core.c revision 4f26a2abe1eed18dc6adddf2d0ae5553e51578c2
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/delay.h>
23#include <linux/regulator/consumer.h>
24#include <linux/regulator/driver.h>
25#include <linux/regulator/machine.h>
26
27#include "dummy.h"
28
29#define REGULATOR_VERSION "0.5"
30
31static DEFINE_MUTEX(regulator_list_mutex);
32static LIST_HEAD(regulator_list);
33static LIST_HEAD(regulator_map_list);
34static int has_full_constraints;
35
36/*
37 * struct regulator_map
38 *
39 * Used to provide symbolic supply names to devices.
40 */
41struct regulator_map {
42	struct list_head list;
43	const char *dev_name;   /* The dev_name() for the consumer */
44	const char *supply;
45	struct regulator_dev *regulator;
46};
47
48/*
49 * struct regulator
50 *
51 * One for each consumer device.
52 */
53struct regulator {
54	struct device *dev;
55	struct list_head list;
56	int uA_load;
57	int min_uV;
58	int max_uV;
59	char *supply_name;
60	struct device_attribute dev_attr;
61	struct regulator_dev *rdev;
62};
63
64static int _regulator_is_enabled(struct regulator_dev *rdev);
65static int _regulator_disable(struct regulator_dev *rdev);
66static int _regulator_get_voltage(struct regulator_dev *rdev);
67static int _regulator_get_current_limit(struct regulator_dev *rdev);
68static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
69static void _notifier_call_chain(struct regulator_dev *rdev,
70				  unsigned long event, void *data);
71
72static const char *rdev_get_name(struct regulator_dev *rdev)
73{
74	if (rdev->constraints && rdev->constraints->name)
75		return rdev->constraints->name;
76	else if (rdev->desc->name)
77		return rdev->desc->name;
78	else
79		return "";
80}
81
82/* gets the regulator for a given consumer device */
83static struct regulator *get_device_regulator(struct device *dev)
84{
85	struct regulator *regulator = NULL;
86	struct regulator_dev *rdev;
87
88	mutex_lock(&regulator_list_mutex);
89	list_for_each_entry(rdev, &regulator_list, list) {
90		mutex_lock(&rdev->mutex);
91		list_for_each_entry(regulator, &rdev->consumer_list, list) {
92			if (regulator->dev == dev) {
93				mutex_unlock(&rdev->mutex);
94				mutex_unlock(&regulator_list_mutex);
95				return regulator;
96			}
97		}
98		mutex_unlock(&rdev->mutex);
99	}
100	mutex_unlock(&regulator_list_mutex);
101	return NULL;
102}
103
104/* Platform voltage constraint check */
105static int regulator_check_voltage(struct regulator_dev *rdev,
106				   int *min_uV, int *max_uV)
107{
108	BUG_ON(*min_uV > *max_uV);
109
110	if (!rdev->constraints) {
111		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
112		       rdev_get_name(rdev));
113		return -ENODEV;
114	}
115	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
116		printk(KERN_ERR "%s: operation not allowed for %s\n",
117		       __func__, rdev_get_name(rdev));
118		return -EPERM;
119	}
120
121	if (*max_uV > rdev->constraints->max_uV)
122		*max_uV = rdev->constraints->max_uV;
123	if (*min_uV < rdev->constraints->min_uV)
124		*min_uV = rdev->constraints->min_uV;
125
126	if (*min_uV > *max_uV)
127		return -EINVAL;
128
129	return 0;
130}
131
132/* current constraint check */
133static int regulator_check_current_limit(struct regulator_dev *rdev,
134					int *min_uA, int *max_uA)
135{
136	BUG_ON(*min_uA > *max_uA);
137
138	if (!rdev->constraints) {
139		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
140		       rdev_get_name(rdev));
141		return -ENODEV;
142	}
143	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
144		printk(KERN_ERR "%s: operation not allowed for %s\n",
145		       __func__, rdev_get_name(rdev));
146		return -EPERM;
147	}
148
149	if (*max_uA > rdev->constraints->max_uA)
150		*max_uA = rdev->constraints->max_uA;
151	if (*min_uA < rdev->constraints->min_uA)
152		*min_uA = rdev->constraints->min_uA;
153
154	if (*min_uA > *max_uA)
155		return -EINVAL;
156
157	return 0;
158}
159
160/* operating mode constraint check */
161static int regulator_check_mode(struct regulator_dev *rdev, int mode)
162{
163	switch (mode) {
164	case REGULATOR_MODE_FAST:
165	case REGULATOR_MODE_NORMAL:
166	case REGULATOR_MODE_IDLE:
167	case REGULATOR_MODE_STANDBY:
168		break;
169	default:
170		return -EINVAL;
171	}
172
173	if (!rdev->constraints) {
174		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
175		       rdev_get_name(rdev));
176		return -ENODEV;
177	}
178	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
179		printk(KERN_ERR "%s: operation not allowed for %s\n",
180		       __func__, rdev_get_name(rdev));
181		return -EPERM;
182	}
183	if (!(rdev->constraints->valid_modes_mask & mode)) {
184		printk(KERN_ERR "%s: invalid mode %x for %s\n",
185		       __func__, mode, rdev_get_name(rdev));
186		return -EINVAL;
187	}
188	return 0;
189}
190
191/* dynamic regulator mode switching constraint check */
192static int regulator_check_drms(struct regulator_dev *rdev)
193{
194	if (!rdev->constraints) {
195		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
196		       rdev_get_name(rdev));
197		return -ENODEV;
198	}
199	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
200		printk(KERN_ERR "%s: operation not allowed for %s\n",
201		       __func__, rdev_get_name(rdev));
202		return -EPERM;
203	}
204	return 0;
205}
206
207static ssize_t device_requested_uA_show(struct device *dev,
208			     struct device_attribute *attr, char *buf)
209{
210	struct regulator *regulator;
211
212	regulator = get_device_regulator(dev);
213	if (regulator == NULL)
214		return 0;
215
216	return sprintf(buf, "%d\n", regulator->uA_load);
217}
218
219static ssize_t regulator_uV_show(struct device *dev,
220				struct device_attribute *attr, char *buf)
221{
222	struct regulator_dev *rdev = dev_get_drvdata(dev);
223	ssize_t ret;
224
225	mutex_lock(&rdev->mutex);
226	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
227	mutex_unlock(&rdev->mutex);
228
229	return ret;
230}
231static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
232
233static ssize_t regulator_uA_show(struct device *dev,
234				struct device_attribute *attr, char *buf)
235{
236	struct regulator_dev *rdev = dev_get_drvdata(dev);
237
238	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
239}
240static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
241
242static ssize_t regulator_name_show(struct device *dev,
243			     struct device_attribute *attr, char *buf)
244{
245	struct regulator_dev *rdev = dev_get_drvdata(dev);
246
247	return sprintf(buf, "%s\n", rdev_get_name(rdev));
248}
249
250static ssize_t regulator_print_opmode(char *buf, int mode)
251{
252	switch (mode) {
253	case REGULATOR_MODE_FAST:
254		return sprintf(buf, "fast\n");
255	case REGULATOR_MODE_NORMAL:
256		return sprintf(buf, "normal\n");
257	case REGULATOR_MODE_IDLE:
258		return sprintf(buf, "idle\n");
259	case REGULATOR_MODE_STANDBY:
260		return sprintf(buf, "standby\n");
261	}
262	return sprintf(buf, "unknown\n");
263}
264
265static ssize_t regulator_opmode_show(struct device *dev,
266				    struct device_attribute *attr, char *buf)
267{
268	struct regulator_dev *rdev = dev_get_drvdata(dev);
269
270	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
271}
272static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
273
274static ssize_t regulator_print_state(char *buf, int state)
275{
276	if (state > 0)
277		return sprintf(buf, "enabled\n");
278	else if (state == 0)
279		return sprintf(buf, "disabled\n");
280	else
281		return sprintf(buf, "unknown\n");
282}
283
284static ssize_t regulator_state_show(struct device *dev,
285				   struct device_attribute *attr, char *buf)
286{
287	struct regulator_dev *rdev = dev_get_drvdata(dev);
288	ssize_t ret;
289
290	mutex_lock(&rdev->mutex);
291	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
292	mutex_unlock(&rdev->mutex);
293
294	return ret;
295}
296static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
297
298static ssize_t regulator_status_show(struct device *dev,
299				   struct device_attribute *attr, char *buf)
300{
301	struct regulator_dev *rdev = dev_get_drvdata(dev);
302	int status;
303	char *label;
304
305	status = rdev->desc->ops->get_status(rdev);
306	if (status < 0)
307		return status;
308
309	switch (status) {
310	case REGULATOR_STATUS_OFF:
311		label = "off";
312		break;
313	case REGULATOR_STATUS_ON:
314		label = "on";
315		break;
316	case REGULATOR_STATUS_ERROR:
317		label = "error";
318		break;
319	case REGULATOR_STATUS_FAST:
320		label = "fast";
321		break;
322	case REGULATOR_STATUS_NORMAL:
323		label = "normal";
324		break;
325	case REGULATOR_STATUS_IDLE:
326		label = "idle";
327		break;
328	case REGULATOR_STATUS_STANDBY:
329		label = "standby";
330		break;
331	default:
332		return -ERANGE;
333	}
334
335	return sprintf(buf, "%s\n", label);
336}
337static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
338
339static ssize_t regulator_min_uA_show(struct device *dev,
340				    struct device_attribute *attr, char *buf)
341{
342	struct regulator_dev *rdev = dev_get_drvdata(dev);
343
344	if (!rdev->constraints)
345		return sprintf(buf, "constraint not defined\n");
346
347	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
348}
349static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
350
351static ssize_t regulator_max_uA_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	if (!rdev->constraints)
357		return sprintf(buf, "constraint not defined\n");
358
359	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
360}
361static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
362
363static ssize_t regulator_min_uV_show(struct device *dev,
364				    struct device_attribute *attr, char *buf)
365{
366	struct regulator_dev *rdev = dev_get_drvdata(dev);
367
368	if (!rdev->constraints)
369		return sprintf(buf, "constraint not defined\n");
370
371	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
372}
373static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
374
375static ssize_t regulator_max_uV_show(struct device *dev,
376				    struct device_attribute *attr, char *buf)
377{
378	struct regulator_dev *rdev = dev_get_drvdata(dev);
379
380	if (!rdev->constraints)
381		return sprintf(buf, "constraint not defined\n");
382
383	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
384}
385static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
386
387static ssize_t regulator_total_uA_show(struct device *dev,
388				      struct device_attribute *attr, char *buf)
389{
390	struct regulator_dev *rdev = dev_get_drvdata(dev);
391	struct regulator *regulator;
392	int uA = 0;
393
394	mutex_lock(&rdev->mutex);
395	list_for_each_entry(regulator, &rdev->consumer_list, list)
396		uA += regulator->uA_load;
397	mutex_unlock(&rdev->mutex);
398	return sprintf(buf, "%d\n", uA);
399}
400static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
401
402static ssize_t regulator_num_users_show(struct device *dev,
403				      struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406	return sprintf(buf, "%d\n", rdev->use_count);
407}
408
409static ssize_t regulator_type_show(struct device *dev,
410				  struct device_attribute *attr, char *buf)
411{
412	struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414	switch (rdev->desc->type) {
415	case REGULATOR_VOLTAGE:
416		return sprintf(buf, "voltage\n");
417	case REGULATOR_CURRENT:
418		return sprintf(buf, "current\n");
419	}
420	return sprintf(buf, "unknown\n");
421}
422
423static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
429}
430static DEVICE_ATTR(suspend_mem_microvolts, 0444,
431		regulator_suspend_mem_uV_show, NULL);
432
433static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
439}
440static DEVICE_ATTR(suspend_disk_microvolts, 0444,
441		regulator_suspend_disk_uV_show, NULL);
442
443static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
449}
450static DEVICE_ATTR(suspend_standby_microvolts, 0444,
451		regulator_suspend_standby_uV_show, NULL);
452
453static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
454				struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	return regulator_print_opmode(buf,
459		rdev->constraints->state_mem.mode);
460}
461static DEVICE_ATTR(suspend_mem_mode, 0444,
462		regulator_suspend_mem_mode_show, NULL);
463
464static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
465				struct device_attribute *attr, char *buf)
466{
467	struct regulator_dev *rdev = dev_get_drvdata(dev);
468
469	return regulator_print_opmode(buf,
470		rdev->constraints->state_disk.mode);
471}
472static DEVICE_ATTR(suspend_disk_mode, 0444,
473		regulator_suspend_disk_mode_show, NULL);
474
475static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
476				struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479
480	return regulator_print_opmode(buf,
481		rdev->constraints->state_standby.mode);
482}
483static DEVICE_ATTR(suspend_standby_mode, 0444,
484		regulator_suspend_standby_mode_show, NULL);
485
486static ssize_t regulator_suspend_mem_state_show(struct device *dev,
487				   struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491	return regulator_print_state(buf,
492			rdev->constraints->state_mem.enabled);
493}
494static DEVICE_ATTR(suspend_mem_state, 0444,
495		regulator_suspend_mem_state_show, NULL);
496
497static ssize_t regulator_suspend_disk_state_show(struct device *dev,
498				   struct device_attribute *attr, char *buf)
499{
500	struct regulator_dev *rdev = dev_get_drvdata(dev);
501
502	return regulator_print_state(buf,
503			rdev->constraints->state_disk.enabled);
504}
505static DEVICE_ATTR(suspend_disk_state, 0444,
506		regulator_suspend_disk_state_show, NULL);
507
508static ssize_t regulator_suspend_standby_state_show(struct device *dev,
509				   struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	return regulator_print_state(buf,
514			rdev->constraints->state_standby.enabled);
515}
516static DEVICE_ATTR(suspend_standby_state, 0444,
517		regulator_suspend_standby_state_show, NULL);
518
519
520/*
521 * These are the only attributes are present for all regulators.
522 * Other attributes are a function of regulator functionality.
523 */
524static struct device_attribute regulator_dev_attrs[] = {
525	__ATTR(name, 0444, regulator_name_show, NULL),
526	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
527	__ATTR(type, 0444, regulator_type_show, NULL),
528	__ATTR_NULL,
529};
530
531static void regulator_dev_release(struct device *dev)
532{
533	struct regulator_dev *rdev = dev_get_drvdata(dev);
534	kfree(rdev);
535}
536
537static struct class regulator_class = {
538	.name = "regulator",
539	.dev_release = regulator_dev_release,
540	.dev_attrs = regulator_dev_attrs,
541};
542
543/* Calculate the new optimum regulator operating mode based on the new total
544 * consumer load. All locks held by caller */
545static void drms_uA_update(struct regulator_dev *rdev)
546{
547	struct regulator *sibling;
548	int current_uA = 0, output_uV, input_uV, err;
549	unsigned int mode;
550
551	err = regulator_check_drms(rdev);
552	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
553	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
554		return;
555
556	/* get output voltage */
557	output_uV = rdev->desc->ops->get_voltage(rdev);
558	if (output_uV <= 0)
559		return;
560
561	/* get input voltage */
562	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
563		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
564	else
565		input_uV = rdev->constraints->input_uV;
566	if (input_uV <= 0)
567		return;
568
569	/* calc total requested load */
570	list_for_each_entry(sibling, &rdev->consumer_list, list)
571		current_uA += sibling->uA_load;
572
573	/* now get the optimum mode for our new total regulator load */
574	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
575						  output_uV, current_uA);
576
577	/* check the new mode is allowed */
578	err = regulator_check_mode(rdev, mode);
579	if (err == 0)
580		rdev->desc->ops->set_mode(rdev, mode);
581}
582
583static int suspend_set_state(struct regulator_dev *rdev,
584	struct regulator_state *rstate)
585{
586	int ret = 0;
587	bool can_set_state;
588
589	can_set_state = rdev->desc->ops->set_suspend_enable &&
590		rdev->desc->ops->set_suspend_disable;
591
592	/* If we have no suspend mode configration don't set anything;
593	 * only warn if the driver actually makes the suspend mode
594	 * configurable.
595	 */
596	if (!rstate->enabled && !rstate->disabled) {
597		if (can_set_state)
598			printk(KERN_WARNING "%s: No configuration for %s\n",
599			       __func__, rdev_get_name(rdev));
600		return 0;
601	}
602
603	if (rstate->enabled && rstate->disabled) {
604		printk(KERN_ERR "%s: invalid configuration for %s\n",
605		       __func__, rdev_get_name(rdev));
606		return -EINVAL;
607	}
608
609	if (!can_set_state) {
610		printk(KERN_ERR "%s: no way to set suspend state\n",
611			__func__);
612		return -EINVAL;
613	}
614
615	if (rstate->enabled)
616		ret = rdev->desc->ops->set_suspend_enable(rdev);
617	else
618		ret = rdev->desc->ops->set_suspend_disable(rdev);
619	if (ret < 0) {
620		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
621		return ret;
622	}
623
624	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
625		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
626		if (ret < 0) {
627			printk(KERN_ERR "%s: failed to set voltage\n",
628				__func__);
629			return ret;
630		}
631	}
632
633	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
634		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
635		if (ret < 0) {
636			printk(KERN_ERR "%s: failed to set mode\n", __func__);
637			return ret;
638		}
639	}
640	return ret;
641}
642
643/* locks held by caller */
644static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
645{
646	if (!rdev->constraints)
647		return -EINVAL;
648
649	switch (state) {
650	case PM_SUSPEND_STANDBY:
651		return suspend_set_state(rdev,
652			&rdev->constraints->state_standby);
653	case PM_SUSPEND_MEM:
654		return suspend_set_state(rdev,
655			&rdev->constraints->state_mem);
656	case PM_SUSPEND_MAX:
657		return suspend_set_state(rdev,
658			&rdev->constraints->state_disk);
659	default:
660		return -EINVAL;
661	}
662}
663
664static void print_constraints(struct regulator_dev *rdev)
665{
666	struct regulation_constraints *constraints = rdev->constraints;
667	char buf[80] = "";
668	int count = 0;
669	int ret;
670
671	if (constraints->min_uV && constraints->max_uV) {
672		if (constraints->min_uV == constraints->max_uV)
673			count += sprintf(buf + count, "%d mV ",
674					 constraints->min_uV / 1000);
675		else
676			count += sprintf(buf + count, "%d <--> %d mV ",
677					 constraints->min_uV / 1000,
678					 constraints->max_uV / 1000);
679	}
680
681	if (!constraints->min_uV ||
682	    constraints->min_uV != constraints->max_uV) {
683		ret = _regulator_get_voltage(rdev);
684		if (ret > 0)
685			count += sprintf(buf + count, "at %d mV ", ret / 1000);
686	}
687
688	if (constraints->min_uA && constraints->max_uA) {
689		if (constraints->min_uA == constraints->max_uA)
690			count += sprintf(buf + count, "%d mA ",
691					 constraints->min_uA / 1000);
692		else
693			count += sprintf(buf + count, "%d <--> %d mA ",
694					 constraints->min_uA / 1000,
695					 constraints->max_uA / 1000);
696	}
697
698	if (!constraints->min_uA ||
699	    constraints->min_uA != constraints->max_uA) {
700		ret = _regulator_get_current_limit(rdev);
701		if (ret > 0)
702			count += sprintf(buf + count, "at %d uA ", ret / 1000);
703	}
704
705	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
706		count += sprintf(buf + count, "fast ");
707	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
708		count += sprintf(buf + count, "normal ");
709	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
710		count += sprintf(buf + count, "idle ");
711	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
712		count += sprintf(buf + count, "standby");
713
714	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
715}
716
717static int machine_constraints_voltage(struct regulator_dev *rdev,
718	struct regulation_constraints *constraints)
719{
720	struct regulator_ops *ops = rdev->desc->ops;
721	const char *name = rdev_get_name(rdev);
722	int ret;
723
724	/* do we need to apply the constraint voltage */
725	if (rdev->constraints->apply_uV &&
726		rdev->constraints->min_uV == rdev->constraints->max_uV &&
727		ops->set_voltage) {
728		ret = ops->set_voltage(rdev,
729			rdev->constraints->min_uV, rdev->constraints->max_uV);
730			if (ret < 0) {
731				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
732				       __func__,
733				       rdev->constraints->min_uV, name);
734				rdev->constraints = NULL;
735				return ret;
736			}
737	}
738
739	/* constrain machine-level voltage specs to fit
740	 * the actual range supported by this regulator.
741	 */
742	if (ops->list_voltage && rdev->desc->n_voltages) {
743		int	count = rdev->desc->n_voltages;
744		int	i;
745		int	min_uV = INT_MAX;
746		int	max_uV = INT_MIN;
747		int	cmin = constraints->min_uV;
748		int	cmax = constraints->max_uV;
749
750		/* it's safe to autoconfigure fixed-voltage supplies
751		   and the constraints are used by list_voltage. */
752		if (count == 1 && !cmin) {
753			cmin = 1;
754			cmax = INT_MAX;
755			constraints->min_uV = cmin;
756			constraints->max_uV = cmax;
757		}
758
759		/* voltage constraints are optional */
760		if ((cmin == 0) && (cmax == 0))
761			return 0;
762
763		/* else require explicit machine-level constraints */
764		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
765			pr_err("%s: %s '%s' voltage constraints\n",
766				       __func__, "invalid", name);
767			return -EINVAL;
768		}
769
770		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
771		for (i = 0; i < count; i++) {
772			int	value;
773
774			value = ops->list_voltage(rdev, i);
775			if (value <= 0)
776				continue;
777
778			/* maybe adjust [min_uV..max_uV] */
779			if (value >= cmin && value < min_uV)
780				min_uV = value;
781			if (value <= cmax && value > max_uV)
782				max_uV = value;
783		}
784
785		/* final: [min_uV..max_uV] valid iff constraints valid */
786		if (max_uV < min_uV) {
787			pr_err("%s: %s '%s' voltage constraints\n",
788				       __func__, "unsupportable", name);
789			return -EINVAL;
790		}
791
792		/* use regulator's subset of machine constraints */
793		if (constraints->min_uV < min_uV) {
794			pr_debug("%s: override '%s' %s, %d -> %d\n",
795				       __func__, name, "min_uV",
796					constraints->min_uV, min_uV);
797			constraints->min_uV = min_uV;
798		}
799		if (constraints->max_uV > max_uV) {
800			pr_debug("%s: override '%s' %s, %d -> %d\n",
801				       __func__, name, "max_uV",
802					constraints->max_uV, max_uV);
803			constraints->max_uV = max_uV;
804		}
805	}
806
807	return 0;
808}
809
810/**
811 * set_machine_constraints - sets regulator constraints
812 * @rdev: regulator source
813 * @constraints: constraints to apply
814 *
815 * Allows platform initialisation code to define and constrain
816 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
817 * Constraints *must* be set by platform code in order for some
818 * regulator operations to proceed i.e. set_voltage, set_current_limit,
819 * set_mode.
820 */
821static int set_machine_constraints(struct regulator_dev *rdev,
822	struct regulation_constraints *constraints)
823{
824	int ret = 0;
825	const char *name;
826	struct regulator_ops *ops = rdev->desc->ops;
827
828	rdev->constraints = constraints;
829
830	name = rdev_get_name(rdev);
831
832	ret = machine_constraints_voltage(rdev, constraints);
833	if (ret != 0)
834		goto out;
835
836	/* do we need to setup our suspend state */
837	if (constraints->initial_state) {
838		ret = suspend_prepare(rdev, constraints->initial_state);
839		if (ret < 0) {
840			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
841			       __func__, name);
842			rdev->constraints = NULL;
843			goto out;
844		}
845	}
846
847	if (constraints->initial_mode) {
848		if (!ops->set_mode) {
849			printk(KERN_ERR "%s: no set_mode operation for %s\n",
850			       __func__, name);
851			ret = -EINVAL;
852			goto out;
853		}
854
855		ret = ops->set_mode(rdev, constraints->initial_mode);
856		if (ret < 0) {
857			printk(KERN_ERR
858			       "%s: failed to set initial mode for %s: %d\n",
859			       __func__, name, ret);
860			goto out;
861		}
862	}
863
864	/* If the constraints say the regulator should be on at this point
865	 * and we have control then make sure it is enabled.
866	 */
867	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
868		ret = ops->enable(rdev);
869		if (ret < 0) {
870			printk(KERN_ERR "%s: failed to enable %s\n",
871			       __func__, name);
872			rdev->constraints = NULL;
873			goto out;
874		}
875	}
876
877	print_constraints(rdev);
878out:
879	return ret;
880}
881
882/**
883 * set_supply - set regulator supply regulator
884 * @rdev: regulator name
885 * @supply_rdev: supply regulator name
886 *
887 * Called by platform initialisation code to set the supply regulator for this
888 * regulator. This ensures that a regulators supply will also be enabled by the
889 * core if it's child is enabled.
890 */
891static int set_supply(struct regulator_dev *rdev,
892	struct regulator_dev *supply_rdev)
893{
894	int err;
895
896	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
897				"supply");
898	if (err) {
899		printk(KERN_ERR
900		       "%s: could not add device link %s err %d\n",
901		       __func__, supply_rdev->dev.kobj.name, err);
902		       goto out;
903	}
904	rdev->supply = supply_rdev;
905	list_add(&rdev->slist, &supply_rdev->supply_list);
906out:
907	return err;
908}
909
910/**
911 * set_consumer_device_supply: Bind a regulator to a symbolic supply
912 * @rdev:         regulator source
913 * @consumer_dev: device the supply applies to
914 * @consumer_dev_name: dev_name() string for device supply applies to
915 * @supply:       symbolic name for supply
916 *
917 * Allows platform initialisation code to map physical regulator
918 * sources to symbolic names for supplies for use by devices.  Devices
919 * should use these symbolic names to request regulators, avoiding the
920 * need to provide board-specific regulator names as platform data.
921 *
922 * Only one of consumer_dev and consumer_dev_name may be specified.
923 */
924static int set_consumer_device_supply(struct regulator_dev *rdev,
925	struct device *consumer_dev, const char *consumer_dev_name,
926	const char *supply)
927{
928	struct regulator_map *node;
929	int has_dev;
930
931	if (consumer_dev && consumer_dev_name)
932		return -EINVAL;
933
934	if (!consumer_dev_name && consumer_dev)
935		consumer_dev_name = dev_name(consumer_dev);
936
937	if (supply == NULL)
938		return -EINVAL;
939
940	if (consumer_dev_name != NULL)
941		has_dev = 1;
942	else
943		has_dev = 0;
944
945	list_for_each_entry(node, &regulator_map_list, list) {
946		if (consumer_dev_name != node->dev_name)
947			continue;
948		if (strcmp(node->supply, supply) != 0)
949			continue;
950
951		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
952				dev_name(&node->regulator->dev),
953				node->regulator->desc->name,
954				supply,
955				dev_name(&rdev->dev), rdev_get_name(rdev));
956		return -EBUSY;
957	}
958
959	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
960	if (node == NULL)
961		return -ENOMEM;
962
963	node->regulator = rdev;
964	node->supply = supply;
965
966	if (has_dev) {
967		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
968		if (node->dev_name == NULL) {
969			kfree(node);
970			return -ENOMEM;
971		}
972	}
973
974	list_add(&node->list, &regulator_map_list);
975	return 0;
976}
977
978static void unset_consumer_device_supply(struct regulator_dev *rdev,
979	const char *consumer_dev_name, struct device *consumer_dev)
980{
981	struct regulator_map *node, *n;
982
983	if (consumer_dev && !consumer_dev_name)
984		consumer_dev_name = dev_name(consumer_dev);
985
986	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
987		if (rdev != node->regulator)
988			continue;
989
990		if (consumer_dev_name && node->dev_name &&
991		    strcmp(consumer_dev_name, node->dev_name))
992			continue;
993
994		list_del(&node->list);
995		kfree(node->dev_name);
996		kfree(node);
997		return;
998	}
999}
1000
1001static void unset_regulator_supplies(struct regulator_dev *rdev)
1002{
1003	struct regulator_map *node, *n;
1004
1005	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006		if (rdev == node->regulator) {
1007			list_del(&node->list);
1008			kfree(node->dev_name);
1009			kfree(node);
1010			return;
1011		}
1012	}
1013}
1014
1015#define REG_STR_SIZE	32
1016
1017static struct regulator *create_regulator(struct regulator_dev *rdev,
1018					  struct device *dev,
1019					  const char *supply_name)
1020{
1021	struct regulator *regulator;
1022	char buf[REG_STR_SIZE];
1023	int err, size;
1024
1025	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1026	if (regulator == NULL)
1027		return NULL;
1028
1029	mutex_lock(&rdev->mutex);
1030	regulator->rdev = rdev;
1031	list_add(&regulator->list, &rdev->consumer_list);
1032
1033	if (dev) {
1034		/* create a 'requested_microamps_name' sysfs entry */
1035		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1036			supply_name);
1037		if (size >= REG_STR_SIZE)
1038			goto overflow_err;
1039
1040		regulator->dev = dev;
1041		sysfs_attr_init(&regulator->dev_attr.attr);
1042		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1043		if (regulator->dev_attr.attr.name == NULL)
1044			goto attr_name_err;
1045
1046		regulator->dev_attr.attr.owner = THIS_MODULE;
1047		regulator->dev_attr.attr.mode = 0444;
1048		regulator->dev_attr.show = device_requested_uA_show;
1049		err = device_create_file(dev, &regulator->dev_attr);
1050		if (err < 0) {
1051			printk(KERN_WARNING "%s: could not add regulator_dev"
1052				" load sysfs\n", __func__);
1053			goto attr_name_err;
1054		}
1055
1056		/* also add a link to the device sysfs entry */
1057		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1058				 dev->kobj.name, supply_name);
1059		if (size >= REG_STR_SIZE)
1060			goto attr_err;
1061
1062		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1063		if (regulator->supply_name == NULL)
1064			goto attr_err;
1065
1066		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1067					buf);
1068		if (err) {
1069			printk(KERN_WARNING
1070			       "%s: could not add device link %s err %d\n",
1071			       __func__, dev->kobj.name, err);
1072			device_remove_file(dev, &regulator->dev_attr);
1073			goto link_name_err;
1074		}
1075	}
1076	mutex_unlock(&rdev->mutex);
1077	return regulator;
1078link_name_err:
1079	kfree(regulator->supply_name);
1080attr_err:
1081	device_remove_file(regulator->dev, &regulator->dev_attr);
1082attr_name_err:
1083	kfree(regulator->dev_attr.attr.name);
1084overflow_err:
1085	list_del(&regulator->list);
1086	kfree(regulator);
1087	mutex_unlock(&rdev->mutex);
1088	return NULL;
1089}
1090
1091static int _regulator_get_enable_time(struct regulator_dev *rdev)
1092{
1093	if (!rdev->desc->ops->enable_time)
1094		return 0;
1095	return rdev->desc->ops->enable_time(rdev);
1096}
1097
1098/* Internal regulator request function */
1099static struct regulator *_regulator_get(struct device *dev, const char *id,
1100					int exclusive)
1101{
1102	struct regulator_dev *rdev;
1103	struct regulator_map *map;
1104	struct regulator *regulator = ERR_PTR(-ENODEV);
1105	const char *devname = NULL;
1106	int ret;
1107
1108	if (id == NULL) {
1109		printk(KERN_ERR "regulator: get() with no identifier\n");
1110		return regulator;
1111	}
1112
1113	if (dev)
1114		devname = dev_name(dev);
1115
1116	mutex_lock(&regulator_list_mutex);
1117
1118	list_for_each_entry(map, &regulator_map_list, list) {
1119		/* If the mapping has a device set up it must match */
1120		if (map->dev_name &&
1121		    (!devname || strcmp(map->dev_name, devname)))
1122			continue;
1123
1124		if (strcmp(map->supply, id) == 0) {
1125			rdev = map->regulator;
1126			goto found;
1127		}
1128	}
1129
1130#ifdef CONFIG_REGULATOR_DUMMY
1131	if (!devname)
1132		devname = "deviceless";
1133
1134	/* If the board didn't flag that it was fully constrained then
1135	 * substitute in a dummy regulator so consumers can continue.
1136	 */
1137	if (!has_full_constraints) {
1138		pr_warning("%s supply %s not found, using dummy regulator\n",
1139			   devname, id);
1140		rdev = dummy_regulator_rdev;
1141		goto found;
1142	}
1143#endif
1144
1145	mutex_unlock(&regulator_list_mutex);
1146	return regulator;
1147
1148found:
1149	if (rdev->exclusive) {
1150		regulator = ERR_PTR(-EPERM);
1151		goto out;
1152	}
1153
1154	if (exclusive && rdev->open_count) {
1155		regulator = ERR_PTR(-EBUSY);
1156		goto out;
1157	}
1158
1159	if (!try_module_get(rdev->owner))
1160		goto out;
1161
1162	regulator = create_regulator(rdev, dev, id);
1163	if (regulator == NULL) {
1164		regulator = ERR_PTR(-ENOMEM);
1165		module_put(rdev->owner);
1166	}
1167
1168	rdev->open_count++;
1169	if (exclusive) {
1170		rdev->exclusive = 1;
1171
1172		ret = _regulator_is_enabled(rdev);
1173		if (ret > 0)
1174			rdev->use_count = 1;
1175		else
1176			rdev->use_count = 0;
1177	}
1178
1179out:
1180	mutex_unlock(&regulator_list_mutex);
1181
1182	return regulator;
1183}
1184
1185/**
1186 * regulator_get - lookup and obtain a reference to a regulator.
1187 * @dev: device for regulator "consumer"
1188 * @id: Supply name or regulator ID.
1189 *
1190 * Returns a struct regulator corresponding to the regulator producer,
1191 * or IS_ERR() condition containing errno.
1192 *
1193 * Use of supply names configured via regulator_set_device_supply() is
1194 * strongly encouraged.  It is recommended that the supply name used
1195 * should match the name used for the supply and/or the relevant
1196 * device pins in the datasheet.
1197 */
1198struct regulator *regulator_get(struct device *dev, const char *id)
1199{
1200	return _regulator_get(dev, id, 0);
1201}
1202EXPORT_SYMBOL_GPL(regulator_get);
1203
1204/**
1205 * regulator_get_exclusive - obtain exclusive access to a regulator.
1206 * @dev: device for regulator "consumer"
1207 * @id: Supply name or regulator ID.
1208 *
1209 * Returns a struct regulator corresponding to the regulator producer,
1210 * or IS_ERR() condition containing errno.  Other consumers will be
1211 * unable to obtain this reference is held and the use count for the
1212 * regulator will be initialised to reflect the current state of the
1213 * regulator.
1214 *
1215 * This is intended for use by consumers which cannot tolerate shared
1216 * use of the regulator such as those which need to force the
1217 * regulator off for correct operation of the hardware they are
1218 * controlling.
1219 *
1220 * Use of supply names configured via regulator_set_device_supply() is
1221 * strongly encouraged.  It is recommended that the supply name used
1222 * should match the name used for the supply and/or the relevant
1223 * device pins in the datasheet.
1224 */
1225struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1226{
1227	return _regulator_get(dev, id, 1);
1228}
1229EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1230
1231/**
1232 * regulator_put - "free" the regulator source
1233 * @regulator: regulator source
1234 *
1235 * Note: drivers must ensure that all regulator_enable calls made on this
1236 * regulator source are balanced by regulator_disable calls prior to calling
1237 * this function.
1238 */
1239void regulator_put(struct regulator *regulator)
1240{
1241	struct regulator_dev *rdev;
1242
1243	if (regulator == NULL || IS_ERR(regulator))
1244		return;
1245
1246	mutex_lock(&regulator_list_mutex);
1247	rdev = regulator->rdev;
1248
1249	/* remove any sysfs entries */
1250	if (regulator->dev) {
1251		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1252		kfree(regulator->supply_name);
1253		device_remove_file(regulator->dev, &regulator->dev_attr);
1254		kfree(regulator->dev_attr.attr.name);
1255	}
1256	list_del(&regulator->list);
1257	kfree(regulator);
1258
1259	rdev->open_count--;
1260	rdev->exclusive = 0;
1261
1262	module_put(rdev->owner);
1263	mutex_unlock(&regulator_list_mutex);
1264}
1265EXPORT_SYMBOL_GPL(regulator_put);
1266
1267static int _regulator_can_change_status(struct regulator_dev *rdev)
1268{
1269	if (!rdev->constraints)
1270		return 0;
1271
1272	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1273		return 1;
1274	else
1275		return 0;
1276}
1277
1278/* locks held by regulator_enable() */
1279static int _regulator_enable(struct regulator_dev *rdev)
1280{
1281	int ret, delay;
1282
1283	/* do we need to enable the supply regulator first */
1284	if (rdev->supply) {
1285		ret = _regulator_enable(rdev->supply);
1286		if (ret < 0) {
1287			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1288			       __func__, rdev_get_name(rdev), ret);
1289			return ret;
1290		}
1291	}
1292
1293	/* check voltage and requested load before enabling */
1294	if (rdev->constraints &&
1295	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1296		drms_uA_update(rdev);
1297
1298	if (rdev->use_count == 0) {
1299		/* The regulator may on if it's not switchable or left on */
1300		ret = _regulator_is_enabled(rdev);
1301		if (ret == -EINVAL || ret == 0) {
1302			if (!_regulator_can_change_status(rdev))
1303				return -EPERM;
1304
1305			if (!rdev->desc->ops->enable)
1306				return -EINVAL;
1307
1308			/* Query before enabling in case configuration
1309			 * dependant.  */
1310			ret = _regulator_get_enable_time(rdev);
1311			if (ret >= 0) {
1312				delay = ret;
1313			} else {
1314				printk(KERN_WARNING
1315					"%s: enable_time() failed for %s: %d\n",
1316					__func__, rdev_get_name(rdev),
1317					ret);
1318				delay = 0;
1319			}
1320
1321			/* Allow the regulator to ramp; it would be useful
1322			 * to extend this for bulk operations so that the
1323			 * regulators can ramp together.  */
1324			ret = rdev->desc->ops->enable(rdev);
1325			if (ret < 0)
1326				return ret;
1327
1328			if (delay >= 1000)
1329				mdelay(delay / 1000);
1330			else if (delay)
1331				udelay(delay);
1332
1333		} else if (ret < 0) {
1334			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1335			       __func__, rdev_get_name(rdev), ret);
1336			return ret;
1337		}
1338		/* Fallthrough on positive return values - already enabled */
1339	}
1340
1341	rdev->use_count++;
1342
1343	return 0;
1344}
1345
1346/**
1347 * regulator_enable - enable regulator output
1348 * @regulator: regulator source
1349 *
1350 * Request that the regulator be enabled with the regulator output at
1351 * the predefined voltage or current value.  Calls to regulator_enable()
1352 * must be balanced with calls to regulator_disable().
1353 *
1354 * NOTE: the output value can be set by other drivers, boot loader or may be
1355 * hardwired in the regulator.
1356 */
1357int regulator_enable(struct regulator *regulator)
1358{
1359	struct regulator_dev *rdev = regulator->rdev;
1360	int ret = 0;
1361
1362	mutex_lock(&rdev->mutex);
1363	ret = _regulator_enable(rdev);
1364	mutex_unlock(&rdev->mutex);
1365	return ret;
1366}
1367EXPORT_SYMBOL_GPL(regulator_enable);
1368
1369/* locks held by regulator_disable() */
1370static int _regulator_disable(struct regulator_dev *rdev)
1371{
1372	int ret = 0;
1373
1374	if (WARN(rdev->use_count <= 0,
1375			"unbalanced disables for %s\n",
1376			rdev_get_name(rdev)))
1377		return -EIO;
1378
1379	/* are we the last user and permitted to disable ? */
1380	if (rdev->use_count == 1 &&
1381	    (rdev->constraints && !rdev->constraints->always_on)) {
1382
1383		/* we are last user */
1384		if (_regulator_can_change_status(rdev) &&
1385		    rdev->desc->ops->disable) {
1386			ret = rdev->desc->ops->disable(rdev);
1387			if (ret < 0) {
1388				printk(KERN_ERR "%s: failed to disable %s\n",
1389				       __func__, rdev_get_name(rdev));
1390				return ret;
1391			}
1392
1393			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1394					     NULL);
1395		}
1396
1397		/* decrease our supplies ref count and disable if required */
1398		if (rdev->supply)
1399			_regulator_disable(rdev->supply);
1400
1401		rdev->use_count = 0;
1402	} else if (rdev->use_count > 1) {
1403
1404		if (rdev->constraints &&
1405			(rdev->constraints->valid_ops_mask &
1406			REGULATOR_CHANGE_DRMS))
1407			drms_uA_update(rdev);
1408
1409		rdev->use_count--;
1410	}
1411	return ret;
1412}
1413
1414/**
1415 * regulator_disable - disable regulator output
1416 * @regulator: regulator source
1417 *
1418 * Disable the regulator output voltage or current.  Calls to
1419 * regulator_enable() must be balanced with calls to
1420 * regulator_disable().
1421 *
1422 * NOTE: this will only disable the regulator output if no other consumer
1423 * devices have it enabled, the regulator device supports disabling and
1424 * machine constraints permit this operation.
1425 */
1426int regulator_disable(struct regulator *regulator)
1427{
1428	struct regulator_dev *rdev = regulator->rdev;
1429	int ret = 0;
1430
1431	mutex_lock(&rdev->mutex);
1432	ret = _regulator_disable(rdev);
1433	mutex_unlock(&rdev->mutex);
1434	return ret;
1435}
1436EXPORT_SYMBOL_GPL(regulator_disable);
1437
1438/* locks held by regulator_force_disable() */
1439static int _regulator_force_disable(struct regulator_dev *rdev)
1440{
1441	int ret = 0;
1442
1443	/* force disable */
1444	if (rdev->desc->ops->disable) {
1445		/* ah well, who wants to live forever... */
1446		ret = rdev->desc->ops->disable(rdev);
1447		if (ret < 0) {
1448			printk(KERN_ERR "%s: failed to force disable %s\n",
1449			       __func__, rdev_get_name(rdev));
1450			return ret;
1451		}
1452		/* notify other consumers that power has been forced off */
1453		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1454			REGULATOR_EVENT_DISABLE, NULL);
1455	}
1456
1457	/* decrease our supplies ref count and disable if required */
1458	if (rdev->supply)
1459		_regulator_disable(rdev->supply);
1460
1461	rdev->use_count = 0;
1462	return ret;
1463}
1464
1465/**
1466 * regulator_force_disable - force disable regulator output
1467 * @regulator: regulator source
1468 *
1469 * Forcibly disable the regulator output voltage or current.
1470 * NOTE: this *will* disable the regulator output even if other consumer
1471 * devices have it enabled. This should be used for situations when device
1472 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1473 */
1474int regulator_force_disable(struct regulator *regulator)
1475{
1476	int ret;
1477
1478	mutex_lock(&regulator->rdev->mutex);
1479	regulator->uA_load = 0;
1480	ret = _regulator_force_disable(regulator->rdev);
1481	mutex_unlock(&regulator->rdev->mutex);
1482	return ret;
1483}
1484EXPORT_SYMBOL_GPL(regulator_force_disable);
1485
1486static int _regulator_is_enabled(struct regulator_dev *rdev)
1487{
1488	/* If we don't know then assume that the regulator is always on */
1489	if (!rdev->desc->ops->is_enabled)
1490		return 1;
1491
1492	return rdev->desc->ops->is_enabled(rdev);
1493}
1494
1495/**
1496 * regulator_is_enabled - is the regulator output enabled
1497 * @regulator: regulator source
1498 *
1499 * Returns positive if the regulator driver backing the source/client
1500 * has requested that the device be enabled, zero if it hasn't, else a
1501 * negative errno code.
1502 *
1503 * Note that the device backing this regulator handle can have multiple
1504 * users, so it might be enabled even if regulator_enable() was never
1505 * called for this particular source.
1506 */
1507int regulator_is_enabled(struct regulator *regulator)
1508{
1509	int ret;
1510
1511	mutex_lock(&regulator->rdev->mutex);
1512	ret = _regulator_is_enabled(regulator->rdev);
1513	mutex_unlock(&regulator->rdev->mutex);
1514
1515	return ret;
1516}
1517EXPORT_SYMBOL_GPL(regulator_is_enabled);
1518
1519/**
1520 * regulator_count_voltages - count regulator_list_voltage() selectors
1521 * @regulator: regulator source
1522 *
1523 * Returns number of selectors, or negative errno.  Selectors are
1524 * numbered starting at zero, and typically correspond to bitfields
1525 * in hardware registers.
1526 */
1527int regulator_count_voltages(struct regulator *regulator)
1528{
1529	struct regulator_dev	*rdev = regulator->rdev;
1530
1531	return rdev->desc->n_voltages ? : -EINVAL;
1532}
1533EXPORT_SYMBOL_GPL(regulator_count_voltages);
1534
1535/**
1536 * regulator_list_voltage - enumerate supported voltages
1537 * @regulator: regulator source
1538 * @selector: identify voltage to list
1539 * Context: can sleep
1540 *
1541 * Returns a voltage that can be passed to @regulator_set_voltage(),
1542 * zero if this selector code can't be used on this sytem, or a
1543 * negative errno.
1544 */
1545int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1546{
1547	struct regulator_dev	*rdev = regulator->rdev;
1548	struct regulator_ops	*ops = rdev->desc->ops;
1549	int			ret;
1550
1551	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1552		return -EINVAL;
1553
1554	mutex_lock(&rdev->mutex);
1555	ret = ops->list_voltage(rdev, selector);
1556	mutex_unlock(&rdev->mutex);
1557
1558	if (ret > 0) {
1559		if (ret < rdev->constraints->min_uV)
1560			ret = 0;
1561		else if (ret > rdev->constraints->max_uV)
1562			ret = 0;
1563	}
1564
1565	return ret;
1566}
1567EXPORT_SYMBOL_GPL(regulator_list_voltage);
1568
1569/**
1570 * regulator_is_supported_voltage - check if a voltage range can be supported
1571 *
1572 * @regulator: Regulator to check.
1573 * @min_uV: Minimum required voltage in uV.
1574 * @max_uV: Maximum required voltage in uV.
1575 *
1576 * Returns a boolean or a negative error code.
1577 */
1578int regulator_is_supported_voltage(struct regulator *regulator,
1579				   int min_uV, int max_uV)
1580{
1581	int i, voltages, ret;
1582
1583	ret = regulator_count_voltages(regulator);
1584	if (ret < 0)
1585		return ret;
1586	voltages = ret;
1587
1588	for (i = 0; i < voltages; i++) {
1589		ret = regulator_list_voltage(regulator, i);
1590
1591		if (ret >= min_uV && ret <= max_uV)
1592			return 1;
1593	}
1594
1595	return 0;
1596}
1597
1598/**
1599 * regulator_set_voltage - set regulator output voltage
1600 * @regulator: regulator source
1601 * @min_uV: Minimum required voltage in uV
1602 * @max_uV: Maximum acceptable voltage in uV
1603 *
1604 * Sets a voltage regulator to the desired output voltage. This can be set
1605 * during any regulator state. IOW, regulator can be disabled or enabled.
1606 *
1607 * If the regulator is enabled then the voltage will change to the new value
1608 * immediately otherwise if the regulator is disabled the regulator will
1609 * output at the new voltage when enabled.
1610 *
1611 * NOTE: If the regulator is shared between several devices then the lowest
1612 * request voltage that meets the system constraints will be used.
1613 * Regulator system constraints must be set for this regulator before
1614 * calling this function otherwise this call will fail.
1615 */
1616int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1617{
1618	struct regulator_dev *rdev = regulator->rdev;
1619	int ret;
1620
1621	mutex_lock(&rdev->mutex);
1622
1623	/* sanity check */
1624	if (!rdev->desc->ops->set_voltage) {
1625		ret = -EINVAL;
1626		goto out;
1627	}
1628
1629	/* constraints check */
1630	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1631	if (ret < 0)
1632		goto out;
1633	regulator->min_uV = min_uV;
1634	regulator->max_uV = max_uV;
1635	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1636
1637out:
1638	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1639	mutex_unlock(&rdev->mutex);
1640	return ret;
1641}
1642EXPORT_SYMBOL_GPL(regulator_set_voltage);
1643
1644static int _regulator_get_voltage(struct regulator_dev *rdev)
1645{
1646	/* sanity check */
1647	if (rdev->desc->ops->get_voltage)
1648		return rdev->desc->ops->get_voltage(rdev);
1649	else
1650		return -EINVAL;
1651}
1652
1653/**
1654 * regulator_get_voltage - get regulator output voltage
1655 * @regulator: regulator source
1656 *
1657 * This returns the current regulator voltage in uV.
1658 *
1659 * NOTE: If the regulator is disabled it will return the voltage value. This
1660 * function should not be used to determine regulator state.
1661 */
1662int regulator_get_voltage(struct regulator *regulator)
1663{
1664	int ret;
1665
1666	mutex_lock(&regulator->rdev->mutex);
1667
1668	ret = _regulator_get_voltage(regulator->rdev);
1669
1670	mutex_unlock(&regulator->rdev->mutex);
1671
1672	return ret;
1673}
1674EXPORT_SYMBOL_GPL(regulator_get_voltage);
1675
1676/**
1677 * regulator_set_current_limit - set regulator output current limit
1678 * @regulator: regulator source
1679 * @min_uA: Minimuum supported current in uA
1680 * @max_uA: Maximum supported current in uA
1681 *
1682 * Sets current sink to the desired output current. This can be set during
1683 * any regulator state. IOW, regulator can be disabled or enabled.
1684 *
1685 * If the regulator is enabled then the current will change to the new value
1686 * immediately otherwise if the regulator is disabled the regulator will
1687 * output at the new current when enabled.
1688 *
1689 * NOTE: Regulator system constraints must be set for this regulator before
1690 * calling this function otherwise this call will fail.
1691 */
1692int regulator_set_current_limit(struct regulator *regulator,
1693			       int min_uA, int max_uA)
1694{
1695	struct regulator_dev *rdev = regulator->rdev;
1696	int ret;
1697
1698	mutex_lock(&rdev->mutex);
1699
1700	/* sanity check */
1701	if (!rdev->desc->ops->set_current_limit) {
1702		ret = -EINVAL;
1703		goto out;
1704	}
1705
1706	/* constraints check */
1707	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1708	if (ret < 0)
1709		goto out;
1710
1711	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1712out:
1713	mutex_unlock(&rdev->mutex);
1714	return ret;
1715}
1716EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1717
1718static int _regulator_get_current_limit(struct regulator_dev *rdev)
1719{
1720	int ret;
1721
1722	mutex_lock(&rdev->mutex);
1723
1724	/* sanity check */
1725	if (!rdev->desc->ops->get_current_limit) {
1726		ret = -EINVAL;
1727		goto out;
1728	}
1729
1730	ret = rdev->desc->ops->get_current_limit(rdev);
1731out:
1732	mutex_unlock(&rdev->mutex);
1733	return ret;
1734}
1735
1736/**
1737 * regulator_get_current_limit - get regulator output current
1738 * @regulator: regulator source
1739 *
1740 * This returns the current supplied by the specified current sink in uA.
1741 *
1742 * NOTE: If the regulator is disabled it will return the current value. This
1743 * function should not be used to determine regulator state.
1744 */
1745int regulator_get_current_limit(struct regulator *regulator)
1746{
1747	return _regulator_get_current_limit(regulator->rdev);
1748}
1749EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1750
1751/**
1752 * regulator_set_mode - set regulator operating mode
1753 * @regulator: regulator source
1754 * @mode: operating mode - one of the REGULATOR_MODE constants
1755 *
1756 * Set regulator operating mode to increase regulator efficiency or improve
1757 * regulation performance.
1758 *
1759 * NOTE: Regulator system constraints must be set for this regulator before
1760 * calling this function otherwise this call will fail.
1761 */
1762int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1763{
1764	struct regulator_dev *rdev = regulator->rdev;
1765	int ret;
1766
1767	mutex_lock(&rdev->mutex);
1768
1769	/* sanity check */
1770	if (!rdev->desc->ops->set_mode) {
1771		ret = -EINVAL;
1772		goto out;
1773	}
1774
1775	/* constraints check */
1776	ret = regulator_check_mode(rdev, mode);
1777	if (ret < 0)
1778		goto out;
1779
1780	ret = rdev->desc->ops->set_mode(rdev, mode);
1781out:
1782	mutex_unlock(&rdev->mutex);
1783	return ret;
1784}
1785EXPORT_SYMBOL_GPL(regulator_set_mode);
1786
1787static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1788{
1789	int ret;
1790
1791	mutex_lock(&rdev->mutex);
1792
1793	/* sanity check */
1794	if (!rdev->desc->ops->get_mode) {
1795		ret = -EINVAL;
1796		goto out;
1797	}
1798
1799	ret = rdev->desc->ops->get_mode(rdev);
1800out:
1801	mutex_unlock(&rdev->mutex);
1802	return ret;
1803}
1804
1805/**
1806 * regulator_get_mode - get regulator operating mode
1807 * @regulator: regulator source
1808 *
1809 * Get the current regulator operating mode.
1810 */
1811unsigned int regulator_get_mode(struct regulator *regulator)
1812{
1813	return _regulator_get_mode(regulator->rdev);
1814}
1815EXPORT_SYMBOL_GPL(regulator_get_mode);
1816
1817/**
1818 * regulator_set_optimum_mode - set regulator optimum operating mode
1819 * @regulator: regulator source
1820 * @uA_load: load current
1821 *
1822 * Notifies the regulator core of a new device load. This is then used by
1823 * DRMS (if enabled by constraints) to set the most efficient regulator
1824 * operating mode for the new regulator loading.
1825 *
1826 * Consumer devices notify their supply regulator of the maximum power
1827 * they will require (can be taken from device datasheet in the power
1828 * consumption tables) when they change operational status and hence power
1829 * state. Examples of operational state changes that can affect power
1830 * consumption are :-
1831 *
1832 *    o Device is opened / closed.
1833 *    o Device I/O is about to begin or has just finished.
1834 *    o Device is idling in between work.
1835 *
1836 * This information is also exported via sysfs to userspace.
1837 *
1838 * DRMS will sum the total requested load on the regulator and change
1839 * to the most efficient operating mode if platform constraints allow.
1840 *
1841 * Returns the new regulator mode or error.
1842 */
1843int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1844{
1845	struct regulator_dev *rdev = regulator->rdev;
1846	struct regulator *consumer;
1847	int ret, output_uV, input_uV, total_uA_load = 0;
1848	unsigned int mode;
1849
1850	mutex_lock(&rdev->mutex);
1851
1852	regulator->uA_load = uA_load;
1853	ret = regulator_check_drms(rdev);
1854	if (ret < 0)
1855		goto out;
1856	ret = -EINVAL;
1857
1858	/* sanity check */
1859	if (!rdev->desc->ops->get_optimum_mode)
1860		goto out;
1861
1862	/* get output voltage */
1863	output_uV = rdev->desc->ops->get_voltage(rdev);
1864	if (output_uV <= 0) {
1865		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1866			__func__, rdev_get_name(rdev));
1867		goto out;
1868	}
1869
1870	/* get input voltage */
1871	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1872		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1873	else
1874		input_uV = rdev->constraints->input_uV;
1875	if (input_uV <= 0) {
1876		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1877			__func__, rdev_get_name(rdev));
1878		goto out;
1879	}
1880
1881	/* calc total requested load for this regulator */
1882	list_for_each_entry(consumer, &rdev->consumer_list, list)
1883		total_uA_load += consumer->uA_load;
1884
1885	mode = rdev->desc->ops->get_optimum_mode(rdev,
1886						 input_uV, output_uV,
1887						 total_uA_load);
1888	ret = regulator_check_mode(rdev, mode);
1889	if (ret < 0) {
1890		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1891			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1892			total_uA_load, input_uV, output_uV);
1893		goto out;
1894	}
1895
1896	ret = rdev->desc->ops->set_mode(rdev, mode);
1897	if (ret < 0) {
1898		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1899			__func__, mode, rdev_get_name(rdev));
1900		goto out;
1901	}
1902	ret = mode;
1903out:
1904	mutex_unlock(&rdev->mutex);
1905	return ret;
1906}
1907EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1908
1909/**
1910 * regulator_register_notifier - register regulator event notifier
1911 * @regulator: regulator source
1912 * @nb: notifier block
1913 *
1914 * Register notifier block to receive regulator events.
1915 */
1916int regulator_register_notifier(struct regulator *regulator,
1917			      struct notifier_block *nb)
1918{
1919	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1920						nb);
1921}
1922EXPORT_SYMBOL_GPL(regulator_register_notifier);
1923
1924/**
1925 * regulator_unregister_notifier - unregister regulator event notifier
1926 * @regulator: regulator source
1927 * @nb: notifier block
1928 *
1929 * Unregister regulator event notifier block.
1930 */
1931int regulator_unregister_notifier(struct regulator *regulator,
1932				struct notifier_block *nb)
1933{
1934	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1935						  nb);
1936}
1937EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1938
1939/* notify regulator consumers and downstream regulator consumers.
1940 * Note mutex must be held by caller.
1941 */
1942static void _notifier_call_chain(struct regulator_dev *rdev,
1943				  unsigned long event, void *data)
1944{
1945	struct regulator_dev *_rdev;
1946
1947	/* call rdev chain first */
1948	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1949
1950	/* now notify regulator we supply */
1951	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1952		mutex_lock(&_rdev->mutex);
1953		_notifier_call_chain(_rdev, event, data);
1954		mutex_unlock(&_rdev->mutex);
1955	}
1956}
1957
1958/**
1959 * regulator_bulk_get - get multiple regulator consumers
1960 *
1961 * @dev:           Device to supply
1962 * @num_consumers: Number of consumers to register
1963 * @consumers:     Configuration of consumers; clients are stored here.
1964 *
1965 * @return 0 on success, an errno on failure.
1966 *
1967 * This helper function allows drivers to get several regulator
1968 * consumers in one operation.  If any of the regulators cannot be
1969 * acquired then any regulators that were allocated will be freed
1970 * before returning to the caller.
1971 */
1972int regulator_bulk_get(struct device *dev, int num_consumers,
1973		       struct regulator_bulk_data *consumers)
1974{
1975	int i;
1976	int ret;
1977
1978	for (i = 0; i < num_consumers; i++)
1979		consumers[i].consumer = NULL;
1980
1981	for (i = 0; i < num_consumers; i++) {
1982		consumers[i].consumer = regulator_get(dev,
1983						      consumers[i].supply);
1984		if (IS_ERR(consumers[i].consumer)) {
1985			ret = PTR_ERR(consumers[i].consumer);
1986			dev_err(dev, "Failed to get supply '%s': %d\n",
1987				consumers[i].supply, ret);
1988			consumers[i].consumer = NULL;
1989			goto err;
1990		}
1991	}
1992
1993	return 0;
1994
1995err:
1996	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1997		regulator_put(consumers[i].consumer);
1998
1999	return ret;
2000}
2001EXPORT_SYMBOL_GPL(regulator_bulk_get);
2002
2003/**
2004 * regulator_bulk_enable - enable multiple regulator consumers
2005 *
2006 * @num_consumers: Number of consumers
2007 * @consumers:     Consumer data; clients are stored here.
2008 * @return         0 on success, an errno on failure
2009 *
2010 * This convenience API allows consumers to enable multiple regulator
2011 * clients in a single API call.  If any consumers cannot be enabled
2012 * then any others that were enabled will be disabled again prior to
2013 * return.
2014 */
2015int regulator_bulk_enable(int num_consumers,
2016			  struct regulator_bulk_data *consumers)
2017{
2018	int i;
2019	int ret;
2020
2021	for (i = 0; i < num_consumers; i++) {
2022		ret = regulator_enable(consumers[i].consumer);
2023		if (ret != 0)
2024			goto err;
2025	}
2026
2027	return 0;
2028
2029err:
2030	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2031	for (--i; i >= 0; --i)
2032		regulator_disable(consumers[i].consumer);
2033
2034	return ret;
2035}
2036EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2037
2038/**
2039 * regulator_bulk_disable - disable multiple regulator consumers
2040 *
2041 * @num_consumers: Number of consumers
2042 * @consumers:     Consumer data; clients are stored here.
2043 * @return         0 on success, an errno on failure
2044 *
2045 * This convenience API allows consumers to disable multiple regulator
2046 * clients in a single API call.  If any consumers cannot be enabled
2047 * then any others that were disabled will be disabled again prior to
2048 * return.
2049 */
2050int regulator_bulk_disable(int num_consumers,
2051			   struct regulator_bulk_data *consumers)
2052{
2053	int i;
2054	int ret;
2055
2056	for (i = 0; i < num_consumers; i++) {
2057		ret = regulator_disable(consumers[i].consumer);
2058		if (ret != 0)
2059			goto err;
2060	}
2061
2062	return 0;
2063
2064err:
2065	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2066	       ret);
2067	for (--i; i >= 0; --i)
2068		regulator_enable(consumers[i].consumer);
2069
2070	return ret;
2071}
2072EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2073
2074/**
2075 * regulator_bulk_free - free multiple regulator consumers
2076 *
2077 * @num_consumers: Number of consumers
2078 * @consumers:     Consumer data; clients are stored here.
2079 *
2080 * This convenience API allows consumers to free multiple regulator
2081 * clients in a single API call.
2082 */
2083void regulator_bulk_free(int num_consumers,
2084			 struct regulator_bulk_data *consumers)
2085{
2086	int i;
2087
2088	for (i = 0; i < num_consumers; i++) {
2089		regulator_put(consumers[i].consumer);
2090		consumers[i].consumer = NULL;
2091	}
2092}
2093EXPORT_SYMBOL_GPL(regulator_bulk_free);
2094
2095/**
2096 * regulator_notifier_call_chain - call regulator event notifier
2097 * @rdev: regulator source
2098 * @event: notifier block
2099 * @data: callback-specific data.
2100 *
2101 * Called by regulator drivers to notify clients a regulator event has
2102 * occurred. We also notify regulator clients downstream.
2103 * Note lock must be held by caller.
2104 */
2105int regulator_notifier_call_chain(struct regulator_dev *rdev,
2106				  unsigned long event, void *data)
2107{
2108	_notifier_call_chain(rdev, event, data);
2109	return NOTIFY_DONE;
2110
2111}
2112EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2113
2114/**
2115 * regulator_mode_to_status - convert a regulator mode into a status
2116 *
2117 * @mode: Mode to convert
2118 *
2119 * Convert a regulator mode into a status.
2120 */
2121int regulator_mode_to_status(unsigned int mode)
2122{
2123	switch (mode) {
2124	case REGULATOR_MODE_FAST:
2125		return REGULATOR_STATUS_FAST;
2126	case REGULATOR_MODE_NORMAL:
2127		return REGULATOR_STATUS_NORMAL;
2128	case REGULATOR_MODE_IDLE:
2129		return REGULATOR_STATUS_IDLE;
2130	case REGULATOR_STATUS_STANDBY:
2131		return REGULATOR_STATUS_STANDBY;
2132	default:
2133		return 0;
2134	}
2135}
2136EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2137
2138/*
2139 * To avoid cluttering sysfs (and memory) with useless state, only
2140 * create attributes that can be meaningfully displayed.
2141 */
2142static int add_regulator_attributes(struct regulator_dev *rdev)
2143{
2144	struct device		*dev = &rdev->dev;
2145	struct regulator_ops	*ops = rdev->desc->ops;
2146	int			status = 0;
2147
2148	/* some attributes need specific methods to be displayed */
2149	if (ops->get_voltage) {
2150		status = device_create_file(dev, &dev_attr_microvolts);
2151		if (status < 0)
2152			return status;
2153	}
2154	if (ops->get_current_limit) {
2155		status = device_create_file(dev, &dev_attr_microamps);
2156		if (status < 0)
2157			return status;
2158	}
2159	if (ops->get_mode) {
2160		status = device_create_file(dev, &dev_attr_opmode);
2161		if (status < 0)
2162			return status;
2163	}
2164	if (ops->is_enabled) {
2165		status = device_create_file(dev, &dev_attr_state);
2166		if (status < 0)
2167			return status;
2168	}
2169	if (ops->get_status) {
2170		status = device_create_file(dev, &dev_attr_status);
2171		if (status < 0)
2172			return status;
2173	}
2174
2175	/* some attributes are type-specific */
2176	if (rdev->desc->type == REGULATOR_CURRENT) {
2177		status = device_create_file(dev, &dev_attr_requested_microamps);
2178		if (status < 0)
2179			return status;
2180	}
2181
2182	/* all the other attributes exist to support constraints;
2183	 * don't show them if there are no constraints, or if the
2184	 * relevant supporting methods are missing.
2185	 */
2186	if (!rdev->constraints)
2187		return status;
2188
2189	/* constraints need specific supporting methods */
2190	if (ops->set_voltage) {
2191		status = device_create_file(dev, &dev_attr_min_microvolts);
2192		if (status < 0)
2193			return status;
2194		status = device_create_file(dev, &dev_attr_max_microvolts);
2195		if (status < 0)
2196			return status;
2197	}
2198	if (ops->set_current_limit) {
2199		status = device_create_file(dev, &dev_attr_min_microamps);
2200		if (status < 0)
2201			return status;
2202		status = device_create_file(dev, &dev_attr_max_microamps);
2203		if (status < 0)
2204			return status;
2205	}
2206
2207	/* suspend mode constraints need multiple supporting methods */
2208	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2209		return status;
2210
2211	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2212	if (status < 0)
2213		return status;
2214	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2215	if (status < 0)
2216		return status;
2217	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2218	if (status < 0)
2219		return status;
2220
2221	if (ops->set_suspend_voltage) {
2222		status = device_create_file(dev,
2223				&dev_attr_suspend_standby_microvolts);
2224		if (status < 0)
2225			return status;
2226		status = device_create_file(dev,
2227				&dev_attr_suspend_mem_microvolts);
2228		if (status < 0)
2229			return status;
2230		status = device_create_file(dev,
2231				&dev_attr_suspend_disk_microvolts);
2232		if (status < 0)
2233			return status;
2234	}
2235
2236	if (ops->set_suspend_mode) {
2237		status = device_create_file(dev,
2238				&dev_attr_suspend_standby_mode);
2239		if (status < 0)
2240			return status;
2241		status = device_create_file(dev,
2242				&dev_attr_suspend_mem_mode);
2243		if (status < 0)
2244			return status;
2245		status = device_create_file(dev,
2246				&dev_attr_suspend_disk_mode);
2247		if (status < 0)
2248			return status;
2249	}
2250
2251	return status;
2252}
2253
2254/**
2255 * regulator_register - register regulator
2256 * @regulator_desc: regulator to register
2257 * @dev: struct device for the regulator
2258 * @init_data: platform provided init data, passed through by driver
2259 * @driver_data: private regulator data
2260 *
2261 * Called by regulator drivers to register a regulator.
2262 * Returns 0 on success.
2263 */
2264struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2265	struct device *dev, struct regulator_init_data *init_data,
2266	void *driver_data)
2267{
2268	static atomic_t regulator_no = ATOMIC_INIT(0);
2269	struct regulator_dev *rdev;
2270	int ret, i;
2271
2272	if (regulator_desc == NULL)
2273		return ERR_PTR(-EINVAL);
2274
2275	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2276		return ERR_PTR(-EINVAL);
2277
2278	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2279	    regulator_desc->type != REGULATOR_CURRENT)
2280		return ERR_PTR(-EINVAL);
2281
2282	if (!init_data)
2283		return ERR_PTR(-EINVAL);
2284
2285	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2286	if (rdev == NULL)
2287		return ERR_PTR(-ENOMEM);
2288
2289	mutex_lock(&regulator_list_mutex);
2290
2291	mutex_init(&rdev->mutex);
2292	rdev->reg_data = driver_data;
2293	rdev->owner = regulator_desc->owner;
2294	rdev->desc = regulator_desc;
2295	INIT_LIST_HEAD(&rdev->consumer_list);
2296	INIT_LIST_HEAD(&rdev->supply_list);
2297	INIT_LIST_HEAD(&rdev->list);
2298	INIT_LIST_HEAD(&rdev->slist);
2299	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2300
2301	/* preform any regulator specific init */
2302	if (init_data->regulator_init) {
2303		ret = init_data->regulator_init(rdev->reg_data);
2304		if (ret < 0)
2305			goto clean;
2306	}
2307
2308	/* register with sysfs */
2309	rdev->dev.class = &regulator_class;
2310	rdev->dev.parent = dev;
2311	dev_set_name(&rdev->dev, "regulator.%d",
2312		     atomic_inc_return(&regulator_no) - 1);
2313	ret = device_register(&rdev->dev);
2314	if (ret != 0)
2315		goto clean;
2316
2317	dev_set_drvdata(&rdev->dev, rdev);
2318
2319	/* set regulator constraints */
2320	ret = set_machine_constraints(rdev, &init_data->constraints);
2321	if (ret < 0)
2322		goto scrub;
2323
2324	/* add attributes supported by this regulator */
2325	ret = add_regulator_attributes(rdev);
2326	if (ret < 0)
2327		goto scrub;
2328
2329	/* set supply regulator if it exists */
2330	if (init_data->supply_regulator_dev) {
2331		ret = set_supply(rdev,
2332			dev_get_drvdata(init_data->supply_regulator_dev));
2333		if (ret < 0)
2334			goto scrub;
2335	}
2336
2337	/* add consumers devices */
2338	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2339		ret = set_consumer_device_supply(rdev,
2340			init_data->consumer_supplies[i].dev,
2341			init_data->consumer_supplies[i].dev_name,
2342			init_data->consumer_supplies[i].supply);
2343		if (ret < 0) {
2344			for (--i; i >= 0; i--)
2345				unset_consumer_device_supply(rdev,
2346				    init_data->consumer_supplies[i].dev_name,
2347				    init_data->consumer_supplies[i].dev);
2348			goto scrub;
2349		}
2350	}
2351
2352	list_add(&rdev->list, &regulator_list);
2353out:
2354	mutex_unlock(&regulator_list_mutex);
2355	return rdev;
2356
2357scrub:
2358	device_unregister(&rdev->dev);
2359	/* device core frees rdev */
2360	rdev = ERR_PTR(ret);
2361	goto out;
2362
2363clean:
2364	kfree(rdev);
2365	rdev = ERR_PTR(ret);
2366	goto out;
2367}
2368EXPORT_SYMBOL_GPL(regulator_register);
2369
2370/**
2371 * regulator_unregister - unregister regulator
2372 * @rdev: regulator to unregister
2373 *
2374 * Called by regulator drivers to unregister a regulator.
2375 */
2376void regulator_unregister(struct regulator_dev *rdev)
2377{
2378	if (rdev == NULL)
2379		return;
2380
2381	mutex_lock(&regulator_list_mutex);
2382	WARN_ON(rdev->open_count);
2383	unset_regulator_supplies(rdev);
2384	list_del(&rdev->list);
2385	if (rdev->supply)
2386		sysfs_remove_link(&rdev->dev.kobj, "supply");
2387	device_unregister(&rdev->dev);
2388	mutex_unlock(&regulator_list_mutex);
2389}
2390EXPORT_SYMBOL_GPL(regulator_unregister);
2391
2392/**
2393 * regulator_suspend_prepare - prepare regulators for system wide suspend
2394 * @state: system suspend state
2395 *
2396 * Configure each regulator with it's suspend operating parameters for state.
2397 * This will usually be called by machine suspend code prior to supending.
2398 */
2399int regulator_suspend_prepare(suspend_state_t state)
2400{
2401	struct regulator_dev *rdev;
2402	int ret = 0;
2403
2404	/* ON is handled by regulator active state */
2405	if (state == PM_SUSPEND_ON)
2406		return -EINVAL;
2407
2408	mutex_lock(&regulator_list_mutex);
2409	list_for_each_entry(rdev, &regulator_list, list) {
2410
2411		mutex_lock(&rdev->mutex);
2412		ret = suspend_prepare(rdev, state);
2413		mutex_unlock(&rdev->mutex);
2414
2415		if (ret < 0) {
2416			printk(KERN_ERR "%s: failed to prepare %s\n",
2417				__func__, rdev_get_name(rdev));
2418			goto out;
2419		}
2420	}
2421out:
2422	mutex_unlock(&regulator_list_mutex);
2423	return ret;
2424}
2425EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2426
2427/**
2428 * regulator_has_full_constraints - the system has fully specified constraints
2429 *
2430 * Calling this function will cause the regulator API to disable all
2431 * regulators which have a zero use count and don't have an always_on
2432 * constraint in a late_initcall.
2433 *
2434 * The intention is that this will become the default behaviour in a
2435 * future kernel release so users are encouraged to use this facility
2436 * now.
2437 */
2438void regulator_has_full_constraints(void)
2439{
2440	has_full_constraints = 1;
2441}
2442EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2443
2444/**
2445 * rdev_get_drvdata - get rdev regulator driver data
2446 * @rdev: regulator
2447 *
2448 * Get rdev regulator driver private data. This call can be used in the
2449 * regulator driver context.
2450 */
2451void *rdev_get_drvdata(struct regulator_dev *rdev)
2452{
2453	return rdev->reg_data;
2454}
2455EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2456
2457/**
2458 * regulator_get_drvdata - get regulator driver data
2459 * @regulator: regulator
2460 *
2461 * Get regulator driver private data. This call can be used in the consumer
2462 * driver context when non API regulator specific functions need to be called.
2463 */
2464void *regulator_get_drvdata(struct regulator *regulator)
2465{
2466	return regulator->rdev->reg_data;
2467}
2468EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2469
2470/**
2471 * regulator_set_drvdata - set regulator driver data
2472 * @regulator: regulator
2473 * @data: data
2474 */
2475void regulator_set_drvdata(struct regulator *regulator, void *data)
2476{
2477	regulator->rdev->reg_data = data;
2478}
2479EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2480
2481/**
2482 * regulator_get_id - get regulator ID
2483 * @rdev: regulator
2484 */
2485int rdev_get_id(struct regulator_dev *rdev)
2486{
2487	return rdev->desc->id;
2488}
2489EXPORT_SYMBOL_GPL(rdev_get_id);
2490
2491struct device *rdev_get_dev(struct regulator_dev *rdev)
2492{
2493	return &rdev->dev;
2494}
2495EXPORT_SYMBOL_GPL(rdev_get_dev);
2496
2497void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2498{
2499	return reg_init_data->driver_data;
2500}
2501EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2502
2503static int __init regulator_init(void)
2504{
2505	int ret;
2506
2507	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2508
2509	ret = class_register(&regulator_class);
2510
2511	regulator_dummy_init();
2512
2513	return ret;
2514}
2515
2516/* init early to allow our consumers to complete system booting */
2517core_initcall(regulator_init);
2518
2519static int __init regulator_init_complete(void)
2520{
2521	struct regulator_dev *rdev;
2522	struct regulator_ops *ops;
2523	struct regulation_constraints *c;
2524	int enabled, ret;
2525	const char *name;
2526
2527	mutex_lock(&regulator_list_mutex);
2528
2529	/* If we have a full configuration then disable any regulators
2530	 * which are not in use or always_on.  This will become the
2531	 * default behaviour in the future.
2532	 */
2533	list_for_each_entry(rdev, &regulator_list, list) {
2534		ops = rdev->desc->ops;
2535		c = rdev->constraints;
2536
2537		name = rdev_get_name(rdev);
2538
2539		if (!ops->disable || (c && c->always_on))
2540			continue;
2541
2542		mutex_lock(&rdev->mutex);
2543
2544		if (rdev->use_count)
2545			goto unlock;
2546
2547		/* If we can't read the status assume it's on. */
2548		if (ops->is_enabled)
2549			enabled = ops->is_enabled(rdev);
2550		else
2551			enabled = 1;
2552
2553		if (!enabled)
2554			goto unlock;
2555
2556		if (has_full_constraints) {
2557			/* We log since this may kill the system if it
2558			 * goes wrong. */
2559			printk(KERN_INFO "%s: disabling %s\n",
2560			       __func__, name);
2561			ret = ops->disable(rdev);
2562			if (ret != 0) {
2563				printk(KERN_ERR
2564				       "%s: couldn't disable %s: %d\n",
2565				       __func__, name, ret);
2566			}
2567		} else {
2568			/* The intention is that in future we will
2569			 * assume that full constraints are provided
2570			 * so warn even if we aren't going to do
2571			 * anything here.
2572			 */
2573			printk(KERN_WARNING
2574			       "%s: incomplete constraints, leaving %s on\n",
2575			       __func__, name);
2576		}
2577
2578unlock:
2579		mutex_unlock(&rdev->mutex);
2580	}
2581
2582	mutex_unlock(&regulator_list_mutex);
2583
2584	return 0;
2585}
2586late_initcall(regulator_init_complete);
2587