core.c revision 51dcdafcb720a9d1fd73b597d0ccf48837abc59f
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV) {
203		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
204			*min_uV, *max_uV);
205		return -EINVAL;
206	}
207
208	return 0;
209}
210
211/* current constraint check */
212static int regulator_check_current_limit(struct regulator_dev *rdev,
213					int *min_uA, int *max_uA)
214{
215	BUG_ON(*min_uA > *max_uA);
216
217	if (!rdev->constraints) {
218		rdev_err(rdev, "no constraints\n");
219		return -ENODEV;
220	}
221	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222		rdev_err(rdev, "operation not allowed\n");
223		return -EPERM;
224	}
225
226	if (*max_uA > rdev->constraints->max_uA)
227		*max_uA = rdev->constraints->max_uA;
228	if (*min_uA < rdev->constraints->min_uA)
229		*min_uA = rdev->constraints->min_uA;
230
231	if (*min_uA > *max_uA) {
232		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233			 *min_uA, *max_uA);
234		return -EINVAL;
235	}
236
237	return 0;
238}
239
240/* operating mode constraint check */
241static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242{
243	switch (*mode) {
244	case REGULATOR_MODE_FAST:
245	case REGULATOR_MODE_NORMAL:
246	case REGULATOR_MODE_IDLE:
247	case REGULATOR_MODE_STANDBY:
248		break;
249	default:
250		rdev_err(rdev, "invalid mode %x specified\n", *mode);
251		return -EINVAL;
252	}
253
254	if (!rdev->constraints) {
255		rdev_err(rdev, "no constraints\n");
256		return -ENODEV;
257	}
258	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259		rdev_err(rdev, "operation not allowed\n");
260		return -EPERM;
261	}
262
263	/* The modes are bitmasks, the most power hungry modes having
264	 * the lowest values. If the requested mode isn't supported
265	 * try higher modes. */
266	while (*mode) {
267		if (rdev->constraints->valid_modes_mask & *mode)
268			return 0;
269		*mode /= 2;
270	}
271
272	return -EINVAL;
273}
274
275/* dynamic regulator mode switching constraint check */
276static int regulator_check_drms(struct regulator_dev *rdev)
277{
278	if (!rdev->constraints) {
279		rdev_err(rdev, "no constraints\n");
280		return -ENODEV;
281	}
282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283		rdev_err(rdev, "operation not allowed\n");
284		return -EPERM;
285	}
286	return 0;
287}
288
289static ssize_t regulator_uV_show(struct device *dev,
290				struct device_attribute *attr, char *buf)
291{
292	struct regulator_dev *rdev = dev_get_drvdata(dev);
293	ssize_t ret;
294
295	mutex_lock(&rdev->mutex);
296	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297	mutex_unlock(&rdev->mutex);
298
299	return ret;
300}
301static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303static ssize_t regulator_uA_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309}
310static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312static ssize_t regulator_name_show(struct device *dev,
313			     struct device_attribute *attr, char *buf)
314{
315	struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317	return sprintf(buf, "%s\n", rdev_get_name(rdev));
318}
319
320static ssize_t regulator_print_opmode(char *buf, int mode)
321{
322	switch (mode) {
323	case REGULATOR_MODE_FAST:
324		return sprintf(buf, "fast\n");
325	case REGULATOR_MODE_NORMAL:
326		return sprintf(buf, "normal\n");
327	case REGULATOR_MODE_IDLE:
328		return sprintf(buf, "idle\n");
329	case REGULATOR_MODE_STANDBY:
330		return sprintf(buf, "standby\n");
331	}
332	return sprintf(buf, "unknown\n");
333}
334
335static ssize_t regulator_opmode_show(struct device *dev,
336				    struct device_attribute *attr, char *buf)
337{
338	struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341}
342static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344static ssize_t regulator_print_state(char *buf, int state)
345{
346	if (state > 0)
347		return sprintf(buf, "enabled\n");
348	else if (state == 0)
349		return sprintf(buf, "disabled\n");
350	else
351		return sprintf(buf, "unknown\n");
352}
353
354static ssize_t regulator_state_show(struct device *dev,
355				   struct device_attribute *attr, char *buf)
356{
357	struct regulator_dev *rdev = dev_get_drvdata(dev);
358	ssize_t ret;
359
360	mutex_lock(&rdev->mutex);
361	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362	mutex_unlock(&rdev->mutex);
363
364	return ret;
365}
366static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368static ssize_t regulator_status_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	int status;
373	char *label;
374
375	status = rdev->desc->ops->get_status(rdev);
376	if (status < 0)
377		return status;
378
379	switch (status) {
380	case REGULATOR_STATUS_OFF:
381		label = "off";
382		break;
383	case REGULATOR_STATUS_ON:
384		label = "on";
385		break;
386	case REGULATOR_STATUS_ERROR:
387		label = "error";
388		break;
389	case REGULATOR_STATUS_FAST:
390		label = "fast";
391		break;
392	case REGULATOR_STATUS_NORMAL:
393		label = "normal";
394		break;
395	case REGULATOR_STATUS_IDLE:
396		label = "idle";
397		break;
398	case REGULATOR_STATUS_STANDBY:
399		label = "standby";
400		break;
401	case REGULATOR_STATUS_BYPASS:
402		label = "bypass";
403		break;
404	case REGULATOR_STATUS_UNDEFINED:
405		label = "undefined";
406		break;
407	default:
408		return -ERANGE;
409	}
410
411	return sprintf(buf, "%s\n", label);
412}
413static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415static ssize_t regulator_min_uA_show(struct device *dev,
416				    struct device_attribute *attr, char *buf)
417{
418	struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420	if (!rdev->constraints)
421		return sprintf(buf, "constraint not defined\n");
422
423	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424}
425static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427static ssize_t regulator_max_uA_show(struct device *dev,
428				    struct device_attribute *attr, char *buf)
429{
430	struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432	if (!rdev->constraints)
433		return sprintf(buf, "constraint not defined\n");
434
435	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436}
437static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439static ssize_t regulator_min_uV_show(struct device *dev,
440				    struct device_attribute *attr, char *buf)
441{
442	struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444	if (!rdev->constraints)
445		return sprintf(buf, "constraint not defined\n");
446
447	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448}
449static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451static ssize_t regulator_max_uV_show(struct device *dev,
452				    struct device_attribute *attr, char *buf)
453{
454	struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456	if (!rdev->constraints)
457		return sprintf(buf, "constraint not defined\n");
458
459	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460}
461static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463static ssize_t regulator_total_uA_show(struct device *dev,
464				      struct device_attribute *attr, char *buf)
465{
466	struct regulator_dev *rdev = dev_get_drvdata(dev);
467	struct regulator *regulator;
468	int uA = 0;
469
470	mutex_lock(&rdev->mutex);
471	list_for_each_entry(regulator, &rdev->consumer_list, list)
472		uA += regulator->uA_load;
473	mutex_unlock(&rdev->mutex);
474	return sprintf(buf, "%d\n", uA);
475}
476static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478static ssize_t regulator_num_users_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	return sprintf(buf, "%d\n", rdev->use_count);
483}
484
485static ssize_t regulator_type_show(struct device *dev,
486				  struct device_attribute *attr, char *buf)
487{
488	struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490	switch (rdev->desc->type) {
491	case REGULATOR_VOLTAGE:
492		return sprintf(buf, "voltage\n");
493	case REGULATOR_CURRENT:
494		return sprintf(buf, "current\n");
495	}
496	return sprintf(buf, "unknown\n");
497}
498
499static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500				struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505}
506static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507		regulator_suspend_mem_uV_show, NULL);
508
509static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515}
516static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517		regulator_suspend_disk_uV_show, NULL);
518
519static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525}
526static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527		regulator_suspend_standby_uV_show, NULL);
528
529static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return regulator_print_opmode(buf,
535		rdev->constraints->state_mem.mode);
536}
537static DEVICE_ATTR(suspend_mem_mode, 0444,
538		regulator_suspend_mem_mode_show, NULL);
539
540static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541				struct device_attribute *attr, char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545	return regulator_print_opmode(buf,
546		rdev->constraints->state_disk.mode);
547}
548static DEVICE_ATTR(suspend_disk_mode, 0444,
549		regulator_suspend_disk_mode_show, NULL);
550
551static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552				struct device_attribute *attr, char *buf)
553{
554	struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556	return regulator_print_opmode(buf,
557		rdev->constraints->state_standby.mode);
558}
559static DEVICE_ATTR(suspend_standby_mode, 0444,
560		regulator_suspend_standby_mode_show, NULL);
561
562static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563				   struct device_attribute *attr, char *buf)
564{
565	struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567	return regulator_print_state(buf,
568			rdev->constraints->state_mem.enabled);
569}
570static DEVICE_ATTR(suspend_mem_state, 0444,
571		regulator_suspend_mem_state_show, NULL);
572
573static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574				   struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return regulator_print_state(buf,
579			rdev->constraints->state_disk.enabled);
580}
581static DEVICE_ATTR(suspend_disk_state, 0444,
582		regulator_suspend_disk_state_show, NULL);
583
584static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585				   struct device_attribute *attr, char *buf)
586{
587	struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589	return regulator_print_state(buf,
590			rdev->constraints->state_standby.enabled);
591}
592static DEVICE_ATTR(suspend_standby_state, 0444,
593		regulator_suspend_standby_state_show, NULL);
594
595static ssize_t regulator_bypass_show(struct device *dev,
596				     struct device_attribute *attr, char *buf)
597{
598	struct regulator_dev *rdev = dev_get_drvdata(dev);
599	const char *report;
600	bool bypass;
601	int ret;
602
603	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605	if (ret != 0)
606		report = "unknown";
607	else if (bypass)
608		report = "enabled";
609	else
610		report = "disabled";
611
612	return sprintf(buf, "%s\n", report);
613}
614static DEVICE_ATTR(bypass, 0444,
615		   regulator_bypass_show, NULL);
616
617/*
618 * These are the only attributes are present for all regulators.
619 * Other attributes are a function of regulator functionality.
620 */
621static struct device_attribute regulator_dev_attrs[] = {
622	__ATTR(name, 0444, regulator_name_show, NULL),
623	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
624	__ATTR(type, 0444, regulator_type_show, NULL),
625	__ATTR_NULL,
626};
627
628static void regulator_dev_release(struct device *dev)
629{
630	struct regulator_dev *rdev = dev_get_drvdata(dev);
631	kfree(rdev);
632}
633
634static struct class regulator_class = {
635	.name = "regulator",
636	.dev_release = regulator_dev_release,
637	.dev_attrs = regulator_dev_attrs,
638};
639
640/* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
642static void drms_uA_update(struct regulator_dev *rdev)
643{
644	struct regulator *sibling;
645	int current_uA = 0, output_uV, input_uV, err;
646	unsigned int mode;
647
648	err = regulator_check_drms(rdev);
649	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650	    (!rdev->desc->ops->get_voltage &&
651	     !rdev->desc->ops->get_voltage_sel) ||
652	    !rdev->desc->ops->set_mode)
653		return;
654
655	/* get output voltage */
656	output_uV = _regulator_get_voltage(rdev);
657	if (output_uV <= 0)
658		return;
659
660	/* get input voltage */
661	input_uV = 0;
662	if (rdev->supply)
663		input_uV = regulator_get_voltage(rdev->supply);
664	if (input_uV <= 0)
665		input_uV = rdev->constraints->input_uV;
666	if (input_uV <= 0)
667		return;
668
669	/* calc total requested load */
670	list_for_each_entry(sibling, &rdev->consumer_list, list)
671		current_uA += sibling->uA_load;
672
673	/* now get the optimum mode for our new total regulator load */
674	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675						  output_uV, current_uA);
676
677	/* check the new mode is allowed */
678	err = regulator_mode_constrain(rdev, &mode);
679	if (err == 0)
680		rdev->desc->ops->set_mode(rdev, mode);
681}
682
683static int suspend_set_state(struct regulator_dev *rdev,
684	struct regulator_state *rstate)
685{
686	int ret = 0;
687
688	/* If we have no suspend mode configration don't set anything;
689	 * only warn if the driver implements set_suspend_voltage or
690	 * set_suspend_mode callback.
691	 */
692	if (!rstate->enabled && !rstate->disabled) {
693		if (rdev->desc->ops->set_suspend_voltage ||
694		    rdev->desc->ops->set_suspend_mode)
695			rdev_warn(rdev, "No configuration\n");
696		return 0;
697	}
698
699	if (rstate->enabled && rstate->disabled) {
700		rdev_err(rdev, "invalid configuration\n");
701		return -EINVAL;
702	}
703
704	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705		ret = rdev->desc->ops->set_suspend_enable(rdev);
706	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707		ret = rdev->desc->ops->set_suspend_disable(rdev);
708	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709		ret = 0;
710
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	if (!count)
810		sprintf(buf, "no parameters");
811
812	rdev_info(rdev, "%s\n", buf);
813
814	if ((constraints->min_uV != constraints->max_uV) &&
815	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816		rdev_warn(rdev,
817			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818}
819
820static int machine_constraints_voltage(struct regulator_dev *rdev,
821	struct regulation_constraints *constraints)
822{
823	struct regulator_ops *ops = rdev->desc->ops;
824	int ret;
825
826	/* do we need to apply the constraint voltage */
827	if (rdev->constraints->apply_uV &&
828	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
829		ret = _regulator_do_set_voltage(rdev,
830						rdev->constraints->min_uV,
831						rdev->constraints->max_uV);
832		if (ret < 0) {
833			rdev_err(rdev, "failed to apply %duV constraint\n",
834				 rdev->constraints->min_uV);
835			return ret;
836		}
837	}
838
839	/* constrain machine-level voltage specs to fit
840	 * the actual range supported by this regulator.
841	 */
842	if (ops->list_voltage && rdev->desc->n_voltages) {
843		int	count = rdev->desc->n_voltages;
844		int	i;
845		int	min_uV = INT_MAX;
846		int	max_uV = INT_MIN;
847		int	cmin = constraints->min_uV;
848		int	cmax = constraints->max_uV;
849
850		/* it's safe to autoconfigure fixed-voltage supplies
851		   and the constraints are used by list_voltage. */
852		if (count == 1 && !cmin) {
853			cmin = 1;
854			cmax = INT_MAX;
855			constraints->min_uV = cmin;
856			constraints->max_uV = cmax;
857		}
858
859		/* voltage constraints are optional */
860		if ((cmin == 0) && (cmax == 0))
861			return 0;
862
863		/* else require explicit machine-level constraints */
864		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865			rdev_err(rdev, "invalid voltage constraints\n");
866			return -EINVAL;
867		}
868
869		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870		for (i = 0; i < count; i++) {
871			int	value;
872
873			value = ops->list_voltage(rdev, i);
874			if (value <= 0)
875				continue;
876
877			/* maybe adjust [min_uV..max_uV] */
878			if (value >= cmin && value < min_uV)
879				min_uV = value;
880			if (value <= cmax && value > max_uV)
881				max_uV = value;
882		}
883
884		/* final: [min_uV..max_uV] valid iff constraints valid */
885		if (max_uV < min_uV) {
886			rdev_err(rdev,
887				 "unsupportable voltage constraints %u-%uuV\n",
888				 min_uV, max_uV);
889			return -EINVAL;
890		}
891
892		/* use regulator's subset of machine constraints */
893		if (constraints->min_uV < min_uV) {
894			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895				 constraints->min_uV, min_uV);
896			constraints->min_uV = min_uV;
897		}
898		if (constraints->max_uV > max_uV) {
899			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900				 constraints->max_uV, max_uV);
901			constraints->max_uV = max_uV;
902		}
903	}
904
905	return 0;
906}
907
908/**
909 * set_machine_constraints - sets regulator constraints
910 * @rdev: regulator source
911 * @constraints: constraints to apply
912 *
913 * Allows platform initialisation code to define and constrain
914 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915 * Constraints *must* be set by platform code in order for some
916 * regulator operations to proceed i.e. set_voltage, set_current_limit,
917 * set_mode.
918 */
919static int set_machine_constraints(struct regulator_dev *rdev,
920	const struct regulation_constraints *constraints)
921{
922	int ret = 0;
923	struct regulator_ops *ops = rdev->desc->ops;
924
925	if (constraints)
926		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927					    GFP_KERNEL);
928	else
929		rdev->constraints = kzalloc(sizeof(*constraints),
930					    GFP_KERNEL);
931	if (!rdev->constraints)
932		return -ENOMEM;
933
934	ret = machine_constraints_voltage(rdev, rdev->constraints);
935	if (ret != 0)
936		goto out;
937
938	/* do we need to setup our suspend state */
939	if (rdev->constraints->initial_state) {
940		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941		if (ret < 0) {
942			rdev_err(rdev, "failed to set suspend state\n");
943			goto out;
944		}
945	}
946
947	if (rdev->constraints->initial_mode) {
948		if (!ops->set_mode) {
949			rdev_err(rdev, "no set_mode operation\n");
950			ret = -EINVAL;
951			goto out;
952		}
953
954		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957			goto out;
958		}
959	}
960
961	/* If the constraints say the regulator should be on at this point
962	 * and we have control then make sure it is enabled.
963	 */
964	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965	    ops->enable) {
966		ret = ops->enable(rdev);
967		if (ret < 0) {
968			rdev_err(rdev, "failed to enable\n");
969			goto out;
970		}
971	}
972
973	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975		if (ret < 0) {
976			rdev_err(rdev, "failed to set ramp_delay\n");
977			goto out;
978		}
979	}
980
981	print_constraints(rdev);
982	return 0;
983out:
984	kfree(rdev->constraints);
985	rdev->constraints = NULL;
986	return ret;
987}
988
989/**
990 * set_supply - set regulator supply regulator
991 * @rdev: regulator name
992 * @supply_rdev: supply regulator name
993 *
994 * Called by platform initialisation code to set the supply regulator for this
995 * regulator. This ensures that a regulators supply will also be enabled by the
996 * core if it's child is enabled.
997 */
998static int set_supply(struct regulator_dev *rdev,
999		      struct regulator_dev *supply_rdev)
1000{
1001	int err;
1002
1003	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006	if (rdev->supply == NULL) {
1007		err = -ENOMEM;
1008		return err;
1009	}
1010	supply_rdev->open_count++;
1011
1012	return 0;
1013}
1014
1015/**
1016 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017 * @rdev:         regulator source
1018 * @consumer_dev_name: dev_name() string for device supply applies to
1019 * @supply:       symbolic name for supply
1020 *
1021 * Allows platform initialisation code to map physical regulator
1022 * sources to symbolic names for supplies for use by devices.  Devices
1023 * should use these symbolic names to request regulators, avoiding the
1024 * need to provide board-specific regulator names as platform data.
1025 */
1026static int set_consumer_device_supply(struct regulator_dev *rdev,
1027				      const char *consumer_dev_name,
1028				      const char *supply)
1029{
1030	struct regulator_map *node;
1031	int has_dev;
1032
1033	if (supply == NULL)
1034		return -EINVAL;
1035
1036	if (consumer_dev_name != NULL)
1037		has_dev = 1;
1038	else
1039		has_dev = 0;
1040
1041	list_for_each_entry(node, &regulator_map_list, list) {
1042		if (node->dev_name && consumer_dev_name) {
1043			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044				continue;
1045		} else if (node->dev_name || consumer_dev_name) {
1046			continue;
1047		}
1048
1049		if (strcmp(node->supply, supply) != 0)
1050			continue;
1051
1052		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053			 consumer_dev_name,
1054			 dev_name(&node->regulator->dev),
1055			 node->regulator->desc->name,
1056			 supply,
1057			 dev_name(&rdev->dev), rdev_get_name(rdev));
1058		return -EBUSY;
1059	}
1060
1061	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062	if (node == NULL)
1063		return -ENOMEM;
1064
1065	node->regulator = rdev;
1066	node->supply = supply;
1067
1068	if (has_dev) {
1069		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070		if (node->dev_name == NULL) {
1071			kfree(node);
1072			return -ENOMEM;
1073		}
1074	}
1075
1076	list_add(&node->list, &regulator_map_list);
1077	return 0;
1078}
1079
1080static void unset_regulator_supplies(struct regulator_dev *rdev)
1081{
1082	struct regulator_map *node, *n;
1083
1084	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085		if (rdev == node->regulator) {
1086			list_del(&node->list);
1087			kfree(node->dev_name);
1088			kfree(node);
1089		}
1090	}
1091}
1092
1093#define REG_STR_SIZE	64
1094
1095static struct regulator *create_regulator(struct regulator_dev *rdev,
1096					  struct device *dev,
1097					  const char *supply_name)
1098{
1099	struct regulator *regulator;
1100	char buf[REG_STR_SIZE];
1101	int err, size;
1102
1103	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104	if (regulator == NULL)
1105		return NULL;
1106
1107	mutex_lock(&rdev->mutex);
1108	regulator->rdev = rdev;
1109	list_add(&regulator->list, &rdev->consumer_list);
1110
1111	if (dev) {
1112		regulator->dev = dev;
1113
1114		/* Add a link to the device sysfs entry */
1115		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116				 dev->kobj.name, supply_name);
1117		if (size >= REG_STR_SIZE)
1118			goto overflow_err;
1119
1120		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121		if (regulator->supply_name == NULL)
1122			goto overflow_err;
1123
1124		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125					buf);
1126		if (err) {
1127			rdev_warn(rdev, "could not add device link %s err %d\n",
1128				  dev->kobj.name, err);
1129			/* non-fatal */
1130		}
1131	} else {
1132		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133		if (regulator->supply_name == NULL)
1134			goto overflow_err;
1135	}
1136
1137	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138						rdev->debugfs);
1139	if (!regulator->debugfs) {
1140		rdev_warn(rdev, "Failed to create debugfs directory\n");
1141	} else {
1142		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143				   &regulator->uA_load);
1144		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145				   &regulator->min_uV);
1146		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147				   &regulator->max_uV);
1148	}
1149
1150	/*
1151	 * Check now if the regulator is an always on regulator - if
1152	 * it is then we don't need to do nearly so much work for
1153	 * enable/disable calls.
1154	 */
1155	if (!_regulator_can_change_status(rdev) &&
1156	    _regulator_is_enabled(rdev))
1157		regulator->always_on = true;
1158
1159	mutex_unlock(&rdev->mutex);
1160	return regulator;
1161overflow_err:
1162	list_del(&regulator->list);
1163	kfree(regulator);
1164	mutex_unlock(&rdev->mutex);
1165	return NULL;
1166}
1167
1168static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169{
1170	if (!rdev->desc->ops->enable_time)
1171		return rdev->desc->enable_time;
1172	return rdev->desc->ops->enable_time(rdev);
1173}
1174
1175static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176						  const char *supply,
1177						  int *ret)
1178{
1179	struct regulator_dev *r;
1180	struct device_node *node;
1181	struct regulator_map *map;
1182	const char *devname = NULL;
1183
1184	/* first do a dt based lookup */
1185	if (dev && dev->of_node) {
1186		node = of_get_regulator(dev, supply);
1187		if (node) {
1188			list_for_each_entry(r, &regulator_list, list)
1189				if (r->dev.parent &&
1190					node == r->dev.of_node)
1191					return r;
1192		} else {
1193			/*
1194			 * If we couldn't even get the node then it's
1195			 * not just that the device didn't register
1196			 * yet, there's no node and we'll never
1197			 * succeed.
1198			 */
1199			*ret = -ENODEV;
1200		}
1201	}
1202
1203	/* if not found, try doing it non-dt way */
1204	if (dev)
1205		devname = dev_name(dev);
1206
1207	list_for_each_entry(r, &regulator_list, list)
1208		if (strcmp(rdev_get_name(r), supply) == 0)
1209			return r;
1210
1211	list_for_each_entry(map, &regulator_map_list, list) {
1212		/* If the mapping has a device set up it must match */
1213		if (map->dev_name &&
1214		    (!devname || strcmp(map->dev_name, devname)))
1215			continue;
1216
1217		if (strcmp(map->supply, supply) == 0)
1218			return map->regulator;
1219	}
1220
1221
1222	return NULL;
1223}
1224
1225/* Internal regulator request function */
1226static struct regulator *_regulator_get(struct device *dev, const char *id,
1227					int exclusive)
1228{
1229	struct regulator_dev *rdev;
1230	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231	const char *devname = NULL;
1232	int ret;
1233
1234	if (id == NULL) {
1235		pr_err("get() with no identifier\n");
1236		return regulator;
1237	}
1238
1239	if (dev)
1240		devname = dev_name(dev);
1241
1242	mutex_lock(&regulator_list_mutex);
1243
1244	rdev = regulator_dev_lookup(dev, id, &ret);
1245	if (rdev)
1246		goto found;
1247
1248	if (board_wants_dummy_regulator) {
1249		rdev = dummy_regulator_rdev;
1250		goto found;
1251	}
1252
1253#ifdef CONFIG_REGULATOR_DUMMY
1254	if (!devname)
1255		devname = "deviceless";
1256
1257	/* If the board didn't flag that it was fully constrained then
1258	 * substitute in a dummy regulator so consumers can continue.
1259	 */
1260	if (!has_full_constraints) {
1261		pr_warn("%s supply %s not found, using dummy regulator\n",
1262			devname, id);
1263		rdev = dummy_regulator_rdev;
1264		goto found;
1265	}
1266#endif
1267
1268	mutex_unlock(&regulator_list_mutex);
1269	return regulator;
1270
1271found:
1272	if (rdev->exclusive) {
1273		regulator = ERR_PTR(-EPERM);
1274		goto out;
1275	}
1276
1277	if (exclusive && rdev->open_count) {
1278		regulator = ERR_PTR(-EBUSY);
1279		goto out;
1280	}
1281
1282	if (!try_module_get(rdev->owner))
1283		goto out;
1284
1285	regulator = create_regulator(rdev, dev, id);
1286	if (regulator == NULL) {
1287		regulator = ERR_PTR(-ENOMEM);
1288		module_put(rdev->owner);
1289		goto out;
1290	}
1291
1292	rdev->open_count++;
1293	if (exclusive) {
1294		rdev->exclusive = 1;
1295
1296		ret = _regulator_is_enabled(rdev);
1297		if (ret > 0)
1298			rdev->use_count = 1;
1299		else
1300			rdev->use_count = 0;
1301	}
1302
1303out:
1304	mutex_unlock(&regulator_list_mutex);
1305
1306	return regulator;
1307}
1308
1309/**
1310 * regulator_get - lookup and obtain a reference to a regulator.
1311 * @dev: device for regulator "consumer"
1312 * @id: Supply name or regulator ID.
1313 *
1314 * Returns a struct regulator corresponding to the regulator producer,
1315 * or IS_ERR() condition containing errno.
1316 *
1317 * Use of supply names configured via regulator_set_device_supply() is
1318 * strongly encouraged.  It is recommended that the supply name used
1319 * should match the name used for the supply and/or the relevant
1320 * device pins in the datasheet.
1321 */
1322struct regulator *regulator_get(struct device *dev, const char *id)
1323{
1324	return _regulator_get(dev, id, 0);
1325}
1326EXPORT_SYMBOL_GPL(regulator_get);
1327
1328static void devm_regulator_release(struct device *dev, void *res)
1329{
1330	regulator_put(*(struct regulator **)res);
1331}
1332
1333/**
1334 * devm_regulator_get - Resource managed regulator_get()
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Managed regulator_get(). Regulators returned from this function are
1339 * automatically regulator_put() on driver detach. See regulator_get() for more
1340 * information.
1341 */
1342struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343{
1344	struct regulator **ptr, *regulator;
1345
1346	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347	if (!ptr)
1348		return ERR_PTR(-ENOMEM);
1349
1350	regulator = regulator_get(dev, id);
1351	if (!IS_ERR(regulator)) {
1352		*ptr = regulator;
1353		devres_add(dev, ptr);
1354	} else {
1355		devres_free(ptr);
1356	}
1357
1358	return regulator;
1359}
1360EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362/**
1363 * regulator_get_exclusive - obtain exclusive access to a regulator.
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1366 *
1367 * Returns a struct regulator corresponding to the regulator producer,
1368 * or IS_ERR() condition containing errno.  Other consumers will be
1369 * unable to obtain this reference is held and the use count for the
1370 * regulator will be initialised to reflect the current state of the
1371 * regulator.
1372 *
1373 * This is intended for use by consumers which cannot tolerate shared
1374 * use of the regulator such as those which need to force the
1375 * regulator off for correct operation of the hardware they are
1376 * controlling.
1377 *
1378 * Use of supply names configured via regulator_set_device_supply() is
1379 * strongly encouraged.  It is recommended that the supply name used
1380 * should match the name used for the supply and/or the relevant
1381 * device pins in the datasheet.
1382 */
1383struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384{
1385	return _regulator_get(dev, id, 1);
1386}
1387EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389/* Locks held by regulator_put() */
1390static void _regulator_put(struct regulator *regulator)
1391{
1392	struct regulator_dev *rdev;
1393
1394	if (regulator == NULL || IS_ERR(regulator))
1395		return;
1396
1397	rdev = regulator->rdev;
1398
1399	debugfs_remove_recursive(regulator->debugfs);
1400
1401	/* remove any sysfs entries */
1402	if (regulator->dev)
1403		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404	kfree(regulator->supply_name);
1405	list_del(&regulator->list);
1406	kfree(regulator);
1407
1408	rdev->open_count--;
1409	rdev->exclusive = 0;
1410
1411	module_put(rdev->owner);
1412}
1413
1414/**
1415 * regulator_put - "free" the regulator source
1416 * @regulator: regulator source
1417 *
1418 * Note: drivers must ensure that all regulator_enable calls made on this
1419 * regulator source are balanced by regulator_disable calls prior to calling
1420 * this function.
1421 */
1422void regulator_put(struct regulator *regulator)
1423{
1424	mutex_lock(&regulator_list_mutex);
1425	_regulator_put(regulator);
1426	mutex_unlock(&regulator_list_mutex);
1427}
1428EXPORT_SYMBOL_GPL(regulator_put);
1429
1430static int devm_regulator_match(struct device *dev, void *res, void *data)
1431{
1432	struct regulator **r = res;
1433	if (!r || !*r) {
1434		WARN_ON(!r || !*r);
1435		return 0;
1436	}
1437	return *r == data;
1438}
1439
1440/**
1441 * devm_regulator_put - Resource managed regulator_put()
1442 * @regulator: regulator to free
1443 *
1444 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445 * this function will not need to be called and the resource management
1446 * code will ensure that the resource is freed.
1447 */
1448void devm_regulator_put(struct regulator *regulator)
1449{
1450	int rc;
1451
1452	rc = devres_release(regulator->dev, devm_regulator_release,
1453			    devm_regulator_match, regulator);
1454	if (rc != 0)
1455		WARN_ON(rc);
1456}
1457EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459static int _regulator_do_enable(struct regulator_dev *rdev)
1460{
1461	int ret, delay;
1462
1463	/* Query before enabling in case configuration dependent.  */
1464	ret = _regulator_get_enable_time(rdev);
1465	if (ret >= 0) {
1466		delay = ret;
1467	} else {
1468		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469		delay = 0;
1470	}
1471
1472	trace_regulator_enable(rdev_get_name(rdev));
1473
1474	if (rdev->ena_gpio) {
1475		gpio_set_value_cansleep(rdev->ena_gpio,
1476					!rdev->ena_gpio_invert);
1477		rdev->ena_gpio_state = 1;
1478	} else if (rdev->desc->ops->enable) {
1479		ret = rdev->desc->ops->enable(rdev);
1480		if (ret < 0)
1481			return ret;
1482	} else {
1483		return -EINVAL;
1484	}
1485
1486	/* Allow the regulator to ramp; it would be useful to extend
1487	 * this for bulk operations so that the regulators can ramp
1488	 * together.  */
1489	trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491	if (delay >= 1000) {
1492		mdelay(delay / 1000);
1493		udelay(delay % 1000);
1494	} else if (delay) {
1495		udelay(delay);
1496	}
1497
1498	trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500	return 0;
1501}
1502
1503/* locks held by regulator_enable() */
1504static int _regulator_enable(struct regulator_dev *rdev)
1505{
1506	int ret;
1507
1508	/* check voltage and requested load before enabling */
1509	if (rdev->constraints &&
1510	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511		drms_uA_update(rdev);
1512
1513	if (rdev->use_count == 0) {
1514		/* The regulator may on if it's not switchable or left on */
1515		ret = _regulator_is_enabled(rdev);
1516		if (ret == -EINVAL || ret == 0) {
1517			if (!_regulator_can_change_status(rdev))
1518				return -EPERM;
1519
1520			ret = _regulator_do_enable(rdev);
1521			if (ret < 0)
1522				return ret;
1523
1524		} else if (ret < 0) {
1525			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526			return ret;
1527		}
1528		/* Fallthrough on positive return values - already enabled */
1529	}
1530
1531	rdev->use_count++;
1532
1533	return 0;
1534}
1535
1536/**
1537 * regulator_enable - enable regulator output
1538 * @regulator: regulator source
1539 *
1540 * Request that the regulator be enabled with the regulator output at
1541 * the predefined voltage or current value.  Calls to regulator_enable()
1542 * must be balanced with calls to regulator_disable().
1543 *
1544 * NOTE: the output value can be set by other drivers, boot loader or may be
1545 * hardwired in the regulator.
1546 */
1547int regulator_enable(struct regulator *regulator)
1548{
1549	struct regulator_dev *rdev = regulator->rdev;
1550	int ret = 0;
1551
1552	if (regulator->always_on)
1553		return 0;
1554
1555	if (rdev->supply) {
1556		ret = regulator_enable(rdev->supply);
1557		if (ret != 0)
1558			return ret;
1559	}
1560
1561	mutex_lock(&rdev->mutex);
1562	ret = _regulator_enable(rdev);
1563	mutex_unlock(&rdev->mutex);
1564
1565	if (ret != 0 && rdev->supply)
1566		regulator_disable(rdev->supply);
1567
1568	return ret;
1569}
1570EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572static int _regulator_do_disable(struct regulator_dev *rdev)
1573{
1574	int ret;
1575
1576	trace_regulator_disable(rdev_get_name(rdev));
1577
1578	if (rdev->ena_gpio) {
1579		gpio_set_value_cansleep(rdev->ena_gpio,
1580					rdev->ena_gpio_invert);
1581		rdev->ena_gpio_state = 0;
1582
1583	} else if (rdev->desc->ops->disable) {
1584		ret = rdev->desc->ops->disable(rdev);
1585		if (ret != 0)
1586			return ret;
1587	}
1588
1589	trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592			     NULL);
1593	return 0;
1594}
1595
1596/* locks held by regulator_disable() */
1597static int _regulator_disable(struct regulator_dev *rdev)
1598{
1599	int ret = 0;
1600
1601	if (WARN(rdev->use_count <= 0,
1602		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603		return -EIO;
1604
1605	/* are we the last user and permitted to disable ? */
1606	if (rdev->use_count == 1 &&
1607	    (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609		/* we are last user */
1610		if (_regulator_can_change_status(rdev)) {
1611			ret = _regulator_do_disable(rdev);
1612			if (ret < 0) {
1613				rdev_err(rdev, "failed to disable\n");
1614				return ret;
1615			}
1616		}
1617
1618		rdev->use_count = 0;
1619	} else if (rdev->use_count > 1) {
1620
1621		if (rdev->constraints &&
1622			(rdev->constraints->valid_ops_mask &
1623			REGULATOR_CHANGE_DRMS))
1624			drms_uA_update(rdev);
1625
1626		rdev->use_count--;
1627	}
1628
1629	return ret;
1630}
1631
1632/**
1633 * regulator_disable - disable regulator output
1634 * @regulator: regulator source
1635 *
1636 * Disable the regulator output voltage or current.  Calls to
1637 * regulator_enable() must be balanced with calls to
1638 * regulator_disable().
1639 *
1640 * NOTE: this will only disable the regulator output if no other consumer
1641 * devices have it enabled, the regulator device supports disabling and
1642 * machine constraints permit this operation.
1643 */
1644int regulator_disable(struct regulator *regulator)
1645{
1646	struct regulator_dev *rdev = regulator->rdev;
1647	int ret = 0;
1648
1649	if (regulator->always_on)
1650		return 0;
1651
1652	mutex_lock(&rdev->mutex);
1653	ret = _regulator_disable(rdev);
1654	mutex_unlock(&rdev->mutex);
1655
1656	if (ret == 0 && rdev->supply)
1657		regulator_disable(rdev->supply);
1658
1659	return ret;
1660}
1661EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663/* locks held by regulator_force_disable() */
1664static int _regulator_force_disable(struct regulator_dev *rdev)
1665{
1666	int ret = 0;
1667
1668	/* force disable */
1669	if (rdev->desc->ops->disable) {
1670		/* ah well, who wants to live forever... */
1671		ret = rdev->desc->ops->disable(rdev);
1672		if (ret < 0) {
1673			rdev_err(rdev, "failed to force disable\n");
1674			return ret;
1675		}
1676		/* notify other consumers that power has been forced off */
1677		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678			REGULATOR_EVENT_DISABLE, NULL);
1679	}
1680
1681	return ret;
1682}
1683
1684/**
1685 * regulator_force_disable - force disable regulator output
1686 * @regulator: regulator source
1687 *
1688 * Forcibly disable the regulator output voltage or current.
1689 * NOTE: this *will* disable the regulator output even if other consumer
1690 * devices have it enabled. This should be used for situations when device
1691 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692 */
1693int regulator_force_disable(struct regulator *regulator)
1694{
1695	struct regulator_dev *rdev = regulator->rdev;
1696	int ret;
1697
1698	mutex_lock(&rdev->mutex);
1699	regulator->uA_load = 0;
1700	ret = _regulator_force_disable(regulator->rdev);
1701	mutex_unlock(&rdev->mutex);
1702
1703	if (rdev->supply)
1704		while (rdev->open_count--)
1705			regulator_disable(rdev->supply);
1706
1707	return ret;
1708}
1709EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711static void regulator_disable_work(struct work_struct *work)
1712{
1713	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714						  disable_work.work);
1715	int count, i, ret;
1716
1717	mutex_lock(&rdev->mutex);
1718
1719	BUG_ON(!rdev->deferred_disables);
1720
1721	count = rdev->deferred_disables;
1722	rdev->deferred_disables = 0;
1723
1724	for (i = 0; i < count; i++) {
1725		ret = _regulator_disable(rdev);
1726		if (ret != 0)
1727			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728	}
1729
1730	mutex_unlock(&rdev->mutex);
1731
1732	if (rdev->supply) {
1733		for (i = 0; i < count; i++) {
1734			ret = regulator_disable(rdev->supply);
1735			if (ret != 0) {
1736				rdev_err(rdev,
1737					 "Supply disable failed: %d\n", ret);
1738			}
1739		}
1740	}
1741}
1742
1743/**
1744 * regulator_disable_deferred - disable regulator output with delay
1745 * @regulator: regulator source
1746 * @ms: miliseconds until the regulator is disabled
1747 *
1748 * Execute regulator_disable() on the regulator after a delay.  This
1749 * is intended for use with devices that require some time to quiesce.
1750 *
1751 * NOTE: this will only disable the regulator output if no other consumer
1752 * devices have it enabled, the regulator device supports disabling and
1753 * machine constraints permit this operation.
1754 */
1755int regulator_disable_deferred(struct regulator *regulator, int ms)
1756{
1757	struct regulator_dev *rdev = regulator->rdev;
1758	int ret;
1759
1760	if (regulator->always_on)
1761		return 0;
1762
1763	if (!ms)
1764		return regulator_disable(regulator);
1765
1766	mutex_lock(&rdev->mutex);
1767	rdev->deferred_disables++;
1768	mutex_unlock(&rdev->mutex);
1769
1770	ret = schedule_delayed_work(&rdev->disable_work,
1771				    msecs_to_jiffies(ms));
1772	if (ret < 0)
1773		return ret;
1774	else
1775		return 0;
1776}
1777EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779/**
1780 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781 *
1782 * @rdev: regulator to operate on
1783 *
1784 * Regulators that use regmap for their register I/O can set the
1785 * enable_reg and enable_mask fields in their descriptor and then use
1786 * this as their is_enabled operation, saving some code.
1787 */
1788int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789{
1790	unsigned int val;
1791	int ret;
1792
1793	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794	if (ret != 0)
1795		return ret;
1796
1797	if (rdev->desc->enable_is_inverted)
1798		return (val & rdev->desc->enable_mask) == 0;
1799	else
1800		return (val & rdev->desc->enable_mask) != 0;
1801}
1802EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1803
1804/**
1805 * regulator_enable_regmap - standard enable() for regmap users
1806 *
1807 * @rdev: regulator to operate on
1808 *
1809 * Regulators that use regmap for their register I/O can set the
1810 * enable_reg and enable_mask fields in their descriptor and then use
1811 * this as their enable() operation, saving some code.
1812 */
1813int regulator_enable_regmap(struct regulator_dev *rdev)
1814{
1815	unsigned int val;
1816
1817	if (rdev->desc->enable_is_inverted)
1818		val = 0;
1819	else
1820		val = rdev->desc->enable_mask;
1821
1822	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1823				  rdev->desc->enable_mask, val);
1824}
1825EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1826
1827/**
1828 * regulator_disable_regmap - standard disable() for regmap users
1829 *
1830 * @rdev: regulator to operate on
1831 *
1832 * Regulators that use regmap for their register I/O can set the
1833 * enable_reg and enable_mask fields in their descriptor and then use
1834 * this as their disable() operation, saving some code.
1835 */
1836int regulator_disable_regmap(struct regulator_dev *rdev)
1837{
1838	unsigned int val;
1839
1840	if (rdev->desc->enable_is_inverted)
1841		val = rdev->desc->enable_mask;
1842	else
1843		val = 0;
1844
1845	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1846				  rdev->desc->enable_mask, val);
1847}
1848EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1849
1850static int _regulator_is_enabled(struct regulator_dev *rdev)
1851{
1852	/* A GPIO control always takes precedence */
1853	if (rdev->ena_gpio)
1854		return rdev->ena_gpio_state;
1855
1856	/* If we don't know then assume that the regulator is always on */
1857	if (!rdev->desc->ops->is_enabled)
1858		return 1;
1859
1860	return rdev->desc->ops->is_enabled(rdev);
1861}
1862
1863/**
1864 * regulator_is_enabled - is the regulator output enabled
1865 * @regulator: regulator source
1866 *
1867 * Returns positive if the regulator driver backing the source/client
1868 * has requested that the device be enabled, zero if it hasn't, else a
1869 * negative errno code.
1870 *
1871 * Note that the device backing this regulator handle can have multiple
1872 * users, so it might be enabled even if regulator_enable() was never
1873 * called for this particular source.
1874 */
1875int regulator_is_enabled(struct regulator *regulator)
1876{
1877	int ret;
1878
1879	if (regulator->always_on)
1880		return 1;
1881
1882	mutex_lock(&regulator->rdev->mutex);
1883	ret = _regulator_is_enabled(regulator->rdev);
1884	mutex_unlock(&regulator->rdev->mutex);
1885
1886	return ret;
1887}
1888EXPORT_SYMBOL_GPL(regulator_is_enabled);
1889
1890/**
1891 * regulator_can_change_voltage - check if regulator can change voltage
1892 * @regulator: regulator source
1893 *
1894 * Returns positive if the regulator driver backing the source/client
1895 * can change its voltage, false otherwise. Usefull for detecting fixed
1896 * or dummy regulators and disabling voltage change logic in the client
1897 * driver.
1898 */
1899int regulator_can_change_voltage(struct regulator *regulator)
1900{
1901	struct regulator_dev	*rdev = regulator->rdev;
1902
1903	if (rdev->constraints &&
1904	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1905		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1906			return 1;
1907
1908		if (rdev->desc->continuous_voltage_range &&
1909		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
1910		    rdev->constraints->min_uV != rdev->constraints->max_uV)
1911			return 1;
1912	}
1913
1914	return 0;
1915}
1916EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1917
1918/**
1919 * regulator_count_voltages - count regulator_list_voltage() selectors
1920 * @regulator: regulator source
1921 *
1922 * Returns number of selectors, or negative errno.  Selectors are
1923 * numbered starting at zero, and typically correspond to bitfields
1924 * in hardware registers.
1925 */
1926int regulator_count_voltages(struct regulator *regulator)
1927{
1928	struct regulator_dev	*rdev = regulator->rdev;
1929
1930	return rdev->desc->n_voltages ? : -EINVAL;
1931}
1932EXPORT_SYMBOL_GPL(regulator_count_voltages);
1933
1934/**
1935 * regulator_list_voltage_linear - List voltages with simple calculation
1936 *
1937 * @rdev: Regulator device
1938 * @selector: Selector to convert into a voltage
1939 *
1940 * Regulators with a simple linear mapping between voltages and
1941 * selectors can set min_uV and uV_step in the regulator descriptor
1942 * and then use this function as their list_voltage() operation,
1943 */
1944int regulator_list_voltage_linear(struct regulator_dev *rdev,
1945				  unsigned int selector)
1946{
1947	if (selector >= rdev->desc->n_voltages)
1948		return -EINVAL;
1949	if (selector < rdev->desc->linear_min_sel)
1950		return 0;
1951
1952	selector -= rdev->desc->linear_min_sel;
1953
1954	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1955}
1956EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1957
1958/**
1959 * regulator_list_voltage_table - List voltages with table based mapping
1960 *
1961 * @rdev: Regulator device
1962 * @selector: Selector to convert into a voltage
1963 *
1964 * Regulators with table based mapping between voltages and
1965 * selectors can set volt_table in the regulator descriptor
1966 * and then use this function as their list_voltage() operation.
1967 */
1968int regulator_list_voltage_table(struct regulator_dev *rdev,
1969				 unsigned int selector)
1970{
1971	if (!rdev->desc->volt_table) {
1972		BUG_ON(!rdev->desc->volt_table);
1973		return -EINVAL;
1974	}
1975
1976	if (selector >= rdev->desc->n_voltages)
1977		return -EINVAL;
1978
1979	return rdev->desc->volt_table[selector];
1980}
1981EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1982
1983/**
1984 * regulator_list_voltage - enumerate supported voltages
1985 * @regulator: regulator source
1986 * @selector: identify voltage to list
1987 * Context: can sleep
1988 *
1989 * Returns a voltage that can be passed to @regulator_set_voltage(),
1990 * zero if this selector code can't be used on this system, or a
1991 * negative errno.
1992 */
1993int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1994{
1995	struct regulator_dev	*rdev = regulator->rdev;
1996	struct regulator_ops	*ops = rdev->desc->ops;
1997	int			ret;
1998
1999	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2000		return -EINVAL;
2001
2002	mutex_lock(&rdev->mutex);
2003	ret = ops->list_voltage(rdev, selector);
2004	mutex_unlock(&rdev->mutex);
2005
2006	if (ret > 0) {
2007		if (ret < rdev->constraints->min_uV)
2008			ret = 0;
2009		else if (ret > rdev->constraints->max_uV)
2010			ret = 0;
2011	}
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(regulator_list_voltage);
2016
2017/**
2018 * regulator_is_supported_voltage - check if a voltage range can be supported
2019 *
2020 * @regulator: Regulator to check.
2021 * @min_uV: Minimum required voltage in uV.
2022 * @max_uV: Maximum required voltage in uV.
2023 *
2024 * Returns a boolean or a negative error code.
2025 */
2026int regulator_is_supported_voltage(struct regulator *regulator,
2027				   int min_uV, int max_uV)
2028{
2029	struct regulator_dev *rdev = regulator->rdev;
2030	int i, voltages, ret;
2031
2032	/* If we can't change voltage check the current voltage */
2033	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2034		ret = regulator_get_voltage(regulator);
2035		if (ret >= 0)
2036			return (min_uV <= ret && ret <= max_uV);
2037		else
2038			return ret;
2039	}
2040
2041	/* Any voltage within constrains range is fine? */
2042	if (rdev->desc->continuous_voltage_range)
2043		return min_uV >= rdev->constraints->min_uV &&
2044				max_uV <= rdev->constraints->max_uV;
2045
2046	ret = regulator_count_voltages(regulator);
2047	if (ret < 0)
2048		return ret;
2049	voltages = ret;
2050
2051	for (i = 0; i < voltages; i++) {
2052		ret = regulator_list_voltage(regulator, i);
2053
2054		if (ret >= min_uV && ret <= max_uV)
2055			return 1;
2056	}
2057
2058	return 0;
2059}
2060EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2061
2062/**
2063 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2064 *
2065 * @rdev: regulator to operate on
2066 *
2067 * Regulators that use regmap for their register I/O can set the
2068 * vsel_reg and vsel_mask fields in their descriptor and then use this
2069 * as their get_voltage_vsel operation, saving some code.
2070 */
2071int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2072{
2073	unsigned int val;
2074	int ret;
2075
2076	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2077	if (ret != 0)
2078		return ret;
2079
2080	val &= rdev->desc->vsel_mask;
2081	val >>= ffs(rdev->desc->vsel_mask) - 1;
2082
2083	return val;
2084}
2085EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2086
2087/**
2088 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2089 *
2090 * @rdev: regulator to operate on
2091 * @sel: Selector to set
2092 *
2093 * Regulators that use regmap for their register I/O can set the
2094 * vsel_reg and vsel_mask fields in their descriptor and then use this
2095 * as their set_voltage_vsel operation, saving some code.
2096 */
2097int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2098{
2099	int ret;
2100
2101	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2102
2103	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2104				  rdev->desc->vsel_mask, sel);
2105	if (ret)
2106		return ret;
2107
2108	if (rdev->desc->apply_bit)
2109		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2110					 rdev->desc->apply_bit,
2111					 rdev->desc->apply_bit);
2112	return ret;
2113}
2114EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2115
2116/**
2117 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2118 *
2119 * @rdev: Regulator to operate on
2120 * @min_uV: Lower bound for voltage
2121 * @max_uV: Upper bound for voltage
2122 *
2123 * Drivers implementing set_voltage_sel() and list_voltage() can use
2124 * this as their map_voltage() operation.  It will find a suitable
2125 * voltage by calling list_voltage() until it gets something in bounds
2126 * for the requested voltages.
2127 */
2128int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2129				  int min_uV, int max_uV)
2130{
2131	int best_val = INT_MAX;
2132	int selector = 0;
2133	int i, ret;
2134
2135	/* Find the smallest voltage that falls within the specified
2136	 * range.
2137	 */
2138	for (i = 0; i < rdev->desc->n_voltages; i++) {
2139		ret = rdev->desc->ops->list_voltage(rdev, i);
2140		if (ret < 0)
2141			continue;
2142
2143		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2144			best_val = ret;
2145			selector = i;
2146		}
2147	}
2148
2149	if (best_val != INT_MAX)
2150		return selector;
2151	else
2152		return -EINVAL;
2153}
2154EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2155
2156/**
2157 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2158 *
2159 * @rdev: Regulator to operate on
2160 * @min_uV: Lower bound for voltage
2161 * @max_uV: Upper bound for voltage
2162 *
2163 * Drivers providing min_uV and uV_step in their regulator_desc can
2164 * use this as their map_voltage() operation.
2165 */
2166int regulator_map_voltage_linear(struct regulator_dev *rdev,
2167				 int min_uV, int max_uV)
2168{
2169	int ret, voltage;
2170
2171	/* Allow uV_step to be 0 for fixed voltage */
2172	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2173		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2174			return 0;
2175		else
2176			return -EINVAL;
2177	}
2178
2179	if (!rdev->desc->uV_step) {
2180		BUG_ON(!rdev->desc->uV_step);
2181		return -EINVAL;
2182	}
2183
2184	if (min_uV < rdev->desc->min_uV)
2185		min_uV = rdev->desc->min_uV;
2186
2187	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2188	if (ret < 0)
2189		return ret;
2190
2191	ret += rdev->desc->linear_min_sel;
2192
2193	/* Map back into a voltage to verify we're still in bounds */
2194	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2195	if (voltage < min_uV || voltage > max_uV)
2196		return -EINVAL;
2197
2198	return ret;
2199}
2200EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2201
2202static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2203				     int min_uV, int max_uV)
2204{
2205	int ret;
2206	int delay = 0;
2207	int best_val = 0;
2208	unsigned int selector;
2209	int old_selector = -1;
2210
2211	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2212
2213	min_uV += rdev->constraints->uV_offset;
2214	max_uV += rdev->constraints->uV_offset;
2215
2216	/*
2217	 * If we can't obtain the old selector there is not enough
2218	 * info to call set_voltage_time_sel().
2219	 */
2220	if (_regulator_is_enabled(rdev) &&
2221	    rdev->desc->ops->set_voltage_time_sel &&
2222	    rdev->desc->ops->get_voltage_sel) {
2223		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2224		if (old_selector < 0)
2225			return old_selector;
2226	}
2227
2228	if (rdev->desc->ops->set_voltage) {
2229		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2230						   &selector);
2231
2232		if (ret >= 0) {
2233			if (rdev->desc->ops->list_voltage)
2234				best_val = rdev->desc->ops->list_voltage(rdev,
2235									 selector);
2236			else
2237				best_val = _regulator_get_voltage(rdev);
2238		}
2239
2240	} else if (rdev->desc->ops->set_voltage_sel) {
2241		if (rdev->desc->ops->map_voltage) {
2242			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2243							   max_uV);
2244		} else {
2245			if (rdev->desc->ops->list_voltage ==
2246			    regulator_list_voltage_linear)
2247				ret = regulator_map_voltage_linear(rdev,
2248								min_uV, max_uV);
2249			else
2250				ret = regulator_map_voltage_iterate(rdev,
2251								min_uV, max_uV);
2252		}
2253
2254		if (ret >= 0) {
2255			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2256			if (min_uV <= best_val && max_uV >= best_val) {
2257				selector = ret;
2258				if (old_selector == selector)
2259					ret = 0;
2260				else
2261					ret = rdev->desc->ops->set_voltage_sel(
2262								rdev, ret);
2263			} else {
2264				ret = -EINVAL;
2265			}
2266		}
2267	} else {
2268		ret = -EINVAL;
2269	}
2270
2271	/* Call set_voltage_time_sel if successfully obtained old_selector */
2272	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2273	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2274
2275		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2276						old_selector, selector);
2277		if (delay < 0) {
2278			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2279				  delay);
2280			delay = 0;
2281		}
2282
2283		/* Insert any necessary delays */
2284		if (delay >= 1000) {
2285			mdelay(delay / 1000);
2286			udelay(delay % 1000);
2287		} else if (delay) {
2288			udelay(delay);
2289		}
2290	}
2291
2292	if (ret == 0 && best_val >= 0) {
2293		unsigned long data = best_val;
2294
2295		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2296				     (void *)data);
2297	}
2298
2299	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2300
2301	return ret;
2302}
2303
2304/**
2305 * regulator_set_voltage - set regulator output voltage
2306 * @regulator: regulator source
2307 * @min_uV: Minimum required voltage in uV
2308 * @max_uV: Maximum acceptable voltage in uV
2309 *
2310 * Sets a voltage regulator to the desired output voltage. This can be set
2311 * during any regulator state. IOW, regulator can be disabled or enabled.
2312 *
2313 * If the regulator is enabled then the voltage will change to the new value
2314 * immediately otherwise if the regulator is disabled the regulator will
2315 * output at the new voltage when enabled.
2316 *
2317 * NOTE: If the regulator is shared between several devices then the lowest
2318 * request voltage that meets the system constraints will be used.
2319 * Regulator system constraints must be set for this regulator before
2320 * calling this function otherwise this call will fail.
2321 */
2322int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2323{
2324	struct regulator_dev *rdev = regulator->rdev;
2325	int ret = 0;
2326	int old_min_uV, old_max_uV;
2327
2328	mutex_lock(&rdev->mutex);
2329
2330	/* If we're setting the same range as last time the change
2331	 * should be a noop (some cpufreq implementations use the same
2332	 * voltage for multiple frequencies, for example).
2333	 */
2334	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2335		goto out;
2336
2337	/* sanity check */
2338	if (!rdev->desc->ops->set_voltage &&
2339	    !rdev->desc->ops->set_voltage_sel) {
2340		ret = -EINVAL;
2341		goto out;
2342	}
2343
2344	/* constraints check */
2345	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2346	if (ret < 0)
2347		goto out;
2348
2349	/* restore original values in case of error */
2350	old_min_uV = regulator->min_uV;
2351	old_max_uV = regulator->max_uV;
2352	regulator->min_uV = min_uV;
2353	regulator->max_uV = max_uV;
2354
2355	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2356	if (ret < 0)
2357		goto out2;
2358
2359	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2360	if (ret < 0)
2361		goto out2;
2362
2363out:
2364	mutex_unlock(&rdev->mutex);
2365	return ret;
2366out2:
2367	regulator->min_uV = old_min_uV;
2368	regulator->max_uV = old_max_uV;
2369	mutex_unlock(&rdev->mutex);
2370	return ret;
2371}
2372EXPORT_SYMBOL_GPL(regulator_set_voltage);
2373
2374/**
2375 * regulator_set_voltage_time - get raise/fall time
2376 * @regulator: regulator source
2377 * @old_uV: starting voltage in microvolts
2378 * @new_uV: target voltage in microvolts
2379 *
2380 * Provided with the starting and ending voltage, this function attempts to
2381 * calculate the time in microseconds required to rise or fall to this new
2382 * voltage.
2383 */
2384int regulator_set_voltage_time(struct regulator *regulator,
2385			       int old_uV, int new_uV)
2386{
2387	struct regulator_dev	*rdev = regulator->rdev;
2388	struct regulator_ops	*ops = rdev->desc->ops;
2389	int old_sel = -1;
2390	int new_sel = -1;
2391	int voltage;
2392	int i;
2393
2394	/* Currently requires operations to do this */
2395	if (!ops->list_voltage || !ops->set_voltage_time_sel
2396	    || !rdev->desc->n_voltages)
2397		return -EINVAL;
2398
2399	for (i = 0; i < rdev->desc->n_voltages; i++) {
2400		/* We only look for exact voltage matches here */
2401		voltage = regulator_list_voltage(regulator, i);
2402		if (voltage < 0)
2403			return -EINVAL;
2404		if (voltage == 0)
2405			continue;
2406		if (voltage == old_uV)
2407			old_sel = i;
2408		if (voltage == new_uV)
2409			new_sel = i;
2410	}
2411
2412	if (old_sel < 0 || new_sel < 0)
2413		return -EINVAL;
2414
2415	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2416}
2417EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2418
2419/**
2420 * regulator_set_voltage_time_sel - get raise/fall time
2421 * @rdev: regulator source device
2422 * @old_selector: selector for starting voltage
2423 * @new_selector: selector for target voltage
2424 *
2425 * Provided with the starting and target voltage selectors, this function
2426 * returns time in microseconds required to rise or fall to this new voltage
2427 *
2428 * Drivers providing ramp_delay in regulation_constraints can use this as their
2429 * set_voltage_time_sel() operation.
2430 */
2431int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2432				   unsigned int old_selector,
2433				   unsigned int new_selector)
2434{
2435	unsigned int ramp_delay = 0;
2436	int old_volt, new_volt;
2437
2438	if (rdev->constraints->ramp_delay)
2439		ramp_delay = rdev->constraints->ramp_delay;
2440	else if (rdev->desc->ramp_delay)
2441		ramp_delay = rdev->desc->ramp_delay;
2442
2443	if (ramp_delay == 0) {
2444		rdev_warn(rdev, "ramp_delay not set\n");
2445		return 0;
2446	}
2447
2448	/* sanity check */
2449	if (!rdev->desc->ops->list_voltage)
2450		return -EINVAL;
2451
2452	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2453	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2454
2455	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2456}
2457EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2458
2459/**
2460 * regulator_sync_voltage - re-apply last regulator output voltage
2461 * @regulator: regulator source
2462 *
2463 * Re-apply the last configured voltage.  This is intended to be used
2464 * where some external control source the consumer is cooperating with
2465 * has caused the configured voltage to change.
2466 */
2467int regulator_sync_voltage(struct regulator *regulator)
2468{
2469	struct regulator_dev *rdev = regulator->rdev;
2470	int ret, min_uV, max_uV;
2471
2472	mutex_lock(&rdev->mutex);
2473
2474	if (!rdev->desc->ops->set_voltage &&
2475	    !rdev->desc->ops->set_voltage_sel) {
2476		ret = -EINVAL;
2477		goto out;
2478	}
2479
2480	/* This is only going to work if we've had a voltage configured. */
2481	if (!regulator->min_uV && !regulator->max_uV) {
2482		ret = -EINVAL;
2483		goto out;
2484	}
2485
2486	min_uV = regulator->min_uV;
2487	max_uV = regulator->max_uV;
2488
2489	/* This should be a paranoia check... */
2490	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2491	if (ret < 0)
2492		goto out;
2493
2494	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2495	if (ret < 0)
2496		goto out;
2497
2498	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2499
2500out:
2501	mutex_unlock(&rdev->mutex);
2502	return ret;
2503}
2504EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2505
2506static int _regulator_get_voltage(struct regulator_dev *rdev)
2507{
2508	int sel, ret;
2509
2510	if (rdev->desc->ops->get_voltage_sel) {
2511		sel = rdev->desc->ops->get_voltage_sel(rdev);
2512		if (sel < 0)
2513			return sel;
2514		ret = rdev->desc->ops->list_voltage(rdev, sel);
2515	} else if (rdev->desc->ops->get_voltage) {
2516		ret = rdev->desc->ops->get_voltage(rdev);
2517	} else if (rdev->desc->ops->list_voltage) {
2518		ret = rdev->desc->ops->list_voltage(rdev, 0);
2519	} else {
2520		return -EINVAL;
2521	}
2522
2523	if (ret < 0)
2524		return ret;
2525	return ret - rdev->constraints->uV_offset;
2526}
2527
2528/**
2529 * regulator_get_voltage - get regulator output voltage
2530 * @regulator: regulator source
2531 *
2532 * This returns the current regulator voltage in uV.
2533 *
2534 * NOTE: If the regulator is disabled it will return the voltage value. This
2535 * function should not be used to determine regulator state.
2536 */
2537int regulator_get_voltage(struct regulator *regulator)
2538{
2539	int ret;
2540
2541	mutex_lock(&regulator->rdev->mutex);
2542
2543	ret = _regulator_get_voltage(regulator->rdev);
2544
2545	mutex_unlock(&regulator->rdev->mutex);
2546
2547	return ret;
2548}
2549EXPORT_SYMBOL_GPL(regulator_get_voltage);
2550
2551/**
2552 * regulator_set_current_limit - set regulator output current limit
2553 * @regulator: regulator source
2554 * @min_uA: Minimuum supported current in uA
2555 * @max_uA: Maximum supported current in uA
2556 *
2557 * Sets current sink to the desired output current. This can be set during
2558 * any regulator state. IOW, regulator can be disabled or enabled.
2559 *
2560 * If the regulator is enabled then the current will change to the new value
2561 * immediately otherwise if the regulator is disabled the regulator will
2562 * output at the new current when enabled.
2563 *
2564 * NOTE: Regulator system constraints must be set for this regulator before
2565 * calling this function otherwise this call will fail.
2566 */
2567int regulator_set_current_limit(struct regulator *regulator,
2568			       int min_uA, int max_uA)
2569{
2570	struct regulator_dev *rdev = regulator->rdev;
2571	int ret;
2572
2573	mutex_lock(&rdev->mutex);
2574
2575	/* sanity check */
2576	if (!rdev->desc->ops->set_current_limit) {
2577		ret = -EINVAL;
2578		goto out;
2579	}
2580
2581	/* constraints check */
2582	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2583	if (ret < 0)
2584		goto out;
2585
2586	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2587out:
2588	mutex_unlock(&rdev->mutex);
2589	return ret;
2590}
2591EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2592
2593static int _regulator_get_current_limit(struct regulator_dev *rdev)
2594{
2595	int ret;
2596
2597	mutex_lock(&rdev->mutex);
2598
2599	/* sanity check */
2600	if (!rdev->desc->ops->get_current_limit) {
2601		ret = -EINVAL;
2602		goto out;
2603	}
2604
2605	ret = rdev->desc->ops->get_current_limit(rdev);
2606out:
2607	mutex_unlock(&rdev->mutex);
2608	return ret;
2609}
2610
2611/**
2612 * regulator_get_current_limit - get regulator output current
2613 * @regulator: regulator source
2614 *
2615 * This returns the current supplied by the specified current sink in uA.
2616 *
2617 * NOTE: If the regulator is disabled it will return the current value. This
2618 * function should not be used to determine regulator state.
2619 */
2620int regulator_get_current_limit(struct regulator *regulator)
2621{
2622	return _regulator_get_current_limit(regulator->rdev);
2623}
2624EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2625
2626/**
2627 * regulator_set_mode - set regulator operating mode
2628 * @regulator: regulator source
2629 * @mode: operating mode - one of the REGULATOR_MODE constants
2630 *
2631 * Set regulator operating mode to increase regulator efficiency or improve
2632 * regulation performance.
2633 *
2634 * NOTE: Regulator system constraints must be set for this regulator before
2635 * calling this function otherwise this call will fail.
2636 */
2637int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2638{
2639	struct regulator_dev *rdev = regulator->rdev;
2640	int ret;
2641	int regulator_curr_mode;
2642
2643	mutex_lock(&rdev->mutex);
2644
2645	/* sanity check */
2646	if (!rdev->desc->ops->set_mode) {
2647		ret = -EINVAL;
2648		goto out;
2649	}
2650
2651	/* return if the same mode is requested */
2652	if (rdev->desc->ops->get_mode) {
2653		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2654		if (regulator_curr_mode == mode) {
2655			ret = 0;
2656			goto out;
2657		}
2658	}
2659
2660	/* constraints check */
2661	ret = regulator_mode_constrain(rdev, &mode);
2662	if (ret < 0)
2663		goto out;
2664
2665	ret = rdev->desc->ops->set_mode(rdev, mode);
2666out:
2667	mutex_unlock(&rdev->mutex);
2668	return ret;
2669}
2670EXPORT_SYMBOL_GPL(regulator_set_mode);
2671
2672static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2673{
2674	int ret;
2675
2676	mutex_lock(&rdev->mutex);
2677
2678	/* sanity check */
2679	if (!rdev->desc->ops->get_mode) {
2680		ret = -EINVAL;
2681		goto out;
2682	}
2683
2684	ret = rdev->desc->ops->get_mode(rdev);
2685out:
2686	mutex_unlock(&rdev->mutex);
2687	return ret;
2688}
2689
2690/**
2691 * regulator_get_mode - get regulator operating mode
2692 * @regulator: regulator source
2693 *
2694 * Get the current regulator operating mode.
2695 */
2696unsigned int regulator_get_mode(struct regulator *regulator)
2697{
2698	return _regulator_get_mode(regulator->rdev);
2699}
2700EXPORT_SYMBOL_GPL(regulator_get_mode);
2701
2702/**
2703 * regulator_set_optimum_mode - set regulator optimum operating mode
2704 * @regulator: regulator source
2705 * @uA_load: load current
2706 *
2707 * Notifies the regulator core of a new device load. This is then used by
2708 * DRMS (if enabled by constraints) to set the most efficient regulator
2709 * operating mode for the new regulator loading.
2710 *
2711 * Consumer devices notify their supply regulator of the maximum power
2712 * they will require (can be taken from device datasheet in the power
2713 * consumption tables) when they change operational status and hence power
2714 * state. Examples of operational state changes that can affect power
2715 * consumption are :-
2716 *
2717 *    o Device is opened / closed.
2718 *    o Device I/O is about to begin or has just finished.
2719 *    o Device is idling in between work.
2720 *
2721 * This information is also exported via sysfs to userspace.
2722 *
2723 * DRMS will sum the total requested load on the regulator and change
2724 * to the most efficient operating mode if platform constraints allow.
2725 *
2726 * Returns the new regulator mode or error.
2727 */
2728int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2729{
2730	struct regulator_dev *rdev = regulator->rdev;
2731	struct regulator *consumer;
2732	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2733	unsigned int mode;
2734
2735	if (rdev->supply)
2736		input_uV = regulator_get_voltage(rdev->supply);
2737
2738	mutex_lock(&rdev->mutex);
2739
2740	/*
2741	 * first check to see if we can set modes at all, otherwise just
2742	 * tell the consumer everything is OK.
2743	 */
2744	regulator->uA_load = uA_load;
2745	ret = regulator_check_drms(rdev);
2746	if (ret < 0) {
2747		ret = 0;
2748		goto out;
2749	}
2750
2751	if (!rdev->desc->ops->get_optimum_mode)
2752		goto out;
2753
2754	/*
2755	 * we can actually do this so any errors are indicators of
2756	 * potential real failure.
2757	 */
2758	ret = -EINVAL;
2759
2760	if (!rdev->desc->ops->set_mode)
2761		goto out;
2762
2763	/* get output voltage */
2764	output_uV = _regulator_get_voltage(rdev);
2765	if (output_uV <= 0) {
2766		rdev_err(rdev, "invalid output voltage found\n");
2767		goto out;
2768	}
2769
2770	/* No supply? Use constraint voltage */
2771	if (input_uV <= 0)
2772		input_uV = rdev->constraints->input_uV;
2773	if (input_uV <= 0) {
2774		rdev_err(rdev, "invalid input voltage found\n");
2775		goto out;
2776	}
2777
2778	/* calc total requested load for this regulator */
2779	list_for_each_entry(consumer, &rdev->consumer_list, list)
2780		total_uA_load += consumer->uA_load;
2781
2782	mode = rdev->desc->ops->get_optimum_mode(rdev,
2783						 input_uV, output_uV,
2784						 total_uA_load);
2785	ret = regulator_mode_constrain(rdev, &mode);
2786	if (ret < 0) {
2787		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2788			 total_uA_load, input_uV, output_uV);
2789		goto out;
2790	}
2791
2792	ret = rdev->desc->ops->set_mode(rdev, mode);
2793	if (ret < 0) {
2794		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2795		goto out;
2796	}
2797	ret = mode;
2798out:
2799	mutex_unlock(&rdev->mutex);
2800	return ret;
2801}
2802EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2803
2804/**
2805 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2806 *
2807 * @rdev: device to operate on.
2808 * @enable: state to set.
2809 */
2810int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2811{
2812	unsigned int val;
2813
2814	if (enable)
2815		val = rdev->desc->bypass_mask;
2816	else
2817		val = 0;
2818
2819	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2820				  rdev->desc->bypass_mask, val);
2821}
2822EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2823
2824/**
2825 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2826 *
2827 * @rdev: device to operate on.
2828 * @enable: current state.
2829 */
2830int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2831{
2832	unsigned int val;
2833	int ret;
2834
2835	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2836	if (ret != 0)
2837		return ret;
2838
2839	*enable = val & rdev->desc->bypass_mask;
2840
2841	return 0;
2842}
2843EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2844
2845/**
2846 * regulator_allow_bypass - allow the regulator to go into bypass mode
2847 *
2848 * @regulator: Regulator to configure
2849 * @enable: enable or disable bypass mode
2850 *
2851 * Allow the regulator to go into bypass mode if all other consumers
2852 * for the regulator also enable bypass mode and the machine
2853 * constraints allow this.  Bypass mode means that the regulator is
2854 * simply passing the input directly to the output with no regulation.
2855 */
2856int regulator_allow_bypass(struct regulator *regulator, bool enable)
2857{
2858	struct regulator_dev *rdev = regulator->rdev;
2859	int ret = 0;
2860
2861	if (!rdev->desc->ops->set_bypass)
2862		return 0;
2863
2864	if (rdev->constraints &&
2865	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2866		return 0;
2867
2868	mutex_lock(&rdev->mutex);
2869
2870	if (enable && !regulator->bypass) {
2871		rdev->bypass_count++;
2872
2873		if (rdev->bypass_count == rdev->open_count) {
2874			ret = rdev->desc->ops->set_bypass(rdev, enable);
2875			if (ret != 0)
2876				rdev->bypass_count--;
2877		}
2878
2879	} else if (!enable && regulator->bypass) {
2880		rdev->bypass_count--;
2881
2882		if (rdev->bypass_count != rdev->open_count) {
2883			ret = rdev->desc->ops->set_bypass(rdev, enable);
2884			if (ret != 0)
2885				rdev->bypass_count++;
2886		}
2887	}
2888
2889	if (ret == 0)
2890		regulator->bypass = enable;
2891
2892	mutex_unlock(&rdev->mutex);
2893
2894	return ret;
2895}
2896EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2897
2898/**
2899 * regulator_register_notifier - register regulator event notifier
2900 * @regulator: regulator source
2901 * @nb: notifier block
2902 *
2903 * Register notifier block to receive regulator events.
2904 */
2905int regulator_register_notifier(struct regulator *regulator,
2906			      struct notifier_block *nb)
2907{
2908	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2909						nb);
2910}
2911EXPORT_SYMBOL_GPL(regulator_register_notifier);
2912
2913/**
2914 * regulator_unregister_notifier - unregister regulator event notifier
2915 * @regulator: regulator source
2916 * @nb: notifier block
2917 *
2918 * Unregister regulator event notifier block.
2919 */
2920int regulator_unregister_notifier(struct regulator *regulator,
2921				struct notifier_block *nb)
2922{
2923	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2924						  nb);
2925}
2926EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2927
2928/* notify regulator consumers and downstream regulator consumers.
2929 * Note mutex must be held by caller.
2930 */
2931static void _notifier_call_chain(struct regulator_dev *rdev,
2932				  unsigned long event, void *data)
2933{
2934	/* call rdev chain first */
2935	blocking_notifier_call_chain(&rdev->notifier, event, data);
2936}
2937
2938/**
2939 * regulator_bulk_get - get multiple regulator consumers
2940 *
2941 * @dev:           Device to supply
2942 * @num_consumers: Number of consumers to register
2943 * @consumers:     Configuration of consumers; clients are stored here.
2944 *
2945 * @return 0 on success, an errno on failure.
2946 *
2947 * This helper function allows drivers to get several regulator
2948 * consumers in one operation.  If any of the regulators cannot be
2949 * acquired then any regulators that were allocated will be freed
2950 * before returning to the caller.
2951 */
2952int regulator_bulk_get(struct device *dev, int num_consumers,
2953		       struct regulator_bulk_data *consumers)
2954{
2955	int i;
2956	int ret;
2957
2958	for (i = 0; i < num_consumers; i++)
2959		consumers[i].consumer = NULL;
2960
2961	for (i = 0; i < num_consumers; i++) {
2962		consumers[i].consumer = regulator_get(dev,
2963						      consumers[i].supply);
2964		if (IS_ERR(consumers[i].consumer)) {
2965			ret = PTR_ERR(consumers[i].consumer);
2966			dev_err(dev, "Failed to get supply '%s': %d\n",
2967				consumers[i].supply, ret);
2968			consumers[i].consumer = NULL;
2969			goto err;
2970		}
2971	}
2972
2973	return 0;
2974
2975err:
2976	while (--i >= 0)
2977		regulator_put(consumers[i].consumer);
2978
2979	return ret;
2980}
2981EXPORT_SYMBOL_GPL(regulator_bulk_get);
2982
2983/**
2984 * devm_regulator_bulk_get - managed get multiple regulator consumers
2985 *
2986 * @dev:           Device to supply
2987 * @num_consumers: Number of consumers to register
2988 * @consumers:     Configuration of consumers; clients are stored here.
2989 *
2990 * @return 0 on success, an errno on failure.
2991 *
2992 * This helper function allows drivers to get several regulator
2993 * consumers in one operation with management, the regulators will
2994 * automatically be freed when the device is unbound.  If any of the
2995 * regulators cannot be acquired then any regulators that were
2996 * allocated will be freed before returning to the caller.
2997 */
2998int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2999			    struct regulator_bulk_data *consumers)
3000{
3001	int i;
3002	int ret;
3003
3004	for (i = 0; i < num_consumers; i++)
3005		consumers[i].consumer = NULL;
3006
3007	for (i = 0; i < num_consumers; i++) {
3008		consumers[i].consumer = devm_regulator_get(dev,
3009							   consumers[i].supply);
3010		if (IS_ERR(consumers[i].consumer)) {
3011			ret = PTR_ERR(consumers[i].consumer);
3012			dev_err(dev, "Failed to get supply '%s': %d\n",
3013				consumers[i].supply, ret);
3014			consumers[i].consumer = NULL;
3015			goto err;
3016		}
3017	}
3018
3019	return 0;
3020
3021err:
3022	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3023		devm_regulator_put(consumers[i].consumer);
3024
3025	return ret;
3026}
3027EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3028
3029static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3030{
3031	struct regulator_bulk_data *bulk = data;
3032
3033	bulk->ret = regulator_enable(bulk->consumer);
3034}
3035
3036/**
3037 * regulator_bulk_enable - enable multiple regulator consumers
3038 *
3039 * @num_consumers: Number of consumers
3040 * @consumers:     Consumer data; clients are stored here.
3041 * @return         0 on success, an errno on failure
3042 *
3043 * This convenience API allows consumers to enable multiple regulator
3044 * clients in a single API call.  If any consumers cannot be enabled
3045 * then any others that were enabled will be disabled again prior to
3046 * return.
3047 */
3048int regulator_bulk_enable(int num_consumers,
3049			  struct regulator_bulk_data *consumers)
3050{
3051	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3052	int i;
3053	int ret = 0;
3054
3055	for (i = 0; i < num_consumers; i++) {
3056		if (consumers[i].consumer->always_on)
3057			consumers[i].ret = 0;
3058		else
3059			async_schedule_domain(regulator_bulk_enable_async,
3060					      &consumers[i], &async_domain);
3061	}
3062
3063	async_synchronize_full_domain(&async_domain);
3064
3065	/* If any consumer failed we need to unwind any that succeeded */
3066	for (i = 0; i < num_consumers; i++) {
3067		if (consumers[i].ret != 0) {
3068			ret = consumers[i].ret;
3069			goto err;
3070		}
3071	}
3072
3073	return 0;
3074
3075err:
3076	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3077	while (--i >= 0)
3078		regulator_disable(consumers[i].consumer);
3079
3080	return ret;
3081}
3082EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3083
3084/**
3085 * regulator_bulk_disable - disable multiple regulator consumers
3086 *
3087 * @num_consumers: Number of consumers
3088 * @consumers:     Consumer data; clients are stored here.
3089 * @return         0 on success, an errno on failure
3090 *
3091 * This convenience API allows consumers to disable multiple regulator
3092 * clients in a single API call.  If any consumers cannot be disabled
3093 * then any others that were disabled will be enabled again prior to
3094 * return.
3095 */
3096int regulator_bulk_disable(int num_consumers,
3097			   struct regulator_bulk_data *consumers)
3098{
3099	int i;
3100	int ret, r;
3101
3102	for (i = num_consumers - 1; i >= 0; --i) {
3103		ret = regulator_disable(consumers[i].consumer);
3104		if (ret != 0)
3105			goto err;
3106	}
3107
3108	return 0;
3109
3110err:
3111	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3112	for (++i; i < num_consumers; ++i) {
3113		r = regulator_enable(consumers[i].consumer);
3114		if (r != 0)
3115			pr_err("Failed to reename %s: %d\n",
3116			       consumers[i].supply, r);
3117	}
3118
3119	return ret;
3120}
3121EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3122
3123/**
3124 * regulator_bulk_force_disable - force disable multiple regulator consumers
3125 *
3126 * @num_consumers: Number of consumers
3127 * @consumers:     Consumer data; clients are stored here.
3128 * @return         0 on success, an errno on failure
3129 *
3130 * This convenience API allows consumers to forcibly disable multiple regulator
3131 * clients in a single API call.
3132 * NOTE: This should be used for situations when device damage will
3133 * likely occur if the regulators are not disabled (e.g. over temp).
3134 * Although regulator_force_disable function call for some consumers can
3135 * return error numbers, the function is called for all consumers.
3136 */
3137int regulator_bulk_force_disable(int num_consumers,
3138			   struct regulator_bulk_data *consumers)
3139{
3140	int i;
3141	int ret;
3142
3143	for (i = 0; i < num_consumers; i++)
3144		consumers[i].ret =
3145			    regulator_force_disable(consumers[i].consumer);
3146
3147	for (i = 0; i < num_consumers; i++) {
3148		if (consumers[i].ret != 0) {
3149			ret = consumers[i].ret;
3150			goto out;
3151		}
3152	}
3153
3154	return 0;
3155out:
3156	return ret;
3157}
3158EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3159
3160/**
3161 * regulator_bulk_free - free multiple regulator consumers
3162 *
3163 * @num_consumers: Number of consumers
3164 * @consumers:     Consumer data; clients are stored here.
3165 *
3166 * This convenience API allows consumers to free multiple regulator
3167 * clients in a single API call.
3168 */
3169void regulator_bulk_free(int num_consumers,
3170			 struct regulator_bulk_data *consumers)
3171{
3172	int i;
3173
3174	for (i = 0; i < num_consumers; i++) {
3175		regulator_put(consumers[i].consumer);
3176		consumers[i].consumer = NULL;
3177	}
3178}
3179EXPORT_SYMBOL_GPL(regulator_bulk_free);
3180
3181/**
3182 * regulator_notifier_call_chain - call regulator event notifier
3183 * @rdev: regulator source
3184 * @event: notifier block
3185 * @data: callback-specific data.
3186 *
3187 * Called by regulator drivers to notify clients a regulator event has
3188 * occurred. We also notify regulator clients downstream.
3189 * Note lock must be held by caller.
3190 */
3191int regulator_notifier_call_chain(struct regulator_dev *rdev,
3192				  unsigned long event, void *data)
3193{
3194	_notifier_call_chain(rdev, event, data);
3195	return NOTIFY_DONE;
3196
3197}
3198EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3199
3200/**
3201 * regulator_mode_to_status - convert a regulator mode into a status
3202 *
3203 * @mode: Mode to convert
3204 *
3205 * Convert a regulator mode into a status.
3206 */
3207int regulator_mode_to_status(unsigned int mode)
3208{
3209	switch (mode) {
3210	case REGULATOR_MODE_FAST:
3211		return REGULATOR_STATUS_FAST;
3212	case REGULATOR_MODE_NORMAL:
3213		return REGULATOR_STATUS_NORMAL;
3214	case REGULATOR_MODE_IDLE:
3215		return REGULATOR_STATUS_IDLE;
3216	case REGULATOR_MODE_STANDBY:
3217		return REGULATOR_STATUS_STANDBY;
3218	default:
3219		return REGULATOR_STATUS_UNDEFINED;
3220	}
3221}
3222EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3223
3224/*
3225 * To avoid cluttering sysfs (and memory) with useless state, only
3226 * create attributes that can be meaningfully displayed.
3227 */
3228static int add_regulator_attributes(struct regulator_dev *rdev)
3229{
3230	struct device		*dev = &rdev->dev;
3231	struct regulator_ops	*ops = rdev->desc->ops;
3232	int			status = 0;
3233
3234	/* some attributes need specific methods to be displayed */
3235	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3236	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3237	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3238		status = device_create_file(dev, &dev_attr_microvolts);
3239		if (status < 0)
3240			return status;
3241	}
3242	if (ops->get_current_limit) {
3243		status = device_create_file(dev, &dev_attr_microamps);
3244		if (status < 0)
3245			return status;
3246	}
3247	if (ops->get_mode) {
3248		status = device_create_file(dev, &dev_attr_opmode);
3249		if (status < 0)
3250			return status;
3251	}
3252	if (rdev->ena_gpio || ops->is_enabled) {
3253		status = device_create_file(dev, &dev_attr_state);
3254		if (status < 0)
3255			return status;
3256	}
3257	if (ops->get_status) {
3258		status = device_create_file(dev, &dev_attr_status);
3259		if (status < 0)
3260			return status;
3261	}
3262	if (ops->get_bypass) {
3263		status = device_create_file(dev, &dev_attr_bypass);
3264		if (status < 0)
3265			return status;
3266	}
3267
3268	/* some attributes are type-specific */
3269	if (rdev->desc->type == REGULATOR_CURRENT) {
3270		status = device_create_file(dev, &dev_attr_requested_microamps);
3271		if (status < 0)
3272			return status;
3273	}
3274
3275	/* all the other attributes exist to support constraints;
3276	 * don't show them if there are no constraints, or if the
3277	 * relevant supporting methods are missing.
3278	 */
3279	if (!rdev->constraints)
3280		return status;
3281
3282	/* constraints need specific supporting methods */
3283	if (ops->set_voltage || ops->set_voltage_sel) {
3284		status = device_create_file(dev, &dev_attr_min_microvolts);
3285		if (status < 0)
3286			return status;
3287		status = device_create_file(dev, &dev_attr_max_microvolts);
3288		if (status < 0)
3289			return status;
3290	}
3291	if (ops->set_current_limit) {
3292		status = device_create_file(dev, &dev_attr_min_microamps);
3293		if (status < 0)
3294			return status;
3295		status = device_create_file(dev, &dev_attr_max_microamps);
3296		if (status < 0)
3297			return status;
3298	}
3299
3300	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3301	if (status < 0)
3302		return status;
3303	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3304	if (status < 0)
3305		return status;
3306	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3307	if (status < 0)
3308		return status;
3309
3310	if (ops->set_suspend_voltage) {
3311		status = device_create_file(dev,
3312				&dev_attr_suspend_standby_microvolts);
3313		if (status < 0)
3314			return status;
3315		status = device_create_file(dev,
3316				&dev_attr_suspend_mem_microvolts);
3317		if (status < 0)
3318			return status;
3319		status = device_create_file(dev,
3320				&dev_attr_suspend_disk_microvolts);
3321		if (status < 0)
3322			return status;
3323	}
3324
3325	if (ops->set_suspend_mode) {
3326		status = device_create_file(dev,
3327				&dev_attr_suspend_standby_mode);
3328		if (status < 0)
3329			return status;
3330		status = device_create_file(dev,
3331				&dev_attr_suspend_mem_mode);
3332		if (status < 0)
3333			return status;
3334		status = device_create_file(dev,
3335				&dev_attr_suspend_disk_mode);
3336		if (status < 0)
3337			return status;
3338	}
3339
3340	return status;
3341}
3342
3343static void rdev_init_debugfs(struct regulator_dev *rdev)
3344{
3345	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3346	if (!rdev->debugfs) {
3347		rdev_warn(rdev, "Failed to create debugfs directory\n");
3348		return;
3349	}
3350
3351	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3352			   &rdev->use_count);
3353	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3354			   &rdev->open_count);
3355	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3356			   &rdev->bypass_count);
3357}
3358
3359/**
3360 * regulator_register - register regulator
3361 * @regulator_desc: regulator to register
3362 * @config: runtime configuration for regulator
3363 *
3364 * Called by regulator drivers to register a regulator.
3365 * Returns a valid pointer to struct regulator_dev on success
3366 * or an ERR_PTR() on error.
3367 */
3368struct regulator_dev *
3369regulator_register(const struct regulator_desc *regulator_desc,
3370		   const struct regulator_config *config)
3371{
3372	const struct regulation_constraints *constraints = NULL;
3373	const struct regulator_init_data *init_data;
3374	static atomic_t regulator_no = ATOMIC_INIT(0);
3375	struct regulator_dev *rdev;
3376	struct device *dev;
3377	int ret, i;
3378	const char *supply = NULL;
3379
3380	if (regulator_desc == NULL || config == NULL)
3381		return ERR_PTR(-EINVAL);
3382
3383	dev = config->dev;
3384	WARN_ON(!dev);
3385
3386	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3387		return ERR_PTR(-EINVAL);
3388
3389	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3390	    regulator_desc->type != REGULATOR_CURRENT)
3391		return ERR_PTR(-EINVAL);
3392
3393	/* Only one of each should be implemented */
3394	WARN_ON(regulator_desc->ops->get_voltage &&
3395		regulator_desc->ops->get_voltage_sel);
3396	WARN_ON(regulator_desc->ops->set_voltage &&
3397		regulator_desc->ops->set_voltage_sel);
3398
3399	/* If we're using selectors we must implement list_voltage. */
3400	if (regulator_desc->ops->get_voltage_sel &&
3401	    !regulator_desc->ops->list_voltage) {
3402		return ERR_PTR(-EINVAL);
3403	}
3404	if (regulator_desc->ops->set_voltage_sel &&
3405	    !regulator_desc->ops->list_voltage) {
3406		return ERR_PTR(-EINVAL);
3407	}
3408
3409	init_data = config->init_data;
3410
3411	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3412	if (rdev == NULL)
3413		return ERR_PTR(-ENOMEM);
3414
3415	mutex_lock(&regulator_list_mutex);
3416
3417	mutex_init(&rdev->mutex);
3418	rdev->reg_data = config->driver_data;
3419	rdev->owner = regulator_desc->owner;
3420	rdev->desc = regulator_desc;
3421	if (config->regmap)
3422		rdev->regmap = config->regmap;
3423	else if (dev_get_regmap(dev, NULL))
3424		rdev->regmap = dev_get_regmap(dev, NULL);
3425	else if (dev->parent)
3426		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3427	INIT_LIST_HEAD(&rdev->consumer_list);
3428	INIT_LIST_HEAD(&rdev->list);
3429	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3430	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3431
3432	/* preform any regulator specific init */
3433	if (init_data && init_data->regulator_init) {
3434		ret = init_data->regulator_init(rdev->reg_data);
3435		if (ret < 0)
3436			goto clean;
3437	}
3438
3439	/* register with sysfs */
3440	rdev->dev.class = &regulator_class;
3441	rdev->dev.of_node = config->of_node;
3442	rdev->dev.parent = dev;
3443	dev_set_name(&rdev->dev, "regulator.%d",
3444		     atomic_inc_return(&regulator_no) - 1);
3445	ret = device_register(&rdev->dev);
3446	if (ret != 0) {
3447		put_device(&rdev->dev);
3448		goto clean;
3449	}
3450
3451	dev_set_drvdata(&rdev->dev, rdev);
3452
3453	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3454		ret = gpio_request_one(config->ena_gpio,
3455				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3456				       rdev_get_name(rdev));
3457		if (ret != 0) {
3458			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3459				 config->ena_gpio, ret);
3460			goto wash;
3461		}
3462
3463		rdev->ena_gpio = config->ena_gpio;
3464		rdev->ena_gpio_invert = config->ena_gpio_invert;
3465
3466		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3467			rdev->ena_gpio_state = 1;
3468
3469		if (rdev->ena_gpio_invert)
3470			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3471	}
3472
3473	/* set regulator constraints */
3474	if (init_data)
3475		constraints = &init_data->constraints;
3476
3477	ret = set_machine_constraints(rdev, constraints);
3478	if (ret < 0)
3479		goto scrub;
3480
3481	/* add attributes supported by this regulator */
3482	ret = add_regulator_attributes(rdev);
3483	if (ret < 0)
3484		goto scrub;
3485
3486	if (init_data && init_data->supply_regulator)
3487		supply = init_data->supply_regulator;
3488	else if (regulator_desc->supply_name)
3489		supply = regulator_desc->supply_name;
3490
3491	if (supply) {
3492		struct regulator_dev *r;
3493
3494		r = regulator_dev_lookup(dev, supply, &ret);
3495
3496		if (!r) {
3497			dev_err(dev, "Failed to find supply %s\n", supply);
3498			ret = -EPROBE_DEFER;
3499			goto scrub;
3500		}
3501
3502		ret = set_supply(rdev, r);
3503		if (ret < 0)
3504			goto scrub;
3505
3506		/* Enable supply if rail is enabled */
3507		if (_regulator_is_enabled(rdev)) {
3508			ret = regulator_enable(rdev->supply);
3509			if (ret < 0)
3510				goto scrub;
3511		}
3512	}
3513
3514	/* add consumers devices */
3515	if (init_data) {
3516		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3517			ret = set_consumer_device_supply(rdev,
3518				init_data->consumer_supplies[i].dev_name,
3519				init_data->consumer_supplies[i].supply);
3520			if (ret < 0) {
3521				dev_err(dev, "Failed to set supply %s\n",
3522					init_data->consumer_supplies[i].supply);
3523				goto unset_supplies;
3524			}
3525		}
3526	}
3527
3528	list_add(&rdev->list, &regulator_list);
3529
3530	rdev_init_debugfs(rdev);
3531out:
3532	mutex_unlock(&regulator_list_mutex);
3533	return rdev;
3534
3535unset_supplies:
3536	unset_regulator_supplies(rdev);
3537
3538scrub:
3539	if (rdev->supply)
3540		_regulator_put(rdev->supply);
3541	if (rdev->ena_gpio)
3542		gpio_free(rdev->ena_gpio);
3543	kfree(rdev->constraints);
3544wash:
3545	device_unregister(&rdev->dev);
3546	/* device core frees rdev */
3547	rdev = ERR_PTR(ret);
3548	goto out;
3549
3550clean:
3551	kfree(rdev);
3552	rdev = ERR_PTR(ret);
3553	goto out;
3554}
3555EXPORT_SYMBOL_GPL(regulator_register);
3556
3557/**
3558 * regulator_unregister - unregister regulator
3559 * @rdev: regulator to unregister
3560 *
3561 * Called by regulator drivers to unregister a regulator.
3562 */
3563void regulator_unregister(struct regulator_dev *rdev)
3564{
3565	if (rdev == NULL)
3566		return;
3567
3568	if (rdev->supply)
3569		regulator_put(rdev->supply);
3570	mutex_lock(&regulator_list_mutex);
3571	debugfs_remove_recursive(rdev->debugfs);
3572	flush_work(&rdev->disable_work.work);
3573	WARN_ON(rdev->open_count);
3574	unset_regulator_supplies(rdev);
3575	list_del(&rdev->list);
3576	kfree(rdev->constraints);
3577	if (rdev->ena_gpio)
3578		gpio_free(rdev->ena_gpio);
3579	device_unregister(&rdev->dev);
3580	mutex_unlock(&regulator_list_mutex);
3581}
3582EXPORT_SYMBOL_GPL(regulator_unregister);
3583
3584/**
3585 * regulator_suspend_prepare - prepare regulators for system wide suspend
3586 * @state: system suspend state
3587 *
3588 * Configure each regulator with it's suspend operating parameters for state.
3589 * This will usually be called by machine suspend code prior to supending.
3590 */
3591int regulator_suspend_prepare(suspend_state_t state)
3592{
3593	struct regulator_dev *rdev;
3594	int ret = 0;
3595
3596	/* ON is handled by regulator active state */
3597	if (state == PM_SUSPEND_ON)
3598		return -EINVAL;
3599
3600	mutex_lock(&regulator_list_mutex);
3601	list_for_each_entry(rdev, &regulator_list, list) {
3602
3603		mutex_lock(&rdev->mutex);
3604		ret = suspend_prepare(rdev, state);
3605		mutex_unlock(&rdev->mutex);
3606
3607		if (ret < 0) {
3608			rdev_err(rdev, "failed to prepare\n");
3609			goto out;
3610		}
3611	}
3612out:
3613	mutex_unlock(&regulator_list_mutex);
3614	return ret;
3615}
3616EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3617
3618/**
3619 * regulator_suspend_finish - resume regulators from system wide suspend
3620 *
3621 * Turn on regulators that might be turned off by regulator_suspend_prepare
3622 * and that should be turned on according to the regulators properties.
3623 */
3624int regulator_suspend_finish(void)
3625{
3626	struct regulator_dev *rdev;
3627	int ret = 0, error;
3628
3629	mutex_lock(&regulator_list_mutex);
3630	list_for_each_entry(rdev, &regulator_list, list) {
3631		struct regulator_ops *ops = rdev->desc->ops;
3632
3633		mutex_lock(&rdev->mutex);
3634		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3635				ops->enable) {
3636			error = ops->enable(rdev);
3637			if (error)
3638				ret = error;
3639		} else {
3640			if (!has_full_constraints)
3641				goto unlock;
3642			if (!ops->disable)
3643				goto unlock;
3644			if (!_regulator_is_enabled(rdev))
3645				goto unlock;
3646
3647			error = ops->disable(rdev);
3648			if (error)
3649				ret = error;
3650		}
3651unlock:
3652		mutex_unlock(&rdev->mutex);
3653	}
3654	mutex_unlock(&regulator_list_mutex);
3655	return ret;
3656}
3657EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3658
3659/**
3660 * regulator_has_full_constraints - the system has fully specified constraints
3661 *
3662 * Calling this function will cause the regulator API to disable all
3663 * regulators which have a zero use count and don't have an always_on
3664 * constraint in a late_initcall.
3665 *
3666 * The intention is that this will become the default behaviour in a
3667 * future kernel release so users are encouraged to use this facility
3668 * now.
3669 */
3670void regulator_has_full_constraints(void)
3671{
3672	has_full_constraints = 1;
3673}
3674EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3675
3676/**
3677 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3678 *
3679 * Calling this function will cause the regulator API to provide a
3680 * dummy regulator to consumers if no physical regulator is found,
3681 * allowing most consumers to proceed as though a regulator were
3682 * configured.  This allows systems such as those with software
3683 * controllable regulators for the CPU core only to be brought up more
3684 * readily.
3685 */
3686void regulator_use_dummy_regulator(void)
3687{
3688	board_wants_dummy_regulator = true;
3689}
3690EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3691
3692/**
3693 * rdev_get_drvdata - get rdev regulator driver data
3694 * @rdev: regulator
3695 *
3696 * Get rdev regulator driver private data. This call can be used in the
3697 * regulator driver context.
3698 */
3699void *rdev_get_drvdata(struct regulator_dev *rdev)
3700{
3701	return rdev->reg_data;
3702}
3703EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3704
3705/**
3706 * regulator_get_drvdata - get regulator driver data
3707 * @regulator: regulator
3708 *
3709 * Get regulator driver private data. This call can be used in the consumer
3710 * driver context when non API regulator specific functions need to be called.
3711 */
3712void *regulator_get_drvdata(struct regulator *regulator)
3713{
3714	return regulator->rdev->reg_data;
3715}
3716EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3717
3718/**
3719 * regulator_set_drvdata - set regulator driver data
3720 * @regulator: regulator
3721 * @data: data
3722 */
3723void regulator_set_drvdata(struct regulator *regulator, void *data)
3724{
3725	regulator->rdev->reg_data = data;
3726}
3727EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3728
3729/**
3730 * regulator_get_id - get regulator ID
3731 * @rdev: regulator
3732 */
3733int rdev_get_id(struct regulator_dev *rdev)
3734{
3735	return rdev->desc->id;
3736}
3737EXPORT_SYMBOL_GPL(rdev_get_id);
3738
3739struct device *rdev_get_dev(struct regulator_dev *rdev)
3740{
3741	return &rdev->dev;
3742}
3743EXPORT_SYMBOL_GPL(rdev_get_dev);
3744
3745void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3746{
3747	return reg_init_data->driver_data;
3748}
3749EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3750
3751#ifdef CONFIG_DEBUG_FS
3752static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3753				    size_t count, loff_t *ppos)
3754{
3755	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3756	ssize_t len, ret = 0;
3757	struct regulator_map *map;
3758
3759	if (!buf)
3760		return -ENOMEM;
3761
3762	list_for_each_entry(map, &regulator_map_list, list) {
3763		len = snprintf(buf + ret, PAGE_SIZE - ret,
3764			       "%s -> %s.%s\n",
3765			       rdev_get_name(map->regulator), map->dev_name,
3766			       map->supply);
3767		if (len >= 0)
3768			ret += len;
3769		if (ret > PAGE_SIZE) {
3770			ret = PAGE_SIZE;
3771			break;
3772		}
3773	}
3774
3775	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3776
3777	kfree(buf);
3778
3779	return ret;
3780}
3781#endif
3782
3783static const struct file_operations supply_map_fops = {
3784#ifdef CONFIG_DEBUG_FS
3785	.read = supply_map_read_file,
3786	.llseek = default_llseek,
3787#endif
3788};
3789
3790static int __init regulator_init(void)
3791{
3792	int ret;
3793
3794	ret = class_register(&regulator_class);
3795
3796	debugfs_root = debugfs_create_dir("regulator", NULL);
3797	if (!debugfs_root)
3798		pr_warn("regulator: Failed to create debugfs directory\n");
3799
3800	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3801			    &supply_map_fops);
3802
3803	regulator_dummy_init();
3804
3805	return ret;
3806}
3807
3808/* init early to allow our consumers to complete system booting */
3809core_initcall(regulator_init);
3810
3811static int __init regulator_init_complete(void)
3812{
3813	struct regulator_dev *rdev;
3814	struct regulator_ops *ops;
3815	struct regulation_constraints *c;
3816	int enabled, ret;
3817
3818	/*
3819	 * Since DT doesn't provide an idiomatic mechanism for
3820	 * enabling full constraints and since it's much more natural
3821	 * with DT to provide them just assume that a DT enabled
3822	 * system has full constraints.
3823	 */
3824	if (of_have_populated_dt())
3825		has_full_constraints = true;
3826
3827	mutex_lock(&regulator_list_mutex);
3828
3829	/* If we have a full configuration then disable any regulators
3830	 * which are not in use or always_on.  This will become the
3831	 * default behaviour in the future.
3832	 */
3833	list_for_each_entry(rdev, &regulator_list, list) {
3834		ops = rdev->desc->ops;
3835		c = rdev->constraints;
3836
3837		if (!ops->disable || (c && c->always_on))
3838			continue;
3839
3840		mutex_lock(&rdev->mutex);
3841
3842		if (rdev->use_count)
3843			goto unlock;
3844
3845		/* If we can't read the status assume it's on. */
3846		if (ops->is_enabled)
3847			enabled = ops->is_enabled(rdev);
3848		else
3849			enabled = 1;
3850
3851		if (!enabled)
3852			goto unlock;
3853
3854		if (has_full_constraints) {
3855			/* We log since this may kill the system if it
3856			 * goes wrong. */
3857			rdev_info(rdev, "disabling\n");
3858			ret = ops->disable(rdev);
3859			if (ret != 0) {
3860				rdev_err(rdev, "couldn't disable: %d\n", ret);
3861			}
3862		} else {
3863			/* The intention is that in future we will
3864			 * assume that full constraints are provided
3865			 * so warn even if we aren't going to do
3866			 * anything here.
3867			 */
3868			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3869		}
3870
3871unlock:
3872		mutex_unlock(&rdev->mutex);
3873	}
3874
3875	mutex_unlock(&regulator_list_mutex);
3876
3877	return 0;
3878}
3879late_initcall(regulator_init_complete);
3880