core.c revision 5b307627738f1f6cbc31fad9e28a299b5fe55602
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints && rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283	ssize_t ret;
284
285	mutex_lock(&rdev->mutex);
286	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287	mutex_unlock(&rdev->mutex);
288
289	return ret;
290}
291static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293static ssize_t regulator_status_show(struct device *dev,
294				   struct device_attribute *attr, char *buf)
295{
296	struct regulator_dev *rdev = dev_get_drvdata(dev);
297	int status;
298	char *label;
299
300	status = rdev->desc->ops->get_status(rdev);
301	if (status < 0)
302		return status;
303
304	switch (status) {
305	case REGULATOR_STATUS_OFF:
306		label = "off";
307		break;
308	case REGULATOR_STATUS_ON:
309		label = "on";
310		break;
311	case REGULATOR_STATUS_ERROR:
312		label = "error";
313		break;
314	case REGULATOR_STATUS_FAST:
315		label = "fast";
316		break;
317	case REGULATOR_STATUS_NORMAL:
318		label = "normal";
319		break;
320	case REGULATOR_STATUS_IDLE:
321		label = "idle";
322		break;
323	case REGULATOR_STATUS_STANDBY:
324		label = "standby";
325		break;
326	default:
327		return -ERANGE;
328	}
329
330	return sprintf(buf, "%s\n", label);
331}
332static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334static ssize_t regulator_min_uA_show(struct device *dev,
335				    struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	if (!rdev->constraints)
340		return sprintf(buf, "constraint not defined\n");
341
342	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343}
344static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346static ssize_t regulator_max_uA_show(struct device *dev,
347				    struct device_attribute *attr, char *buf)
348{
349	struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351	if (!rdev->constraints)
352		return sprintf(buf, "constraint not defined\n");
353
354	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355}
356static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358static ssize_t regulator_min_uV_show(struct device *dev,
359				    struct device_attribute *attr, char *buf)
360{
361	struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363	if (!rdev->constraints)
364		return sprintf(buf, "constraint not defined\n");
365
366	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367}
368static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370static ssize_t regulator_max_uV_show(struct device *dev,
371				    struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375	if (!rdev->constraints)
376		return sprintf(buf, "constraint not defined\n");
377
378	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379}
380static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382static ssize_t regulator_total_uA_show(struct device *dev,
383				      struct device_attribute *attr, char *buf)
384{
385	struct regulator_dev *rdev = dev_get_drvdata(dev);
386	struct regulator *regulator;
387	int uA = 0;
388
389	mutex_lock(&rdev->mutex);
390	list_for_each_entry(regulator, &rdev->consumer_list, list)
391	    uA += regulator->uA_load;
392	mutex_unlock(&rdev->mutex);
393	return sprintf(buf, "%d\n", uA);
394}
395static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397static ssize_t regulator_num_users_show(struct device *dev,
398				      struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	return sprintf(buf, "%d\n", rdev->use_count);
402}
403
404static ssize_t regulator_type_show(struct device *dev,
405				  struct device_attribute *attr, char *buf)
406{
407	struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409	switch (rdev->desc->type) {
410	case REGULATOR_VOLTAGE:
411		return sprintf(buf, "voltage\n");
412	case REGULATOR_CURRENT:
413		return sprintf(buf, "current\n");
414	}
415	return sprintf(buf, "unknown\n");
416}
417
418static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419				struct device_attribute *attr, char *buf)
420{
421	struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424}
425static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426		regulator_suspend_mem_uV_show, NULL);
427
428static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429				struct device_attribute *attr, char *buf)
430{
431	struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434}
435static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436		regulator_suspend_disk_uV_show, NULL);
437
438static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439				struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444}
445static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446		regulator_suspend_standby_uV_show, NULL);
447
448static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449				struct device_attribute *attr, char *buf)
450{
451	struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453	return regulator_print_opmode(buf,
454		rdev->constraints->state_mem.mode);
455}
456static DEVICE_ATTR(suspend_mem_mode, 0444,
457		regulator_suspend_mem_mode_show, NULL);
458
459static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460				struct device_attribute *attr, char *buf)
461{
462	struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464	return regulator_print_opmode(buf,
465		rdev->constraints->state_disk.mode);
466}
467static DEVICE_ATTR(suspend_disk_mode, 0444,
468		regulator_suspend_disk_mode_show, NULL);
469
470static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return regulator_print_opmode(buf,
476		rdev->constraints->state_standby.mode);
477}
478static DEVICE_ATTR(suspend_standby_mode, 0444,
479		regulator_suspend_standby_mode_show, NULL);
480
481static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482				   struct device_attribute *attr, char *buf)
483{
484	struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486	return regulator_print_state(buf,
487			rdev->constraints->state_mem.enabled);
488}
489static DEVICE_ATTR(suspend_mem_state, 0444,
490		regulator_suspend_mem_state_show, NULL);
491
492static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493				   struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497	return regulator_print_state(buf,
498			rdev->constraints->state_disk.enabled);
499}
500static DEVICE_ATTR(suspend_disk_state, 0444,
501		regulator_suspend_disk_state_show, NULL);
502
503static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504				   struct device_attribute *attr, char *buf)
505{
506	struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508	return regulator_print_state(buf,
509			rdev->constraints->state_standby.enabled);
510}
511static DEVICE_ATTR(suspend_standby_state, 0444,
512		regulator_suspend_standby_state_show, NULL);
513
514
515/*
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
518 */
519static struct device_attribute regulator_dev_attrs[] = {
520	__ATTR(name, 0444, regulator_name_show, NULL),
521	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
522	__ATTR(type, 0444, regulator_type_show, NULL),
523	__ATTR_NULL,
524};
525
526static void regulator_dev_release(struct device *dev)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529	kfree(rdev);
530}
531
532static struct class regulator_class = {
533	.name = "regulator",
534	.dev_release = regulator_dev_release,
535	.dev_attrs = regulator_dev_attrs,
536};
537
538/* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540static void drms_uA_update(struct regulator_dev *rdev)
541{
542	struct regulator *sibling;
543	int current_uA = 0, output_uV, input_uV, err;
544	unsigned int mode;
545
546	err = regulator_check_drms(rdev);
547	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549		return;
550
551	/* get output voltage */
552	output_uV = rdev->desc->ops->get_voltage(rdev);
553	if (output_uV <= 0)
554		return;
555
556	/* get input voltage */
557	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559	else
560		input_uV = rdev->constraints->input_uV;
561	if (input_uV <= 0)
562		return;
563
564	/* calc total requested load */
565	list_for_each_entry(sibling, &rdev->consumer_list, list)
566	    current_uA += sibling->uA_load;
567
568	/* now get the optimum mode for our new total regulator load */
569	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570						  output_uV, current_uA);
571
572	/* check the new mode is allowed */
573	err = regulator_check_mode(rdev, mode);
574	if (err == 0)
575		rdev->desc->ops->set_mode(rdev, mode);
576}
577
578static int suspend_set_state(struct regulator_dev *rdev,
579	struct regulator_state *rstate)
580{
581	int ret = 0;
582
583	/* enable & disable are mandatory for suspend control */
584	if (!rdev->desc->ops->set_suspend_enable ||
585		!rdev->desc->ops->set_suspend_disable) {
586		printk(KERN_ERR "%s: no way to set suspend state\n",
587			__func__);
588		return -EINVAL;
589	}
590
591	if (rstate->enabled)
592		ret = rdev->desc->ops->set_suspend_enable(rdev);
593	else
594		ret = rdev->desc->ops->set_suspend_disable(rdev);
595	if (ret < 0) {
596		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597		return ret;
598	}
599
600	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602		if (ret < 0) {
603			printk(KERN_ERR "%s: failed to set voltage\n",
604				__func__);
605			return ret;
606		}
607	}
608
609	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611		if (ret < 0) {
612			printk(KERN_ERR "%s: failed to set mode\n", __func__);
613			return ret;
614		}
615	}
616	return ret;
617}
618
619/* locks held by caller */
620static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621{
622	if (!rdev->constraints)
623		return -EINVAL;
624
625	switch (state) {
626	case PM_SUSPEND_STANDBY:
627		return suspend_set_state(rdev,
628			&rdev->constraints->state_standby);
629	case PM_SUSPEND_MEM:
630		return suspend_set_state(rdev,
631			&rdev->constraints->state_mem);
632	case PM_SUSPEND_MAX:
633		return suspend_set_state(rdev,
634			&rdev->constraints->state_disk);
635	default:
636		return -EINVAL;
637	}
638}
639
640static void print_constraints(struct regulator_dev *rdev)
641{
642	struct regulation_constraints *constraints = rdev->constraints;
643	char buf[80];
644	int count;
645
646	if (rdev->desc->type == REGULATOR_VOLTAGE) {
647		if (constraints->min_uV == constraints->max_uV)
648			count = sprintf(buf, "%d mV ",
649					constraints->min_uV / 1000);
650		else
651			count = sprintf(buf, "%d <--> %d mV ",
652					constraints->min_uV / 1000,
653					constraints->max_uV / 1000);
654	} else {
655		if (constraints->min_uA == constraints->max_uA)
656			count = sprintf(buf, "%d mA ",
657					constraints->min_uA / 1000);
658		else
659			count = sprintf(buf, "%d <--> %d mA ",
660					constraints->min_uA / 1000,
661					constraints->max_uA / 1000);
662	}
663	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664		count += sprintf(buf + count, "fast ");
665	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666		count += sprintf(buf + count, "normal ");
667	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668		count += sprintf(buf + count, "idle ");
669	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670		count += sprintf(buf + count, "standby");
671
672	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673}
674
675/**
676 * set_machine_constraints - sets regulator constraints
677 * @rdev: regulator source
678 * @constraints: constraints to apply
679 *
680 * Allows platform initialisation code to define and constrain
681 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
682 * Constraints *must* be set by platform code in order for some
683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
684 * set_mode.
685 */
686static int set_machine_constraints(struct regulator_dev *rdev,
687	struct regulation_constraints *constraints)
688{
689	int ret = 0;
690	const char *name;
691	struct regulator_ops *ops = rdev->desc->ops;
692
693	if (constraints->name)
694		name = constraints->name;
695	else if (rdev->desc->name)
696		name = rdev->desc->name;
697	else
698		name = "regulator";
699
700	/* constrain machine-level voltage specs to fit
701	 * the actual range supported by this regulator.
702	 */
703	if (ops->list_voltage && rdev->desc->n_voltages) {
704		int	count = rdev->desc->n_voltages;
705		int	i;
706		int	min_uV = INT_MAX;
707		int	max_uV = INT_MIN;
708		int	cmin = constraints->min_uV;
709		int	cmax = constraints->max_uV;
710
711		/* it's safe to autoconfigure fixed-voltage supplies
712		   and the constraints are used by list_voltage. */
713		if (count == 1 && !cmin) {
714			cmin = 1;
715			cmax = INT_MAX;
716			constraints->min_uV = cmin;
717			constraints->max_uV = cmax;
718		}
719
720		/* voltage constraints are optional */
721		if ((cmin == 0) && (cmax == 0))
722			goto out;
723
724		/* else require explicit machine-level constraints */
725		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726			pr_err("%s: %s '%s' voltage constraints\n",
727				       __func__, "invalid", name);
728			ret = -EINVAL;
729			goto out;
730		}
731
732		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733		for (i = 0; i < count; i++) {
734			int	value;
735
736			value = ops->list_voltage(rdev, i);
737			if (value <= 0)
738				continue;
739
740			/* maybe adjust [min_uV..max_uV] */
741			if (value >= cmin && value < min_uV)
742				min_uV = value;
743			if (value <= cmax && value > max_uV)
744				max_uV = value;
745		}
746
747		/* final: [min_uV..max_uV] valid iff constraints valid */
748		if (max_uV < min_uV) {
749			pr_err("%s: %s '%s' voltage constraints\n",
750				       __func__, "unsupportable", name);
751			ret = -EINVAL;
752			goto out;
753		}
754
755		/* use regulator's subset of machine constraints */
756		if (constraints->min_uV < min_uV) {
757			pr_debug("%s: override '%s' %s, %d -> %d\n",
758				       __func__, name, "min_uV",
759					constraints->min_uV, min_uV);
760			constraints->min_uV = min_uV;
761		}
762		if (constraints->max_uV > max_uV) {
763			pr_debug("%s: override '%s' %s, %d -> %d\n",
764				       __func__, name, "max_uV",
765					constraints->max_uV, max_uV);
766			constraints->max_uV = max_uV;
767		}
768	}
769
770	rdev->constraints = constraints;
771
772	/* do we need to apply the constraint voltage */
773	if (rdev->constraints->apply_uV &&
774		rdev->constraints->min_uV == rdev->constraints->max_uV &&
775		ops->set_voltage) {
776		ret = ops->set_voltage(rdev,
777			rdev->constraints->min_uV, rdev->constraints->max_uV);
778			if (ret < 0) {
779				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780				       __func__,
781				       rdev->constraints->min_uV, name);
782				rdev->constraints = NULL;
783				goto out;
784			}
785	}
786
787	/* do we need to setup our suspend state */
788	if (constraints->initial_state) {
789		ret = suspend_prepare(rdev, constraints->initial_state);
790		if (ret < 0) {
791			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792			       __func__, name);
793			rdev->constraints = NULL;
794			goto out;
795		}
796	}
797
798	if (constraints->initial_mode) {
799		if (!ops->set_mode) {
800			printk(KERN_ERR "%s: no set_mode operation for %s\n",
801			       __func__, name);
802			ret = -EINVAL;
803			goto out;
804		}
805
806		ret = ops->set_mode(rdev, constraints->initial_mode);
807		if (ret < 0) {
808			printk(KERN_ERR
809			       "%s: failed to set initial mode for %s: %d\n",
810			       __func__, name, ret);
811			goto out;
812		}
813	}
814
815	/* If the constraints say the regulator should be on at this point
816	 * and we have control then make sure it is enabled.
817	 */
818	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819		ret = ops->enable(rdev);
820		if (ret < 0) {
821			printk(KERN_ERR "%s: failed to enable %s\n",
822			       __func__, name);
823			rdev->constraints = NULL;
824			goto out;
825		}
826	}
827
828	print_constraints(rdev);
829out:
830	return ret;
831}
832
833/**
834 * set_supply - set regulator supply regulator
835 * @rdev: regulator name
836 * @supply_rdev: supply regulator name
837 *
838 * Called by platform initialisation code to set the supply regulator for this
839 * regulator. This ensures that a regulators supply will also be enabled by the
840 * core if it's child is enabled.
841 */
842static int set_supply(struct regulator_dev *rdev,
843	struct regulator_dev *supply_rdev)
844{
845	int err;
846
847	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848				"supply");
849	if (err) {
850		printk(KERN_ERR
851		       "%s: could not add device link %s err %d\n",
852		       __func__, supply_rdev->dev.kobj.name, err);
853		       goto out;
854	}
855	rdev->supply = supply_rdev;
856	list_add(&rdev->slist, &supply_rdev->supply_list);
857out:
858	return err;
859}
860
861/**
862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
863 * @rdev:         regulator source
864 * @consumer_dev: device the supply applies to
865 * @consumer_dev_name: dev_name() string for device supply applies to
866 * @supply:       symbolic name for supply
867 *
868 * Allows platform initialisation code to map physical regulator
869 * sources to symbolic names for supplies for use by devices.  Devices
870 * should use these symbolic names to request regulators, avoiding the
871 * need to provide board-specific regulator names as platform data.
872 *
873 * Only one of consumer_dev and consumer_dev_name may be specified.
874 */
875static int set_consumer_device_supply(struct regulator_dev *rdev,
876	struct device *consumer_dev, const char *consumer_dev_name,
877	const char *supply)
878{
879	struct regulator_map *node;
880	int has_dev;
881
882	if (consumer_dev && consumer_dev_name)
883		return -EINVAL;
884
885	if (!consumer_dev_name && consumer_dev)
886		consumer_dev_name = dev_name(consumer_dev);
887
888	if (supply == NULL)
889		return -EINVAL;
890
891	if (consumer_dev_name != NULL)
892		has_dev = 1;
893	else
894		has_dev = 0;
895
896	list_for_each_entry(node, &regulator_map_list, list) {
897		if (consumer_dev_name != node->dev_name)
898			continue;
899		if (strcmp(node->supply, supply) != 0)
900			continue;
901
902		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903				dev_name(&node->regulator->dev),
904				node->regulator->desc->name,
905				supply,
906				dev_name(&rdev->dev), rdev->desc->name);
907		return -EBUSY;
908	}
909
910	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911	if (node == NULL)
912		return -ENOMEM;
913
914	node->regulator = rdev;
915	node->supply = supply;
916
917	if (has_dev) {
918		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919		if (node->dev_name == NULL) {
920			kfree(node);
921			return -ENOMEM;
922		}
923	}
924
925	list_add(&node->list, &regulator_map_list);
926	return 0;
927}
928
929static void unset_consumer_device_supply(struct regulator_dev *rdev,
930	const char *consumer_dev_name, struct device *consumer_dev)
931{
932	struct regulator_map *node, *n;
933
934	if (consumer_dev && !consumer_dev_name)
935		consumer_dev_name = dev_name(consumer_dev);
936
937	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938		if (rdev != node->regulator)
939			continue;
940
941		if (consumer_dev_name && node->dev_name &&
942		    strcmp(consumer_dev_name, node->dev_name))
943			continue;
944
945		list_del(&node->list);
946		kfree(node->dev_name);
947		kfree(node);
948		return;
949	}
950}
951
952static void unset_regulator_supplies(struct regulator_dev *rdev)
953{
954	struct regulator_map *node, *n;
955
956	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957		if (rdev == node->regulator) {
958			list_del(&node->list);
959			kfree(node->dev_name);
960			kfree(node);
961			return;
962		}
963	}
964}
965
966#define REG_STR_SIZE	32
967
968static struct regulator *create_regulator(struct regulator_dev *rdev,
969					  struct device *dev,
970					  const char *supply_name)
971{
972	struct regulator *regulator;
973	char buf[REG_STR_SIZE];
974	int err, size;
975
976	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977	if (regulator == NULL)
978		return NULL;
979
980	mutex_lock(&rdev->mutex);
981	regulator->rdev = rdev;
982	list_add(&regulator->list, &rdev->consumer_list);
983
984	if (dev) {
985		/* create a 'requested_microamps_name' sysfs entry */
986		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987			supply_name);
988		if (size >= REG_STR_SIZE)
989			goto overflow_err;
990
991		regulator->dev = dev;
992		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993		if (regulator->dev_attr.attr.name == NULL)
994			goto attr_name_err;
995
996		regulator->dev_attr.attr.owner = THIS_MODULE;
997		regulator->dev_attr.attr.mode = 0444;
998		regulator->dev_attr.show = device_requested_uA_show;
999		err = device_create_file(dev, &regulator->dev_attr);
1000		if (err < 0) {
1001			printk(KERN_WARNING "%s: could not add regulator_dev"
1002				" load sysfs\n", __func__);
1003			goto attr_name_err;
1004		}
1005
1006		/* also add a link to the device sysfs entry */
1007		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008				 dev->kobj.name, supply_name);
1009		if (size >= REG_STR_SIZE)
1010			goto attr_err;
1011
1012		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013		if (regulator->supply_name == NULL)
1014			goto attr_err;
1015
1016		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017					buf);
1018		if (err) {
1019			printk(KERN_WARNING
1020			       "%s: could not add device link %s err %d\n",
1021			       __func__, dev->kobj.name, err);
1022			device_remove_file(dev, &regulator->dev_attr);
1023			goto link_name_err;
1024		}
1025	}
1026	mutex_unlock(&rdev->mutex);
1027	return regulator;
1028link_name_err:
1029	kfree(regulator->supply_name);
1030attr_err:
1031	device_remove_file(regulator->dev, &regulator->dev_attr);
1032attr_name_err:
1033	kfree(regulator->dev_attr.attr.name);
1034overflow_err:
1035	list_del(&regulator->list);
1036	kfree(regulator);
1037	mutex_unlock(&rdev->mutex);
1038	return NULL;
1039}
1040
1041/* Internal regulator request function */
1042static struct regulator *_regulator_get(struct device *dev, const char *id,
1043					int exclusive)
1044{
1045	struct regulator_dev *rdev;
1046	struct regulator_map *map;
1047	struct regulator *regulator = ERR_PTR(-ENODEV);
1048	const char *devname = NULL;
1049	int ret;
1050
1051	if (id == NULL) {
1052		printk(KERN_ERR "regulator: get() with no identifier\n");
1053		return regulator;
1054	}
1055
1056	if (dev)
1057		devname = dev_name(dev);
1058
1059	mutex_lock(&regulator_list_mutex);
1060
1061	list_for_each_entry(map, &regulator_map_list, list) {
1062		/* If the mapping has a device set up it must match */
1063		if (map->dev_name &&
1064		    (!devname || strcmp(map->dev_name, devname)))
1065			continue;
1066
1067		if (strcmp(map->supply, id) == 0) {
1068			rdev = map->regulator;
1069			goto found;
1070		}
1071	}
1072	mutex_unlock(&regulator_list_mutex);
1073	return regulator;
1074
1075found:
1076	if (rdev->exclusive) {
1077		regulator = ERR_PTR(-EPERM);
1078		goto out;
1079	}
1080
1081	if (exclusive && rdev->open_count) {
1082		regulator = ERR_PTR(-EBUSY);
1083		goto out;
1084	}
1085
1086	if (!try_module_get(rdev->owner))
1087		goto out;
1088
1089	regulator = create_regulator(rdev, dev, id);
1090	if (regulator == NULL) {
1091		regulator = ERR_PTR(-ENOMEM);
1092		module_put(rdev->owner);
1093	}
1094
1095	rdev->open_count++;
1096	if (exclusive) {
1097		rdev->exclusive = 1;
1098
1099		ret = _regulator_is_enabled(rdev);
1100		if (ret > 0)
1101			rdev->use_count = 1;
1102		else
1103			rdev->use_count = 0;
1104	}
1105
1106out:
1107	mutex_unlock(&regulator_list_mutex);
1108
1109	return regulator;
1110}
1111
1112/**
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1116 *
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1119 *
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged.  It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1124 */
1125struct regulator *regulator_get(struct device *dev, const char *id)
1126{
1127	return _regulator_get(dev, id, 0);
1128}
1129EXPORT_SYMBOL_GPL(regulator_get);
1130
1131/**
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1135 *
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno.  Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1140 * regulator.
1141 *
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1145 * controlling.
1146 *
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged.  It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1151 */
1152struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153{
1154	return _regulator_get(dev, id, 1);
1155}
1156EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157
1158/**
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1161 *
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1164 * this function.
1165 */
1166void regulator_put(struct regulator *regulator)
1167{
1168	struct regulator_dev *rdev;
1169
1170	if (regulator == NULL || IS_ERR(regulator))
1171		return;
1172
1173	mutex_lock(&regulator_list_mutex);
1174	rdev = regulator->rdev;
1175
1176	/* remove any sysfs entries */
1177	if (regulator->dev) {
1178		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179		kfree(regulator->supply_name);
1180		device_remove_file(regulator->dev, &regulator->dev_attr);
1181		kfree(regulator->dev_attr.attr.name);
1182	}
1183	list_del(&regulator->list);
1184	kfree(regulator);
1185
1186	rdev->open_count--;
1187	rdev->exclusive = 0;
1188
1189	module_put(rdev->owner);
1190	mutex_unlock(&regulator_list_mutex);
1191}
1192EXPORT_SYMBOL_GPL(regulator_put);
1193
1194static int _regulator_can_change_status(struct regulator_dev *rdev)
1195{
1196	if (!rdev->constraints)
1197		return 0;
1198
1199	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200		return 1;
1201	else
1202		return 0;
1203}
1204
1205/* locks held by regulator_enable() */
1206static int _regulator_enable(struct regulator_dev *rdev)
1207{
1208	int ret;
1209
1210	/* do we need to enable the supply regulator first */
1211	if (rdev->supply) {
1212		ret = _regulator_enable(rdev->supply);
1213		if (ret < 0) {
1214			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215			       __func__, rdev->desc->name, ret);
1216			return ret;
1217		}
1218	}
1219
1220	/* check voltage and requested load before enabling */
1221	if (rdev->constraints &&
1222	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223		drms_uA_update(rdev);
1224
1225	if (rdev->use_count == 0) {
1226		/* The regulator may on if it's not switchable or left on */
1227		ret = _regulator_is_enabled(rdev);
1228		if (ret == -EINVAL || ret == 0) {
1229			if (!_regulator_can_change_status(rdev))
1230				return -EPERM;
1231
1232			if (rdev->desc->ops->enable) {
1233				ret = rdev->desc->ops->enable(rdev);
1234				if (ret < 0)
1235					return ret;
1236			} else {
1237				return -EINVAL;
1238			}
1239		} else if (ret < 0) {
1240			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241			       __func__, rdev->desc->name, ret);
1242			return ret;
1243		}
1244		/* Fallthrough on positive return values - already enabled */
1245	}
1246
1247	rdev->use_count++;
1248
1249	return 0;
1250}
1251
1252/**
1253 * regulator_enable - enable regulator output
1254 * @regulator: regulator source
1255 *
1256 * Request that the regulator be enabled with the regulator output at
1257 * the predefined voltage or current value.  Calls to regulator_enable()
1258 * must be balanced with calls to regulator_disable().
1259 *
1260 * NOTE: the output value can be set by other drivers, boot loader or may be
1261 * hardwired in the regulator.
1262 */
1263int regulator_enable(struct regulator *regulator)
1264{
1265	struct regulator_dev *rdev = regulator->rdev;
1266	int ret = 0;
1267
1268	mutex_lock(&rdev->mutex);
1269	ret = _regulator_enable(rdev);
1270	mutex_unlock(&rdev->mutex);
1271	return ret;
1272}
1273EXPORT_SYMBOL_GPL(regulator_enable);
1274
1275/* locks held by regulator_disable() */
1276static int _regulator_disable(struct regulator_dev *rdev)
1277{
1278	int ret = 0;
1279
1280	if (WARN(rdev->use_count <= 0,
1281			"unbalanced disables for %s\n",
1282			rdev->desc->name))
1283		return -EIO;
1284
1285	/* are we the last user and permitted to disable ? */
1286	if (rdev->use_count == 1 &&
1287	    (rdev->constraints && !rdev->constraints->always_on)) {
1288
1289		/* we are last user */
1290		if (_regulator_can_change_status(rdev) &&
1291		    rdev->desc->ops->disable) {
1292			ret = rdev->desc->ops->disable(rdev);
1293			if (ret < 0) {
1294				printk(KERN_ERR "%s: failed to disable %s\n",
1295				       __func__, rdev->desc->name);
1296				return ret;
1297			}
1298		}
1299
1300		/* decrease our supplies ref count and disable if required */
1301		if (rdev->supply)
1302			_regulator_disable(rdev->supply);
1303
1304		rdev->use_count = 0;
1305	} else if (rdev->use_count > 1) {
1306
1307		if (rdev->constraints &&
1308			(rdev->constraints->valid_ops_mask &
1309			REGULATOR_CHANGE_DRMS))
1310			drms_uA_update(rdev);
1311
1312		rdev->use_count--;
1313	}
1314	return ret;
1315}
1316
1317/**
1318 * regulator_disable - disable regulator output
1319 * @regulator: regulator source
1320 *
1321 * Disable the regulator output voltage or current.  Calls to
1322 * regulator_enable() must be balanced with calls to
1323 * regulator_disable().
1324 *
1325 * NOTE: this will only disable the regulator output if no other consumer
1326 * devices have it enabled, the regulator device supports disabling and
1327 * machine constraints permit this operation.
1328 */
1329int regulator_disable(struct regulator *regulator)
1330{
1331	struct regulator_dev *rdev = regulator->rdev;
1332	int ret = 0;
1333
1334	mutex_lock(&rdev->mutex);
1335	ret = _regulator_disable(rdev);
1336	mutex_unlock(&rdev->mutex);
1337	return ret;
1338}
1339EXPORT_SYMBOL_GPL(regulator_disable);
1340
1341/* locks held by regulator_force_disable() */
1342static int _regulator_force_disable(struct regulator_dev *rdev)
1343{
1344	int ret = 0;
1345
1346	/* force disable */
1347	if (rdev->desc->ops->disable) {
1348		/* ah well, who wants to live forever... */
1349		ret = rdev->desc->ops->disable(rdev);
1350		if (ret < 0) {
1351			printk(KERN_ERR "%s: failed to force disable %s\n",
1352			       __func__, rdev->desc->name);
1353			return ret;
1354		}
1355		/* notify other consumers that power has been forced off */
1356		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1357			NULL);
1358	}
1359
1360	/* decrease our supplies ref count and disable if required */
1361	if (rdev->supply)
1362		_regulator_disable(rdev->supply);
1363
1364	rdev->use_count = 0;
1365	return ret;
1366}
1367
1368/**
1369 * regulator_force_disable - force disable regulator output
1370 * @regulator: regulator source
1371 *
1372 * Forcibly disable the regulator output voltage or current.
1373 * NOTE: this *will* disable the regulator output even if other consumer
1374 * devices have it enabled. This should be used for situations when device
1375 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1376 */
1377int regulator_force_disable(struct regulator *regulator)
1378{
1379	int ret;
1380
1381	mutex_lock(&regulator->rdev->mutex);
1382	regulator->uA_load = 0;
1383	ret = _regulator_force_disable(regulator->rdev);
1384	mutex_unlock(&regulator->rdev->mutex);
1385	return ret;
1386}
1387EXPORT_SYMBOL_GPL(regulator_force_disable);
1388
1389static int _regulator_is_enabled(struct regulator_dev *rdev)
1390{
1391	/* sanity check */
1392	if (!rdev->desc->ops->is_enabled)
1393		return -EINVAL;
1394
1395	return rdev->desc->ops->is_enabled(rdev);
1396}
1397
1398/**
1399 * regulator_is_enabled - is the regulator output enabled
1400 * @regulator: regulator source
1401 *
1402 * Returns positive if the regulator driver backing the source/client
1403 * has requested that the device be enabled, zero if it hasn't, else a
1404 * negative errno code.
1405 *
1406 * Note that the device backing this regulator handle can have multiple
1407 * users, so it might be enabled even if regulator_enable() was never
1408 * called for this particular source.
1409 */
1410int regulator_is_enabled(struct regulator *regulator)
1411{
1412	int ret;
1413
1414	mutex_lock(&regulator->rdev->mutex);
1415	ret = _regulator_is_enabled(regulator->rdev);
1416	mutex_unlock(&regulator->rdev->mutex);
1417
1418	return ret;
1419}
1420EXPORT_SYMBOL_GPL(regulator_is_enabled);
1421
1422/**
1423 * regulator_count_voltages - count regulator_list_voltage() selectors
1424 * @regulator: regulator source
1425 *
1426 * Returns number of selectors, or negative errno.  Selectors are
1427 * numbered starting at zero, and typically correspond to bitfields
1428 * in hardware registers.
1429 */
1430int regulator_count_voltages(struct regulator *regulator)
1431{
1432	struct regulator_dev	*rdev = regulator->rdev;
1433
1434	return rdev->desc->n_voltages ? : -EINVAL;
1435}
1436EXPORT_SYMBOL_GPL(regulator_count_voltages);
1437
1438/**
1439 * regulator_list_voltage - enumerate supported voltages
1440 * @regulator: regulator source
1441 * @selector: identify voltage to list
1442 * Context: can sleep
1443 *
1444 * Returns a voltage that can be passed to @regulator_set_voltage(),
1445 * zero if this selector code can't be used on this sytem, or a
1446 * negative errno.
1447 */
1448int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1449{
1450	struct regulator_dev	*rdev = regulator->rdev;
1451	struct regulator_ops	*ops = rdev->desc->ops;
1452	int			ret;
1453
1454	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1455		return -EINVAL;
1456
1457	mutex_lock(&rdev->mutex);
1458	ret = ops->list_voltage(rdev, selector);
1459	mutex_unlock(&rdev->mutex);
1460
1461	if (ret > 0) {
1462		if (ret < rdev->constraints->min_uV)
1463			ret = 0;
1464		else if (ret > rdev->constraints->max_uV)
1465			ret = 0;
1466	}
1467
1468	return ret;
1469}
1470EXPORT_SYMBOL_GPL(regulator_list_voltage);
1471
1472/**
1473 * regulator_is_supported_voltage - check if a voltage range can be supported
1474 *
1475 * @regulator: Regulator to check.
1476 * @min_uV: Minimum required voltage in uV.
1477 * @max_uV: Maximum required voltage in uV.
1478 *
1479 * Returns a boolean or a negative error code.
1480 */
1481int regulator_is_supported_voltage(struct regulator *regulator,
1482				   int min_uV, int max_uV)
1483{
1484	int i, voltages, ret;
1485
1486	ret = regulator_count_voltages(regulator);
1487	if (ret < 0)
1488		return ret;
1489	voltages = ret;
1490
1491	for (i = 0; i < voltages; i++) {
1492		ret = regulator_list_voltage(regulator, i);
1493
1494		if (ret >= min_uV && ret <= max_uV)
1495			return 1;
1496	}
1497
1498	return 0;
1499}
1500
1501/**
1502 * regulator_set_voltage - set regulator output voltage
1503 * @regulator: regulator source
1504 * @min_uV: Minimum required voltage in uV
1505 * @max_uV: Maximum acceptable voltage in uV
1506 *
1507 * Sets a voltage regulator to the desired output voltage. This can be set
1508 * during any regulator state. IOW, regulator can be disabled or enabled.
1509 *
1510 * If the regulator is enabled then the voltage will change to the new value
1511 * immediately otherwise if the regulator is disabled the regulator will
1512 * output at the new voltage when enabled.
1513 *
1514 * NOTE: If the regulator is shared between several devices then the lowest
1515 * request voltage that meets the system constraints will be used.
1516 * Regulator system constraints must be set for this regulator before
1517 * calling this function otherwise this call will fail.
1518 */
1519int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1520{
1521	struct regulator_dev *rdev = regulator->rdev;
1522	int ret;
1523
1524	mutex_lock(&rdev->mutex);
1525
1526	/* sanity check */
1527	if (!rdev->desc->ops->set_voltage) {
1528		ret = -EINVAL;
1529		goto out;
1530	}
1531
1532	/* constraints check */
1533	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1534	if (ret < 0)
1535		goto out;
1536	regulator->min_uV = min_uV;
1537	regulator->max_uV = max_uV;
1538	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1539
1540out:
1541	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1542	mutex_unlock(&rdev->mutex);
1543	return ret;
1544}
1545EXPORT_SYMBOL_GPL(regulator_set_voltage);
1546
1547static int _regulator_get_voltage(struct regulator_dev *rdev)
1548{
1549	/* sanity check */
1550	if (rdev->desc->ops->get_voltage)
1551		return rdev->desc->ops->get_voltage(rdev);
1552	else
1553		return -EINVAL;
1554}
1555
1556/**
1557 * regulator_get_voltage - get regulator output voltage
1558 * @regulator: regulator source
1559 *
1560 * This returns the current regulator voltage in uV.
1561 *
1562 * NOTE: If the regulator is disabled it will return the voltage value. This
1563 * function should not be used to determine regulator state.
1564 */
1565int regulator_get_voltage(struct regulator *regulator)
1566{
1567	int ret;
1568
1569	mutex_lock(&regulator->rdev->mutex);
1570
1571	ret = _regulator_get_voltage(regulator->rdev);
1572
1573	mutex_unlock(&regulator->rdev->mutex);
1574
1575	return ret;
1576}
1577EXPORT_SYMBOL_GPL(regulator_get_voltage);
1578
1579/**
1580 * regulator_set_current_limit - set regulator output current limit
1581 * @regulator: regulator source
1582 * @min_uA: Minimuum supported current in uA
1583 * @max_uA: Maximum supported current in uA
1584 *
1585 * Sets current sink to the desired output current. This can be set during
1586 * any regulator state. IOW, regulator can be disabled or enabled.
1587 *
1588 * If the regulator is enabled then the current will change to the new value
1589 * immediately otherwise if the regulator is disabled the regulator will
1590 * output at the new current when enabled.
1591 *
1592 * NOTE: Regulator system constraints must be set for this regulator before
1593 * calling this function otherwise this call will fail.
1594 */
1595int regulator_set_current_limit(struct regulator *regulator,
1596			       int min_uA, int max_uA)
1597{
1598	struct regulator_dev *rdev = regulator->rdev;
1599	int ret;
1600
1601	mutex_lock(&rdev->mutex);
1602
1603	/* sanity check */
1604	if (!rdev->desc->ops->set_current_limit) {
1605		ret = -EINVAL;
1606		goto out;
1607	}
1608
1609	/* constraints check */
1610	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1611	if (ret < 0)
1612		goto out;
1613
1614	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1615out:
1616	mutex_unlock(&rdev->mutex);
1617	return ret;
1618}
1619EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1620
1621static int _regulator_get_current_limit(struct regulator_dev *rdev)
1622{
1623	int ret;
1624
1625	mutex_lock(&rdev->mutex);
1626
1627	/* sanity check */
1628	if (!rdev->desc->ops->get_current_limit) {
1629		ret = -EINVAL;
1630		goto out;
1631	}
1632
1633	ret = rdev->desc->ops->get_current_limit(rdev);
1634out:
1635	mutex_unlock(&rdev->mutex);
1636	return ret;
1637}
1638
1639/**
1640 * regulator_get_current_limit - get regulator output current
1641 * @regulator: regulator source
1642 *
1643 * This returns the current supplied by the specified current sink in uA.
1644 *
1645 * NOTE: If the regulator is disabled it will return the current value. This
1646 * function should not be used to determine regulator state.
1647 */
1648int regulator_get_current_limit(struct regulator *regulator)
1649{
1650	return _regulator_get_current_limit(regulator->rdev);
1651}
1652EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1653
1654/**
1655 * regulator_set_mode - set regulator operating mode
1656 * @regulator: regulator source
1657 * @mode: operating mode - one of the REGULATOR_MODE constants
1658 *
1659 * Set regulator operating mode to increase regulator efficiency or improve
1660 * regulation performance.
1661 *
1662 * NOTE: Regulator system constraints must be set for this regulator before
1663 * calling this function otherwise this call will fail.
1664 */
1665int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1666{
1667	struct regulator_dev *rdev = regulator->rdev;
1668	int ret;
1669
1670	mutex_lock(&rdev->mutex);
1671
1672	/* sanity check */
1673	if (!rdev->desc->ops->set_mode) {
1674		ret = -EINVAL;
1675		goto out;
1676	}
1677
1678	/* constraints check */
1679	ret = regulator_check_mode(rdev, mode);
1680	if (ret < 0)
1681		goto out;
1682
1683	ret = rdev->desc->ops->set_mode(rdev, mode);
1684out:
1685	mutex_unlock(&rdev->mutex);
1686	return ret;
1687}
1688EXPORT_SYMBOL_GPL(regulator_set_mode);
1689
1690static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1691{
1692	int ret;
1693
1694	mutex_lock(&rdev->mutex);
1695
1696	/* sanity check */
1697	if (!rdev->desc->ops->get_mode) {
1698		ret = -EINVAL;
1699		goto out;
1700	}
1701
1702	ret = rdev->desc->ops->get_mode(rdev);
1703out:
1704	mutex_unlock(&rdev->mutex);
1705	return ret;
1706}
1707
1708/**
1709 * regulator_get_mode - get regulator operating mode
1710 * @regulator: regulator source
1711 *
1712 * Get the current regulator operating mode.
1713 */
1714unsigned int regulator_get_mode(struct regulator *regulator)
1715{
1716	return _regulator_get_mode(regulator->rdev);
1717}
1718EXPORT_SYMBOL_GPL(regulator_get_mode);
1719
1720/**
1721 * regulator_set_optimum_mode - set regulator optimum operating mode
1722 * @regulator: regulator source
1723 * @uA_load: load current
1724 *
1725 * Notifies the regulator core of a new device load. This is then used by
1726 * DRMS (if enabled by constraints) to set the most efficient regulator
1727 * operating mode for the new regulator loading.
1728 *
1729 * Consumer devices notify their supply regulator of the maximum power
1730 * they will require (can be taken from device datasheet in the power
1731 * consumption tables) when they change operational status and hence power
1732 * state. Examples of operational state changes that can affect power
1733 * consumption are :-
1734 *
1735 *    o Device is opened / closed.
1736 *    o Device I/O is about to begin or has just finished.
1737 *    o Device is idling in between work.
1738 *
1739 * This information is also exported via sysfs to userspace.
1740 *
1741 * DRMS will sum the total requested load on the regulator and change
1742 * to the most efficient operating mode if platform constraints allow.
1743 *
1744 * Returns the new regulator mode or error.
1745 */
1746int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1747{
1748	struct regulator_dev *rdev = regulator->rdev;
1749	struct regulator *consumer;
1750	int ret, output_uV, input_uV, total_uA_load = 0;
1751	unsigned int mode;
1752
1753	mutex_lock(&rdev->mutex);
1754
1755	regulator->uA_load = uA_load;
1756	ret = regulator_check_drms(rdev);
1757	if (ret < 0)
1758		goto out;
1759	ret = -EINVAL;
1760
1761	/* sanity check */
1762	if (!rdev->desc->ops->get_optimum_mode)
1763		goto out;
1764
1765	/* get output voltage */
1766	output_uV = rdev->desc->ops->get_voltage(rdev);
1767	if (output_uV <= 0) {
1768		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1769			__func__, rdev->desc->name);
1770		goto out;
1771	}
1772
1773	/* get input voltage */
1774	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1775		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1776	else
1777		input_uV = rdev->constraints->input_uV;
1778	if (input_uV <= 0) {
1779		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1780			__func__, rdev->desc->name);
1781		goto out;
1782	}
1783
1784	/* calc total requested load for this regulator */
1785	list_for_each_entry(consumer, &rdev->consumer_list, list)
1786	    total_uA_load += consumer->uA_load;
1787
1788	mode = rdev->desc->ops->get_optimum_mode(rdev,
1789						 input_uV, output_uV,
1790						 total_uA_load);
1791	ret = regulator_check_mode(rdev, mode);
1792	if (ret < 0) {
1793		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1794			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1795			total_uA_load, input_uV, output_uV);
1796		goto out;
1797	}
1798
1799	ret = rdev->desc->ops->set_mode(rdev, mode);
1800	if (ret < 0) {
1801		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1802			__func__, mode, rdev->desc->name);
1803		goto out;
1804	}
1805	ret = mode;
1806out:
1807	mutex_unlock(&rdev->mutex);
1808	return ret;
1809}
1810EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1811
1812/**
1813 * regulator_register_notifier - register regulator event notifier
1814 * @regulator: regulator source
1815 * @nb: notifier block
1816 *
1817 * Register notifier block to receive regulator events.
1818 */
1819int regulator_register_notifier(struct regulator *regulator,
1820			      struct notifier_block *nb)
1821{
1822	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1823						nb);
1824}
1825EXPORT_SYMBOL_GPL(regulator_register_notifier);
1826
1827/**
1828 * regulator_unregister_notifier - unregister regulator event notifier
1829 * @regulator: regulator source
1830 * @nb: notifier block
1831 *
1832 * Unregister regulator event notifier block.
1833 */
1834int regulator_unregister_notifier(struct regulator *regulator,
1835				struct notifier_block *nb)
1836{
1837	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1838						  nb);
1839}
1840EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1841
1842/* notify regulator consumers and downstream regulator consumers.
1843 * Note mutex must be held by caller.
1844 */
1845static void _notifier_call_chain(struct regulator_dev *rdev,
1846				  unsigned long event, void *data)
1847{
1848	struct regulator_dev *_rdev;
1849
1850	/* call rdev chain first */
1851	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1852
1853	/* now notify regulator we supply */
1854	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1855	  mutex_lock(&_rdev->mutex);
1856	  _notifier_call_chain(_rdev, event, data);
1857	  mutex_unlock(&_rdev->mutex);
1858	}
1859}
1860
1861/**
1862 * regulator_bulk_get - get multiple regulator consumers
1863 *
1864 * @dev:           Device to supply
1865 * @num_consumers: Number of consumers to register
1866 * @consumers:     Configuration of consumers; clients are stored here.
1867 *
1868 * @return 0 on success, an errno on failure.
1869 *
1870 * This helper function allows drivers to get several regulator
1871 * consumers in one operation.  If any of the regulators cannot be
1872 * acquired then any regulators that were allocated will be freed
1873 * before returning to the caller.
1874 */
1875int regulator_bulk_get(struct device *dev, int num_consumers,
1876		       struct regulator_bulk_data *consumers)
1877{
1878	int i;
1879	int ret;
1880
1881	for (i = 0; i < num_consumers; i++)
1882		consumers[i].consumer = NULL;
1883
1884	for (i = 0; i < num_consumers; i++) {
1885		consumers[i].consumer = regulator_get(dev,
1886						      consumers[i].supply);
1887		if (IS_ERR(consumers[i].consumer)) {
1888			ret = PTR_ERR(consumers[i].consumer);
1889			dev_err(dev, "Failed to get supply '%s': %d\n",
1890				consumers[i].supply, ret);
1891			consumers[i].consumer = NULL;
1892			goto err;
1893		}
1894	}
1895
1896	return 0;
1897
1898err:
1899	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1900		regulator_put(consumers[i].consumer);
1901
1902	return ret;
1903}
1904EXPORT_SYMBOL_GPL(regulator_bulk_get);
1905
1906/**
1907 * regulator_bulk_enable - enable multiple regulator consumers
1908 *
1909 * @num_consumers: Number of consumers
1910 * @consumers:     Consumer data; clients are stored here.
1911 * @return         0 on success, an errno on failure
1912 *
1913 * This convenience API allows consumers to enable multiple regulator
1914 * clients in a single API call.  If any consumers cannot be enabled
1915 * then any others that were enabled will be disabled again prior to
1916 * return.
1917 */
1918int regulator_bulk_enable(int num_consumers,
1919			  struct regulator_bulk_data *consumers)
1920{
1921	int i;
1922	int ret;
1923
1924	for (i = 0; i < num_consumers; i++) {
1925		ret = regulator_enable(consumers[i].consumer);
1926		if (ret != 0)
1927			goto err;
1928	}
1929
1930	return 0;
1931
1932err:
1933	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1934	for (i = 0; i < num_consumers; i++)
1935		regulator_disable(consumers[i].consumer);
1936
1937	return ret;
1938}
1939EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1940
1941/**
1942 * regulator_bulk_disable - disable multiple regulator consumers
1943 *
1944 * @num_consumers: Number of consumers
1945 * @consumers:     Consumer data; clients are stored here.
1946 * @return         0 on success, an errno on failure
1947 *
1948 * This convenience API allows consumers to disable multiple regulator
1949 * clients in a single API call.  If any consumers cannot be enabled
1950 * then any others that were disabled will be disabled again prior to
1951 * return.
1952 */
1953int regulator_bulk_disable(int num_consumers,
1954			   struct regulator_bulk_data *consumers)
1955{
1956	int i;
1957	int ret;
1958
1959	for (i = 0; i < num_consumers; i++) {
1960		ret = regulator_disable(consumers[i].consumer);
1961		if (ret != 0)
1962			goto err;
1963	}
1964
1965	return 0;
1966
1967err:
1968	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
1969	       ret);
1970	for (i = 0; i < num_consumers; i++)
1971		regulator_enable(consumers[i].consumer);
1972
1973	return ret;
1974}
1975EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1976
1977/**
1978 * regulator_bulk_free - free multiple regulator consumers
1979 *
1980 * @num_consumers: Number of consumers
1981 * @consumers:     Consumer data; clients are stored here.
1982 *
1983 * This convenience API allows consumers to free multiple regulator
1984 * clients in a single API call.
1985 */
1986void regulator_bulk_free(int num_consumers,
1987			 struct regulator_bulk_data *consumers)
1988{
1989	int i;
1990
1991	for (i = 0; i < num_consumers; i++) {
1992		regulator_put(consumers[i].consumer);
1993		consumers[i].consumer = NULL;
1994	}
1995}
1996EXPORT_SYMBOL_GPL(regulator_bulk_free);
1997
1998/**
1999 * regulator_notifier_call_chain - call regulator event notifier
2000 * @rdev: regulator source
2001 * @event: notifier block
2002 * @data: callback-specific data.
2003 *
2004 * Called by regulator drivers to notify clients a regulator event has
2005 * occurred. We also notify regulator clients downstream.
2006 * Note lock must be held by caller.
2007 */
2008int regulator_notifier_call_chain(struct regulator_dev *rdev,
2009				  unsigned long event, void *data)
2010{
2011	_notifier_call_chain(rdev, event, data);
2012	return NOTIFY_DONE;
2013
2014}
2015EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2016
2017/**
2018 * regulator_mode_to_status - convert a regulator mode into a status
2019 *
2020 * @mode: Mode to convert
2021 *
2022 * Convert a regulator mode into a status.
2023 */
2024int regulator_mode_to_status(unsigned int mode)
2025{
2026	switch (mode) {
2027	case REGULATOR_MODE_FAST:
2028		return REGULATOR_STATUS_FAST;
2029	case REGULATOR_MODE_NORMAL:
2030		return REGULATOR_STATUS_NORMAL;
2031	case REGULATOR_MODE_IDLE:
2032		return REGULATOR_STATUS_IDLE;
2033	case REGULATOR_STATUS_STANDBY:
2034		return REGULATOR_STATUS_STANDBY;
2035	default:
2036		return 0;
2037	}
2038}
2039EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2040
2041/*
2042 * To avoid cluttering sysfs (and memory) with useless state, only
2043 * create attributes that can be meaningfully displayed.
2044 */
2045static int add_regulator_attributes(struct regulator_dev *rdev)
2046{
2047	struct device		*dev = &rdev->dev;
2048	struct regulator_ops	*ops = rdev->desc->ops;
2049	int			status = 0;
2050
2051	/* some attributes need specific methods to be displayed */
2052	if (ops->get_voltage) {
2053		status = device_create_file(dev, &dev_attr_microvolts);
2054		if (status < 0)
2055			return status;
2056	}
2057	if (ops->get_current_limit) {
2058		status = device_create_file(dev, &dev_attr_microamps);
2059		if (status < 0)
2060			return status;
2061	}
2062	if (ops->get_mode) {
2063		status = device_create_file(dev, &dev_attr_opmode);
2064		if (status < 0)
2065			return status;
2066	}
2067	if (ops->is_enabled) {
2068		status = device_create_file(dev, &dev_attr_state);
2069		if (status < 0)
2070			return status;
2071	}
2072	if (ops->get_status) {
2073		status = device_create_file(dev, &dev_attr_status);
2074		if (status < 0)
2075			return status;
2076	}
2077
2078	/* some attributes are type-specific */
2079	if (rdev->desc->type == REGULATOR_CURRENT) {
2080		status = device_create_file(dev, &dev_attr_requested_microamps);
2081		if (status < 0)
2082			return status;
2083	}
2084
2085	/* all the other attributes exist to support constraints;
2086	 * don't show them if there are no constraints, or if the
2087	 * relevant supporting methods are missing.
2088	 */
2089	if (!rdev->constraints)
2090		return status;
2091
2092	/* constraints need specific supporting methods */
2093	if (ops->set_voltage) {
2094		status = device_create_file(dev, &dev_attr_min_microvolts);
2095		if (status < 0)
2096			return status;
2097		status = device_create_file(dev, &dev_attr_max_microvolts);
2098		if (status < 0)
2099			return status;
2100	}
2101	if (ops->set_current_limit) {
2102		status = device_create_file(dev, &dev_attr_min_microamps);
2103		if (status < 0)
2104			return status;
2105		status = device_create_file(dev, &dev_attr_max_microamps);
2106		if (status < 0)
2107			return status;
2108	}
2109
2110	/* suspend mode constraints need multiple supporting methods */
2111	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2112		return status;
2113
2114	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2115	if (status < 0)
2116		return status;
2117	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2118	if (status < 0)
2119		return status;
2120	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2121	if (status < 0)
2122		return status;
2123
2124	if (ops->set_suspend_voltage) {
2125		status = device_create_file(dev,
2126				&dev_attr_suspend_standby_microvolts);
2127		if (status < 0)
2128			return status;
2129		status = device_create_file(dev,
2130				&dev_attr_suspend_mem_microvolts);
2131		if (status < 0)
2132			return status;
2133		status = device_create_file(dev,
2134				&dev_attr_suspend_disk_microvolts);
2135		if (status < 0)
2136			return status;
2137	}
2138
2139	if (ops->set_suspend_mode) {
2140		status = device_create_file(dev,
2141				&dev_attr_suspend_standby_mode);
2142		if (status < 0)
2143			return status;
2144		status = device_create_file(dev,
2145				&dev_attr_suspend_mem_mode);
2146		if (status < 0)
2147			return status;
2148		status = device_create_file(dev,
2149				&dev_attr_suspend_disk_mode);
2150		if (status < 0)
2151			return status;
2152	}
2153
2154	return status;
2155}
2156
2157/**
2158 * regulator_register - register regulator
2159 * @regulator_desc: regulator to register
2160 * @dev: struct device for the regulator
2161 * @init_data: platform provided init data, passed through by driver
2162 * @driver_data: private regulator data
2163 *
2164 * Called by regulator drivers to register a regulator.
2165 * Returns 0 on success.
2166 */
2167struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2168	struct device *dev, struct regulator_init_data *init_data,
2169	void *driver_data)
2170{
2171	static atomic_t regulator_no = ATOMIC_INIT(0);
2172	struct regulator_dev *rdev;
2173	int ret, i;
2174
2175	if (regulator_desc == NULL)
2176		return ERR_PTR(-EINVAL);
2177
2178	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2179		return ERR_PTR(-EINVAL);
2180
2181	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2182	    regulator_desc->type != REGULATOR_CURRENT)
2183		return ERR_PTR(-EINVAL);
2184
2185	if (!init_data)
2186		return ERR_PTR(-EINVAL);
2187
2188	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2189	if (rdev == NULL)
2190		return ERR_PTR(-ENOMEM);
2191
2192	mutex_lock(&regulator_list_mutex);
2193
2194	mutex_init(&rdev->mutex);
2195	rdev->reg_data = driver_data;
2196	rdev->owner = regulator_desc->owner;
2197	rdev->desc = regulator_desc;
2198	INIT_LIST_HEAD(&rdev->consumer_list);
2199	INIT_LIST_HEAD(&rdev->supply_list);
2200	INIT_LIST_HEAD(&rdev->list);
2201	INIT_LIST_HEAD(&rdev->slist);
2202	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2203
2204	/* preform any regulator specific init */
2205	if (init_data->regulator_init) {
2206		ret = init_data->regulator_init(rdev->reg_data);
2207		if (ret < 0)
2208			goto clean;
2209	}
2210
2211	/* register with sysfs */
2212	rdev->dev.class = &regulator_class;
2213	rdev->dev.parent = dev;
2214	dev_set_name(&rdev->dev, "regulator.%d",
2215		     atomic_inc_return(&regulator_no) - 1);
2216	ret = device_register(&rdev->dev);
2217	if (ret != 0)
2218		goto clean;
2219
2220	dev_set_drvdata(&rdev->dev, rdev);
2221
2222	/* set regulator constraints */
2223	ret = set_machine_constraints(rdev, &init_data->constraints);
2224	if (ret < 0)
2225		goto scrub;
2226
2227	/* add attributes supported by this regulator */
2228	ret = add_regulator_attributes(rdev);
2229	if (ret < 0)
2230		goto scrub;
2231
2232	/* set supply regulator if it exists */
2233	if (init_data->supply_regulator_dev) {
2234		ret = set_supply(rdev,
2235			dev_get_drvdata(init_data->supply_regulator_dev));
2236		if (ret < 0)
2237			goto scrub;
2238	}
2239
2240	/* add consumers devices */
2241	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2242		ret = set_consumer_device_supply(rdev,
2243			init_data->consumer_supplies[i].dev,
2244			init_data->consumer_supplies[i].dev_name,
2245			init_data->consumer_supplies[i].supply);
2246		if (ret < 0) {
2247			for (--i; i >= 0; i--)
2248				unset_consumer_device_supply(rdev,
2249				    init_data->consumer_supplies[i].dev_name,
2250				    init_data->consumer_supplies[i].dev);
2251			goto scrub;
2252		}
2253	}
2254
2255	list_add(&rdev->list, &regulator_list);
2256out:
2257	mutex_unlock(&regulator_list_mutex);
2258	return rdev;
2259
2260scrub:
2261	device_unregister(&rdev->dev);
2262	/* device core frees rdev */
2263	rdev = ERR_PTR(ret);
2264	goto out;
2265
2266clean:
2267	kfree(rdev);
2268	rdev = ERR_PTR(ret);
2269	goto out;
2270}
2271EXPORT_SYMBOL_GPL(regulator_register);
2272
2273/**
2274 * regulator_unregister - unregister regulator
2275 * @rdev: regulator to unregister
2276 *
2277 * Called by regulator drivers to unregister a regulator.
2278 */
2279void regulator_unregister(struct regulator_dev *rdev)
2280{
2281	if (rdev == NULL)
2282		return;
2283
2284	mutex_lock(&regulator_list_mutex);
2285	WARN_ON(rdev->open_count);
2286	unset_regulator_supplies(rdev);
2287	list_del(&rdev->list);
2288	if (rdev->supply)
2289		sysfs_remove_link(&rdev->dev.kobj, "supply");
2290	device_unregister(&rdev->dev);
2291	mutex_unlock(&regulator_list_mutex);
2292}
2293EXPORT_SYMBOL_GPL(regulator_unregister);
2294
2295/**
2296 * regulator_suspend_prepare - prepare regulators for system wide suspend
2297 * @state: system suspend state
2298 *
2299 * Configure each regulator with it's suspend operating parameters for state.
2300 * This will usually be called by machine suspend code prior to supending.
2301 */
2302int regulator_suspend_prepare(suspend_state_t state)
2303{
2304	struct regulator_dev *rdev;
2305	int ret = 0;
2306
2307	/* ON is handled by regulator active state */
2308	if (state == PM_SUSPEND_ON)
2309		return -EINVAL;
2310
2311	mutex_lock(&regulator_list_mutex);
2312	list_for_each_entry(rdev, &regulator_list, list) {
2313
2314		mutex_lock(&rdev->mutex);
2315		ret = suspend_prepare(rdev, state);
2316		mutex_unlock(&rdev->mutex);
2317
2318		if (ret < 0) {
2319			printk(KERN_ERR "%s: failed to prepare %s\n",
2320				__func__, rdev->desc->name);
2321			goto out;
2322		}
2323	}
2324out:
2325	mutex_unlock(&regulator_list_mutex);
2326	return ret;
2327}
2328EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2329
2330/**
2331 * regulator_has_full_constraints - the system has fully specified constraints
2332 *
2333 * Calling this function will cause the regulator API to disable all
2334 * regulators which have a zero use count and don't have an always_on
2335 * constraint in a late_initcall.
2336 *
2337 * The intention is that this will become the default behaviour in a
2338 * future kernel release so users are encouraged to use this facility
2339 * now.
2340 */
2341void regulator_has_full_constraints(void)
2342{
2343	has_full_constraints = 1;
2344}
2345EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2346
2347/**
2348 * rdev_get_drvdata - get rdev regulator driver data
2349 * @rdev: regulator
2350 *
2351 * Get rdev regulator driver private data. This call can be used in the
2352 * regulator driver context.
2353 */
2354void *rdev_get_drvdata(struct regulator_dev *rdev)
2355{
2356	return rdev->reg_data;
2357}
2358EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2359
2360/**
2361 * regulator_get_drvdata - get regulator driver data
2362 * @regulator: regulator
2363 *
2364 * Get regulator driver private data. This call can be used in the consumer
2365 * driver context when non API regulator specific functions need to be called.
2366 */
2367void *regulator_get_drvdata(struct regulator *regulator)
2368{
2369	return regulator->rdev->reg_data;
2370}
2371EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2372
2373/**
2374 * regulator_set_drvdata - set regulator driver data
2375 * @regulator: regulator
2376 * @data: data
2377 */
2378void regulator_set_drvdata(struct regulator *regulator, void *data)
2379{
2380	regulator->rdev->reg_data = data;
2381}
2382EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2383
2384/**
2385 * regulator_get_id - get regulator ID
2386 * @rdev: regulator
2387 */
2388int rdev_get_id(struct regulator_dev *rdev)
2389{
2390	return rdev->desc->id;
2391}
2392EXPORT_SYMBOL_GPL(rdev_get_id);
2393
2394struct device *rdev_get_dev(struct regulator_dev *rdev)
2395{
2396	return &rdev->dev;
2397}
2398EXPORT_SYMBOL_GPL(rdev_get_dev);
2399
2400void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2401{
2402	return reg_init_data->driver_data;
2403}
2404EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2405
2406static int __init regulator_init(void)
2407{
2408	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2409	return class_register(&regulator_class);
2410}
2411
2412/* init early to allow our consumers to complete system booting */
2413core_initcall(regulator_init);
2414
2415static int __init regulator_init_complete(void)
2416{
2417	struct regulator_dev *rdev;
2418	struct regulator_ops *ops;
2419	struct regulation_constraints *c;
2420	int enabled, ret;
2421	const char *name;
2422
2423	mutex_lock(&regulator_list_mutex);
2424
2425	/* If we have a full configuration then disable any regulators
2426	 * which are not in use or always_on.  This will become the
2427	 * default behaviour in the future.
2428	 */
2429	list_for_each_entry(rdev, &regulator_list, list) {
2430		ops = rdev->desc->ops;
2431		c = rdev->constraints;
2432
2433		if (c && c->name)
2434			name = c->name;
2435		else if (rdev->desc->name)
2436			name = rdev->desc->name;
2437		else
2438			name = "regulator";
2439
2440		if (!ops->disable || (c && c->always_on))
2441			continue;
2442
2443		mutex_lock(&rdev->mutex);
2444
2445		if (rdev->use_count)
2446			goto unlock;
2447
2448		/* If we can't read the status assume it's on. */
2449		if (ops->is_enabled)
2450			enabled = ops->is_enabled(rdev);
2451		else
2452			enabled = 1;
2453
2454		if (!enabled)
2455			goto unlock;
2456
2457		if (has_full_constraints) {
2458			/* We log since this may kill the system if it
2459			 * goes wrong. */
2460			printk(KERN_INFO "%s: disabling %s\n",
2461			       __func__, name);
2462			ret = ops->disable(rdev);
2463			if (ret != 0) {
2464				printk(KERN_ERR
2465				       "%s: couldn't disable %s: %d\n",
2466				       __func__, name, ret);
2467			}
2468		} else {
2469			/* The intention is that in future we will
2470			 * assume that full constraints are provided
2471			 * so warn even if we aren't going to do
2472			 * anything here.
2473			 */
2474			printk(KERN_WARNING
2475			       "%s: incomplete constraints, leaving %s on\n",
2476			       __func__, name);
2477		}
2478
2479unlock:
2480		mutex_unlock(&rdev->mutex);
2481	}
2482
2483	mutex_unlock(&regulator_list_mutex);
2484
2485	return 0;
2486}
2487late_initcall(regulator_init_complete);
2488