core.c revision 50f075963f127d713ff0c30359baefc0f89d9ae2
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/*
33 * struct regulator_map
34 *
35 * Used to provide symbolic supply names to devices.
36 */
37struct regulator_map {
38	struct list_head list;
39	struct device *dev;
40	const char *supply;
41	struct regulator_dev *regulator;
42};
43
44/*
45 * struct regulator
46 *
47 * One for each consumer device.
48 */
49struct regulator {
50	struct device *dev;
51	struct list_head list;
52	int uA_load;
53	int min_uV;
54	int max_uV;
55	char *supply_name;
56	struct device_attribute dev_attr;
57	struct regulator_dev *rdev;
58};
59
60static int _regulator_is_enabled(struct regulator_dev *rdev);
61static int _regulator_disable(struct regulator_dev *rdev);
62static int _regulator_get_voltage(struct regulator_dev *rdev);
63static int _regulator_get_current_limit(struct regulator_dev *rdev);
64static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
65static void _notifier_call_chain(struct regulator_dev *rdev,
66				  unsigned long event, void *data);
67
68/* gets the regulator for a given consumer device */
69static struct regulator *get_device_regulator(struct device *dev)
70{
71	struct regulator *regulator = NULL;
72	struct regulator_dev *rdev;
73
74	mutex_lock(&regulator_list_mutex);
75	list_for_each_entry(rdev, &regulator_list, list) {
76		mutex_lock(&rdev->mutex);
77		list_for_each_entry(regulator, &rdev->consumer_list, list) {
78			if (regulator->dev == dev) {
79				mutex_unlock(&rdev->mutex);
80				mutex_unlock(&regulator_list_mutex);
81				return regulator;
82			}
83		}
84		mutex_unlock(&rdev->mutex);
85	}
86	mutex_unlock(&regulator_list_mutex);
87	return NULL;
88}
89
90/* Platform voltage constraint check */
91static int regulator_check_voltage(struct regulator_dev *rdev,
92				   int *min_uV, int *max_uV)
93{
94	BUG_ON(*min_uV > *max_uV);
95
96	if (!rdev->constraints) {
97		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
98		       rdev->desc->name);
99		return -ENODEV;
100	}
101	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
102		printk(KERN_ERR "%s: operation not allowed for %s\n",
103		       __func__, rdev->desc->name);
104		return -EPERM;
105	}
106
107	if (*max_uV > rdev->constraints->max_uV)
108		*max_uV = rdev->constraints->max_uV;
109	if (*min_uV < rdev->constraints->min_uV)
110		*min_uV = rdev->constraints->min_uV;
111
112	if (*min_uV > *max_uV)
113		return -EINVAL;
114
115	return 0;
116}
117
118/* current constraint check */
119static int regulator_check_current_limit(struct regulator_dev *rdev,
120					int *min_uA, int *max_uA)
121{
122	BUG_ON(*min_uA > *max_uA);
123
124	if (!rdev->constraints) {
125		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126		       rdev->desc->name);
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
130		printk(KERN_ERR "%s: operation not allowed for %s\n",
131		       __func__, rdev->desc->name);
132		return -EPERM;
133	}
134
135	if (*max_uA > rdev->constraints->max_uA)
136		*max_uA = rdev->constraints->max_uA;
137	if (*min_uA < rdev->constraints->min_uA)
138		*min_uA = rdev->constraints->min_uA;
139
140	if (*min_uA > *max_uA)
141		return -EINVAL;
142
143	return 0;
144}
145
146/* operating mode constraint check */
147static int regulator_check_mode(struct regulator_dev *rdev, int mode)
148{
149	switch (mode) {
150	case REGULATOR_MODE_FAST:
151	case REGULATOR_MODE_NORMAL:
152	case REGULATOR_MODE_IDLE:
153	case REGULATOR_MODE_STANDBY:
154		break;
155	default:
156		return -EINVAL;
157	}
158
159	if (!rdev->constraints) {
160		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
161		       rdev->desc->name);
162		return -ENODEV;
163	}
164	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
165		printk(KERN_ERR "%s: operation not allowed for %s\n",
166		       __func__, rdev->desc->name);
167		return -EPERM;
168	}
169	if (!(rdev->constraints->valid_modes_mask & mode)) {
170		printk(KERN_ERR "%s: invalid mode %x for %s\n",
171		       __func__, mode, rdev->desc->name);
172		return -EINVAL;
173	}
174	return 0;
175}
176
177/* dynamic regulator mode switching constraint check */
178static int regulator_check_drms(struct regulator_dev *rdev)
179{
180	if (!rdev->constraints) {
181		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
182		       rdev->desc->name);
183		return -ENODEV;
184	}
185	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
186		printk(KERN_ERR "%s: operation not allowed for %s\n",
187		       __func__, rdev->desc->name);
188		return -EPERM;
189	}
190	return 0;
191}
192
193static ssize_t device_requested_uA_show(struct device *dev,
194			     struct device_attribute *attr, char *buf)
195{
196	struct regulator *regulator;
197
198	regulator = get_device_regulator(dev);
199	if (regulator == NULL)
200		return 0;
201
202	return sprintf(buf, "%d\n", regulator->uA_load);
203}
204
205static ssize_t regulator_uV_show(struct device *dev,
206				struct device_attribute *attr, char *buf)
207{
208	struct regulator_dev *rdev = dev_get_drvdata(dev);
209	ssize_t ret;
210
211	mutex_lock(&rdev->mutex);
212	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
213	mutex_unlock(&rdev->mutex);
214
215	return ret;
216}
217static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
218
219static ssize_t regulator_uA_show(struct device *dev,
220				struct device_attribute *attr, char *buf)
221{
222	struct regulator_dev *rdev = dev_get_drvdata(dev);
223
224	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
225}
226static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
227
228static ssize_t regulator_name_show(struct device *dev,
229			     struct device_attribute *attr, char *buf)
230{
231	struct regulator_dev *rdev = dev_get_drvdata(dev);
232	const char *name;
233
234	if (rdev->constraints->name)
235		name = rdev->constraints->name;
236	else if (rdev->desc->name)
237		name = rdev->desc->name;
238	else
239		name = "";
240
241	return sprintf(buf, "%s\n", name);
242}
243
244static ssize_t regulator_print_opmode(char *buf, int mode)
245{
246	switch (mode) {
247	case REGULATOR_MODE_FAST:
248		return sprintf(buf, "fast\n");
249	case REGULATOR_MODE_NORMAL:
250		return sprintf(buf, "normal\n");
251	case REGULATOR_MODE_IDLE:
252		return sprintf(buf, "idle\n");
253	case REGULATOR_MODE_STANDBY:
254		return sprintf(buf, "standby\n");
255	}
256	return sprintf(buf, "unknown\n");
257}
258
259static ssize_t regulator_opmode_show(struct device *dev,
260				    struct device_attribute *attr, char *buf)
261{
262	struct regulator_dev *rdev = dev_get_drvdata(dev);
263
264	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
265}
266static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
267
268static ssize_t regulator_print_state(char *buf, int state)
269{
270	if (state > 0)
271		return sprintf(buf, "enabled\n");
272	else if (state == 0)
273		return sprintf(buf, "disabled\n");
274	else
275		return sprintf(buf, "unknown\n");
276}
277
278static ssize_t regulator_state_show(struct device *dev,
279				   struct device_attribute *attr, char *buf)
280{
281	struct regulator_dev *rdev = dev_get_drvdata(dev);
282
283	return regulator_print_state(buf, _regulator_is_enabled(rdev));
284}
285static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
286
287static ssize_t regulator_status_show(struct device *dev,
288				   struct device_attribute *attr, char *buf)
289{
290	struct regulator_dev *rdev = dev_get_drvdata(dev);
291	int status;
292	char *label;
293
294	status = rdev->desc->ops->get_status(rdev);
295	if (status < 0)
296		return status;
297
298	switch (status) {
299	case REGULATOR_STATUS_OFF:
300		label = "off";
301		break;
302	case REGULATOR_STATUS_ON:
303		label = "on";
304		break;
305	case REGULATOR_STATUS_ERROR:
306		label = "error";
307		break;
308	case REGULATOR_STATUS_FAST:
309		label = "fast";
310		break;
311	case REGULATOR_STATUS_NORMAL:
312		label = "normal";
313		break;
314	case REGULATOR_STATUS_IDLE:
315		label = "idle";
316		break;
317	case REGULATOR_STATUS_STANDBY:
318		label = "standby";
319		break;
320	default:
321		return -ERANGE;
322	}
323
324	return sprintf(buf, "%s\n", label);
325}
326static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
327
328static ssize_t regulator_min_uA_show(struct device *dev,
329				    struct device_attribute *attr, char *buf)
330{
331	struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333	if (!rdev->constraints)
334		return sprintf(buf, "constraint not defined\n");
335
336	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
337}
338static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
339
340static ssize_t regulator_max_uA_show(struct device *dev,
341				    struct device_attribute *attr, char *buf)
342{
343	struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345	if (!rdev->constraints)
346		return sprintf(buf, "constraint not defined\n");
347
348	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
349}
350static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
351
352static ssize_t regulator_min_uV_show(struct device *dev,
353				    struct device_attribute *attr, char *buf)
354{
355	struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357	if (!rdev->constraints)
358		return sprintf(buf, "constraint not defined\n");
359
360	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
361}
362static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
363
364static ssize_t regulator_max_uV_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	if (!rdev->constraints)
370		return sprintf(buf, "constraint not defined\n");
371
372	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
373}
374static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
375
376static ssize_t regulator_total_uA_show(struct device *dev,
377				      struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	struct regulator *regulator;
381	int uA = 0;
382
383	mutex_lock(&rdev->mutex);
384	list_for_each_entry(regulator, &rdev->consumer_list, list)
385	    uA += regulator->uA_load;
386	mutex_unlock(&rdev->mutex);
387	return sprintf(buf, "%d\n", uA);
388}
389static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
390
391static ssize_t regulator_num_users_show(struct device *dev,
392				      struct device_attribute *attr, char *buf)
393{
394	struct regulator_dev *rdev = dev_get_drvdata(dev);
395	return sprintf(buf, "%d\n", rdev->use_count);
396}
397
398static ssize_t regulator_type_show(struct device *dev,
399				  struct device_attribute *attr, char *buf)
400{
401	struct regulator_dev *rdev = dev_get_drvdata(dev);
402
403	switch (rdev->desc->type) {
404	case REGULATOR_VOLTAGE:
405		return sprintf(buf, "voltage\n");
406	case REGULATOR_CURRENT:
407		return sprintf(buf, "current\n");
408	}
409	return sprintf(buf, "unknown\n");
410}
411
412static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
413				struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
418}
419static DEVICE_ATTR(suspend_mem_microvolts, 0444,
420		regulator_suspend_mem_uV_show, NULL);
421
422static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
423				struct device_attribute *attr, char *buf)
424{
425	struct regulator_dev *rdev = dev_get_drvdata(dev);
426
427	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
428}
429static DEVICE_ATTR(suspend_disk_microvolts, 0444,
430		regulator_suspend_disk_uV_show, NULL);
431
432static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
433				struct device_attribute *attr, char *buf)
434{
435	struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
438}
439static DEVICE_ATTR(suspend_standby_microvolts, 0444,
440		regulator_suspend_standby_uV_show, NULL);
441
442static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
443				struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	return regulator_print_opmode(buf,
448		rdev->constraints->state_mem.mode);
449}
450static DEVICE_ATTR(suspend_mem_mode, 0444,
451		regulator_suspend_mem_mode_show, NULL);
452
453static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
454				struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	return regulator_print_opmode(buf,
459		rdev->constraints->state_disk.mode);
460}
461static DEVICE_ATTR(suspend_disk_mode, 0444,
462		regulator_suspend_disk_mode_show, NULL);
463
464static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
465				struct device_attribute *attr, char *buf)
466{
467	struct regulator_dev *rdev = dev_get_drvdata(dev);
468
469	return regulator_print_opmode(buf,
470		rdev->constraints->state_standby.mode);
471}
472static DEVICE_ATTR(suspend_standby_mode, 0444,
473		regulator_suspend_standby_mode_show, NULL);
474
475static ssize_t regulator_suspend_mem_state_show(struct device *dev,
476				   struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479
480	return regulator_print_state(buf,
481			rdev->constraints->state_mem.enabled);
482}
483static DEVICE_ATTR(suspend_mem_state, 0444,
484		regulator_suspend_mem_state_show, NULL);
485
486static ssize_t regulator_suspend_disk_state_show(struct device *dev,
487				   struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491	return regulator_print_state(buf,
492			rdev->constraints->state_disk.enabled);
493}
494static DEVICE_ATTR(suspend_disk_state, 0444,
495		regulator_suspend_disk_state_show, NULL);
496
497static ssize_t regulator_suspend_standby_state_show(struct device *dev,
498				   struct device_attribute *attr, char *buf)
499{
500	struct regulator_dev *rdev = dev_get_drvdata(dev);
501
502	return regulator_print_state(buf,
503			rdev->constraints->state_standby.enabled);
504}
505static DEVICE_ATTR(suspend_standby_state, 0444,
506		regulator_suspend_standby_state_show, NULL);
507
508
509/*
510 * These are the only attributes are present for all regulators.
511 * Other attributes are a function of regulator functionality.
512 */
513static struct device_attribute regulator_dev_attrs[] = {
514	__ATTR(name, 0444, regulator_name_show, NULL),
515	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
516	__ATTR(type, 0444, regulator_type_show, NULL),
517	__ATTR_NULL,
518};
519
520static void regulator_dev_release(struct device *dev)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523	kfree(rdev);
524}
525
526static struct class regulator_class = {
527	.name = "regulator",
528	.dev_release = regulator_dev_release,
529	.dev_attrs = regulator_dev_attrs,
530};
531
532/* Calculate the new optimum regulator operating mode based on the new total
533 * consumer load. All locks held by caller */
534static void drms_uA_update(struct regulator_dev *rdev)
535{
536	struct regulator *sibling;
537	int current_uA = 0, output_uV, input_uV, err;
538	unsigned int mode;
539
540	err = regulator_check_drms(rdev);
541	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
542	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
543	return;
544
545	/* get output voltage */
546	output_uV = rdev->desc->ops->get_voltage(rdev);
547	if (output_uV <= 0)
548		return;
549
550	/* get input voltage */
551	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
552		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
553	else
554		input_uV = rdev->constraints->input_uV;
555	if (input_uV <= 0)
556		return;
557
558	/* calc total requested load */
559	list_for_each_entry(sibling, &rdev->consumer_list, list)
560	    current_uA += sibling->uA_load;
561
562	/* now get the optimum mode for our new total regulator load */
563	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
564						  output_uV, current_uA);
565
566	/* check the new mode is allowed */
567	err = regulator_check_mode(rdev, mode);
568	if (err == 0)
569		rdev->desc->ops->set_mode(rdev, mode);
570}
571
572static int suspend_set_state(struct regulator_dev *rdev,
573	struct regulator_state *rstate)
574{
575	int ret = 0;
576
577	/* enable & disable are mandatory for suspend control */
578	if (!rdev->desc->ops->set_suspend_enable ||
579		!rdev->desc->ops->set_suspend_disable) {
580		printk(KERN_ERR "%s: no way to set suspend state\n",
581			__func__);
582		return -EINVAL;
583	}
584
585	if (rstate->enabled)
586		ret = rdev->desc->ops->set_suspend_enable(rdev);
587	else
588		ret = rdev->desc->ops->set_suspend_disable(rdev);
589	if (ret < 0) {
590		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
591		return ret;
592	}
593
594	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
595		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
596		if (ret < 0) {
597			printk(KERN_ERR "%s: failed to set voltage\n",
598				__func__);
599			return ret;
600		}
601	}
602
603	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
604		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
605		if (ret < 0) {
606			printk(KERN_ERR "%s: failed to set mode\n", __func__);
607			return ret;
608		}
609	}
610	return ret;
611}
612
613/* locks held by caller */
614static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
615{
616	if (!rdev->constraints)
617		return -EINVAL;
618
619	switch (state) {
620	case PM_SUSPEND_STANDBY:
621		return suspend_set_state(rdev,
622			&rdev->constraints->state_standby);
623	case PM_SUSPEND_MEM:
624		return suspend_set_state(rdev,
625			&rdev->constraints->state_mem);
626	case PM_SUSPEND_MAX:
627		return suspend_set_state(rdev,
628			&rdev->constraints->state_disk);
629	default:
630		return -EINVAL;
631	}
632}
633
634static void print_constraints(struct regulator_dev *rdev)
635{
636	struct regulation_constraints *constraints = rdev->constraints;
637	char buf[80];
638	int count;
639
640	if (rdev->desc->type == REGULATOR_VOLTAGE) {
641		if (constraints->min_uV == constraints->max_uV)
642			count = sprintf(buf, "%d mV ",
643					constraints->min_uV / 1000);
644		else
645			count = sprintf(buf, "%d <--> %d mV ",
646					constraints->min_uV / 1000,
647					constraints->max_uV / 1000);
648	} else {
649		if (constraints->min_uA == constraints->max_uA)
650			count = sprintf(buf, "%d mA ",
651					constraints->min_uA / 1000);
652		else
653			count = sprintf(buf, "%d <--> %d mA ",
654					constraints->min_uA / 1000,
655					constraints->max_uA / 1000);
656	}
657	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
658		count += sprintf(buf + count, "fast ");
659	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
660		count += sprintf(buf + count, "normal ");
661	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
662		count += sprintf(buf + count, "idle ");
663	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
664		count += sprintf(buf + count, "standby");
665
666	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
667}
668
669/**
670 * set_machine_constraints - sets regulator constraints
671 * @rdev: regulator source
672 * @constraints: constraints to apply
673 *
674 * Allows platform initialisation code to define and constrain
675 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
676 * Constraints *must* be set by platform code in order for some
677 * regulator operations to proceed i.e. set_voltage, set_current_limit,
678 * set_mode.
679 */
680static int set_machine_constraints(struct regulator_dev *rdev,
681	struct regulation_constraints *constraints)
682{
683	int ret = 0;
684	const char *name;
685	struct regulator_ops *ops = rdev->desc->ops;
686
687	if (constraints->name)
688		name = constraints->name;
689	else if (rdev->desc->name)
690		name = rdev->desc->name;
691	else
692		name = "regulator";
693
694	/* constrain machine-level voltage specs to fit
695	 * the actual range supported by this regulator.
696	 */
697	if (ops->list_voltage && rdev->desc->n_voltages) {
698		int	count = rdev->desc->n_voltages;
699		int	i;
700		int	min_uV = INT_MAX;
701		int	max_uV = INT_MIN;
702		int	cmin = constraints->min_uV;
703		int	cmax = constraints->max_uV;
704
705		/* it's safe to autoconfigure fixed-voltage supplies */
706		if (count == 1 && !cmin) {
707			cmin = INT_MIN;
708			cmax = INT_MAX;
709		}
710
711		/* voltage constraints are optional */
712		if ((cmin == 0) && (cmax == 0))
713			goto out;
714
715		/* else require explicit machine-level constraints */
716		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
717			pr_err("%s: %s '%s' voltage constraints\n",
718				       __func__, "invalid", name);
719			ret = -EINVAL;
720			goto out;
721		}
722
723		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
724		for (i = 0; i < count; i++) {
725			int	value;
726
727			value = ops->list_voltage(rdev, i);
728			if (value <= 0)
729				continue;
730
731			/* maybe adjust [min_uV..max_uV] */
732			if (value >= cmin && value < min_uV)
733				min_uV = value;
734			if (value <= cmax && value > max_uV)
735				max_uV = value;
736		}
737
738		/* final: [min_uV..max_uV] valid iff constraints valid */
739		if (max_uV < min_uV) {
740			pr_err("%s: %s '%s' voltage constraints\n",
741				       __func__, "unsupportable", name);
742			ret = -EINVAL;
743			goto out;
744		}
745
746		/* use regulator's subset of machine constraints */
747		if (constraints->min_uV < min_uV) {
748			pr_debug("%s: override '%s' %s, %d -> %d\n",
749				       __func__, name, "min_uV",
750					constraints->min_uV, min_uV);
751			constraints->min_uV = min_uV;
752		}
753		if (constraints->max_uV > max_uV) {
754			pr_debug("%s: override '%s' %s, %d -> %d\n",
755				       __func__, name, "max_uV",
756					constraints->max_uV, max_uV);
757			constraints->max_uV = max_uV;
758		}
759	}
760
761	rdev->constraints = constraints;
762
763	/* do we need to apply the constraint voltage */
764	if (rdev->constraints->apply_uV &&
765		rdev->constraints->min_uV == rdev->constraints->max_uV &&
766		ops->set_voltage) {
767		ret = ops->set_voltage(rdev,
768			rdev->constraints->min_uV, rdev->constraints->max_uV);
769			if (ret < 0) {
770				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
771				       __func__,
772				       rdev->constraints->min_uV, name);
773				rdev->constraints = NULL;
774				goto out;
775			}
776	}
777
778	/* do we need to setup our suspend state */
779	if (constraints->initial_state) {
780		ret = suspend_prepare(rdev, constraints->initial_state);
781		if (ret < 0) {
782			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
783			       __func__, name);
784			rdev->constraints = NULL;
785			goto out;
786		}
787	}
788
789	if (constraints->initial_mode) {
790		if (!ops->set_mode) {
791			printk(KERN_ERR "%s: no set_mode operation for %s\n",
792			       __func__, name);
793			ret = -EINVAL;
794			goto out;
795		}
796
797		ret = ops->set_mode(rdev, constraints->initial_mode);
798		if (ret < 0) {
799			printk(KERN_ERR
800			       "%s: failed to set initial mode for %s: %d\n",
801			       __func__, name, ret);
802			goto out;
803		}
804	}
805
806	/* If the constraints say the regulator should be on at this point
807	 * and we have control then make sure it is enabled.
808	 */
809	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
810		ret = ops->enable(rdev);
811		if (ret < 0) {
812			printk(KERN_ERR "%s: failed to enable %s\n",
813			       __func__, name);
814			rdev->constraints = NULL;
815			goto out;
816		}
817	}
818
819	print_constraints(rdev);
820out:
821	return ret;
822}
823
824/**
825 * set_supply - set regulator supply regulator
826 * @rdev: regulator name
827 * @supply_rdev: supply regulator name
828 *
829 * Called by platform initialisation code to set the supply regulator for this
830 * regulator. This ensures that a regulators supply will also be enabled by the
831 * core if it's child is enabled.
832 */
833static int set_supply(struct regulator_dev *rdev,
834	struct regulator_dev *supply_rdev)
835{
836	int err;
837
838	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
839				"supply");
840	if (err) {
841		printk(KERN_ERR
842		       "%s: could not add device link %s err %d\n",
843		       __func__, supply_rdev->dev.kobj.name, err);
844		       goto out;
845	}
846	rdev->supply = supply_rdev;
847	list_add(&rdev->slist, &supply_rdev->supply_list);
848out:
849	return err;
850}
851
852/**
853 * set_consumer_device_supply: Bind a regulator to a symbolic supply
854 * @rdev:         regulator source
855 * @consumer_dev: device the supply applies to
856 * @supply:       symbolic name for supply
857 *
858 * Allows platform initialisation code to map physical regulator
859 * sources to symbolic names for supplies for use by devices.  Devices
860 * should use these symbolic names to request regulators, avoiding the
861 * need to provide board-specific regulator names as platform data.
862 */
863static int set_consumer_device_supply(struct regulator_dev *rdev,
864	struct device *consumer_dev, const char *supply)
865{
866	struct regulator_map *node;
867
868	if (supply == NULL)
869		return -EINVAL;
870
871	list_for_each_entry(node, &regulator_map_list, list) {
872		if (consumer_dev != node->dev)
873			continue;
874		if (strcmp(node->supply, supply) != 0)
875			continue;
876
877		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
878				dev_name(&node->regulator->dev),
879				node->regulator->desc->name,
880				supply,
881				dev_name(&rdev->dev), rdev->desc->name);
882		return -EBUSY;
883	}
884
885	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
886	if (node == NULL)
887		return -ENOMEM;
888
889	node->regulator = rdev;
890	node->dev = consumer_dev;
891	node->supply = supply;
892
893	list_add(&node->list, &regulator_map_list);
894	return 0;
895}
896
897static void unset_consumer_device_supply(struct regulator_dev *rdev,
898	struct device *consumer_dev)
899{
900	struct regulator_map *node, *n;
901
902	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
903		if (rdev == node->regulator &&
904			consumer_dev == node->dev) {
905			list_del(&node->list);
906			kfree(node);
907			return;
908		}
909	}
910}
911
912static void unset_regulator_supplies(struct regulator_dev *rdev)
913{
914	struct regulator_map *node, *n;
915
916	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
917		if (rdev == node->regulator) {
918			list_del(&node->list);
919			kfree(node);
920			return;
921		}
922	}
923}
924
925#define REG_STR_SIZE	32
926
927static struct regulator *create_regulator(struct regulator_dev *rdev,
928					  struct device *dev,
929					  const char *supply_name)
930{
931	struct regulator *regulator;
932	char buf[REG_STR_SIZE];
933	int err, size;
934
935	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
936	if (regulator == NULL)
937		return NULL;
938
939	mutex_lock(&rdev->mutex);
940	regulator->rdev = rdev;
941	list_add(&regulator->list, &rdev->consumer_list);
942
943	if (dev) {
944		/* create a 'requested_microamps_name' sysfs entry */
945		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
946			supply_name);
947		if (size >= REG_STR_SIZE)
948			goto overflow_err;
949
950		regulator->dev = dev;
951		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
952		if (regulator->dev_attr.attr.name == NULL)
953			goto attr_name_err;
954
955		regulator->dev_attr.attr.owner = THIS_MODULE;
956		regulator->dev_attr.attr.mode = 0444;
957		regulator->dev_attr.show = device_requested_uA_show;
958		err = device_create_file(dev, &regulator->dev_attr);
959		if (err < 0) {
960			printk(KERN_WARNING "%s: could not add regulator_dev"
961				" load sysfs\n", __func__);
962			goto attr_name_err;
963		}
964
965		/* also add a link to the device sysfs entry */
966		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
967				 dev->kobj.name, supply_name);
968		if (size >= REG_STR_SIZE)
969			goto attr_err;
970
971		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
972		if (regulator->supply_name == NULL)
973			goto attr_err;
974
975		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
976					buf);
977		if (err) {
978			printk(KERN_WARNING
979			       "%s: could not add device link %s err %d\n",
980			       __func__, dev->kobj.name, err);
981			device_remove_file(dev, &regulator->dev_attr);
982			goto link_name_err;
983		}
984	}
985	mutex_unlock(&rdev->mutex);
986	return regulator;
987link_name_err:
988	kfree(regulator->supply_name);
989attr_err:
990	device_remove_file(regulator->dev, &regulator->dev_attr);
991attr_name_err:
992	kfree(regulator->dev_attr.attr.name);
993overflow_err:
994	list_del(&regulator->list);
995	kfree(regulator);
996	mutex_unlock(&rdev->mutex);
997	return NULL;
998}
999
1000/**
1001 * regulator_get - lookup and obtain a reference to a regulator.
1002 * @dev: device for regulator "consumer"
1003 * @id: Supply name or regulator ID.
1004 *
1005 * Returns a struct regulator corresponding to the regulator producer,
1006 * or IS_ERR() condition containing errno.
1007 *
1008 * Use of supply names configured via regulator_set_device_supply() is
1009 * strongly encouraged.  It is recommended that the supply name used
1010 * should match the name used for the supply and/or the relevant
1011 * device pins in the datasheet.
1012 */
1013struct regulator *regulator_get(struct device *dev, const char *id)
1014{
1015	struct regulator_dev *rdev;
1016	struct regulator_map *map;
1017	struct regulator *regulator = ERR_PTR(-ENODEV);
1018
1019	if (id == NULL) {
1020		printk(KERN_ERR "regulator: get() with no identifier\n");
1021		return regulator;
1022	}
1023
1024	mutex_lock(&regulator_list_mutex);
1025
1026	list_for_each_entry(map, &regulator_map_list, list) {
1027		if (dev == map->dev &&
1028		    strcmp(map->supply, id) == 0) {
1029			rdev = map->regulator;
1030			goto found;
1031		}
1032	}
1033	mutex_unlock(&regulator_list_mutex);
1034	return regulator;
1035
1036found:
1037	if (!try_module_get(rdev->owner))
1038		goto out;
1039
1040	regulator = create_regulator(rdev, dev, id);
1041	if (regulator == NULL) {
1042		regulator = ERR_PTR(-ENOMEM);
1043		module_put(rdev->owner);
1044	}
1045
1046out:
1047	mutex_unlock(&regulator_list_mutex);
1048	return regulator;
1049}
1050EXPORT_SYMBOL_GPL(regulator_get);
1051
1052/**
1053 * regulator_put - "free" the regulator source
1054 * @regulator: regulator source
1055 *
1056 * Note: drivers must ensure that all regulator_enable calls made on this
1057 * regulator source are balanced by regulator_disable calls prior to calling
1058 * this function.
1059 */
1060void regulator_put(struct regulator *regulator)
1061{
1062	struct regulator_dev *rdev;
1063
1064	if (regulator == NULL || IS_ERR(regulator))
1065		return;
1066
1067	mutex_lock(&regulator_list_mutex);
1068	rdev = regulator->rdev;
1069
1070	/* remove any sysfs entries */
1071	if (regulator->dev) {
1072		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1073		kfree(regulator->supply_name);
1074		device_remove_file(regulator->dev, &regulator->dev_attr);
1075		kfree(regulator->dev_attr.attr.name);
1076	}
1077	list_del(&regulator->list);
1078	kfree(regulator);
1079
1080	module_put(rdev->owner);
1081	mutex_unlock(&regulator_list_mutex);
1082}
1083EXPORT_SYMBOL_GPL(regulator_put);
1084
1085/* locks held by regulator_enable() */
1086static int _regulator_enable(struct regulator_dev *rdev)
1087{
1088	int ret = -EINVAL;
1089
1090	if (!rdev->constraints) {
1091		printk(KERN_ERR "%s: %s has no constraints\n",
1092		       __func__, rdev->desc->name);
1093		return ret;
1094	}
1095
1096	/* do we need to enable the supply regulator first */
1097	if (rdev->supply) {
1098		ret = _regulator_enable(rdev->supply);
1099		if (ret < 0) {
1100			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1101			       __func__, rdev->desc->name, ret);
1102			return ret;
1103		}
1104	}
1105
1106	/* check voltage and requested load before enabling */
1107	if (rdev->desc->ops->enable) {
1108
1109		if (rdev->constraints &&
1110			(rdev->constraints->valid_ops_mask &
1111			REGULATOR_CHANGE_DRMS))
1112			drms_uA_update(rdev);
1113
1114		ret = rdev->desc->ops->enable(rdev);
1115		if (ret < 0) {
1116			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1117			       __func__, rdev->desc->name, ret);
1118			return ret;
1119		}
1120		rdev->use_count++;
1121		return ret;
1122	}
1123
1124	return ret;
1125}
1126
1127/**
1128 * regulator_enable - enable regulator output
1129 * @regulator: regulator source
1130 *
1131 * Request that the regulator be enabled with the regulator output at
1132 * the predefined voltage or current value.  Calls to regulator_enable()
1133 * must be balanced with calls to regulator_disable().
1134 *
1135 * NOTE: the output value can be set by other drivers, boot loader or may be
1136 * hardwired in the regulator.
1137 */
1138int regulator_enable(struct regulator *regulator)
1139{
1140	struct regulator_dev *rdev = regulator->rdev;
1141	int ret = 0;
1142
1143	mutex_lock(&rdev->mutex);
1144	ret = _regulator_enable(rdev);
1145	mutex_unlock(&rdev->mutex);
1146	return ret;
1147}
1148EXPORT_SYMBOL_GPL(regulator_enable);
1149
1150/* locks held by regulator_disable() */
1151static int _regulator_disable(struct regulator_dev *rdev)
1152{
1153	int ret = 0;
1154
1155	if (WARN(rdev->use_count <= 0,
1156			"unbalanced disables for %s\n",
1157			rdev->desc->name))
1158		return -EIO;
1159
1160	/* are we the last user and permitted to disable ? */
1161	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1162
1163		/* we are last user */
1164		if (rdev->desc->ops->disable) {
1165			ret = rdev->desc->ops->disable(rdev);
1166			if (ret < 0) {
1167				printk(KERN_ERR "%s: failed to disable %s\n",
1168				       __func__, rdev->desc->name);
1169				return ret;
1170			}
1171		}
1172
1173		/* decrease our supplies ref count and disable if required */
1174		if (rdev->supply)
1175			_regulator_disable(rdev->supply);
1176
1177		rdev->use_count = 0;
1178	} else if (rdev->use_count > 1) {
1179
1180		if (rdev->constraints &&
1181			(rdev->constraints->valid_ops_mask &
1182			REGULATOR_CHANGE_DRMS))
1183			drms_uA_update(rdev);
1184
1185		rdev->use_count--;
1186	}
1187	return ret;
1188}
1189
1190/**
1191 * regulator_disable - disable regulator output
1192 * @regulator: regulator source
1193 *
1194 * Disable the regulator output voltage or current.  Calls to
1195 * regulator_enable() must be balanced with calls to
1196 * regulator_disable().
1197 *
1198 * NOTE: this will only disable the regulator output if no other consumer
1199 * devices have it enabled, the regulator device supports disabling and
1200 * machine constraints permit this operation.
1201 */
1202int regulator_disable(struct regulator *regulator)
1203{
1204	struct regulator_dev *rdev = regulator->rdev;
1205	int ret = 0;
1206
1207	mutex_lock(&rdev->mutex);
1208	ret = _regulator_disable(rdev);
1209	mutex_unlock(&rdev->mutex);
1210	return ret;
1211}
1212EXPORT_SYMBOL_GPL(regulator_disable);
1213
1214/* locks held by regulator_force_disable() */
1215static int _regulator_force_disable(struct regulator_dev *rdev)
1216{
1217	int ret = 0;
1218
1219	/* force disable */
1220	if (rdev->desc->ops->disable) {
1221		/* ah well, who wants to live forever... */
1222		ret = rdev->desc->ops->disable(rdev);
1223		if (ret < 0) {
1224			printk(KERN_ERR "%s: failed to force disable %s\n",
1225			       __func__, rdev->desc->name);
1226			return ret;
1227		}
1228		/* notify other consumers that power has been forced off */
1229		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1230			NULL);
1231	}
1232
1233	/* decrease our supplies ref count and disable if required */
1234	if (rdev->supply)
1235		_regulator_disable(rdev->supply);
1236
1237	rdev->use_count = 0;
1238	return ret;
1239}
1240
1241/**
1242 * regulator_force_disable - force disable regulator output
1243 * @regulator: regulator source
1244 *
1245 * Forcibly disable the regulator output voltage or current.
1246 * NOTE: this *will* disable the regulator output even if other consumer
1247 * devices have it enabled. This should be used for situations when device
1248 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1249 */
1250int regulator_force_disable(struct regulator *regulator)
1251{
1252	int ret;
1253
1254	mutex_lock(&regulator->rdev->mutex);
1255	regulator->uA_load = 0;
1256	ret = _regulator_force_disable(regulator->rdev);
1257	mutex_unlock(&regulator->rdev->mutex);
1258	return ret;
1259}
1260EXPORT_SYMBOL_GPL(regulator_force_disable);
1261
1262static int _regulator_is_enabled(struct regulator_dev *rdev)
1263{
1264	int ret;
1265
1266	mutex_lock(&rdev->mutex);
1267
1268	/* sanity check */
1269	if (!rdev->desc->ops->is_enabled) {
1270		ret = -EINVAL;
1271		goto out;
1272	}
1273
1274	ret = rdev->desc->ops->is_enabled(rdev);
1275out:
1276	mutex_unlock(&rdev->mutex);
1277	return ret;
1278}
1279
1280/**
1281 * regulator_is_enabled - is the regulator output enabled
1282 * @regulator: regulator source
1283 *
1284 * Returns positive if the regulator driver backing the source/client
1285 * has requested that the device be enabled, zero if it hasn't, else a
1286 * negative errno code.
1287 *
1288 * Note that the device backing this regulator handle can have multiple
1289 * users, so it might be enabled even if regulator_enable() was never
1290 * called for this particular source.
1291 */
1292int regulator_is_enabled(struct regulator *regulator)
1293{
1294	return _regulator_is_enabled(regulator->rdev);
1295}
1296EXPORT_SYMBOL_GPL(regulator_is_enabled);
1297
1298/**
1299 * regulator_count_voltages - count regulator_list_voltage() selectors
1300 * @regulator: regulator source
1301 *
1302 * Returns number of selectors, or negative errno.  Selectors are
1303 * numbered starting at zero, and typically correspond to bitfields
1304 * in hardware registers.
1305 */
1306int regulator_count_voltages(struct regulator *regulator)
1307{
1308	struct regulator_dev	*rdev = regulator->rdev;
1309
1310	return rdev->desc->n_voltages ? : -EINVAL;
1311}
1312EXPORT_SYMBOL_GPL(regulator_count_voltages);
1313
1314/**
1315 * regulator_list_voltage - enumerate supported voltages
1316 * @regulator: regulator source
1317 * @selector: identify voltage to list
1318 * Context: can sleep
1319 *
1320 * Returns a voltage that can be passed to @regulator_set_voltage(),
1321 * zero if this selector code can't be used on this sytem, or a
1322 * negative errno.
1323 */
1324int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1325{
1326	struct regulator_dev	*rdev = regulator->rdev;
1327	struct regulator_ops	*ops = rdev->desc->ops;
1328	int			ret;
1329
1330	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1331		return -EINVAL;
1332
1333	mutex_lock(&rdev->mutex);
1334	ret = ops->list_voltage(rdev, selector);
1335	mutex_unlock(&rdev->mutex);
1336
1337	if (ret > 0) {
1338		if (ret < rdev->constraints->min_uV)
1339			ret = 0;
1340		else if (ret > rdev->constraints->max_uV)
1341			ret = 0;
1342	}
1343
1344	return ret;
1345}
1346EXPORT_SYMBOL_GPL(regulator_list_voltage);
1347
1348/**
1349 * regulator_set_voltage - set regulator output voltage
1350 * @regulator: regulator source
1351 * @min_uV: Minimum required voltage in uV
1352 * @max_uV: Maximum acceptable voltage in uV
1353 *
1354 * Sets a voltage regulator to the desired output voltage. This can be set
1355 * during any regulator state. IOW, regulator can be disabled or enabled.
1356 *
1357 * If the regulator is enabled then the voltage will change to the new value
1358 * immediately otherwise if the regulator is disabled the regulator will
1359 * output at the new voltage when enabled.
1360 *
1361 * NOTE: If the regulator is shared between several devices then the lowest
1362 * request voltage that meets the system constraints will be used.
1363 * Regulator system constraints must be set for this regulator before
1364 * calling this function otherwise this call will fail.
1365 */
1366int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1367{
1368	struct regulator_dev *rdev = regulator->rdev;
1369	int ret;
1370
1371	mutex_lock(&rdev->mutex);
1372
1373	/* sanity check */
1374	if (!rdev->desc->ops->set_voltage) {
1375		ret = -EINVAL;
1376		goto out;
1377	}
1378
1379	/* constraints check */
1380	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1381	if (ret < 0)
1382		goto out;
1383	regulator->min_uV = min_uV;
1384	regulator->max_uV = max_uV;
1385	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1386
1387out:
1388	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1389	mutex_unlock(&rdev->mutex);
1390	return ret;
1391}
1392EXPORT_SYMBOL_GPL(regulator_set_voltage);
1393
1394static int _regulator_get_voltage(struct regulator_dev *rdev)
1395{
1396	/* sanity check */
1397	if (rdev->desc->ops->get_voltage)
1398		return rdev->desc->ops->get_voltage(rdev);
1399	else
1400		return -EINVAL;
1401}
1402
1403/**
1404 * regulator_get_voltage - get regulator output voltage
1405 * @regulator: regulator source
1406 *
1407 * This returns the current regulator voltage in uV.
1408 *
1409 * NOTE: If the regulator is disabled it will return the voltage value. This
1410 * function should not be used to determine regulator state.
1411 */
1412int regulator_get_voltage(struct regulator *regulator)
1413{
1414	int ret;
1415
1416	mutex_lock(&regulator->rdev->mutex);
1417
1418	ret = _regulator_get_voltage(regulator->rdev);
1419
1420	mutex_unlock(&regulator->rdev->mutex);
1421
1422	return ret;
1423}
1424EXPORT_SYMBOL_GPL(regulator_get_voltage);
1425
1426/**
1427 * regulator_set_current_limit - set regulator output current limit
1428 * @regulator: regulator source
1429 * @min_uA: Minimuum supported current in uA
1430 * @max_uA: Maximum supported current in uA
1431 *
1432 * Sets current sink to the desired output current. This can be set during
1433 * any regulator state. IOW, regulator can be disabled or enabled.
1434 *
1435 * If the regulator is enabled then the current will change to the new value
1436 * immediately otherwise if the regulator is disabled the regulator will
1437 * output at the new current when enabled.
1438 *
1439 * NOTE: Regulator system constraints must be set for this regulator before
1440 * calling this function otherwise this call will fail.
1441 */
1442int regulator_set_current_limit(struct regulator *regulator,
1443			       int min_uA, int max_uA)
1444{
1445	struct regulator_dev *rdev = regulator->rdev;
1446	int ret;
1447
1448	mutex_lock(&rdev->mutex);
1449
1450	/* sanity check */
1451	if (!rdev->desc->ops->set_current_limit) {
1452		ret = -EINVAL;
1453		goto out;
1454	}
1455
1456	/* constraints check */
1457	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1458	if (ret < 0)
1459		goto out;
1460
1461	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1462out:
1463	mutex_unlock(&rdev->mutex);
1464	return ret;
1465}
1466EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1467
1468static int _regulator_get_current_limit(struct regulator_dev *rdev)
1469{
1470	int ret;
1471
1472	mutex_lock(&rdev->mutex);
1473
1474	/* sanity check */
1475	if (!rdev->desc->ops->get_current_limit) {
1476		ret = -EINVAL;
1477		goto out;
1478	}
1479
1480	ret = rdev->desc->ops->get_current_limit(rdev);
1481out:
1482	mutex_unlock(&rdev->mutex);
1483	return ret;
1484}
1485
1486/**
1487 * regulator_get_current_limit - get regulator output current
1488 * @regulator: regulator source
1489 *
1490 * This returns the current supplied by the specified current sink in uA.
1491 *
1492 * NOTE: If the regulator is disabled it will return the current value. This
1493 * function should not be used to determine regulator state.
1494 */
1495int regulator_get_current_limit(struct regulator *regulator)
1496{
1497	return _regulator_get_current_limit(regulator->rdev);
1498}
1499EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1500
1501/**
1502 * regulator_set_mode - set regulator operating mode
1503 * @regulator: regulator source
1504 * @mode: operating mode - one of the REGULATOR_MODE constants
1505 *
1506 * Set regulator operating mode to increase regulator efficiency or improve
1507 * regulation performance.
1508 *
1509 * NOTE: Regulator system constraints must be set for this regulator before
1510 * calling this function otherwise this call will fail.
1511 */
1512int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1513{
1514	struct regulator_dev *rdev = regulator->rdev;
1515	int ret;
1516
1517	mutex_lock(&rdev->mutex);
1518
1519	/* sanity check */
1520	if (!rdev->desc->ops->set_mode) {
1521		ret = -EINVAL;
1522		goto out;
1523	}
1524
1525	/* constraints check */
1526	ret = regulator_check_mode(rdev, mode);
1527	if (ret < 0)
1528		goto out;
1529
1530	ret = rdev->desc->ops->set_mode(rdev, mode);
1531out:
1532	mutex_unlock(&rdev->mutex);
1533	return ret;
1534}
1535EXPORT_SYMBOL_GPL(regulator_set_mode);
1536
1537static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1538{
1539	int ret;
1540
1541	mutex_lock(&rdev->mutex);
1542
1543	/* sanity check */
1544	if (!rdev->desc->ops->get_mode) {
1545		ret = -EINVAL;
1546		goto out;
1547	}
1548
1549	ret = rdev->desc->ops->get_mode(rdev);
1550out:
1551	mutex_unlock(&rdev->mutex);
1552	return ret;
1553}
1554
1555/**
1556 * regulator_get_mode - get regulator operating mode
1557 * @regulator: regulator source
1558 *
1559 * Get the current regulator operating mode.
1560 */
1561unsigned int regulator_get_mode(struct regulator *regulator)
1562{
1563	return _regulator_get_mode(regulator->rdev);
1564}
1565EXPORT_SYMBOL_GPL(regulator_get_mode);
1566
1567/**
1568 * regulator_set_optimum_mode - set regulator optimum operating mode
1569 * @regulator: regulator source
1570 * @uA_load: load current
1571 *
1572 * Notifies the regulator core of a new device load. This is then used by
1573 * DRMS (if enabled by constraints) to set the most efficient regulator
1574 * operating mode for the new regulator loading.
1575 *
1576 * Consumer devices notify their supply regulator of the maximum power
1577 * they will require (can be taken from device datasheet in the power
1578 * consumption tables) when they change operational status and hence power
1579 * state. Examples of operational state changes that can affect power
1580 * consumption are :-
1581 *
1582 *    o Device is opened / closed.
1583 *    o Device I/O is about to begin or has just finished.
1584 *    o Device is idling in between work.
1585 *
1586 * This information is also exported via sysfs to userspace.
1587 *
1588 * DRMS will sum the total requested load on the regulator and change
1589 * to the most efficient operating mode if platform constraints allow.
1590 *
1591 * Returns the new regulator mode or error.
1592 */
1593int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1594{
1595	struct regulator_dev *rdev = regulator->rdev;
1596	struct regulator *consumer;
1597	int ret, output_uV, input_uV, total_uA_load = 0;
1598	unsigned int mode;
1599
1600	mutex_lock(&rdev->mutex);
1601
1602	regulator->uA_load = uA_load;
1603	ret = regulator_check_drms(rdev);
1604	if (ret < 0)
1605		goto out;
1606	ret = -EINVAL;
1607
1608	/* sanity check */
1609	if (!rdev->desc->ops->get_optimum_mode)
1610		goto out;
1611
1612	/* get output voltage */
1613	output_uV = rdev->desc->ops->get_voltage(rdev);
1614	if (output_uV <= 0) {
1615		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1616			__func__, rdev->desc->name);
1617		goto out;
1618	}
1619
1620	/* get input voltage */
1621	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1622		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1623	else
1624		input_uV = rdev->constraints->input_uV;
1625	if (input_uV <= 0) {
1626		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1627			__func__, rdev->desc->name);
1628		goto out;
1629	}
1630
1631	/* calc total requested load for this regulator */
1632	list_for_each_entry(consumer, &rdev->consumer_list, list)
1633	    total_uA_load += consumer->uA_load;
1634
1635	mode = rdev->desc->ops->get_optimum_mode(rdev,
1636						 input_uV, output_uV,
1637						 total_uA_load);
1638	ret = regulator_check_mode(rdev, mode);
1639	if (ret < 0) {
1640		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1641			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1642			total_uA_load, input_uV, output_uV);
1643		goto out;
1644	}
1645
1646	ret = rdev->desc->ops->set_mode(rdev, mode);
1647	if (ret < 0) {
1648		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1649			__func__, mode, rdev->desc->name);
1650		goto out;
1651	}
1652	ret = mode;
1653out:
1654	mutex_unlock(&rdev->mutex);
1655	return ret;
1656}
1657EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1658
1659/**
1660 * regulator_register_notifier - register regulator event notifier
1661 * @regulator: regulator source
1662 * @nb: notifier block
1663 *
1664 * Register notifier block to receive regulator events.
1665 */
1666int regulator_register_notifier(struct regulator *regulator,
1667			      struct notifier_block *nb)
1668{
1669	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1670						nb);
1671}
1672EXPORT_SYMBOL_GPL(regulator_register_notifier);
1673
1674/**
1675 * regulator_unregister_notifier - unregister regulator event notifier
1676 * @regulator: regulator source
1677 * @nb: notifier block
1678 *
1679 * Unregister regulator event notifier block.
1680 */
1681int regulator_unregister_notifier(struct regulator *regulator,
1682				struct notifier_block *nb)
1683{
1684	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1685						  nb);
1686}
1687EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1688
1689/* notify regulator consumers and downstream regulator consumers.
1690 * Note mutex must be held by caller.
1691 */
1692static void _notifier_call_chain(struct regulator_dev *rdev,
1693				  unsigned long event, void *data)
1694{
1695	struct regulator_dev *_rdev;
1696
1697	/* call rdev chain first */
1698	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1699
1700	/* now notify regulator we supply */
1701	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1702	  mutex_lock(&_rdev->mutex);
1703	  _notifier_call_chain(_rdev, event, data);
1704	  mutex_unlock(&_rdev->mutex);
1705	}
1706}
1707
1708/**
1709 * regulator_bulk_get - get multiple regulator consumers
1710 *
1711 * @dev:           Device to supply
1712 * @num_consumers: Number of consumers to register
1713 * @consumers:     Configuration of consumers; clients are stored here.
1714 *
1715 * @return 0 on success, an errno on failure.
1716 *
1717 * This helper function allows drivers to get several regulator
1718 * consumers in one operation.  If any of the regulators cannot be
1719 * acquired then any regulators that were allocated will be freed
1720 * before returning to the caller.
1721 */
1722int regulator_bulk_get(struct device *dev, int num_consumers,
1723		       struct regulator_bulk_data *consumers)
1724{
1725	int i;
1726	int ret;
1727
1728	for (i = 0; i < num_consumers; i++)
1729		consumers[i].consumer = NULL;
1730
1731	for (i = 0; i < num_consumers; i++) {
1732		consumers[i].consumer = regulator_get(dev,
1733						      consumers[i].supply);
1734		if (IS_ERR(consumers[i].consumer)) {
1735			dev_err(dev, "Failed to get supply '%s'\n",
1736				consumers[i].supply);
1737			ret = PTR_ERR(consumers[i].consumer);
1738			consumers[i].consumer = NULL;
1739			goto err;
1740		}
1741	}
1742
1743	return 0;
1744
1745err:
1746	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1747		regulator_put(consumers[i].consumer);
1748
1749	return ret;
1750}
1751EXPORT_SYMBOL_GPL(regulator_bulk_get);
1752
1753/**
1754 * regulator_bulk_enable - enable multiple regulator consumers
1755 *
1756 * @num_consumers: Number of consumers
1757 * @consumers:     Consumer data; clients are stored here.
1758 * @return         0 on success, an errno on failure
1759 *
1760 * This convenience API allows consumers to enable multiple regulator
1761 * clients in a single API call.  If any consumers cannot be enabled
1762 * then any others that were enabled will be disabled again prior to
1763 * return.
1764 */
1765int regulator_bulk_enable(int num_consumers,
1766			  struct regulator_bulk_data *consumers)
1767{
1768	int i;
1769	int ret;
1770
1771	for (i = 0; i < num_consumers; i++) {
1772		ret = regulator_enable(consumers[i].consumer);
1773		if (ret != 0)
1774			goto err;
1775	}
1776
1777	return 0;
1778
1779err:
1780	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1781	for (i = 0; i < num_consumers; i++)
1782		regulator_disable(consumers[i].consumer);
1783
1784	return ret;
1785}
1786EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1787
1788/**
1789 * regulator_bulk_disable - disable multiple regulator consumers
1790 *
1791 * @num_consumers: Number of consumers
1792 * @consumers:     Consumer data; clients are stored here.
1793 * @return         0 on success, an errno on failure
1794 *
1795 * This convenience API allows consumers to disable multiple regulator
1796 * clients in a single API call.  If any consumers cannot be enabled
1797 * then any others that were disabled will be disabled again prior to
1798 * return.
1799 */
1800int regulator_bulk_disable(int num_consumers,
1801			   struct regulator_bulk_data *consumers)
1802{
1803	int i;
1804	int ret;
1805
1806	for (i = 0; i < num_consumers; i++) {
1807		ret = regulator_disable(consumers[i].consumer);
1808		if (ret != 0)
1809			goto err;
1810	}
1811
1812	return 0;
1813
1814err:
1815	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1816	for (i = 0; i < num_consumers; i++)
1817		regulator_enable(consumers[i].consumer);
1818
1819	return ret;
1820}
1821EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1822
1823/**
1824 * regulator_bulk_free - free multiple regulator consumers
1825 *
1826 * @num_consumers: Number of consumers
1827 * @consumers:     Consumer data; clients are stored here.
1828 *
1829 * This convenience API allows consumers to free multiple regulator
1830 * clients in a single API call.
1831 */
1832void regulator_bulk_free(int num_consumers,
1833			 struct regulator_bulk_data *consumers)
1834{
1835	int i;
1836
1837	for (i = 0; i < num_consumers; i++) {
1838		regulator_put(consumers[i].consumer);
1839		consumers[i].consumer = NULL;
1840	}
1841}
1842EXPORT_SYMBOL_GPL(regulator_bulk_free);
1843
1844/**
1845 * regulator_notifier_call_chain - call regulator event notifier
1846 * @rdev: regulator source
1847 * @event: notifier block
1848 * @data: callback-specific data.
1849 *
1850 * Called by regulator drivers to notify clients a regulator event has
1851 * occurred. We also notify regulator clients downstream.
1852 * Note lock must be held by caller.
1853 */
1854int regulator_notifier_call_chain(struct regulator_dev *rdev,
1855				  unsigned long event, void *data)
1856{
1857	_notifier_call_chain(rdev, event, data);
1858	return NOTIFY_DONE;
1859
1860}
1861EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1862
1863/*
1864 * To avoid cluttering sysfs (and memory) with useless state, only
1865 * create attributes that can be meaningfully displayed.
1866 */
1867static int add_regulator_attributes(struct regulator_dev *rdev)
1868{
1869	struct device		*dev = &rdev->dev;
1870	struct regulator_ops	*ops = rdev->desc->ops;
1871	int			status = 0;
1872
1873	/* some attributes need specific methods to be displayed */
1874	if (ops->get_voltage) {
1875		status = device_create_file(dev, &dev_attr_microvolts);
1876		if (status < 0)
1877			return status;
1878	}
1879	if (ops->get_current_limit) {
1880		status = device_create_file(dev, &dev_attr_microamps);
1881		if (status < 0)
1882			return status;
1883	}
1884	if (ops->get_mode) {
1885		status = device_create_file(dev, &dev_attr_opmode);
1886		if (status < 0)
1887			return status;
1888	}
1889	if (ops->is_enabled) {
1890		status = device_create_file(dev, &dev_attr_state);
1891		if (status < 0)
1892			return status;
1893	}
1894	if (ops->get_status) {
1895		status = device_create_file(dev, &dev_attr_status);
1896		if (status < 0)
1897			return status;
1898	}
1899
1900	/* some attributes are type-specific */
1901	if (rdev->desc->type == REGULATOR_CURRENT) {
1902		status = device_create_file(dev, &dev_attr_requested_microamps);
1903		if (status < 0)
1904			return status;
1905	}
1906
1907	/* all the other attributes exist to support constraints;
1908	 * don't show them if there are no constraints, or if the
1909	 * relevant supporting methods are missing.
1910	 */
1911	if (!rdev->constraints)
1912		return status;
1913
1914	/* constraints need specific supporting methods */
1915	if (ops->set_voltage) {
1916		status = device_create_file(dev, &dev_attr_min_microvolts);
1917		if (status < 0)
1918			return status;
1919		status = device_create_file(dev, &dev_attr_max_microvolts);
1920		if (status < 0)
1921			return status;
1922	}
1923	if (ops->set_current_limit) {
1924		status = device_create_file(dev, &dev_attr_min_microamps);
1925		if (status < 0)
1926			return status;
1927		status = device_create_file(dev, &dev_attr_max_microamps);
1928		if (status < 0)
1929			return status;
1930	}
1931
1932	/* suspend mode constraints need multiple supporting methods */
1933	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1934		return status;
1935
1936	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1937	if (status < 0)
1938		return status;
1939	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1940	if (status < 0)
1941		return status;
1942	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1943	if (status < 0)
1944		return status;
1945
1946	if (ops->set_suspend_voltage) {
1947		status = device_create_file(dev,
1948				&dev_attr_suspend_standby_microvolts);
1949		if (status < 0)
1950			return status;
1951		status = device_create_file(dev,
1952				&dev_attr_suspend_mem_microvolts);
1953		if (status < 0)
1954			return status;
1955		status = device_create_file(dev,
1956				&dev_attr_suspend_disk_microvolts);
1957		if (status < 0)
1958			return status;
1959	}
1960
1961	if (ops->set_suspend_mode) {
1962		status = device_create_file(dev,
1963				&dev_attr_suspend_standby_mode);
1964		if (status < 0)
1965			return status;
1966		status = device_create_file(dev,
1967				&dev_attr_suspend_mem_mode);
1968		if (status < 0)
1969			return status;
1970		status = device_create_file(dev,
1971				&dev_attr_suspend_disk_mode);
1972		if (status < 0)
1973			return status;
1974	}
1975
1976	return status;
1977}
1978
1979/**
1980 * regulator_register - register regulator
1981 * @regulator_desc: regulator to register
1982 * @dev: struct device for the regulator
1983 * @init_data: platform provided init data, passed through by driver
1984 * @driver_data: private regulator data
1985 *
1986 * Called by regulator drivers to register a regulator.
1987 * Returns 0 on success.
1988 */
1989struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1990	struct device *dev, struct regulator_init_data *init_data,
1991	void *driver_data)
1992{
1993	static atomic_t regulator_no = ATOMIC_INIT(0);
1994	struct regulator_dev *rdev;
1995	int ret, i;
1996
1997	if (regulator_desc == NULL)
1998		return ERR_PTR(-EINVAL);
1999
2000	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2001		return ERR_PTR(-EINVAL);
2002
2003	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2004	    !regulator_desc->type == REGULATOR_CURRENT)
2005		return ERR_PTR(-EINVAL);
2006
2007	if (!init_data)
2008		return ERR_PTR(-EINVAL);
2009
2010	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2011	if (rdev == NULL)
2012		return ERR_PTR(-ENOMEM);
2013
2014	mutex_lock(&regulator_list_mutex);
2015
2016	mutex_init(&rdev->mutex);
2017	rdev->reg_data = driver_data;
2018	rdev->owner = regulator_desc->owner;
2019	rdev->desc = regulator_desc;
2020	INIT_LIST_HEAD(&rdev->consumer_list);
2021	INIT_LIST_HEAD(&rdev->supply_list);
2022	INIT_LIST_HEAD(&rdev->list);
2023	INIT_LIST_HEAD(&rdev->slist);
2024	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2025
2026	/* preform any regulator specific init */
2027	if (init_data->regulator_init) {
2028		ret = init_data->regulator_init(rdev->reg_data);
2029		if (ret < 0)
2030			goto clean;
2031	}
2032
2033	/* register with sysfs */
2034	rdev->dev.class = &regulator_class;
2035	rdev->dev.parent = dev;
2036	dev_set_name(&rdev->dev, "regulator.%d",
2037		     atomic_inc_return(&regulator_no) - 1);
2038	ret = device_register(&rdev->dev);
2039	if (ret != 0)
2040		goto clean;
2041
2042	dev_set_drvdata(&rdev->dev, rdev);
2043
2044	/* set regulator constraints */
2045	ret = set_machine_constraints(rdev, &init_data->constraints);
2046	if (ret < 0)
2047		goto scrub;
2048
2049	/* add attributes supported by this regulator */
2050	ret = add_regulator_attributes(rdev);
2051	if (ret < 0)
2052		goto scrub;
2053
2054	/* set supply regulator if it exists */
2055	if (init_data->supply_regulator_dev) {
2056		ret = set_supply(rdev,
2057			dev_get_drvdata(init_data->supply_regulator_dev));
2058		if (ret < 0)
2059			goto scrub;
2060	}
2061
2062	/* add consumers devices */
2063	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2064		ret = set_consumer_device_supply(rdev,
2065			init_data->consumer_supplies[i].dev,
2066			init_data->consumer_supplies[i].supply);
2067		if (ret < 0) {
2068			for (--i; i >= 0; i--)
2069				unset_consumer_device_supply(rdev,
2070					init_data->consumer_supplies[i].dev);
2071			goto scrub;
2072		}
2073	}
2074
2075	list_add(&rdev->list, &regulator_list);
2076out:
2077	mutex_unlock(&regulator_list_mutex);
2078	return rdev;
2079
2080scrub:
2081	device_unregister(&rdev->dev);
2082clean:
2083	kfree(rdev);
2084	rdev = ERR_PTR(ret);
2085	goto out;
2086}
2087EXPORT_SYMBOL_GPL(regulator_register);
2088
2089/**
2090 * regulator_unregister - unregister regulator
2091 * @rdev: regulator to unregister
2092 *
2093 * Called by regulator drivers to unregister a regulator.
2094 */
2095void regulator_unregister(struct regulator_dev *rdev)
2096{
2097	if (rdev == NULL)
2098		return;
2099
2100	mutex_lock(&regulator_list_mutex);
2101	unset_regulator_supplies(rdev);
2102	list_del(&rdev->list);
2103	if (rdev->supply)
2104		sysfs_remove_link(&rdev->dev.kobj, "supply");
2105	device_unregister(&rdev->dev);
2106	mutex_unlock(&regulator_list_mutex);
2107}
2108EXPORT_SYMBOL_GPL(regulator_unregister);
2109
2110/**
2111 * regulator_suspend_prepare - prepare regulators for system wide suspend
2112 * @state: system suspend state
2113 *
2114 * Configure each regulator with it's suspend operating parameters for state.
2115 * This will usually be called by machine suspend code prior to supending.
2116 */
2117int regulator_suspend_prepare(suspend_state_t state)
2118{
2119	struct regulator_dev *rdev;
2120	int ret = 0;
2121
2122	/* ON is handled by regulator active state */
2123	if (state == PM_SUSPEND_ON)
2124		return -EINVAL;
2125
2126	mutex_lock(&regulator_list_mutex);
2127	list_for_each_entry(rdev, &regulator_list, list) {
2128
2129		mutex_lock(&rdev->mutex);
2130		ret = suspend_prepare(rdev, state);
2131		mutex_unlock(&rdev->mutex);
2132
2133		if (ret < 0) {
2134			printk(KERN_ERR "%s: failed to prepare %s\n",
2135				__func__, rdev->desc->name);
2136			goto out;
2137		}
2138	}
2139out:
2140	mutex_unlock(&regulator_list_mutex);
2141	return ret;
2142}
2143EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2144
2145/**
2146 * rdev_get_drvdata - get rdev regulator driver data
2147 * @rdev: regulator
2148 *
2149 * Get rdev regulator driver private data. This call can be used in the
2150 * regulator driver context.
2151 */
2152void *rdev_get_drvdata(struct regulator_dev *rdev)
2153{
2154	return rdev->reg_data;
2155}
2156EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2157
2158/**
2159 * regulator_get_drvdata - get regulator driver data
2160 * @regulator: regulator
2161 *
2162 * Get regulator driver private data. This call can be used in the consumer
2163 * driver context when non API regulator specific functions need to be called.
2164 */
2165void *regulator_get_drvdata(struct regulator *regulator)
2166{
2167	return regulator->rdev->reg_data;
2168}
2169EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2170
2171/**
2172 * regulator_set_drvdata - set regulator driver data
2173 * @regulator: regulator
2174 * @data: data
2175 */
2176void regulator_set_drvdata(struct regulator *regulator, void *data)
2177{
2178	regulator->rdev->reg_data = data;
2179}
2180EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2181
2182/**
2183 * regulator_get_id - get regulator ID
2184 * @rdev: regulator
2185 */
2186int rdev_get_id(struct regulator_dev *rdev)
2187{
2188	return rdev->desc->id;
2189}
2190EXPORT_SYMBOL_GPL(rdev_get_id);
2191
2192struct device *rdev_get_dev(struct regulator_dev *rdev)
2193{
2194	return &rdev->dev;
2195}
2196EXPORT_SYMBOL_GPL(rdev_get_dev);
2197
2198void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2199{
2200	return reg_init_data->driver_data;
2201}
2202EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2203
2204static int __init regulator_init(void)
2205{
2206	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2207	return class_register(&regulator_class);
2208}
2209
2210/* init early to allow our consumers to complete system booting */
2211core_initcall(regulator_init);
2212