core.c revision 587cea27e4feee7365b22935b3e19e1e8906e9cb
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static LIST_HEAD(regulator_ena_gpio_list);
55static bool has_full_constraints;
56static bool board_wants_dummy_regulator;
57
58static struct dentry *debugfs_root;
59
60/*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65struct regulator_map {
66	struct list_head list;
67	const char *dev_name;   /* The dev_name() for the consumer */
68	const char *supply;
69	struct regulator_dev *regulator;
70};
71
72/*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77struct regulator_enable_gpio {
78	struct list_head list;
79	int gpio;
80	u32 enable_count;	/* a number of enabled shared GPIO */
81	u32 request_count;	/* a number of requested shared GPIO */
82	unsigned int ena_gpio_invert:1;
83};
84
85/*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90struct regulator {
91	struct device *dev;
92	struct list_head list;
93	unsigned int always_on:1;
94	unsigned int bypass:1;
95	int uA_load;
96	int min_uV;
97	int max_uV;
98	char *supply_name;
99	struct device_attribute dev_attr;
100	struct regulator_dev *rdev;
101	struct dentry *debugfs;
102};
103
104static int _regulator_is_enabled(struct regulator_dev *rdev);
105static int _regulator_disable(struct regulator_dev *rdev);
106static int _regulator_get_voltage(struct regulator_dev *rdev);
107static int _regulator_get_current_limit(struct regulator_dev *rdev);
108static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109static void _notifier_call_chain(struct regulator_dev *rdev,
110				  unsigned long event, void *data);
111static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112				     int min_uV, int max_uV);
113static struct regulator *create_regulator(struct regulator_dev *rdev,
114					  struct device *dev,
115					  const char *supply_name);
116
117static const char *rdev_get_name(struct regulator_dev *rdev)
118{
119	if (rdev->constraints && rdev->constraints->name)
120		return rdev->constraints->name;
121	else if (rdev->desc->name)
122		return rdev->desc->name;
123	else
124		return "";
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		ret = _regulator_do_set_voltage(rdev,
848						rdev->constraints->min_uV,
849						rdev->constraints->max_uV);
850		if (ret < 0) {
851			rdev_err(rdev, "failed to apply %duV constraint\n",
852				 rdev->constraints->min_uV);
853			return ret;
854		}
855	}
856
857	/* constrain machine-level voltage specs to fit
858	 * the actual range supported by this regulator.
859	 */
860	if (ops->list_voltage && rdev->desc->n_voltages) {
861		int	count = rdev->desc->n_voltages;
862		int	i;
863		int	min_uV = INT_MAX;
864		int	max_uV = INT_MIN;
865		int	cmin = constraints->min_uV;
866		int	cmax = constraints->max_uV;
867
868		/* it's safe to autoconfigure fixed-voltage supplies
869		   and the constraints are used by list_voltage. */
870		if (count == 1 && !cmin) {
871			cmin = 1;
872			cmax = INT_MAX;
873			constraints->min_uV = cmin;
874			constraints->max_uV = cmax;
875		}
876
877		/* voltage constraints are optional */
878		if ((cmin == 0) && (cmax == 0))
879			return 0;
880
881		/* else require explicit machine-level constraints */
882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883			rdev_err(rdev, "invalid voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888		for (i = 0; i < count; i++) {
889			int	value;
890
891			value = ops->list_voltage(rdev, i);
892			if (value <= 0)
893				continue;
894
895			/* maybe adjust [min_uV..max_uV] */
896			if (value >= cmin && value < min_uV)
897				min_uV = value;
898			if (value <= cmax && value > max_uV)
899				max_uV = value;
900		}
901
902		/* final: [min_uV..max_uV] valid iff constraints valid */
903		if (max_uV < min_uV) {
904			rdev_err(rdev,
905				 "unsupportable voltage constraints %u-%uuV\n",
906				 min_uV, max_uV);
907			return -EINVAL;
908		}
909
910		/* use regulator's subset of machine constraints */
911		if (constraints->min_uV < min_uV) {
912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913				 constraints->min_uV, min_uV);
914			constraints->min_uV = min_uV;
915		}
916		if (constraints->max_uV > max_uV) {
917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918				 constraints->max_uV, max_uV);
919			constraints->max_uV = max_uV;
920		}
921	}
922
923	return 0;
924}
925
926/**
927 * set_machine_constraints - sets regulator constraints
928 * @rdev: regulator source
929 * @constraints: constraints to apply
930 *
931 * Allows platform initialisation code to define and constrain
932 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933 * Constraints *must* be set by platform code in order for some
934 * regulator operations to proceed i.e. set_voltage, set_current_limit,
935 * set_mode.
936 */
937static int set_machine_constraints(struct regulator_dev *rdev,
938	const struct regulation_constraints *constraints)
939{
940	int ret = 0;
941	struct regulator_ops *ops = rdev->desc->ops;
942
943	if (constraints)
944		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945					    GFP_KERNEL);
946	else
947		rdev->constraints = kzalloc(sizeof(*constraints),
948					    GFP_KERNEL);
949	if (!rdev->constraints)
950		return -ENOMEM;
951
952	ret = machine_constraints_voltage(rdev, rdev->constraints);
953	if (ret != 0)
954		goto out;
955
956	/* do we need to setup our suspend state */
957	if (rdev->constraints->initial_state) {
958		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959		if (ret < 0) {
960			rdev_err(rdev, "failed to set suspend state\n");
961			goto out;
962		}
963	}
964
965	if (rdev->constraints->initial_mode) {
966		if (!ops->set_mode) {
967			rdev_err(rdev, "no set_mode operation\n");
968			ret = -EINVAL;
969			goto out;
970		}
971
972		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973		if (ret < 0) {
974			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975			goto out;
976		}
977	}
978
979	/* If the constraints say the regulator should be on at this point
980	 * and we have control then make sure it is enabled.
981	 */
982	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983	    ops->enable) {
984		ret = ops->enable(rdev);
985		if (ret < 0) {
986			rdev_err(rdev, "failed to enable\n");
987			goto out;
988		}
989	}
990
991	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
992		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
993		if (ret < 0) {
994			rdev_err(rdev, "failed to set ramp_delay\n");
995			goto out;
996		}
997	}
998
999	print_constraints(rdev);
1000	return 0;
1001out:
1002	kfree(rdev->constraints);
1003	rdev->constraints = NULL;
1004	return ret;
1005}
1006
1007/**
1008 * set_supply - set regulator supply regulator
1009 * @rdev: regulator name
1010 * @supply_rdev: supply regulator name
1011 *
1012 * Called by platform initialisation code to set the supply regulator for this
1013 * regulator. This ensures that a regulators supply will also be enabled by the
1014 * core if it's child is enabled.
1015 */
1016static int set_supply(struct regulator_dev *rdev,
1017		      struct regulator_dev *supply_rdev)
1018{
1019	int err;
1020
1021	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1022
1023	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024	if (rdev->supply == NULL) {
1025		err = -ENOMEM;
1026		return err;
1027	}
1028	supply_rdev->open_count++;
1029
1030	return 0;
1031}
1032
1033/**
1034 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035 * @rdev:         regulator source
1036 * @consumer_dev_name: dev_name() string for device supply applies to
1037 * @supply:       symbolic name for supply
1038 *
1039 * Allows platform initialisation code to map physical regulator
1040 * sources to symbolic names for supplies for use by devices.  Devices
1041 * should use these symbolic names to request regulators, avoiding the
1042 * need to provide board-specific regulator names as platform data.
1043 */
1044static int set_consumer_device_supply(struct regulator_dev *rdev,
1045				      const char *consumer_dev_name,
1046				      const char *supply)
1047{
1048	struct regulator_map *node;
1049	int has_dev;
1050
1051	if (supply == NULL)
1052		return -EINVAL;
1053
1054	if (consumer_dev_name != NULL)
1055		has_dev = 1;
1056	else
1057		has_dev = 0;
1058
1059	list_for_each_entry(node, &regulator_map_list, list) {
1060		if (node->dev_name && consumer_dev_name) {
1061			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1062				continue;
1063		} else if (node->dev_name || consumer_dev_name) {
1064			continue;
1065		}
1066
1067		if (strcmp(node->supply, supply) != 0)
1068			continue;
1069
1070		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1071			 consumer_dev_name,
1072			 dev_name(&node->regulator->dev),
1073			 node->regulator->desc->name,
1074			 supply,
1075			 dev_name(&rdev->dev), rdev_get_name(rdev));
1076		return -EBUSY;
1077	}
1078
1079	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080	if (node == NULL)
1081		return -ENOMEM;
1082
1083	node->regulator = rdev;
1084	node->supply = supply;
1085
1086	if (has_dev) {
1087		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088		if (node->dev_name == NULL) {
1089			kfree(node);
1090			return -ENOMEM;
1091		}
1092	}
1093
1094	list_add(&node->list, &regulator_map_list);
1095	return 0;
1096}
1097
1098static void unset_regulator_supplies(struct regulator_dev *rdev)
1099{
1100	struct regulator_map *node, *n;
1101
1102	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1103		if (rdev == node->regulator) {
1104			list_del(&node->list);
1105			kfree(node->dev_name);
1106			kfree(node);
1107		}
1108	}
1109}
1110
1111#define REG_STR_SIZE	64
1112
1113static struct regulator *create_regulator(struct regulator_dev *rdev,
1114					  struct device *dev,
1115					  const char *supply_name)
1116{
1117	struct regulator *regulator;
1118	char buf[REG_STR_SIZE];
1119	int err, size;
1120
1121	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122	if (regulator == NULL)
1123		return NULL;
1124
1125	mutex_lock(&rdev->mutex);
1126	regulator->rdev = rdev;
1127	list_add(&regulator->list, &rdev->consumer_list);
1128
1129	if (dev) {
1130		regulator->dev = dev;
1131
1132		/* Add a link to the device sysfs entry */
1133		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134				 dev->kobj.name, supply_name);
1135		if (size >= REG_STR_SIZE)
1136			goto overflow_err;
1137
1138		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139		if (regulator->supply_name == NULL)
1140			goto overflow_err;
1141
1142		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1143					buf);
1144		if (err) {
1145			rdev_warn(rdev, "could not add device link %s err %d\n",
1146				  dev->kobj.name, err);
1147			/* non-fatal */
1148		}
1149	} else {
1150		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151		if (regulator->supply_name == NULL)
1152			goto overflow_err;
1153	}
1154
1155	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1156						rdev->debugfs);
1157	if (!regulator->debugfs) {
1158		rdev_warn(rdev, "Failed to create debugfs directory\n");
1159	} else {
1160		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161				   &regulator->uA_load);
1162		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163				   &regulator->min_uV);
1164		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165				   &regulator->max_uV);
1166	}
1167
1168	/*
1169	 * Check now if the regulator is an always on regulator - if
1170	 * it is then we don't need to do nearly so much work for
1171	 * enable/disable calls.
1172	 */
1173	if (!_regulator_can_change_status(rdev) &&
1174	    _regulator_is_enabled(rdev))
1175		regulator->always_on = true;
1176
1177	mutex_unlock(&rdev->mutex);
1178	return regulator;
1179overflow_err:
1180	list_del(&regulator->list);
1181	kfree(regulator);
1182	mutex_unlock(&rdev->mutex);
1183	return NULL;
1184}
1185
1186static int _regulator_get_enable_time(struct regulator_dev *rdev)
1187{
1188	if (!rdev->desc->ops->enable_time)
1189		return rdev->desc->enable_time;
1190	return rdev->desc->ops->enable_time(rdev);
1191}
1192
1193static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194						  const char *supply,
1195						  int *ret)
1196{
1197	struct regulator_dev *r;
1198	struct device_node *node;
1199	struct regulator_map *map;
1200	const char *devname = NULL;
1201
1202	/* first do a dt based lookup */
1203	if (dev && dev->of_node) {
1204		node = of_get_regulator(dev, supply);
1205		if (node) {
1206			list_for_each_entry(r, &regulator_list, list)
1207				if (r->dev.parent &&
1208					node == r->dev.of_node)
1209					return r;
1210		} else {
1211			/*
1212			 * If we couldn't even get the node then it's
1213			 * not just that the device didn't register
1214			 * yet, there's no node and we'll never
1215			 * succeed.
1216			 */
1217			*ret = -ENODEV;
1218		}
1219	}
1220
1221	/* if not found, try doing it non-dt way */
1222	if (dev)
1223		devname = dev_name(dev);
1224
1225	list_for_each_entry(r, &regulator_list, list)
1226		if (strcmp(rdev_get_name(r), supply) == 0)
1227			return r;
1228
1229	list_for_each_entry(map, &regulator_map_list, list) {
1230		/* If the mapping has a device set up it must match */
1231		if (map->dev_name &&
1232		    (!devname || strcmp(map->dev_name, devname)))
1233			continue;
1234
1235		if (strcmp(map->supply, supply) == 0)
1236			return map->regulator;
1237	}
1238
1239
1240	return NULL;
1241}
1242
1243/* Internal regulator request function */
1244static struct regulator *_regulator_get(struct device *dev, const char *id,
1245					int exclusive)
1246{
1247	struct regulator_dev *rdev;
1248	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249	const char *devname = NULL;
1250	int ret = 0;
1251
1252	if (id == NULL) {
1253		pr_err("get() with no identifier\n");
1254		return regulator;
1255	}
1256
1257	if (dev)
1258		devname = dev_name(dev);
1259
1260	mutex_lock(&regulator_list_mutex);
1261
1262	rdev = regulator_dev_lookup(dev, id, &ret);
1263	if (rdev)
1264		goto found;
1265
1266	/*
1267	 * If we have return value from dev_lookup fail, we do not expect to
1268	 * succeed, so, quit with appropriate error value
1269	 */
1270	if (ret) {
1271		regulator = ERR_PTR(ret);
1272		goto out;
1273	}
1274
1275	if (board_wants_dummy_regulator) {
1276		rdev = dummy_regulator_rdev;
1277		goto found;
1278	}
1279
1280#ifdef CONFIG_REGULATOR_DUMMY
1281	if (!devname)
1282		devname = "deviceless";
1283
1284	/* If the board didn't flag that it was fully constrained then
1285	 * substitute in a dummy regulator so consumers can continue.
1286	 */
1287	if (!has_full_constraints) {
1288		pr_warn("%s supply %s not found, using dummy regulator\n",
1289			devname, id);
1290		rdev = dummy_regulator_rdev;
1291		goto found;
1292	}
1293#endif
1294
1295	mutex_unlock(&regulator_list_mutex);
1296	return regulator;
1297
1298found:
1299	if (rdev->exclusive) {
1300		regulator = ERR_PTR(-EPERM);
1301		goto out;
1302	}
1303
1304	if (exclusive && rdev->open_count) {
1305		regulator = ERR_PTR(-EBUSY);
1306		goto out;
1307	}
1308
1309	if (!try_module_get(rdev->owner))
1310		goto out;
1311
1312	regulator = create_regulator(rdev, dev, id);
1313	if (regulator == NULL) {
1314		regulator = ERR_PTR(-ENOMEM);
1315		module_put(rdev->owner);
1316		goto out;
1317	}
1318
1319	rdev->open_count++;
1320	if (exclusive) {
1321		rdev->exclusive = 1;
1322
1323		ret = _regulator_is_enabled(rdev);
1324		if (ret > 0)
1325			rdev->use_count = 1;
1326		else
1327			rdev->use_count = 0;
1328	}
1329
1330out:
1331	mutex_unlock(&regulator_list_mutex);
1332
1333	return regulator;
1334}
1335
1336/**
1337 * regulator_get - lookup and obtain a reference to a regulator.
1338 * @dev: device for regulator "consumer"
1339 * @id: Supply name or regulator ID.
1340 *
1341 * Returns a struct regulator corresponding to the regulator producer,
1342 * or IS_ERR() condition containing errno.
1343 *
1344 * Use of supply names configured via regulator_set_device_supply() is
1345 * strongly encouraged.  It is recommended that the supply name used
1346 * should match the name used for the supply and/or the relevant
1347 * device pins in the datasheet.
1348 */
1349struct regulator *regulator_get(struct device *dev, const char *id)
1350{
1351	return _regulator_get(dev, id, 0);
1352}
1353EXPORT_SYMBOL_GPL(regulator_get);
1354
1355static void devm_regulator_release(struct device *dev, void *res)
1356{
1357	regulator_put(*(struct regulator **)res);
1358}
1359
1360/**
1361 * devm_regulator_get - Resource managed regulator_get()
1362 * @dev: device for regulator "consumer"
1363 * @id: Supply name or regulator ID.
1364 *
1365 * Managed regulator_get(). Regulators returned from this function are
1366 * automatically regulator_put() on driver detach. See regulator_get() for more
1367 * information.
1368 */
1369struct regulator *devm_regulator_get(struct device *dev, const char *id)
1370{
1371	struct regulator **ptr, *regulator;
1372
1373	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1374	if (!ptr)
1375		return ERR_PTR(-ENOMEM);
1376
1377	regulator = regulator_get(dev, id);
1378	if (!IS_ERR(regulator)) {
1379		*ptr = regulator;
1380		devres_add(dev, ptr);
1381	} else {
1382		devres_free(ptr);
1383	}
1384
1385	return regulator;
1386}
1387EXPORT_SYMBOL_GPL(devm_regulator_get);
1388
1389/**
1390 * regulator_get_exclusive - obtain exclusive access to a regulator.
1391 * @dev: device for regulator "consumer"
1392 * @id: Supply name or regulator ID.
1393 *
1394 * Returns a struct regulator corresponding to the regulator producer,
1395 * or IS_ERR() condition containing errno.  Other consumers will be
1396 * unable to obtain this reference is held and the use count for the
1397 * regulator will be initialised to reflect the current state of the
1398 * regulator.
1399 *
1400 * This is intended for use by consumers which cannot tolerate shared
1401 * use of the regulator such as those which need to force the
1402 * regulator off for correct operation of the hardware they are
1403 * controlling.
1404 *
1405 * Use of supply names configured via regulator_set_device_supply() is
1406 * strongly encouraged.  It is recommended that the supply name used
1407 * should match the name used for the supply and/or the relevant
1408 * device pins in the datasheet.
1409 */
1410struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1411{
1412	return _regulator_get(dev, id, 1);
1413}
1414EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1415
1416/* Locks held by regulator_put() */
1417static void _regulator_put(struct regulator *regulator)
1418{
1419	struct regulator_dev *rdev;
1420
1421	if (regulator == NULL || IS_ERR(regulator))
1422		return;
1423
1424	rdev = regulator->rdev;
1425
1426	debugfs_remove_recursive(regulator->debugfs);
1427
1428	/* remove any sysfs entries */
1429	if (regulator->dev)
1430		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1431	kfree(regulator->supply_name);
1432	list_del(&regulator->list);
1433	kfree(regulator);
1434
1435	rdev->open_count--;
1436	rdev->exclusive = 0;
1437
1438	module_put(rdev->owner);
1439}
1440
1441/**
1442 * regulator_put - "free" the regulator source
1443 * @regulator: regulator source
1444 *
1445 * Note: drivers must ensure that all regulator_enable calls made on this
1446 * regulator source are balanced by regulator_disable calls prior to calling
1447 * this function.
1448 */
1449void regulator_put(struct regulator *regulator)
1450{
1451	mutex_lock(&regulator_list_mutex);
1452	_regulator_put(regulator);
1453	mutex_unlock(&regulator_list_mutex);
1454}
1455EXPORT_SYMBOL_GPL(regulator_put);
1456
1457static int devm_regulator_match(struct device *dev, void *res, void *data)
1458{
1459	struct regulator **r = res;
1460	if (!r || !*r) {
1461		WARN_ON(!r || !*r);
1462		return 0;
1463	}
1464	return *r == data;
1465}
1466
1467/**
1468 * devm_regulator_put - Resource managed regulator_put()
1469 * @regulator: regulator to free
1470 *
1471 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1472 * this function will not need to be called and the resource management
1473 * code will ensure that the resource is freed.
1474 */
1475void devm_regulator_put(struct regulator *regulator)
1476{
1477	int rc;
1478
1479	rc = devres_release(regulator->dev, devm_regulator_release,
1480			    devm_regulator_match, regulator);
1481	if (rc != 0)
1482		WARN_ON(rc);
1483}
1484EXPORT_SYMBOL_GPL(devm_regulator_put);
1485
1486/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1487static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1488				const struct regulator_config *config)
1489{
1490	struct regulator_enable_gpio *pin;
1491	int ret;
1492
1493	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1494		if (pin->gpio == config->ena_gpio) {
1495			rdev_dbg(rdev, "GPIO %d is already used\n",
1496				config->ena_gpio);
1497			goto update_ena_gpio_to_rdev;
1498		}
1499	}
1500
1501	ret = gpio_request_one(config->ena_gpio,
1502				GPIOF_DIR_OUT | config->ena_gpio_flags,
1503				rdev_get_name(rdev));
1504	if (ret)
1505		return ret;
1506
1507	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1508	if (pin == NULL) {
1509		gpio_free(config->ena_gpio);
1510		return -ENOMEM;
1511	}
1512
1513	pin->gpio = config->ena_gpio;
1514	pin->ena_gpio_invert = config->ena_gpio_invert;
1515	list_add(&pin->list, &regulator_ena_gpio_list);
1516
1517update_ena_gpio_to_rdev:
1518	pin->request_count++;
1519	rdev->ena_pin = pin;
1520	return 0;
1521}
1522
1523static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1524{
1525	struct regulator_enable_gpio *pin, *n;
1526
1527	if (!rdev->ena_pin)
1528		return;
1529
1530	/* Free the GPIO only in case of no use */
1531	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1532		if (pin->gpio == rdev->ena_pin->gpio) {
1533			if (pin->request_count <= 1) {
1534				pin->request_count = 0;
1535				gpio_free(pin->gpio);
1536				list_del(&pin->list);
1537				kfree(pin);
1538			} else {
1539				pin->request_count--;
1540			}
1541		}
1542	}
1543}
1544
1545/**
1546 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1547 * @rdev: regulator_dev structure
1548 * @enable: enable GPIO at initial use?
1549 *
1550 * GPIO is enabled in case of initial use. (enable_count is 0)
1551 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1552 */
1553static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1554{
1555	struct regulator_enable_gpio *pin = rdev->ena_pin;
1556
1557	if (!pin)
1558		return -EINVAL;
1559
1560	if (enable) {
1561		/* Enable GPIO at initial use */
1562		if (pin->enable_count == 0)
1563			gpio_set_value_cansleep(pin->gpio,
1564						!pin->ena_gpio_invert);
1565
1566		pin->enable_count++;
1567	} else {
1568		if (pin->enable_count > 1) {
1569			pin->enable_count--;
1570			return 0;
1571		}
1572
1573		/* Disable GPIO if not used */
1574		if (pin->enable_count <= 1) {
1575			gpio_set_value_cansleep(pin->gpio,
1576						pin->ena_gpio_invert);
1577			pin->enable_count = 0;
1578		}
1579	}
1580
1581	return 0;
1582}
1583
1584static int _regulator_do_enable(struct regulator_dev *rdev)
1585{
1586	int ret, delay;
1587
1588	/* Query before enabling in case configuration dependent.  */
1589	ret = _regulator_get_enable_time(rdev);
1590	if (ret >= 0) {
1591		delay = ret;
1592	} else {
1593		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1594		delay = 0;
1595	}
1596
1597	trace_regulator_enable(rdev_get_name(rdev));
1598
1599	if (rdev->ena_pin) {
1600		ret = regulator_ena_gpio_ctrl(rdev, true);
1601		if (ret < 0)
1602			return ret;
1603		rdev->ena_gpio_state = 1;
1604	} else if (rdev->desc->ops->enable) {
1605		ret = rdev->desc->ops->enable(rdev);
1606		if (ret < 0)
1607			return ret;
1608	} else {
1609		return -EINVAL;
1610	}
1611
1612	/* Allow the regulator to ramp; it would be useful to extend
1613	 * this for bulk operations so that the regulators can ramp
1614	 * together.  */
1615	trace_regulator_enable_delay(rdev_get_name(rdev));
1616
1617	if (delay >= 1000) {
1618		mdelay(delay / 1000);
1619		udelay(delay % 1000);
1620	} else if (delay) {
1621		udelay(delay);
1622	}
1623
1624	trace_regulator_enable_complete(rdev_get_name(rdev));
1625
1626	return 0;
1627}
1628
1629/* locks held by regulator_enable() */
1630static int _regulator_enable(struct regulator_dev *rdev)
1631{
1632	int ret;
1633
1634	/* check voltage and requested load before enabling */
1635	if (rdev->constraints &&
1636	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1637		drms_uA_update(rdev);
1638
1639	if (rdev->use_count == 0) {
1640		/* The regulator may on if it's not switchable or left on */
1641		ret = _regulator_is_enabled(rdev);
1642		if (ret == -EINVAL || ret == 0) {
1643			if (!_regulator_can_change_status(rdev))
1644				return -EPERM;
1645
1646			ret = _regulator_do_enable(rdev);
1647			if (ret < 0)
1648				return ret;
1649
1650		} else if (ret < 0) {
1651			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1652			return ret;
1653		}
1654		/* Fallthrough on positive return values - already enabled */
1655	}
1656
1657	rdev->use_count++;
1658
1659	return 0;
1660}
1661
1662/**
1663 * regulator_enable - enable regulator output
1664 * @regulator: regulator source
1665 *
1666 * Request that the regulator be enabled with the regulator output at
1667 * the predefined voltage or current value.  Calls to regulator_enable()
1668 * must be balanced with calls to regulator_disable().
1669 *
1670 * NOTE: the output value can be set by other drivers, boot loader or may be
1671 * hardwired in the regulator.
1672 */
1673int regulator_enable(struct regulator *regulator)
1674{
1675	struct regulator_dev *rdev = regulator->rdev;
1676	int ret = 0;
1677
1678	if (regulator->always_on)
1679		return 0;
1680
1681	if (rdev->supply) {
1682		ret = regulator_enable(rdev->supply);
1683		if (ret != 0)
1684			return ret;
1685	}
1686
1687	mutex_lock(&rdev->mutex);
1688	ret = _regulator_enable(rdev);
1689	mutex_unlock(&rdev->mutex);
1690
1691	if (ret != 0 && rdev->supply)
1692		regulator_disable(rdev->supply);
1693
1694	return ret;
1695}
1696EXPORT_SYMBOL_GPL(regulator_enable);
1697
1698static int _regulator_do_disable(struct regulator_dev *rdev)
1699{
1700	int ret;
1701
1702	trace_regulator_disable(rdev_get_name(rdev));
1703
1704	if (rdev->ena_pin) {
1705		ret = regulator_ena_gpio_ctrl(rdev, false);
1706		if (ret < 0)
1707			return ret;
1708		rdev->ena_gpio_state = 0;
1709
1710	} else if (rdev->desc->ops->disable) {
1711		ret = rdev->desc->ops->disable(rdev);
1712		if (ret != 0)
1713			return ret;
1714	}
1715
1716	trace_regulator_disable_complete(rdev_get_name(rdev));
1717
1718	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1719			     NULL);
1720	return 0;
1721}
1722
1723/* locks held by regulator_disable() */
1724static int _regulator_disable(struct regulator_dev *rdev)
1725{
1726	int ret = 0;
1727
1728	if (WARN(rdev->use_count <= 0,
1729		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1730		return -EIO;
1731
1732	/* are we the last user and permitted to disable ? */
1733	if (rdev->use_count == 1 &&
1734	    (rdev->constraints && !rdev->constraints->always_on)) {
1735
1736		/* we are last user */
1737		if (_regulator_can_change_status(rdev)) {
1738			ret = _regulator_do_disable(rdev);
1739			if (ret < 0) {
1740				rdev_err(rdev, "failed to disable\n");
1741				return ret;
1742			}
1743		}
1744
1745		rdev->use_count = 0;
1746	} else if (rdev->use_count > 1) {
1747
1748		if (rdev->constraints &&
1749			(rdev->constraints->valid_ops_mask &
1750			REGULATOR_CHANGE_DRMS))
1751			drms_uA_update(rdev);
1752
1753		rdev->use_count--;
1754	}
1755
1756	return ret;
1757}
1758
1759/**
1760 * regulator_disable - disable regulator output
1761 * @regulator: regulator source
1762 *
1763 * Disable the regulator output voltage or current.  Calls to
1764 * regulator_enable() must be balanced with calls to
1765 * regulator_disable().
1766 *
1767 * NOTE: this will only disable the regulator output if no other consumer
1768 * devices have it enabled, the regulator device supports disabling and
1769 * machine constraints permit this operation.
1770 */
1771int regulator_disable(struct regulator *regulator)
1772{
1773	struct regulator_dev *rdev = regulator->rdev;
1774	int ret = 0;
1775
1776	if (regulator->always_on)
1777		return 0;
1778
1779	mutex_lock(&rdev->mutex);
1780	ret = _regulator_disable(rdev);
1781	mutex_unlock(&rdev->mutex);
1782
1783	if (ret == 0 && rdev->supply)
1784		regulator_disable(rdev->supply);
1785
1786	return ret;
1787}
1788EXPORT_SYMBOL_GPL(regulator_disable);
1789
1790/* locks held by regulator_force_disable() */
1791static int _regulator_force_disable(struct regulator_dev *rdev)
1792{
1793	int ret = 0;
1794
1795	/* force disable */
1796	if (rdev->desc->ops->disable) {
1797		/* ah well, who wants to live forever... */
1798		ret = rdev->desc->ops->disable(rdev);
1799		if (ret < 0) {
1800			rdev_err(rdev, "failed to force disable\n");
1801			return ret;
1802		}
1803		/* notify other consumers that power has been forced off */
1804		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805			REGULATOR_EVENT_DISABLE, NULL);
1806	}
1807
1808	return ret;
1809}
1810
1811/**
1812 * regulator_force_disable - force disable regulator output
1813 * @regulator: regulator source
1814 *
1815 * Forcibly disable the regulator output voltage or current.
1816 * NOTE: this *will* disable the regulator output even if other consumer
1817 * devices have it enabled. This should be used for situations when device
1818 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1819 */
1820int regulator_force_disable(struct regulator *regulator)
1821{
1822	struct regulator_dev *rdev = regulator->rdev;
1823	int ret;
1824
1825	mutex_lock(&rdev->mutex);
1826	regulator->uA_load = 0;
1827	ret = _regulator_force_disable(regulator->rdev);
1828	mutex_unlock(&rdev->mutex);
1829
1830	if (rdev->supply)
1831		while (rdev->open_count--)
1832			regulator_disable(rdev->supply);
1833
1834	return ret;
1835}
1836EXPORT_SYMBOL_GPL(regulator_force_disable);
1837
1838static void regulator_disable_work(struct work_struct *work)
1839{
1840	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1841						  disable_work.work);
1842	int count, i, ret;
1843
1844	mutex_lock(&rdev->mutex);
1845
1846	BUG_ON(!rdev->deferred_disables);
1847
1848	count = rdev->deferred_disables;
1849	rdev->deferred_disables = 0;
1850
1851	for (i = 0; i < count; i++) {
1852		ret = _regulator_disable(rdev);
1853		if (ret != 0)
1854			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1855	}
1856
1857	mutex_unlock(&rdev->mutex);
1858
1859	if (rdev->supply) {
1860		for (i = 0; i < count; i++) {
1861			ret = regulator_disable(rdev->supply);
1862			if (ret != 0) {
1863				rdev_err(rdev,
1864					 "Supply disable failed: %d\n", ret);
1865			}
1866		}
1867	}
1868}
1869
1870/**
1871 * regulator_disable_deferred - disable regulator output with delay
1872 * @regulator: regulator source
1873 * @ms: miliseconds until the regulator is disabled
1874 *
1875 * Execute regulator_disable() on the regulator after a delay.  This
1876 * is intended for use with devices that require some time to quiesce.
1877 *
1878 * NOTE: this will only disable the regulator output if no other consumer
1879 * devices have it enabled, the regulator device supports disabling and
1880 * machine constraints permit this operation.
1881 */
1882int regulator_disable_deferred(struct regulator *regulator, int ms)
1883{
1884	struct regulator_dev *rdev = regulator->rdev;
1885	int ret;
1886
1887	if (regulator->always_on)
1888		return 0;
1889
1890	if (!ms)
1891		return regulator_disable(regulator);
1892
1893	mutex_lock(&rdev->mutex);
1894	rdev->deferred_disables++;
1895	mutex_unlock(&rdev->mutex);
1896
1897	ret = queue_delayed_work(system_power_efficient_wq,
1898				 &rdev->disable_work,
1899				 msecs_to_jiffies(ms));
1900	if (ret < 0)
1901		return ret;
1902	else
1903		return 0;
1904}
1905EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1906
1907/**
1908 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1909 *
1910 * @rdev: regulator to operate on
1911 *
1912 * Regulators that use regmap for their register I/O can set the
1913 * enable_reg and enable_mask fields in their descriptor and then use
1914 * this as their is_enabled operation, saving some code.
1915 */
1916int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1917{
1918	unsigned int val;
1919	int ret;
1920
1921	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1922	if (ret != 0)
1923		return ret;
1924
1925	if (rdev->desc->enable_is_inverted)
1926		return (val & rdev->desc->enable_mask) == 0;
1927	else
1928		return (val & rdev->desc->enable_mask) != 0;
1929}
1930EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1931
1932/**
1933 * regulator_enable_regmap - standard enable() for regmap users
1934 *
1935 * @rdev: regulator to operate on
1936 *
1937 * Regulators that use regmap for their register I/O can set the
1938 * enable_reg and enable_mask fields in their descriptor and then use
1939 * this as their enable() operation, saving some code.
1940 */
1941int regulator_enable_regmap(struct regulator_dev *rdev)
1942{
1943	unsigned int val;
1944
1945	if (rdev->desc->enable_is_inverted)
1946		val = 0;
1947	else
1948		val = rdev->desc->enable_mask;
1949
1950	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1951				  rdev->desc->enable_mask, val);
1952}
1953EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1954
1955/**
1956 * regulator_disable_regmap - standard disable() for regmap users
1957 *
1958 * @rdev: regulator to operate on
1959 *
1960 * Regulators that use regmap for their register I/O can set the
1961 * enable_reg and enable_mask fields in their descriptor and then use
1962 * this as their disable() operation, saving some code.
1963 */
1964int regulator_disable_regmap(struct regulator_dev *rdev)
1965{
1966	unsigned int val;
1967
1968	if (rdev->desc->enable_is_inverted)
1969		val = rdev->desc->enable_mask;
1970	else
1971		val = 0;
1972
1973	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1974				  rdev->desc->enable_mask, val);
1975}
1976EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1977
1978static int _regulator_is_enabled(struct regulator_dev *rdev)
1979{
1980	/* A GPIO control always takes precedence */
1981	if (rdev->ena_pin)
1982		return rdev->ena_gpio_state;
1983
1984	/* If we don't know then assume that the regulator is always on */
1985	if (!rdev->desc->ops->is_enabled)
1986		return 1;
1987
1988	return rdev->desc->ops->is_enabled(rdev);
1989}
1990
1991/**
1992 * regulator_is_enabled - is the regulator output enabled
1993 * @regulator: regulator source
1994 *
1995 * Returns positive if the regulator driver backing the source/client
1996 * has requested that the device be enabled, zero if it hasn't, else a
1997 * negative errno code.
1998 *
1999 * Note that the device backing this regulator handle can have multiple
2000 * users, so it might be enabled even if regulator_enable() was never
2001 * called for this particular source.
2002 */
2003int regulator_is_enabled(struct regulator *regulator)
2004{
2005	int ret;
2006
2007	if (regulator->always_on)
2008		return 1;
2009
2010	mutex_lock(&regulator->rdev->mutex);
2011	ret = _regulator_is_enabled(regulator->rdev);
2012	mutex_unlock(&regulator->rdev->mutex);
2013
2014	return ret;
2015}
2016EXPORT_SYMBOL_GPL(regulator_is_enabled);
2017
2018/**
2019 * regulator_can_change_voltage - check if regulator can change voltage
2020 * @regulator: regulator source
2021 *
2022 * Returns positive if the regulator driver backing the source/client
2023 * can change its voltage, false otherwise. Usefull for detecting fixed
2024 * or dummy regulators and disabling voltage change logic in the client
2025 * driver.
2026 */
2027int regulator_can_change_voltage(struct regulator *regulator)
2028{
2029	struct regulator_dev	*rdev = regulator->rdev;
2030
2031	if (rdev->constraints &&
2032	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2033		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2034			return 1;
2035
2036		if (rdev->desc->continuous_voltage_range &&
2037		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2038		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2039			return 1;
2040	}
2041
2042	return 0;
2043}
2044EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2045
2046/**
2047 * regulator_count_voltages - count regulator_list_voltage() selectors
2048 * @regulator: regulator source
2049 *
2050 * Returns number of selectors, or negative errno.  Selectors are
2051 * numbered starting at zero, and typically correspond to bitfields
2052 * in hardware registers.
2053 */
2054int regulator_count_voltages(struct regulator *regulator)
2055{
2056	struct regulator_dev	*rdev = regulator->rdev;
2057
2058	return rdev->desc->n_voltages ? : -EINVAL;
2059}
2060EXPORT_SYMBOL_GPL(regulator_count_voltages);
2061
2062/**
2063 * regulator_list_voltage_linear - List voltages with simple calculation
2064 *
2065 * @rdev: Regulator device
2066 * @selector: Selector to convert into a voltage
2067 *
2068 * Regulators with a simple linear mapping between voltages and
2069 * selectors can set min_uV and uV_step in the regulator descriptor
2070 * and then use this function as their list_voltage() operation,
2071 */
2072int regulator_list_voltage_linear(struct regulator_dev *rdev,
2073				  unsigned int selector)
2074{
2075	if (selector >= rdev->desc->n_voltages)
2076		return -EINVAL;
2077	if (selector < rdev->desc->linear_min_sel)
2078		return 0;
2079
2080	selector -= rdev->desc->linear_min_sel;
2081
2082	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2083}
2084EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2085
2086/**
2087 * regulator_list_voltage_table - List voltages with table based mapping
2088 *
2089 * @rdev: Regulator device
2090 * @selector: Selector to convert into a voltage
2091 *
2092 * Regulators with table based mapping between voltages and
2093 * selectors can set volt_table in the regulator descriptor
2094 * and then use this function as their list_voltage() operation.
2095 */
2096int regulator_list_voltage_table(struct regulator_dev *rdev,
2097				 unsigned int selector)
2098{
2099	if (!rdev->desc->volt_table) {
2100		BUG_ON(!rdev->desc->volt_table);
2101		return -EINVAL;
2102	}
2103
2104	if (selector >= rdev->desc->n_voltages)
2105		return -EINVAL;
2106
2107	return rdev->desc->volt_table[selector];
2108}
2109EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2110
2111/**
2112 * regulator_list_voltage - enumerate supported voltages
2113 * @regulator: regulator source
2114 * @selector: identify voltage to list
2115 * Context: can sleep
2116 *
2117 * Returns a voltage that can be passed to @regulator_set_voltage(),
2118 * zero if this selector code can't be used on this system, or a
2119 * negative errno.
2120 */
2121int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2122{
2123	struct regulator_dev	*rdev = regulator->rdev;
2124	struct regulator_ops	*ops = rdev->desc->ops;
2125	int			ret;
2126
2127	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2128		return -EINVAL;
2129
2130	mutex_lock(&rdev->mutex);
2131	ret = ops->list_voltage(rdev, selector);
2132	mutex_unlock(&rdev->mutex);
2133
2134	if (ret > 0) {
2135		if (ret < rdev->constraints->min_uV)
2136			ret = 0;
2137		else if (ret > rdev->constraints->max_uV)
2138			ret = 0;
2139	}
2140
2141	return ret;
2142}
2143EXPORT_SYMBOL_GPL(regulator_list_voltage);
2144
2145/**
2146 * regulator_get_linear_step - return the voltage step size between VSEL values
2147 * @regulator: regulator source
2148 *
2149 * Returns the voltage step size between VSEL values for linear
2150 * regulators, or return 0 if the regulator isn't a linear regulator.
2151 */
2152unsigned int regulator_get_linear_step(struct regulator *regulator)
2153{
2154	struct regulator_dev *rdev = regulator->rdev;
2155
2156	return rdev->desc->uV_step;
2157}
2158EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2159
2160/**
2161 * regulator_is_supported_voltage - check if a voltage range can be supported
2162 *
2163 * @regulator: Regulator to check.
2164 * @min_uV: Minimum required voltage in uV.
2165 * @max_uV: Maximum required voltage in uV.
2166 *
2167 * Returns a boolean or a negative error code.
2168 */
2169int regulator_is_supported_voltage(struct regulator *regulator,
2170				   int min_uV, int max_uV)
2171{
2172	struct regulator_dev *rdev = regulator->rdev;
2173	int i, voltages, ret;
2174
2175	/* If we can't change voltage check the current voltage */
2176	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2177		ret = regulator_get_voltage(regulator);
2178		if (ret >= 0)
2179			return (min_uV <= ret && ret <= max_uV);
2180		else
2181			return ret;
2182	}
2183
2184	/* Any voltage within constrains range is fine? */
2185	if (rdev->desc->continuous_voltage_range)
2186		return min_uV >= rdev->constraints->min_uV &&
2187				max_uV <= rdev->constraints->max_uV;
2188
2189	ret = regulator_count_voltages(regulator);
2190	if (ret < 0)
2191		return ret;
2192	voltages = ret;
2193
2194	for (i = 0; i < voltages; i++) {
2195		ret = regulator_list_voltage(regulator, i);
2196
2197		if (ret >= min_uV && ret <= max_uV)
2198			return 1;
2199	}
2200
2201	return 0;
2202}
2203EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2204
2205/**
2206 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2207 *
2208 * @rdev: regulator to operate on
2209 *
2210 * Regulators that use regmap for their register I/O can set the
2211 * vsel_reg and vsel_mask fields in their descriptor and then use this
2212 * as their get_voltage_vsel operation, saving some code.
2213 */
2214int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2215{
2216	unsigned int val;
2217	int ret;
2218
2219	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2220	if (ret != 0)
2221		return ret;
2222
2223	val &= rdev->desc->vsel_mask;
2224	val >>= ffs(rdev->desc->vsel_mask) - 1;
2225
2226	return val;
2227}
2228EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2229
2230/**
2231 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2232 *
2233 * @rdev: regulator to operate on
2234 * @sel: Selector to set
2235 *
2236 * Regulators that use regmap for their register I/O can set the
2237 * vsel_reg and vsel_mask fields in their descriptor and then use this
2238 * as their set_voltage_vsel operation, saving some code.
2239 */
2240int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2241{
2242	int ret;
2243
2244	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2245
2246	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2247				  rdev->desc->vsel_mask, sel);
2248	if (ret)
2249		return ret;
2250
2251	if (rdev->desc->apply_bit)
2252		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2253					 rdev->desc->apply_bit,
2254					 rdev->desc->apply_bit);
2255	return ret;
2256}
2257EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2258
2259/**
2260 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2261 *
2262 * @rdev: Regulator to operate on
2263 * @min_uV: Lower bound for voltage
2264 * @max_uV: Upper bound for voltage
2265 *
2266 * Drivers implementing set_voltage_sel() and list_voltage() can use
2267 * this as their map_voltage() operation.  It will find a suitable
2268 * voltage by calling list_voltage() until it gets something in bounds
2269 * for the requested voltages.
2270 */
2271int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2272				  int min_uV, int max_uV)
2273{
2274	int best_val = INT_MAX;
2275	int selector = 0;
2276	int i, ret;
2277
2278	/* Find the smallest voltage that falls within the specified
2279	 * range.
2280	 */
2281	for (i = 0; i < rdev->desc->n_voltages; i++) {
2282		ret = rdev->desc->ops->list_voltage(rdev, i);
2283		if (ret < 0)
2284			continue;
2285
2286		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2287			best_val = ret;
2288			selector = i;
2289		}
2290	}
2291
2292	if (best_val != INT_MAX)
2293		return selector;
2294	else
2295		return -EINVAL;
2296}
2297EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2298
2299/**
2300 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2301 *
2302 * @rdev: Regulator to operate on
2303 * @min_uV: Lower bound for voltage
2304 * @max_uV: Upper bound for voltage
2305 *
2306 * Drivers that have ascendant voltage list can use this as their
2307 * map_voltage() operation.
2308 */
2309int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2310				 int min_uV, int max_uV)
2311{
2312	int i, ret;
2313
2314	for (i = 0; i < rdev->desc->n_voltages; i++) {
2315		ret = rdev->desc->ops->list_voltage(rdev, i);
2316		if (ret < 0)
2317			continue;
2318
2319		if (ret > max_uV)
2320			break;
2321
2322		if (ret >= min_uV && ret <= max_uV)
2323			return i;
2324	}
2325
2326	return -EINVAL;
2327}
2328EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2329
2330/**
2331 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2332 *
2333 * @rdev: Regulator to operate on
2334 * @min_uV: Lower bound for voltage
2335 * @max_uV: Upper bound for voltage
2336 *
2337 * Drivers providing min_uV and uV_step in their regulator_desc can
2338 * use this as their map_voltage() operation.
2339 */
2340int regulator_map_voltage_linear(struct regulator_dev *rdev,
2341				 int min_uV, int max_uV)
2342{
2343	int ret, voltage;
2344
2345	/* Allow uV_step to be 0 for fixed voltage */
2346	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2347		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2348			return 0;
2349		else
2350			return -EINVAL;
2351	}
2352
2353	if (!rdev->desc->uV_step) {
2354		BUG_ON(!rdev->desc->uV_step);
2355		return -EINVAL;
2356	}
2357
2358	if (min_uV < rdev->desc->min_uV)
2359		min_uV = rdev->desc->min_uV;
2360
2361	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2362	if (ret < 0)
2363		return ret;
2364
2365	ret += rdev->desc->linear_min_sel;
2366
2367	/* Map back into a voltage to verify we're still in bounds */
2368	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2369	if (voltage < min_uV || voltage > max_uV)
2370		return -EINVAL;
2371
2372	return ret;
2373}
2374EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2375
2376static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2377				     int min_uV, int max_uV)
2378{
2379	int ret;
2380	int delay = 0;
2381	int best_val = 0;
2382	unsigned int selector;
2383	int old_selector = -1;
2384
2385	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2386
2387	min_uV += rdev->constraints->uV_offset;
2388	max_uV += rdev->constraints->uV_offset;
2389
2390	/*
2391	 * If we can't obtain the old selector there is not enough
2392	 * info to call set_voltage_time_sel().
2393	 */
2394	if (_regulator_is_enabled(rdev) &&
2395	    rdev->desc->ops->set_voltage_time_sel &&
2396	    rdev->desc->ops->get_voltage_sel) {
2397		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2398		if (old_selector < 0)
2399			return old_selector;
2400	}
2401
2402	if (rdev->desc->ops->set_voltage) {
2403		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2404						   &selector);
2405
2406		if (ret >= 0) {
2407			if (rdev->desc->ops->list_voltage)
2408				best_val = rdev->desc->ops->list_voltage(rdev,
2409									 selector);
2410			else
2411				best_val = _regulator_get_voltage(rdev);
2412		}
2413
2414	} else if (rdev->desc->ops->set_voltage_sel) {
2415		if (rdev->desc->ops->map_voltage) {
2416			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2417							   max_uV);
2418		} else {
2419			if (rdev->desc->ops->list_voltage ==
2420			    regulator_list_voltage_linear)
2421				ret = regulator_map_voltage_linear(rdev,
2422								min_uV, max_uV);
2423			else
2424				ret = regulator_map_voltage_iterate(rdev,
2425								min_uV, max_uV);
2426		}
2427
2428		if (ret >= 0) {
2429			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2430			if (min_uV <= best_val && max_uV >= best_val) {
2431				selector = ret;
2432				if (old_selector == selector)
2433					ret = 0;
2434				else
2435					ret = rdev->desc->ops->set_voltage_sel(
2436								rdev, ret);
2437			} else {
2438				ret = -EINVAL;
2439			}
2440		}
2441	} else {
2442		ret = -EINVAL;
2443	}
2444
2445	/* Call set_voltage_time_sel if successfully obtained old_selector */
2446	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2447	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2448
2449		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2450						old_selector, selector);
2451		if (delay < 0) {
2452			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2453				  delay);
2454			delay = 0;
2455		}
2456
2457		/* Insert any necessary delays */
2458		if (delay >= 1000) {
2459			mdelay(delay / 1000);
2460			udelay(delay % 1000);
2461		} else if (delay) {
2462			udelay(delay);
2463		}
2464	}
2465
2466	if (ret == 0 && best_val >= 0) {
2467		unsigned long data = best_val;
2468
2469		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2470				     (void *)data);
2471	}
2472
2473	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2474
2475	return ret;
2476}
2477
2478/**
2479 * regulator_set_voltage - set regulator output voltage
2480 * @regulator: regulator source
2481 * @min_uV: Minimum required voltage in uV
2482 * @max_uV: Maximum acceptable voltage in uV
2483 *
2484 * Sets a voltage regulator to the desired output voltage. This can be set
2485 * during any regulator state. IOW, regulator can be disabled or enabled.
2486 *
2487 * If the regulator is enabled then the voltage will change to the new value
2488 * immediately otherwise if the regulator is disabled the regulator will
2489 * output at the new voltage when enabled.
2490 *
2491 * NOTE: If the regulator is shared between several devices then the lowest
2492 * request voltage that meets the system constraints will be used.
2493 * Regulator system constraints must be set for this regulator before
2494 * calling this function otherwise this call will fail.
2495 */
2496int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2497{
2498	struct regulator_dev *rdev = regulator->rdev;
2499	int ret = 0;
2500	int old_min_uV, old_max_uV;
2501
2502	mutex_lock(&rdev->mutex);
2503
2504	/* If we're setting the same range as last time the change
2505	 * should be a noop (some cpufreq implementations use the same
2506	 * voltage for multiple frequencies, for example).
2507	 */
2508	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2509		goto out;
2510
2511	/* sanity check */
2512	if (!rdev->desc->ops->set_voltage &&
2513	    !rdev->desc->ops->set_voltage_sel) {
2514		ret = -EINVAL;
2515		goto out;
2516	}
2517
2518	/* constraints check */
2519	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2520	if (ret < 0)
2521		goto out;
2522
2523	/* restore original values in case of error */
2524	old_min_uV = regulator->min_uV;
2525	old_max_uV = regulator->max_uV;
2526	regulator->min_uV = min_uV;
2527	regulator->max_uV = max_uV;
2528
2529	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2530	if (ret < 0)
2531		goto out2;
2532
2533	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2534	if (ret < 0)
2535		goto out2;
2536
2537out:
2538	mutex_unlock(&rdev->mutex);
2539	return ret;
2540out2:
2541	regulator->min_uV = old_min_uV;
2542	regulator->max_uV = old_max_uV;
2543	mutex_unlock(&rdev->mutex);
2544	return ret;
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage);
2547
2548/**
2549 * regulator_set_voltage_time - get raise/fall time
2550 * @regulator: regulator source
2551 * @old_uV: starting voltage in microvolts
2552 * @new_uV: target voltage in microvolts
2553 *
2554 * Provided with the starting and ending voltage, this function attempts to
2555 * calculate the time in microseconds required to rise or fall to this new
2556 * voltage.
2557 */
2558int regulator_set_voltage_time(struct regulator *regulator,
2559			       int old_uV, int new_uV)
2560{
2561	struct regulator_dev	*rdev = regulator->rdev;
2562	struct regulator_ops	*ops = rdev->desc->ops;
2563	int old_sel = -1;
2564	int new_sel = -1;
2565	int voltage;
2566	int i;
2567
2568	/* Currently requires operations to do this */
2569	if (!ops->list_voltage || !ops->set_voltage_time_sel
2570	    || !rdev->desc->n_voltages)
2571		return -EINVAL;
2572
2573	for (i = 0; i < rdev->desc->n_voltages; i++) {
2574		/* We only look for exact voltage matches here */
2575		voltage = regulator_list_voltage(regulator, i);
2576		if (voltage < 0)
2577			return -EINVAL;
2578		if (voltage == 0)
2579			continue;
2580		if (voltage == old_uV)
2581			old_sel = i;
2582		if (voltage == new_uV)
2583			new_sel = i;
2584	}
2585
2586	if (old_sel < 0 || new_sel < 0)
2587		return -EINVAL;
2588
2589	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2590}
2591EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2592
2593/**
2594 * regulator_set_voltage_time_sel - get raise/fall time
2595 * @rdev: regulator source device
2596 * @old_selector: selector for starting voltage
2597 * @new_selector: selector for target voltage
2598 *
2599 * Provided with the starting and target voltage selectors, this function
2600 * returns time in microseconds required to rise or fall to this new voltage
2601 *
2602 * Drivers providing ramp_delay in regulation_constraints can use this as their
2603 * set_voltage_time_sel() operation.
2604 */
2605int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2606				   unsigned int old_selector,
2607				   unsigned int new_selector)
2608{
2609	unsigned int ramp_delay = 0;
2610	int old_volt, new_volt;
2611
2612	if (rdev->constraints->ramp_delay)
2613		ramp_delay = rdev->constraints->ramp_delay;
2614	else if (rdev->desc->ramp_delay)
2615		ramp_delay = rdev->desc->ramp_delay;
2616
2617	if (ramp_delay == 0) {
2618		rdev_warn(rdev, "ramp_delay not set\n");
2619		return 0;
2620	}
2621
2622	/* sanity check */
2623	if (!rdev->desc->ops->list_voltage)
2624		return -EINVAL;
2625
2626	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2627	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2628
2629	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2630}
2631EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2632
2633/**
2634 * regulator_sync_voltage - re-apply last regulator output voltage
2635 * @regulator: regulator source
2636 *
2637 * Re-apply the last configured voltage.  This is intended to be used
2638 * where some external control source the consumer is cooperating with
2639 * has caused the configured voltage to change.
2640 */
2641int regulator_sync_voltage(struct regulator *regulator)
2642{
2643	struct regulator_dev *rdev = regulator->rdev;
2644	int ret, min_uV, max_uV;
2645
2646	mutex_lock(&rdev->mutex);
2647
2648	if (!rdev->desc->ops->set_voltage &&
2649	    !rdev->desc->ops->set_voltage_sel) {
2650		ret = -EINVAL;
2651		goto out;
2652	}
2653
2654	/* This is only going to work if we've had a voltage configured. */
2655	if (!regulator->min_uV && !regulator->max_uV) {
2656		ret = -EINVAL;
2657		goto out;
2658	}
2659
2660	min_uV = regulator->min_uV;
2661	max_uV = regulator->max_uV;
2662
2663	/* This should be a paranoia check... */
2664	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2665	if (ret < 0)
2666		goto out;
2667
2668	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2669	if (ret < 0)
2670		goto out;
2671
2672	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2673
2674out:
2675	mutex_unlock(&rdev->mutex);
2676	return ret;
2677}
2678EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2679
2680static int _regulator_get_voltage(struct regulator_dev *rdev)
2681{
2682	int sel, ret;
2683
2684	if (rdev->desc->ops->get_voltage_sel) {
2685		sel = rdev->desc->ops->get_voltage_sel(rdev);
2686		if (sel < 0)
2687			return sel;
2688		ret = rdev->desc->ops->list_voltage(rdev, sel);
2689	} else if (rdev->desc->ops->get_voltage) {
2690		ret = rdev->desc->ops->get_voltage(rdev);
2691	} else if (rdev->desc->ops->list_voltage) {
2692		ret = rdev->desc->ops->list_voltage(rdev, 0);
2693	} else {
2694		return -EINVAL;
2695	}
2696
2697	if (ret < 0)
2698		return ret;
2699	return ret - rdev->constraints->uV_offset;
2700}
2701
2702/**
2703 * regulator_get_voltage - get regulator output voltage
2704 * @regulator: regulator source
2705 *
2706 * This returns the current regulator voltage in uV.
2707 *
2708 * NOTE: If the regulator is disabled it will return the voltage value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_voltage(struct regulator *regulator)
2712{
2713	int ret;
2714
2715	mutex_lock(&regulator->rdev->mutex);
2716
2717	ret = _regulator_get_voltage(regulator->rdev);
2718
2719	mutex_unlock(&regulator->rdev->mutex);
2720
2721	return ret;
2722}
2723EXPORT_SYMBOL_GPL(regulator_get_voltage);
2724
2725/**
2726 * regulator_set_current_limit - set regulator output current limit
2727 * @regulator: regulator source
2728 * @min_uA: Minimum supported current in uA
2729 * @max_uA: Maximum supported current in uA
2730 *
2731 * Sets current sink to the desired output current. This can be set during
2732 * any regulator state. IOW, regulator can be disabled or enabled.
2733 *
2734 * If the regulator is enabled then the current will change to the new value
2735 * immediately otherwise if the regulator is disabled the regulator will
2736 * output at the new current when enabled.
2737 *
2738 * NOTE: Regulator system constraints must be set for this regulator before
2739 * calling this function otherwise this call will fail.
2740 */
2741int regulator_set_current_limit(struct regulator *regulator,
2742			       int min_uA, int max_uA)
2743{
2744	struct regulator_dev *rdev = regulator->rdev;
2745	int ret;
2746
2747	mutex_lock(&rdev->mutex);
2748
2749	/* sanity check */
2750	if (!rdev->desc->ops->set_current_limit) {
2751		ret = -EINVAL;
2752		goto out;
2753	}
2754
2755	/* constraints check */
2756	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2757	if (ret < 0)
2758		goto out;
2759
2760	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2761out:
2762	mutex_unlock(&rdev->mutex);
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2766
2767static int _regulator_get_current_limit(struct regulator_dev *rdev)
2768{
2769	int ret;
2770
2771	mutex_lock(&rdev->mutex);
2772
2773	/* sanity check */
2774	if (!rdev->desc->ops->get_current_limit) {
2775		ret = -EINVAL;
2776		goto out;
2777	}
2778
2779	ret = rdev->desc->ops->get_current_limit(rdev);
2780out:
2781	mutex_unlock(&rdev->mutex);
2782	return ret;
2783}
2784
2785/**
2786 * regulator_get_current_limit - get regulator output current
2787 * @regulator: regulator source
2788 *
2789 * This returns the current supplied by the specified current sink in uA.
2790 *
2791 * NOTE: If the regulator is disabled it will return the current value. This
2792 * function should not be used to determine regulator state.
2793 */
2794int regulator_get_current_limit(struct regulator *regulator)
2795{
2796	return _regulator_get_current_limit(regulator->rdev);
2797}
2798EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2799
2800/**
2801 * regulator_set_mode - set regulator operating mode
2802 * @regulator: regulator source
2803 * @mode: operating mode - one of the REGULATOR_MODE constants
2804 *
2805 * Set regulator operating mode to increase regulator efficiency or improve
2806 * regulation performance.
2807 *
2808 * NOTE: Regulator system constraints must be set for this regulator before
2809 * calling this function otherwise this call will fail.
2810 */
2811int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2812{
2813	struct regulator_dev *rdev = regulator->rdev;
2814	int ret;
2815	int regulator_curr_mode;
2816
2817	mutex_lock(&rdev->mutex);
2818
2819	/* sanity check */
2820	if (!rdev->desc->ops->set_mode) {
2821		ret = -EINVAL;
2822		goto out;
2823	}
2824
2825	/* return if the same mode is requested */
2826	if (rdev->desc->ops->get_mode) {
2827		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2828		if (regulator_curr_mode == mode) {
2829			ret = 0;
2830			goto out;
2831		}
2832	}
2833
2834	/* constraints check */
2835	ret = regulator_mode_constrain(rdev, &mode);
2836	if (ret < 0)
2837		goto out;
2838
2839	ret = rdev->desc->ops->set_mode(rdev, mode);
2840out:
2841	mutex_unlock(&rdev->mutex);
2842	return ret;
2843}
2844EXPORT_SYMBOL_GPL(regulator_set_mode);
2845
2846static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2847{
2848	int ret;
2849
2850	mutex_lock(&rdev->mutex);
2851
2852	/* sanity check */
2853	if (!rdev->desc->ops->get_mode) {
2854		ret = -EINVAL;
2855		goto out;
2856	}
2857
2858	ret = rdev->desc->ops->get_mode(rdev);
2859out:
2860	mutex_unlock(&rdev->mutex);
2861	return ret;
2862}
2863
2864/**
2865 * regulator_get_mode - get regulator operating mode
2866 * @regulator: regulator source
2867 *
2868 * Get the current regulator operating mode.
2869 */
2870unsigned int regulator_get_mode(struct regulator *regulator)
2871{
2872	return _regulator_get_mode(regulator->rdev);
2873}
2874EXPORT_SYMBOL_GPL(regulator_get_mode);
2875
2876/**
2877 * regulator_set_optimum_mode - set regulator optimum operating mode
2878 * @regulator: regulator source
2879 * @uA_load: load current
2880 *
2881 * Notifies the regulator core of a new device load. This is then used by
2882 * DRMS (if enabled by constraints) to set the most efficient regulator
2883 * operating mode for the new regulator loading.
2884 *
2885 * Consumer devices notify their supply regulator of the maximum power
2886 * they will require (can be taken from device datasheet in the power
2887 * consumption tables) when they change operational status and hence power
2888 * state. Examples of operational state changes that can affect power
2889 * consumption are :-
2890 *
2891 *    o Device is opened / closed.
2892 *    o Device I/O is about to begin or has just finished.
2893 *    o Device is idling in between work.
2894 *
2895 * This information is also exported via sysfs to userspace.
2896 *
2897 * DRMS will sum the total requested load on the regulator and change
2898 * to the most efficient operating mode if platform constraints allow.
2899 *
2900 * Returns the new regulator mode or error.
2901 */
2902int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2903{
2904	struct regulator_dev *rdev = regulator->rdev;
2905	struct regulator *consumer;
2906	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2907	unsigned int mode;
2908
2909	if (rdev->supply)
2910		input_uV = regulator_get_voltage(rdev->supply);
2911
2912	mutex_lock(&rdev->mutex);
2913
2914	/*
2915	 * first check to see if we can set modes at all, otherwise just
2916	 * tell the consumer everything is OK.
2917	 */
2918	regulator->uA_load = uA_load;
2919	ret = regulator_check_drms(rdev);
2920	if (ret < 0) {
2921		ret = 0;
2922		goto out;
2923	}
2924
2925	if (!rdev->desc->ops->get_optimum_mode)
2926		goto out;
2927
2928	/*
2929	 * we can actually do this so any errors are indicators of
2930	 * potential real failure.
2931	 */
2932	ret = -EINVAL;
2933
2934	if (!rdev->desc->ops->set_mode)
2935		goto out;
2936
2937	/* get output voltage */
2938	output_uV = _regulator_get_voltage(rdev);
2939	if (output_uV <= 0) {
2940		rdev_err(rdev, "invalid output voltage found\n");
2941		goto out;
2942	}
2943
2944	/* No supply? Use constraint voltage */
2945	if (input_uV <= 0)
2946		input_uV = rdev->constraints->input_uV;
2947	if (input_uV <= 0) {
2948		rdev_err(rdev, "invalid input voltage found\n");
2949		goto out;
2950	}
2951
2952	/* calc total requested load for this regulator */
2953	list_for_each_entry(consumer, &rdev->consumer_list, list)
2954		total_uA_load += consumer->uA_load;
2955
2956	mode = rdev->desc->ops->get_optimum_mode(rdev,
2957						 input_uV, output_uV,
2958						 total_uA_load);
2959	ret = regulator_mode_constrain(rdev, &mode);
2960	if (ret < 0) {
2961		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2962			 total_uA_load, input_uV, output_uV);
2963		goto out;
2964	}
2965
2966	ret = rdev->desc->ops->set_mode(rdev, mode);
2967	if (ret < 0) {
2968		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2969		goto out;
2970	}
2971	ret = mode;
2972out:
2973	mutex_unlock(&rdev->mutex);
2974	return ret;
2975}
2976EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2977
2978/**
2979 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2980 *
2981 * @rdev: device to operate on.
2982 * @enable: state to set.
2983 */
2984int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2985{
2986	unsigned int val;
2987
2988	if (enable)
2989		val = rdev->desc->bypass_mask;
2990	else
2991		val = 0;
2992
2993	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2994				  rdev->desc->bypass_mask, val);
2995}
2996EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2997
2998/**
2999 * regulator_get_bypass_regmap - Default get_bypass() using regmap
3000 *
3001 * @rdev: device to operate on.
3002 * @enable: current state.
3003 */
3004int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
3005{
3006	unsigned int val;
3007	int ret;
3008
3009	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
3010	if (ret != 0)
3011		return ret;
3012
3013	*enable = val & rdev->desc->bypass_mask;
3014
3015	return 0;
3016}
3017EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3018
3019/**
3020 * regulator_allow_bypass - allow the regulator to go into bypass mode
3021 *
3022 * @regulator: Regulator to configure
3023 * @enable: enable or disable bypass mode
3024 *
3025 * Allow the regulator to go into bypass mode if all other consumers
3026 * for the regulator also enable bypass mode and the machine
3027 * constraints allow this.  Bypass mode means that the regulator is
3028 * simply passing the input directly to the output with no regulation.
3029 */
3030int regulator_allow_bypass(struct regulator *regulator, bool enable)
3031{
3032	struct regulator_dev *rdev = regulator->rdev;
3033	int ret = 0;
3034
3035	if (!rdev->desc->ops->set_bypass)
3036		return 0;
3037
3038	if (rdev->constraints &&
3039	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3040		return 0;
3041
3042	mutex_lock(&rdev->mutex);
3043
3044	if (enable && !regulator->bypass) {
3045		rdev->bypass_count++;
3046
3047		if (rdev->bypass_count == rdev->open_count) {
3048			ret = rdev->desc->ops->set_bypass(rdev, enable);
3049			if (ret != 0)
3050				rdev->bypass_count--;
3051		}
3052
3053	} else if (!enable && regulator->bypass) {
3054		rdev->bypass_count--;
3055
3056		if (rdev->bypass_count != rdev->open_count) {
3057			ret = rdev->desc->ops->set_bypass(rdev, enable);
3058			if (ret != 0)
3059				rdev->bypass_count++;
3060		}
3061	}
3062
3063	if (ret == 0)
3064		regulator->bypass = enable;
3065
3066	mutex_unlock(&rdev->mutex);
3067
3068	return ret;
3069}
3070EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3071
3072/**
3073 * regulator_register_notifier - register regulator event notifier
3074 * @regulator: regulator source
3075 * @nb: notifier block
3076 *
3077 * Register notifier block to receive regulator events.
3078 */
3079int regulator_register_notifier(struct regulator *regulator,
3080			      struct notifier_block *nb)
3081{
3082	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3083						nb);
3084}
3085EXPORT_SYMBOL_GPL(regulator_register_notifier);
3086
3087/**
3088 * regulator_unregister_notifier - unregister regulator event notifier
3089 * @regulator: regulator source
3090 * @nb: notifier block
3091 *
3092 * Unregister regulator event notifier block.
3093 */
3094int regulator_unregister_notifier(struct regulator *regulator,
3095				struct notifier_block *nb)
3096{
3097	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3098						  nb);
3099}
3100EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3101
3102/* notify regulator consumers and downstream regulator consumers.
3103 * Note mutex must be held by caller.
3104 */
3105static void _notifier_call_chain(struct regulator_dev *rdev,
3106				  unsigned long event, void *data)
3107{
3108	/* call rdev chain first */
3109	blocking_notifier_call_chain(&rdev->notifier, event, data);
3110}
3111
3112/**
3113 * regulator_bulk_get - get multiple regulator consumers
3114 *
3115 * @dev:           Device to supply
3116 * @num_consumers: Number of consumers to register
3117 * @consumers:     Configuration of consumers; clients are stored here.
3118 *
3119 * @return 0 on success, an errno on failure.
3120 *
3121 * This helper function allows drivers to get several regulator
3122 * consumers in one operation.  If any of the regulators cannot be
3123 * acquired then any regulators that were allocated will be freed
3124 * before returning to the caller.
3125 */
3126int regulator_bulk_get(struct device *dev, int num_consumers,
3127		       struct regulator_bulk_data *consumers)
3128{
3129	int i;
3130	int ret;
3131
3132	for (i = 0; i < num_consumers; i++)
3133		consumers[i].consumer = NULL;
3134
3135	for (i = 0; i < num_consumers; i++) {
3136		consumers[i].consumer = regulator_get(dev,
3137						      consumers[i].supply);
3138		if (IS_ERR(consumers[i].consumer)) {
3139			ret = PTR_ERR(consumers[i].consumer);
3140			dev_err(dev, "Failed to get supply '%s': %d\n",
3141				consumers[i].supply, ret);
3142			consumers[i].consumer = NULL;
3143			goto err;
3144		}
3145	}
3146
3147	return 0;
3148
3149err:
3150	while (--i >= 0)
3151		regulator_put(consumers[i].consumer);
3152
3153	return ret;
3154}
3155EXPORT_SYMBOL_GPL(regulator_bulk_get);
3156
3157/**
3158 * devm_regulator_bulk_get - managed get multiple regulator consumers
3159 *
3160 * @dev:           Device to supply
3161 * @num_consumers: Number of consumers to register
3162 * @consumers:     Configuration of consumers; clients are stored here.
3163 *
3164 * @return 0 on success, an errno on failure.
3165 *
3166 * This helper function allows drivers to get several regulator
3167 * consumers in one operation with management, the regulators will
3168 * automatically be freed when the device is unbound.  If any of the
3169 * regulators cannot be acquired then any regulators that were
3170 * allocated will be freed before returning to the caller.
3171 */
3172int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3173			    struct regulator_bulk_data *consumers)
3174{
3175	int i;
3176	int ret;
3177
3178	for (i = 0; i < num_consumers; i++)
3179		consumers[i].consumer = NULL;
3180
3181	for (i = 0; i < num_consumers; i++) {
3182		consumers[i].consumer = devm_regulator_get(dev,
3183							   consumers[i].supply);
3184		if (IS_ERR(consumers[i].consumer)) {
3185			ret = PTR_ERR(consumers[i].consumer);
3186			dev_err(dev, "Failed to get supply '%s': %d\n",
3187				consumers[i].supply, ret);
3188			consumers[i].consumer = NULL;
3189			goto err;
3190		}
3191	}
3192
3193	return 0;
3194
3195err:
3196	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3197		devm_regulator_put(consumers[i].consumer);
3198
3199	return ret;
3200}
3201EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3202
3203static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3204{
3205	struct regulator_bulk_data *bulk = data;
3206
3207	bulk->ret = regulator_enable(bulk->consumer);
3208}
3209
3210/**
3211 * regulator_bulk_enable - enable multiple regulator consumers
3212 *
3213 * @num_consumers: Number of consumers
3214 * @consumers:     Consumer data; clients are stored here.
3215 * @return         0 on success, an errno on failure
3216 *
3217 * This convenience API allows consumers to enable multiple regulator
3218 * clients in a single API call.  If any consumers cannot be enabled
3219 * then any others that were enabled will be disabled again prior to
3220 * return.
3221 */
3222int regulator_bulk_enable(int num_consumers,
3223			  struct regulator_bulk_data *consumers)
3224{
3225	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3226	int i;
3227	int ret = 0;
3228
3229	for (i = 0; i < num_consumers; i++) {
3230		if (consumers[i].consumer->always_on)
3231			consumers[i].ret = 0;
3232		else
3233			async_schedule_domain(regulator_bulk_enable_async,
3234					      &consumers[i], &async_domain);
3235	}
3236
3237	async_synchronize_full_domain(&async_domain);
3238
3239	/* If any consumer failed we need to unwind any that succeeded */
3240	for (i = 0; i < num_consumers; i++) {
3241		if (consumers[i].ret != 0) {
3242			ret = consumers[i].ret;
3243			goto err;
3244		}
3245	}
3246
3247	return 0;
3248
3249err:
3250	for (i = 0; i < num_consumers; i++) {
3251		if (consumers[i].ret < 0)
3252			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3253			       consumers[i].ret);
3254		else
3255			regulator_disable(consumers[i].consumer);
3256	}
3257
3258	return ret;
3259}
3260EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3261
3262/**
3263 * regulator_bulk_disable - disable multiple regulator consumers
3264 *
3265 * @num_consumers: Number of consumers
3266 * @consumers:     Consumer data; clients are stored here.
3267 * @return         0 on success, an errno on failure
3268 *
3269 * This convenience API allows consumers to disable multiple regulator
3270 * clients in a single API call.  If any consumers cannot be disabled
3271 * then any others that were disabled will be enabled again prior to
3272 * return.
3273 */
3274int regulator_bulk_disable(int num_consumers,
3275			   struct regulator_bulk_data *consumers)
3276{
3277	int i;
3278	int ret, r;
3279
3280	for (i = num_consumers - 1; i >= 0; --i) {
3281		ret = regulator_disable(consumers[i].consumer);
3282		if (ret != 0)
3283			goto err;
3284	}
3285
3286	return 0;
3287
3288err:
3289	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3290	for (++i; i < num_consumers; ++i) {
3291		r = regulator_enable(consumers[i].consumer);
3292		if (r != 0)
3293			pr_err("Failed to reename %s: %d\n",
3294			       consumers[i].supply, r);
3295	}
3296
3297	return ret;
3298}
3299EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3300
3301/**
3302 * regulator_bulk_force_disable - force disable multiple regulator consumers
3303 *
3304 * @num_consumers: Number of consumers
3305 * @consumers:     Consumer data; clients are stored here.
3306 * @return         0 on success, an errno on failure
3307 *
3308 * This convenience API allows consumers to forcibly disable multiple regulator
3309 * clients in a single API call.
3310 * NOTE: This should be used for situations when device damage will
3311 * likely occur if the regulators are not disabled (e.g. over temp).
3312 * Although regulator_force_disable function call for some consumers can
3313 * return error numbers, the function is called for all consumers.
3314 */
3315int regulator_bulk_force_disable(int num_consumers,
3316			   struct regulator_bulk_data *consumers)
3317{
3318	int i;
3319	int ret;
3320
3321	for (i = 0; i < num_consumers; i++)
3322		consumers[i].ret =
3323			    regulator_force_disable(consumers[i].consumer);
3324
3325	for (i = 0; i < num_consumers; i++) {
3326		if (consumers[i].ret != 0) {
3327			ret = consumers[i].ret;
3328			goto out;
3329		}
3330	}
3331
3332	return 0;
3333out:
3334	return ret;
3335}
3336EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3337
3338/**
3339 * regulator_bulk_free - free multiple regulator consumers
3340 *
3341 * @num_consumers: Number of consumers
3342 * @consumers:     Consumer data; clients are stored here.
3343 *
3344 * This convenience API allows consumers to free multiple regulator
3345 * clients in a single API call.
3346 */
3347void regulator_bulk_free(int num_consumers,
3348			 struct regulator_bulk_data *consumers)
3349{
3350	int i;
3351
3352	for (i = 0; i < num_consumers; i++) {
3353		regulator_put(consumers[i].consumer);
3354		consumers[i].consumer = NULL;
3355	}
3356}
3357EXPORT_SYMBOL_GPL(regulator_bulk_free);
3358
3359/**
3360 * regulator_notifier_call_chain - call regulator event notifier
3361 * @rdev: regulator source
3362 * @event: notifier block
3363 * @data: callback-specific data.
3364 *
3365 * Called by regulator drivers to notify clients a regulator event has
3366 * occurred. We also notify regulator clients downstream.
3367 * Note lock must be held by caller.
3368 */
3369int regulator_notifier_call_chain(struct regulator_dev *rdev,
3370				  unsigned long event, void *data)
3371{
3372	_notifier_call_chain(rdev, event, data);
3373	return NOTIFY_DONE;
3374
3375}
3376EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3377
3378/**
3379 * regulator_mode_to_status - convert a regulator mode into a status
3380 *
3381 * @mode: Mode to convert
3382 *
3383 * Convert a regulator mode into a status.
3384 */
3385int regulator_mode_to_status(unsigned int mode)
3386{
3387	switch (mode) {
3388	case REGULATOR_MODE_FAST:
3389		return REGULATOR_STATUS_FAST;
3390	case REGULATOR_MODE_NORMAL:
3391		return REGULATOR_STATUS_NORMAL;
3392	case REGULATOR_MODE_IDLE:
3393		return REGULATOR_STATUS_IDLE;
3394	case REGULATOR_MODE_STANDBY:
3395		return REGULATOR_STATUS_STANDBY;
3396	default:
3397		return REGULATOR_STATUS_UNDEFINED;
3398	}
3399}
3400EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3401
3402/*
3403 * To avoid cluttering sysfs (and memory) with useless state, only
3404 * create attributes that can be meaningfully displayed.
3405 */
3406static int add_regulator_attributes(struct regulator_dev *rdev)
3407{
3408	struct device		*dev = &rdev->dev;
3409	struct regulator_ops	*ops = rdev->desc->ops;
3410	int			status = 0;
3411
3412	/* some attributes need specific methods to be displayed */
3413	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3414	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3415	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3416		status = device_create_file(dev, &dev_attr_microvolts);
3417		if (status < 0)
3418			return status;
3419	}
3420	if (ops->get_current_limit) {
3421		status = device_create_file(dev, &dev_attr_microamps);
3422		if (status < 0)
3423			return status;
3424	}
3425	if (ops->get_mode) {
3426		status = device_create_file(dev, &dev_attr_opmode);
3427		if (status < 0)
3428			return status;
3429	}
3430	if (rdev->ena_pin || ops->is_enabled) {
3431		status = device_create_file(dev, &dev_attr_state);
3432		if (status < 0)
3433			return status;
3434	}
3435	if (ops->get_status) {
3436		status = device_create_file(dev, &dev_attr_status);
3437		if (status < 0)
3438			return status;
3439	}
3440	if (ops->get_bypass) {
3441		status = device_create_file(dev, &dev_attr_bypass);
3442		if (status < 0)
3443			return status;
3444	}
3445
3446	/* some attributes are type-specific */
3447	if (rdev->desc->type == REGULATOR_CURRENT) {
3448		status = device_create_file(dev, &dev_attr_requested_microamps);
3449		if (status < 0)
3450			return status;
3451	}
3452
3453	/* all the other attributes exist to support constraints;
3454	 * don't show them if there are no constraints, or if the
3455	 * relevant supporting methods are missing.
3456	 */
3457	if (!rdev->constraints)
3458		return status;
3459
3460	/* constraints need specific supporting methods */
3461	if (ops->set_voltage || ops->set_voltage_sel) {
3462		status = device_create_file(dev, &dev_attr_min_microvolts);
3463		if (status < 0)
3464			return status;
3465		status = device_create_file(dev, &dev_attr_max_microvolts);
3466		if (status < 0)
3467			return status;
3468	}
3469	if (ops->set_current_limit) {
3470		status = device_create_file(dev, &dev_attr_min_microamps);
3471		if (status < 0)
3472			return status;
3473		status = device_create_file(dev, &dev_attr_max_microamps);
3474		if (status < 0)
3475			return status;
3476	}
3477
3478	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3479	if (status < 0)
3480		return status;
3481	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3482	if (status < 0)
3483		return status;
3484	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3485	if (status < 0)
3486		return status;
3487
3488	if (ops->set_suspend_voltage) {
3489		status = device_create_file(dev,
3490				&dev_attr_suspend_standby_microvolts);
3491		if (status < 0)
3492			return status;
3493		status = device_create_file(dev,
3494				&dev_attr_suspend_mem_microvolts);
3495		if (status < 0)
3496			return status;
3497		status = device_create_file(dev,
3498				&dev_attr_suspend_disk_microvolts);
3499		if (status < 0)
3500			return status;
3501	}
3502
3503	if (ops->set_suspend_mode) {
3504		status = device_create_file(dev,
3505				&dev_attr_suspend_standby_mode);
3506		if (status < 0)
3507			return status;
3508		status = device_create_file(dev,
3509				&dev_attr_suspend_mem_mode);
3510		if (status < 0)
3511			return status;
3512		status = device_create_file(dev,
3513				&dev_attr_suspend_disk_mode);
3514		if (status < 0)
3515			return status;
3516	}
3517
3518	return status;
3519}
3520
3521static void rdev_init_debugfs(struct regulator_dev *rdev)
3522{
3523	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3524	if (!rdev->debugfs) {
3525		rdev_warn(rdev, "Failed to create debugfs directory\n");
3526		return;
3527	}
3528
3529	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3530			   &rdev->use_count);
3531	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3532			   &rdev->open_count);
3533	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3534			   &rdev->bypass_count);
3535}
3536
3537/**
3538 * regulator_register - register regulator
3539 * @regulator_desc: regulator to register
3540 * @config: runtime configuration for regulator
3541 *
3542 * Called by regulator drivers to register a regulator.
3543 * Returns a valid pointer to struct regulator_dev on success
3544 * or an ERR_PTR() on error.
3545 */
3546struct regulator_dev *
3547regulator_register(const struct regulator_desc *regulator_desc,
3548		   const struct regulator_config *config)
3549{
3550	const struct regulation_constraints *constraints = NULL;
3551	const struct regulator_init_data *init_data;
3552	static atomic_t regulator_no = ATOMIC_INIT(0);
3553	struct regulator_dev *rdev;
3554	struct device *dev;
3555	int ret, i;
3556	const char *supply = NULL;
3557
3558	if (regulator_desc == NULL || config == NULL)
3559		return ERR_PTR(-EINVAL);
3560
3561	dev = config->dev;
3562	WARN_ON(!dev);
3563
3564	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3565		return ERR_PTR(-EINVAL);
3566
3567	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3568	    regulator_desc->type != REGULATOR_CURRENT)
3569		return ERR_PTR(-EINVAL);
3570
3571	/* Only one of each should be implemented */
3572	WARN_ON(regulator_desc->ops->get_voltage &&
3573		regulator_desc->ops->get_voltage_sel);
3574	WARN_ON(regulator_desc->ops->set_voltage &&
3575		regulator_desc->ops->set_voltage_sel);
3576
3577	/* If we're using selectors we must implement list_voltage. */
3578	if (regulator_desc->ops->get_voltage_sel &&
3579	    !regulator_desc->ops->list_voltage) {
3580		return ERR_PTR(-EINVAL);
3581	}
3582	if (regulator_desc->ops->set_voltage_sel &&
3583	    !regulator_desc->ops->list_voltage) {
3584		return ERR_PTR(-EINVAL);
3585	}
3586
3587	init_data = config->init_data;
3588
3589	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3590	if (rdev == NULL)
3591		return ERR_PTR(-ENOMEM);
3592
3593	mutex_lock(&regulator_list_mutex);
3594
3595	mutex_init(&rdev->mutex);
3596	rdev->reg_data = config->driver_data;
3597	rdev->owner = regulator_desc->owner;
3598	rdev->desc = regulator_desc;
3599	if (config->regmap)
3600		rdev->regmap = config->regmap;
3601	else if (dev_get_regmap(dev, NULL))
3602		rdev->regmap = dev_get_regmap(dev, NULL);
3603	else if (dev->parent)
3604		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3605	INIT_LIST_HEAD(&rdev->consumer_list);
3606	INIT_LIST_HEAD(&rdev->list);
3607	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3608	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3609
3610	/* preform any regulator specific init */
3611	if (init_data && init_data->regulator_init) {
3612		ret = init_data->regulator_init(rdev->reg_data);
3613		if (ret < 0)
3614			goto clean;
3615	}
3616
3617	/* register with sysfs */
3618	rdev->dev.class = &regulator_class;
3619	rdev->dev.of_node = config->of_node;
3620	rdev->dev.parent = dev;
3621	dev_set_name(&rdev->dev, "regulator.%d",
3622		     atomic_inc_return(&regulator_no) - 1);
3623	ret = device_register(&rdev->dev);
3624	if (ret != 0) {
3625		put_device(&rdev->dev);
3626		goto clean;
3627	}
3628
3629	dev_set_drvdata(&rdev->dev, rdev);
3630
3631	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3632		ret = regulator_ena_gpio_request(rdev, config);
3633		if (ret != 0) {
3634			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3635				 config->ena_gpio, ret);
3636			goto wash;
3637		}
3638
3639		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3640			rdev->ena_gpio_state = 1;
3641
3642		if (config->ena_gpio_invert)
3643			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3644	}
3645
3646	/* set regulator constraints */
3647	if (init_data)
3648		constraints = &init_data->constraints;
3649
3650	ret = set_machine_constraints(rdev, constraints);
3651	if (ret < 0)
3652		goto scrub;
3653
3654	/* add attributes supported by this regulator */
3655	ret = add_regulator_attributes(rdev);
3656	if (ret < 0)
3657		goto scrub;
3658
3659	if (init_data && init_data->supply_regulator)
3660		supply = init_data->supply_regulator;
3661	else if (regulator_desc->supply_name)
3662		supply = regulator_desc->supply_name;
3663
3664	if (supply) {
3665		struct regulator_dev *r;
3666
3667		r = regulator_dev_lookup(dev, supply, &ret);
3668
3669		if (ret == -ENODEV) {
3670			/*
3671			 * No supply was specified for this regulator and
3672			 * there will never be one.
3673			 */
3674			ret = 0;
3675			goto add_dev;
3676		} else if (!r) {
3677			dev_err(dev, "Failed to find supply %s\n", supply);
3678			ret = -EPROBE_DEFER;
3679			goto scrub;
3680		}
3681
3682		ret = set_supply(rdev, r);
3683		if (ret < 0)
3684			goto scrub;
3685
3686		/* Enable supply if rail is enabled */
3687		if (_regulator_is_enabled(rdev)) {
3688			ret = regulator_enable(rdev->supply);
3689			if (ret < 0)
3690				goto scrub;
3691		}
3692	}
3693
3694add_dev:
3695	/* add consumers devices */
3696	if (init_data) {
3697		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3698			ret = set_consumer_device_supply(rdev,
3699				init_data->consumer_supplies[i].dev_name,
3700				init_data->consumer_supplies[i].supply);
3701			if (ret < 0) {
3702				dev_err(dev, "Failed to set supply %s\n",
3703					init_data->consumer_supplies[i].supply);
3704				goto unset_supplies;
3705			}
3706		}
3707	}
3708
3709	list_add(&rdev->list, &regulator_list);
3710
3711	rdev_init_debugfs(rdev);
3712out:
3713	mutex_unlock(&regulator_list_mutex);
3714	return rdev;
3715
3716unset_supplies:
3717	unset_regulator_supplies(rdev);
3718
3719scrub:
3720	if (rdev->supply)
3721		_regulator_put(rdev->supply);
3722	regulator_ena_gpio_free(rdev);
3723	kfree(rdev->constraints);
3724wash:
3725	device_unregister(&rdev->dev);
3726	/* device core frees rdev */
3727	rdev = ERR_PTR(ret);
3728	goto out;
3729
3730clean:
3731	kfree(rdev);
3732	rdev = ERR_PTR(ret);
3733	goto out;
3734}
3735EXPORT_SYMBOL_GPL(regulator_register);
3736
3737/**
3738 * regulator_unregister - unregister regulator
3739 * @rdev: regulator to unregister
3740 *
3741 * Called by regulator drivers to unregister a regulator.
3742 */
3743void regulator_unregister(struct regulator_dev *rdev)
3744{
3745	if (rdev == NULL)
3746		return;
3747
3748	if (rdev->supply) {
3749		while (rdev->use_count--)
3750			regulator_disable(rdev->supply);
3751		regulator_put(rdev->supply);
3752	}
3753	mutex_lock(&regulator_list_mutex);
3754	debugfs_remove_recursive(rdev->debugfs);
3755	flush_work(&rdev->disable_work.work);
3756	WARN_ON(rdev->open_count);
3757	unset_regulator_supplies(rdev);
3758	list_del(&rdev->list);
3759	kfree(rdev->constraints);
3760	regulator_ena_gpio_free(rdev);
3761	device_unregister(&rdev->dev);
3762	mutex_unlock(&regulator_list_mutex);
3763}
3764EXPORT_SYMBOL_GPL(regulator_unregister);
3765
3766/**
3767 * regulator_suspend_prepare - prepare regulators for system wide suspend
3768 * @state: system suspend state
3769 *
3770 * Configure each regulator with it's suspend operating parameters for state.
3771 * This will usually be called by machine suspend code prior to supending.
3772 */
3773int regulator_suspend_prepare(suspend_state_t state)
3774{
3775	struct regulator_dev *rdev;
3776	int ret = 0;
3777
3778	/* ON is handled by regulator active state */
3779	if (state == PM_SUSPEND_ON)
3780		return -EINVAL;
3781
3782	mutex_lock(&regulator_list_mutex);
3783	list_for_each_entry(rdev, &regulator_list, list) {
3784
3785		mutex_lock(&rdev->mutex);
3786		ret = suspend_prepare(rdev, state);
3787		mutex_unlock(&rdev->mutex);
3788
3789		if (ret < 0) {
3790			rdev_err(rdev, "failed to prepare\n");
3791			goto out;
3792		}
3793	}
3794out:
3795	mutex_unlock(&regulator_list_mutex);
3796	return ret;
3797}
3798EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3799
3800/**
3801 * regulator_suspend_finish - resume regulators from system wide suspend
3802 *
3803 * Turn on regulators that might be turned off by regulator_suspend_prepare
3804 * and that should be turned on according to the regulators properties.
3805 */
3806int regulator_suspend_finish(void)
3807{
3808	struct regulator_dev *rdev;
3809	int ret = 0, error;
3810
3811	mutex_lock(&regulator_list_mutex);
3812	list_for_each_entry(rdev, &regulator_list, list) {
3813		struct regulator_ops *ops = rdev->desc->ops;
3814
3815		mutex_lock(&rdev->mutex);
3816		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3817				ops->enable) {
3818			error = ops->enable(rdev);
3819			if (error)
3820				ret = error;
3821		} else {
3822			if (!has_full_constraints)
3823				goto unlock;
3824			if (!ops->disable)
3825				goto unlock;
3826			if (!_regulator_is_enabled(rdev))
3827				goto unlock;
3828
3829			error = ops->disable(rdev);
3830			if (error)
3831				ret = error;
3832		}
3833unlock:
3834		mutex_unlock(&rdev->mutex);
3835	}
3836	mutex_unlock(&regulator_list_mutex);
3837	return ret;
3838}
3839EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3840
3841/**
3842 * regulator_has_full_constraints - the system has fully specified constraints
3843 *
3844 * Calling this function will cause the regulator API to disable all
3845 * regulators which have a zero use count and don't have an always_on
3846 * constraint in a late_initcall.
3847 *
3848 * The intention is that this will become the default behaviour in a
3849 * future kernel release so users are encouraged to use this facility
3850 * now.
3851 */
3852void regulator_has_full_constraints(void)
3853{
3854	has_full_constraints = 1;
3855}
3856EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3857
3858/**
3859 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3860 *
3861 * Calling this function will cause the regulator API to provide a
3862 * dummy regulator to consumers if no physical regulator is found,
3863 * allowing most consumers to proceed as though a regulator were
3864 * configured.  This allows systems such as those with software
3865 * controllable regulators for the CPU core only to be brought up more
3866 * readily.
3867 */
3868void regulator_use_dummy_regulator(void)
3869{
3870	board_wants_dummy_regulator = true;
3871}
3872EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3873
3874/**
3875 * rdev_get_drvdata - get rdev regulator driver data
3876 * @rdev: regulator
3877 *
3878 * Get rdev regulator driver private data. This call can be used in the
3879 * regulator driver context.
3880 */
3881void *rdev_get_drvdata(struct regulator_dev *rdev)
3882{
3883	return rdev->reg_data;
3884}
3885EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3886
3887/**
3888 * regulator_get_drvdata - get regulator driver data
3889 * @regulator: regulator
3890 *
3891 * Get regulator driver private data. This call can be used in the consumer
3892 * driver context when non API regulator specific functions need to be called.
3893 */
3894void *regulator_get_drvdata(struct regulator *regulator)
3895{
3896	return regulator->rdev->reg_data;
3897}
3898EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3899
3900/**
3901 * regulator_set_drvdata - set regulator driver data
3902 * @regulator: regulator
3903 * @data: data
3904 */
3905void regulator_set_drvdata(struct regulator *regulator, void *data)
3906{
3907	regulator->rdev->reg_data = data;
3908}
3909EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3910
3911/**
3912 * regulator_get_id - get regulator ID
3913 * @rdev: regulator
3914 */
3915int rdev_get_id(struct regulator_dev *rdev)
3916{
3917	return rdev->desc->id;
3918}
3919EXPORT_SYMBOL_GPL(rdev_get_id);
3920
3921struct device *rdev_get_dev(struct regulator_dev *rdev)
3922{
3923	return &rdev->dev;
3924}
3925EXPORT_SYMBOL_GPL(rdev_get_dev);
3926
3927void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3928{
3929	return reg_init_data->driver_data;
3930}
3931EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3932
3933#ifdef CONFIG_DEBUG_FS
3934static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3935				    size_t count, loff_t *ppos)
3936{
3937	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3938	ssize_t len, ret = 0;
3939	struct regulator_map *map;
3940
3941	if (!buf)
3942		return -ENOMEM;
3943
3944	list_for_each_entry(map, &regulator_map_list, list) {
3945		len = snprintf(buf + ret, PAGE_SIZE - ret,
3946			       "%s -> %s.%s\n",
3947			       rdev_get_name(map->regulator), map->dev_name,
3948			       map->supply);
3949		if (len >= 0)
3950			ret += len;
3951		if (ret > PAGE_SIZE) {
3952			ret = PAGE_SIZE;
3953			break;
3954		}
3955	}
3956
3957	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3958
3959	kfree(buf);
3960
3961	return ret;
3962}
3963#endif
3964
3965static const struct file_operations supply_map_fops = {
3966#ifdef CONFIG_DEBUG_FS
3967	.read = supply_map_read_file,
3968	.llseek = default_llseek,
3969#endif
3970};
3971
3972static int __init regulator_init(void)
3973{
3974	int ret;
3975
3976	ret = class_register(&regulator_class);
3977
3978	debugfs_root = debugfs_create_dir("regulator", NULL);
3979	if (!debugfs_root)
3980		pr_warn("regulator: Failed to create debugfs directory\n");
3981
3982	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3983			    &supply_map_fops);
3984
3985	regulator_dummy_init();
3986
3987	return ret;
3988}
3989
3990/* init early to allow our consumers to complete system booting */
3991core_initcall(regulator_init);
3992
3993static int __init regulator_init_complete(void)
3994{
3995	struct regulator_dev *rdev;
3996	struct regulator_ops *ops;
3997	struct regulation_constraints *c;
3998	int enabled, ret;
3999
4000	/*
4001	 * Since DT doesn't provide an idiomatic mechanism for
4002	 * enabling full constraints and since it's much more natural
4003	 * with DT to provide them just assume that a DT enabled
4004	 * system has full constraints.
4005	 */
4006	if (of_have_populated_dt())
4007		has_full_constraints = true;
4008
4009	mutex_lock(&regulator_list_mutex);
4010
4011	/* If we have a full configuration then disable any regulators
4012	 * which are not in use or always_on.  This will become the
4013	 * default behaviour in the future.
4014	 */
4015	list_for_each_entry(rdev, &regulator_list, list) {
4016		ops = rdev->desc->ops;
4017		c = rdev->constraints;
4018
4019		if (!ops->disable || (c && c->always_on))
4020			continue;
4021
4022		mutex_lock(&rdev->mutex);
4023
4024		if (rdev->use_count)
4025			goto unlock;
4026
4027		/* If we can't read the status assume it's on. */
4028		if (ops->is_enabled)
4029			enabled = ops->is_enabled(rdev);
4030		else
4031			enabled = 1;
4032
4033		if (!enabled)
4034			goto unlock;
4035
4036		if (has_full_constraints) {
4037			/* We log since this may kill the system if it
4038			 * goes wrong. */
4039			rdev_info(rdev, "disabling\n");
4040			ret = ops->disable(rdev);
4041			if (ret != 0) {
4042				rdev_err(rdev, "couldn't disable: %d\n", ret);
4043			}
4044		} else {
4045			/* The intention is that in future we will
4046			 * assume that full constraints are provided
4047			 * so warn even if we aren't going to do
4048			 * anything here.
4049			 */
4050			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4051		}
4052
4053unlock:
4054		mutex_unlock(&rdev->mutex);
4055	}
4056
4057	mutex_unlock(&regulator_list_mutex);
4058
4059	return 0;
4060}
4061late_initcall(regulator_init_complete);
4062