core.c revision 53032dafc6b93ac178ca2340ff8eb4ee2b3d1a92
18ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot/*
28ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * core.c  --  Voltage/Current Regulator framework.
38ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *
48ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * Copyright 2007, 2008 Wolfson Microelectronics PLC.
58ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * Copyright 2008 SlimLogic Ltd.
68ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *
78ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * Author: Liam Girdwood <lrg@slimlogic.co.uk>
88ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *
98ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *  This program is free software; you can redistribute  it and/or modify it
108ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *  under  the terms of  the GNU General  Public License as published by the
118ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *  Free Software Foundation;  either version 2 of the  License, or (at your
128ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *  option) any later version.
138ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *
148ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot */
158ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot
168ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/kernel.h>
178ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/init.h>
188ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/device.h>
198ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/err.h>
208ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/mutex.h>
218ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/suspend.h>
228ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/regulator/consumer.h>
238ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/regulator/driver.h>
248ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#include <linux/regulator/machine.h>
258ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot
268ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot#define REGULATOR_VERSION "0.5"
278ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot
288ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbotstatic DEFINE_MUTEX(regulator_list_mutex);
298ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbotstatic LIST_HEAD(regulator_list);
308ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbotstatic LIST_HEAD(regulator_map_list);
318ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbotstatic int has_full_constraints;
328ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot
338ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot/*
348ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * struct regulator_map
358ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *
368ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * Used to provide symbolic supply names to devices.
378ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot */
388ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbotstruct regulator_map {
398ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot	struct list_head list;
408ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot	struct device *dev;
418ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot	const char *supply;
428ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot	struct regulator_dev *regulator;
438ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot};
448ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot
458ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot/*
468ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * struct regulator
478ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot *
488ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot * One for each consumer device.
498ba9ff11632cb05d6f55555711d8425e32ee44b0Alexandre Courbot */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544		return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	/* constrain machine-level voltage specs to fit
696	 * the actual range supported by this regulator.
697	 */
698	if (ops->list_voltage && rdev->desc->n_voltages) {
699		int	count = rdev->desc->n_voltages;
700		int	i;
701		int	min_uV = INT_MAX;
702		int	max_uV = INT_MIN;
703		int	cmin = constraints->min_uV;
704		int	cmax = constraints->max_uV;
705
706		/* it's safe to autoconfigure fixed-voltage supplies */
707		if (count == 1 && !cmin) {
708			cmin = INT_MIN;
709			cmax = INT_MAX;
710		}
711
712		/* voltage constraints are optional */
713		if ((cmin == 0) && (cmax == 0))
714			goto out;
715
716		/* else require explicit machine-level constraints */
717		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
718			pr_err("%s: %s '%s' voltage constraints\n",
719				       __func__, "invalid", name);
720			ret = -EINVAL;
721			goto out;
722		}
723
724		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
725		for (i = 0; i < count; i++) {
726			int	value;
727
728			value = ops->list_voltage(rdev, i);
729			if (value <= 0)
730				continue;
731
732			/* maybe adjust [min_uV..max_uV] */
733			if (value >= cmin && value < min_uV)
734				min_uV = value;
735			if (value <= cmax && value > max_uV)
736				max_uV = value;
737		}
738
739		/* final: [min_uV..max_uV] valid iff constraints valid */
740		if (max_uV < min_uV) {
741			pr_err("%s: %s '%s' voltage constraints\n",
742				       __func__, "unsupportable", name);
743			ret = -EINVAL;
744			goto out;
745		}
746
747		/* use regulator's subset of machine constraints */
748		if (constraints->min_uV < min_uV) {
749			pr_debug("%s: override '%s' %s, %d -> %d\n",
750				       __func__, name, "min_uV",
751					constraints->min_uV, min_uV);
752			constraints->min_uV = min_uV;
753		}
754		if (constraints->max_uV > max_uV) {
755			pr_debug("%s: override '%s' %s, %d -> %d\n",
756				       __func__, name, "max_uV",
757					constraints->max_uV, max_uV);
758			constraints->max_uV = max_uV;
759		}
760	}
761
762	rdev->constraints = constraints;
763
764	/* do we need to apply the constraint voltage */
765	if (rdev->constraints->apply_uV &&
766		rdev->constraints->min_uV == rdev->constraints->max_uV &&
767		ops->set_voltage) {
768		ret = ops->set_voltage(rdev,
769			rdev->constraints->min_uV, rdev->constraints->max_uV);
770			if (ret < 0) {
771				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
772				       __func__,
773				       rdev->constraints->min_uV, name);
774				rdev->constraints = NULL;
775				goto out;
776			}
777	}
778
779	/* do we need to setup our suspend state */
780	if (constraints->initial_state) {
781		ret = suspend_prepare(rdev, constraints->initial_state);
782		if (ret < 0) {
783			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
784			       __func__, name);
785			rdev->constraints = NULL;
786			goto out;
787		}
788	}
789
790	if (constraints->initial_mode) {
791		if (!ops->set_mode) {
792			printk(KERN_ERR "%s: no set_mode operation for %s\n",
793			       __func__, name);
794			ret = -EINVAL;
795			goto out;
796		}
797
798		ret = ops->set_mode(rdev, constraints->initial_mode);
799		if (ret < 0) {
800			printk(KERN_ERR
801			       "%s: failed to set initial mode for %s: %d\n",
802			       __func__, name, ret);
803			goto out;
804		}
805	}
806
807	/* If the constraints say the regulator should be on at this point
808	 * and we have control then make sure it is enabled.
809	 */
810	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
811		ret = ops->enable(rdev);
812		if (ret < 0) {
813			printk(KERN_ERR "%s: failed to enable %s\n",
814			       __func__, name);
815			rdev->constraints = NULL;
816			goto out;
817		}
818	}
819
820	print_constraints(rdev);
821out:
822	return ret;
823}
824
825/**
826 * set_supply - set regulator supply regulator
827 * @rdev: regulator name
828 * @supply_rdev: supply regulator name
829 *
830 * Called by platform initialisation code to set the supply regulator for this
831 * regulator. This ensures that a regulators supply will also be enabled by the
832 * core if it's child is enabled.
833 */
834static int set_supply(struct regulator_dev *rdev,
835	struct regulator_dev *supply_rdev)
836{
837	int err;
838
839	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
840				"supply");
841	if (err) {
842		printk(KERN_ERR
843		       "%s: could not add device link %s err %d\n",
844		       __func__, supply_rdev->dev.kobj.name, err);
845		       goto out;
846	}
847	rdev->supply = supply_rdev;
848	list_add(&rdev->slist, &supply_rdev->supply_list);
849out:
850	return err;
851}
852
853/**
854 * set_consumer_device_supply: Bind a regulator to a symbolic supply
855 * @rdev:         regulator source
856 * @consumer_dev: device the supply applies to
857 * @supply:       symbolic name for supply
858 *
859 * Allows platform initialisation code to map physical regulator
860 * sources to symbolic names for supplies for use by devices.  Devices
861 * should use these symbolic names to request regulators, avoiding the
862 * need to provide board-specific regulator names as platform data.
863 */
864static int set_consumer_device_supply(struct regulator_dev *rdev,
865	struct device *consumer_dev, const char *supply)
866{
867	struct regulator_map *node;
868
869	if (supply == NULL)
870		return -EINVAL;
871
872	list_for_each_entry(node, &regulator_map_list, list) {
873		if (consumer_dev != node->dev)
874			continue;
875		if (strcmp(node->supply, supply) != 0)
876			continue;
877
878		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
879				dev_name(&node->regulator->dev),
880				node->regulator->desc->name,
881				supply,
882				dev_name(&rdev->dev), rdev->desc->name);
883		return -EBUSY;
884	}
885
886	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
887	if (node == NULL)
888		return -ENOMEM;
889
890	node->regulator = rdev;
891	node->dev = consumer_dev;
892	node->supply = supply;
893
894	list_add(&node->list, &regulator_map_list);
895	return 0;
896}
897
898static void unset_consumer_device_supply(struct regulator_dev *rdev,
899	struct device *consumer_dev)
900{
901	struct regulator_map *node, *n;
902
903	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
904		if (rdev == node->regulator &&
905			consumer_dev == node->dev) {
906			list_del(&node->list);
907			kfree(node);
908			return;
909		}
910	}
911}
912
913static void unset_regulator_supplies(struct regulator_dev *rdev)
914{
915	struct regulator_map *node, *n;
916
917	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
918		if (rdev == node->regulator) {
919			list_del(&node->list);
920			kfree(node);
921			return;
922		}
923	}
924}
925
926#define REG_STR_SIZE	32
927
928static struct regulator *create_regulator(struct regulator_dev *rdev,
929					  struct device *dev,
930					  const char *supply_name)
931{
932	struct regulator *regulator;
933	char buf[REG_STR_SIZE];
934	int err, size;
935
936	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
937	if (regulator == NULL)
938		return NULL;
939
940	mutex_lock(&rdev->mutex);
941	regulator->rdev = rdev;
942	list_add(&regulator->list, &rdev->consumer_list);
943
944	if (dev) {
945		/* create a 'requested_microamps_name' sysfs entry */
946		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
947			supply_name);
948		if (size >= REG_STR_SIZE)
949			goto overflow_err;
950
951		regulator->dev = dev;
952		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
953		if (regulator->dev_attr.attr.name == NULL)
954			goto attr_name_err;
955
956		regulator->dev_attr.attr.owner = THIS_MODULE;
957		regulator->dev_attr.attr.mode = 0444;
958		regulator->dev_attr.show = device_requested_uA_show;
959		err = device_create_file(dev, &regulator->dev_attr);
960		if (err < 0) {
961			printk(KERN_WARNING "%s: could not add regulator_dev"
962				" load sysfs\n", __func__);
963			goto attr_name_err;
964		}
965
966		/* also add a link to the device sysfs entry */
967		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
968				 dev->kobj.name, supply_name);
969		if (size >= REG_STR_SIZE)
970			goto attr_err;
971
972		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
973		if (regulator->supply_name == NULL)
974			goto attr_err;
975
976		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
977					buf);
978		if (err) {
979			printk(KERN_WARNING
980			       "%s: could not add device link %s err %d\n",
981			       __func__, dev->kobj.name, err);
982			device_remove_file(dev, &regulator->dev_attr);
983			goto link_name_err;
984		}
985	}
986	mutex_unlock(&rdev->mutex);
987	return regulator;
988link_name_err:
989	kfree(regulator->supply_name);
990attr_err:
991	device_remove_file(regulator->dev, &regulator->dev_attr);
992attr_name_err:
993	kfree(regulator->dev_attr.attr.name);
994overflow_err:
995	list_del(&regulator->list);
996	kfree(regulator);
997	mutex_unlock(&rdev->mutex);
998	return NULL;
999}
1000
1001/**
1002 * regulator_get - lookup and obtain a reference to a regulator.
1003 * @dev: device for regulator "consumer"
1004 * @id: Supply name or regulator ID.
1005 *
1006 * Returns a struct regulator corresponding to the regulator producer,
1007 * or IS_ERR() condition containing errno.
1008 *
1009 * Use of supply names configured via regulator_set_device_supply() is
1010 * strongly encouraged.  It is recommended that the supply name used
1011 * should match the name used for the supply and/or the relevant
1012 * device pins in the datasheet.
1013 */
1014struct regulator *regulator_get(struct device *dev, const char *id)
1015{
1016	struct regulator_dev *rdev;
1017	struct regulator_map *map;
1018	struct regulator *regulator = ERR_PTR(-ENODEV);
1019
1020	if (id == NULL) {
1021		printk(KERN_ERR "regulator: get() with no identifier\n");
1022		return regulator;
1023	}
1024
1025	mutex_lock(&regulator_list_mutex);
1026
1027	list_for_each_entry(map, &regulator_map_list, list) {
1028		if (dev == map->dev &&
1029		    strcmp(map->supply, id) == 0) {
1030			rdev = map->regulator;
1031			goto found;
1032		}
1033	}
1034	mutex_unlock(&regulator_list_mutex);
1035	return regulator;
1036
1037found:
1038	if (!try_module_get(rdev->owner))
1039		goto out;
1040
1041	regulator = create_regulator(rdev, dev, id);
1042	if (regulator == NULL) {
1043		regulator = ERR_PTR(-ENOMEM);
1044		module_put(rdev->owner);
1045	}
1046
1047out:
1048	mutex_unlock(&regulator_list_mutex);
1049	return regulator;
1050}
1051EXPORT_SYMBOL_GPL(regulator_get);
1052
1053/**
1054 * regulator_put - "free" the regulator source
1055 * @regulator: regulator source
1056 *
1057 * Note: drivers must ensure that all regulator_enable calls made on this
1058 * regulator source are balanced by regulator_disable calls prior to calling
1059 * this function.
1060 */
1061void regulator_put(struct regulator *regulator)
1062{
1063	struct regulator_dev *rdev;
1064
1065	if (regulator == NULL || IS_ERR(regulator))
1066		return;
1067
1068	mutex_lock(&regulator_list_mutex);
1069	rdev = regulator->rdev;
1070
1071	/* remove any sysfs entries */
1072	if (regulator->dev) {
1073		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1074		kfree(regulator->supply_name);
1075		device_remove_file(regulator->dev, &regulator->dev_attr);
1076		kfree(regulator->dev_attr.attr.name);
1077	}
1078	list_del(&regulator->list);
1079	kfree(regulator);
1080
1081	module_put(rdev->owner);
1082	mutex_unlock(&regulator_list_mutex);
1083}
1084EXPORT_SYMBOL_GPL(regulator_put);
1085
1086/* locks held by regulator_enable() */
1087static int _regulator_enable(struct regulator_dev *rdev)
1088{
1089	int ret = -EINVAL;
1090
1091	if (!rdev->constraints) {
1092		printk(KERN_ERR "%s: %s has no constraints\n",
1093		       __func__, rdev->desc->name);
1094		return ret;
1095	}
1096
1097	/* do we need to enable the supply regulator first */
1098	if (rdev->supply) {
1099		ret = _regulator_enable(rdev->supply);
1100		if (ret < 0) {
1101			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1102			       __func__, rdev->desc->name, ret);
1103			return ret;
1104		}
1105	}
1106
1107	/* check voltage and requested load before enabling */
1108	if (rdev->desc->ops->enable) {
1109
1110		if (rdev->constraints &&
1111			(rdev->constraints->valid_ops_mask &
1112			REGULATOR_CHANGE_DRMS))
1113			drms_uA_update(rdev);
1114
1115		ret = rdev->desc->ops->enable(rdev);
1116		if (ret < 0) {
1117			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1118			       __func__, rdev->desc->name, ret);
1119			return ret;
1120		}
1121		rdev->use_count++;
1122		return ret;
1123	}
1124
1125	return ret;
1126}
1127
1128/**
1129 * regulator_enable - enable regulator output
1130 * @regulator: regulator source
1131 *
1132 * Request that the regulator be enabled with the regulator output at
1133 * the predefined voltage or current value.  Calls to regulator_enable()
1134 * must be balanced with calls to regulator_disable().
1135 *
1136 * NOTE: the output value can be set by other drivers, boot loader or may be
1137 * hardwired in the regulator.
1138 */
1139int regulator_enable(struct regulator *regulator)
1140{
1141	struct regulator_dev *rdev = regulator->rdev;
1142	int ret = 0;
1143
1144	mutex_lock(&rdev->mutex);
1145	ret = _regulator_enable(rdev);
1146	mutex_unlock(&rdev->mutex);
1147	return ret;
1148}
1149EXPORT_SYMBOL_GPL(regulator_enable);
1150
1151/* locks held by regulator_disable() */
1152static int _regulator_disable(struct regulator_dev *rdev)
1153{
1154	int ret = 0;
1155
1156	if (WARN(rdev->use_count <= 0,
1157			"unbalanced disables for %s\n",
1158			rdev->desc->name))
1159		return -EIO;
1160
1161	/* are we the last user and permitted to disable ? */
1162	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1163
1164		/* we are last user */
1165		if (rdev->desc->ops->disable) {
1166			ret = rdev->desc->ops->disable(rdev);
1167			if (ret < 0) {
1168				printk(KERN_ERR "%s: failed to disable %s\n",
1169				       __func__, rdev->desc->name);
1170				return ret;
1171			}
1172		}
1173
1174		/* decrease our supplies ref count and disable if required */
1175		if (rdev->supply)
1176			_regulator_disable(rdev->supply);
1177
1178		rdev->use_count = 0;
1179	} else if (rdev->use_count > 1) {
1180
1181		if (rdev->constraints &&
1182			(rdev->constraints->valid_ops_mask &
1183			REGULATOR_CHANGE_DRMS))
1184			drms_uA_update(rdev);
1185
1186		rdev->use_count--;
1187	}
1188	return ret;
1189}
1190
1191/**
1192 * regulator_disable - disable regulator output
1193 * @regulator: regulator source
1194 *
1195 * Disable the regulator output voltage or current.  Calls to
1196 * regulator_enable() must be balanced with calls to
1197 * regulator_disable().
1198 *
1199 * NOTE: this will only disable the regulator output if no other consumer
1200 * devices have it enabled, the regulator device supports disabling and
1201 * machine constraints permit this operation.
1202 */
1203int regulator_disable(struct regulator *regulator)
1204{
1205	struct regulator_dev *rdev = regulator->rdev;
1206	int ret = 0;
1207
1208	mutex_lock(&rdev->mutex);
1209	ret = _regulator_disable(rdev);
1210	mutex_unlock(&rdev->mutex);
1211	return ret;
1212}
1213EXPORT_SYMBOL_GPL(regulator_disable);
1214
1215/* locks held by regulator_force_disable() */
1216static int _regulator_force_disable(struct regulator_dev *rdev)
1217{
1218	int ret = 0;
1219
1220	/* force disable */
1221	if (rdev->desc->ops->disable) {
1222		/* ah well, who wants to live forever... */
1223		ret = rdev->desc->ops->disable(rdev);
1224		if (ret < 0) {
1225			printk(KERN_ERR "%s: failed to force disable %s\n",
1226			       __func__, rdev->desc->name);
1227			return ret;
1228		}
1229		/* notify other consumers that power has been forced off */
1230		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1231			NULL);
1232	}
1233
1234	/* decrease our supplies ref count and disable if required */
1235	if (rdev->supply)
1236		_regulator_disable(rdev->supply);
1237
1238	rdev->use_count = 0;
1239	return ret;
1240}
1241
1242/**
1243 * regulator_force_disable - force disable regulator output
1244 * @regulator: regulator source
1245 *
1246 * Forcibly disable the regulator output voltage or current.
1247 * NOTE: this *will* disable the regulator output even if other consumer
1248 * devices have it enabled. This should be used for situations when device
1249 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1250 */
1251int regulator_force_disable(struct regulator *regulator)
1252{
1253	int ret;
1254
1255	mutex_lock(&regulator->rdev->mutex);
1256	regulator->uA_load = 0;
1257	ret = _regulator_force_disable(regulator->rdev);
1258	mutex_unlock(&regulator->rdev->mutex);
1259	return ret;
1260}
1261EXPORT_SYMBOL_GPL(regulator_force_disable);
1262
1263static int _regulator_is_enabled(struct regulator_dev *rdev)
1264{
1265	int ret;
1266
1267	mutex_lock(&rdev->mutex);
1268
1269	/* sanity check */
1270	if (!rdev->desc->ops->is_enabled) {
1271		ret = -EINVAL;
1272		goto out;
1273	}
1274
1275	ret = rdev->desc->ops->is_enabled(rdev);
1276out:
1277	mutex_unlock(&rdev->mutex);
1278	return ret;
1279}
1280
1281/**
1282 * regulator_is_enabled - is the regulator output enabled
1283 * @regulator: regulator source
1284 *
1285 * Returns positive if the regulator driver backing the source/client
1286 * has requested that the device be enabled, zero if it hasn't, else a
1287 * negative errno code.
1288 *
1289 * Note that the device backing this regulator handle can have multiple
1290 * users, so it might be enabled even if regulator_enable() was never
1291 * called for this particular source.
1292 */
1293int regulator_is_enabled(struct regulator *regulator)
1294{
1295	return _regulator_is_enabled(regulator->rdev);
1296}
1297EXPORT_SYMBOL_GPL(regulator_is_enabled);
1298
1299/**
1300 * regulator_count_voltages - count regulator_list_voltage() selectors
1301 * @regulator: regulator source
1302 *
1303 * Returns number of selectors, or negative errno.  Selectors are
1304 * numbered starting at zero, and typically correspond to bitfields
1305 * in hardware registers.
1306 */
1307int regulator_count_voltages(struct regulator *regulator)
1308{
1309	struct regulator_dev	*rdev = regulator->rdev;
1310
1311	return rdev->desc->n_voltages ? : -EINVAL;
1312}
1313EXPORT_SYMBOL_GPL(regulator_count_voltages);
1314
1315/**
1316 * regulator_list_voltage - enumerate supported voltages
1317 * @regulator: regulator source
1318 * @selector: identify voltage to list
1319 * Context: can sleep
1320 *
1321 * Returns a voltage that can be passed to @regulator_set_voltage(),
1322 * zero if this selector code can't be used on this sytem, or a
1323 * negative errno.
1324 */
1325int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1326{
1327	struct regulator_dev	*rdev = regulator->rdev;
1328	struct regulator_ops	*ops = rdev->desc->ops;
1329	int			ret;
1330
1331	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1332		return -EINVAL;
1333
1334	mutex_lock(&rdev->mutex);
1335	ret = ops->list_voltage(rdev, selector);
1336	mutex_unlock(&rdev->mutex);
1337
1338	if (ret > 0) {
1339		if (ret < rdev->constraints->min_uV)
1340			ret = 0;
1341		else if (ret > rdev->constraints->max_uV)
1342			ret = 0;
1343	}
1344
1345	return ret;
1346}
1347EXPORT_SYMBOL_GPL(regulator_list_voltage);
1348
1349/**
1350 * regulator_set_voltage - set regulator output voltage
1351 * @regulator: regulator source
1352 * @min_uV: Minimum required voltage in uV
1353 * @max_uV: Maximum acceptable voltage in uV
1354 *
1355 * Sets a voltage regulator to the desired output voltage. This can be set
1356 * during any regulator state. IOW, regulator can be disabled or enabled.
1357 *
1358 * If the regulator is enabled then the voltage will change to the new value
1359 * immediately otherwise if the regulator is disabled the regulator will
1360 * output at the new voltage when enabled.
1361 *
1362 * NOTE: If the regulator is shared between several devices then the lowest
1363 * request voltage that meets the system constraints will be used.
1364 * Regulator system constraints must be set for this regulator before
1365 * calling this function otherwise this call will fail.
1366 */
1367int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1368{
1369	struct regulator_dev *rdev = regulator->rdev;
1370	int ret;
1371
1372	mutex_lock(&rdev->mutex);
1373
1374	/* sanity check */
1375	if (!rdev->desc->ops->set_voltage) {
1376		ret = -EINVAL;
1377		goto out;
1378	}
1379
1380	/* constraints check */
1381	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1382	if (ret < 0)
1383		goto out;
1384	regulator->min_uV = min_uV;
1385	regulator->max_uV = max_uV;
1386	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1387
1388out:
1389	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1390	mutex_unlock(&rdev->mutex);
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regulator_set_voltage);
1394
1395static int _regulator_get_voltage(struct regulator_dev *rdev)
1396{
1397	/* sanity check */
1398	if (rdev->desc->ops->get_voltage)
1399		return rdev->desc->ops->get_voltage(rdev);
1400	else
1401		return -EINVAL;
1402}
1403
1404/**
1405 * regulator_get_voltage - get regulator output voltage
1406 * @regulator: regulator source
1407 *
1408 * This returns the current regulator voltage in uV.
1409 *
1410 * NOTE: If the regulator is disabled it will return the voltage value. This
1411 * function should not be used to determine regulator state.
1412 */
1413int regulator_get_voltage(struct regulator *regulator)
1414{
1415	int ret;
1416
1417	mutex_lock(&regulator->rdev->mutex);
1418
1419	ret = _regulator_get_voltage(regulator->rdev);
1420
1421	mutex_unlock(&regulator->rdev->mutex);
1422
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(regulator_get_voltage);
1426
1427/**
1428 * regulator_set_current_limit - set regulator output current limit
1429 * @regulator: regulator source
1430 * @min_uA: Minimuum supported current in uA
1431 * @max_uA: Maximum supported current in uA
1432 *
1433 * Sets current sink to the desired output current. This can be set during
1434 * any regulator state. IOW, regulator can be disabled or enabled.
1435 *
1436 * If the regulator is enabled then the current will change to the new value
1437 * immediately otherwise if the regulator is disabled the regulator will
1438 * output at the new current when enabled.
1439 *
1440 * NOTE: Regulator system constraints must be set for this regulator before
1441 * calling this function otherwise this call will fail.
1442 */
1443int regulator_set_current_limit(struct regulator *regulator,
1444			       int min_uA, int max_uA)
1445{
1446	struct regulator_dev *rdev = regulator->rdev;
1447	int ret;
1448
1449	mutex_lock(&rdev->mutex);
1450
1451	/* sanity check */
1452	if (!rdev->desc->ops->set_current_limit) {
1453		ret = -EINVAL;
1454		goto out;
1455	}
1456
1457	/* constraints check */
1458	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1459	if (ret < 0)
1460		goto out;
1461
1462	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1463out:
1464	mutex_unlock(&rdev->mutex);
1465	return ret;
1466}
1467EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1468
1469static int _regulator_get_current_limit(struct regulator_dev *rdev)
1470{
1471	int ret;
1472
1473	mutex_lock(&rdev->mutex);
1474
1475	/* sanity check */
1476	if (!rdev->desc->ops->get_current_limit) {
1477		ret = -EINVAL;
1478		goto out;
1479	}
1480
1481	ret = rdev->desc->ops->get_current_limit(rdev);
1482out:
1483	mutex_unlock(&rdev->mutex);
1484	return ret;
1485}
1486
1487/**
1488 * regulator_get_current_limit - get regulator output current
1489 * @regulator: regulator source
1490 *
1491 * This returns the current supplied by the specified current sink in uA.
1492 *
1493 * NOTE: If the regulator is disabled it will return the current value. This
1494 * function should not be used to determine regulator state.
1495 */
1496int regulator_get_current_limit(struct regulator *regulator)
1497{
1498	return _regulator_get_current_limit(regulator->rdev);
1499}
1500EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1501
1502/**
1503 * regulator_set_mode - set regulator operating mode
1504 * @regulator: regulator source
1505 * @mode: operating mode - one of the REGULATOR_MODE constants
1506 *
1507 * Set regulator operating mode to increase regulator efficiency or improve
1508 * regulation performance.
1509 *
1510 * NOTE: Regulator system constraints must be set for this regulator before
1511 * calling this function otherwise this call will fail.
1512 */
1513int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1514{
1515	struct regulator_dev *rdev = regulator->rdev;
1516	int ret;
1517
1518	mutex_lock(&rdev->mutex);
1519
1520	/* sanity check */
1521	if (!rdev->desc->ops->set_mode) {
1522		ret = -EINVAL;
1523		goto out;
1524	}
1525
1526	/* constraints check */
1527	ret = regulator_check_mode(rdev, mode);
1528	if (ret < 0)
1529		goto out;
1530
1531	ret = rdev->desc->ops->set_mode(rdev, mode);
1532out:
1533	mutex_unlock(&rdev->mutex);
1534	return ret;
1535}
1536EXPORT_SYMBOL_GPL(regulator_set_mode);
1537
1538static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1539{
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543
1544	/* sanity check */
1545	if (!rdev->desc->ops->get_mode) {
1546		ret = -EINVAL;
1547		goto out;
1548	}
1549
1550	ret = rdev->desc->ops->get_mode(rdev);
1551out:
1552	mutex_unlock(&rdev->mutex);
1553	return ret;
1554}
1555
1556/**
1557 * regulator_get_mode - get regulator operating mode
1558 * @regulator: regulator source
1559 *
1560 * Get the current regulator operating mode.
1561 */
1562unsigned int regulator_get_mode(struct regulator *regulator)
1563{
1564	return _regulator_get_mode(regulator->rdev);
1565}
1566EXPORT_SYMBOL_GPL(regulator_get_mode);
1567
1568/**
1569 * regulator_set_optimum_mode - set regulator optimum operating mode
1570 * @regulator: regulator source
1571 * @uA_load: load current
1572 *
1573 * Notifies the regulator core of a new device load. This is then used by
1574 * DRMS (if enabled by constraints) to set the most efficient regulator
1575 * operating mode for the new regulator loading.
1576 *
1577 * Consumer devices notify their supply regulator of the maximum power
1578 * they will require (can be taken from device datasheet in the power
1579 * consumption tables) when they change operational status and hence power
1580 * state. Examples of operational state changes that can affect power
1581 * consumption are :-
1582 *
1583 *    o Device is opened / closed.
1584 *    o Device I/O is about to begin or has just finished.
1585 *    o Device is idling in between work.
1586 *
1587 * This information is also exported via sysfs to userspace.
1588 *
1589 * DRMS will sum the total requested load on the regulator and change
1590 * to the most efficient operating mode if platform constraints allow.
1591 *
1592 * Returns the new regulator mode or error.
1593 */
1594int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1595{
1596	struct regulator_dev *rdev = regulator->rdev;
1597	struct regulator *consumer;
1598	int ret, output_uV, input_uV, total_uA_load = 0;
1599	unsigned int mode;
1600
1601	mutex_lock(&rdev->mutex);
1602
1603	regulator->uA_load = uA_load;
1604	ret = regulator_check_drms(rdev);
1605	if (ret < 0)
1606		goto out;
1607	ret = -EINVAL;
1608
1609	/* sanity check */
1610	if (!rdev->desc->ops->get_optimum_mode)
1611		goto out;
1612
1613	/* get output voltage */
1614	output_uV = rdev->desc->ops->get_voltage(rdev);
1615	if (output_uV <= 0) {
1616		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1617			__func__, rdev->desc->name);
1618		goto out;
1619	}
1620
1621	/* get input voltage */
1622	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1623		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1624	else
1625		input_uV = rdev->constraints->input_uV;
1626	if (input_uV <= 0) {
1627		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1628			__func__, rdev->desc->name);
1629		goto out;
1630	}
1631
1632	/* calc total requested load for this regulator */
1633	list_for_each_entry(consumer, &rdev->consumer_list, list)
1634	    total_uA_load += consumer->uA_load;
1635
1636	mode = rdev->desc->ops->get_optimum_mode(rdev,
1637						 input_uV, output_uV,
1638						 total_uA_load);
1639	ret = regulator_check_mode(rdev, mode);
1640	if (ret < 0) {
1641		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1642			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1643			total_uA_load, input_uV, output_uV);
1644		goto out;
1645	}
1646
1647	ret = rdev->desc->ops->set_mode(rdev, mode);
1648	if (ret < 0) {
1649		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1650			__func__, mode, rdev->desc->name);
1651		goto out;
1652	}
1653	ret = mode;
1654out:
1655	mutex_unlock(&rdev->mutex);
1656	return ret;
1657}
1658EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1659
1660/**
1661 * regulator_register_notifier - register regulator event notifier
1662 * @regulator: regulator source
1663 * @nb: notifier block
1664 *
1665 * Register notifier block to receive regulator events.
1666 */
1667int regulator_register_notifier(struct regulator *regulator,
1668			      struct notifier_block *nb)
1669{
1670	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1671						nb);
1672}
1673EXPORT_SYMBOL_GPL(regulator_register_notifier);
1674
1675/**
1676 * regulator_unregister_notifier - unregister regulator event notifier
1677 * @regulator: regulator source
1678 * @nb: notifier block
1679 *
1680 * Unregister regulator event notifier block.
1681 */
1682int regulator_unregister_notifier(struct regulator *regulator,
1683				struct notifier_block *nb)
1684{
1685	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1686						  nb);
1687}
1688EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1689
1690/* notify regulator consumers and downstream regulator consumers.
1691 * Note mutex must be held by caller.
1692 */
1693static void _notifier_call_chain(struct regulator_dev *rdev,
1694				  unsigned long event, void *data)
1695{
1696	struct regulator_dev *_rdev;
1697
1698	/* call rdev chain first */
1699	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1700
1701	/* now notify regulator we supply */
1702	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1703	  mutex_lock(&_rdev->mutex);
1704	  _notifier_call_chain(_rdev, event, data);
1705	  mutex_unlock(&_rdev->mutex);
1706	}
1707}
1708
1709/**
1710 * regulator_bulk_get - get multiple regulator consumers
1711 *
1712 * @dev:           Device to supply
1713 * @num_consumers: Number of consumers to register
1714 * @consumers:     Configuration of consumers; clients are stored here.
1715 *
1716 * @return 0 on success, an errno on failure.
1717 *
1718 * This helper function allows drivers to get several regulator
1719 * consumers in one operation.  If any of the regulators cannot be
1720 * acquired then any regulators that were allocated will be freed
1721 * before returning to the caller.
1722 */
1723int regulator_bulk_get(struct device *dev, int num_consumers,
1724		       struct regulator_bulk_data *consumers)
1725{
1726	int i;
1727	int ret;
1728
1729	for (i = 0; i < num_consumers; i++)
1730		consumers[i].consumer = NULL;
1731
1732	for (i = 0; i < num_consumers; i++) {
1733		consumers[i].consumer = regulator_get(dev,
1734						      consumers[i].supply);
1735		if (IS_ERR(consumers[i].consumer)) {
1736			dev_err(dev, "Failed to get supply '%s'\n",
1737				consumers[i].supply);
1738			ret = PTR_ERR(consumers[i].consumer);
1739			consumers[i].consumer = NULL;
1740			goto err;
1741		}
1742	}
1743
1744	return 0;
1745
1746err:
1747	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1748		regulator_put(consumers[i].consumer);
1749
1750	return ret;
1751}
1752EXPORT_SYMBOL_GPL(regulator_bulk_get);
1753
1754/**
1755 * regulator_bulk_enable - enable multiple regulator consumers
1756 *
1757 * @num_consumers: Number of consumers
1758 * @consumers:     Consumer data; clients are stored here.
1759 * @return         0 on success, an errno on failure
1760 *
1761 * This convenience API allows consumers to enable multiple regulator
1762 * clients in a single API call.  If any consumers cannot be enabled
1763 * then any others that were enabled will be disabled again prior to
1764 * return.
1765 */
1766int regulator_bulk_enable(int num_consumers,
1767			  struct regulator_bulk_data *consumers)
1768{
1769	int i;
1770	int ret;
1771
1772	for (i = 0; i < num_consumers; i++) {
1773		ret = regulator_enable(consumers[i].consumer);
1774		if (ret != 0)
1775			goto err;
1776	}
1777
1778	return 0;
1779
1780err:
1781	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1782	for (i = 0; i < num_consumers; i++)
1783		regulator_disable(consumers[i].consumer);
1784
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1788
1789/**
1790 * regulator_bulk_disable - disable multiple regulator consumers
1791 *
1792 * @num_consumers: Number of consumers
1793 * @consumers:     Consumer data; clients are stored here.
1794 * @return         0 on success, an errno on failure
1795 *
1796 * This convenience API allows consumers to disable multiple regulator
1797 * clients in a single API call.  If any consumers cannot be enabled
1798 * then any others that were disabled will be disabled again prior to
1799 * return.
1800 */
1801int regulator_bulk_disable(int num_consumers,
1802			   struct regulator_bulk_data *consumers)
1803{
1804	int i;
1805	int ret;
1806
1807	for (i = 0; i < num_consumers; i++) {
1808		ret = regulator_disable(consumers[i].consumer);
1809		if (ret != 0)
1810			goto err;
1811	}
1812
1813	return 0;
1814
1815err:
1816	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1817	for (i = 0; i < num_consumers; i++)
1818		regulator_enable(consumers[i].consumer);
1819
1820	return ret;
1821}
1822EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1823
1824/**
1825 * regulator_bulk_free - free multiple regulator consumers
1826 *
1827 * @num_consumers: Number of consumers
1828 * @consumers:     Consumer data; clients are stored here.
1829 *
1830 * This convenience API allows consumers to free multiple regulator
1831 * clients in a single API call.
1832 */
1833void regulator_bulk_free(int num_consumers,
1834			 struct regulator_bulk_data *consumers)
1835{
1836	int i;
1837
1838	for (i = 0; i < num_consumers; i++) {
1839		regulator_put(consumers[i].consumer);
1840		consumers[i].consumer = NULL;
1841	}
1842}
1843EXPORT_SYMBOL_GPL(regulator_bulk_free);
1844
1845/**
1846 * regulator_notifier_call_chain - call regulator event notifier
1847 * @rdev: regulator source
1848 * @event: notifier block
1849 * @data: callback-specific data.
1850 *
1851 * Called by regulator drivers to notify clients a regulator event has
1852 * occurred. We also notify regulator clients downstream.
1853 * Note lock must be held by caller.
1854 */
1855int regulator_notifier_call_chain(struct regulator_dev *rdev,
1856				  unsigned long event, void *data)
1857{
1858	_notifier_call_chain(rdev, event, data);
1859	return NOTIFY_DONE;
1860
1861}
1862EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1863
1864/*
1865 * To avoid cluttering sysfs (and memory) with useless state, only
1866 * create attributes that can be meaningfully displayed.
1867 */
1868static int add_regulator_attributes(struct regulator_dev *rdev)
1869{
1870	struct device		*dev = &rdev->dev;
1871	struct regulator_ops	*ops = rdev->desc->ops;
1872	int			status = 0;
1873
1874	/* some attributes need specific methods to be displayed */
1875	if (ops->get_voltage) {
1876		status = device_create_file(dev, &dev_attr_microvolts);
1877		if (status < 0)
1878			return status;
1879	}
1880	if (ops->get_current_limit) {
1881		status = device_create_file(dev, &dev_attr_microamps);
1882		if (status < 0)
1883			return status;
1884	}
1885	if (ops->get_mode) {
1886		status = device_create_file(dev, &dev_attr_opmode);
1887		if (status < 0)
1888			return status;
1889	}
1890	if (ops->is_enabled) {
1891		status = device_create_file(dev, &dev_attr_state);
1892		if (status < 0)
1893			return status;
1894	}
1895	if (ops->get_status) {
1896		status = device_create_file(dev, &dev_attr_status);
1897		if (status < 0)
1898			return status;
1899	}
1900
1901	/* some attributes are type-specific */
1902	if (rdev->desc->type == REGULATOR_CURRENT) {
1903		status = device_create_file(dev, &dev_attr_requested_microamps);
1904		if (status < 0)
1905			return status;
1906	}
1907
1908	/* all the other attributes exist to support constraints;
1909	 * don't show them if there are no constraints, or if the
1910	 * relevant supporting methods are missing.
1911	 */
1912	if (!rdev->constraints)
1913		return status;
1914
1915	/* constraints need specific supporting methods */
1916	if (ops->set_voltage) {
1917		status = device_create_file(dev, &dev_attr_min_microvolts);
1918		if (status < 0)
1919			return status;
1920		status = device_create_file(dev, &dev_attr_max_microvolts);
1921		if (status < 0)
1922			return status;
1923	}
1924	if (ops->set_current_limit) {
1925		status = device_create_file(dev, &dev_attr_min_microamps);
1926		if (status < 0)
1927			return status;
1928		status = device_create_file(dev, &dev_attr_max_microamps);
1929		if (status < 0)
1930			return status;
1931	}
1932
1933	/* suspend mode constraints need multiple supporting methods */
1934	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1935		return status;
1936
1937	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1938	if (status < 0)
1939		return status;
1940	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1941	if (status < 0)
1942		return status;
1943	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1944	if (status < 0)
1945		return status;
1946
1947	if (ops->set_suspend_voltage) {
1948		status = device_create_file(dev,
1949				&dev_attr_suspend_standby_microvolts);
1950		if (status < 0)
1951			return status;
1952		status = device_create_file(dev,
1953				&dev_attr_suspend_mem_microvolts);
1954		if (status < 0)
1955			return status;
1956		status = device_create_file(dev,
1957				&dev_attr_suspend_disk_microvolts);
1958		if (status < 0)
1959			return status;
1960	}
1961
1962	if (ops->set_suspend_mode) {
1963		status = device_create_file(dev,
1964				&dev_attr_suspend_standby_mode);
1965		if (status < 0)
1966			return status;
1967		status = device_create_file(dev,
1968				&dev_attr_suspend_mem_mode);
1969		if (status < 0)
1970			return status;
1971		status = device_create_file(dev,
1972				&dev_attr_suspend_disk_mode);
1973		if (status < 0)
1974			return status;
1975	}
1976
1977	return status;
1978}
1979
1980/**
1981 * regulator_register - register regulator
1982 * @regulator_desc: regulator to register
1983 * @dev: struct device for the regulator
1984 * @init_data: platform provided init data, passed through by driver
1985 * @driver_data: private regulator data
1986 *
1987 * Called by regulator drivers to register a regulator.
1988 * Returns 0 on success.
1989 */
1990struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1991	struct device *dev, struct regulator_init_data *init_data,
1992	void *driver_data)
1993{
1994	static atomic_t regulator_no = ATOMIC_INIT(0);
1995	struct regulator_dev *rdev;
1996	int ret, i;
1997
1998	if (regulator_desc == NULL)
1999		return ERR_PTR(-EINVAL);
2000
2001	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2002		return ERR_PTR(-EINVAL);
2003
2004	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2005	    regulator_desc->type != REGULATOR_CURRENT)
2006		return ERR_PTR(-EINVAL);
2007
2008	if (!init_data)
2009		return ERR_PTR(-EINVAL);
2010
2011	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2012	if (rdev == NULL)
2013		return ERR_PTR(-ENOMEM);
2014
2015	mutex_lock(&regulator_list_mutex);
2016
2017	mutex_init(&rdev->mutex);
2018	rdev->reg_data = driver_data;
2019	rdev->owner = regulator_desc->owner;
2020	rdev->desc = regulator_desc;
2021	INIT_LIST_HEAD(&rdev->consumer_list);
2022	INIT_LIST_HEAD(&rdev->supply_list);
2023	INIT_LIST_HEAD(&rdev->list);
2024	INIT_LIST_HEAD(&rdev->slist);
2025	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2026
2027	/* preform any regulator specific init */
2028	if (init_data->regulator_init) {
2029		ret = init_data->regulator_init(rdev->reg_data);
2030		if (ret < 0)
2031			goto clean;
2032	}
2033
2034	/* register with sysfs */
2035	rdev->dev.class = &regulator_class;
2036	rdev->dev.parent = dev;
2037	dev_set_name(&rdev->dev, "regulator.%d",
2038		     atomic_inc_return(&regulator_no) - 1);
2039	ret = device_register(&rdev->dev);
2040	if (ret != 0)
2041		goto clean;
2042
2043	dev_set_drvdata(&rdev->dev, rdev);
2044
2045	/* set regulator constraints */
2046	ret = set_machine_constraints(rdev, &init_data->constraints);
2047	if (ret < 0)
2048		goto scrub;
2049
2050	/* add attributes supported by this regulator */
2051	ret = add_regulator_attributes(rdev);
2052	if (ret < 0)
2053		goto scrub;
2054
2055	/* set supply regulator if it exists */
2056	if (init_data->supply_regulator_dev) {
2057		ret = set_supply(rdev,
2058			dev_get_drvdata(init_data->supply_regulator_dev));
2059		if (ret < 0)
2060			goto scrub;
2061	}
2062
2063	/* add consumers devices */
2064	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2065		ret = set_consumer_device_supply(rdev,
2066			init_data->consumer_supplies[i].dev,
2067			init_data->consumer_supplies[i].supply);
2068		if (ret < 0) {
2069			for (--i; i >= 0; i--)
2070				unset_consumer_device_supply(rdev,
2071					init_data->consumer_supplies[i].dev);
2072			goto scrub;
2073		}
2074	}
2075
2076	list_add(&rdev->list, &regulator_list);
2077out:
2078	mutex_unlock(&regulator_list_mutex);
2079	return rdev;
2080
2081scrub:
2082	device_unregister(&rdev->dev);
2083	/* device core frees rdev */
2084	rdev = ERR_PTR(ret);
2085	goto out;
2086
2087clean:
2088	kfree(rdev);
2089	rdev = ERR_PTR(ret);
2090	goto out;
2091}
2092EXPORT_SYMBOL_GPL(regulator_register);
2093
2094/**
2095 * regulator_unregister - unregister regulator
2096 * @rdev: regulator to unregister
2097 *
2098 * Called by regulator drivers to unregister a regulator.
2099 */
2100void regulator_unregister(struct regulator_dev *rdev)
2101{
2102	if (rdev == NULL)
2103		return;
2104
2105	mutex_lock(&regulator_list_mutex);
2106	unset_regulator_supplies(rdev);
2107	list_del(&rdev->list);
2108	if (rdev->supply)
2109		sysfs_remove_link(&rdev->dev.kobj, "supply");
2110	device_unregister(&rdev->dev);
2111	mutex_unlock(&regulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_unregister);
2114
2115/**
2116 * regulator_suspend_prepare - prepare regulators for system wide suspend
2117 * @state: system suspend state
2118 *
2119 * Configure each regulator with it's suspend operating parameters for state.
2120 * This will usually be called by machine suspend code prior to supending.
2121 */
2122int regulator_suspend_prepare(suspend_state_t state)
2123{
2124	struct regulator_dev *rdev;
2125	int ret = 0;
2126
2127	/* ON is handled by regulator active state */
2128	if (state == PM_SUSPEND_ON)
2129		return -EINVAL;
2130
2131	mutex_lock(&regulator_list_mutex);
2132	list_for_each_entry(rdev, &regulator_list, list) {
2133
2134		mutex_lock(&rdev->mutex);
2135		ret = suspend_prepare(rdev, state);
2136		mutex_unlock(&rdev->mutex);
2137
2138		if (ret < 0) {
2139			printk(KERN_ERR "%s: failed to prepare %s\n",
2140				__func__, rdev->desc->name);
2141			goto out;
2142		}
2143	}
2144out:
2145	mutex_unlock(&regulator_list_mutex);
2146	return ret;
2147}
2148EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2149
2150/**
2151 * regulator_has_full_constraints - the system has fully specified constraints
2152 *
2153 * Calling this function will cause the regulator API to disable all
2154 * regulators which have a zero use count and don't have an always_on
2155 * constraint in a late_initcall.
2156 *
2157 * The intention is that this will become the default behaviour in a
2158 * future kernel release so users are encouraged to use this facility
2159 * now.
2160 */
2161void regulator_has_full_constraints(void)
2162{
2163	has_full_constraints = 1;
2164}
2165EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2166
2167/**
2168 * rdev_get_drvdata - get rdev regulator driver data
2169 * @rdev: regulator
2170 *
2171 * Get rdev regulator driver private data. This call can be used in the
2172 * regulator driver context.
2173 */
2174void *rdev_get_drvdata(struct regulator_dev *rdev)
2175{
2176	return rdev->reg_data;
2177}
2178EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2179
2180/**
2181 * regulator_get_drvdata - get regulator driver data
2182 * @regulator: regulator
2183 *
2184 * Get regulator driver private data. This call can be used in the consumer
2185 * driver context when non API regulator specific functions need to be called.
2186 */
2187void *regulator_get_drvdata(struct regulator *regulator)
2188{
2189	return regulator->rdev->reg_data;
2190}
2191EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2192
2193/**
2194 * regulator_set_drvdata - set regulator driver data
2195 * @regulator: regulator
2196 * @data: data
2197 */
2198void regulator_set_drvdata(struct regulator *regulator, void *data)
2199{
2200	regulator->rdev->reg_data = data;
2201}
2202EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2203
2204/**
2205 * regulator_get_id - get regulator ID
2206 * @rdev: regulator
2207 */
2208int rdev_get_id(struct regulator_dev *rdev)
2209{
2210	return rdev->desc->id;
2211}
2212EXPORT_SYMBOL_GPL(rdev_get_id);
2213
2214struct device *rdev_get_dev(struct regulator_dev *rdev)
2215{
2216	return &rdev->dev;
2217}
2218EXPORT_SYMBOL_GPL(rdev_get_dev);
2219
2220void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2221{
2222	return reg_init_data->driver_data;
2223}
2224EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2225
2226static int __init regulator_init(void)
2227{
2228	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2229	return class_register(&regulator_class);
2230}
2231
2232/* init early to allow our consumers to complete system booting */
2233core_initcall(regulator_init);
2234
2235static int __init regulator_init_complete(void)
2236{
2237	struct regulator_dev *rdev;
2238	struct regulator_ops *ops;
2239	struct regulation_constraints *c;
2240	int enabled, ret;
2241	const char *name;
2242
2243	mutex_lock(&regulator_list_mutex);
2244
2245	/* If we have a full configuration then disable any regulators
2246	 * which are not in use or always_on.  This will become the
2247	 * default behaviour in the future.
2248	 */
2249	list_for_each_entry(rdev, &regulator_list, list) {
2250		ops = rdev->desc->ops;
2251		c = rdev->constraints;
2252
2253		if (c->name)
2254			name = c->name;
2255		else if (rdev->desc->name)
2256			name = rdev->desc->name;
2257		else
2258			name = "regulator";
2259
2260		if (!ops->disable || c->always_on)
2261			continue;
2262
2263		mutex_lock(&rdev->mutex);
2264
2265		if (rdev->use_count)
2266			goto unlock;
2267
2268		/* If we can't read the status assume it's on. */
2269		if (ops->is_enabled)
2270			enabled = ops->is_enabled(rdev);
2271		else
2272			enabled = 1;
2273
2274		if (!enabled)
2275			goto unlock;
2276
2277		if (has_full_constraints) {
2278			/* We log since this may kill the system if it
2279			 * goes wrong. */
2280			printk(KERN_INFO "%s: disabling %s\n",
2281			       __func__, name);
2282			ret = ops->disable(rdev);
2283			if (ret != 0) {
2284				printk(KERN_ERR
2285				       "%s: couldn't disable %s: %d\n",
2286				       __func__, name, ret);
2287			}
2288		} else {
2289			/* The intention is that in future we will
2290			 * assume that full constraints are provided
2291			 * so warn even if we aren't going to do
2292			 * anything here.
2293			 */
2294			printk(KERN_WARNING
2295			       "%s: incomplete constraints, leaving %s on\n",
2296			       __func__, name);
2297		}
2298
2299unlock:
2300		mutex_unlock(&rdev->mutex);
2301	}
2302
2303	mutex_unlock(&regulator_list_mutex);
2304
2305	return 0;
2306}
2307late_initcall(regulator_init_complete);
2308