core.c revision 4ddfebd3b0d5b65c69492408bb67fd1202104643
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static LIST_HEAD(regulator_ena_gpio_list);
55static bool has_full_constraints;
56static bool board_wants_dummy_regulator;
57
58static struct dentry *debugfs_root;
59
60/*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65struct regulator_map {
66	struct list_head list;
67	const char *dev_name;   /* The dev_name() for the consumer */
68	const char *supply;
69	struct regulator_dev *regulator;
70};
71
72/*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77struct regulator_enable_gpio {
78	struct list_head list;
79	int gpio;
80	u32 enable_count;	/* a number of enabled shared GPIO */
81	u32 request_count;	/* a number of requested shared GPIO */
82	unsigned int ena_gpio_invert:1;
83};
84
85/*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90struct regulator {
91	struct device *dev;
92	struct list_head list;
93	unsigned int always_on:1;
94	unsigned int bypass:1;
95	int uA_load;
96	int min_uV;
97	int max_uV;
98	char *supply_name;
99	struct device_attribute dev_attr;
100	struct regulator_dev *rdev;
101	struct dentry *debugfs;
102};
103
104static int _regulator_is_enabled(struct regulator_dev *rdev);
105static int _regulator_disable(struct regulator_dev *rdev);
106static int _regulator_get_voltage(struct regulator_dev *rdev);
107static int _regulator_get_current_limit(struct regulator_dev *rdev);
108static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109static void _notifier_call_chain(struct regulator_dev *rdev,
110				  unsigned long event, void *data);
111static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112				     int min_uV, int max_uV);
113static struct regulator *create_regulator(struct regulator_dev *rdev,
114					  struct device *dev,
115					  const char *supply_name);
116
117static const char *rdev_get_name(struct regulator_dev *rdev)
118{
119	if (rdev->constraints && rdev->constraints->name)
120		return rdev->constraints->name;
121	else if (rdev->desc->name)
122		return rdev->desc->name;
123	else
124		return "";
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		ret = _regulator_do_set_voltage(rdev,
848						rdev->constraints->min_uV,
849						rdev->constraints->max_uV);
850		if (ret < 0) {
851			rdev_err(rdev, "failed to apply %duV constraint\n",
852				 rdev->constraints->min_uV);
853			return ret;
854		}
855	}
856
857	/* constrain machine-level voltage specs to fit
858	 * the actual range supported by this regulator.
859	 */
860	if (ops->list_voltage && rdev->desc->n_voltages) {
861		int	count = rdev->desc->n_voltages;
862		int	i;
863		int	min_uV = INT_MAX;
864		int	max_uV = INT_MIN;
865		int	cmin = constraints->min_uV;
866		int	cmax = constraints->max_uV;
867
868		/* it's safe to autoconfigure fixed-voltage supplies
869		   and the constraints are used by list_voltage. */
870		if (count == 1 && !cmin) {
871			cmin = 1;
872			cmax = INT_MAX;
873			constraints->min_uV = cmin;
874			constraints->max_uV = cmax;
875		}
876
877		/* voltage constraints are optional */
878		if ((cmin == 0) && (cmax == 0))
879			return 0;
880
881		/* else require explicit machine-level constraints */
882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883			rdev_err(rdev, "invalid voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888		for (i = 0; i < count; i++) {
889			int	value;
890
891			value = ops->list_voltage(rdev, i);
892			if (value <= 0)
893				continue;
894
895			/* maybe adjust [min_uV..max_uV] */
896			if (value >= cmin && value < min_uV)
897				min_uV = value;
898			if (value <= cmax && value > max_uV)
899				max_uV = value;
900		}
901
902		/* final: [min_uV..max_uV] valid iff constraints valid */
903		if (max_uV < min_uV) {
904			rdev_err(rdev,
905				 "unsupportable voltage constraints %u-%uuV\n",
906				 min_uV, max_uV);
907			return -EINVAL;
908		}
909
910		/* use regulator's subset of machine constraints */
911		if (constraints->min_uV < min_uV) {
912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913				 constraints->min_uV, min_uV);
914			constraints->min_uV = min_uV;
915		}
916		if (constraints->max_uV > max_uV) {
917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918				 constraints->max_uV, max_uV);
919			constraints->max_uV = max_uV;
920		}
921	}
922
923	return 0;
924}
925
926/**
927 * set_machine_constraints - sets regulator constraints
928 * @rdev: regulator source
929 * @constraints: constraints to apply
930 *
931 * Allows platform initialisation code to define and constrain
932 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933 * Constraints *must* be set by platform code in order for some
934 * regulator operations to proceed i.e. set_voltage, set_current_limit,
935 * set_mode.
936 */
937static int set_machine_constraints(struct regulator_dev *rdev,
938	const struct regulation_constraints *constraints)
939{
940	int ret = 0;
941	struct regulator_ops *ops = rdev->desc->ops;
942
943	if (constraints)
944		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945					    GFP_KERNEL);
946	else
947		rdev->constraints = kzalloc(sizeof(*constraints),
948					    GFP_KERNEL);
949	if (!rdev->constraints)
950		return -ENOMEM;
951
952	ret = machine_constraints_voltage(rdev, rdev->constraints);
953	if (ret != 0)
954		goto out;
955
956	/* do we need to setup our suspend state */
957	if (rdev->constraints->initial_state) {
958		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959		if (ret < 0) {
960			rdev_err(rdev, "failed to set suspend state\n");
961			goto out;
962		}
963	}
964
965	if (rdev->constraints->initial_mode) {
966		if (!ops->set_mode) {
967			rdev_err(rdev, "no set_mode operation\n");
968			ret = -EINVAL;
969			goto out;
970		}
971
972		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973		if (ret < 0) {
974			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975			goto out;
976		}
977	}
978
979	/* If the constraints say the regulator should be on at this point
980	 * and we have control then make sure it is enabled.
981	 */
982	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983	    ops->enable) {
984		ret = ops->enable(rdev);
985		if (ret < 0) {
986			rdev_err(rdev, "failed to enable\n");
987			goto out;
988		}
989	}
990
991	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
992		&& ops->set_ramp_delay) {
993		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
994		if (ret < 0) {
995			rdev_err(rdev, "failed to set ramp_delay\n");
996			goto out;
997		}
998	}
999
1000	print_constraints(rdev);
1001	return 0;
1002out:
1003	kfree(rdev->constraints);
1004	rdev->constraints = NULL;
1005	return ret;
1006}
1007
1008/**
1009 * set_supply - set regulator supply regulator
1010 * @rdev: regulator name
1011 * @supply_rdev: supply regulator name
1012 *
1013 * Called by platform initialisation code to set the supply regulator for this
1014 * regulator. This ensures that a regulators supply will also be enabled by the
1015 * core if it's child is enabled.
1016 */
1017static int set_supply(struct regulator_dev *rdev,
1018		      struct regulator_dev *supply_rdev)
1019{
1020	int err;
1021
1022	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1023
1024	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1025	if (rdev->supply == NULL) {
1026		err = -ENOMEM;
1027		return err;
1028	}
1029	supply_rdev->open_count++;
1030
1031	return 0;
1032}
1033
1034/**
1035 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1036 * @rdev:         regulator source
1037 * @consumer_dev_name: dev_name() string for device supply applies to
1038 * @supply:       symbolic name for supply
1039 *
1040 * Allows platform initialisation code to map physical regulator
1041 * sources to symbolic names for supplies for use by devices.  Devices
1042 * should use these symbolic names to request regulators, avoiding the
1043 * need to provide board-specific regulator names as platform data.
1044 */
1045static int set_consumer_device_supply(struct regulator_dev *rdev,
1046				      const char *consumer_dev_name,
1047				      const char *supply)
1048{
1049	struct regulator_map *node;
1050	int has_dev;
1051
1052	if (supply == NULL)
1053		return -EINVAL;
1054
1055	if (consumer_dev_name != NULL)
1056		has_dev = 1;
1057	else
1058		has_dev = 0;
1059
1060	list_for_each_entry(node, &regulator_map_list, list) {
1061		if (node->dev_name && consumer_dev_name) {
1062			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1063				continue;
1064		} else if (node->dev_name || consumer_dev_name) {
1065			continue;
1066		}
1067
1068		if (strcmp(node->supply, supply) != 0)
1069			continue;
1070
1071		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1072			 consumer_dev_name,
1073			 dev_name(&node->regulator->dev),
1074			 node->regulator->desc->name,
1075			 supply,
1076			 dev_name(&rdev->dev), rdev_get_name(rdev));
1077		return -EBUSY;
1078	}
1079
1080	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1081	if (node == NULL)
1082		return -ENOMEM;
1083
1084	node->regulator = rdev;
1085	node->supply = supply;
1086
1087	if (has_dev) {
1088		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1089		if (node->dev_name == NULL) {
1090			kfree(node);
1091			return -ENOMEM;
1092		}
1093	}
1094
1095	list_add(&node->list, &regulator_map_list);
1096	return 0;
1097}
1098
1099static void unset_regulator_supplies(struct regulator_dev *rdev)
1100{
1101	struct regulator_map *node, *n;
1102
1103	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1104		if (rdev == node->regulator) {
1105			list_del(&node->list);
1106			kfree(node->dev_name);
1107			kfree(node);
1108		}
1109	}
1110}
1111
1112#define REG_STR_SIZE	64
1113
1114static struct regulator *create_regulator(struct regulator_dev *rdev,
1115					  struct device *dev,
1116					  const char *supply_name)
1117{
1118	struct regulator *regulator;
1119	char buf[REG_STR_SIZE];
1120	int err, size;
1121
1122	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1123	if (regulator == NULL)
1124		return NULL;
1125
1126	mutex_lock(&rdev->mutex);
1127	regulator->rdev = rdev;
1128	list_add(&regulator->list, &rdev->consumer_list);
1129
1130	if (dev) {
1131		regulator->dev = dev;
1132
1133		/* Add a link to the device sysfs entry */
1134		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1135				 dev->kobj.name, supply_name);
1136		if (size >= REG_STR_SIZE)
1137			goto overflow_err;
1138
1139		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto overflow_err;
1142
1143		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1144					buf);
1145		if (err) {
1146			rdev_warn(rdev, "could not add device link %s err %d\n",
1147				  dev->kobj.name, err);
1148			/* non-fatal */
1149		}
1150	} else {
1151		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1152		if (regulator->supply_name == NULL)
1153			goto overflow_err;
1154	}
1155
1156	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1157						rdev->debugfs);
1158	if (!regulator->debugfs) {
1159		rdev_warn(rdev, "Failed to create debugfs directory\n");
1160	} else {
1161		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1162				   &regulator->uA_load);
1163		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1164				   &regulator->min_uV);
1165		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1166				   &regulator->max_uV);
1167	}
1168
1169	/*
1170	 * Check now if the regulator is an always on regulator - if
1171	 * it is then we don't need to do nearly so much work for
1172	 * enable/disable calls.
1173	 */
1174	if (!_regulator_can_change_status(rdev) &&
1175	    _regulator_is_enabled(rdev))
1176		regulator->always_on = true;
1177
1178	mutex_unlock(&rdev->mutex);
1179	return regulator;
1180overflow_err:
1181	list_del(&regulator->list);
1182	kfree(regulator);
1183	mutex_unlock(&rdev->mutex);
1184	return NULL;
1185}
1186
1187static int _regulator_get_enable_time(struct regulator_dev *rdev)
1188{
1189	if (!rdev->desc->ops->enable_time)
1190		return rdev->desc->enable_time;
1191	return rdev->desc->ops->enable_time(rdev);
1192}
1193
1194static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1195						  const char *supply,
1196						  int *ret)
1197{
1198	struct regulator_dev *r;
1199	struct device_node *node;
1200	struct regulator_map *map;
1201	const char *devname = NULL;
1202
1203	/* first do a dt based lookup */
1204	if (dev && dev->of_node) {
1205		node = of_get_regulator(dev, supply);
1206		if (node) {
1207			list_for_each_entry(r, &regulator_list, list)
1208				if (r->dev.parent &&
1209					node == r->dev.of_node)
1210					return r;
1211		} else {
1212			/*
1213			 * If we couldn't even get the node then it's
1214			 * not just that the device didn't register
1215			 * yet, there's no node and we'll never
1216			 * succeed.
1217			 */
1218			*ret = -ENODEV;
1219		}
1220	}
1221
1222	/* if not found, try doing it non-dt way */
1223	if (dev)
1224		devname = dev_name(dev);
1225
1226	list_for_each_entry(r, &regulator_list, list)
1227		if (strcmp(rdev_get_name(r), supply) == 0)
1228			return r;
1229
1230	list_for_each_entry(map, &regulator_map_list, list) {
1231		/* If the mapping has a device set up it must match */
1232		if (map->dev_name &&
1233		    (!devname || strcmp(map->dev_name, devname)))
1234			continue;
1235
1236		if (strcmp(map->supply, supply) == 0)
1237			return map->regulator;
1238	}
1239
1240
1241	return NULL;
1242}
1243
1244/* Internal regulator request function */
1245static struct regulator *_regulator_get(struct device *dev, const char *id,
1246					bool exclusive, bool allow_dummy)
1247{
1248	struct regulator_dev *rdev;
1249	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1250	const char *devname = NULL;
1251	int ret = 0;
1252
1253	if (id == NULL) {
1254		pr_err("get() with no identifier\n");
1255		return regulator;
1256	}
1257
1258	if (dev)
1259		devname = dev_name(dev);
1260
1261	mutex_lock(&regulator_list_mutex);
1262
1263	rdev = regulator_dev_lookup(dev, id, &ret);
1264	if (rdev)
1265		goto found;
1266
1267	/*
1268	 * If we have return value from dev_lookup fail, we do not expect to
1269	 * succeed, so, quit with appropriate error value
1270	 */
1271	if (ret && ret != -ENODEV) {
1272		regulator = ERR_PTR(ret);
1273		goto out;
1274	}
1275
1276	if (!devname)
1277		devname = "deviceless";
1278
1279	/*
1280	 * Assume that a regulator is physically present and enabled
1281	 * even if it isn't hooked up and just provide a dummy.
1282	 */
1283	if (has_full_constraints && allow_dummy) {
1284		/*
1285		 * Log the substitution if regulator configuration is
1286		 * not complete to help development.
1287		 */
1288		if (!has_full_constraints)
1289			pr_warn("%s supply %s not found, using dummy regulator\n",
1290				devname, id);
1291
1292		rdev = dummy_regulator_rdev;
1293		goto found;
1294	} else {
1295		dev_err(dev, "dummy supplies not allowed\n");
1296	}
1297
1298	mutex_unlock(&regulator_list_mutex);
1299	return regulator;
1300
1301found:
1302	if (rdev->exclusive) {
1303		regulator = ERR_PTR(-EPERM);
1304		goto out;
1305	}
1306
1307	if (exclusive && rdev->open_count) {
1308		regulator = ERR_PTR(-EBUSY);
1309		goto out;
1310	}
1311
1312	if (!try_module_get(rdev->owner))
1313		goto out;
1314
1315	regulator = create_regulator(rdev, dev, id);
1316	if (regulator == NULL) {
1317		regulator = ERR_PTR(-ENOMEM);
1318		module_put(rdev->owner);
1319		goto out;
1320	}
1321
1322	rdev->open_count++;
1323	if (exclusive) {
1324		rdev->exclusive = 1;
1325
1326		ret = _regulator_is_enabled(rdev);
1327		if (ret > 0)
1328			rdev->use_count = 1;
1329		else
1330			rdev->use_count = 0;
1331	}
1332
1333out:
1334	mutex_unlock(&regulator_list_mutex);
1335
1336	return regulator;
1337}
1338
1339/**
1340 * regulator_get - lookup and obtain a reference to a regulator.
1341 * @dev: device for regulator "consumer"
1342 * @id: Supply name or regulator ID.
1343 *
1344 * Returns a struct regulator corresponding to the regulator producer,
1345 * or IS_ERR() condition containing errno.
1346 *
1347 * Use of supply names configured via regulator_set_device_supply() is
1348 * strongly encouraged.  It is recommended that the supply name used
1349 * should match the name used for the supply and/or the relevant
1350 * device pins in the datasheet.
1351 */
1352struct regulator *regulator_get(struct device *dev, const char *id)
1353{
1354	return _regulator_get(dev, id, false, true);
1355}
1356EXPORT_SYMBOL_GPL(regulator_get);
1357
1358static void devm_regulator_release(struct device *dev, void *res)
1359{
1360	regulator_put(*(struct regulator **)res);
1361}
1362
1363/**
1364 * devm_regulator_get - Resource managed regulator_get()
1365 * @dev: device for regulator "consumer"
1366 * @id: Supply name or regulator ID.
1367 *
1368 * Managed regulator_get(). Regulators returned from this function are
1369 * automatically regulator_put() on driver detach. See regulator_get() for more
1370 * information.
1371 */
1372struct regulator *devm_regulator_get(struct device *dev, const char *id)
1373{
1374	struct regulator **ptr, *regulator;
1375
1376	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1377	if (!ptr)
1378		return ERR_PTR(-ENOMEM);
1379
1380	regulator = regulator_get(dev, id);
1381	if (!IS_ERR(regulator)) {
1382		*ptr = regulator;
1383		devres_add(dev, ptr);
1384	} else {
1385		devres_free(ptr);
1386	}
1387
1388	return regulator;
1389}
1390EXPORT_SYMBOL_GPL(devm_regulator_get);
1391
1392/**
1393 * regulator_get_exclusive - obtain exclusive access to a regulator.
1394 * @dev: device for regulator "consumer"
1395 * @id: Supply name or regulator ID.
1396 *
1397 * Returns a struct regulator corresponding to the regulator producer,
1398 * or IS_ERR() condition containing errno.  Other consumers will be
1399 * unable to obtain this reference is held and the use count for the
1400 * regulator will be initialised to reflect the current state of the
1401 * regulator.
1402 *
1403 * This is intended for use by consumers which cannot tolerate shared
1404 * use of the regulator such as those which need to force the
1405 * regulator off for correct operation of the hardware they are
1406 * controlling.
1407 *
1408 * Use of supply names configured via regulator_set_device_supply() is
1409 * strongly encouraged.  It is recommended that the supply name used
1410 * should match the name used for the supply and/or the relevant
1411 * device pins in the datasheet.
1412 */
1413struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1414{
1415	return _regulator_get(dev, id, true, false);
1416}
1417EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1418
1419/**
1420 * regulator_get_optional - obtain optional access to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.  Other consumers will be
1426 * unable to obtain this reference is held and the use count for the
1427 * regulator will be initialised to reflect the current state of the
1428 * regulator.
1429 *
1430 * This is intended for use by consumers for devices which can have
1431 * some supplies unconnected in normal use, such as some MMC devices.
1432 * It can allow the regulator core to provide stub supplies for other
1433 * supplies requested using normal regulator_get() calls without
1434 * disrupting the operation of drivers that can handle absent
1435 * supplies.
1436 *
1437 * Use of supply names configured via regulator_set_device_supply() is
1438 * strongly encouraged.  It is recommended that the supply name used
1439 * should match the name used for the supply and/or the relevant
1440 * device pins in the datasheet.
1441 */
1442struct regulator *regulator_get_optional(struct device *dev, const char *id)
1443{
1444	return _regulator_get(dev, id, false, false);
1445}
1446EXPORT_SYMBOL_GPL(regulator_get_optional);
1447
1448/**
1449 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1450 * @dev: device for regulator "consumer"
1451 * @id: Supply name or regulator ID.
1452 *
1453 * Managed regulator_get_optional(). Regulators returned from this
1454 * function are automatically regulator_put() on driver detach. See
1455 * regulator_get_optional() for more information.
1456 */
1457struct regulator *devm_regulator_get_optional(struct device *dev,
1458					      const char *id)
1459{
1460	struct regulator **ptr, *regulator;
1461
1462	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1463	if (!ptr)
1464		return ERR_PTR(-ENOMEM);
1465
1466	regulator = regulator_get_optional(dev, id);
1467	if (!IS_ERR(regulator)) {
1468		*ptr = regulator;
1469		devres_add(dev, ptr);
1470	} else {
1471		devres_free(ptr);
1472	}
1473
1474	return regulator;
1475}
1476EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1477
1478/* Locks held by regulator_put() */
1479static void _regulator_put(struct regulator *regulator)
1480{
1481	struct regulator_dev *rdev;
1482
1483	if (regulator == NULL || IS_ERR(regulator))
1484		return;
1485
1486	rdev = regulator->rdev;
1487
1488	debugfs_remove_recursive(regulator->debugfs);
1489
1490	/* remove any sysfs entries */
1491	if (regulator->dev)
1492		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1493	kfree(regulator->supply_name);
1494	list_del(&regulator->list);
1495	kfree(regulator);
1496
1497	rdev->open_count--;
1498	rdev->exclusive = 0;
1499
1500	module_put(rdev->owner);
1501}
1502
1503/**
1504 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1505 * @dev: device for regulator "consumer"
1506 * @id: Supply name or regulator ID.
1507 *
1508 * Managed regulator_get_exclusive(). Regulators returned from this function
1509 * are automatically regulator_put() on driver detach. See regulator_get() for
1510 * more information.
1511 */
1512struct regulator *devm_regulator_get_exclusive(struct device *dev,
1513					       const char *id)
1514{
1515	struct regulator **ptr, *regulator;
1516
1517	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1518	if (!ptr)
1519		return ERR_PTR(-ENOMEM);
1520
1521	regulator = _regulator_get(dev, id, 1);
1522	if (!IS_ERR(regulator)) {
1523		*ptr = regulator;
1524		devres_add(dev, ptr);
1525	} else {
1526		devres_free(ptr);
1527	}
1528
1529	return regulator;
1530}
1531EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1532
1533/**
1534 * regulator_put - "free" the regulator source
1535 * @regulator: regulator source
1536 *
1537 * Note: drivers must ensure that all regulator_enable calls made on this
1538 * regulator source are balanced by regulator_disable calls prior to calling
1539 * this function.
1540 */
1541void regulator_put(struct regulator *regulator)
1542{
1543	mutex_lock(&regulator_list_mutex);
1544	_regulator_put(regulator);
1545	mutex_unlock(&regulator_list_mutex);
1546}
1547EXPORT_SYMBOL_GPL(regulator_put);
1548
1549static int devm_regulator_match(struct device *dev, void *res, void *data)
1550{
1551	struct regulator **r = res;
1552	if (!r || !*r) {
1553		WARN_ON(!r || !*r);
1554		return 0;
1555	}
1556	return *r == data;
1557}
1558
1559/**
1560 * devm_regulator_put - Resource managed regulator_put()
1561 * @regulator: regulator to free
1562 *
1563 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1564 * this function will not need to be called and the resource management
1565 * code will ensure that the resource is freed.
1566 */
1567void devm_regulator_put(struct regulator *regulator)
1568{
1569	int rc;
1570
1571	rc = devres_release(regulator->dev, devm_regulator_release,
1572			    devm_regulator_match, regulator);
1573	if (rc != 0)
1574		WARN_ON(rc);
1575}
1576EXPORT_SYMBOL_GPL(devm_regulator_put);
1577
1578/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1579static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1580				const struct regulator_config *config)
1581{
1582	struct regulator_enable_gpio *pin;
1583	int ret;
1584
1585	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1586		if (pin->gpio == config->ena_gpio) {
1587			rdev_dbg(rdev, "GPIO %d is already used\n",
1588				config->ena_gpio);
1589			goto update_ena_gpio_to_rdev;
1590		}
1591	}
1592
1593	ret = gpio_request_one(config->ena_gpio,
1594				GPIOF_DIR_OUT | config->ena_gpio_flags,
1595				rdev_get_name(rdev));
1596	if (ret)
1597		return ret;
1598
1599	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1600	if (pin == NULL) {
1601		gpio_free(config->ena_gpio);
1602		return -ENOMEM;
1603	}
1604
1605	pin->gpio = config->ena_gpio;
1606	pin->ena_gpio_invert = config->ena_gpio_invert;
1607	list_add(&pin->list, &regulator_ena_gpio_list);
1608
1609update_ena_gpio_to_rdev:
1610	pin->request_count++;
1611	rdev->ena_pin = pin;
1612	return 0;
1613}
1614
1615static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1616{
1617	struct regulator_enable_gpio *pin, *n;
1618
1619	if (!rdev->ena_pin)
1620		return;
1621
1622	/* Free the GPIO only in case of no use */
1623	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1624		if (pin->gpio == rdev->ena_pin->gpio) {
1625			if (pin->request_count <= 1) {
1626				pin->request_count = 0;
1627				gpio_free(pin->gpio);
1628				list_del(&pin->list);
1629				kfree(pin);
1630			} else {
1631				pin->request_count--;
1632			}
1633		}
1634	}
1635}
1636
1637/**
1638 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1639 * @rdev: regulator_dev structure
1640 * @enable: enable GPIO at initial use?
1641 *
1642 * GPIO is enabled in case of initial use. (enable_count is 0)
1643 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1644 */
1645static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1646{
1647	struct regulator_enable_gpio *pin = rdev->ena_pin;
1648
1649	if (!pin)
1650		return -EINVAL;
1651
1652	if (enable) {
1653		/* Enable GPIO at initial use */
1654		if (pin->enable_count == 0)
1655			gpio_set_value_cansleep(pin->gpio,
1656						!pin->ena_gpio_invert);
1657
1658		pin->enable_count++;
1659	} else {
1660		if (pin->enable_count > 1) {
1661			pin->enable_count--;
1662			return 0;
1663		}
1664
1665		/* Disable GPIO if not used */
1666		if (pin->enable_count <= 1) {
1667			gpio_set_value_cansleep(pin->gpio,
1668						pin->ena_gpio_invert);
1669			pin->enable_count = 0;
1670		}
1671	}
1672
1673	return 0;
1674}
1675
1676static int _regulator_do_enable(struct regulator_dev *rdev)
1677{
1678	int ret, delay;
1679
1680	/* Query before enabling in case configuration dependent.  */
1681	ret = _regulator_get_enable_time(rdev);
1682	if (ret >= 0) {
1683		delay = ret;
1684	} else {
1685		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1686		delay = 0;
1687	}
1688
1689	trace_regulator_enable(rdev_get_name(rdev));
1690
1691	if (rdev->ena_pin) {
1692		ret = regulator_ena_gpio_ctrl(rdev, true);
1693		if (ret < 0)
1694			return ret;
1695		rdev->ena_gpio_state = 1;
1696	} else if (rdev->desc->ops->enable) {
1697		ret = rdev->desc->ops->enable(rdev);
1698		if (ret < 0)
1699			return ret;
1700	} else {
1701		return -EINVAL;
1702	}
1703
1704	/* Allow the regulator to ramp; it would be useful to extend
1705	 * this for bulk operations so that the regulators can ramp
1706	 * together.  */
1707	trace_regulator_enable_delay(rdev_get_name(rdev));
1708
1709	if (delay >= 1000) {
1710		mdelay(delay / 1000);
1711		udelay(delay % 1000);
1712	} else if (delay) {
1713		udelay(delay);
1714	}
1715
1716	trace_regulator_enable_complete(rdev_get_name(rdev));
1717
1718	return 0;
1719}
1720
1721/* locks held by regulator_enable() */
1722static int _regulator_enable(struct regulator_dev *rdev)
1723{
1724	int ret;
1725
1726	/* check voltage and requested load before enabling */
1727	if (rdev->constraints &&
1728	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1729		drms_uA_update(rdev);
1730
1731	if (rdev->use_count == 0) {
1732		/* The regulator may on if it's not switchable or left on */
1733		ret = _regulator_is_enabled(rdev);
1734		if (ret == -EINVAL || ret == 0) {
1735			if (!_regulator_can_change_status(rdev))
1736				return -EPERM;
1737
1738			ret = _regulator_do_enable(rdev);
1739			if (ret < 0)
1740				return ret;
1741
1742		} else if (ret < 0) {
1743			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1744			return ret;
1745		}
1746		/* Fallthrough on positive return values - already enabled */
1747	}
1748
1749	rdev->use_count++;
1750
1751	return 0;
1752}
1753
1754/**
1755 * regulator_enable - enable regulator output
1756 * @regulator: regulator source
1757 *
1758 * Request that the regulator be enabled with the regulator output at
1759 * the predefined voltage or current value.  Calls to regulator_enable()
1760 * must be balanced with calls to regulator_disable().
1761 *
1762 * NOTE: the output value can be set by other drivers, boot loader or may be
1763 * hardwired in the regulator.
1764 */
1765int regulator_enable(struct regulator *regulator)
1766{
1767	struct regulator_dev *rdev = regulator->rdev;
1768	int ret = 0;
1769
1770	if (regulator->always_on)
1771		return 0;
1772
1773	if (rdev->supply) {
1774		ret = regulator_enable(rdev->supply);
1775		if (ret != 0)
1776			return ret;
1777	}
1778
1779	mutex_lock(&rdev->mutex);
1780	ret = _regulator_enable(rdev);
1781	mutex_unlock(&rdev->mutex);
1782
1783	if (ret != 0 && rdev->supply)
1784		regulator_disable(rdev->supply);
1785
1786	return ret;
1787}
1788EXPORT_SYMBOL_GPL(regulator_enable);
1789
1790static int _regulator_do_disable(struct regulator_dev *rdev)
1791{
1792	int ret;
1793
1794	trace_regulator_disable(rdev_get_name(rdev));
1795
1796	if (rdev->ena_pin) {
1797		ret = regulator_ena_gpio_ctrl(rdev, false);
1798		if (ret < 0)
1799			return ret;
1800		rdev->ena_gpio_state = 0;
1801
1802	} else if (rdev->desc->ops->disable) {
1803		ret = rdev->desc->ops->disable(rdev);
1804		if (ret != 0)
1805			return ret;
1806	}
1807
1808	trace_regulator_disable_complete(rdev_get_name(rdev));
1809
1810	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1811			     NULL);
1812	return 0;
1813}
1814
1815/* locks held by regulator_disable() */
1816static int _regulator_disable(struct regulator_dev *rdev)
1817{
1818	int ret = 0;
1819
1820	if (WARN(rdev->use_count <= 0,
1821		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1822		return -EIO;
1823
1824	/* are we the last user and permitted to disable ? */
1825	if (rdev->use_count == 1 &&
1826	    (rdev->constraints && !rdev->constraints->always_on)) {
1827
1828		/* we are last user */
1829		if (_regulator_can_change_status(rdev)) {
1830			ret = _regulator_do_disable(rdev);
1831			if (ret < 0) {
1832				rdev_err(rdev, "failed to disable\n");
1833				return ret;
1834			}
1835		}
1836
1837		rdev->use_count = 0;
1838	} else if (rdev->use_count > 1) {
1839
1840		if (rdev->constraints &&
1841			(rdev->constraints->valid_ops_mask &
1842			REGULATOR_CHANGE_DRMS))
1843			drms_uA_update(rdev);
1844
1845		rdev->use_count--;
1846	}
1847
1848	return ret;
1849}
1850
1851/**
1852 * regulator_disable - disable regulator output
1853 * @regulator: regulator source
1854 *
1855 * Disable the regulator output voltage or current.  Calls to
1856 * regulator_enable() must be balanced with calls to
1857 * regulator_disable().
1858 *
1859 * NOTE: this will only disable the regulator output if no other consumer
1860 * devices have it enabled, the regulator device supports disabling and
1861 * machine constraints permit this operation.
1862 */
1863int regulator_disable(struct regulator *regulator)
1864{
1865	struct regulator_dev *rdev = regulator->rdev;
1866	int ret = 0;
1867
1868	if (regulator->always_on)
1869		return 0;
1870
1871	mutex_lock(&rdev->mutex);
1872	ret = _regulator_disable(rdev);
1873	mutex_unlock(&rdev->mutex);
1874
1875	if (ret == 0 && rdev->supply)
1876		regulator_disable(rdev->supply);
1877
1878	return ret;
1879}
1880EXPORT_SYMBOL_GPL(regulator_disable);
1881
1882/* locks held by regulator_force_disable() */
1883static int _regulator_force_disable(struct regulator_dev *rdev)
1884{
1885	int ret = 0;
1886
1887	/* force disable */
1888	if (rdev->desc->ops->disable) {
1889		/* ah well, who wants to live forever... */
1890		ret = rdev->desc->ops->disable(rdev);
1891		if (ret < 0) {
1892			rdev_err(rdev, "failed to force disable\n");
1893			return ret;
1894		}
1895		/* notify other consumers that power has been forced off */
1896		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1897			REGULATOR_EVENT_DISABLE, NULL);
1898	}
1899
1900	return ret;
1901}
1902
1903/**
1904 * regulator_force_disable - force disable regulator output
1905 * @regulator: regulator source
1906 *
1907 * Forcibly disable the regulator output voltage or current.
1908 * NOTE: this *will* disable the regulator output even if other consumer
1909 * devices have it enabled. This should be used for situations when device
1910 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1911 */
1912int regulator_force_disable(struct regulator *regulator)
1913{
1914	struct regulator_dev *rdev = regulator->rdev;
1915	int ret;
1916
1917	mutex_lock(&rdev->mutex);
1918	regulator->uA_load = 0;
1919	ret = _regulator_force_disable(regulator->rdev);
1920	mutex_unlock(&rdev->mutex);
1921
1922	if (rdev->supply)
1923		while (rdev->open_count--)
1924			regulator_disable(rdev->supply);
1925
1926	return ret;
1927}
1928EXPORT_SYMBOL_GPL(regulator_force_disable);
1929
1930static void regulator_disable_work(struct work_struct *work)
1931{
1932	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1933						  disable_work.work);
1934	int count, i, ret;
1935
1936	mutex_lock(&rdev->mutex);
1937
1938	BUG_ON(!rdev->deferred_disables);
1939
1940	count = rdev->deferred_disables;
1941	rdev->deferred_disables = 0;
1942
1943	for (i = 0; i < count; i++) {
1944		ret = _regulator_disable(rdev);
1945		if (ret != 0)
1946			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1947	}
1948
1949	mutex_unlock(&rdev->mutex);
1950
1951	if (rdev->supply) {
1952		for (i = 0; i < count; i++) {
1953			ret = regulator_disable(rdev->supply);
1954			if (ret != 0) {
1955				rdev_err(rdev,
1956					 "Supply disable failed: %d\n", ret);
1957			}
1958		}
1959	}
1960}
1961
1962/**
1963 * regulator_disable_deferred - disable regulator output with delay
1964 * @regulator: regulator source
1965 * @ms: miliseconds until the regulator is disabled
1966 *
1967 * Execute regulator_disable() on the regulator after a delay.  This
1968 * is intended for use with devices that require some time to quiesce.
1969 *
1970 * NOTE: this will only disable the regulator output if no other consumer
1971 * devices have it enabled, the regulator device supports disabling and
1972 * machine constraints permit this operation.
1973 */
1974int regulator_disable_deferred(struct regulator *regulator, int ms)
1975{
1976	struct regulator_dev *rdev = regulator->rdev;
1977	int ret;
1978
1979	if (regulator->always_on)
1980		return 0;
1981
1982	if (!ms)
1983		return regulator_disable(regulator);
1984
1985	mutex_lock(&rdev->mutex);
1986	rdev->deferred_disables++;
1987	mutex_unlock(&rdev->mutex);
1988
1989	ret = queue_delayed_work(system_power_efficient_wq,
1990				 &rdev->disable_work,
1991				 msecs_to_jiffies(ms));
1992	if (ret < 0)
1993		return ret;
1994	else
1995		return 0;
1996}
1997EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1998
1999static int _regulator_is_enabled(struct regulator_dev *rdev)
2000{
2001	/* A GPIO control always takes precedence */
2002	if (rdev->ena_pin)
2003		return rdev->ena_gpio_state;
2004
2005	/* If we don't know then assume that the regulator is always on */
2006	if (!rdev->desc->ops->is_enabled)
2007		return 1;
2008
2009	return rdev->desc->ops->is_enabled(rdev);
2010}
2011
2012/**
2013 * regulator_is_enabled - is the regulator output enabled
2014 * @regulator: regulator source
2015 *
2016 * Returns positive if the regulator driver backing the source/client
2017 * has requested that the device be enabled, zero if it hasn't, else a
2018 * negative errno code.
2019 *
2020 * Note that the device backing this regulator handle can have multiple
2021 * users, so it might be enabled even if regulator_enable() was never
2022 * called for this particular source.
2023 */
2024int regulator_is_enabled(struct regulator *regulator)
2025{
2026	int ret;
2027
2028	if (regulator->always_on)
2029		return 1;
2030
2031	mutex_lock(&regulator->rdev->mutex);
2032	ret = _regulator_is_enabled(regulator->rdev);
2033	mutex_unlock(&regulator->rdev->mutex);
2034
2035	return ret;
2036}
2037EXPORT_SYMBOL_GPL(regulator_is_enabled);
2038
2039/**
2040 * regulator_can_change_voltage - check if regulator can change voltage
2041 * @regulator: regulator source
2042 *
2043 * Returns positive if the regulator driver backing the source/client
2044 * can change its voltage, false otherwise. Usefull for detecting fixed
2045 * or dummy regulators and disabling voltage change logic in the client
2046 * driver.
2047 */
2048int regulator_can_change_voltage(struct regulator *regulator)
2049{
2050	struct regulator_dev	*rdev = regulator->rdev;
2051
2052	if (rdev->constraints &&
2053	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2054		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2055			return 1;
2056
2057		if (rdev->desc->continuous_voltage_range &&
2058		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2059		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2060			return 1;
2061	}
2062
2063	return 0;
2064}
2065EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2066
2067/**
2068 * regulator_count_voltages - count regulator_list_voltage() selectors
2069 * @regulator: regulator source
2070 *
2071 * Returns number of selectors, or negative errno.  Selectors are
2072 * numbered starting at zero, and typically correspond to bitfields
2073 * in hardware registers.
2074 */
2075int regulator_count_voltages(struct regulator *regulator)
2076{
2077	struct regulator_dev	*rdev = regulator->rdev;
2078
2079	return rdev->desc->n_voltages ? : -EINVAL;
2080}
2081EXPORT_SYMBOL_GPL(regulator_count_voltages);
2082
2083/**
2084 * regulator_list_voltage - enumerate supported voltages
2085 * @regulator: regulator source
2086 * @selector: identify voltage to list
2087 * Context: can sleep
2088 *
2089 * Returns a voltage that can be passed to @regulator_set_voltage(),
2090 * zero if this selector code can't be used on this system, or a
2091 * negative errno.
2092 */
2093int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2094{
2095	struct regulator_dev	*rdev = regulator->rdev;
2096	struct regulator_ops	*ops = rdev->desc->ops;
2097	int			ret;
2098
2099	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2100		return -EINVAL;
2101
2102	mutex_lock(&rdev->mutex);
2103	ret = ops->list_voltage(rdev, selector);
2104	mutex_unlock(&rdev->mutex);
2105
2106	if (ret > 0) {
2107		if (ret < rdev->constraints->min_uV)
2108			ret = 0;
2109		else if (ret > rdev->constraints->max_uV)
2110			ret = 0;
2111	}
2112
2113	return ret;
2114}
2115EXPORT_SYMBOL_GPL(regulator_list_voltage);
2116
2117/**
2118 * regulator_get_linear_step - return the voltage step size between VSEL values
2119 * @regulator: regulator source
2120 *
2121 * Returns the voltage step size between VSEL values for linear
2122 * regulators, or return 0 if the regulator isn't a linear regulator.
2123 */
2124unsigned int regulator_get_linear_step(struct regulator *regulator)
2125{
2126	struct regulator_dev *rdev = regulator->rdev;
2127
2128	return rdev->desc->uV_step;
2129}
2130EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2131
2132/**
2133 * regulator_is_supported_voltage - check if a voltage range can be supported
2134 *
2135 * @regulator: Regulator to check.
2136 * @min_uV: Minimum required voltage in uV.
2137 * @max_uV: Maximum required voltage in uV.
2138 *
2139 * Returns a boolean or a negative error code.
2140 */
2141int regulator_is_supported_voltage(struct regulator *regulator,
2142				   int min_uV, int max_uV)
2143{
2144	struct regulator_dev *rdev = regulator->rdev;
2145	int i, voltages, ret;
2146
2147	/* If we can't change voltage check the current voltage */
2148	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2149		ret = regulator_get_voltage(regulator);
2150		if (ret >= 0)
2151			return (min_uV <= ret && ret <= max_uV);
2152		else
2153			return ret;
2154	}
2155
2156	/* Any voltage within constrains range is fine? */
2157	if (rdev->desc->continuous_voltage_range)
2158		return min_uV >= rdev->constraints->min_uV &&
2159				max_uV <= rdev->constraints->max_uV;
2160
2161	ret = regulator_count_voltages(regulator);
2162	if (ret < 0)
2163		return ret;
2164	voltages = ret;
2165
2166	for (i = 0; i < voltages; i++) {
2167		ret = regulator_list_voltage(regulator, i);
2168
2169		if (ret >= min_uV && ret <= max_uV)
2170			return 1;
2171	}
2172
2173	return 0;
2174}
2175EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2176
2177static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2178				     int min_uV, int max_uV)
2179{
2180	int ret;
2181	int delay = 0;
2182	int best_val = 0;
2183	unsigned int selector;
2184	int old_selector = -1;
2185
2186	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2187
2188	min_uV += rdev->constraints->uV_offset;
2189	max_uV += rdev->constraints->uV_offset;
2190
2191	/*
2192	 * If we can't obtain the old selector there is not enough
2193	 * info to call set_voltage_time_sel().
2194	 */
2195	if (_regulator_is_enabled(rdev) &&
2196	    rdev->desc->ops->set_voltage_time_sel &&
2197	    rdev->desc->ops->get_voltage_sel) {
2198		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2199		if (old_selector < 0)
2200			return old_selector;
2201	}
2202
2203	if (rdev->desc->ops->set_voltage) {
2204		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2205						   &selector);
2206
2207		if (ret >= 0) {
2208			if (rdev->desc->ops->list_voltage)
2209				best_val = rdev->desc->ops->list_voltage(rdev,
2210									 selector);
2211			else
2212				best_val = _regulator_get_voltage(rdev);
2213		}
2214
2215	} else if (rdev->desc->ops->set_voltage_sel) {
2216		if (rdev->desc->ops->map_voltage) {
2217			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2218							   max_uV);
2219		} else {
2220			if (rdev->desc->ops->list_voltage ==
2221			    regulator_list_voltage_linear)
2222				ret = regulator_map_voltage_linear(rdev,
2223								min_uV, max_uV);
2224			else
2225				ret = regulator_map_voltage_iterate(rdev,
2226								min_uV, max_uV);
2227		}
2228
2229		if (ret >= 0) {
2230			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2231			if (min_uV <= best_val && max_uV >= best_val) {
2232				selector = ret;
2233				if (old_selector == selector)
2234					ret = 0;
2235				else
2236					ret = rdev->desc->ops->set_voltage_sel(
2237								rdev, ret);
2238			} else {
2239				ret = -EINVAL;
2240			}
2241		}
2242	} else {
2243		ret = -EINVAL;
2244	}
2245
2246	/* Call set_voltage_time_sel if successfully obtained old_selector */
2247	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2248		&& old_selector != selector) {
2249
2250		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2251						old_selector, selector);
2252		if (delay < 0) {
2253			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2254				  delay);
2255			delay = 0;
2256		}
2257
2258		/* Insert any necessary delays */
2259		if (delay >= 1000) {
2260			mdelay(delay / 1000);
2261			udelay(delay % 1000);
2262		} else if (delay) {
2263			udelay(delay);
2264		}
2265	}
2266
2267	if (ret == 0 && best_val >= 0) {
2268		unsigned long data = best_val;
2269
2270		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2271				     (void *)data);
2272	}
2273
2274	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2275
2276	return ret;
2277}
2278
2279/**
2280 * regulator_set_voltage - set regulator output voltage
2281 * @regulator: regulator source
2282 * @min_uV: Minimum required voltage in uV
2283 * @max_uV: Maximum acceptable voltage in uV
2284 *
2285 * Sets a voltage regulator to the desired output voltage. This can be set
2286 * during any regulator state. IOW, regulator can be disabled or enabled.
2287 *
2288 * If the regulator is enabled then the voltage will change to the new value
2289 * immediately otherwise if the regulator is disabled the regulator will
2290 * output at the new voltage when enabled.
2291 *
2292 * NOTE: If the regulator is shared between several devices then the lowest
2293 * request voltage that meets the system constraints will be used.
2294 * Regulator system constraints must be set for this regulator before
2295 * calling this function otherwise this call will fail.
2296 */
2297int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2298{
2299	struct regulator_dev *rdev = regulator->rdev;
2300	int ret = 0;
2301	int old_min_uV, old_max_uV;
2302
2303	mutex_lock(&rdev->mutex);
2304
2305	/* If we're setting the same range as last time the change
2306	 * should be a noop (some cpufreq implementations use the same
2307	 * voltage for multiple frequencies, for example).
2308	 */
2309	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2310		goto out;
2311
2312	/* sanity check */
2313	if (!rdev->desc->ops->set_voltage &&
2314	    !rdev->desc->ops->set_voltage_sel) {
2315		ret = -EINVAL;
2316		goto out;
2317	}
2318
2319	/* constraints check */
2320	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2321	if (ret < 0)
2322		goto out;
2323
2324	/* restore original values in case of error */
2325	old_min_uV = regulator->min_uV;
2326	old_max_uV = regulator->max_uV;
2327	regulator->min_uV = min_uV;
2328	regulator->max_uV = max_uV;
2329
2330	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2331	if (ret < 0)
2332		goto out2;
2333
2334	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2335	if (ret < 0)
2336		goto out2;
2337
2338out:
2339	mutex_unlock(&rdev->mutex);
2340	return ret;
2341out2:
2342	regulator->min_uV = old_min_uV;
2343	regulator->max_uV = old_max_uV;
2344	mutex_unlock(&rdev->mutex);
2345	return ret;
2346}
2347EXPORT_SYMBOL_GPL(regulator_set_voltage);
2348
2349/**
2350 * regulator_set_voltage_time - get raise/fall time
2351 * @regulator: regulator source
2352 * @old_uV: starting voltage in microvolts
2353 * @new_uV: target voltage in microvolts
2354 *
2355 * Provided with the starting and ending voltage, this function attempts to
2356 * calculate the time in microseconds required to rise or fall to this new
2357 * voltage.
2358 */
2359int regulator_set_voltage_time(struct regulator *regulator,
2360			       int old_uV, int new_uV)
2361{
2362	struct regulator_dev	*rdev = regulator->rdev;
2363	struct regulator_ops	*ops = rdev->desc->ops;
2364	int old_sel = -1;
2365	int new_sel = -1;
2366	int voltage;
2367	int i;
2368
2369	/* Currently requires operations to do this */
2370	if (!ops->list_voltage || !ops->set_voltage_time_sel
2371	    || !rdev->desc->n_voltages)
2372		return -EINVAL;
2373
2374	for (i = 0; i < rdev->desc->n_voltages; i++) {
2375		/* We only look for exact voltage matches here */
2376		voltage = regulator_list_voltage(regulator, i);
2377		if (voltage < 0)
2378			return -EINVAL;
2379		if (voltage == 0)
2380			continue;
2381		if (voltage == old_uV)
2382			old_sel = i;
2383		if (voltage == new_uV)
2384			new_sel = i;
2385	}
2386
2387	if (old_sel < 0 || new_sel < 0)
2388		return -EINVAL;
2389
2390	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2391}
2392EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2393
2394/**
2395 * regulator_set_voltage_time_sel - get raise/fall time
2396 * @rdev: regulator source device
2397 * @old_selector: selector for starting voltage
2398 * @new_selector: selector for target voltage
2399 *
2400 * Provided with the starting and target voltage selectors, this function
2401 * returns time in microseconds required to rise or fall to this new voltage
2402 *
2403 * Drivers providing ramp_delay in regulation_constraints can use this as their
2404 * set_voltage_time_sel() operation.
2405 */
2406int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2407				   unsigned int old_selector,
2408				   unsigned int new_selector)
2409{
2410	unsigned int ramp_delay = 0;
2411	int old_volt, new_volt;
2412
2413	if (rdev->constraints->ramp_delay)
2414		ramp_delay = rdev->constraints->ramp_delay;
2415	else if (rdev->desc->ramp_delay)
2416		ramp_delay = rdev->desc->ramp_delay;
2417
2418	if (ramp_delay == 0) {
2419		rdev_warn(rdev, "ramp_delay not set\n");
2420		return 0;
2421	}
2422
2423	/* sanity check */
2424	if (!rdev->desc->ops->list_voltage)
2425		return -EINVAL;
2426
2427	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2428	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2429
2430	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2431}
2432EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2433
2434/**
2435 * regulator_sync_voltage - re-apply last regulator output voltage
2436 * @regulator: regulator source
2437 *
2438 * Re-apply the last configured voltage.  This is intended to be used
2439 * where some external control source the consumer is cooperating with
2440 * has caused the configured voltage to change.
2441 */
2442int regulator_sync_voltage(struct regulator *regulator)
2443{
2444	struct regulator_dev *rdev = regulator->rdev;
2445	int ret, min_uV, max_uV;
2446
2447	mutex_lock(&rdev->mutex);
2448
2449	if (!rdev->desc->ops->set_voltage &&
2450	    !rdev->desc->ops->set_voltage_sel) {
2451		ret = -EINVAL;
2452		goto out;
2453	}
2454
2455	/* This is only going to work if we've had a voltage configured. */
2456	if (!regulator->min_uV && !regulator->max_uV) {
2457		ret = -EINVAL;
2458		goto out;
2459	}
2460
2461	min_uV = regulator->min_uV;
2462	max_uV = regulator->max_uV;
2463
2464	/* This should be a paranoia check... */
2465	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2466	if (ret < 0)
2467		goto out;
2468
2469	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2470	if (ret < 0)
2471		goto out;
2472
2473	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2474
2475out:
2476	mutex_unlock(&rdev->mutex);
2477	return ret;
2478}
2479EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2480
2481static int _regulator_get_voltage(struct regulator_dev *rdev)
2482{
2483	int sel, ret;
2484
2485	if (rdev->desc->ops->get_voltage_sel) {
2486		sel = rdev->desc->ops->get_voltage_sel(rdev);
2487		if (sel < 0)
2488			return sel;
2489		ret = rdev->desc->ops->list_voltage(rdev, sel);
2490	} else if (rdev->desc->ops->get_voltage) {
2491		ret = rdev->desc->ops->get_voltage(rdev);
2492	} else if (rdev->desc->ops->list_voltage) {
2493		ret = rdev->desc->ops->list_voltage(rdev, 0);
2494	} else {
2495		return -EINVAL;
2496	}
2497
2498	if (ret < 0)
2499		return ret;
2500	return ret - rdev->constraints->uV_offset;
2501}
2502
2503/**
2504 * regulator_get_voltage - get regulator output voltage
2505 * @regulator: regulator source
2506 *
2507 * This returns the current regulator voltage in uV.
2508 *
2509 * NOTE: If the regulator is disabled it will return the voltage value. This
2510 * function should not be used to determine regulator state.
2511 */
2512int regulator_get_voltage(struct regulator *regulator)
2513{
2514	int ret;
2515
2516	mutex_lock(&regulator->rdev->mutex);
2517
2518	ret = _regulator_get_voltage(regulator->rdev);
2519
2520	mutex_unlock(&regulator->rdev->mutex);
2521
2522	return ret;
2523}
2524EXPORT_SYMBOL_GPL(regulator_get_voltage);
2525
2526/**
2527 * regulator_set_current_limit - set regulator output current limit
2528 * @regulator: regulator source
2529 * @min_uA: Minimum supported current in uA
2530 * @max_uA: Maximum supported current in uA
2531 *
2532 * Sets current sink to the desired output current. This can be set during
2533 * any regulator state. IOW, regulator can be disabled or enabled.
2534 *
2535 * If the regulator is enabled then the current will change to the new value
2536 * immediately otherwise if the regulator is disabled the regulator will
2537 * output at the new current when enabled.
2538 *
2539 * NOTE: Regulator system constraints must be set for this regulator before
2540 * calling this function otherwise this call will fail.
2541 */
2542int regulator_set_current_limit(struct regulator *regulator,
2543			       int min_uA, int max_uA)
2544{
2545	struct regulator_dev *rdev = regulator->rdev;
2546	int ret;
2547
2548	mutex_lock(&rdev->mutex);
2549
2550	/* sanity check */
2551	if (!rdev->desc->ops->set_current_limit) {
2552		ret = -EINVAL;
2553		goto out;
2554	}
2555
2556	/* constraints check */
2557	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2558	if (ret < 0)
2559		goto out;
2560
2561	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2562out:
2563	mutex_unlock(&rdev->mutex);
2564	return ret;
2565}
2566EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2567
2568static int _regulator_get_current_limit(struct regulator_dev *rdev)
2569{
2570	int ret;
2571
2572	mutex_lock(&rdev->mutex);
2573
2574	/* sanity check */
2575	if (!rdev->desc->ops->get_current_limit) {
2576		ret = -EINVAL;
2577		goto out;
2578	}
2579
2580	ret = rdev->desc->ops->get_current_limit(rdev);
2581out:
2582	mutex_unlock(&rdev->mutex);
2583	return ret;
2584}
2585
2586/**
2587 * regulator_get_current_limit - get regulator output current
2588 * @regulator: regulator source
2589 *
2590 * This returns the current supplied by the specified current sink in uA.
2591 *
2592 * NOTE: If the regulator is disabled it will return the current value. This
2593 * function should not be used to determine regulator state.
2594 */
2595int regulator_get_current_limit(struct regulator *regulator)
2596{
2597	return _regulator_get_current_limit(regulator->rdev);
2598}
2599EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2600
2601/**
2602 * regulator_set_mode - set regulator operating mode
2603 * @regulator: regulator source
2604 * @mode: operating mode - one of the REGULATOR_MODE constants
2605 *
2606 * Set regulator operating mode to increase regulator efficiency or improve
2607 * regulation performance.
2608 *
2609 * NOTE: Regulator system constraints must be set for this regulator before
2610 * calling this function otherwise this call will fail.
2611 */
2612int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2613{
2614	struct regulator_dev *rdev = regulator->rdev;
2615	int ret;
2616	int regulator_curr_mode;
2617
2618	mutex_lock(&rdev->mutex);
2619
2620	/* sanity check */
2621	if (!rdev->desc->ops->set_mode) {
2622		ret = -EINVAL;
2623		goto out;
2624	}
2625
2626	/* return if the same mode is requested */
2627	if (rdev->desc->ops->get_mode) {
2628		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2629		if (regulator_curr_mode == mode) {
2630			ret = 0;
2631			goto out;
2632		}
2633	}
2634
2635	/* constraints check */
2636	ret = regulator_mode_constrain(rdev, &mode);
2637	if (ret < 0)
2638		goto out;
2639
2640	ret = rdev->desc->ops->set_mode(rdev, mode);
2641out:
2642	mutex_unlock(&rdev->mutex);
2643	return ret;
2644}
2645EXPORT_SYMBOL_GPL(regulator_set_mode);
2646
2647static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2648{
2649	int ret;
2650
2651	mutex_lock(&rdev->mutex);
2652
2653	/* sanity check */
2654	if (!rdev->desc->ops->get_mode) {
2655		ret = -EINVAL;
2656		goto out;
2657	}
2658
2659	ret = rdev->desc->ops->get_mode(rdev);
2660out:
2661	mutex_unlock(&rdev->mutex);
2662	return ret;
2663}
2664
2665/**
2666 * regulator_get_mode - get regulator operating mode
2667 * @regulator: regulator source
2668 *
2669 * Get the current regulator operating mode.
2670 */
2671unsigned int regulator_get_mode(struct regulator *regulator)
2672{
2673	return _regulator_get_mode(regulator->rdev);
2674}
2675EXPORT_SYMBOL_GPL(regulator_get_mode);
2676
2677/**
2678 * regulator_set_optimum_mode - set regulator optimum operating mode
2679 * @regulator: regulator source
2680 * @uA_load: load current
2681 *
2682 * Notifies the regulator core of a new device load. This is then used by
2683 * DRMS (if enabled by constraints) to set the most efficient regulator
2684 * operating mode for the new regulator loading.
2685 *
2686 * Consumer devices notify their supply regulator of the maximum power
2687 * they will require (can be taken from device datasheet in the power
2688 * consumption tables) when they change operational status and hence power
2689 * state. Examples of operational state changes that can affect power
2690 * consumption are :-
2691 *
2692 *    o Device is opened / closed.
2693 *    o Device I/O is about to begin or has just finished.
2694 *    o Device is idling in between work.
2695 *
2696 * This information is also exported via sysfs to userspace.
2697 *
2698 * DRMS will sum the total requested load on the regulator and change
2699 * to the most efficient operating mode if platform constraints allow.
2700 *
2701 * Returns the new regulator mode or error.
2702 */
2703int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2704{
2705	struct regulator_dev *rdev = regulator->rdev;
2706	struct regulator *consumer;
2707	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2708	unsigned int mode;
2709
2710	if (rdev->supply)
2711		input_uV = regulator_get_voltage(rdev->supply);
2712
2713	mutex_lock(&rdev->mutex);
2714
2715	/*
2716	 * first check to see if we can set modes at all, otherwise just
2717	 * tell the consumer everything is OK.
2718	 */
2719	regulator->uA_load = uA_load;
2720	ret = regulator_check_drms(rdev);
2721	if (ret < 0) {
2722		ret = 0;
2723		goto out;
2724	}
2725
2726	if (!rdev->desc->ops->get_optimum_mode)
2727		goto out;
2728
2729	/*
2730	 * we can actually do this so any errors are indicators of
2731	 * potential real failure.
2732	 */
2733	ret = -EINVAL;
2734
2735	if (!rdev->desc->ops->set_mode)
2736		goto out;
2737
2738	/* get output voltage */
2739	output_uV = _regulator_get_voltage(rdev);
2740	if (output_uV <= 0) {
2741		rdev_err(rdev, "invalid output voltage found\n");
2742		goto out;
2743	}
2744
2745	/* No supply? Use constraint voltage */
2746	if (input_uV <= 0)
2747		input_uV = rdev->constraints->input_uV;
2748	if (input_uV <= 0) {
2749		rdev_err(rdev, "invalid input voltage found\n");
2750		goto out;
2751	}
2752
2753	/* calc total requested load for this regulator */
2754	list_for_each_entry(consumer, &rdev->consumer_list, list)
2755		total_uA_load += consumer->uA_load;
2756
2757	mode = rdev->desc->ops->get_optimum_mode(rdev,
2758						 input_uV, output_uV,
2759						 total_uA_load);
2760	ret = regulator_mode_constrain(rdev, &mode);
2761	if (ret < 0) {
2762		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2763			 total_uA_load, input_uV, output_uV);
2764		goto out;
2765	}
2766
2767	ret = rdev->desc->ops->set_mode(rdev, mode);
2768	if (ret < 0) {
2769		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2770		goto out;
2771	}
2772	ret = mode;
2773out:
2774	mutex_unlock(&rdev->mutex);
2775	return ret;
2776}
2777EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2778
2779/**
2780 * regulator_allow_bypass - allow the regulator to go into bypass mode
2781 *
2782 * @regulator: Regulator to configure
2783 * @enable: enable or disable bypass mode
2784 *
2785 * Allow the regulator to go into bypass mode if all other consumers
2786 * for the regulator also enable bypass mode and the machine
2787 * constraints allow this.  Bypass mode means that the regulator is
2788 * simply passing the input directly to the output with no regulation.
2789 */
2790int regulator_allow_bypass(struct regulator *regulator, bool enable)
2791{
2792	struct regulator_dev *rdev = regulator->rdev;
2793	int ret = 0;
2794
2795	if (!rdev->desc->ops->set_bypass)
2796		return 0;
2797
2798	if (rdev->constraints &&
2799	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2800		return 0;
2801
2802	mutex_lock(&rdev->mutex);
2803
2804	if (enable && !regulator->bypass) {
2805		rdev->bypass_count++;
2806
2807		if (rdev->bypass_count == rdev->open_count) {
2808			ret = rdev->desc->ops->set_bypass(rdev, enable);
2809			if (ret != 0)
2810				rdev->bypass_count--;
2811		}
2812
2813	} else if (!enable && regulator->bypass) {
2814		rdev->bypass_count--;
2815
2816		if (rdev->bypass_count != rdev->open_count) {
2817			ret = rdev->desc->ops->set_bypass(rdev, enable);
2818			if (ret != 0)
2819				rdev->bypass_count++;
2820		}
2821	}
2822
2823	if (ret == 0)
2824		regulator->bypass = enable;
2825
2826	mutex_unlock(&rdev->mutex);
2827
2828	return ret;
2829}
2830EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2831
2832/**
2833 * regulator_register_notifier - register regulator event notifier
2834 * @regulator: regulator source
2835 * @nb: notifier block
2836 *
2837 * Register notifier block to receive regulator events.
2838 */
2839int regulator_register_notifier(struct regulator *regulator,
2840			      struct notifier_block *nb)
2841{
2842	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2843						nb);
2844}
2845EXPORT_SYMBOL_GPL(regulator_register_notifier);
2846
2847/**
2848 * regulator_unregister_notifier - unregister regulator event notifier
2849 * @regulator: regulator source
2850 * @nb: notifier block
2851 *
2852 * Unregister regulator event notifier block.
2853 */
2854int regulator_unregister_notifier(struct regulator *regulator,
2855				struct notifier_block *nb)
2856{
2857	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2858						  nb);
2859}
2860EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2861
2862/* notify regulator consumers and downstream regulator consumers.
2863 * Note mutex must be held by caller.
2864 */
2865static void _notifier_call_chain(struct regulator_dev *rdev,
2866				  unsigned long event, void *data)
2867{
2868	/* call rdev chain first */
2869	blocking_notifier_call_chain(&rdev->notifier, event, data);
2870}
2871
2872/**
2873 * regulator_bulk_get - get multiple regulator consumers
2874 *
2875 * @dev:           Device to supply
2876 * @num_consumers: Number of consumers to register
2877 * @consumers:     Configuration of consumers; clients are stored here.
2878 *
2879 * @return 0 on success, an errno on failure.
2880 *
2881 * This helper function allows drivers to get several regulator
2882 * consumers in one operation.  If any of the regulators cannot be
2883 * acquired then any regulators that were allocated will be freed
2884 * before returning to the caller.
2885 */
2886int regulator_bulk_get(struct device *dev, int num_consumers,
2887		       struct regulator_bulk_data *consumers)
2888{
2889	int i;
2890	int ret;
2891
2892	for (i = 0; i < num_consumers; i++)
2893		consumers[i].consumer = NULL;
2894
2895	for (i = 0; i < num_consumers; i++) {
2896		consumers[i].consumer = regulator_get(dev,
2897						      consumers[i].supply);
2898		if (IS_ERR(consumers[i].consumer)) {
2899			ret = PTR_ERR(consumers[i].consumer);
2900			dev_err(dev, "Failed to get supply '%s': %d\n",
2901				consumers[i].supply, ret);
2902			consumers[i].consumer = NULL;
2903			goto err;
2904		}
2905	}
2906
2907	return 0;
2908
2909err:
2910	while (--i >= 0)
2911		regulator_put(consumers[i].consumer);
2912
2913	return ret;
2914}
2915EXPORT_SYMBOL_GPL(regulator_bulk_get);
2916
2917/**
2918 * devm_regulator_bulk_get - managed get multiple regulator consumers
2919 *
2920 * @dev:           Device to supply
2921 * @num_consumers: Number of consumers to register
2922 * @consumers:     Configuration of consumers; clients are stored here.
2923 *
2924 * @return 0 on success, an errno on failure.
2925 *
2926 * This helper function allows drivers to get several regulator
2927 * consumers in one operation with management, the regulators will
2928 * automatically be freed when the device is unbound.  If any of the
2929 * regulators cannot be acquired then any regulators that were
2930 * allocated will be freed before returning to the caller.
2931 */
2932int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2933			    struct regulator_bulk_data *consumers)
2934{
2935	int i;
2936	int ret;
2937
2938	for (i = 0; i < num_consumers; i++)
2939		consumers[i].consumer = NULL;
2940
2941	for (i = 0; i < num_consumers; i++) {
2942		consumers[i].consumer = devm_regulator_get(dev,
2943							   consumers[i].supply);
2944		if (IS_ERR(consumers[i].consumer)) {
2945			ret = PTR_ERR(consumers[i].consumer);
2946			dev_err(dev, "Failed to get supply '%s': %d\n",
2947				consumers[i].supply, ret);
2948			consumers[i].consumer = NULL;
2949			goto err;
2950		}
2951	}
2952
2953	return 0;
2954
2955err:
2956	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2957		devm_regulator_put(consumers[i].consumer);
2958
2959	return ret;
2960}
2961EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2962
2963static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2964{
2965	struct regulator_bulk_data *bulk = data;
2966
2967	bulk->ret = regulator_enable(bulk->consumer);
2968}
2969
2970/**
2971 * regulator_bulk_enable - enable multiple regulator consumers
2972 *
2973 * @num_consumers: Number of consumers
2974 * @consumers:     Consumer data; clients are stored here.
2975 * @return         0 on success, an errno on failure
2976 *
2977 * This convenience API allows consumers to enable multiple regulator
2978 * clients in a single API call.  If any consumers cannot be enabled
2979 * then any others that were enabled will be disabled again prior to
2980 * return.
2981 */
2982int regulator_bulk_enable(int num_consumers,
2983			  struct regulator_bulk_data *consumers)
2984{
2985	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2986	int i;
2987	int ret = 0;
2988
2989	for (i = 0; i < num_consumers; i++) {
2990		if (consumers[i].consumer->always_on)
2991			consumers[i].ret = 0;
2992		else
2993			async_schedule_domain(regulator_bulk_enable_async,
2994					      &consumers[i], &async_domain);
2995	}
2996
2997	async_synchronize_full_domain(&async_domain);
2998
2999	/* If any consumer failed we need to unwind any that succeeded */
3000	for (i = 0; i < num_consumers; i++) {
3001		if (consumers[i].ret != 0) {
3002			ret = consumers[i].ret;
3003			goto err;
3004		}
3005	}
3006
3007	return 0;
3008
3009err:
3010	for (i = 0; i < num_consumers; i++) {
3011		if (consumers[i].ret < 0)
3012			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3013			       consumers[i].ret);
3014		else
3015			regulator_disable(consumers[i].consumer);
3016	}
3017
3018	return ret;
3019}
3020EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3021
3022/**
3023 * regulator_bulk_disable - disable multiple regulator consumers
3024 *
3025 * @num_consumers: Number of consumers
3026 * @consumers:     Consumer data; clients are stored here.
3027 * @return         0 on success, an errno on failure
3028 *
3029 * This convenience API allows consumers to disable multiple regulator
3030 * clients in a single API call.  If any consumers cannot be disabled
3031 * then any others that were disabled will be enabled again prior to
3032 * return.
3033 */
3034int regulator_bulk_disable(int num_consumers,
3035			   struct regulator_bulk_data *consumers)
3036{
3037	int i;
3038	int ret, r;
3039
3040	for (i = num_consumers - 1; i >= 0; --i) {
3041		ret = regulator_disable(consumers[i].consumer);
3042		if (ret != 0)
3043			goto err;
3044	}
3045
3046	return 0;
3047
3048err:
3049	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3050	for (++i; i < num_consumers; ++i) {
3051		r = regulator_enable(consumers[i].consumer);
3052		if (r != 0)
3053			pr_err("Failed to reename %s: %d\n",
3054			       consumers[i].supply, r);
3055	}
3056
3057	return ret;
3058}
3059EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3060
3061/**
3062 * regulator_bulk_force_disable - force disable multiple regulator consumers
3063 *
3064 * @num_consumers: Number of consumers
3065 * @consumers:     Consumer data; clients are stored here.
3066 * @return         0 on success, an errno on failure
3067 *
3068 * This convenience API allows consumers to forcibly disable multiple regulator
3069 * clients in a single API call.
3070 * NOTE: This should be used for situations when device damage will
3071 * likely occur if the regulators are not disabled (e.g. over temp).
3072 * Although regulator_force_disable function call for some consumers can
3073 * return error numbers, the function is called for all consumers.
3074 */
3075int regulator_bulk_force_disable(int num_consumers,
3076			   struct regulator_bulk_data *consumers)
3077{
3078	int i;
3079	int ret;
3080
3081	for (i = 0; i < num_consumers; i++)
3082		consumers[i].ret =
3083			    regulator_force_disable(consumers[i].consumer);
3084
3085	for (i = 0; i < num_consumers; i++) {
3086		if (consumers[i].ret != 0) {
3087			ret = consumers[i].ret;
3088			goto out;
3089		}
3090	}
3091
3092	return 0;
3093out:
3094	return ret;
3095}
3096EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3097
3098/**
3099 * regulator_bulk_free - free multiple regulator consumers
3100 *
3101 * @num_consumers: Number of consumers
3102 * @consumers:     Consumer data; clients are stored here.
3103 *
3104 * This convenience API allows consumers to free multiple regulator
3105 * clients in a single API call.
3106 */
3107void regulator_bulk_free(int num_consumers,
3108			 struct regulator_bulk_data *consumers)
3109{
3110	int i;
3111
3112	for (i = 0; i < num_consumers; i++) {
3113		regulator_put(consumers[i].consumer);
3114		consumers[i].consumer = NULL;
3115	}
3116}
3117EXPORT_SYMBOL_GPL(regulator_bulk_free);
3118
3119/**
3120 * regulator_notifier_call_chain - call regulator event notifier
3121 * @rdev: regulator source
3122 * @event: notifier block
3123 * @data: callback-specific data.
3124 *
3125 * Called by regulator drivers to notify clients a regulator event has
3126 * occurred. We also notify regulator clients downstream.
3127 * Note lock must be held by caller.
3128 */
3129int regulator_notifier_call_chain(struct regulator_dev *rdev,
3130				  unsigned long event, void *data)
3131{
3132	_notifier_call_chain(rdev, event, data);
3133	return NOTIFY_DONE;
3134
3135}
3136EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3137
3138/**
3139 * regulator_mode_to_status - convert a regulator mode into a status
3140 *
3141 * @mode: Mode to convert
3142 *
3143 * Convert a regulator mode into a status.
3144 */
3145int regulator_mode_to_status(unsigned int mode)
3146{
3147	switch (mode) {
3148	case REGULATOR_MODE_FAST:
3149		return REGULATOR_STATUS_FAST;
3150	case REGULATOR_MODE_NORMAL:
3151		return REGULATOR_STATUS_NORMAL;
3152	case REGULATOR_MODE_IDLE:
3153		return REGULATOR_STATUS_IDLE;
3154	case REGULATOR_MODE_STANDBY:
3155		return REGULATOR_STATUS_STANDBY;
3156	default:
3157		return REGULATOR_STATUS_UNDEFINED;
3158	}
3159}
3160EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3161
3162/*
3163 * To avoid cluttering sysfs (and memory) with useless state, only
3164 * create attributes that can be meaningfully displayed.
3165 */
3166static int add_regulator_attributes(struct regulator_dev *rdev)
3167{
3168	struct device		*dev = &rdev->dev;
3169	struct regulator_ops	*ops = rdev->desc->ops;
3170	int			status = 0;
3171
3172	/* some attributes need specific methods to be displayed */
3173	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3174	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3175	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3176		status = device_create_file(dev, &dev_attr_microvolts);
3177		if (status < 0)
3178			return status;
3179	}
3180	if (ops->get_current_limit) {
3181		status = device_create_file(dev, &dev_attr_microamps);
3182		if (status < 0)
3183			return status;
3184	}
3185	if (ops->get_mode) {
3186		status = device_create_file(dev, &dev_attr_opmode);
3187		if (status < 0)
3188			return status;
3189	}
3190	if (rdev->ena_pin || ops->is_enabled) {
3191		status = device_create_file(dev, &dev_attr_state);
3192		if (status < 0)
3193			return status;
3194	}
3195	if (ops->get_status) {
3196		status = device_create_file(dev, &dev_attr_status);
3197		if (status < 0)
3198			return status;
3199	}
3200	if (ops->get_bypass) {
3201		status = device_create_file(dev, &dev_attr_bypass);
3202		if (status < 0)
3203			return status;
3204	}
3205
3206	/* some attributes are type-specific */
3207	if (rdev->desc->type == REGULATOR_CURRENT) {
3208		status = device_create_file(dev, &dev_attr_requested_microamps);
3209		if (status < 0)
3210			return status;
3211	}
3212
3213	/* all the other attributes exist to support constraints;
3214	 * don't show them if there are no constraints, or if the
3215	 * relevant supporting methods are missing.
3216	 */
3217	if (!rdev->constraints)
3218		return status;
3219
3220	/* constraints need specific supporting methods */
3221	if (ops->set_voltage || ops->set_voltage_sel) {
3222		status = device_create_file(dev, &dev_attr_min_microvolts);
3223		if (status < 0)
3224			return status;
3225		status = device_create_file(dev, &dev_attr_max_microvolts);
3226		if (status < 0)
3227			return status;
3228	}
3229	if (ops->set_current_limit) {
3230		status = device_create_file(dev, &dev_attr_min_microamps);
3231		if (status < 0)
3232			return status;
3233		status = device_create_file(dev, &dev_attr_max_microamps);
3234		if (status < 0)
3235			return status;
3236	}
3237
3238	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3239	if (status < 0)
3240		return status;
3241	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3242	if (status < 0)
3243		return status;
3244	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3245	if (status < 0)
3246		return status;
3247
3248	if (ops->set_suspend_voltage) {
3249		status = device_create_file(dev,
3250				&dev_attr_suspend_standby_microvolts);
3251		if (status < 0)
3252			return status;
3253		status = device_create_file(dev,
3254				&dev_attr_suspend_mem_microvolts);
3255		if (status < 0)
3256			return status;
3257		status = device_create_file(dev,
3258				&dev_attr_suspend_disk_microvolts);
3259		if (status < 0)
3260			return status;
3261	}
3262
3263	if (ops->set_suspend_mode) {
3264		status = device_create_file(dev,
3265				&dev_attr_suspend_standby_mode);
3266		if (status < 0)
3267			return status;
3268		status = device_create_file(dev,
3269				&dev_attr_suspend_mem_mode);
3270		if (status < 0)
3271			return status;
3272		status = device_create_file(dev,
3273				&dev_attr_suspend_disk_mode);
3274		if (status < 0)
3275			return status;
3276	}
3277
3278	return status;
3279}
3280
3281static void rdev_init_debugfs(struct regulator_dev *rdev)
3282{
3283	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3284	if (!rdev->debugfs) {
3285		rdev_warn(rdev, "Failed to create debugfs directory\n");
3286		return;
3287	}
3288
3289	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3290			   &rdev->use_count);
3291	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3292			   &rdev->open_count);
3293	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3294			   &rdev->bypass_count);
3295}
3296
3297/**
3298 * regulator_register - register regulator
3299 * @regulator_desc: regulator to register
3300 * @config: runtime configuration for regulator
3301 *
3302 * Called by regulator drivers to register a regulator.
3303 * Returns a valid pointer to struct regulator_dev on success
3304 * or an ERR_PTR() on error.
3305 */
3306struct regulator_dev *
3307regulator_register(const struct regulator_desc *regulator_desc,
3308		   const struct regulator_config *config)
3309{
3310	const struct regulation_constraints *constraints = NULL;
3311	const struct regulator_init_data *init_data;
3312	static atomic_t regulator_no = ATOMIC_INIT(0);
3313	struct regulator_dev *rdev;
3314	struct device *dev;
3315	int ret, i;
3316	const char *supply = NULL;
3317
3318	if (regulator_desc == NULL || config == NULL)
3319		return ERR_PTR(-EINVAL);
3320
3321	dev = config->dev;
3322	WARN_ON(!dev);
3323
3324	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3325		return ERR_PTR(-EINVAL);
3326
3327	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3328	    regulator_desc->type != REGULATOR_CURRENT)
3329		return ERR_PTR(-EINVAL);
3330
3331	/* Only one of each should be implemented */
3332	WARN_ON(regulator_desc->ops->get_voltage &&
3333		regulator_desc->ops->get_voltage_sel);
3334	WARN_ON(regulator_desc->ops->set_voltage &&
3335		regulator_desc->ops->set_voltage_sel);
3336
3337	/* If we're using selectors we must implement list_voltage. */
3338	if (regulator_desc->ops->get_voltage_sel &&
3339	    !regulator_desc->ops->list_voltage) {
3340		return ERR_PTR(-EINVAL);
3341	}
3342	if (regulator_desc->ops->set_voltage_sel &&
3343	    !regulator_desc->ops->list_voltage) {
3344		return ERR_PTR(-EINVAL);
3345	}
3346
3347	init_data = config->init_data;
3348
3349	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3350	if (rdev == NULL)
3351		return ERR_PTR(-ENOMEM);
3352
3353	mutex_lock(&regulator_list_mutex);
3354
3355	mutex_init(&rdev->mutex);
3356	rdev->reg_data = config->driver_data;
3357	rdev->owner = regulator_desc->owner;
3358	rdev->desc = regulator_desc;
3359	if (config->regmap)
3360		rdev->regmap = config->regmap;
3361	else if (dev_get_regmap(dev, NULL))
3362		rdev->regmap = dev_get_regmap(dev, NULL);
3363	else if (dev->parent)
3364		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3365	INIT_LIST_HEAD(&rdev->consumer_list);
3366	INIT_LIST_HEAD(&rdev->list);
3367	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3368	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3369
3370	/* preform any regulator specific init */
3371	if (init_data && init_data->regulator_init) {
3372		ret = init_data->regulator_init(rdev->reg_data);
3373		if (ret < 0)
3374			goto clean;
3375	}
3376
3377	/* register with sysfs */
3378	rdev->dev.class = &regulator_class;
3379	rdev->dev.of_node = config->of_node;
3380	rdev->dev.parent = dev;
3381	dev_set_name(&rdev->dev, "regulator.%d",
3382		     atomic_inc_return(&regulator_no) - 1);
3383	ret = device_register(&rdev->dev);
3384	if (ret != 0) {
3385		put_device(&rdev->dev);
3386		goto clean;
3387	}
3388
3389	dev_set_drvdata(&rdev->dev, rdev);
3390
3391	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3392		ret = regulator_ena_gpio_request(rdev, config);
3393		if (ret != 0) {
3394			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3395				 config->ena_gpio, ret);
3396			goto wash;
3397		}
3398
3399		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3400			rdev->ena_gpio_state = 1;
3401
3402		if (config->ena_gpio_invert)
3403			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3404	}
3405
3406	/* set regulator constraints */
3407	if (init_data)
3408		constraints = &init_data->constraints;
3409
3410	ret = set_machine_constraints(rdev, constraints);
3411	if (ret < 0)
3412		goto scrub;
3413
3414	/* add attributes supported by this regulator */
3415	ret = add_regulator_attributes(rdev);
3416	if (ret < 0)
3417		goto scrub;
3418
3419	if (init_data && init_data->supply_regulator)
3420		supply = init_data->supply_regulator;
3421	else if (regulator_desc->supply_name)
3422		supply = regulator_desc->supply_name;
3423
3424	if (supply) {
3425		struct regulator_dev *r;
3426
3427		r = regulator_dev_lookup(dev, supply, &ret);
3428
3429		if (ret == -ENODEV) {
3430			/*
3431			 * No supply was specified for this regulator and
3432			 * there will never be one.
3433			 */
3434			ret = 0;
3435			goto add_dev;
3436		} else if (!r) {
3437			dev_err(dev, "Failed to find supply %s\n", supply);
3438			ret = -EPROBE_DEFER;
3439			goto scrub;
3440		}
3441
3442		ret = set_supply(rdev, r);
3443		if (ret < 0)
3444			goto scrub;
3445
3446		/* Enable supply if rail is enabled */
3447		if (_regulator_is_enabled(rdev)) {
3448			ret = regulator_enable(rdev->supply);
3449			if (ret < 0)
3450				goto scrub;
3451		}
3452	}
3453
3454add_dev:
3455	/* add consumers devices */
3456	if (init_data) {
3457		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3458			ret = set_consumer_device_supply(rdev,
3459				init_data->consumer_supplies[i].dev_name,
3460				init_data->consumer_supplies[i].supply);
3461			if (ret < 0) {
3462				dev_err(dev, "Failed to set supply %s\n",
3463					init_data->consumer_supplies[i].supply);
3464				goto unset_supplies;
3465			}
3466		}
3467	}
3468
3469	list_add(&rdev->list, &regulator_list);
3470
3471	rdev_init_debugfs(rdev);
3472out:
3473	mutex_unlock(&regulator_list_mutex);
3474	return rdev;
3475
3476unset_supplies:
3477	unset_regulator_supplies(rdev);
3478
3479scrub:
3480	if (rdev->supply)
3481		_regulator_put(rdev->supply);
3482	regulator_ena_gpio_free(rdev);
3483	kfree(rdev->constraints);
3484wash:
3485	device_unregister(&rdev->dev);
3486	/* device core frees rdev */
3487	rdev = ERR_PTR(ret);
3488	goto out;
3489
3490clean:
3491	kfree(rdev);
3492	rdev = ERR_PTR(ret);
3493	goto out;
3494}
3495EXPORT_SYMBOL_GPL(regulator_register);
3496
3497/**
3498 * regulator_unregister - unregister regulator
3499 * @rdev: regulator to unregister
3500 *
3501 * Called by regulator drivers to unregister a regulator.
3502 */
3503void regulator_unregister(struct regulator_dev *rdev)
3504{
3505	if (rdev == NULL)
3506		return;
3507
3508	if (rdev->supply) {
3509		while (rdev->use_count--)
3510			regulator_disable(rdev->supply);
3511		regulator_put(rdev->supply);
3512	}
3513	mutex_lock(&regulator_list_mutex);
3514	debugfs_remove_recursive(rdev->debugfs);
3515	flush_work(&rdev->disable_work.work);
3516	WARN_ON(rdev->open_count);
3517	unset_regulator_supplies(rdev);
3518	list_del(&rdev->list);
3519	kfree(rdev->constraints);
3520	regulator_ena_gpio_free(rdev);
3521	device_unregister(&rdev->dev);
3522	mutex_unlock(&regulator_list_mutex);
3523}
3524EXPORT_SYMBOL_GPL(regulator_unregister);
3525
3526/**
3527 * regulator_suspend_prepare - prepare regulators for system wide suspend
3528 * @state: system suspend state
3529 *
3530 * Configure each regulator with it's suspend operating parameters for state.
3531 * This will usually be called by machine suspend code prior to supending.
3532 */
3533int regulator_suspend_prepare(suspend_state_t state)
3534{
3535	struct regulator_dev *rdev;
3536	int ret = 0;
3537
3538	/* ON is handled by regulator active state */
3539	if (state == PM_SUSPEND_ON)
3540		return -EINVAL;
3541
3542	mutex_lock(&regulator_list_mutex);
3543	list_for_each_entry(rdev, &regulator_list, list) {
3544
3545		mutex_lock(&rdev->mutex);
3546		ret = suspend_prepare(rdev, state);
3547		mutex_unlock(&rdev->mutex);
3548
3549		if (ret < 0) {
3550			rdev_err(rdev, "failed to prepare\n");
3551			goto out;
3552		}
3553	}
3554out:
3555	mutex_unlock(&regulator_list_mutex);
3556	return ret;
3557}
3558EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3559
3560/**
3561 * regulator_suspend_finish - resume regulators from system wide suspend
3562 *
3563 * Turn on regulators that might be turned off by regulator_suspend_prepare
3564 * and that should be turned on according to the regulators properties.
3565 */
3566int regulator_suspend_finish(void)
3567{
3568	struct regulator_dev *rdev;
3569	int ret = 0, error;
3570
3571	mutex_lock(&regulator_list_mutex);
3572	list_for_each_entry(rdev, &regulator_list, list) {
3573		struct regulator_ops *ops = rdev->desc->ops;
3574
3575		mutex_lock(&rdev->mutex);
3576		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3577				ops->enable) {
3578			error = ops->enable(rdev);
3579			if (error)
3580				ret = error;
3581		} else {
3582			if (!has_full_constraints)
3583				goto unlock;
3584			if (!ops->disable)
3585				goto unlock;
3586			if (!_regulator_is_enabled(rdev))
3587				goto unlock;
3588
3589			error = ops->disable(rdev);
3590			if (error)
3591				ret = error;
3592		}
3593unlock:
3594		mutex_unlock(&rdev->mutex);
3595	}
3596	mutex_unlock(&regulator_list_mutex);
3597	return ret;
3598}
3599EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3600
3601/**
3602 * regulator_has_full_constraints - the system has fully specified constraints
3603 *
3604 * Calling this function will cause the regulator API to disable all
3605 * regulators which have a zero use count and don't have an always_on
3606 * constraint in a late_initcall.
3607 *
3608 * The intention is that this will become the default behaviour in a
3609 * future kernel release so users are encouraged to use this facility
3610 * now.
3611 */
3612void regulator_has_full_constraints(void)
3613{
3614	has_full_constraints = 1;
3615}
3616EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3617
3618/**
3619 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3620 *
3621 * Calling this function will cause the regulator API to provide a
3622 * dummy regulator to consumers if no physical regulator is found,
3623 * allowing most consumers to proceed as though a regulator were
3624 * configured.  This allows systems such as those with software
3625 * controllable regulators for the CPU core only to be brought up more
3626 * readily.
3627 */
3628void regulator_use_dummy_regulator(void)
3629{
3630	board_wants_dummy_regulator = true;
3631}
3632EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3633
3634/**
3635 * rdev_get_drvdata - get rdev regulator driver data
3636 * @rdev: regulator
3637 *
3638 * Get rdev regulator driver private data. This call can be used in the
3639 * regulator driver context.
3640 */
3641void *rdev_get_drvdata(struct regulator_dev *rdev)
3642{
3643	return rdev->reg_data;
3644}
3645EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3646
3647/**
3648 * regulator_get_drvdata - get regulator driver data
3649 * @regulator: regulator
3650 *
3651 * Get regulator driver private data. This call can be used in the consumer
3652 * driver context when non API regulator specific functions need to be called.
3653 */
3654void *regulator_get_drvdata(struct regulator *regulator)
3655{
3656	return regulator->rdev->reg_data;
3657}
3658EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3659
3660/**
3661 * regulator_set_drvdata - set regulator driver data
3662 * @regulator: regulator
3663 * @data: data
3664 */
3665void regulator_set_drvdata(struct regulator *regulator, void *data)
3666{
3667	regulator->rdev->reg_data = data;
3668}
3669EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3670
3671/**
3672 * regulator_get_id - get regulator ID
3673 * @rdev: regulator
3674 */
3675int rdev_get_id(struct regulator_dev *rdev)
3676{
3677	return rdev->desc->id;
3678}
3679EXPORT_SYMBOL_GPL(rdev_get_id);
3680
3681struct device *rdev_get_dev(struct regulator_dev *rdev)
3682{
3683	return &rdev->dev;
3684}
3685EXPORT_SYMBOL_GPL(rdev_get_dev);
3686
3687void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3688{
3689	return reg_init_data->driver_data;
3690}
3691EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3692
3693#ifdef CONFIG_DEBUG_FS
3694static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3695				    size_t count, loff_t *ppos)
3696{
3697	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3698	ssize_t len, ret = 0;
3699	struct regulator_map *map;
3700
3701	if (!buf)
3702		return -ENOMEM;
3703
3704	list_for_each_entry(map, &regulator_map_list, list) {
3705		len = snprintf(buf + ret, PAGE_SIZE - ret,
3706			       "%s -> %s.%s\n",
3707			       rdev_get_name(map->regulator), map->dev_name,
3708			       map->supply);
3709		if (len >= 0)
3710			ret += len;
3711		if (ret > PAGE_SIZE) {
3712			ret = PAGE_SIZE;
3713			break;
3714		}
3715	}
3716
3717	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3718
3719	kfree(buf);
3720
3721	return ret;
3722}
3723#endif
3724
3725static const struct file_operations supply_map_fops = {
3726#ifdef CONFIG_DEBUG_FS
3727	.read = supply_map_read_file,
3728	.llseek = default_llseek,
3729#endif
3730};
3731
3732static int __init regulator_init(void)
3733{
3734	int ret;
3735
3736	ret = class_register(&regulator_class);
3737
3738	debugfs_root = debugfs_create_dir("regulator", NULL);
3739	if (!debugfs_root)
3740		pr_warn("regulator: Failed to create debugfs directory\n");
3741
3742	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3743			    &supply_map_fops);
3744
3745	regulator_dummy_init();
3746
3747	return ret;
3748}
3749
3750/* init early to allow our consumers to complete system booting */
3751core_initcall(regulator_init);
3752
3753static int __init regulator_init_complete(void)
3754{
3755	struct regulator_dev *rdev;
3756	struct regulator_ops *ops;
3757	struct regulation_constraints *c;
3758	int enabled, ret;
3759
3760	/*
3761	 * Since DT doesn't provide an idiomatic mechanism for
3762	 * enabling full constraints and since it's much more natural
3763	 * with DT to provide them just assume that a DT enabled
3764	 * system has full constraints.
3765	 */
3766	if (of_have_populated_dt())
3767		has_full_constraints = true;
3768
3769	mutex_lock(&regulator_list_mutex);
3770
3771	/* If we have a full configuration then disable any regulators
3772	 * which are not in use or always_on.  This will become the
3773	 * default behaviour in the future.
3774	 */
3775	list_for_each_entry(rdev, &regulator_list, list) {
3776		ops = rdev->desc->ops;
3777		c = rdev->constraints;
3778
3779		if (!ops->disable || (c && c->always_on))
3780			continue;
3781
3782		mutex_lock(&rdev->mutex);
3783
3784		if (rdev->use_count)
3785			goto unlock;
3786
3787		/* If we can't read the status assume it's on. */
3788		if (ops->is_enabled)
3789			enabled = ops->is_enabled(rdev);
3790		else
3791			enabled = 1;
3792
3793		if (!enabled)
3794			goto unlock;
3795
3796		if (has_full_constraints) {
3797			/* We log since this may kill the system if it
3798			 * goes wrong. */
3799			rdev_info(rdev, "disabling\n");
3800			ret = ops->disable(rdev);
3801			if (ret != 0) {
3802				rdev_err(rdev, "couldn't disable: %d\n", ret);
3803			}
3804		} else {
3805			/* The intention is that in future we will
3806			 * assume that full constraints are provided
3807			 * so warn even if we aren't going to do
3808			 * anything here.
3809			 */
3810			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3811		}
3812
3813unlock:
3814		mutex_unlock(&rdev->mutex);
3815	}
3816
3817	mutex_unlock(&regulator_list_mutex);
3818
3819	return 0;
3820}
3821late_initcall(regulator_init_complete);
3822