core.c revision 500b4ac90d1103a7c302d5bb16c53f4ffc45d057
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/slab.h>
20#include <linux/err.h>
21#include <linux/mutex.h>
22#include <linux/suspend.h>
23#include <linux/delay.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/driver.h>
26#include <linux/regulator/machine.h>
27
28#include "dummy.h"
29
30#define REGULATOR_VERSION "0.5"
31
32static DEFINE_MUTEX(regulator_list_mutex);
33static LIST_HEAD(regulator_list);
34static LIST_HEAD(regulator_map_list);
35static int has_full_constraints;
36
37/*
38 * struct regulator_map
39 *
40 * Used to provide symbolic supply names to devices.
41 */
42struct regulator_map {
43	struct list_head list;
44	const char *dev_name;   /* The dev_name() for the consumer */
45	const char *supply;
46	struct regulator_dev *regulator;
47};
48
49/*
50 * struct regulator
51 *
52 * One for each consumer device.
53 */
54struct regulator {
55	struct device *dev;
56	struct list_head list;
57	int uA_load;
58	int min_uV;
59	int max_uV;
60	char *supply_name;
61	struct device_attribute dev_attr;
62	struct regulator_dev *rdev;
63};
64
65static int _regulator_is_enabled(struct regulator_dev *rdev);
66static int _regulator_disable(struct regulator_dev *rdev);
67static int _regulator_get_voltage(struct regulator_dev *rdev);
68static int _regulator_get_current_limit(struct regulator_dev *rdev);
69static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70static void _notifier_call_chain(struct regulator_dev *rdev,
71				  unsigned long event, void *data);
72
73static const char *rdev_get_name(struct regulator_dev *rdev)
74{
75	if (rdev->constraints && rdev->constraints->name)
76		return rdev->constraints->name;
77	else if (rdev->desc->name)
78		return rdev->desc->name;
79	else
80		return "";
81}
82
83/* gets the regulator for a given consumer device */
84static struct regulator *get_device_regulator(struct device *dev)
85{
86	struct regulator *regulator = NULL;
87	struct regulator_dev *rdev;
88
89	mutex_lock(&regulator_list_mutex);
90	list_for_each_entry(rdev, &regulator_list, list) {
91		mutex_lock(&rdev->mutex);
92		list_for_each_entry(regulator, &rdev->consumer_list, list) {
93			if (regulator->dev == dev) {
94				mutex_unlock(&rdev->mutex);
95				mutex_unlock(&regulator_list_mutex);
96				return regulator;
97			}
98		}
99		mutex_unlock(&rdev->mutex);
100	}
101	mutex_unlock(&regulator_list_mutex);
102	return NULL;
103}
104
105/* Platform voltage constraint check */
106static int regulator_check_voltage(struct regulator_dev *rdev,
107				   int *min_uV, int *max_uV)
108{
109	BUG_ON(*min_uV > *max_uV);
110
111	if (!rdev->constraints) {
112		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113		       rdev_get_name(rdev));
114		return -ENODEV;
115	}
116	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117		printk(KERN_ERR "%s: operation not allowed for %s\n",
118		       __func__, rdev_get_name(rdev));
119		return -EPERM;
120	}
121
122	if (*max_uV > rdev->constraints->max_uV)
123		*max_uV = rdev->constraints->max_uV;
124	if (*min_uV < rdev->constraints->min_uV)
125		*min_uV = rdev->constraints->min_uV;
126
127	if (*min_uV > *max_uV)
128		return -EINVAL;
129
130	return 0;
131}
132
133/* current constraint check */
134static int regulator_check_current_limit(struct regulator_dev *rdev,
135					int *min_uA, int *max_uA)
136{
137	BUG_ON(*min_uA > *max_uA);
138
139	if (!rdev->constraints) {
140		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141		       rdev_get_name(rdev));
142		return -ENODEV;
143	}
144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145		printk(KERN_ERR "%s: operation not allowed for %s\n",
146		       __func__, rdev_get_name(rdev));
147		return -EPERM;
148	}
149
150	if (*max_uA > rdev->constraints->max_uA)
151		*max_uA = rdev->constraints->max_uA;
152	if (*min_uA < rdev->constraints->min_uA)
153		*min_uA = rdev->constraints->min_uA;
154
155	if (*min_uA > *max_uA)
156		return -EINVAL;
157
158	return 0;
159}
160
161/* operating mode constraint check */
162static int regulator_check_mode(struct regulator_dev *rdev, int mode)
163{
164	switch (mode) {
165	case REGULATOR_MODE_FAST:
166	case REGULATOR_MODE_NORMAL:
167	case REGULATOR_MODE_IDLE:
168	case REGULATOR_MODE_STANDBY:
169		break;
170	default:
171		return -EINVAL;
172	}
173
174	if (!rdev->constraints) {
175		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176		       rdev_get_name(rdev));
177		return -ENODEV;
178	}
179	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180		printk(KERN_ERR "%s: operation not allowed for %s\n",
181		       __func__, rdev_get_name(rdev));
182		return -EPERM;
183	}
184	if (!(rdev->constraints->valid_modes_mask & mode)) {
185		printk(KERN_ERR "%s: invalid mode %x for %s\n",
186		       __func__, mode, rdev_get_name(rdev));
187		return -EINVAL;
188	}
189	return 0;
190}
191
192/* dynamic regulator mode switching constraint check */
193static int regulator_check_drms(struct regulator_dev *rdev)
194{
195	if (!rdev->constraints) {
196		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197		       rdev_get_name(rdev));
198		return -ENODEV;
199	}
200	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201		printk(KERN_ERR "%s: operation not allowed for %s\n",
202		       __func__, rdev_get_name(rdev));
203		return -EPERM;
204	}
205	return 0;
206}
207
208static ssize_t device_requested_uA_show(struct device *dev,
209			     struct device_attribute *attr, char *buf)
210{
211	struct regulator *regulator;
212
213	regulator = get_device_regulator(dev);
214	if (regulator == NULL)
215		return 0;
216
217	return sprintf(buf, "%d\n", regulator->uA_load);
218}
219
220static ssize_t regulator_uV_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224	ssize_t ret;
225
226	mutex_lock(&rdev->mutex);
227	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228	mutex_unlock(&rdev->mutex);
229
230	return ret;
231}
232static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
233
234static ssize_t regulator_uA_show(struct device *dev,
235				struct device_attribute *attr, char *buf)
236{
237	struct regulator_dev *rdev = dev_get_drvdata(dev);
238
239	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
240}
241static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
242
243static ssize_t regulator_name_show(struct device *dev,
244			     struct device_attribute *attr, char *buf)
245{
246	struct regulator_dev *rdev = dev_get_drvdata(dev);
247
248	return sprintf(buf, "%s\n", rdev_get_name(rdev));
249}
250
251static ssize_t regulator_print_opmode(char *buf, int mode)
252{
253	switch (mode) {
254	case REGULATOR_MODE_FAST:
255		return sprintf(buf, "fast\n");
256	case REGULATOR_MODE_NORMAL:
257		return sprintf(buf, "normal\n");
258	case REGULATOR_MODE_IDLE:
259		return sprintf(buf, "idle\n");
260	case REGULATOR_MODE_STANDBY:
261		return sprintf(buf, "standby\n");
262	}
263	return sprintf(buf, "unknown\n");
264}
265
266static ssize_t regulator_opmode_show(struct device *dev,
267				    struct device_attribute *attr, char *buf)
268{
269	struct regulator_dev *rdev = dev_get_drvdata(dev);
270
271	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
272}
273static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
274
275static ssize_t regulator_print_state(char *buf, int state)
276{
277	if (state > 0)
278		return sprintf(buf, "enabled\n");
279	else if (state == 0)
280		return sprintf(buf, "disabled\n");
281	else
282		return sprintf(buf, "unknown\n");
283}
284
285static ssize_t regulator_state_show(struct device *dev,
286				   struct device_attribute *attr, char *buf)
287{
288	struct regulator_dev *rdev = dev_get_drvdata(dev);
289	ssize_t ret;
290
291	mutex_lock(&rdev->mutex);
292	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293	mutex_unlock(&rdev->mutex);
294
295	return ret;
296}
297static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
298
299static ssize_t regulator_status_show(struct device *dev,
300				   struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303	int status;
304	char *label;
305
306	status = rdev->desc->ops->get_status(rdev);
307	if (status < 0)
308		return status;
309
310	switch (status) {
311	case REGULATOR_STATUS_OFF:
312		label = "off";
313		break;
314	case REGULATOR_STATUS_ON:
315		label = "on";
316		break;
317	case REGULATOR_STATUS_ERROR:
318		label = "error";
319		break;
320	case REGULATOR_STATUS_FAST:
321		label = "fast";
322		break;
323	case REGULATOR_STATUS_NORMAL:
324		label = "normal";
325		break;
326	case REGULATOR_STATUS_IDLE:
327		label = "idle";
328		break;
329	case REGULATOR_STATUS_STANDBY:
330		label = "standby";
331		break;
332	default:
333		return -ERANGE;
334	}
335
336	return sprintf(buf, "%s\n", label);
337}
338static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
339
340static ssize_t regulator_min_uA_show(struct device *dev,
341				    struct device_attribute *attr, char *buf)
342{
343	struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345	if (!rdev->constraints)
346		return sprintf(buf, "constraint not defined\n");
347
348	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
349}
350static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
351
352static ssize_t regulator_max_uA_show(struct device *dev,
353				    struct device_attribute *attr, char *buf)
354{
355	struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357	if (!rdev->constraints)
358		return sprintf(buf, "constraint not defined\n");
359
360	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
361}
362static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
363
364static ssize_t regulator_min_uV_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	if (!rdev->constraints)
370		return sprintf(buf, "constraint not defined\n");
371
372	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
373}
374static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
375
376static ssize_t regulator_max_uV_show(struct device *dev,
377				    struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381	if (!rdev->constraints)
382		return sprintf(buf, "constraint not defined\n");
383
384	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
385}
386static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
387
388static ssize_t regulator_total_uA_show(struct device *dev,
389				      struct device_attribute *attr, char *buf)
390{
391	struct regulator_dev *rdev = dev_get_drvdata(dev);
392	struct regulator *regulator;
393	int uA = 0;
394
395	mutex_lock(&rdev->mutex);
396	list_for_each_entry(regulator, &rdev->consumer_list, list)
397		uA += regulator->uA_load;
398	mutex_unlock(&rdev->mutex);
399	return sprintf(buf, "%d\n", uA);
400}
401static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
402
403static ssize_t regulator_num_users_show(struct device *dev,
404				      struct device_attribute *attr, char *buf)
405{
406	struct regulator_dev *rdev = dev_get_drvdata(dev);
407	return sprintf(buf, "%d\n", rdev->use_count);
408}
409
410static ssize_t regulator_type_show(struct device *dev,
411				  struct device_attribute *attr, char *buf)
412{
413	struct regulator_dev *rdev = dev_get_drvdata(dev);
414
415	switch (rdev->desc->type) {
416	case REGULATOR_VOLTAGE:
417		return sprintf(buf, "voltage\n");
418	case REGULATOR_CURRENT:
419		return sprintf(buf, "current\n");
420	}
421	return sprintf(buf, "unknown\n");
422}
423
424static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425				struct device_attribute *attr, char *buf)
426{
427	struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
430}
431static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432		regulator_suspend_mem_uV_show, NULL);
433
434static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435				struct device_attribute *attr, char *buf)
436{
437	struct regulator_dev *rdev = dev_get_drvdata(dev);
438
439	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
440}
441static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442		regulator_suspend_disk_uV_show, NULL);
443
444static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445				struct device_attribute *attr, char *buf)
446{
447	struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
450}
451static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452		regulator_suspend_standby_uV_show, NULL);
453
454static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_mem.mode);
461}
462static DEVICE_ATTR(suspend_mem_mode, 0444,
463		regulator_suspend_mem_mode_show, NULL);
464
465static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_disk.mode);
472}
473static DEVICE_ATTR(suspend_disk_mode, 0444,
474		regulator_suspend_disk_mode_show, NULL);
475
476static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477				struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_opmode(buf,
482		rdev->constraints->state_standby.mode);
483}
484static DEVICE_ATTR(suspend_standby_mode, 0444,
485		regulator_suspend_standby_mode_show, NULL);
486
487static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_mem.enabled);
494}
495static DEVICE_ATTR(suspend_mem_state, 0444,
496		regulator_suspend_mem_state_show, NULL);
497
498static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_disk.enabled);
505}
506static DEVICE_ATTR(suspend_disk_state, 0444,
507		regulator_suspend_disk_state_show, NULL);
508
509static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510				   struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return regulator_print_state(buf,
515			rdev->constraints->state_standby.enabled);
516}
517static DEVICE_ATTR(suspend_standby_state, 0444,
518		regulator_suspend_standby_state_show, NULL);
519
520
521/*
522 * These are the only attributes are present for all regulators.
523 * Other attributes are a function of regulator functionality.
524 */
525static struct device_attribute regulator_dev_attrs[] = {
526	__ATTR(name, 0444, regulator_name_show, NULL),
527	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
528	__ATTR(type, 0444, regulator_type_show, NULL),
529	__ATTR_NULL,
530};
531
532static void regulator_dev_release(struct device *dev)
533{
534	struct regulator_dev *rdev = dev_get_drvdata(dev);
535	kfree(rdev);
536}
537
538static struct class regulator_class = {
539	.name = "regulator",
540	.dev_release = regulator_dev_release,
541	.dev_attrs = regulator_dev_attrs,
542};
543
544/* Calculate the new optimum regulator operating mode based on the new total
545 * consumer load. All locks held by caller */
546static void drms_uA_update(struct regulator_dev *rdev)
547{
548	struct regulator *sibling;
549	int current_uA = 0, output_uV, input_uV, err;
550	unsigned int mode;
551
552	err = regulator_check_drms(rdev);
553	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555		return;
556
557	/* get output voltage */
558	output_uV = rdev->desc->ops->get_voltage(rdev);
559	if (output_uV <= 0)
560		return;
561
562	/* get input voltage */
563	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565	else
566		input_uV = rdev->constraints->input_uV;
567	if (input_uV <= 0)
568		return;
569
570	/* calc total requested load */
571	list_for_each_entry(sibling, &rdev->consumer_list, list)
572		current_uA += sibling->uA_load;
573
574	/* now get the optimum mode for our new total regulator load */
575	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576						  output_uV, current_uA);
577
578	/* check the new mode is allowed */
579	err = regulator_check_mode(rdev, mode);
580	if (err == 0)
581		rdev->desc->ops->set_mode(rdev, mode);
582}
583
584static int suspend_set_state(struct regulator_dev *rdev,
585	struct regulator_state *rstate)
586{
587	int ret = 0;
588	bool can_set_state;
589
590	can_set_state = rdev->desc->ops->set_suspend_enable &&
591		rdev->desc->ops->set_suspend_disable;
592
593	/* If we have no suspend mode configration don't set anything;
594	 * only warn if the driver actually makes the suspend mode
595	 * configurable.
596	 */
597	if (!rstate->enabled && !rstate->disabled) {
598		if (can_set_state)
599			printk(KERN_WARNING "%s: No configuration for %s\n",
600			       __func__, rdev_get_name(rdev));
601		return 0;
602	}
603
604	if (rstate->enabled && rstate->disabled) {
605		printk(KERN_ERR "%s: invalid configuration for %s\n",
606		       __func__, rdev_get_name(rdev));
607		return -EINVAL;
608	}
609
610	if (!can_set_state) {
611		printk(KERN_ERR "%s: no way to set suspend state\n",
612			__func__);
613		return -EINVAL;
614	}
615
616	if (rstate->enabled)
617		ret = rdev->desc->ops->set_suspend_enable(rdev);
618	else
619		ret = rdev->desc->ops->set_suspend_disable(rdev);
620	if (ret < 0) {
621		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622		return ret;
623	}
624
625	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627		if (ret < 0) {
628			printk(KERN_ERR "%s: failed to set voltage\n",
629				__func__);
630			return ret;
631		}
632	}
633
634	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636		if (ret < 0) {
637			printk(KERN_ERR "%s: failed to set mode\n", __func__);
638			return ret;
639		}
640	}
641	return ret;
642}
643
644/* locks held by caller */
645static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
646{
647	if (!rdev->constraints)
648		return -EINVAL;
649
650	switch (state) {
651	case PM_SUSPEND_STANDBY:
652		return suspend_set_state(rdev,
653			&rdev->constraints->state_standby);
654	case PM_SUSPEND_MEM:
655		return suspend_set_state(rdev,
656			&rdev->constraints->state_mem);
657	case PM_SUSPEND_MAX:
658		return suspend_set_state(rdev,
659			&rdev->constraints->state_disk);
660	default:
661		return -EINVAL;
662	}
663}
664
665static void print_constraints(struct regulator_dev *rdev)
666{
667	struct regulation_constraints *constraints = rdev->constraints;
668	char buf[80] = "";
669	int count = 0;
670	int ret;
671
672	if (constraints->min_uV && constraints->max_uV) {
673		if (constraints->min_uV == constraints->max_uV)
674			count += sprintf(buf + count, "%d mV ",
675					 constraints->min_uV / 1000);
676		else
677			count += sprintf(buf + count, "%d <--> %d mV ",
678					 constraints->min_uV / 1000,
679					 constraints->max_uV / 1000);
680	}
681
682	if (!constraints->min_uV ||
683	    constraints->min_uV != constraints->max_uV) {
684		ret = _regulator_get_voltage(rdev);
685		if (ret > 0)
686			count += sprintf(buf + count, "at %d mV ", ret / 1000);
687	}
688
689	if (constraints->min_uA && constraints->max_uA) {
690		if (constraints->min_uA == constraints->max_uA)
691			count += sprintf(buf + count, "%d mA ",
692					 constraints->min_uA / 1000);
693		else
694			count += sprintf(buf + count, "%d <--> %d mA ",
695					 constraints->min_uA / 1000,
696					 constraints->max_uA / 1000);
697	}
698
699	if (!constraints->min_uA ||
700	    constraints->min_uA != constraints->max_uA) {
701		ret = _regulator_get_current_limit(rdev);
702		if (ret > 0)
703			count += sprintf(buf + count, "at %d uA ", ret / 1000);
704	}
705
706	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707		count += sprintf(buf + count, "fast ");
708	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709		count += sprintf(buf + count, "normal ");
710	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711		count += sprintf(buf + count, "idle ");
712	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713		count += sprintf(buf + count, "standby");
714
715	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
716}
717
718static int machine_constraints_voltage(struct regulator_dev *rdev,
719	struct regulation_constraints *constraints)
720{
721	struct regulator_ops *ops = rdev->desc->ops;
722	const char *name = rdev_get_name(rdev);
723	int ret;
724
725	/* do we need to apply the constraint voltage */
726	if (rdev->constraints->apply_uV &&
727		rdev->constraints->min_uV == rdev->constraints->max_uV &&
728		ops->set_voltage) {
729		ret = ops->set_voltage(rdev,
730			rdev->constraints->min_uV, rdev->constraints->max_uV);
731			if (ret < 0) {
732				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733				       __func__,
734				       rdev->constraints->min_uV, name);
735				rdev->constraints = NULL;
736				return ret;
737			}
738	}
739
740	/* constrain machine-level voltage specs to fit
741	 * the actual range supported by this regulator.
742	 */
743	if (ops->list_voltage && rdev->desc->n_voltages) {
744		int	count = rdev->desc->n_voltages;
745		int	i;
746		int	min_uV = INT_MAX;
747		int	max_uV = INT_MIN;
748		int	cmin = constraints->min_uV;
749		int	cmax = constraints->max_uV;
750
751		/* it's safe to autoconfigure fixed-voltage supplies
752		   and the constraints are used by list_voltage. */
753		if (count == 1 && !cmin) {
754			cmin = 1;
755			cmax = INT_MAX;
756			constraints->min_uV = cmin;
757			constraints->max_uV = cmax;
758		}
759
760		/* voltage constraints are optional */
761		if ((cmin == 0) && (cmax == 0))
762			return 0;
763
764		/* else require explicit machine-level constraints */
765		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766			pr_err("%s: %s '%s' voltage constraints\n",
767				       __func__, "invalid", name);
768			return -EINVAL;
769		}
770
771		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772		for (i = 0; i < count; i++) {
773			int	value;
774
775			value = ops->list_voltage(rdev, i);
776			if (value <= 0)
777				continue;
778
779			/* maybe adjust [min_uV..max_uV] */
780			if (value >= cmin && value < min_uV)
781				min_uV = value;
782			if (value <= cmax && value > max_uV)
783				max_uV = value;
784		}
785
786		/* final: [min_uV..max_uV] valid iff constraints valid */
787		if (max_uV < min_uV) {
788			pr_err("%s: %s '%s' voltage constraints\n",
789				       __func__, "unsupportable", name);
790			return -EINVAL;
791		}
792
793		/* use regulator's subset of machine constraints */
794		if (constraints->min_uV < min_uV) {
795			pr_debug("%s: override '%s' %s, %d -> %d\n",
796				       __func__, name, "min_uV",
797					constraints->min_uV, min_uV);
798			constraints->min_uV = min_uV;
799		}
800		if (constraints->max_uV > max_uV) {
801			pr_debug("%s: override '%s' %s, %d -> %d\n",
802				       __func__, name, "max_uV",
803					constraints->max_uV, max_uV);
804			constraints->max_uV = max_uV;
805		}
806	}
807
808	return 0;
809}
810
811/**
812 * set_machine_constraints - sets regulator constraints
813 * @rdev: regulator source
814 * @constraints: constraints to apply
815 *
816 * Allows platform initialisation code to define and constrain
817 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
818 * Constraints *must* be set by platform code in order for some
819 * regulator operations to proceed i.e. set_voltage, set_current_limit,
820 * set_mode.
821 */
822static int set_machine_constraints(struct regulator_dev *rdev,
823	struct regulation_constraints *constraints)
824{
825	int ret = 0;
826	const char *name;
827	struct regulator_ops *ops = rdev->desc->ops;
828
829	rdev->constraints = constraints;
830
831	name = rdev_get_name(rdev);
832
833	ret = machine_constraints_voltage(rdev, constraints);
834	if (ret != 0)
835		goto out;
836
837	/* do we need to setup our suspend state */
838	if (constraints->initial_state) {
839		ret = suspend_prepare(rdev, constraints->initial_state);
840		if (ret < 0) {
841			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842			       __func__, name);
843			rdev->constraints = NULL;
844			goto out;
845		}
846	}
847
848	if (constraints->initial_mode) {
849		if (!ops->set_mode) {
850			printk(KERN_ERR "%s: no set_mode operation for %s\n",
851			       __func__, name);
852			ret = -EINVAL;
853			goto out;
854		}
855
856		ret = ops->set_mode(rdev, constraints->initial_mode);
857		if (ret < 0) {
858			printk(KERN_ERR
859			       "%s: failed to set initial mode for %s: %d\n",
860			       __func__, name, ret);
861			goto out;
862		}
863	}
864
865	/* If the constraints say the regulator should be on at this point
866	 * and we have control then make sure it is enabled.
867	 */
868	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869		ret = ops->enable(rdev);
870		if (ret < 0) {
871			printk(KERN_ERR "%s: failed to enable %s\n",
872			       __func__, name);
873			rdev->constraints = NULL;
874			goto out;
875		}
876	}
877
878	print_constraints(rdev);
879out:
880	return ret;
881}
882
883/**
884 * set_supply - set regulator supply regulator
885 * @rdev: regulator name
886 * @supply_rdev: supply regulator name
887 *
888 * Called by platform initialisation code to set the supply regulator for this
889 * regulator. This ensures that a regulators supply will also be enabled by the
890 * core if it's child is enabled.
891 */
892static int set_supply(struct regulator_dev *rdev,
893	struct regulator_dev *supply_rdev)
894{
895	int err;
896
897	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898				"supply");
899	if (err) {
900		printk(KERN_ERR
901		       "%s: could not add device link %s err %d\n",
902		       __func__, supply_rdev->dev.kobj.name, err);
903		       goto out;
904	}
905	rdev->supply = supply_rdev;
906	list_add(&rdev->slist, &supply_rdev->supply_list);
907out:
908	return err;
909}
910
911/**
912 * set_consumer_device_supply: Bind a regulator to a symbolic supply
913 * @rdev:         regulator source
914 * @consumer_dev: device the supply applies to
915 * @consumer_dev_name: dev_name() string for device supply applies to
916 * @supply:       symbolic name for supply
917 *
918 * Allows platform initialisation code to map physical regulator
919 * sources to symbolic names for supplies for use by devices.  Devices
920 * should use these symbolic names to request regulators, avoiding the
921 * need to provide board-specific regulator names as platform data.
922 *
923 * Only one of consumer_dev and consumer_dev_name may be specified.
924 */
925static int set_consumer_device_supply(struct regulator_dev *rdev,
926	struct device *consumer_dev, const char *consumer_dev_name,
927	const char *supply)
928{
929	struct regulator_map *node;
930	int has_dev;
931
932	if (consumer_dev && consumer_dev_name)
933		return -EINVAL;
934
935	if (!consumer_dev_name && consumer_dev)
936		consumer_dev_name = dev_name(consumer_dev);
937
938	if (supply == NULL)
939		return -EINVAL;
940
941	if (consumer_dev_name != NULL)
942		has_dev = 1;
943	else
944		has_dev = 0;
945
946	list_for_each_entry(node, &regulator_map_list, list) {
947		if (node->dev_name && consumer_dev_name) {
948			if (strcmp(node->dev_name, consumer_dev_name) != 0)
949				continue;
950		} else if (node->dev_name || consumer_dev_name) {
951			continue;
952		}
953
954		if (strcmp(node->supply, supply) != 0)
955			continue;
956
957		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
958				dev_name(&node->regulator->dev),
959				node->regulator->desc->name,
960				supply,
961				dev_name(&rdev->dev), rdev_get_name(rdev));
962		return -EBUSY;
963	}
964
965	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
966	if (node == NULL)
967		return -ENOMEM;
968
969	node->regulator = rdev;
970	node->supply = supply;
971
972	if (has_dev) {
973		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
974		if (node->dev_name == NULL) {
975			kfree(node);
976			return -ENOMEM;
977		}
978	}
979
980	list_add(&node->list, &regulator_map_list);
981	return 0;
982}
983
984static void unset_regulator_supplies(struct regulator_dev *rdev)
985{
986	struct regulator_map *node, *n;
987
988	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
989		if (rdev == node->regulator) {
990			list_del(&node->list);
991			kfree(node->dev_name);
992			kfree(node);
993		}
994	}
995}
996
997#define REG_STR_SIZE	32
998
999static struct regulator *create_regulator(struct regulator_dev *rdev,
1000					  struct device *dev,
1001					  const char *supply_name)
1002{
1003	struct regulator *regulator;
1004	char buf[REG_STR_SIZE];
1005	int err, size;
1006
1007	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1008	if (regulator == NULL)
1009		return NULL;
1010
1011	mutex_lock(&rdev->mutex);
1012	regulator->rdev = rdev;
1013	list_add(&regulator->list, &rdev->consumer_list);
1014
1015	if (dev) {
1016		/* create a 'requested_microamps_name' sysfs entry */
1017		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1018			supply_name);
1019		if (size >= REG_STR_SIZE)
1020			goto overflow_err;
1021
1022		regulator->dev = dev;
1023		sysfs_attr_init(&regulator->dev_attr.attr);
1024		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1025		if (regulator->dev_attr.attr.name == NULL)
1026			goto attr_name_err;
1027
1028		regulator->dev_attr.attr.owner = THIS_MODULE;
1029		regulator->dev_attr.attr.mode = 0444;
1030		regulator->dev_attr.show = device_requested_uA_show;
1031		err = device_create_file(dev, &regulator->dev_attr);
1032		if (err < 0) {
1033			printk(KERN_WARNING "%s: could not add regulator_dev"
1034				" load sysfs\n", __func__);
1035			goto attr_name_err;
1036		}
1037
1038		/* also add a link to the device sysfs entry */
1039		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1040				 dev->kobj.name, supply_name);
1041		if (size >= REG_STR_SIZE)
1042			goto attr_err;
1043
1044		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1045		if (regulator->supply_name == NULL)
1046			goto attr_err;
1047
1048		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1049					buf);
1050		if (err) {
1051			printk(KERN_WARNING
1052			       "%s: could not add device link %s err %d\n",
1053			       __func__, dev->kobj.name, err);
1054			device_remove_file(dev, &regulator->dev_attr);
1055			goto link_name_err;
1056		}
1057	}
1058	mutex_unlock(&rdev->mutex);
1059	return regulator;
1060link_name_err:
1061	kfree(regulator->supply_name);
1062attr_err:
1063	device_remove_file(regulator->dev, &regulator->dev_attr);
1064attr_name_err:
1065	kfree(regulator->dev_attr.attr.name);
1066overflow_err:
1067	list_del(&regulator->list);
1068	kfree(regulator);
1069	mutex_unlock(&rdev->mutex);
1070	return NULL;
1071}
1072
1073static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074{
1075	if (!rdev->desc->ops->enable_time)
1076		return 0;
1077	return rdev->desc->ops->enable_time(rdev);
1078}
1079
1080/* Internal regulator request function */
1081static struct regulator *_regulator_get(struct device *dev, const char *id,
1082					int exclusive)
1083{
1084	struct regulator_dev *rdev;
1085	struct regulator_map *map;
1086	struct regulator *regulator = ERR_PTR(-ENODEV);
1087	const char *devname = NULL;
1088	int ret;
1089
1090	if (id == NULL) {
1091		printk(KERN_ERR "regulator: get() with no identifier\n");
1092		return regulator;
1093	}
1094
1095	if (dev)
1096		devname = dev_name(dev);
1097
1098	mutex_lock(&regulator_list_mutex);
1099
1100	list_for_each_entry(map, &regulator_map_list, list) {
1101		/* If the mapping has a device set up it must match */
1102		if (map->dev_name &&
1103		    (!devname || strcmp(map->dev_name, devname)))
1104			continue;
1105
1106		if (strcmp(map->supply, id) == 0) {
1107			rdev = map->regulator;
1108			goto found;
1109		}
1110	}
1111
1112#ifdef CONFIG_REGULATOR_DUMMY
1113	if (!devname)
1114		devname = "deviceless";
1115
1116	/* If the board didn't flag that it was fully constrained then
1117	 * substitute in a dummy regulator so consumers can continue.
1118	 */
1119	if (!has_full_constraints) {
1120		pr_warning("%s supply %s not found, using dummy regulator\n",
1121			   devname, id);
1122		rdev = dummy_regulator_rdev;
1123		goto found;
1124	}
1125#endif
1126
1127	mutex_unlock(&regulator_list_mutex);
1128	return regulator;
1129
1130found:
1131	if (rdev->exclusive) {
1132		regulator = ERR_PTR(-EPERM);
1133		goto out;
1134	}
1135
1136	if (exclusive && rdev->open_count) {
1137		regulator = ERR_PTR(-EBUSY);
1138		goto out;
1139	}
1140
1141	if (!try_module_get(rdev->owner))
1142		goto out;
1143
1144	regulator = create_regulator(rdev, dev, id);
1145	if (regulator == NULL) {
1146		regulator = ERR_PTR(-ENOMEM);
1147		module_put(rdev->owner);
1148	}
1149
1150	rdev->open_count++;
1151	if (exclusive) {
1152		rdev->exclusive = 1;
1153
1154		ret = _regulator_is_enabled(rdev);
1155		if (ret > 0)
1156			rdev->use_count = 1;
1157		else
1158			rdev->use_count = 0;
1159	}
1160
1161out:
1162	mutex_unlock(&regulator_list_mutex);
1163
1164	return regulator;
1165}
1166
1167/**
1168 * regulator_get - lookup and obtain a reference to a regulator.
1169 * @dev: device for regulator "consumer"
1170 * @id: Supply name or regulator ID.
1171 *
1172 * Returns a struct regulator corresponding to the regulator producer,
1173 * or IS_ERR() condition containing errno.
1174 *
1175 * Use of supply names configured via regulator_set_device_supply() is
1176 * strongly encouraged.  It is recommended that the supply name used
1177 * should match the name used for the supply and/or the relevant
1178 * device pins in the datasheet.
1179 */
1180struct regulator *regulator_get(struct device *dev, const char *id)
1181{
1182	return _regulator_get(dev, id, 0);
1183}
1184EXPORT_SYMBOL_GPL(regulator_get);
1185
1186/**
1187 * regulator_get_exclusive - obtain exclusive access to a regulator.
1188 * @dev: device for regulator "consumer"
1189 * @id: Supply name or regulator ID.
1190 *
1191 * Returns a struct regulator corresponding to the regulator producer,
1192 * or IS_ERR() condition containing errno.  Other consumers will be
1193 * unable to obtain this reference is held and the use count for the
1194 * regulator will be initialised to reflect the current state of the
1195 * regulator.
1196 *
1197 * This is intended for use by consumers which cannot tolerate shared
1198 * use of the regulator such as those which need to force the
1199 * regulator off for correct operation of the hardware they are
1200 * controlling.
1201 *
1202 * Use of supply names configured via regulator_set_device_supply() is
1203 * strongly encouraged.  It is recommended that the supply name used
1204 * should match the name used for the supply and/or the relevant
1205 * device pins in the datasheet.
1206 */
1207struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1208{
1209	return _regulator_get(dev, id, 1);
1210}
1211EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1212
1213/**
1214 * regulator_put - "free" the regulator source
1215 * @regulator: regulator source
1216 *
1217 * Note: drivers must ensure that all regulator_enable calls made on this
1218 * regulator source are balanced by regulator_disable calls prior to calling
1219 * this function.
1220 */
1221void regulator_put(struct regulator *regulator)
1222{
1223	struct regulator_dev *rdev;
1224
1225	if (regulator == NULL || IS_ERR(regulator))
1226		return;
1227
1228	mutex_lock(&regulator_list_mutex);
1229	rdev = regulator->rdev;
1230
1231	/* remove any sysfs entries */
1232	if (regulator->dev) {
1233		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1234		kfree(regulator->supply_name);
1235		device_remove_file(regulator->dev, &regulator->dev_attr);
1236		kfree(regulator->dev_attr.attr.name);
1237	}
1238	list_del(&regulator->list);
1239	kfree(regulator);
1240
1241	rdev->open_count--;
1242	rdev->exclusive = 0;
1243
1244	module_put(rdev->owner);
1245	mutex_unlock(&regulator_list_mutex);
1246}
1247EXPORT_SYMBOL_GPL(regulator_put);
1248
1249static int _regulator_can_change_status(struct regulator_dev *rdev)
1250{
1251	if (!rdev->constraints)
1252		return 0;
1253
1254	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1255		return 1;
1256	else
1257		return 0;
1258}
1259
1260/* locks held by regulator_enable() */
1261static int _regulator_enable(struct regulator_dev *rdev)
1262{
1263	int ret, delay;
1264
1265	/* do we need to enable the supply regulator first */
1266	if (rdev->supply) {
1267		ret = _regulator_enable(rdev->supply);
1268		if (ret < 0) {
1269			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1270			       __func__, rdev_get_name(rdev), ret);
1271			return ret;
1272		}
1273	}
1274
1275	/* check voltage and requested load before enabling */
1276	if (rdev->constraints &&
1277	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1278		drms_uA_update(rdev);
1279
1280	if (rdev->use_count == 0) {
1281		/* The regulator may on if it's not switchable or left on */
1282		ret = _regulator_is_enabled(rdev);
1283		if (ret == -EINVAL || ret == 0) {
1284			if (!_regulator_can_change_status(rdev))
1285				return -EPERM;
1286
1287			if (!rdev->desc->ops->enable)
1288				return -EINVAL;
1289
1290			/* Query before enabling in case configuration
1291			 * dependant.  */
1292			ret = _regulator_get_enable_time(rdev);
1293			if (ret >= 0) {
1294				delay = ret;
1295			} else {
1296				printk(KERN_WARNING
1297					"%s: enable_time() failed for %s: %d\n",
1298					__func__, rdev_get_name(rdev),
1299					ret);
1300				delay = 0;
1301			}
1302
1303			/* Allow the regulator to ramp; it would be useful
1304			 * to extend this for bulk operations so that the
1305			 * regulators can ramp together.  */
1306			ret = rdev->desc->ops->enable(rdev);
1307			if (ret < 0)
1308				return ret;
1309
1310			if (delay >= 1000)
1311				mdelay(delay / 1000);
1312			else if (delay)
1313				udelay(delay);
1314
1315		} else if (ret < 0) {
1316			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1317			       __func__, rdev_get_name(rdev), ret);
1318			return ret;
1319		}
1320		/* Fallthrough on positive return values - already enabled */
1321	}
1322
1323	rdev->use_count++;
1324
1325	return 0;
1326}
1327
1328/**
1329 * regulator_enable - enable regulator output
1330 * @regulator: regulator source
1331 *
1332 * Request that the regulator be enabled with the regulator output at
1333 * the predefined voltage or current value.  Calls to regulator_enable()
1334 * must be balanced with calls to regulator_disable().
1335 *
1336 * NOTE: the output value can be set by other drivers, boot loader or may be
1337 * hardwired in the regulator.
1338 */
1339int regulator_enable(struct regulator *regulator)
1340{
1341	struct regulator_dev *rdev = regulator->rdev;
1342	int ret = 0;
1343
1344	mutex_lock(&rdev->mutex);
1345	ret = _regulator_enable(rdev);
1346	mutex_unlock(&rdev->mutex);
1347	return ret;
1348}
1349EXPORT_SYMBOL_GPL(regulator_enable);
1350
1351/* locks held by regulator_disable() */
1352static int _regulator_disable(struct regulator_dev *rdev)
1353{
1354	int ret = 0;
1355
1356	if (WARN(rdev->use_count <= 0,
1357			"unbalanced disables for %s\n",
1358			rdev_get_name(rdev)))
1359		return -EIO;
1360
1361	/* are we the last user and permitted to disable ? */
1362	if (rdev->use_count == 1 &&
1363	    (rdev->constraints && !rdev->constraints->always_on)) {
1364
1365		/* we are last user */
1366		if (_regulator_can_change_status(rdev) &&
1367		    rdev->desc->ops->disable) {
1368			ret = rdev->desc->ops->disable(rdev);
1369			if (ret < 0) {
1370				printk(KERN_ERR "%s: failed to disable %s\n",
1371				       __func__, rdev_get_name(rdev));
1372				return ret;
1373			}
1374
1375			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1376					     NULL);
1377		}
1378
1379		/* decrease our supplies ref count and disable if required */
1380		if (rdev->supply)
1381			_regulator_disable(rdev->supply);
1382
1383		rdev->use_count = 0;
1384	} else if (rdev->use_count > 1) {
1385
1386		if (rdev->constraints &&
1387			(rdev->constraints->valid_ops_mask &
1388			REGULATOR_CHANGE_DRMS))
1389			drms_uA_update(rdev);
1390
1391		rdev->use_count--;
1392	}
1393	return ret;
1394}
1395
1396/**
1397 * regulator_disable - disable regulator output
1398 * @regulator: regulator source
1399 *
1400 * Disable the regulator output voltage or current.  Calls to
1401 * regulator_enable() must be balanced with calls to
1402 * regulator_disable().
1403 *
1404 * NOTE: this will only disable the regulator output if no other consumer
1405 * devices have it enabled, the regulator device supports disabling and
1406 * machine constraints permit this operation.
1407 */
1408int regulator_disable(struct regulator *regulator)
1409{
1410	struct regulator_dev *rdev = regulator->rdev;
1411	int ret = 0;
1412
1413	mutex_lock(&rdev->mutex);
1414	ret = _regulator_disable(rdev);
1415	mutex_unlock(&rdev->mutex);
1416	return ret;
1417}
1418EXPORT_SYMBOL_GPL(regulator_disable);
1419
1420/* locks held by regulator_force_disable() */
1421static int _regulator_force_disable(struct regulator_dev *rdev)
1422{
1423	int ret = 0;
1424
1425	/* force disable */
1426	if (rdev->desc->ops->disable) {
1427		/* ah well, who wants to live forever... */
1428		ret = rdev->desc->ops->disable(rdev);
1429		if (ret < 0) {
1430			printk(KERN_ERR "%s: failed to force disable %s\n",
1431			       __func__, rdev_get_name(rdev));
1432			return ret;
1433		}
1434		/* notify other consumers that power has been forced off */
1435		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1436			REGULATOR_EVENT_DISABLE, NULL);
1437	}
1438
1439	/* decrease our supplies ref count and disable if required */
1440	if (rdev->supply)
1441		_regulator_disable(rdev->supply);
1442
1443	rdev->use_count = 0;
1444	return ret;
1445}
1446
1447/**
1448 * regulator_force_disable - force disable regulator output
1449 * @regulator: regulator source
1450 *
1451 * Forcibly disable the regulator output voltage or current.
1452 * NOTE: this *will* disable the regulator output even if other consumer
1453 * devices have it enabled. This should be used for situations when device
1454 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1455 */
1456int regulator_force_disable(struct regulator *regulator)
1457{
1458	int ret;
1459
1460	mutex_lock(&regulator->rdev->mutex);
1461	regulator->uA_load = 0;
1462	ret = _regulator_force_disable(regulator->rdev);
1463	mutex_unlock(&regulator->rdev->mutex);
1464	return ret;
1465}
1466EXPORT_SYMBOL_GPL(regulator_force_disable);
1467
1468static int _regulator_is_enabled(struct regulator_dev *rdev)
1469{
1470	/* If we don't know then assume that the regulator is always on */
1471	if (!rdev->desc->ops->is_enabled)
1472		return 1;
1473
1474	return rdev->desc->ops->is_enabled(rdev);
1475}
1476
1477/**
1478 * regulator_is_enabled - is the regulator output enabled
1479 * @regulator: regulator source
1480 *
1481 * Returns positive if the regulator driver backing the source/client
1482 * has requested that the device be enabled, zero if it hasn't, else a
1483 * negative errno code.
1484 *
1485 * Note that the device backing this regulator handle can have multiple
1486 * users, so it might be enabled even if regulator_enable() was never
1487 * called for this particular source.
1488 */
1489int regulator_is_enabled(struct regulator *regulator)
1490{
1491	int ret;
1492
1493	mutex_lock(&regulator->rdev->mutex);
1494	ret = _regulator_is_enabled(regulator->rdev);
1495	mutex_unlock(&regulator->rdev->mutex);
1496
1497	return ret;
1498}
1499EXPORT_SYMBOL_GPL(regulator_is_enabled);
1500
1501/**
1502 * regulator_count_voltages - count regulator_list_voltage() selectors
1503 * @regulator: regulator source
1504 *
1505 * Returns number of selectors, or negative errno.  Selectors are
1506 * numbered starting at zero, and typically correspond to bitfields
1507 * in hardware registers.
1508 */
1509int regulator_count_voltages(struct regulator *regulator)
1510{
1511	struct regulator_dev	*rdev = regulator->rdev;
1512
1513	return rdev->desc->n_voltages ? : -EINVAL;
1514}
1515EXPORT_SYMBOL_GPL(regulator_count_voltages);
1516
1517/**
1518 * regulator_list_voltage - enumerate supported voltages
1519 * @regulator: regulator source
1520 * @selector: identify voltage to list
1521 * Context: can sleep
1522 *
1523 * Returns a voltage that can be passed to @regulator_set_voltage(),
1524 * zero if this selector code can't be used on this system, or a
1525 * negative errno.
1526 */
1527int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1528{
1529	struct regulator_dev	*rdev = regulator->rdev;
1530	struct regulator_ops	*ops = rdev->desc->ops;
1531	int			ret;
1532
1533	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1534		return -EINVAL;
1535
1536	mutex_lock(&rdev->mutex);
1537	ret = ops->list_voltage(rdev, selector);
1538	mutex_unlock(&rdev->mutex);
1539
1540	if (ret > 0) {
1541		if (ret < rdev->constraints->min_uV)
1542			ret = 0;
1543		else if (ret > rdev->constraints->max_uV)
1544			ret = 0;
1545	}
1546
1547	return ret;
1548}
1549EXPORT_SYMBOL_GPL(regulator_list_voltage);
1550
1551/**
1552 * regulator_is_supported_voltage - check if a voltage range can be supported
1553 *
1554 * @regulator: Regulator to check.
1555 * @min_uV: Minimum required voltage in uV.
1556 * @max_uV: Maximum required voltage in uV.
1557 *
1558 * Returns a boolean or a negative error code.
1559 */
1560int regulator_is_supported_voltage(struct regulator *regulator,
1561				   int min_uV, int max_uV)
1562{
1563	int i, voltages, ret;
1564
1565	ret = regulator_count_voltages(regulator);
1566	if (ret < 0)
1567		return ret;
1568	voltages = ret;
1569
1570	for (i = 0; i < voltages; i++) {
1571		ret = regulator_list_voltage(regulator, i);
1572
1573		if (ret >= min_uV && ret <= max_uV)
1574			return 1;
1575	}
1576
1577	return 0;
1578}
1579
1580/**
1581 * regulator_set_voltage - set regulator output voltage
1582 * @regulator: regulator source
1583 * @min_uV: Minimum required voltage in uV
1584 * @max_uV: Maximum acceptable voltage in uV
1585 *
1586 * Sets a voltage regulator to the desired output voltage. This can be set
1587 * during any regulator state. IOW, regulator can be disabled or enabled.
1588 *
1589 * If the regulator is enabled then the voltage will change to the new value
1590 * immediately otherwise if the regulator is disabled the regulator will
1591 * output at the new voltage when enabled.
1592 *
1593 * NOTE: If the regulator is shared between several devices then the lowest
1594 * request voltage that meets the system constraints will be used.
1595 * Regulator system constraints must be set for this regulator before
1596 * calling this function otherwise this call will fail.
1597 */
1598int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1599{
1600	struct regulator_dev *rdev = regulator->rdev;
1601	int ret;
1602
1603	mutex_lock(&rdev->mutex);
1604
1605	/* sanity check */
1606	if (!rdev->desc->ops->set_voltage) {
1607		ret = -EINVAL;
1608		goto out;
1609	}
1610
1611	/* constraints check */
1612	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1613	if (ret < 0)
1614		goto out;
1615	regulator->min_uV = min_uV;
1616	regulator->max_uV = max_uV;
1617	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1618
1619out:
1620	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1621	mutex_unlock(&rdev->mutex);
1622	return ret;
1623}
1624EXPORT_SYMBOL_GPL(regulator_set_voltage);
1625
1626static int _regulator_get_voltage(struct regulator_dev *rdev)
1627{
1628	/* sanity check */
1629	if (rdev->desc->ops->get_voltage)
1630		return rdev->desc->ops->get_voltage(rdev);
1631	else
1632		return -EINVAL;
1633}
1634
1635/**
1636 * regulator_get_voltage - get regulator output voltage
1637 * @regulator: regulator source
1638 *
1639 * This returns the current regulator voltage in uV.
1640 *
1641 * NOTE: If the regulator is disabled it will return the voltage value. This
1642 * function should not be used to determine regulator state.
1643 */
1644int regulator_get_voltage(struct regulator *regulator)
1645{
1646	int ret;
1647
1648	mutex_lock(&regulator->rdev->mutex);
1649
1650	ret = _regulator_get_voltage(regulator->rdev);
1651
1652	mutex_unlock(&regulator->rdev->mutex);
1653
1654	return ret;
1655}
1656EXPORT_SYMBOL_GPL(regulator_get_voltage);
1657
1658/**
1659 * regulator_set_current_limit - set regulator output current limit
1660 * @regulator: regulator source
1661 * @min_uA: Minimuum supported current in uA
1662 * @max_uA: Maximum supported current in uA
1663 *
1664 * Sets current sink to the desired output current. This can be set during
1665 * any regulator state. IOW, regulator can be disabled or enabled.
1666 *
1667 * If the regulator is enabled then the current will change to the new value
1668 * immediately otherwise if the regulator is disabled the regulator will
1669 * output at the new current when enabled.
1670 *
1671 * NOTE: Regulator system constraints must be set for this regulator before
1672 * calling this function otherwise this call will fail.
1673 */
1674int regulator_set_current_limit(struct regulator *regulator,
1675			       int min_uA, int max_uA)
1676{
1677	struct regulator_dev *rdev = regulator->rdev;
1678	int ret;
1679
1680	mutex_lock(&rdev->mutex);
1681
1682	/* sanity check */
1683	if (!rdev->desc->ops->set_current_limit) {
1684		ret = -EINVAL;
1685		goto out;
1686	}
1687
1688	/* constraints check */
1689	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1690	if (ret < 0)
1691		goto out;
1692
1693	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1694out:
1695	mutex_unlock(&rdev->mutex);
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1699
1700static int _regulator_get_current_limit(struct regulator_dev *rdev)
1701{
1702	int ret;
1703
1704	mutex_lock(&rdev->mutex);
1705
1706	/* sanity check */
1707	if (!rdev->desc->ops->get_current_limit) {
1708		ret = -EINVAL;
1709		goto out;
1710	}
1711
1712	ret = rdev->desc->ops->get_current_limit(rdev);
1713out:
1714	mutex_unlock(&rdev->mutex);
1715	return ret;
1716}
1717
1718/**
1719 * regulator_get_current_limit - get regulator output current
1720 * @regulator: regulator source
1721 *
1722 * This returns the current supplied by the specified current sink in uA.
1723 *
1724 * NOTE: If the regulator is disabled it will return the current value. This
1725 * function should not be used to determine regulator state.
1726 */
1727int regulator_get_current_limit(struct regulator *regulator)
1728{
1729	return _regulator_get_current_limit(regulator->rdev);
1730}
1731EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1732
1733/**
1734 * regulator_set_mode - set regulator operating mode
1735 * @regulator: regulator source
1736 * @mode: operating mode - one of the REGULATOR_MODE constants
1737 *
1738 * Set regulator operating mode to increase regulator efficiency or improve
1739 * regulation performance.
1740 *
1741 * NOTE: Regulator system constraints must be set for this regulator before
1742 * calling this function otherwise this call will fail.
1743 */
1744int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1745{
1746	struct regulator_dev *rdev = regulator->rdev;
1747	int ret;
1748	int regulator_curr_mode;
1749
1750	mutex_lock(&rdev->mutex);
1751
1752	/* sanity check */
1753	if (!rdev->desc->ops->set_mode) {
1754		ret = -EINVAL;
1755		goto out;
1756	}
1757
1758	/* return if the same mode is requested */
1759	if (rdev->desc->ops->get_mode) {
1760		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1761		if (regulator_curr_mode == mode) {
1762			ret = 0;
1763			goto out;
1764		}
1765	}
1766
1767	/* constraints check */
1768	ret = regulator_check_mode(rdev, mode);
1769	if (ret < 0)
1770		goto out;
1771
1772	ret = rdev->desc->ops->set_mode(rdev, mode);
1773out:
1774	mutex_unlock(&rdev->mutex);
1775	return ret;
1776}
1777EXPORT_SYMBOL_GPL(regulator_set_mode);
1778
1779static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1780{
1781	int ret;
1782
1783	mutex_lock(&rdev->mutex);
1784
1785	/* sanity check */
1786	if (!rdev->desc->ops->get_mode) {
1787		ret = -EINVAL;
1788		goto out;
1789	}
1790
1791	ret = rdev->desc->ops->get_mode(rdev);
1792out:
1793	mutex_unlock(&rdev->mutex);
1794	return ret;
1795}
1796
1797/**
1798 * regulator_get_mode - get regulator operating mode
1799 * @regulator: regulator source
1800 *
1801 * Get the current regulator operating mode.
1802 */
1803unsigned int regulator_get_mode(struct regulator *regulator)
1804{
1805	return _regulator_get_mode(regulator->rdev);
1806}
1807EXPORT_SYMBOL_GPL(regulator_get_mode);
1808
1809/**
1810 * regulator_set_optimum_mode - set regulator optimum operating mode
1811 * @regulator: regulator source
1812 * @uA_load: load current
1813 *
1814 * Notifies the regulator core of a new device load. This is then used by
1815 * DRMS (if enabled by constraints) to set the most efficient regulator
1816 * operating mode for the new regulator loading.
1817 *
1818 * Consumer devices notify their supply regulator of the maximum power
1819 * they will require (can be taken from device datasheet in the power
1820 * consumption tables) when they change operational status and hence power
1821 * state. Examples of operational state changes that can affect power
1822 * consumption are :-
1823 *
1824 *    o Device is opened / closed.
1825 *    o Device I/O is about to begin or has just finished.
1826 *    o Device is idling in between work.
1827 *
1828 * This information is also exported via sysfs to userspace.
1829 *
1830 * DRMS will sum the total requested load on the regulator and change
1831 * to the most efficient operating mode if platform constraints allow.
1832 *
1833 * Returns the new regulator mode or error.
1834 */
1835int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1836{
1837	struct regulator_dev *rdev = regulator->rdev;
1838	struct regulator *consumer;
1839	int ret, output_uV, input_uV, total_uA_load = 0;
1840	unsigned int mode;
1841
1842	mutex_lock(&rdev->mutex);
1843
1844	regulator->uA_load = uA_load;
1845	ret = regulator_check_drms(rdev);
1846	if (ret < 0)
1847		goto out;
1848	ret = -EINVAL;
1849
1850	/* sanity check */
1851	if (!rdev->desc->ops->get_optimum_mode)
1852		goto out;
1853
1854	/* get output voltage */
1855	output_uV = rdev->desc->ops->get_voltage(rdev);
1856	if (output_uV <= 0) {
1857		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1858			__func__, rdev_get_name(rdev));
1859		goto out;
1860	}
1861
1862	/* get input voltage */
1863	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1864		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1865	else
1866		input_uV = rdev->constraints->input_uV;
1867	if (input_uV <= 0) {
1868		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1869			__func__, rdev_get_name(rdev));
1870		goto out;
1871	}
1872
1873	/* calc total requested load for this regulator */
1874	list_for_each_entry(consumer, &rdev->consumer_list, list)
1875		total_uA_load += consumer->uA_load;
1876
1877	mode = rdev->desc->ops->get_optimum_mode(rdev,
1878						 input_uV, output_uV,
1879						 total_uA_load);
1880	ret = regulator_check_mode(rdev, mode);
1881	if (ret < 0) {
1882		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1883			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1884			total_uA_load, input_uV, output_uV);
1885		goto out;
1886	}
1887
1888	ret = rdev->desc->ops->set_mode(rdev, mode);
1889	if (ret < 0) {
1890		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1891			__func__, mode, rdev_get_name(rdev));
1892		goto out;
1893	}
1894	ret = mode;
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1900
1901/**
1902 * regulator_register_notifier - register regulator event notifier
1903 * @regulator: regulator source
1904 * @nb: notifier block
1905 *
1906 * Register notifier block to receive regulator events.
1907 */
1908int regulator_register_notifier(struct regulator *regulator,
1909			      struct notifier_block *nb)
1910{
1911	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1912						nb);
1913}
1914EXPORT_SYMBOL_GPL(regulator_register_notifier);
1915
1916/**
1917 * regulator_unregister_notifier - unregister regulator event notifier
1918 * @regulator: regulator source
1919 * @nb: notifier block
1920 *
1921 * Unregister regulator event notifier block.
1922 */
1923int regulator_unregister_notifier(struct regulator *regulator,
1924				struct notifier_block *nb)
1925{
1926	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1927						  nb);
1928}
1929EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1930
1931/* notify regulator consumers and downstream regulator consumers.
1932 * Note mutex must be held by caller.
1933 */
1934static void _notifier_call_chain(struct regulator_dev *rdev,
1935				  unsigned long event, void *data)
1936{
1937	struct regulator_dev *_rdev;
1938
1939	/* call rdev chain first */
1940	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1941
1942	/* now notify regulator we supply */
1943	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1944		mutex_lock(&_rdev->mutex);
1945		_notifier_call_chain(_rdev, event, data);
1946		mutex_unlock(&_rdev->mutex);
1947	}
1948}
1949
1950/**
1951 * regulator_bulk_get - get multiple regulator consumers
1952 *
1953 * @dev:           Device to supply
1954 * @num_consumers: Number of consumers to register
1955 * @consumers:     Configuration of consumers; clients are stored here.
1956 *
1957 * @return 0 on success, an errno on failure.
1958 *
1959 * This helper function allows drivers to get several regulator
1960 * consumers in one operation.  If any of the regulators cannot be
1961 * acquired then any regulators that were allocated will be freed
1962 * before returning to the caller.
1963 */
1964int regulator_bulk_get(struct device *dev, int num_consumers,
1965		       struct regulator_bulk_data *consumers)
1966{
1967	int i;
1968	int ret;
1969
1970	for (i = 0; i < num_consumers; i++)
1971		consumers[i].consumer = NULL;
1972
1973	for (i = 0; i < num_consumers; i++) {
1974		consumers[i].consumer = regulator_get(dev,
1975						      consumers[i].supply);
1976		if (IS_ERR(consumers[i].consumer)) {
1977			ret = PTR_ERR(consumers[i].consumer);
1978			dev_err(dev, "Failed to get supply '%s': %d\n",
1979				consumers[i].supply, ret);
1980			consumers[i].consumer = NULL;
1981			goto err;
1982		}
1983	}
1984
1985	return 0;
1986
1987err:
1988	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1989		regulator_put(consumers[i].consumer);
1990
1991	return ret;
1992}
1993EXPORT_SYMBOL_GPL(regulator_bulk_get);
1994
1995/**
1996 * regulator_bulk_enable - enable multiple regulator consumers
1997 *
1998 * @num_consumers: Number of consumers
1999 * @consumers:     Consumer data; clients are stored here.
2000 * @return         0 on success, an errno on failure
2001 *
2002 * This convenience API allows consumers to enable multiple regulator
2003 * clients in a single API call.  If any consumers cannot be enabled
2004 * then any others that were enabled will be disabled again prior to
2005 * return.
2006 */
2007int regulator_bulk_enable(int num_consumers,
2008			  struct regulator_bulk_data *consumers)
2009{
2010	int i;
2011	int ret;
2012
2013	for (i = 0; i < num_consumers; i++) {
2014		ret = regulator_enable(consumers[i].consumer);
2015		if (ret != 0)
2016			goto err;
2017	}
2018
2019	return 0;
2020
2021err:
2022	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2023	for (--i; i >= 0; --i)
2024		regulator_disable(consumers[i].consumer);
2025
2026	return ret;
2027}
2028EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2029
2030/**
2031 * regulator_bulk_disable - disable multiple regulator consumers
2032 *
2033 * @num_consumers: Number of consumers
2034 * @consumers:     Consumer data; clients are stored here.
2035 * @return         0 on success, an errno on failure
2036 *
2037 * This convenience API allows consumers to disable multiple regulator
2038 * clients in a single API call.  If any consumers cannot be enabled
2039 * then any others that were disabled will be disabled again prior to
2040 * return.
2041 */
2042int regulator_bulk_disable(int num_consumers,
2043			   struct regulator_bulk_data *consumers)
2044{
2045	int i;
2046	int ret;
2047
2048	for (i = 0; i < num_consumers; i++) {
2049		ret = regulator_disable(consumers[i].consumer);
2050		if (ret != 0)
2051			goto err;
2052	}
2053
2054	return 0;
2055
2056err:
2057	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2058	       ret);
2059	for (--i; i >= 0; --i)
2060		regulator_enable(consumers[i].consumer);
2061
2062	return ret;
2063}
2064EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2065
2066/**
2067 * regulator_bulk_free - free multiple regulator consumers
2068 *
2069 * @num_consumers: Number of consumers
2070 * @consumers:     Consumer data; clients are stored here.
2071 *
2072 * This convenience API allows consumers to free multiple regulator
2073 * clients in a single API call.
2074 */
2075void regulator_bulk_free(int num_consumers,
2076			 struct regulator_bulk_data *consumers)
2077{
2078	int i;
2079
2080	for (i = 0; i < num_consumers; i++) {
2081		regulator_put(consumers[i].consumer);
2082		consumers[i].consumer = NULL;
2083	}
2084}
2085EXPORT_SYMBOL_GPL(regulator_bulk_free);
2086
2087/**
2088 * regulator_notifier_call_chain - call regulator event notifier
2089 * @rdev: regulator source
2090 * @event: notifier block
2091 * @data: callback-specific data.
2092 *
2093 * Called by regulator drivers to notify clients a regulator event has
2094 * occurred. We also notify regulator clients downstream.
2095 * Note lock must be held by caller.
2096 */
2097int regulator_notifier_call_chain(struct regulator_dev *rdev,
2098				  unsigned long event, void *data)
2099{
2100	_notifier_call_chain(rdev, event, data);
2101	return NOTIFY_DONE;
2102
2103}
2104EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2105
2106/**
2107 * regulator_mode_to_status - convert a regulator mode into a status
2108 *
2109 * @mode: Mode to convert
2110 *
2111 * Convert a regulator mode into a status.
2112 */
2113int regulator_mode_to_status(unsigned int mode)
2114{
2115	switch (mode) {
2116	case REGULATOR_MODE_FAST:
2117		return REGULATOR_STATUS_FAST;
2118	case REGULATOR_MODE_NORMAL:
2119		return REGULATOR_STATUS_NORMAL;
2120	case REGULATOR_MODE_IDLE:
2121		return REGULATOR_STATUS_IDLE;
2122	case REGULATOR_STATUS_STANDBY:
2123		return REGULATOR_STATUS_STANDBY;
2124	default:
2125		return 0;
2126	}
2127}
2128EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2129
2130/*
2131 * To avoid cluttering sysfs (and memory) with useless state, only
2132 * create attributes that can be meaningfully displayed.
2133 */
2134static int add_regulator_attributes(struct regulator_dev *rdev)
2135{
2136	struct device		*dev = &rdev->dev;
2137	struct regulator_ops	*ops = rdev->desc->ops;
2138	int			status = 0;
2139
2140	/* some attributes need specific methods to be displayed */
2141	if (ops->get_voltage) {
2142		status = device_create_file(dev, &dev_attr_microvolts);
2143		if (status < 0)
2144			return status;
2145	}
2146	if (ops->get_current_limit) {
2147		status = device_create_file(dev, &dev_attr_microamps);
2148		if (status < 0)
2149			return status;
2150	}
2151	if (ops->get_mode) {
2152		status = device_create_file(dev, &dev_attr_opmode);
2153		if (status < 0)
2154			return status;
2155	}
2156	if (ops->is_enabled) {
2157		status = device_create_file(dev, &dev_attr_state);
2158		if (status < 0)
2159			return status;
2160	}
2161	if (ops->get_status) {
2162		status = device_create_file(dev, &dev_attr_status);
2163		if (status < 0)
2164			return status;
2165	}
2166
2167	/* some attributes are type-specific */
2168	if (rdev->desc->type == REGULATOR_CURRENT) {
2169		status = device_create_file(dev, &dev_attr_requested_microamps);
2170		if (status < 0)
2171			return status;
2172	}
2173
2174	/* all the other attributes exist to support constraints;
2175	 * don't show them if there are no constraints, or if the
2176	 * relevant supporting methods are missing.
2177	 */
2178	if (!rdev->constraints)
2179		return status;
2180
2181	/* constraints need specific supporting methods */
2182	if (ops->set_voltage) {
2183		status = device_create_file(dev, &dev_attr_min_microvolts);
2184		if (status < 0)
2185			return status;
2186		status = device_create_file(dev, &dev_attr_max_microvolts);
2187		if (status < 0)
2188			return status;
2189	}
2190	if (ops->set_current_limit) {
2191		status = device_create_file(dev, &dev_attr_min_microamps);
2192		if (status < 0)
2193			return status;
2194		status = device_create_file(dev, &dev_attr_max_microamps);
2195		if (status < 0)
2196			return status;
2197	}
2198
2199	/* suspend mode constraints need multiple supporting methods */
2200	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2201		return status;
2202
2203	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2204	if (status < 0)
2205		return status;
2206	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2207	if (status < 0)
2208		return status;
2209	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2210	if (status < 0)
2211		return status;
2212
2213	if (ops->set_suspend_voltage) {
2214		status = device_create_file(dev,
2215				&dev_attr_suspend_standby_microvolts);
2216		if (status < 0)
2217			return status;
2218		status = device_create_file(dev,
2219				&dev_attr_suspend_mem_microvolts);
2220		if (status < 0)
2221			return status;
2222		status = device_create_file(dev,
2223				&dev_attr_suspend_disk_microvolts);
2224		if (status < 0)
2225			return status;
2226	}
2227
2228	if (ops->set_suspend_mode) {
2229		status = device_create_file(dev,
2230				&dev_attr_suspend_standby_mode);
2231		if (status < 0)
2232			return status;
2233		status = device_create_file(dev,
2234				&dev_attr_suspend_mem_mode);
2235		if (status < 0)
2236			return status;
2237		status = device_create_file(dev,
2238				&dev_attr_suspend_disk_mode);
2239		if (status < 0)
2240			return status;
2241	}
2242
2243	return status;
2244}
2245
2246/**
2247 * regulator_register - register regulator
2248 * @regulator_desc: regulator to register
2249 * @dev: struct device for the regulator
2250 * @init_data: platform provided init data, passed through by driver
2251 * @driver_data: private regulator data
2252 *
2253 * Called by regulator drivers to register a regulator.
2254 * Returns 0 on success.
2255 */
2256struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2257	struct device *dev, struct regulator_init_data *init_data,
2258	void *driver_data)
2259{
2260	static atomic_t regulator_no = ATOMIC_INIT(0);
2261	struct regulator_dev *rdev;
2262	int ret, i;
2263
2264	if (regulator_desc == NULL)
2265		return ERR_PTR(-EINVAL);
2266
2267	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2268		return ERR_PTR(-EINVAL);
2269
2270	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2271	    regulator_desc->type != REGULATOR_CURRENT)
2272		return ERR_PTR(-EINVAL);
2273
2274	if (!init_data)
2275		return ERR_PTR(-EINVAL);
2276
2277	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2278	if (rdev == NULL)
2279		return ERR_PTR(-ENOMEM);
2280
2281	mutex_lock(&regulator_list_mutex);
2282
2283	mutex_init(&rdev->mutex);
2284	rdev->reg_data = driver_data;
2285	rdev->owner = regulator_desc->owner;
2286	rdev->desc = regulator_desc;
2287	INIT_LIST_HEAD(&rdev->consumer_list);
2288	INIT_LIST_HEAD(&rdev->supply_list);
2289	INIT_LIST_HEAD(&rdev->list);
2290	INIT_LIST_HEAD(&rdev->slist);
2291	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2292
2293	/* preform any regulator specific init */
2294	if (init_data->regulator_init) {
2295		ret = init_data->regulator_init(rdev->reg_data);
2296		if (ret < 0)
2297			goto clean;
2298	}
2299
2300	/* register with sysfs */
2301	rdev->dev.class = &regulator_class;
2302	rdev->dev.parent = dev;
2303	dev_set_name(&rdev->dev, "regulator.%d",
2304		     atomic_inc_return(&regulator_no) - 1);
2305	ret = device_register(&rdev->dev);
2306	if (ret != 0)
2307		goto clean;
2308
2309	dev_set_drvdata(&rdev->dev, rdev);
2310
2311	/* set regulator constraints */
2312	ret = set_machine_constraints(rdev, &init_data->constraints);
2313	if (ret < 0)
2314		goto scrub;
2315
2316	/* add attributes supported by this regulator */
2317	ret = add_regulator_attributes(rdev);
2318	if (ret < 0)
2319		goto scrub;
2320
2321	/* set supply regulator if it exists */
2322	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2323		dev_err(dev,
2324			"Supply regulator specified by both name and dev\n");
2325		goto scrub;
2326	}
2327
2328	if (init_data->supply_regulator) {
2329		struct regulator_dev *r;
2330		int found = 0;
2331
2332		list_for_each_entry(r, &regulator_list, list) {
2333			if (strcmp(rdev_get_name(r),
2334				   init_data->supply_regulator) == 0) {
2335				found = 1;
2336				break;
2337			}
2338		}
2339
2340		if (!found) {
2341			dev_err(dev, "Failed to find supply %s\n",
2342				init_data->supply_regulator);
2343			goto scrub;
2344		}
2345
2346		ret = set_supply(rdev, r);
2347		if (ret < 0)
2348			goto scrub;
2349	}
2350
2351	if (init_data->supply_regulator_dev) {
2352		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2353		ret = set_supply(rdev,
2354			dev_get_drvdata(init_data->supply_regulator_dev));
2355		if (ret < 0)
2356			goto scrub;
2357	}
2358
2359	/* add consumers devices */
2360	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2361		ret = set_consumer_device_supply(rdev,
2362			init_data->consumer_supplies[i].dev,
2363			init_data->consumer_supplies[i].dev_name,
2364			init_data->consumer_supplies[i].supply);
2365		if (ret < 0)
2366			goto unset_supplies;
2367	}
2368
2369	list_add(&rdev->list, &regulator_list);
2370out:
2371	mutex_unlock(&regulator_list_mutex);
2372	return rdev;
2373
2374unset_supplies:
2375	unset_regulator_supplies(rdev);
2376
2377scrub:
2378	device_unregister(&rdev->dev);
2379	/* device core frees rdev */
2380	rdev = ERR_PTR(ret);
2381	goto out;
2382
2383clean:
2384	kfree(rdev);
2385	rdev = ERR_PTR(ret);
2386	goto out;
2387}
2388EXPORT_SYMBOL_GPL(regulator_register);
2389
2390/**
2391 * regulator_unregister - unregister regulator
2392 * @rdev: regulator to unregister
2393 *
2394 * Called by regulator drivers to unregister a regulator.
2395 */
2396void regulator_unregister(struct regulator_dev *rdev)
2397{
2398	if (rdev == NULL)
2399		return;
2400
2401	mutex_lock(&regulator_list_mutex);
2402	WARN_ON(rdev->open_count);
2403	unset_regulator_supplies(rdev);
2404	list_del(&rdev->list);
2405	if (rdev->supply)
2406		sysfs_remove_link(&rdev->dev.kobj, "supply");
2407	device_unregister(&rdev->dev);
2408	mutex_unlock(&regulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_unregister);
2411
2412/**
2413 * regulator_suspend_prepare - prepare regulators for system wide suspend
2414 * @state: system suspend state
2415 *
2416 * Configure each regulator with it's suspend operating parameters for state.
2417 * This will usually be called by machine suspend code prior to supending.
2418 */
2419int regulator_suspend_prepare(suspend_state_t state)
2420{
2421	struct regulator_dev *rdev;
2422	int ret = 0;
2423
2424	/* ON is handled by regulator active state */
2425	if (state == PM_SUSPEND_ON)
2426		return -EINVAL;
2427
2428	mutex_lock(&regulator_list_mutex);
2429	list_for_each_entry(rdev, &regulator_list, list) {
2430
2431		mutex_lock(&rdev->mutex);
2432		ret = suspend_prepare(rdev, state);
2433		mutex_unlock(&rdev->mutex);
2434
2435		if (ret < 0) {
2436			printk(KERN_ERR "%s: failed to prepare %s\n",
2437				__func__, rdev_get_name(rdev));
2438			goto out;
2439		}
2440	}
2441out:
2442	mutex_unlock(&regulator_list_mutex);
2443	return ret;
2444}
2445EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2446
2447/**
2448 * regulator_has_full_constraints - the system has fully specified constraints
2449 *
2450 * Calling this function will cause the regulator API to disable all
2451 * regulators which have a zero use count and don't have an always_on
2452 * constraint in a late_initcall.
2453 *
2454 * The intention is that this will become the default behaviour in a
2455 * future kernel release so users are encouraged to use this facility
2456 * now.
2457 */
2458void regulator_has_full_constraints(void)
2459{
2460	has_full_constraints = 1;
2461}
2462EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2463
2464/**
2465 * rdev_get_drvdata - get rdev regulator driver data
2466 * @rdev: regulator
2467 *
2468 * Get rdev regulator driver private data. This call can be used in the
2469 * regulator driver context.
2470 */
2471void *rdev_get_drvdata(struct regulator_dev *rdev)
2472{
2473	return rdev->reg_data;
2474}
2475EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2476
2477/**
2478 * regulator_get_drvdata - get regulator driver data
2479 * @regulator: regulator
2480 *
2481 * Get regulator driver private data. This call can be used in the consumer
2482 * driver context when non API regulator specific functions need to be called.
2483 */
2484void *regulator_get_drvdata(struct regulator *regulator)
2485{
2486	return regulator->rdev->reg_data;
2487}
2488EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2489
2490/**
2491 * regulator_set_drvdata - set regulator driver data
2492 * @regulator: regulator
2493 * @data: data
2494 */
2495void regulator_set_drvdata(struct regulator *regulator, void *data)
2496{
2497	regulator->rdev->reg_data = data;
2498}
2499EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2500
2501/**
2502 * regulator_get_id - get regulator ID
2503 * @rdev: regulator
2504 */
2505int rdev_get_id(struct regulator_dev *rdev)
2506{
2507	return rdev->desc->id;
2508}
2509EXPORT_SYMBOL_GPL(rdev_get_id);
2510
2511struct device *rdev_get_dev(struct regulator_dev *rdev)
2512{
2513	return &rdev->dev;
2514}
2515EXPORT_SYMBOL_GPL(rdev_get_dev);
2516
2517void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2518{
2519	return reg_init_data->driver_data;
2520}
2521EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2522
2523static int __init regulator_init(void)
2524{
2525	int ret;
2526
2527	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2528
2529	ret = class_register(&regulator_class);
2530
2531	regulator_dummy_init();
2532
2533	return ret;
2534}
2535
2536/* init early to allow our consumers to complete system booting */
2537core_initcall(regulator_init);
2538
2539static int __init regulator_init_complete(void)
2540{
2541	struct regulator_dev *rdev;
2542	struct regulator_ops *ops;
2543	struct regulation_constraints *c;
2544	int enabled, ret;
2545	const char *name;
2546
2547	mutex_lock(&regulator_list_mutex);
2548
2549	/* If we have a full configuration then disable any regulators
2550	 * which are not in use or always_on.  This will become the
2551	 * default behaviour in the future.
2552	 */
2553	list_for_each_entry(rdev, &regulator_list, list) {
2554		ops = rdev->desc->ops;
2555		c = rdev->constraints;
2556
2557		name = rdev_get_name(rdev);
2558
2559		if (!ops->disable || (c && c->always_on))
2560			continue;
2561
2562		mutex_lock(&rdev->mutex);
2563
2564		if (rdev->use_count)
2565			goto unlock;
2566
2567		/* If we can't read the status assume it's on. */
2568		if (ops->is_enabled)
2569			enabled = ops->is_enabled(rdev);
2570		else
2571			enabled = 1;
2572
2573		if (!enabled)
2574			goto unlock;
2575
2576		if (has_full_constraints) {
2577			/* We log since this may kill the system if it
2578			 * goes wrong. */
2579			printk(KERN_INFO "%s: disabling %s\n",
2580			       __func__, name);
2581			ret = ops->disable(rdev);
2582			if (ret != 0) {
2583				printk(KERN_ERR
2584				       "%s: couldn't disable %s: %d\n",
2585				       __func__, name, ret);
2586			}
2587		} else {
2588			/* The intention is that in future we will
2589			 * assume that full constraints are provided
2590			 * so warn even if we aren't going to do
2591			 * anything here.
2592			 */
2593			printk(KERN_WARNING
2594			       "%s: incomplete constraints, leaving %s on\n",
2595			       __func__, name);
2596		}
2597
2598unlock:
2599		mutex_unlock(&rdev->mutex);
2600	}
2601
2602	mutex_unlock(&regulator_list_mutex);
2603
2604	return 0;
2605}
2606late_initcall(regulator_init_complete);
2607