
792		int	i;
793		int	min_uV = INT_MAX;
794		int	max_uV = INT_MIN;
795		int	cmin = constraints->min_uV;
796		int	cmax = constraints->max_uV;
797
798		/* it's safe to autoconfigure fixed-voltage supplies
799		   and the constraints are used by list_voltage. */
800		if (count == 1 && !cmin) {
801			cmin = 1;
802			cmax = INT_MAX;
803			constraints->min_uV = cmin;
804			constraints->max_uV = cmax;
805		}
806
807		/* voltage constraints are optional */
808		if ((cmin == 0) && (cmax == 0))
809			return 0;
810
811		/* else require explicit machine-level constraints */
812		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
813			rdev_err(rdev, "invalid voltage constraints\n");
814			return -EINVAL;
815		}
816
817		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
818		for (i = 0; i < count; i++) {
819			int	value;
820
821			value = ops->list_voltage(rdev, i);
822			if (value <= 0)
823				continue;
824
825			/* maybe adjust [min_uV..max_uV] */
826			if (value >= cmin && value < min_uV)
827				min_uV = value;
828			if (value <= cmax && value > max_uV)
829				max_uV = value;
830		}
831
832		/* final: [min_uV..max_uV] valid iff constraints valid */
833		if (max_uV < min_uV) {
834			rdev_err(rdev, "unsupportable voltage constraints\n");
835			return -EINVAL;
836		}
837
838		/* use regulator's subset of machine constraints */
839		if (constraints->min_uV < min_uV) {
840			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
841				 constraints->min_uV, min_uV);
842			constraints->min_uV = min_uV;
843		}
844		if (constraints->max_uV > max_uV) {
845			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
846				 constraints->max_uV, max_uV);
847			constraints->max_uV = max_uV;
848		}
849	}
850
851	return 0;
852}
853
854/**
855 * set_machine_constraints - sets regulator constraints
856 * @rdev: regulator source
857 * @constraints: constraints to apply
858 *
859 * Allows platform initialisation code to define and constrain
860 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
861 * Constraints *must* be set by platform code in order for some
862 * regulator operations to proceed i.e. set_voltage, set_current_limit,
863 * set_mode.
864 */
865static int set_machine_constraints(struct regulator_dev *rdev,
866	const struct regulation_constraints *constraints)
867{
868	int ret = 0;
869	struct regulator_ops *ops = rdev->desc->ops;
870
871	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
872				    GFP_KERNEL);
873	if (!rdev->constraints)
874		return -ENOMEM;
875
876	ret = machine_constraints_voltage(rdev, rdev->constraints);
877	if (ret != 0)
878		goto out;
879
880	/* do we need to setup our suspend state */
881	if (constraints->initial_state) {
882		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
883		if (ret < 0) {
884			rdev_err(rdev, "failed to set suspend state\n");
885			rdev->constraints = NULL;
886			goto out;
887		}
888	}
889
890	if (constraints->initial_mode) {
891		if (!ops->set_mode) {
892			rdev_err(rdev, "no set_mode operation\n");
893			ret = -EINVAL;
894			goto out;
895		}
896
897		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
898		if (ret < 0) {
899			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
900			goto out;
901		}
902	}
903
904	/* If the constraints say the regulator should be on at this point
905	 * and we have control then make sure it is enabled.
906	 */
907	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
908	    ops->enable) {
909		ret = ops->enable(rdev);
910		if (ret < 0) {
911			rdev_err(rdev, "failed to enable\n");
912			rdev->constraints = NULL;
913			goto out;
914		}
915	}
916
917	print_constraints(rdev);
918out:
919	return ret;
920}
921
922/**
923 * set_supply - set regulator supply regulator
924 * @rdev: regulator name
925 * @supply_rdev: supply regulator name
926 *
927 * Called by platform initialisation code to set the supply regulator for this
928 * regulator. This ensures that a regulators supply will also be enabled by the
929 * core if it's child is enabled.
930 */
931static int set_supply(struct regulator_dev *rdev,
932	struct regulator_dev *supply_rdev)
933{
934	int err;
935
936	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
937				"supply");
938	if (err) {
939		rdev_err(rdev, "could not add device link %s err %d\n",
940			 supply_rdev->dev.kobj.name, err);
941		       goto out;
942	}
943	rdev->supply = supply_rdev;
944	list_add(&rdev->slist, &supply_rdev->supply_list);
945out:
946	return err;
947}
948
949/**
950 * set_consumer_device_supply - Bind a regulator to a symbolic supply
951 * @rdev:         regulator source
952 * @consumer_dev: device the supply applies to
953 * @consumer_dev_name: dev_name() string for device supply applies to
954 * @supply:       symbolic name for supply
955 *
956 * Allows platform initialisation code to map physical regulator
957 * sources to symbolic names for supplies for use by devices.  Devices
958 * should use these symbolic names to request regulators, avoiding the
959 * need to provide board-specific regulator names as platform data.
960 *
961 * Only one of consumer_dev and consumer_dev_name may be specified.
962 */
963static int set_consumer_device_supply(struct regulator_dev *rdev,
964	struct device *consumer_dev, const char *consumer_dev_name,
965	const char *supply)
966{
967	struct regulator_map *node;
968	int has_dev;
969
970	if (consumer_dev && consumer_dev_name)
971		return -EINVAL;
972
973	if (!consumer_dev_name && consumer_dev)
974		consumer_dev_name = dev_name(consumer_dev);
975
976	if (supply == NULL)
977		return -EINVAL;
978
979	if (consumer_dev_name != NULL)
980		has_dev = 1;
981	else
982		has_dev = 0;
983
984	list_for_each_entry(node, &regulator_map_list, list) {
985		if (node->dev_name && consumer_dev_name) {
986			if (strcmp(node->dev_name, consumer_dev_name) != 0)
987				continue;
988		} else if (node->dev_name || consumer_dev_name) {
989			continue;
990		}
991
992		if (strcmp(node->supply, supply) != 0)
993			continue;
994
995		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
996			dev_name(&node->regulator->dev),
997			node->regulator->desc->name,
998			supply,
999			dev_name(&rdev->dev), rdev_get_name(rdev));
1000		return -EBUSY;
1001	}
1002
1003	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1004	if (node == NULL)
1005		return -ENOMEM;
1006
1007	node->regulator = rdev;
1008	node->supply = supply;
1009
1010	if (has_dev) {
1011		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1012		if (node->dev_name == NULL) {
1013			kfree(node);
1014			return -ENOMEM;
1015		}
1016	}
1017
1018	list_add(&node->list, &regulator_map_list);
1019	return 0;
1020}
1021
1022static void unset_regulator_supplies(struct regulator_dev *rdev)
1023{
1024	struct regulator_map *node, *n;
1025
1026	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1027		if (rdev == node->regulator) {
1028			list_del(&node->list);
1029			kfree(node->dev_name);
1030			kfree(node);
1031		}
1032	}
1033}
1034
1035#define REG_STR_SIZE	32
1036
1037static struct regulator *create_regulator(struct regulator_dev *rdev,
1038					  struct device *dev,
1039					  const char *supply_name)
1040{
1041	struct regulator *regulator;
1042	char buf[REG_STR_SIZE];
1043	int err, size;
1044
1045	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1046	if (regulator == NULL)
1047		return NULL;
1048
1049	mutex_lock(&rdev->mutex);
1050	regulator->rdev = rdev;
1051	list_add(&regulator->list, &rdev->consumer_list);
1052
1053	if (dev) {
1054		/* create a 'requested_microamps_name' sysfs entry */
1055		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1056			supply_name);
1057		if (size >= REG_STR_SIZE)
1058			goto overflow_err;
1059
1060		regulator->dev = dev;
1061		sysfs_attr_init(&regulator->dev_attr.attr);
1062		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1063		if (regulator->dev_attr.attr.name == NULL)
1064			goto attr_name_err;
1065
1066		regulator->dev_attr.attr.mode = 0444;
1067		regulator->dev_attr.show = device_requested_uA_show;
1068		err = device_create_file(dev, &regulator->dev_attr);
1069		if (err < 0) {
1070			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1071			goto attr_name_err;
1072		}
1073
1074		/* also add a link to the device sysfs entry */
1075		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1076				 dev->kobj.name, supply_name);
1077		if (size >= REG_STR_SIZE)
1078			goto attr_err;
1079
1080		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1081		if (regulator->supply_name == NULL)
1082			goto attr_err;
1083
1084		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1085					buf);
1086		if (err) {
1087			rdev_warn(rdev, "could not add device link %s err %d\n",
1088				  dev->kobj.name, err);
1089			goto link_name_err;
1090		}
1091	}
1092	mutex_unlock(&rdev->mutex);
1093	return regulator;
1094link_name_err:
1095	kfree(regulator->supply_name);
1096attr_err:
1097	device_remove_file(regulator->dev, &regulator->dev_attr);
1098attr_name_err:
1099	kfree(regulator->dev_attr.attr.name);
1100overflow_err:
1101	list_del(&regulator->list);
1102	kfree(regulator);
1103	mutex_unlock(&rdev->mutex);
1104	return NULL;
1105}
1106
1107static int _regulator_get_enable_time(struct regulator_dev *rdev)
1108{
1109	if (!rdev->desc->ops->enable_time)
1110		return 0;
1111	return rdev->desc->ops->enable_time(rdev);
1112}
1113
1114/* Internal regulator request function */
1115static struct regulator *_regulator_get(struct device *dev, const char *id,
1116					int exclusive)
1117{
1118	struct regulator_dev *rdev;
1119	struct regulator_map *map;
1120	struct regulator *regulator = ERR_PTR(-ENODEV);
1121	const char *devname = NULL;
1122	int ret;
1123
1124	if (id == NULL) {
1125		pr_err("get() with no identifier\n");
1126		return regulator;
1127	}
1128
1129	if (dev)
1130		devname = dev_name(dev);
1131
1132	mutex_lock(&regulator_list_mutex);
1133
1134	list_for_each_entry(map, &regulator_map_list, list) {
1135		/* If the mapping has a device set up it must match */
1136		if (map->dev_name &&
1137		    (!devname || strcmp(map->dev_name, devname)))
1138			continue;
1139
1140		if (strcmp(map->supply, id) == 0) {
1141			rdev = map->regulator;
1142			goto found;
1143		}
1144	}
1145
1146	if (board_wants_dummy_regulator) {
1147		rdev = dummy_regulator_rdev;
1148		goto found;
1149	}
1150
1151#ifdef CONFIG_REGULATOR_DUMMY
1152	if (!devname)
1153		devname = "deviceless";
1154
1155	/* If the board didn't flag that it was fully constrained then
1156	 * substitute in a dummy regulator so consumers can continue.
1157	 */
1158	if (!has_full_constraints) {
1159		pr_warn("%s supply %s not found, using dummy regulator\n",
1160			devname, id);
1161		rdev = dummy_regulator_rdev;
1162		goto found;
1163	}
1164#endif
1165
1166	mutex_unlock(&regulator_list_mutex);
1167	return regulator;
1168
1169found:
1170	if (rdev->exclusive) {
1171		regulator = ERR_PTR(-EPERM);
1172		goto out;
1173	}
1174
1175	if (exclusive && rdev->open_count) {
1176		regulator = ERR_PTR(-EBUSY);
1177		goto out;
1178	}
1179
1180	if (!try_module_get(rdev->owner))
1181		goto out;
1182
1183	regulator = create_regulator(rdev, dev, id);
1184	if (regulator == NULL) {
1185		regulator = ERR_PTR(-ENOMEM);
1186		module_put(rdev->owner);
1187	}
1188
1189	rdev->open_count++;
1190	if (exclusive) {
1191		rdev->exclusive = 1;
1192
1193		ret = _regulator_is_enabled(rdev);
1194		if (ret > 0)
1195			rdev->use_count = 1;
1196		else
1197			rdev->use_count = 0;
1198	}
1199
1200out:
1201	mutex_unlock(&regulator_list_mutex);
1202
1203	return regulator;
1204}
1205
1206/**
1207 * regulator_get - lookup and obtain a reference to a regulator.
1208 * @dev: device for regulator "consumer"
1209 * @id: Supply name or regulator ID.
1210 *
1211 * Returns a struct regulator corresponding to the regulator producer,
1212 * or IS_ERR() condition containing errno.
1213 *
1214 * Use of supply names configured via regulator_set_device_supply() is
1215 * strongly encouraged.  It is recommended that the supply name used
1216 * should match the name used for the supply and/or the relevant
1217 * device pins in the datasheet.
1218 */
1219struct regulator *regulator_get(struct device *dev, const char *id)
1220{
1221	return _regulator_get(dev, id, 0);
1222}
1223EXPORT_SYMBOL_GPL(regulator_get);
1224
1225/**
1226 * regulator_get_exclusive - obtain exclusive access to a regulator.
1227 * @dev: device for regulator "consumer"
1228 * @id: Supply name or regulator ID.
1229 *
1230 * Returns a struct regulator corresponding to the regulator producer,
1231 * or IS_ERR() condition containing errno.  Other consumers will be
1232 * unable to obtain this reference is held and the use count for the
1233 * regulator will be initialised to reflect the current state of the
1234 * regulator.
1235 *
1236 * This is intended for use by consumers which cannot tolerate shared
1237 * use of the regulator such as those which need to force the
1238 * regulator off for correct operation of the hardware they are
1239 * controlling.
1240 *
1241 * Use of supply names configured via regulator_set_device_supply() is
1242 * strongly encouraged.  It is recommended that the supply name used
1243 * should match the name used for the supply and/or the relevant
1244 * device pins in the datasheet.
1245 */
1246struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1247{
1248	return _regulator_get(dev, id, 1);
1249}
1250EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1251
1252/**
1253 * regulator_put - "free" the regulator source
1254 * @regulator: regulator source
1255 *
1256 * Note: drivers must ensure that all regulator_enable calls made on this
1257 * regulator source are balanced by regulator_disable calls prior to calling
1258 * this function.
1259 */
1260void regulator_put(struct regulator *regulator)
1261{
1262	struct regulator_dev *rdev;
1263
1264	if (regulator == NULL || IS_ERR(regulator))
1265		return;
1266
1267	mutex_lock(&regulator_list_mutex);
1268	rdev = regulator->rdev;
1269
1270	/* remove any sysfs entries */
1271	if (regulator->dev) {
1272		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1273		kfree(regulator->supply_name);
1274		device_remove_file(regulator->dev, &regulator->dev_attr);
1275		kfree(regulator->dev_attr.attr.name);
1276	}
1277	list_del(&regulator->list);
1278	kfree(regulator);
1279
1280	rdev->open_count--;
1281	rdev->exclusive = 0;
1282
1283	module_put(rdev->owner);
1284	mutex_unlock(&regulator_list_mutex);
1285}
1286EXPORT_SYMBOL_GPL(regulator_put);
1287
1288static int _regulator_can_change_status(struct regulator_dev *rdev)
1289{
1290	if (!rdev->constraints)
1291		return 0;
1292
1293	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1294		return 1;
1295	else
1296		return 0;
1297}
1298
1299/* locks held by regulator_enable() */
1300static int _regulator_enable(struct regulator_dev *rdev)
1301{
1302	int ret, delay;
1303
1304	if (rdev->use_count == 0) {
1305		/* do we need to enable the supply regulator first */
1306		if (rdev->supply) {
1307			mutex_lock(&rdev->supply->mutex);
1308			ret = _regulator_enable(rdev->supply);
1309			mutex_unlock(&rdev->supply->mutex);
1310			if (ret < 0) {
1311				rdev_err(rdev, "failed to enable: %d\n", ret);
1312				return ret;
1313			}
1314		}
1315	}
1316
1317	/* check voltage and requested load before enabling */
1318	if (rdev->constraints &&
1319	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1320		drms_uA_update(rdev);
1321
1322	if (rdev->use_count == 0) {
1323		/* The regulator may on if it's not switchable or left on */
1324		ret = _regulator_is_enabled(rdev);
1325		if (ret == -EINVAL || ret == 0) {
1326			if (!_regulator_can_change_status(rdev))
1327				return -EPERM;
1328
1329			if (!rdev->desc->ops->enable)
1330				return -EINVAL;
1331
1332			/* Query before enabling in case configuration
1333			 * dependent.  */
1334			ret = _regulator_get_enable_time(rdev);
1335			if (ret >= 0) {
1336				delay = ret;
1337			} else {
1338				rdev_warn(rdev, "enable_time() failed: %d\n",
1339					   ret);
1340				delay = 0;
1341			}
1342
1343			trace_regulator_enable(rdev_get_name(rdev));
1344
1345			/* Allow the regulator to ramp; it would be useful
1346			 * to extend this for bulk operations so that the
1347			 * regulators can ramp together.  */
1348			ret = rdev->desc->ops->enable(rdev);
1349			if (ret < 0)
1350				return ret;
1351
1352			trace_regulator_enable_delay(rdev_get_name(rdev));
1353
1354			if (delay >= 1000) {
1355				mdelay(delay / 1000);
1356				udelay(delay % 1000);
1357			} else if (delay) {
1358				udelay(delay);
1359			}
1360
1361			trace_regulator_enable_complete(rdev_get_name(rdev));
1362
1363		} else if (ret < 0) {
1364			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1365			return ret;
1366		}
1367		/* Fallthrough on positive return values - already enabled */
1368	}
1369
1370	rdev->use_count++;
1371
1372	return 0;
1373}
1374
1375/**
1376 * regulator_enable - enable regulator output
1377 * @regulator: regulator source
1378 *
1379 * Request that the regulator be enabled with the regulator output at
1380 * the predefined voltage or current value.  Calls to regulator_enable()
1381 * must be balanced with calls to regulator_disable().
1382 *
1383 * NOTE: the output value can be set by other drivers, boot loader or may be
1384 * hardwired in the regulator.
1385 */
1386int regulator_enable(struct regulator *regulator)
1387{
1388	struct regulator_dev *rdev = regulator->rdev;
1389	int ret = 0;
1390
1391	mutex_lock(&rdev->mutex);
1392	ret = _regulator_enable(rdev);
1393	mutex_unlock(&rdev->mutex);
1394	return ret;
1395}
1396EXPORT_SYMBOL_GPL(regulator_enable);
1397
1398/* locks held by regulator_disable() */
1399static int _regulator_disable(struct regulator_dev *rdev,
1400		struct regulator_dev **supply_rdev_ptr)
1401{
1402	int ret = 0;
1403	*supply_rdev_ptr = NULL;
1404
1405	if (WARN(rdev->use_count <= 0,
1406		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1407		return -EIO;
1408
1409	/* are we the last user and permitted to disable ? */
1410	if (rdev->use_count == 1 &&
1411	    (rdev->constraints && !rdev->constraints->always_on)) {
1412
1413		/* we are last user */
1414		if (_regulator_can_change_status(rdev) &&
1415		    rdev->desc->ops->disable) {
1416			trace_regulator_disable(rdev_get_name(rdev));
1417
1418			ret = rdev->desc->ops->disable(rdev);
1419			if (ret < 0) {
1420				rdev_err(rdev, "failed to disable\n");
1421				return ret;
1422			}
1423
1424			trace_regulator_disable_complete(rdev_get_name(rdev));
1425
1426			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1427					     NULL);
1428		}
1429
1430		/* decrease our supplies ref count and disable if required */
1431		*supply_rdev_ptr = rdev->supply;
1432
1433		rdev->use_count = 0;
1434	} else if (rdev->use_count > 1) {
1435
1436		if (rdev->constraints &&
1437			(rdev->constraints->valid_ops_mask &
1438			REGULATOR_CHANGE_DRMS))
1439			drms_uA_update(rdev);
1440
1441		rdev->use_count--;
1442	}
1443	return ret;
1444}
1445
1446/**
1447 * regulator_disable - disable regulator output
1448 * @regulator: regulator source
1449 *
1450 * Disable the regulator output voltage or current.  Calls to
1451 * regulator_enable() must be balanced with calls to
1452 * regulator_disable().
1453 *
1454 * NOTE: this will only disable the regulator output if no other consumer
1455 * devices have it enabled, the regulator device supports disabling and
1456 * machine constraints permit this operation.
1457 */
1458int regulator_disable(struct regulator *regulator)
1459{
1460	struct regulator_dev *rdev = regulator->rdev;
1461	struct regulator_dev *supply_rdev = NULL;
1462	int ret = 0;
1463
1464	mutex_lock(&rdev->mutex);
1465	ret = _regulator_disable(rdev, &supply_rdev);
1466	mutex_unlock(&rdev->mutex);
1467
1468	/* decrease our supplies ref count and disable if required */
1469	while (supply_rdev != NULL) {
1470		rdev = supply_rdev;
1471
1472		mutex_lock(&rdev->mutex);
1473		_regulator_disable(rdev, &supply_rdev);
1474		mutex_unlock(&rdev->mutex);
1475	}
1476
1477	return ret;
1478}
1479EXPORT_SYMBOL_GPL(regulator_disable);
1480
1481/* locks held by regulator_force_disable() */
1482static int _regulator_force_disable(struct regulator_dev *rdev,
1483		struct regulator_dev **supply_rdev_ptr)
1484{
1485	int ret = 0;
1486
1487	/* force disable */
1488	if (rdev->desc->ops->disable) {
1489		/* ah well, who wants to live forever... */
1490		ret = rdev->desc->ops->disable(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to force disable\n");
1493			return ret;
1494		}
1495		/* notify other consumers that power has been forced off */
1496		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1497			REGULATOR_EVENT_DISABLE, NULL);
1498	}
1499
1500	/* decrease our supplies ref count and disable if required */
1501	*supply_rdev_ptr = rdev->supply;
1502
1503	rdev->use_count = 0;
1504	return ret;
1505}
1506
1507/**
1508 * regulator_force_disable - force disable regulator output
1509 * @regulator: regulator source
1510 *
1511 * Forcibly disable the regulator output voltage or current.
1512 * NOTE: this *will* disable the regulator output even if other consumer
1513 * devices have it enabled. This should be used for situations when device
1514 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1515 */
1516int regulator_force_disable(struct regulator *regulator)
1517{
1518	struct regulator_dev *rdev = regulator->rdev;
1519	struct regulator_dev *supply_rdev = NULL;
1520	int ret;
1521
1522	mutex_lock(&rdev->mutex);
1523	regulator->uA_load = 0;
1524	ret = _regulator_force_disable(rdev, &supply_rdev);
1525	mutex_unlock(&rdev->mutex);
1526
1527	if (supply_rdev)
1528		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1529
1530	return ret;
1531}
1532EXPORT_SYMBOL_GPL(regulator_force_disable);
1533
1534static int _regulator_is_enabled(struct regulator_dev *rdev)
1535{
1536	/* If we don't know then assume that the regulator is always on */
1537	if (!rdev->desc->ops->is_enabled)
1538		return 1;
1539
1540	return rdev->desc->ops->is_enabled(rdev);
1541}
1542
1543/**
1544 * regulator_is_enabled - is the regulator output enabled
1545 * @regulator: regulator source
1546 *
1547 * Returns positive if the regulator driver backing the source/client
1548 * has requested that the device be enabled, zero if it hasn't, else a
1549 * negative errno code.
1550 *
1551 * Note that the device backing this regulator handle can have multiple
1552 * users, so it might be enabled even if regulator_enable() was never
1553 * called for this particular source.
1554 */
1555int regulator_is_enabled(struct regulator *regulator)
1556{
1557	int ret;
1558
1559	mutex_lock(&regulator->rdev->mutex);
1560	ret = _regulator_is_enabled(regulator->rdev);
1561	mutex_unlock(&regulator->rdev->mutex);
1562
1563	return ret;
1564}
1565EXPORT_SYMBOL_GPL(regulator_is_enabled);
1566
1567/**
1568 * regulator_count_voltages - count regulator_list_voltage() selectors
1569 * @regulator: regulator source
1570 *
1571 * Returns number of selectors, or negative errno.  Selectors are
1572 * numbered starting at zero, and typically correspond to bitfields
1573 * in hardware registers.
1574 */
1575int regulator_count_voltages(struct regulator *regulator)
1576{
1577	struct regulator_dev	*rdev = regulator->rdev;
1578
1579	return rdev->desc->n_voltages ? : -EINVAL;
1580}
1581EXPORT_SYMBOL_GPL(regulator_count_voltages);
1582
1583/**
1584 * regulator_list_voltage - enumerate supported voltages
1585 * @regulator: regulator source
1586 * @selector: identify voltage to list
1587 * Context: can sleep
1588 *
1589 * Returns a voltage that can be passed to @regulator_set_voltage(),
1590 * zero if this selector code can't be used on this system, or a
1591 * negative errno.
1592 */
1593int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1594{
1595	struct regulator_dev	*rdev = regulator->rdev;
1596	struct regulator_ops	*ops = rdev->desc->ops;
1597	int			ret;
1598
1599	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1600		return -EINVAL;
1601
1602	mutex_lock(&rdev->mutex);
1603	ret = ops->list_voltage(rdev, selector);
1604	mutex_unlock(&rdev->mutex);
1605
1606	if (ret > 0) {
1607		if (ret < rdev->constraints->min_uV)
1608			ret = 0;
1609		else if (ret > rdev->constraints->max_uV)
1610			ret = 0;
1611	}
1612
1613	return ret;
1614}
1615EXPORT_SYMBOL_GPL(regulator_list_voltage);
1616
1617/**
1618 * regulator_is_supported_voltage - check if a voltage range can be supported
1619 *
1620 * @regulator: Regulator to check.
1621 * @min_uV: Minimum required voltage in uV.
1622 * @max_uV: Maximum required voltage in uV.
1623 *
1624 * Returns a boolean or a negative error code.
1625 */
1626int regulator_is_supported_voltage(struct regulator *regulator,
1627				   int min_uV, int max_uV)
1628{
1629	int i, voltages, ret;
1630
1631	ret = regulator_count_voltages(regulator);
1632	if (ret < 0)
1633		return ret;
1634	voltages = ret;
1635
1636	for (i = 0; i < voltages; i++) {
1637		ret = regulator_list_voltage(regulator, i);
1638
1639		if (ret >= min_uV && ret <= max_uV)
1640			return 1;
1641	}
1642
1643	return 0;
1644}
1645
1646static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1647				     int min_uV, int max_uV)
1648{
1649	int ret;
1650	int delay = 0;
1651	unsigned int selector;
1652
1653	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1654
1655	min_uV += rdev->constraints->uV_offset;
1656	max_uV += rdev->constraints->uV_offset;
1657
1658	if (rdev->desc->ops->set_voltage) {
1659		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1660						   &selector);
1661
1662		if (rdev->desc->ops->list_voltage)
1663			selector = rdev->desc->ops->list_voltage(rdev,
1664								 selector);
1665		else
1666			selector = -1;
1667	} else if (rdev->desc->ops->set_voltage_sel) {
1668		int best_val = INT_MAX;
1669		int i;
1670
1671		selector = 0;
1672
1673		/* Find the smallest voltage that falls within the specified
1674		 * range.
1675		 */
1676		for (i = 0; i < rdev->desc->n_voltages; i++) {
1677			ret = rdev->desc->ops->list_voltage(rdev, i);
1678			if (ret < 0)
1679				continue;
1680
1681			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1682				best_val = ret;
1683				selector = i;
1684			}
1685		}
1686
1687		/*
1688		 * If we can't obtain the old selector there is not enough
1689		 * info to call set_voltage_time_sel().
1690		 */
1691		if (rdev->desc->ops->set_voltage_time_sel &&
1692		    rdev->desc->ops->get_voltage_sel) {
1693			unsigned int old_selector = 0;
1694
1695			ret = rdev->desc->ops->get_voltage_sel(rdev);
1696			if (ret < 0)
1697				return ret;
1698			old_selector = ret;
1699			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1700						old_selector, selector);
1701		}
1702
1703		if (best_val != INT_MAX) {
1704			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1705			selector = best_val;
1706		} else {
1707			ret = -EINVAL;
1708		}
1709	} else {
1710		ret = -EINVAL;
1711	}
1712
1713	/* Insert any necessary delays */
1714	if (delay >= 1000) {
1715		mdelay(delay / 1000);
1716		udelay(delay % 1000);
1717	} else if (delay) {
1718		udelay(delay);
1719	}
1720
1721	if (ret == 0)
1722		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1723				     NULL);
1724
1725	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1726
1727	return ret;
1728}
1729
1730/**
1731 * regulator_set_voltage - set regulator output voltage
1732 * @regulator: regulator source
1733 * @min_uV: Minimum required voltage in uV
1734 * @max_uV: Maximum acceptable voltage in uV
1735 *
1736 * Sets a voltage regulator to the desired output voltage. This can be set
1737 * during any regulator state. IOW, regulator can be disabled or enabled.
1738 *
1739 * If the regulator is enabled then the voltage will change to the new value
1740 * immediately otherwise if the regulator is disabled the regulator will
1741 * output at the new voltage when enabled.
1742 *
1743 * NOTE: If the regulator is shared between several devices then the lowest
1744 * request voltage that meets the system constraints will be used.
1745 * Regulator system constraints must be set for this regulator before
1746 * calling this function otherwise this call will fail.
1747 */
1748int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1749{
1750	struct regulator_dev *rdev = regulator->rdev;
1751	int ret = 0;
1752
1753	mutex_lock(&rdev->mutex);
1754
1755	/* If we're setting the same range as last time the change
1756	 * should be a noop (some cpufreq implementations use the same
1757	 * voltage for multiple frequencies, for example).
1758	 */
1759	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1760		goto out;
1761
1762	/* sanity check */
1763	if (!rdev->desc->ops->set_voltage &&
1764	    !rdev->desc->ops->set_voltage_sel) {
1765		ret = -EINVAL;
1766		goto out;
1767	}
1768
1769	/* constraints check */
1770	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1771	if (ret < 0)
1772		goto out;
1773	regulator->min_uV = min_uV;
1774	regulator->max_uV = max_uV;
1775
1776	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1777	if (ret < 0)
1778		goto out;
1779
1780	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1781
1782out:
1783	mutex_unlock(&rdev->mutex);
1784	return ret;
1785}
1786EXPORT_SYMBOL_GPL(regulator_set_voltage);
1787
1788/**
1789 * regulator_set_voltage_time - get raise/fall time
1790 * @regulator: regulator source
1791 * @old_uV: starting voltage in microvolts
1792 * @new_uV: target voltage in microvolts
1793 *
1794 * Provided with the starting and ending voltage, this function attempts to
1795 * calculate the time in microseconds required to rise or fall to this new
1796 * voltage.
1797 */
1798int regulator_set_voltage_time(struct regulator *regulator,
1799			       int old_uV, int new_uV)
1800{
1801	struct regulator_dev	*rdev = regulator->rdev;
1802	struct regulator_ops	*ops = rdev->desc->ops;
1803	int old_sel = -1;
1804	int new_sel = -1;
1805	int voltage;
1806	int i;
1807
1808	/* Currently requires operations to do this */
1809	if (!ops->list_voltage || !ops->set_voltage_time_sel
1810	    || !rdev->desc->n_voltages)
1811		return -EINVAL;
1812
1813	for (i = 0; i < rdev->desc->n_voltages; i++) {
1814		/* We only look for exact voltage matches here */
1815		voltage = regulator_list_voltage(regulator, i);
1816		if (voltage < 0)
1817			return -EINVAL;
1818		if (voltage == 0)
1819			continue;
1820		if (voltage == old_uV)
1821			old_sel = i;
1822		if (voltage == new_uV)
1823			new_sel = i;
1824	}
1825
1826	if (old_sel < 0 || new_sel < 0)
1827		return -EINVAL;
1828
1829	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1830}
1831EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1832
1833/**
1834 * regulator_sync_voltage - re-apply last regulator output voltage
1835 * @regulator: regulator source
1836 *
1837 * Re-apply the last configured voltage.  This is intended to be used
1838 * where some external control source the consumer is cooperating with
1839 * has caused the configured voltage to change.
1840 */
1841int regulator_sync_voltage(struct regulator *regulator)
1842{
1843	struct regulator_dev *rdev = regulator->rdev;
1844	int ret, min_uV, max_uV;
1845
1846	mutex_lock(&rdev->mutex);
1847
1848	if (!rdev->desc->ops->set_voltage &&
1849	    !rdev->desc->ops->set_voltage_sel) {
1850		ret = -EINVAL;
1851		goto out;
1852	}
1853
1854	/* This is only going to work if we've had a voltage configured. */
1855	if (!regulator->min_uV && !regulator->max_uV) {
1856		ret = -EINVAL;
1857		goto out;
1858	}
1859
1860	min_uV = regulator->min_uV;
1861	max_uV = regulator->max_uV;
1862
1863	/* This should be a paranoia check... */
1864	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1865	if (ret < 0)
1866		goto out;
1867
1868	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1869	if (ret < 0)
1870		goto out;
1871
1872	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1873
1874out:
1875	mutex_unlock(&rdev->mutex);
1876	return ret;
1877}
1878EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1879
1880static int _regulator_get_voltage(struct regulator_dev *rdev)
1881{
1882	int sel, ret;
1883
1884	if (rdev->desc->ops->get_voltage_sel) {
1885		sel = rdev->desc->ops->get_voltage_sel(rdev);
1886		if (sel < 0)
1887			return sel;
1888		ret = rdev->desc->ops->list_voltage(rdev, sel);
1889	}
1890	if (rdev->desc->ops->get_voltage)
1891		ret = rdev->desc->ops->get_voltage(rdev);
1892	else
1893		return -EINVAL;
1894
1895	return ret - rdev->constraints->uV_offset;
1896}
1897
1898/**
1899 * regulator_get_voltage - get regulator output voltage
1900 * @regulator: regulator source
1901 *
1902 * This returns the current regulator voltage in uV.
1903 *
1904 * NOTE: If the regulator is disabled it will return the voltage value. This
1905 * function should not be used to determine regulator state.
1906 */
1907int regulator_get_voltage(struct regulator *regulator)
1908{
1909	int ret;
1910
1911	mutex_lock(&regulator->rdev->mutex);
1912
1913	ret = _regulator_get_voltage(regulator->rdev);
1914
1915	mutex_unlock(&regulator->rdev->mutex);
1916
1917	return ret;
1918}
1919EXPORT_SYMBOL_GPL(regulator_get_voltage);
1920
1921/**
1922 * regulator_set_current_limit - set regulator output current limit
1923 * @regulator: regulator source
1924 * @min_uA: Minimuum supported current in uA
1925 * @max_uA: Maximum supported current in uA
1926 *
1927 * Sets current sink to the desired output current. This can be set during
1928 * any regulator state. IOW, regulator can be disabled or enabled.
1929 *
1930 * If the regulator is enabled then the current will change to the new value
1931 * immediately otherwise if the regulator is disabled the regulator will
1932 * output at the new current when enabled.
1933 *
1934 * NOTE: Regulator system constraints must be set for this regulator before
1935 * calling this function otherwise this call will fail.
1936 */
1937int regulator_set_current_limit(struct regulator *regulator,
1938			       int min_uA, int max_uA)
1939{
1940	struct regulator_dev *rdev = regulator->rdev;
1941	int ret;
1942
1943	mutex_lock(&rdev->mutex);
1944
1945	/* sanity check */
1946	if (!rdev->desc->ops->set_current_limit) {
1947		ret = -EINVAL;
1948		goto out;
1949	}
1950
1951	/* constraints check */
1952	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1953	if (ret < 0)
1954		goto out;
1955
1956	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1957out:
1958	mutex_unlock(&rdev->mutex);
1959	return ret;
1960}
1961EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1962
1963static int _regulator_get_current_limit(struct regulator_dev *rdev)
1964{
1965	int ret;
1966
1967	mutex_lock(&rdev->mutex);
1968
1969	/* sanity check */
1970	if (!rdev->desc->ops->get_current_limit) {
1971		ret = -EINVAL;
1972		goto out;
1973	}
1974
1975	ret = rdev->desc->ops->get_current_limit(rdev);
1976out:
1977	mutex_unlock(&rdev->mutex);
1978	return ret;
1979}
1980
1981/**
1982 * regulator_get_current_limit - get regulator output current
1983 * @regulator: regulator source
1984 *
1985 * This returns the current supplied by the specified current sink in uA.
1986 *
1987 * NOTE: If the regulator is disabled it will return the current value. This
1988 * function should not be used to determine regulator state.
1989 */
1990int regulator_get_current_limit(struct regulator *regulator)
1991{
1992	return _regulator_get_current_limit(regulator->rdev);
1993}
1994EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1995
1996/**
1997 * regulator_set_mode - set regulator operating mode
1998 * @regulator: regulator source
1999 * @mode: operating mode - one of the REGULATOR_MODE constants
2000 *
2001 * Set regulator operating mode to increase regulator efficiency or improve
2002 * regulation performance.
2003 *
2004 * NOTE: Regulator system constraints must be set for this regulator before
2005 * calling this function otherwise this call will fail.
2006 */
2007int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2008{
2009	struct regulator_dev *rdev = regulator->rdev;
2010	int ret;
2011	int regulator_curr_mode;
2012
2013	mutex_lock(&rdev->mutex);
2014
2015	/* sanity check */
2016	if (!rdev->desc->ops->set_mode) {
2017		ret = -EINVAL;
2018		goto out;
2019	}
2020
2021	/* return if the same mode is requested */
2022	if (rdev->desc->ops->get_mode) {
2023		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2024		if (regulator_curr_mode == mode) {
2025			ret = 0;
2026			goto out;
2027		}
2028	}
2029
2030	/* constraints check */
2031	ret = regulator_mode_constrain(rdev, &mode);
2032	if (ret < 0)
2033		goto out;
2034
2035	ret = rdev->desc->ops->set_mode(rdev, mode);
2036out:
2037	mutex_unlock(&rdev->mutex);
2038	return ret;
2039}
2040EXPORT_SYMBOL_GPL(regulator_set_mode);
2041
2042static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2043{
2044	int ret;
2045
2046	mutex_lock(&rdev->mutex);
2047
2048	/* sanity check */
2049	if (!rdev->desc->ops->get_mode) {
2050		ret = -EINVAL;
2051		goto out;
2052	}
2053
2054	ret = rdev->desc->ops->get_mode(rdev);
2055out:
2056	mutex_unlock(&rdev->mutex);
2057	return ret;
2058}
2059
2060/**
2061 * regulator_get_mode - get regulator operating mode
2062 * @regulator: regulator source
2063 *
2064 * Get the current regulator operating mode.
2065 */
2066unsigned int regulator_get_mode(struct regulator *regulator)
2067{
2068	return _regulator_get_mode(regulator->rdev);
2069}
2070EXPORT_SYMBOL_GPL(regulator_get_mode);
2071
2072/**
2073 * regulator_set_optimum_mode - set regulator optimum operating mode
2074 * @regulator: regulator source
2075 * @uA_load: load current
2076 *
2077 * Notifies the regulator core of a new device load. This is then used by
2078 * DRMS (if enabled by constraints) to set the most efficient regulator
2079 * operating mode for the new regulator loading.
2080 *
2081 * Consumer devices notify their supply regulator of the maximum power
2082 * they will require (can be taken from device datasheet in the power
2083 * consumption tables) when they change operational status and hence power
2084 * state. Examples of operational state changes that can affect power
2085 * consumption are :-
2086 *
2087 *    o Device is opened / closed.
2088 *    o Device I/O is about to begin or has just finished.
2089 *    o Device is idling in between work.
2090 *
2091 * This information is also exported via sysfs to userspace.
2092 *
2093 * DRMS will sum the total requested load on the regulator and change
2094 * to the most efficient operating mode if platform constraints allow.
2095 *
2096 * Returns the new regulator mode or error.
2097 */
2098int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2099{
2100	struct regulator_dev *rdev = regulator->rdev;
2101	struct regulator *consumer;
2102	int ret, output_uV, input_uV, total_uA_load = 0;
2103	unsigned int mode;
2104
2105	mutex_lock(&rdev->mutex);
2106
2107	/*
2108	 * first check to see if we can set modes at all, otherwise just
2109	 * tell the consumer everything is OK.
2110	 */
2111	regulator->uA_load = uA_load;
2112	ret = regulator_check_drms(rdev);
2113	if (ret < 0) {
2114		ret = 0;
2115		goto out;
2116	}
2117
2118	if (!rdev->desc->ops->get_optimum_mode)
2119		goto out;
2120
2121	/*
2122	 * we can actually do this so any errors are indicators of
2123	 * potential real failure.
2124	 */
2125	ret = -EINVAL;
2126
2127	/* get output voltage */
2128	output_uV = _regulator_get_voltage(rdev);
2129	if (output_uV <= 0) {
2130		rdev_err(rdev, "invalid output voltage found\n");
2131		goto out;
2132	}
2133
2134	/* get input voltage */
2135	input_uV = 0;
2136	if (rdev->supply)
2137		input_uV = _regulator_get_voltage(rdev->supply);
2138	if (input_uV <= 0)
2139		input_uV = rdev->constraints->input_uV;
2140	if (input_uV <= 0) {
2141		rdev_err(rdev, "invalid input voltage found\n");
2142		goto out;
2143	}
2144
2145	/* calc total requested load for this regulator */
2146	list_for_each_entry(consumer, &rdev->consumer_list, list)
2147		total_uA_load += consumer->uA_load;
2148
2149	mode = rdev->desc->ops->get_optimum_mode(rdev,
2150						 input_uV, output_uV,
2151						 total_uA_load);
2152	ret = regulator_mode_constrain(rdev, &mode);
2153	if (ret < 0) {
2154		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2155			 total_uA_load, input_uV, output_uV);
2156		goto out;
2157	}
2158
2159	ret = rdev->desc->ops->set_mode(rdev, mode);
2160	if (ret < 0) {
2161		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2162		goto out;
2163	}
2164	ret = mode;
2165out:
2166	mutex_unlock(&rdev->mutex);
2167	return ret;
2168}
2169EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2170
2171/**
2172 * regulator_register_notifier - register regulator event notifier
2173 * @regulator: regulator source
2174 * @nb: notifier block
2175 *
2176 * Register notifier block to receive regulator events.
2177 */
2178int regulator_register_notifier(struct regulator *regulator,
2179			      struct notifier_block *nb)
2180{
2181	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2182						nb);
2183}
2184EXPORT_SYMBOL_GPL(regulator_register_notifier);
2185
2186/**
2187 * regulator_unregister_notifier - unregister regulator event notifier
2188 * @regulator: regulator source
2189 * @nb: notifier block
2190 *
2191 * Unregister regulator event notifier block.
2192 */
2193int regulator_unregister_notifier(struct regulator *regulator,
2194				struct notifier_block *nb)
2195{
2196	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2197						  nb);
2198}
2199EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2200
2201/* notify regulator consumers and downstream regulator consumers.
2202 * Note mutex must be held by caller.
2203 */
2204static void _notifier_call_chain(struct regulator_dev *rdev,
2205				  unsigned long event, void *data)
2206{
2207	struct regulator_dev *_rdev;
2208
2209	/* call rdev chain first */
2210	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2211
2212	/* now notify regulator we supply */
2213	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2214		mutex_lock(&_rdev->mutex);
2215		_notifier_call_chain(_rdev, event, data);
2216		mutex_unlock(&_rdev->mutex);
2217	}
2218}
2219
2220/**
2221 * regulator_bulk_get - get multiple regulator consumers
2222 *
2223 * @dev:           Device to supply
2224 * @num_consumers: Number of consumers to register
2225 * @consumers:     Configuration of consumers; clients are stored here.
2226 *
2227 * @return 0 on success, an errno on failure.
2228 *
2229 * This helper function allows drivers to get several regulator
2230 * consumers in one operation.  If any of the regulators cannot be
2231 * acquired then any regulators that were allocated will be freed
2232 * before returning to the caller.
2233 */
2234int regulator_bulk_get(struct device *dev, int num_consumers,
2235		       struct regulator_bulk_data *consumers)
2236{
2237	int i;
2238	int ret;
2239
2240	for (i = 0; i < num_consumers; i++)
2241		consumers[i].consumer = NULL;
2242
2243	for (i = 0; i < num_consumers; i++) {
2244		consumers[i].consumer = regulator_get(dev,
2245						      consumers[i].supply);
2246		if (IS_ERR(consumers[i].consumer)) {
2247			ret = PTR_ERR(consumers[i].consumer);
2248			dev_err(dev, "Failed to get supply '%s': %d\n",
2249				consumers[i].supply, ret);
2250			consumers[i].consumer = NULL;
2251			goto err;
2252		}
2253	}
2254
2255	return 0;
2256
2257err:
2258	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2259		regulator_put(consumers[i].consumer);
2260
2261	return ret;
2262}
2263EXPORT_SYMBOL_GPL(regulator_bulk_get);
2264
2265/**
2266 * regulator_bulk_enable - enable multiple regulator consumers
2267 *
2268 * @num_consumers: Number of consumers
2269 * @consumers:     Consumer data; clients are stored here.
2270 * @return         0 on success, an errno on failure
2271 *
2272 * This convenience API allows consumers to enable multiple regulator
2273 * clients in a single API call.  If any consumers cannot be enabled
2274 * then any others that were enabled will be disabled again prior to
2275 * return.
2276 */
2277int regulator_bulk_enable(int num_consumers,
2278			  struct regulator_bulk_data *consumers)
2279{
2280	int i;
2281	int ret;
2282
2283	for (i = 0; i < num_consumers; i++) {
2284		ret = regulator_enable(consumers[i].consumer);
2285		if (ret != 0)
2286			goto err;
2287	}
2288
2289	return 0;
2290
2291err:
2292	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2293	for (--i; i >= 0; --i)
2294		regulator_disable(consumers[i].consumer);
2295
2296	return ret;
2297}
2298EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2299
2300/**
2301 * regulator_bulk_disable - disable multiple regulator consumers
2302 *
2303 * @num_consumers: Number of consumers
2304 * @consumers:     Consumer data; clients are stored here.
2305 * @return         0 on success, an errno on failure
2306 *
2307 * This convenience API allows consumers to disable multiple regulator
2308 * clients in a single API call.  If any consumers cannot be enabled
2309 * then any others that were disabled will be disabled again prior to
2310 * return.
2311 */
2312int regulator_bulk_disable(int num_consumers,
2313			   struct regulator_bulk_data *consumers)
2314{
2315	int i;
2316	int ret;
2317
2318	for (i = 0; i < num_consumers; i++) {
2319		ret = regulator_disable(consumers[i].consumer);
2320		if (ret != 0)
2321			goto err;
2322	}
2323
2324	return 0;
2325
2326err:
2327	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2328	for (--i; i >= 0; --i)
2329		regulator_enable(consumers[i].consumer);
2330
2331	return ret;
2332}
2333EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2334
2335/**
2336 * regulator_bulk_free - free multiple regulator consumers
2337 *
2338 * @num_consumers: Number of consumers
2339 * @consumers:     Consumer data; clients are stored here.
2340 *
2341 * This convenience API allows consumers to free multiple regulator
2342 * clients in a single API call.
2343 */
2344void regulator_bulk_free(int num_consumers,
2345			 struct regulator_bulk_data *consumers)
2346{
2347	int i;
2348
2349	for (i = 0; i < num_consumers; i++) {
2350		regulator_put(consumers[i].consumer);
2351		consumers[i].consumer = NULL;
2352	}
2353}
2354EXPORT_SYMBOL_GPL(regulator_bulk_free);
2355
2356/**
2357 * regulator_notifier_call_chain - call regulator event notifier
2358 * @rdev: regulator source
2359 * @event: notifier block
2360 * @data: callback-specific data.
2361 *
2362 * Called by regulator drivers to notify clients a regulator event has
2363 * occurred. We also notify regulator clients downstream.
2364 * Note lock must be held by caller.
2365 */
2366int regulator_notifier_call_chain(struct regulator_dev *rdev,
2367				  unsigned long event, void *data)
2368{
2369	_notifier_call_chain(rdev, event, data);
2370	return NOTIFY_DONE;
2371
2372}
2373EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2374
2375/**
2376 * regulator_mode_to_status - convert a regulator mode into a status
2377 *
2378 * @mode: Mode to convert
2379 *
2380 * Convert a regulator mode into a status.
2381 */
2382int regulator_mode_to_status(unsigned int mode)
2383{
2384	switch (mode) {
2385	case REGULATOR_MODE_FAST:
2386		return REGULATOR_STATUS_FAST;
2387	case REGULATOR_MODE_NORMAL:
2388		return REGULATOR_STATUS_NORMAL;
2389	case REGULATOR_MODE_IDLE:
2390		return REGULATOR_STATUS_IDLE;
2391	case REGULATOR_STATUS_STANDBY:
2392		return REGULATOR_STATUS_STANDBY;
2393	default:
2394		return 0;
2395	}
2396}
2397EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2398
2399/*
2400 * To avoid cluttering sysfs (and memory) with useless state, only
2401 * create attributes that can be meaningfully displayed.
2402 */
2403static int add_regulator_attributes(struct regulator_dev *rdev)
2404{
2405	struct device		*dev = &rdev->dev;
2406	struct regulator_ops	*ops = rdev->desc->ops;
2407	int			status = 0;
2408
2409	/* some attributes need specific methods to be displayed */
2410	if (ops->get_voltage || ops->get_voltage_sel) {
2411		status = device_create_file(dev, &dev_attr_microvolts);
2412		if (status < 0)
2413			return status;
2414	}
2415	if (ops->get_current_limit) {
2416		status = device_create_file(dev, &dev_attr_microamps);
2417		if (status < 0)
2418			return status;
2419	}
2420	if (ops->get_mode) {
2421		status = device_create_file(dev, &dev_attr_opmode);
2422		if (status < 0)
2423			return status;
2424	}
2425	if (ops->is_enabled) {
2426		status = device_create_file(dev, &dev_attr_state);
2427		if (status < 0)
2428			return status;
2429	}
2430	if (ops->get_status) {
2431		status = device_create_file(dev, &dev_attr_status);
2432		if (status < 0)
2433			return status;
2434	}
2435
2436	/* some attributes are type-specific */
2437	if (rdev->desc->type == REGULATOR_CURRENT) {
2438		status = device_create_file(dev, &dev_attr_requested_microamps);
2439		if (status < 0)
2440			return status;
2441	}
2442
2443	/* all the other attributes exist to support constraints;
2444	 * don't show them if there are no constraints, or if the
2445	 * relevant supporting methods are missing.
2446	 */
2447	if (!rdev->constraints)
2448		return status;
2449
2450	/* constraints need specific supporting methods */
2451	if (ops->set_voltage || ops->set_voltage_sel) {
2452		status = device_create_file(dev, &dev_attr_min_microvolts);
2453		if (status < 0)
2454			return status;
2455		status = device_create_file(dev, &dev_attr_max_microvolts);
2456		if (status < 0)
2457			return status;
2458	}
2459	if (ops->set_current_limit) {
2460		status = device_create_file(dev, &dev_attr_min_microamps);
2461		if (status < 0)
2462			return status;
2463		status = device_create_file(dev, &dev_attr_max_microamps);
2464		if (status < 0)
2465			return status;
2466	}
2467
2468	/* suspend mode constraints need multiple supporting methods */
2469	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2470		return status;
2471
2472	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2473	if (status < 0)
2474		return status;
2475	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2476	if (status < 0)
2477		return status;
2478	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2479	if (status < 0)
2480		return status;
2481
2482	if (ops->set_suspend_voltage) {
2483		status = device_create_file(dev,
2484				&dev_attr_suspend_standby_microvolts);
2485		if (status < 0)
2486			return status;
2487		status = device_create_file(dev,
2488				&dev_attr_suspend_mem_microvolts);
2489		if (status < 0)
2490			return status;
2491		status = device_create_file(dev,
2492				&dev_attr_suspend_disk_microvolts);
2493		if (status < 0)
2494			return status;
2495	}
2496
2497	if (ops->set_suspend_mode) {
2498		status = device_create_file(dev,
2499				&dev_attr_suspend_standby_mode);
2500		if (status < 0)
2501			return status;
2502		status = device_create_file(dev,
2503				&dev_attr_suspend_mem_mode);
2504		if (status < 0)
2505			return status;
2506		status = device_create_file(dev,
2507				&dev_attr_suspend_disk_mode);
2508		if (status < 0)
2509			return status;
2510	}
2511
2512	return status;
2513}
2514
2515static void rdev_init_debugfs(struct regulator_dev *rdev)
2516{
2517#ifdef CONFIG_DEBUG_FS
2518	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2519	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2520		rdev_warn(rdev, "Failed to create debugfs directory\n");
2521		rdev->debugfs = NULL;
2522		return;
2523	}
2524
2525	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2526			   &rdev->use_count);
2527	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2528			   &rdev->open_count);
2529#endif
2530}
2531
2532/**
2533 * regulator_register - register regulator
2534 * @regulator_desc: regulator to register
2535 * @dev: struct device for the regulator
2536 * @init_data: platform provided init data, passed through by driver
2537 * @driver_data: private regulator data
2538 *
2539 * Called by regulator drivers to register a regulator.
2540 * Returns 0 on success.
2541 */
2542struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2543	struct device *dev, const struct regulator_init_data *init_data,
2544	void *driver_data)
2545{
2546	static atomic_t regulator_no = ATOMIC_INIT(0);
2547	struct regulator_dev *rdev;
2548	int ret, i;
2549
2550	if (regulator_desc == NULL)
2551		return ERR_PTR(-EINVAL);
2552
2553	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2554		return ERR_PTR(-EINVAL);
2555
2556	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2557	    regulator_desc->type != REGULATOR_CURRENT)
2558		return ERR_PTR(-EINVAL);
2559
2560	if (!init_data)
2561		return ERR_PTR(-EINVAL);
2562
2563	/* Only one of each should be implemented */
2564	WARN_ON(regulator_desc->ops->get_voltage &&
2565		regulator_desc->ops->get_voltage_sel);
2566	WARN_ON(regulator_desc->ops->set_voltage &&
2567		regulator_desc->ops->set_voltage_sel);
2568
2569	/* If we're using selectors we must implement list_voltage. */
2570	if (regulator_desc->ops->get_voltage_sel &&
2571	    !regulator_desc->ops->list_voltage) {
2572		return ERR_PTR(-EINVAL);
2573	}
2574	if (regulator_desc->ops->set_voltage_sel &&
2575	    !regulator_desc->ops->list_voltage) {
2576		return ERR_PTR(-EINVAL);
2577	}
2578
2579	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2580	if (rdev == NULL)
2581		return ERR_PTR(-ENOMEM);
2582
2583	mutex_lock(&regulator_list_mutex);
2584
2585	mutex_init(&rdev->mutex);
2586	rdev->reg_data = driver_data;
2587	rdev->owner = regulator_desc->owner;
2588	rdev->desc = regulator_desc;
2589	INIT_LIST_HEAD(&rdev->consumer_list);
2590	INIT_LIST_HEAD(&rdev->supply_list);
2591	INIT_LIST_HEAD(&rdev->list);
2592	INIT_LIST_HEAD(&rdev->slist);
2593	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2594
2595	/* preform any regulator specific init */
2596	if (init_data->regulator_init) {
2597		ret = init_data->regulator_init(rdev->reg_data);
2598		if (ret < 0)
2599			goto clean;
2600	}
2601
2602	/* register with sysfs */
2603	rdev->dev.class = &regulator_class;
2604	rdev->dev.parent = dev;
2605	dev_set_name(&rdev->dev, "regulator.%d",
2606		     atomic_inc_return(&regulator_no) - 1);
2607	ret = device_register(&rdev->dev);
2608	if (ret != 0) {
2609		put_device(&rdev->dev);
2610		goto clean;
2611	}
2612
2613	dev_set_drvdata(&rdev->dev, rdev);
2614
2615	/* set regulator constraints */
2616	ret = set_machine_constraints(rdev, &init_data->constraints);
2617	if (ret < 0)
2618		goto scrub;
2619
2620	/* add attributes supported by this regulator */
2621	ret = add_regulator_attributes(rdev);
2622	if (ret < 0)
2623		goto scrub;
2624
2625	if (init_data->supply_regulator) {
2626		struct regulator_dev *r;
2627		int found = 0;
2628
2629		list_for_each_entry(r, &regulator_list, list) {
2630			if (strcmp(rdev_get_name(r),
2631				   init_data->supply_regulator) == 0) {
2632				found = 1;
2633				break;
2634			}
2635		}
2636
2637		if (!found) {
2638			dev_err(dev, "Failed to find supply %s\n",
2639				init_data->supply_regulator);
2640			ret = -ENODEV;
2641			goto scrub;
2642		}
2643
2644		ret = set_supply(rdev, r);
2645		if (ret < 0)
2646			goto scrub;
2647	}
2648
2649	/* add consumers devices */
2650	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2651		ret = set_consumer_device_supply(rdev,
2652			init_data->consumer_supplies[i].dev,
2653			init_data->consumer_supplies[i].dev_name,
2654			init_data->consumer_supplies[i].supply);
2655		if (ret < 0) {
2656			dev_err(dev, "Failed to set supply %s\n",
2657				init_data->consumer_supplies[i].supply);
2658			goto unset_supplies;
2659		}
2660	}
2661
2662	list_add(&rdev->list, &regulator_list);
2663
2664	rdev_init_debugfs(rdev);
2665out:
2666	mutex_unlock(&regulator_list_mutex);
2667	return rdev;
2668
2669unset_supplies:
2670	unset_regulator_supplies(rdev);
2671
2672scrub:
2673	device_unregister(&rdev->dev);
2674	/* device core frees rdev */
2675	rdev = ERR_PTR(ret);
2676	goto out;
2677
2678clean:
2679	kfree(rdev);
2680	rdev = ERR_PTR(ret);
2681	goto out;
2682}
2683EXPORT_SYMBOL_GPL(regulator_register);
2684
2685/**
2686 * regulator_unregister - unregister regulator
2687 * @rdev: regulator to unregister
2688 *
2689 * Called by regulator drivers to unregister a regulator.
2690 */
2691void regulator_unregister(struct regulator_dev *rdev)
2692{
2693	if (rdev == NULL)
2694		return;
2695
2696	mutex_lock(&regulator_list_mutex);
2697#ifdef CONFIG_DEBUG_FS
2698	debugfs_remove_recursive(rdev->debugfs);
2699#endif
2700	WARN_ON(rdev->open_count);
2701	unset_regulator_supplies(rdev);
2702	list_del(&rdev->list);
2703	if (rdev->supply)
2704		sysfs_remove_link(&rdev->dev.kobj, "supply");
2705	device_unregister(&rdev->dev);
2706	kfree(rdev->constraints);
2707	mutex_unlock(&regulator_list_mutex);
2708}
2709EXPORT_SYMBOL_GPL(regulator_unregister);
2710
2711/**
2712 * regulator_suspend_prepare - prepare regulators for system wide suspend
2713 * @state: system suspend state
2714 *
2715 * Configure each regulator with it's suspend operating parameters for state.
2716 * This will usually be called by machine suspend code prior to supending.
2717 */
2718int regulator_suspend_prepare(suspend_state_t state)
2719{
2720	struct regulator_dev *rdev;
2721	int ret = 0;
2722
2723	/* ON is handled by regulator active state */
2724	if (state == PM_SUSPEND_ON)
2725		return -EINVAL;
2726
2727	mutex_lock(&regulator_list_mutex);
2728	list_for_each_entry(rdev, &regulator_list, list) {
2729
2730		mutex_lock(&rdev->mutex);
2731		ret = suspend_prepare(rdev, state);
2732		mutex_unlock(&rdev->mutex);
2733
2734		if (ret < 0) {
2735			rdev_err(rdev, "failed to prepare\n");
2736			goto out;
2737		}
2738	}
2739out:
2740	mutex_unlock(&regulator_list_mutex);
2741	return ret;
2742}
2743EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2744
2745/**
2746 * regulator_suspend_finish - resume regulators from system wide suspend
2747 *
2748 * Turn on regulators that might be turned off by regulator_suspend_prepare
2749 * and that should be turned on according to the regulators properties.
2750 */
2751int regulator_suspend_finish(void)
2752{
2753	struct regulator_dev *rdev;
2754	int ret = 0, error;
2755
2756	mutex_lock(&regulator_list_mutex);
2757	list_for_each_entry(rdev, &regulator_list, list) {
2758		struct regulator_ops *ops = rdev->desc->ops;
2759
2760		mutex_lock(&rdev->mutex);
2761		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2762				ops->enable) {
2763			error = ops->enable(rdev);
2764			if (error)
2765				ret = error;
2766		} else {
2767			if (!has_full_constraints)
2768				goto unlock;
2769			if (!ops->disable)
2770				goto unlock;
2771			if (ops->is_enabled && !ops->is_enabled(rdev))
2772				goto unlock;
2773
2774			error = ops->disable(rdev);
2775			if (error)
2776				ret = error;
2777		}
2778unlock:
2779		mutex_unlock(&rdev->mutex);
2780	}
2781	mutex_unlock(&regulator_list_mutex);
2782	return ret;
2783}
2784EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2785
2786/**
2787 * regulator_has_full_constraints - the system has fully specified constraints
2788 *
2789 * Calling this function will cause the regulator API to disable all
2790 * regulators which have a zero use count and don't have an always_on
2791 * constraint in a late_initcall.
2792 *
2793 * The intention is that this will become the default behaviour in a
2794 * future kernel release so users are encouraged to use this facility
2795 * now.
2796 */
2797void regulator_has_full_constraints(void)
2798{
2799	has_full_constraints = 1;
2800}
2801EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2802
2803/**
2804 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2805 *
2806 * Calling this function will cause the regulator API to provide a
2807 * dummy regulator to consumers if no physical regulator is found,
2808 * allowing most consumers to proceed as though a regulator were
2809 * configured.  This allows systems such as those with software
2810 * controllable regulators for the CPU core only to be brought up more
2811 * readily.
2812 */
2813void regulator_use_dummy_regulator(void)
2814{
2815	board_wants_dummy_regulator = true;
2816}
2817EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2818
2819/**
2820 * rdev_get_drvdata - get rdev regulator driver data
2821 * @rdev: regulator
2822 *
2823 * Get rdev regulator driver private data. This call can be used in the
2824 * regulator driver context.
2825 */
2826void *rdev_get_drvdata(struct regulator_dev *rdev)
2827{
2828	return rdev->reg_data;
2829}
2830EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2831
2832/**
2833 * regulator_get_drvdata - get regulator driver data
2834 * @regulator: regulator
2835 *
2836 * Get regulator driver private data. This call can be used in the consumer
2837 * driver context when non API regulator specific functions need to be called.
2838 */
2839void *regulator_get_drvdata(struct regulator *regulator)
2840{
2841	return regulator->rdev->reg_data;
2842}
2843EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2844
2845/**
2846 * regulator_set_drvdata - set regulator driver data
2847 * @regulator: regulator
2848 * @data: data
2849 */
2850void regulator_set_drvdata(struct regulator *regulator, void *data)
2851{
2852	regulator->rdev->reg_data = data;
2853}
2854EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2855
2856/**
2857 * regulator_get_id - get regulator ID
2858 * @rdev: regulator
2859 */
2860int rdev_get_id(struct regulator_dev *rdev)
2861{
2862	return rdev->desc->id;
2863}
2864EXPORT_SYMBOL_GPL(rdev_get_id);
2865
2866struct device *rdev_get_dev(struct regulator_dev *rdev)
2867{
2868	return &rdev->dev;
2869}
2870EXPORT_SYMBOL_GPL(rdev_get_dev);
2871
2872void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2873{
2874	return reg_init_data->driver_data;
2875}
2876EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2877
2878static int __init regulator_init(void)
2879{
2880	int ret;
2881
2882	ret = class_register(&regulator_class);
2883
2884#ifdef CONFIG_DEBUG_FS
2885	debugfs_root = debugfs_create_dir("regulator", NULL);
2886	if (IS_ERR(debugfs_root) || !debugfs_root) {
2887		pr_warn("regulator: Failed to create debugfs directory\n");
2888		debugfs_root = NULL;
2889	}
2890#endif
2891
2892	regulator_dummy_init();
2893
2894	return ret;
2895}
2896
2897/* init early to allow our consumers to complete system booting */
2898core_initcall(regulator_init);
2899
2900static int __init regulator_init_complete(void)
2901{
2902	struct regulator_dev *rdev;
2903	struct regulator_ops *ops;
2904	struct regulation_constraints *c;
2905	int enabled, ret;
2906
2907	mutex_lock(&regulator_list_mutex);
2908
2909	/* If we have a full configuration then disable any regulators
2910	 * which are not in use or always_on.  This will become the
2911	 * default behaviour in the future.
2912	 */
2913	list_for_each_entry(rdev, &regulator_list, list) {
2914		ops = rdev->desc->ops;
2915		c = rdev->constraints;
2916
2917		if (!ops->disable || (c && c->always_on))
2918			continue;
2919
2920		mutex_lock(&rdev->mutex);
2921
2922		if (rdev->use_count)
2923			goto unlock;
2924
2925		/* If we can't read the status assume it's on. */
2926		if (ops->is_enabled)
2927			enabled = ops->is_enabled(rdev);
2928		else
2929			enabled = 1;
2930
2931		if (!enabled)
2932			goto unlock;
2933
2934		if (has_full_constraints) {
2935			/* We log since this may kill the system if it
2936			 * goes wrong. */
2937			rdev_info(rdev, "disabling\n");
2938			ret = ops->disable(rdev);
2939			if (ret != 0) {
2940				rdev_err(rdev, "couldn't disable: %d\n", ret);
2941			}
2942		} else {
2943			/* The intention is that in future we will
2944			 * assume that full constraints are provided
2945			 * so warn even if we aren't going to do
2946			 * anything here.
2947			 */
2948			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2949		}
2950
2951unlock:
2952		mutex_unlock(&rdev->mutex);
2953	}
2954
2955	mutex_unlock(&regulator_list_mutex);
2956
2957	return 0;
2958}
2959late_initcall(regulator_init_complete);
2960