core.c revision 5bc78015998e14bf0362a01fc47e8b63053dbfd8
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/of.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57#ifdef CONFIG_DEBUG_FS
58static struct dentry *debugfs_root;
59#endif
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78struct regulator {
79	struct device *dev;
80	struct list_head list;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87#ifdef CONFIG_DEBUG_FS
88	struct dentry *debugfs;
89#endif
90};
91
92static int _regulator_is_enabled(struct regulator_dev *rdev);
93static int _regulator_disable(struct regulator_dev *rdev);
94static int _regulator_get_voltage(struct regulator_dev *rdev);
95static int _regulator_get_current_limit(struct regulator_dev *rdev);
96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97static void _notifier_call_chain(struct regulator_dev *rdev,
98				  unsigned long event, void *data);
99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100				     int min_uV, int max_uV);
101static struct regulator *create_regulator(struct regulator_dev *rdev,
102					  struct device *dev,
103					  const char *supply_name);
104
105static const char *rdev_get_name(struct regulator_dev *rdev)
106{
107	if (rdev->constraints && rdev->constraints->name)
108		return rdev->constraints->name;
109	else if (rdev->desc->name)
110		return rdev->desc->name;
111	else
112		return "";
113}
114
115/* gets the regulator for a given consumer device */
116static struct regulator *get_device_regulator(struct device *dev)
117{
118	struct regulator *regulator = NULL;
119	struct regulator_dev *rdev;
120
121	mutex_lock(&regulator_list_mutex);
122	list_for_each_entry(rdev, &regulator_list, list) {
123		mutex_lock(&rdev->mutex);
124		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125			if (regulator->dev == dev) {
126				mutex_unlock(&rdev->mutex);
127				mutex_unlock(&regulator_list_mutex);
128				return regulator;
129			}
130		}
131		mutex_unlock(&rdev->mutex);
132	}
133	mutex_unlock(&regulator_list_mutex);
134	return NULL;
135}
136
137/**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147{
148	struct device_node *regnode = NULL;
149	char prop_name[32]; /* 32 is max size of property name */
150
151	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153	snprintf(prop_name, 32, "%s-supply", supply);
154	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156	if (!regnode) {
157		dev_warn(dev, "%s property in node %s references invalid phandle",
158				prop_name, dev->of_node->full_name);
159		return NULL;
160	}
161	return regnode;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV)
216		return -EINVAL;
217
218	return 0;
219}
220
221/* current constraint check */
222static int regulator_check_current_limit(struct regulator_dev *rdev,
223					int *min_uA, int *max_uA)
224{
225	BUG_ON(*min_uA > *max_uA);
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	if (*max_uA > rdev->constraints->max_uA)
237		*max_uA = rdev->constraints->max_uA;
238	if (*min_uA < rdev->constraints->min_uA)
239		*min_uA = rdev->constraints->min_uA;
240
241	if (*min_uA > *max_uA) {
242		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243			 *min_uA, *max_uA);
244		return -EINVAL;
245	}
246
247	return 0;
248}
249
250/* operating mode constraint check */
251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252{
253	switch (*mode) {
254	case REGULATOR_MODE_FAST:
255	case REGULATOR_MODE_NORMAL:
256	case REGULATOR_MODE_IDLE:
257	case REGULATOR_MODE_STANDBY:
258		break;
259	default:
260		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261		return -EINVAL;
262	}
263
264	if (!rdev->constraints) {
265		rdev_err(rdev, "no constraints\n");
266		return -ENODEV;
267	}
268	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269		rdev_err(rdev, "operation not allowed\n");
270		return -EPERM;
271	}
272
273	/* The modes are bitmasks, the most power hungry modes having
274	 * the lowest values. If the requested mode isn't supported
275	 * try higher modes. */
276	while (*mode) {
277		if (rdev->constraints->valid_modes_mask & *mode)
278			return 0;
279		*mode /= 2;
280	}
281
282	return -EINVAL;
283}
284
285/* dynamic regulator mode switching constraint check */
286static int regulator_check_drms(struct regulator_dev *rdev)
287{
288	if (!rdev->constraints) {
289		rdev_err(rdev, "no constraints\n");
290		return -ENODEV;
291	}
292	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293		rdev_err(rdev, "operation not allowed\n");
294		return -EPERM;
295	}
296	return 0;
297}
298
299static ssize_t device_requested_uA_show(struct device *dev,
300			     struct device_attribute *attr, char *buf)
301{
302	struct regulator *regulator;
303
304	regulator = get_device_regulator(dev);
305	if (regulator == NULL)
306		return 0;
307
308	return sprintf(buf, "%d\n", regulator->uA_load);
309}
310
311static ssize_t regulator_uV_show(struct device *dev,
312				struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325static ssize_t regulator_uA_show(struct device *dev,
326				struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331}
332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334static ssize_t regulator_name_show(struct device *dev,
335			     struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340}
341
342static ssize_t regulator_print_opmode(char *buf, int mode)
343{
344	switch (mode) {
345	case REGULATOR_MODE_FAST:
346		return sprintf(buf, "fast\n");
347	case REGULATOR_MODE_NORMAL:
348		return sprintf(buf, "normal\n");
349	case REGULATOR_MODE_IDLE:
350		return sprintf(buf, "idle\n");
351	case REGULATOR_MODE_STANDBY:
352		return sprintf(buf, "standby\n");
353	}
354	return sprintf(buf, "unknown\n");
355}
356
357static ssize_t regulator_opmode_show(struct device *dev,
358				    struct device_attribute *attr, char *buf)
359{
360	struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363}
364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366static ssize_t regulator_print_state(char *buf, int state)
367{
368	if (state > 0)
369		return sprintf(buf, "enabled\n");
370	else if (state == 0)
371		return sprintf(buf, "disabled\n");
372	else
373		return sprintf(buf, "unknown\n");
374}
375
376static ssize_t regulator_state_show(struct device *dev,
377				   struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	ssize_t ret;
381
382	mutex_lock(&rdev->mutex);
383	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384	mutex_unlock(&rdev->mutex);
385
386	return ret;
387}
388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390static ssize_t regulator_status_show(struct device *dev,
391				   struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	int status;
395	char *label;
396
397	status = rdev->desc->ops->get_status(rdev);
398	if (status < 0)
399		return status;
400
401	switch (status) {
402	case REGULATOR_STATUS_OFF:
403		label = "off";
404		break;
405	case REGULATOR_STATUS_ON:
406		label = "on";
407		break;
408	case REGULATOR_STATUS_ERROR:
409		label = "error";
410		break;
411	case REGULATOR_STATUS_FAST:
412		label = "fast";
413		break;
414	case REGULATOR_STATUS_NORMAL:
415		label = "normal";
416		break;
417	case REGULATOR_STATUS_IDLE:
418		label = "idle";
419		break;
420	case REGULATOR_STATUS_STANDBY:
421		label = "standby";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t regulator_num_users_show(struct device *dev,
495				      struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500
501static ssize_t regulator_type_show(struct device *dev,
502				  struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611
612/*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616static struct device_attribute regulator_dev_attrs[] = {
617	__ATTR(name, 0444, regulator_name_show, NULL),
618	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619	__ATTR(type, 0444, regulator_type_show, NULL),
620	__ATTR_NULL,
621};
622
623static void regulator_dev_release(struct device *dev)
624{
625	struct regulator_dev *rdev = dev_get_drvdata(dev);
626	kfree(rdev);
627}
628
629static struct class regulator_class = {
630	.name = "regulator",
631	.dev_release = regulator_dev_release,
632	.dev_attrs = regulator_dev_attrs,
633};
634
635/* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637static void drms_uA_update(struct regulator_dev *rdev)
638{
639	struct regulator *sibling;
640	int current_uA = 0, output_uV, input_uV, err;
641	unsigned int mode;
642
643	err = regulator_check_drms(rdev);
644	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645	    (!rdev->desc->ops->get_voltage &&
646	     !rdev->desc->ops->get_voltage_sel) ||
647	    !rdev->desc->ops->set_mode)
648		return;
649
650	/* get output voltage */
651	output_uV = _regulator_get_voltage(rdev);
652	if (output_uV <= 0)
653		return;
654
655	/* get input voltage */
656	input_uV = 0;
657	if (rdev->supply)
658		input_uV = _regulator_get_voltage(rdev);
659	if (input_uV <= 0)
660		input_uV = rdev->constraints->input_uV;
661	if (input_uV <= 0)
662		return;
663
664	/* calc total requested load */
665	list_for_each_entry(sibling, &rdev->consumer_list, list)
666		current_uA += sibling->uA_load;
667
668	/* now get the optimum mode for our new total regulator load */
669	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670						  output_uV, current_uA);
671
672	/* check the new mode is allowed */
673	err = regulator_mode_constrain(rdev, &mode);
674	if (err == 0)
675		rdev->desc->ops->set_mode(rdev, mode);
676}
677
678static int suspend_set_state(struct regulator_dev *rdev,
679	struct regulator_state *rstate)
680{
681	int ret = 0;
682	bool can_set_state;
683
684	can_set_state = rdev->desc->ops->set_suspend_enable &&
685		rdev->desc->ops->set_suspend_disable;
686
687	/* If we have no suspend mode configration don't set anything;
688	 * only warn if the driver actually makes the suspend mode
689	 * configurable.
690	 */
691	if (!rstate->enabled && !rstate->disabled) {
692		if (can_set_state)
693			rdev_warn(rdev, "No configuration\n");
694		return 0;
695	}
696
697	if (rstate->enabled && rstate->disabled) {
698		rdev_err(rdev, "invalid configuration\n");
699		return -EINVAL;
700	}
701
702	if (!can_set_state) {
703		rdev_err(rdev, "no way to set suspend state\n");
704		return -EINVAL;
705	}
706
707	if (rstate->enabled)
708		ret = rdev->desc->ops->set_suspend_enable(rdev);
709	else
710		ret = rdev->desc->ops->set_suspend_disable(rdev);
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	rdev_info(rdev, "%s\n", buf);
810}
811
812static int machine_constraints_voltage(struct regulator_dev *rdev,
813	struct regulation_constraints *constraints)
814{
815	struct regulator_ops *ops = rdev->desc->ops;
816	int ret;
817
818	/* do we need to apply the constraint voltage */
819	if (rdev->constraints->apply_uV &&
820	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821		ret = _regulator_do_set_voltage(rdev,
822						rdev->constraints->min_uV,
823						rdev->constraints->max_uV);
824		if (ret < 0) {
825			rdev_err(rdev, "failed to apply %duV constraint\n",
826				 rdev->constraints->min_uV);
827			return ret;
828		}
829	}
830
831	/* constrain machine-level voltage specs to fit
832	 * the actual range supported by this regulator.
833	 */
834	if (ops->list_voltage && rdev->desc->n_voltages) {
835		int	count = rdev->desc->n_voltages;
836		int	i;
837		int	min_uV = INT_MAX;
838		int	max_uV = INT_MIN;
839		int	cmin = constraints->min_uV;
840		int	cmax = constraints->max_uV;
841
842		/* it's safe to autoconfigure fixed-voltage supplies
843		   and the constraints are used by list_voltage. */
844		if (count == 1 && !cmin) {
845			cmin = 1;
846			cmax = INT_MAX;
847			constraints->min_uV = cmin;
848			constraints->max_uV = cmax;
849		}
850
851		/* voltage constraints are optional */
852		if ((cmin == 0) && (cmax == 0))
853			return 0;
854
855		/* else require explicit machine-level constraints */
856		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857			rdev_err(rdev, "invalid voltage constraints\n");
858			return -EINVAL;
859		}
860
861		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862		for (i = 0; i < count; i++) {
863			int	value;
864
865			value = ops->list_voltage(rdev, i);
866			if (value <= 0)
867				continue;
868
869			/* maybe adjust [min_uV..max_uV] */
870			if (value >= cmin && value < min_uV)
871				min_uV = value;
872			if (value <= cmax && value > max_uV)
873				max_uV = value;
874		}
875
876		/* final: [min_uV..max_uV] valid iff constraints valid */
877		if (max_uV < min_uV) {
878			rdev_err(rdev, "unsupportable voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* use regulator's subset of machine constraints */
883		if (constraints->min_uV < min_uV) {
884			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885				 constraints->min_uV, min_uV);
886			constraints->min_uV = min_uV;
887		}
888		if (constraints->max_uV > max_uV) {
889			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890				 constraints->max_uV, max_uV);
891			constraints->max_uV = max_uV;
892		}
893	}
894
895	return 0;
896}
897
898/**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909static int set_machine_constraints(struct regulator_dev *rdev,
910	const struct regulation_constraints *constraints)
911{
912	int ret = 0;
913	struct regulator_ops *ops = rdev->desc->ops;
914
915	if (constraints)
916		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917					    GFP_KERNEL);
918	else
919		rdev->constraints = kzalloc(sizeof(*constraints),
920					    GFP_KERNEL);
921	if (!rdev->constraints)
922		return -ENOMEM;
923
924	ret = machine_constraints_voltage(rdev, rdev->constraints);
925	if (ret != 0)
926		goto out;
927
928	/* do we need to setup our suspend state */
929	if (rdev->constraints->initial_state) {
930		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931		if (ret < 0) {
932			rdev_err(rdev, "failed to set suspend state\n");
933			goto out;
934		}
935	}
936
937	if (rdev->constraints->initial_mode) {
938		if (!ops->set_mode) {
939			rdev_err(rdev, "no set_mode operation\n");
940			ret = -EINVAL;
941			goto out;
942		}
943
944		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945		if (ret < 0) {
946			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947			goto out;
948		}
949	}
950
951	/* If the constraints say the regulator should be on at this point
952	 * and we have control then make sure it is enabled.
953	 */
954	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955	    ops->enable) {
956		ret = ops->enable(rdev);
957		if (ret < 0) {
958			rdev_err(rdev, "failed to enable\n");
959			goto out;
960		}
961	}
962
963	print_constraints(rdev);
964	return 0;
965out:
966	kfree(rdev->constraints);
967	rdev->constraints = NULL;
968	return ret;
969}
970
971/**
972 * set_supply - set regulator supply regulator
973 * @rdev: regulator name
974 * @supply_rdev: supply regulator name
975 *
976 * Called by platform initialisation code to set the supply regulator for this
977 * regulator. This ensures that a regulators supply will also be enabled by the
978 * core if it's child is enabled.
979 */
980static int set_supply(struct regulator_dev *rdev,
981		      struct regulator_dev *supply_rdev)
982{
983	int err;
984
985	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988	if (rdev->supply == NULL) {
989		err = -ENOMEM;
990		return err;
991	}
992
993	return 0;
994}
995
996/**
997 * set_consumer_device_supply - Bind a regulator to a symbolic supply
998 * @rdev:         regulator source
999 * @consumer_dev_name: dev_name() string for device supply applies to
1000 * @supply:       symbolic name for supply
1001 *
1002 * Allows platform initialisation code to map physical regulator
1003 * sources to symbolic names for supplies for use by devices.  Devices
1004 * should use these symbolic names to request regulators, avoiding the
1005 * need to provide board-specific regulator names as platform data.
1006 */
1007static int set_consumer_device_supply(struct regulator_dev *rdev,
1008				      const char *consumer_dev_name,
1009				      const char *supply)
1010{
1011	struct regulator_map *node;
1012	int has_dev;
1013
1014	if (supply == NULL)
1015		return -EINVAL;
1016
1017	if (consumer_dev_name != NULL)
1018		has_dev = 1;
1019	else
1020		has_dev = 0;
1021
1022	list_for_each_entry(node, &regulator_map_list, list) {
1023		if (node->dev_name && consumer_dev_name) {
1024			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1025				continue;
1026		} else if (node->dev_name || consumer_dev_name) {
1027			continue;
1028		}
1029
1030		if (strcmp(node->supply, supply) != 0)
1031			continue;
1032
1033		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1034			 consumer_dev_name,
1035			 dev_name(&node->regulator->dev),
1036			 node->regulator->desc->name,
1037			 supply,
1038			 dev_name(&rdev->dev), rdev_get_name(rdev));
1039		return -EBUSY;
1040	}
1041
1042	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1043	if (node == NULL)
1044		return -ENOMEM;
1045
1046	node->regulator = rdev;
1047	node->supply = supply;
1048
1049	if (has_dev) {
1050		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1051		if (node->dev_name == NULL) {
1052			kfree(node);
1053			return -ENOMEM;
1054		}
1055	}
1056
1057	list_add(&node->list, &regulator_map_list);
1058	return 0;
1059}
1060
1061static void unset_regulator_supplies(struct regulator_dev *rdev)
1062{
1063	struct regulator_map *node, *n;
1064
1065	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1066		if (rdev == node->regulator) {
1067			list_del(&node->list);
1068			kfree(node->dev_name);
1069			kfree(node);
1070		}
1071	}
1072}
1073
1074#define REG_STR_SIZE	64
1075
1076static struct regulator *create_regulator(struct regulator_dev *rdev,
1077					  struct device *dev,
1078					  const char *supply_name)
1079{
1080	struct regulator *regulator;
1081	char buf[REG_STR_SIZE];
1082	int err, size;
1083
1084	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1085	if (regulator == NULL)
1086		return NULL;
1087
1088	mutex_lock(&rdev->mutex);
1089	regulator->rdev = rdev;
1090	list_add(&regulator->list, &rdev->consumer_list);
1091
1092	if (dev) {
1093		/* create a 'requested_microamps_name' sysfs entry */
1094		size = scnprintf(buf, REG_STR_SIZE,
1095				 "microamps_requested_%s-%s",
1096				 dev_name(dev), supply_name);
1097		if (size >= REG_STR_SIZE)
1098			goto overflow_err;
1099
1100		regulator->dev = dev;
1101		sysfs_attr_init(&regulator->dev_attr.attr);
1102		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1103		if (regulator->dev_attr.attr.name == NULL)
1104			goto attr_name_err;
1105
1106		regulator->dev_attr.attr.mode = 0444;
1107		regulator->dev_attr.show = device_requested_uA_show;
1108		err = device_create_file(dev, &regulator->dev_attr);
1109		if (err < 0) {
1110			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1111			goto attr_name_err;
1112		}
1113
1114		/* also add a link to the device sysfs entry */
1115		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116				 dev->kobj.name, supply_name);
1117		if (size >= REG_STR_SIZE)
1118			goto attr_err;
1119
1120		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121		if (regulator->supply_name == NULL)
1122			goto attr_err;
1123
1124		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125					buf);
1126		if (err) {
1127			rdev_warn(rdev, "could not add device link %s err %d\n",
1128				  dev->kobj.name, err);
1129			goto link_name_err;
1130		}
1131	} else {
1132		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133		if (regulator->supply_name == NULL)
1134			goto attr_err;
1135	}
1136
1137#ifdef CONFIG_DEBUG_FS
1138	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1139						rdev->debugfs);
1140	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1141		rdev_warn(rdev, "Failed to create debugfs directory\n");
1142		regulator->debugfs = NULL;
1143	} else {
1144		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1145				   &regulator->uA_load);
1146		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1147				   &regulator->min_uV);
1148		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1149				   &regulator->max_uV);
1150	}
1151#endif
1152
1153	mutex_unlock(&rdev->mutex);
1154	return regulator;
1155link_name_err:
1156	kfree(regulator->supply_name);
1157attr_err:
1158	device_remove_file(regulator->dev, &regulator->dev_attr);
1159attr_name_err:
1160	kfree(regulator->dev_attr.attr.name);
1161overflow_err:
1162	list_del(&regulator->list);
1163	kfree(regulator);
1164	mutex_unlock(&rdev->mutex);
1165	return NULL;
1166}
1167
1168static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169{
1170	if (!rdev->desc->ops->enable_time)
1171		return 0;
1172	return rdev->desc->ops->enable_time(rdev);
1173}
1174
1175static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176							 const char *supply)
1177{
1178	struct regulator_dev *r;
1179	struct device_node *node;
1180
1181	/* first do a dt based lookup */
1182	if (dev && dev->of_node) {
1183		node = of_get_regulator(dev, supply);
1184		if (node)
1185			list_for_each_entry(r, &regulator_list, list)
1186				if (r->dev.parent &&
1187					node == r->dev.of_node)
1188					return r;
1189	}
1190
1191	/* if not found, try doing it non-dt way */
1192	list_for_each_entry(r, &regulator_list, list)
1193		if (strcmp(rdev_get_name(r), supply) == 0)
1194			return r;
1195
1196	return NULL;
1197}
1198
1199/* Internal regulator request function */
1200static struct regulator *_regulator_get(struct device *dev, const char *id,
1201					int exclusive)
1202{
1203	struct regulator_dev *rdev;
1204	struct regulator_map *map;
1205	struct regulator *regulator = ERR_PTR(-ENODEV);
1206	const char *devname = NULL;
1207	int ret;
1208
1209	if (id == NULL) {
1210		pr_err("get() with no identifier\n");
1211		return regulator;
1212	}
1213
1214	if (dev)
1215		devname = dev_name(dev);
1216
1217	mutex_lock(&regulator_list_mutex);
1218
1219	rdev = regulator_dev_lookup(dev, id);
1220	if (rdev)
1221		goto found;
1222
1223	list_for_each_entry(map, &regulator_map_list, list) {
1224		/* If the mapping has a device set up it must match */
1225		if (map->dev_name &&
1226		    (!devname || strcmp(map->dev_name, devname)))
1227			continue;
1228
1229		if (strcmp(map->supply, id) == 0) {
1230			rdev = map->regulator;
1231			goto found;
1232		}
1233	}
1234
1235	if (board_wants_dummy_regulator) {
1236		rdev = dummy_regulator_rdev;
1237		goto found;
1238	}
1239
1240#ifdef CONFIG_REGULATOR_DUMMY
1241	if (!devname)
1242		devname = "deviceless";
1243
1244	/* If the board didn't flag that it was fully constrained then
1245	 * substitute in a dummy regulator so consumers can continue.
1246	 */
1247	if (!has_full_constraints) {
1248		pr_warn("%s supply %s not found, using dummy regulator\n",
1249			devname, id);
1250		rdev = dummy_regulator_rdev;
1251		goto found;
1252	}
1253#endif
1254
1255	mutex_unlock(&regulator_list_mutex);
1256	return regulator;
1257
1258found:
1259	if (rdev->exclusive) {
1260		regulator = ERR_PTR(-EPERM);
1261		goto out;
1262	}
1263
1264	if (exclusive && rdev->open_count) {
1265		regulator = ERR_PTR(-EBUSY);
1266		goto out;
1267	}
1268
1269	if (!try_module_get(rdev->owner))
1270		goto out;
1271
1272	regulator = create_regulator(rdev, dev, id);
1273	if (regulator == NULL) {
1274		regulator = ERR_PTR(-ENOMEM);
1275		module_put(rdev->owner);
1276		goto out;
1277	}
1278
1279	rdev->open_count++;
1280	if (exclusive) {
1281		rdev->exclusive = 1;
1282
1283		ret = _regulator_is_enabled(rdev);
1284		if (ret > 0)
1285			rdev->use_count = 1;
1286		else
1287			rdev->use_count = 0;
1288	}
1289
1290out:
1291	mutex_unlock(&regulator_list_mutex);
1292
1293	return regulator;
1294}
1295
1296/**
1297 * regulator_get - lookup and obtain a reference to a regulator.
1298 * @dev: device for regulator "consumer"
1299 * @id: Supply name or regulator ID.
1300 *
1301 * Returns a struct regulator corresponding to the regulator producer,
1302 * or IS_ERR() condition containing errno.
1303 *
1304 * Use of supply names configured via regulator_set_device_supply() is
1305 * strongly encouraged.  It is recommended that the supply name used
1306 * should match the name used for the supply and/or the relevant
1307 * device pins in the datasheet.
1308 */
1309struct regulator *regulator_get(struct device *dev, const char *id)
1310{
1311	return _regulator_get(dev, id, 0);
1312}
1313EXPORT_SYMBOL_GPL(regulator_get);
1314
1315/**
1316 * regulator_get_exclusive - obtain exclusive access to a regulator.
1317 * @dev: device for regulator "consumer"
1318 * @id: Supply name or regulator ID.
1319 *
1320 * Returns a struct regulator corresponding to the regulator producer,
1321 * or IS_ERR() condition containing errno.  Other consumers will be
1322 * unable to obtain this reference is held and the use count for the
1323 * regulator will be initialised to reflect the current state of the
1324 * regulator.
1325 *
1326 * This is intended for use by consumers which cannot tolerate shared
1327 * use of the regulator such as those which need to force the
1328 * regulator off for correct operation of the hardware they are
1329 * controlling.
1330 *
1331 * Use of supply names configured via regulator_set_device_supply() is
1332 * strongly encouraged.  It is recommended that the supply name used
1333 * should match the name used for the supply and/or the relevant
1334 * device pins in the datasheet.
1335 */
1336struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1337{
1338	return _regulator_get(dev, id, 1);
1339}
1340EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1341
1342/**
1343 * regulator_put - "free" the regulator source
1344 * @regulator: regulator source
1345 *
1346 * Note: drivers must ensure that all regulator_enable calls made on this
1347 * regulator source are balanced by regulator_disable calls prior to calling
1348 * this function.
1349 */
1350void regulator_put(struct regulator *regulator)
1351{
1352	struct regulator_dev *rdev;
1353
1354	if (regulator == NULL || IS_ERR(regulator))
1355		return;
1356
1357	mutex_lock(&regulator_list_mutex);
1358	rdev = regulator->rdev;
1359
1360#ifdef CONFIG_DEBUG_FS
1361	debugfs_remove_recursive(regulator->debugfs);
1362#endif
1363
1364	/* remove any sysfs entries */
1365	if (regulator->dev) {
1366		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1367		device_remove_file(regulator->dev, &regulator->dev_attr);
1368		kfree(regulator->dev_attr.attr.name);
1369	}
1370	kfree(regulator->supply_name);
1371	list_del(&regulator->list);
1372	kfree(regulator);
1373
1374	rdev->open_count--;
1375	rdev->exclusive = 0;
1376
1377	module_put(rdev->owner);
1378	mutex_unlock(&regulator_list_mutex);
1379}
1380EXPORT_SYMBOL_GPL(regulator_put);
1381
1382static int _regulator_can_change_status(struct regulator_dev *rdev)
1383{
1384	if (!rdev->constraints)
1385		return 0;
1386
1387	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1388		return 1;
1389	else
1390		return 0;
1391}
1392
1393/* locks held by regulator_enable() */
1394static int _regulator_enable(struct regulator_dev *rdev)
1395{
1396	int ret, delay;
1397
1398	/* check voltage and requested load before enabling */
1399	if (rdev->constraints &&
1400	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1401		drms_uA_update(rdev);
1402
1403	if (rdev->use_count == 0) {
1404		/* The regulator may on if it's not switchable or left on */
1405		ret = _regulator_is_enabled(rdev);
1406		if (ret == -EINVAL || ret == 0) {
1407			if (!_regulator_can_change_status(rdev))
1408				return -EPERM;
1409
1410			if (!rdev->desc->ops->enable)
1411				return -EINVAL;
1412
1413			/* Query before enabling in case configuration
1414			 * dependent.  */
1415			ret = _regulator_get_enable_time(rdev);
1416			if (ret >= 0) {
1417				delay = ret;
1418			} else {
1419				rdev_warn(rdev, "enable_time() failed: %d\n",
1420					   ret);
1421				delay = 0;
1422			}
1423
1424			trace_regulator_enable(rdev_get_name(rdev));
1425
1426			/* Allow the regulator to ramp; it would be useful
1427			 * to extend this for bulk operations so that the
1428			 * regulators can ramp together.  */
1429			ret = rdev->desc->ops->enable(rdev);
1430			if (ret < 0)
1431				return ret;
1432
1433			trace_regulator_enable_delay(rdev_get_name(rdev));
1434
1435			if (delay >= 1000) {
1436				mdelay(delay / 1000);
1437				udelay(delay % 1000);
1438			} else if (delay) {
1439				udelay(delay);
1440			}
1441
1442			trace_regulator_enable_complete(rdev_get_name(rdev));
1443
1444		} else if (ret < 0) {
1445			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1446			return ret;
1447		}
1448		/* Fallthrough on positive return values - already enabled */
1449	}
1450
1451	rdev->use_count++;
1452
1453	return 0;
1454}
1455
1456/**
1457 * regulator_enable - enable regulator output
1458 * @regulator: regulator source
1459 *
1460 * Request that the regulator be enabled with the regulator output at
1461 * the predefined voltage or current value.  Calls to regulator_enable()
1462 * must be balanced with calls to regulator_disable().
1463 *
1464 * NOTE: the output value can be set by other drivers, boot loader or may be
1465 * hardwired in the regulator.
1466 */
1467int regulator_enable(struct regulator *regulator)
1468{
1469	struct regulator_dev *rdev = regulator->rdev;
1470	int ret = 0;
1471
1472	if (rdev->supply) {
1473		ret = regulator_enable(rdev->supply);
1474		if (ret != 0)
1475			return ret;
1476	}
1477
1478	mutex_lock(&rdev->mutex);
1479	ret = _regulator_enable(rdev);
1480	mutex_unlock(&rdev->mutex);
1481
1482	if (ret != 0 && rdev->supply)
1483		regulator_disable(rdev->supply);
1484
1485	return ret;
1486}
1487EXPORT_SYMBOL_GPL(regulator_enable);
1488
1489/* locks held by regulator_disable() */
1490static int _regulator_disable(struct regulator_dev *rdev)
1491{
1492	int ret = 0;
1493
1494	if (WARN(rdev->use_count <= 0,
1495		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1496		return -EIO;
1497
1498	/* are we the last user and permitted to disable ? */
1499	if (rdev->use_count == 1 &&
1500	    (rdev->constraints && !rdev->constraints->always_on)) {
1501
1502		/* we are last user */
1503		if (_regulator_can_change_status(rdev) &&
1504		    rdev->desc->ops->disable) {
1505			trace_regulator_disable(rdev_get_name(rdev));
1506
1507			ret = rdev->desc->ops->disable(rdev);
1508			if (ret < 0) {
1509				rdev_err(rdev, "failed to disable\n");
1510				return ret;
1511			}
1512
1513			trace_regulator_disable_complete(rdev_get_name(rdev));
1514
1515			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1516					     NULL);
1517		}
1518
1519		rdev->use_count = 0;
1520	} else if (rdev->use_count > 1) {
1521
1522		if (rdev->constraints &&
1523			(rdev->constraints->valid_ops_mask &
1524			REGULATOR_CHANGE_DRMS))
1525			drms_uA_update(rdev);
1526
1527		rdev->use_count--;
1528	}
1529
1530	return ret;
1531}
1532
1533/**
1534 * regulator_disable - disable regulator output
1535 * @regulator: regulator source
1536 *
1537 * Disable the regulator output voltage or current.  Calls to
1538 * regulator_enable() must be balanced with calls to
1539 * regulator_disable().
1540 *
1541 * NOTE: this will only disable the regulator output if no other consumer
1542 * devices have it enabled, the regulator device supports disabling and
1543 * machine constraints permit this operation.
1544 */
1545int regulator_disable(struct regulator *regulator)
1546{
1547	struct regulator_dev *rdev = regulator->rdev;
1548	int ret = 0;
1549
1550	mutex_lock(&rdev->mutex);
1551	ret = _regulator_disable(rdev);
1552	mutex_unlock(&rdev->mutex);
1553
1554	if (ret == 0 && rdev->supply)
1555		regulator_disable(rdev->supply);
1556
1557	return ret;
1558}
1559EXPORT_SYMBOL_GPL(regulator_disable);
1560
1561/* locks held by regulator_force_disable() */
1562static int _regulator_force_disable(struct regulator_dev *rdev)
1563{
1564	int ret = 0;
1565
1566	/* force disable */
1567	if (rdev->desc->ops->disable) {
1568		/* ah well, who wants to live forever... */
1569		ret = rdev->desc->ops->disable(rdev);
1570		if (ret < 0) {
1571			rdev_err(rdev, "failed to force disable\n");
1572			return ret;
1573		}
1574		/* notify other consumers that power has been forced off */
1575		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1576			REGULATOR_EVENT_DISABLE, NULL);
1577	}
1578
1579	return ret;
1580}
1581
1582/**
1583 * regulator_force_disable - force disable regulator output
1584 * @regulator: regulator source
1585 *
1586 * Forcibly disable the regulator output voltage or current.
1587 * NOTE: this *will* disable the regulator output even if other consumer
1588 * devices have it enabled. This should be used for situations when device
1589 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1590 */
1591int regulator_force_disable(struct regulator *regulator)
1592{
1593	struct regulator_dev *rdev = regulator->rdev;
1594	int ret;
1595
1596	mutex_lock(&rdev->mutex);
1597	regulator->uA_load = 0;
1598	ret = _regulator_force_disable(regulator->rdev);
1599	mutex_unlock(&rdev->mutex);
1600
1601	if (rdev->supply)
1602		while (rdev->open_count--)
1603			regulator_disable(rdev->supply);
1604
1605	return ret;
1606}
1607EXPORT_SYMBOL_GPL(regulator_force_disable);
1608
1609static void regulator_disable_work(struct work_struct *work)
1610{
1611	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1612						  disable_work.work);
1613	int count, i, ret;
1614
1615	mutex_lock(&rdev->mutex);
1616
1617	BUG_ON(!rdev->deferred_disables);
1618
1619	count = rdev->deferred_disables;
1620	rdev->deferred_disables = 0;
1621
1622	for (i = 0; i < count; i++) {
1623		ret = _regulator_disable(rdev);
1624		if (ret != 0)
1625			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1626	}
1627
1628	mutex_unlock(&rdev->mutex);
1629
1630	if (rdev->supply) {
1631		for (i = 0; i < count; i++) {
1632			ret = regulator_disable(rdev->supply);
1633			if (ret != 0) {
1634				rdev_err(rdev,
1635					 "Supply disable failed: %d\n", ret);
1636			}
1637		}
1638	}
1639}
1640
1641/**
1642 * regulator_disable_deferred - disable regulator output with delay
1643 * @regulator: regulator source
1644 * @ms: miliseconds until the regulator is disabled
1645 *
1646 * Execute regulator_disable() on the regulator after a delay.  This
1647 * is intended for use with devices that require some time to quiesce.
1648 *
1649 * NOTE: this will only disable the regulator output if no other consumer
1650 * devices have it enabled, the regulator device supports disabling and
1651 * machine constraints permit this operation.
1652 */
1653int regulator_disable_deferred(struct regulator *regulator, int ms)
1654{
1655	struct regulator_dev *rdev = regulator->rdev;
1656	int ret;
1657
1658	mutex_lock(&rdev->mutex);
1659	rdev->deferred_disables++;
1660	mutex_unlock(&rdev->mutex);
1661
1662	ret = schedule_delayed_work(&rdev->disable_work,
1663				    msecs_to_jiffies(ms));
1664	if (ret < 0)
1665		return ret;
1666	else
1667		return 0;
1668}
1669EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1670
1671static int _regulator_is_enabled(struct regulator_dev *rdev)
1672{
1673	/* If we don't know then assume that the regulator is always on */
1674	if (!rdev->desc->ops->is_enabled)
1675		return 1;
1676
1677	return rdev->desc->ops->is_enabled(rdev);
1678}
1679
1680/**
1681 * regulator_is_enabled - is the regulator output enabled
1682 * @regulator: regulator source
1683 *
1684 * Returns positive if the regulator driver backing the source/client
1685 * has requested that the device be enabled, zero if it hasn't, else a
1686 * negative errno code.
1687 *
1688 * Note that the device backing this regulator handle can have multiple
1689 * users, so it might be enabled even if regulator_enable() was never
1690 * called for this particular source.
1691 */
1692int regulator_is_enabled(struct regulator *regulator)
1693{
1694	int ret;
1695
1696	mutex_lock(&regulator->rdev->mutex);
1697	ret = _regulator_is_enabled(regulator->rdev);
1698	mutex_unlock(&regulator->rdev->mutex);
1699
1700	return ret;
1701}
1702EXPORT_SYMBOL_GPL(regulator_is_enabled);
1703
1704/**
1705 * regulator_count_voltages - count regulator_list_voltage() selectors
1706 * @regulator: regulator source
1707 *
1708 * Returns number of selectors, or negative errno.  Selectors are
1709 * numbered starting at zero, and typically correspond to bitfields
1710 * in hardware registers.
1711 */
1712int regulator_count_voltages(struct regulator *regulator)
1713{
1714	struct regulator_dev	*rdev = regulator->rdev;
1715
1716	return rdev->desc->n_voltages ? : -EINVAL;
1717}
1718EXPORT_SYMBOL_GPL(regulator_count_voltages);
1719
1720/**
1721 * regulator_list_voltage - enumerate supported voltages
1722 * @regulator: regulator source
1723 * @selector: identify voltage to list
1724 * Context: can sleep
1725 *
1726 * Returns a voltage that can be passed to @regulator_set_voltage(),
1727 * zero if this selector code can't be used on this system, or a
1728 * negative errno.
1729 */
1730int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1731{
1732	struct regulator_dev	*rdev = regulator->rdev;
1733	struct regulator_ops	*ops = rdev->desc->ops;
1734	int			ret;
1735
1736	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1737		return -EINVAL;
1738
1739	mutex_lock(&rdev->mutex);
1740	ret = ops->list_voltage(rdev, selector);
1741	mutex_unlock(&rdev->mutex);
1742
1743	if (ret > 0) {
1744		if (ret < rdev->constraints->min_uV)
1745			ret = 0;
1746		else if (ret > rdev->constraints->max_uV)
1747			ret = 0;
1748	}
1749
1750	return ret;
1751}
1752EXPORT_SYMBOL_GPL(regulator_list_voltage);
1753
1754/**
1755 * regulator_is_supported_voltage - check if a voltage range can be supported
1756 *
1757 * @regulator: Regulator to check.
1758 * @min_uV: Minimum required voltage in uV.
1759 * @max_uV: Maximum required voltage in uV.
1760 *
1761 * Returns a boolean or a negative error code.
1762 */
1763int regulator_is_supported_voltage(struct regulator *regulator,
1764				   int min_uV, int max_uV)
1765{
1766	int i, voltages, ret;
1767
1768	ret = regulator_count_voltages(regulator);
1769	if (ret < 0)
1770		return ret;
1771	voltages = ret;
1772
1773	for (i = 0; i < voltages; i++) {
1774		ret = regulator_list_voltage(regulator, i);
1775
1776		if (ret >= min_uV && ret <= max_uV)
1777			return 1;
1778	}
1779
1780	return 0;
1781}
1782EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1783
1784static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1785				     int min_uV, int max_uV)
1786{
1787	int ret;
1788	int delay = 0;
1789	unsigned int selector;
1790
1791	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1792
1793	min_uV += rdev->constraints->uV_offset;
1794	max_uV += rdev->constraints->uV_offset;
1795
1796	if (rdev->desc->ops->set_voltage) {
1797		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1798						   &selector);
1799
1800		if (rdev->desc->ops->list_voltage)
1801			selector = rdev->desc->ops->list_voltage(rdev,
1802								 selector);
1803		else
1804			selector = -1;
1805	} else if (rdev->desc->ops->set_voltage_sel) {
1806		int best_val = INT_MAX;
1807		int i;
1808
1809		selector = 0;
1810
1811		/* Find the smallest voltage that falls within the specified
1812		 * range.
1813		 */
1814		for (i = 0; i < rdev->desc->n_voltages; i++) {
1815			ret = rdev->desc->ops->list_voltage(rdev, i);
1816			if (ret < 0)
1817				continue;
1818
1819			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1820				best_val = ret;
1821				selector = i;
1822			}
1823		}
1824
1825		/*
1826		 * If we can't obtain the old selector there is not enough
1827		 * info to call set_voltage_time_sel().
1828		 */
1829		if (rdev->desc->ops->set_voltage_time_sel &&
1830		    rdev->desc->ops->get_voltage_sel) {
1831			unsigned int old_selector = 0;
1832
1833			ret = rdev->desc->ops->get_voltage_sel(rdev);
1834			if (ret < 0)
1835				return ret;
1836			old_selector = ret;
1837			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1838						old_selector, selector);
1839		}
1840
1841		if (best_val != INT_MAX) {
1842			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1843			selector = best_val;
1844		} else {
1845			ret = -EINVAL;
1846		}
1847	} else {
1848		ret = -EINVAL;
1849	}
1850
1851	/* Insert any necessary delays */
1852	if (delay >= 1000) {
1853		mdelay(delay / 1000);
1854		udelay(delay % 1000);
1855	} else if (delay) {
1856		udelay(delay);
1857	}
1858
1859	if (ret == 0)
1860		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1861				     NULL);
1862
1863	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1864
1865	return ret;
1866}
1867
1868/**
1869 * regulator_set_voltage - set regulator output voltage
1870 * @regulator: regulator source
1871 * @min_uV: Minimum required voltage in uV
1872 * @max_uV: Maximum acceptable voltage in uV
1873 *
1874 * Sets a voltage regulator to the desired output voltage. This can be set
1875 * during any regulator state. IOW, regulator can be disabled or enabled.
1876 *
1877 * If the regulator is enabled then the voltage will change to the new value
1878 * immediately otherwise if the regulator is disabled the regulator will
1879 * output at the new voltage when enabled.
1880 *
1881 * NOTE: If the regulator is shared between several devices then the lowest
1882 * request voltage that meets the system constraints will be used.
1883 * Regulator system constraints must be set for this regulator before
1884 * calling this function otherwise this call will fail.
1885 */
1886int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1887{
1888	struct regulator_dev *rdev = regulator->rdev;
1889	int ret = 0;
1890
1891	mutex_lock(&rdev->mutex);
1892
1893	/* If we're setting the same range as last time the change
1894	 * should be a noop (some cpufreq implementations use the same
1895	 * voltage for multiple frequencies, for example).
1896	 */
1897	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1898		goto out;
1899
1900	/* sanity check */
1901	if (!rdev->desc->ops->set_voltage &&
1902	    !rdev->desc->ops->set_voltage_sel) {
1903		ret = -EINVAL;
1904		goto out;
1905	}
1906
1907	/* constraints check */
1908	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1909	if (ret < 0)
1910		goto out;
1911	regulator->min_uV = min_uV;
1912	regulator->max_uV = max_uV;
1913
1914	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1915	if (ret < 0)
1916		goto out;
1917
1918	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1919
1920out:
1921	mutex_unlock(&rdev->mutex);
1922	return ret;
1923}
1924EXPORT_SYMBOL_GPL(regulator_set_voltage);
1925
1926/**
1927 * regulator_set_voltage_time - get raise/fall time
1928 * @regulator: regulator source
1929 * @old_uV: starting voltage in microvolts
1930 * @new_uV: target voltage in microvolts
1931 *
1932 * Provided with the starting and ending voltage, this function attempts to
1933 * calculate the time in microseconds required to rise or fall to this new
1934 * voltage.
1935 */
1936int regulator_set_voltage_time(struct regulator *regulator,
1937			       int old_uV, int new_uV)
1938{
1939	struct regulator_dev	*rdev = regulator->rdev;
1940	struct regulator_ops	*ops = rdev->desc->ops;
1941	int old_sel = -1;
1942	int new_sel = -1;
1943	int voltage;
1944	int i;
1945
1946	/* Currently requires operations to do this */
1947	if (!ops->list_voltage || !ops->set_voltage_time_sel
1948	    || !rdev->desc->n_voltages)
1949		return -EINVAL;
1950
1951	for (i = 0; i < rdev->desc->n_voltages; i++) {
1952		/* We only look for exact voltage matches here */
1953		voltage = regulator_list_voltage(regulator, i);
1954		if (voltage < 0)
1955			return -EINVAL;
1956		if (voltage == 0)
1957			continue;
1958		if (voltage == old_uV)
1959			old_sel = i;
1960		if (voltage == new_uV)
1961			new_sel = i;
1962	}
1963
1964	if (old_sel < 0 || new_sel < 0)
1965		return -EINVAL;
1966
1967	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1968}
1969EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1970
1971/**
1972 * regulator_sync_voltage - re-apply last regulator output voltage
1973 * @regulator: regulator source
1974 *
1975 * Re-apply the last configured voltage.  This is intended to be used
1976 * where some external control source the consumer is cooperating with
1977 * has caused the configured voltage to change.
1978 */
1979int regulator_sync_voltage(struct regulator *regulator)
1980{
1981	struct regulator_dev *rdev = regulator->rdev;
1982	int ret, min_uV, max_uV;
1983
1984	mutex_lock(&rdev->mutex);
1985
1986	if (!rdev->desc->ops->set_voltage &&
1987	    !rdev->desc->ops->set_voltage_sel) {
1988		ret = -EINVAL;
1989		goto out;
1990	}
1991
1992	/* This is only going to work if we've had a voltage configured. */
1993	if (!regulator->min_uV && !regulator->max_uV) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	min_uV = regulator->min_uV;
1999	max_uV = regulator->max_uV;
2000
2001	/* This should be a paranoia check... */
2002	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2003	if (ret < 0)
2004		goto out;
2005
2006	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2007	if (ret < 0)
2008		goto out;
2009
2010	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2011
2012out:
2013	mutex_unlock(&rdev->mutex);
2014	return ret;
2015}
2016EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2017
2018static int _regulator_get_voltage(struct regulator_dev *rdev)
2019{
2020	int sel, ret;
2021
2022	if (rdev->desc->ops->get_voltage_sel) {
2023		sel = rdev->desc->ops->get_voltage_sel(rdev);
2024		if (sel < 0)
2025			return sel;
2026		ret = rdev->desc->ops->list_voltage(rdev, sel);
2027	} else if (rdev->desc->ops->get_voltage) {
2028		ret = rdev->desc->ops->get_voltage(rdev);
2029	} else {
2030		return -EINVAL;
2031	}
2032
2033	if (ret < 0)
2034		return ret;
2035	return ret - rdev->constraints->uV_offset;
2036}
2037
2038/**
2039 * regulator_get_voltage - get regulator output voltage
2040 * @regulator: regulator source
2041 *
2042 * This returns the current regulator voltage in uV.
2043 *
2044 * NOTE: If the regulator is disabled it will return the voltage value. This
2045 * function should not be used to determine regulator state.
2046 */
2047int regulator_get_voltage(struct regulator *regulator)
2048{
2049	int ret;
2050
2051	mutex_lock(&regulator->rdev->mutex);
2052
2053	ret = _regulator_get_voltage(regulator->rdev);
2054
2055	mutex_unlock(&regulator->rdev->mutex);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(regulator_get_voltage);
2060
2061/**
2062 * regulator_set_current_limit - set regulator output current limit
2063 * @regulator: regulator source
2064 * @min_uA: Minimuum supported current in uA
2065 * @max_uA: Maximum supported current in uA
2066 *
2067 * Sets current sink to the desired output current. This can be set during
2068 * any regulator state. IOW, regulator can be disabled or enabled.
2069 *
2070 * If the regulator is enabled then the current will change to the new value
2071 * immediately otherwise if the regulator is disabled the regulator will
2072 * output at the new current when enabled.
2073 *
2074 * NOTE: Regulator system constraints must be set for this regulator before
2075 * calling this function otherwise this call will fail.
2076 */
2077int regulator_set_current_limit(struct regulator *regulator,
2078			       int min_uA, int max_uA)
2079{
2080	struct regulator_dev *rdev = regulator->rdev;
2081	int ret;
2082
2083	mutex_lock(&rdev->mutex);
2084
2085	/* sanity check */
2086	if (!rdev->desc->ops->set_current_limit) {
2087		ret = -EINVAL;
2088		goto out;
2089	}
2090
2091	/* constraints check */
2092	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2093	if (ret < 0)
2094		goto out;
2095
2096	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2097out:
2098	mutex_unlock(&rdev->mutex);
2099	return ret;
2100}
2101EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2102
2103static int _regulator_get_current_limit(struct regulator_dev *rdev)
2104{
2105	int ret;
2106
2107	mutex_lock(&rdev->mutex);
2108
2109	/* sanity check */
2110	if (!rdev->desc->ops->get_current_limit) {
2111		ret = -EINVAL;
2112		goto out;
2113	}
2114
2115	ret = rdev->desc->ops->get_current_limit(rdev);
2116out:
2117	mutex_unlock(&rdev->mutex);
2118	return ret;
2119}
2120
2121/**
2122 * regulator_get_current_limit - get regulator output current
2123 * @regulator: regulator source
2124 *
2125 * This returns the current supplied by the specified current sink in uA.
2126 *
2127 * NOTE: If the regulator is disabled it will return the current value. This
2128 * function should not be used to determine regulator state.
2129 */
2130int regulator_get_current_limit(struct regulator *regulator)
2131{
2132	return _regulator_get_current_limit(regulator->rdev);
2133}
2134EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2135
2136/**
2137 * regulator_set_mode - set regulator operating mode
2138 * @regulator: regulator source
2139 * @mode: operating mode - one of the REGULATOR_MODE constants
2140 *
2141 * Set regulator operating mode to increase regulator efficiency or improve
2142 * regulation performance.
2143 *
2144 * NOTE: Regulator system constraints must be set for this regulator before
2145 * calling this function otherwise this call will fail.
2146 */
2147int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2148{
2149	struct regulator_dev *rdev = regulator->rdev;
2150	int ret;
2151	int regulator_curr_mode;
2152
2153	mutex_lock(&rdev->mutex);
2154
2155	/* sanity check */
2156	if (!rdev->desc->ops->set_mode) {
2157		ret = -EINVAL;
2158		goto out;
2159	}
2160
2161	/* return if the same mode is requested */
2162	if (rdev->desc->ops->get_mode) {
2163		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2164		if (regulator_curr_mode == mode) {
2165			ret = 0;
2166			goto out;
2167		}
2168	}
2169
2170	/* constraints check */
2171	ret = regulator_mode_constrain(rdev, &mode);
2172	if (ret < 0)
2173		goto out;
2174
2175	ret = rdev->desc->ops->set_mode(rdev, mode);
2176out:
2177	mutex_unlock(&rdev->mutex);
2178	return ret;
2179}
2180EXPORT_SYMBOL_GPL(regulator_set_mode);
2181
2182static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2183{
2184	int ret;
2185
2186	mutex_lock(&rdev->mutex);
2187
2188	/* sanity check */
2189	if (!rdev->desc->ops->get_mode) {
2190		ret = -EINVAL;
2191		goto out;
2192	}
2193
2194	ret = rdev->desc->ops->get_mode(rdev);
2195out:
2196	mutex_unlock(&rdev->mutex);
2197	return ret;
2198}
2199
2200/**
2201 * regulator_get_mode - get regulator operating mode
2202 * @regulator: regulator source
2203 *
2204 * Get the current regulator operating mode.
2205 */
2206unsigned int regulator_get_mode(struct regulator *regulator)
2207{
2208	return _regulator_get_mode(regulator->rdev);
2209}
2210EXPORT_SYMBOL_GPL(regulator_get_mode);
2211
2212/**
2213 * regulator_set_optimum_mode - set regulator optimum operating mode
2214 * @regulator: regulator source
2215 * @uA_load: load current
2216 *
2217 * Notifies the regulator core of a new device load. This is then used by
2218 * DRMS (if enabled by constraints) to set the most efficient regulator
2219 * operating mode for the new regulator loading.
2220 *
2221 * Consumer devices notify their supply regulator of the maximum power
2222 * they will require (can be taken from device datasheet in the power
2223 * consumption tables) when they change operational status and hence power
2224 * state. Examples of operational state changes that can affect power
2225 * consumption are :-
2226 *
2227 *    o Device is opened / closed.
2228 *    o Device I/O is about to begin or has just finished.
2229 *    o Device is idling in between work.
2230 *
2231 * This information is also exported via sysfs to userspace.
2232 *
2233 * DRMS will sum the total requested load on the regulator and change
2234 * to the most efficient operating mode if platform constraints allow.
2235 *
2236 * Returns the new regulator mode or error.
2237 */
2238int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2239{
2240	struct regulator_dev *rdev = regulator->rdev;
2241	struct regulator *consumer;
2242	int ret, output_uV, input_uV, total_uA_load = 0;
2243	unsigned int mode;
2244
2245	mutex_lock(&rdev->mutex);
2246
2247	/*
2248	 * first check to see if we can set modes at all, otherwise just
2249	 * tell the consumer everything is OK.
2250	 */
2251	regulator->uA_load = uA_load;
2252	ret = regulator_check_drms(rdev);
2253	if (ret < 0) {
2254		ret = 0;
2255		goto out;
2256	}
2257
2258	if (!rdev->desc->ops->get_optimum_mode)
2259		goto out;
2260
2261	/*
2262	 * we can actually do this so any errors are indicators of
2263	 * potential real failure.
2264	 */
2265	ret = -EINVAL;
2266
2267	/* get output voltage */
2268	output_uV = _regulator_get_voltage(rdev);
2269	if (output_uV <= 0) {
2270		rdev_err(rdev, "invalid output voltage found\n");
2271		goto out;
2272	}
2273
2274	/* get input voltage */
2275	input_uV = 0;
2276	if (rdev->supply)
2277		input_uV = regulator_get_voltage(rdev->supply);
2278	if (input_uV <= 0)
2279		input_uV = rdev->constraints->input_uV;
2280	if (input_uV <= 0) {
2281		rdev_err(rdev, "invalid input voltage found\n");
2282		goto out;
2283	}
2284
2285	/* calc total requested load for this regulator */
2286	list_for_each_entry(consumer, &rdev->consumer_list, list)
2287		total_uA_load += consumer->uA_load;
2288
2289	mode = rdev->desc->ops->get_optimum_mode(rdev,
2290						 input_uV, output_uV,
2291						 total_uA_load);
2292	ret = regulator_mode_constrain(rdev, &mode);
2293	if (ret < 0) {
2294		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2295			 total_uA_load, input_uV, output_uV);
2296		goto out;
2297	}
2298
2299	ret = rdev->desc->ops->set_mode(rdev, mode);
2300	if (ret < 0) {
2301		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2302		goto out;
2303	}
2304	ret = mode;
2305out:
2306	mutex_unlock(&rdev->mutex);
2307	return ret;
2308}
2309EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2310
2311/**
2312 * regulator_register_notifier - register regulator event notifier
2313 * @regulator: regulator source
2314 * @nb: notifier block
2315 *
2316 * Register notifier block to receive regulator events.
2317 */
2318int regulator_register_notifier(struct regulator *regulator,
2319			      struct notifier_block *nb)
2320{
2321	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2322						nb);
2323}
2324EXPORT_SYMBOL_GPL(regulator_register_notifier);
2325
2326/**
2327 * regulator_unregister_notifier - unregister regulator event notifier
2328 * @regulator: regulator source
2329 * @nb: notifier block
2330 *
2331 * Unregister regulator event notifier block.
2332 */
2333int regulator_unregister_notifier(struct regulator *regulator,
2334				struct notifier_block *nb)
2335{
2336	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2337						  nb);
2338}
2339EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2340
2341/* notify regulator consumers and downstream regulator consumers.
2342 * Note mutex must be held by caller.
2343 */
2344static void _notifier_call_chain(struct regulator_dev *rdev,
2345				  unsigned long event, void *data)
2346{
2347	/* call rdev chain first */
2348	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2349}
2350
2351/**
2352 * regulator_bulk_get - get multiple regulator consumers
2353 *
2354 * @dev:           Device to supply
2355 * @num_consumers: Number of consumers to register
2356 * @consumers:     Configuration of consumers; clients are stored here.
2357 *
2358 * @return 0 on success, an errno on failure.
2359 *
2360 * This helper function allows drivers to get several regulator
2361 * consumers in one operation.  If any of the regulators cannot be
2362 * acquired then any regulators that were allocated will be freed
2363 * before returning to the caller.
2364 */
2365int regulator_bulk_get(struct device *dev, int num_consumers,
2366		       struct regulator_bulk_data *consumers)
2367{
2368	int i;
2369	int ret;
2370
2371	for (i = 0; i < num_consumers; i++)
2372		consumers[i].consumer = NULL;
2373
2374	for (i = 0; i < num_consumers; i++) {
2375		consumers[i].consumer = regulator_get(dev,
2376						      consumers[i].supply);
2377		if (IS_ERR(consumers[i].consumer)) {
2378			ret = PTR_ERR(consumers[i].consumer);
2379			dev_err(dev, "Failed to get supply '%s': %d\n",
2380				consumers[i].supply, ret);
2381			consumers[i].consumer = NULL;
2382			goto err;
2383		}
2384	}
2385
2386	return 0;
2387
2388err:
2389	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2390		regulator_put(consumers[i].consumer);
2391
2392	return ret;
2393}
2394EXPORT_SYMBOL_GPL(regulator_bulk_get);
2395
2396static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2397{
2398	struct regulator_bulk_data *bulk = data;
2399
2400	bulk->ret = regulator_enable(bulk->consumer);
2401}
2402
2403/**
2404 * regulator_bulk_enable - enable multiple regulator consumers
2405 *
2406 * @num_consumers: Number of consumers
2407 * @consumers:     Consumer data; clients are stored here.
2408 * @return         0 on success, an errno on failure
2409 *
2410 * This convenience API allows consumers to enable multiple regulator
2411 * clients in a single API call.  If any consumers cannot be enabled
2412 * then any others that were enabled will be disabled again prior to
2413 * return.
2414 */
2415int regulator_bulk_enable(int num_consumers,
2416			  struct regulator_bulk_data *consumers)
2417{
2418	LIST_HEAD(async_domain);
2419	int i;
2420	int ret = 0;
2421
2422	for (i = 0; i < num_consumers; i++)
2423		async_schedule_domain(regulator_bulk_enable_async,
2424				      &consumers[i], &async_domain);
2425
2426	async_synchronize_full_domain(&async_domain);
2427
2428	/* If any consumer failed we need to unwind any that succeeded */
2429	for (i = 0; i < num_consumers; i++) {
2430		if (consumers[i].ret != 0) {
2431			ret = consumers[i].ret;
2432			goto err;
2433		}
2434	}
2435
2436	return 0;
2437
2438err:
2439	for (i = 0; i < num_consumers; i++)
2440		if (consumers[i].ret == 0)
2441			regulator_disable(consumers[i].consumer);
2442		else
2443			pr_err("Failed to enable %s: %d\n",
2444			       consumers[i].supply, consumers[i].ret);
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2449
2450/**
2451 * regulator_bulk_disable - disable multiple regulator consumers
2452 *
2453 * @num_consumers: Number of consumers
2454 * @consumers:     Consumer data; clients are stored here.
2455 * @return         0 on success, an errno on failure
2456 *
2457 * This convenience API allows consumers to disable multiple regulator
2458 * clients in a single API call.  If any consumers cannot be enabled
2459 * then any others that were disabled will be disabled again prior to
2460 * return.
2461 */
2462int regulator_bulk_disable(int num_consumers,
2463			   struct regulator_bulk_data *consumers)
2464{
2465	int i;
2466	int ret;
2467
2468	for (i = 0; i < num_consumers; i++) {
2469		ret = regulator_disable(consumers[i].consumer);
2470		if (ret != 0)
2471			goto err;
2472	}
2473
2474	return 0;
2475
2476err:
2477	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2478	for (--i; i >= 0; --i)
2479		regulator_enable(consumers[i].consumer);
2480
2481	return ret;
2482}
2483EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2484
2485/**
2486 * regulator_bulk_force_disable - force disable multiple regulator consumers
2487 *
2488 * @num_consumers: Number of consumers
2489 * @consumers:     Consumer data; clients are stored here.
2490 * @return         0 on success, an errno on failure
2491 *
2492 * This convenience API allows consumers to forcibly disable multiple regulator
2493 * clients in a single API call.
2494 * NOTE: This should be used for situations when device damage will
2495 * likely occur if the regulators are not disabled (e.g. over temp).
2496 * Although regulator_force_disable function call for some consumers can
2497 * return error numbers, the function is called for all consumers.
2498 */
2499int regulator_bulk_force_disable(int num_consumers,
2500			   struct regulator_bulk_data *consumers)
2501{
2502	int i;
2503	int ret;
2504
2505	for (i = 0; i < num_consumers; i++)
2506		consumers[i].ret =
2507			    regulator_force_disable(consumers[i].consumer);
2508
2509	for (i = 0; i < num_consumers; i++) {
2510		if (consumers[i].ret != 0) {
2511			ret = consumers[i].ret;
2512			goto out;
2513		}
2514	}
2515
2516	return 0;
2517out:
2518	return ret;
2519}
2520EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2521
2522/**
2523 * regulator_bulk_free - free multiple regulator consumers
2524 *
2525 * @num_consumers: Number of consumers
2526 * @consumers:     Consumer data; clients are stored here.
2527 *
2528 * This convenience API allows consumers to free multiple regulator
2529 * clients in a single API call.
2530 */
2531void regulator_bulk_free(int num_consumers,
2532			 struct regulator_bulk_data *consumers)
2533{
2534	int i;
2535
2536	for (i = 0; i < num_consumers; i++) {
2537		regulator_put(consumers[i].consumer);
2538		consumers[i].consumer = NULL;
2539	}
2540}
2541EXPORT_SYMBOL_GPL(regulator_bulk_free);
2542
2543/**
2544 * regulator_notifier_call_chain - call regulator event notifier
2545 * @rdev: regulator source
2546 * @event: notifier block
2547 * @data: callback-specific data.
2548 *
2549 * Called by regulator drivers to notify clients a regulator event has
2550 * occurred. We also notify regulator clients downstream.
2551 * Note lock must be held by caller.
2552 */
2553int regulator_notifier_call_chain(struct regulator_dev *rdev,
2554				  unsigned long event, void *data)
2555{
2556	_notifier_call_chain(rdev, event, data);
2557	return NOTIFY_DONE;
2558
2559}
2560EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2561
2562/**
2563 * regulator_mode_to_status - convert a regulator mode into a status
2564 *
2565 * @mode: Mode to convert
2566 *
2567 * Convert a regulator mode into a status.
2568 */
2569int regulator_mode_to_status(unsigned int mode)
2570{
2571	switch (mode) {
2572	case REGULATOR_MODE_FAST:
2573		return REGULATOR_STATUS_FAST;
2574	case REGULATOR_MODE_NORMAL:
2575		return REGULATOR_STATUS_NORMAL;
2576	case REGULATOR_MODE_IDLE:
2577		return REGULATOR_STATUS_IDLE;
2578	case REGULATOR_STATUS_STANDBY:
2579		return REGULATOR_STATUS_STANDBY;
2580	default:
2581		return 0;
2582	}
2583}
2584EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2585
2586/*
2587 * To avoid cluttering sysfs (and memory) with useless state, only
2588 * create attributes that can be meaningfully displayed.
2589 */
2590static int add_regulator_attributes(struct regulator_dev *rdev)
2591{
2592	struct device		*dev = &rdev->dev;
2593	struct regulator_ops	*ops = rdev->desc->ops;
2594	int			status = 0;
2595
2596	/* some attributes need specific methods to be displayed */
2597	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2598	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2599		status = device_create_file(dev, &dev_attr_microvolts);
2600		if (status < 0)
2601			return status;
2602	}
2603	if (ops->get_current_limit) {
2604		status = device_create_file(dev, &dev_attr_microamps);
2605		if (status < 0)
2606			return status;
2607	}
2608	if (ops->get_mode) {
2609		status = device_create_file(dev, &dev_attr_opmode);
2610		if (status < 0)
2611			return status;
2612	}
2613	if (ops->is_enabled) {
2614		status = device_create_file(dev, &dev_attr_state);
2615		if (status < 0)
2616			return status;
2617	}
2618	if (ops->get_status) {
2619		status = device_create_file(dev, &dev_attr_status);
2620		if (status < 0)
2621			return status;
2622	}
2623
2624	/* some attributes are type-specific */
2625	if (rdev->desc->type == REGULATOR_CURRENT) {
2626		status = device_create_file(dev, &dev_attr_requested_microamps);
2627		if (status < 0)
2628			return status;
2629	}
2630
2631	/* all the other attributes exist to support constraints;
2632	 * don't show them if there are no constraints, or if the
2633	 * relevant supporting methods are missing.
2634	 */
2635	if (!rdev->constraints)
2636		return status;
2637
2638	/* constraints need specific supporting methods */
2639	if (ops->set_voltage || ops->set_voltage_sel) {
2640		status = device_create_file(dev, &dev_attr_min_microvolts);
2641		if (status < 0)
2642			return status;
2643		status = device_create_file(dev, &dev_attr_max_microvolts);
2644		if (status < 0)
2645			return status;
2646	}
2647	if (ops->set_current_limit) {
2648		status = device_create_file(dev, &dev_attr_min_microamps);
2649		if (status < 0)
2650			return status;
2651		status = device_create_file(dev, &dev_attr_max_microamps);
2652		if (status < 0)
2653			return status;
2654	}
2655
2656	/* suspend mode constraints need multiple supporting methods */
2657	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2658		return status;
2659
2660	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2661	if (status < 0)
2662		return status;
2663	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2664	if (status < 0)
2665		return status;
2666	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2667	if (status < 0)
2668		return status;
2669
2670	if (ops->set_suspend_voltage) {
2671		status = device_create_file(dev,
2672				&dev_attr_suspend_standby_microvolts);
2673		if (status < 0)
2674			return status;
2675		status = device_create_file(dev,
2676				&dev_attr_suspend_mem_microvolts);
2677		if (status < 0)
2678			return status;
2679		status = device_create_file(dev,
2680				&dev_attr_suspend_disk_microvolts);
2681		if (status < 0)
2682			return status;
2683	}
2684
2685	if (ops->set_suspend_mode) {
2686		status = device_create_file(dev,
2687				&dev_attr_suspend_standby_mode);
2688		if (status < 0)
2689			return status;
2690		status = device_create_file(dev,
2691				&dev_attr_suspend_mem_mode);
2692		if (status < 0)
2693			return status;
2694		status = device_create_file(dev,
2695				&dev_attr_suspend_disk_mode);
2696		if (status < 0)
2697			return status;
2698	}
2699
2700	return status;
2701}
2702
2703static void rdev_init_debugfs(struct regulator_dev *rdev)
2704{
2705#ifdef CONFIG_DEBUG_FS
2706	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2707	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2708		rdev_warn(rdev, "Failed to create debugfs directory\n");
2709		rdev->debugfs = NULL;
2710		return;
2711	}
2712
2713	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2714			   &rdev->use_count);
2715	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2716			   &rdev->open_count);
2717#endif
2718}
2719
2720/**
2721 * regulator_register - register regulator
2722 * @regulator_desc: regulator to register
2723 * @dev: struct device for the regulator
2724 * @init_data: platform provided init data, passed through by driver
2725 * @driver_data: private regulator data
2726 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2727 *           NULL).
2728 *
2729 * Called by regulator drivers to register a regulator.
2730 * Returns 0 on success.
2731 */
2732struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2733	struct device *dev, const struct regulator_init_data *init_data,
2734	void *driver_data, struct device_node *of_node)
2735{
2736	const struct regulation_constraints *constraints = NULL;
2737	static atomic_t regulator_no = ATOMIC_INIT(0);
2738	struct regulator_dev *rdev;
2739	int ret, i;
2740	const char *supply = NULL;
2741
2742	if (regulator_desc == NULL)
2743		return ERR_PTR(-EINVAL);
2744
2745	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2746		return ERR_PTR(-EINVAL);
2747
2748	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2749	    regulator_desc->type != REGULATOR_CURRENT)
2750		return ERR_PTR(-EINVAL);
2751
2752	/* Only one of each should be implemented */
2753	WARN_ON(regulator_desc->ops->get_voltage &&
2754		regulator_desc->ops->get_voltage_sel);
2755	WARN_ON(regulator_desc->ops->set_voltage &&
2756		regulator_desc->ops->set_voltage_sel);
2757
2758	/* If we're using selectors we must implement list_voltage. */
2759	if (regulator_desc->ops->get_voltage_sel &&
2760	    !regulator_desc->ops->list_voltage) {
2761		return ERR_PTR(-EINVAL);
2762	}
2763	if (regulator_desc->ops->set_voltage_sel &&
2764	    !regulator_desc->ops->list_voltage) {
2765		return ERR_PTR(-EINVAL);
2766	}
2767
2768	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2769	if (rdev == NULL)
2770		return ERR_PTR(-ENOMEM);
2771
2772	mutex_lock(&regulator_list_mutex);
2773
2774	mutex_init(&rdev->mutex);
2775	rdev->reg_data = driver_data;
2776	rdev->owner = regulator_desc->owner;
2777	rdev->desc = regulator_desc;
2778	INIT_LIST_HEAD(&rdev->consumer_list);
2779	INIT_LIST_HEAD(&rdev->list);
2780	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2781	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2782
2783	/* preform any regulator specific init */
2784	if (init_data && init_data->regulator_init) {
2785		ret = init_data->regulator_init(rdev->reg_data);
2786		if (ret < 0)
2787			goto clean;
2788	}
2789
2790	/* register with sysfs */
2791	rdev->dev.class = &regulator_class;
2792	rdev->dev.of_node = of_node;
2793	rdev->dev.parent = dev;
2794	dev_set_name(&rdev->dev, "regulator.%d",
2795		     atomic_inc_return(&regulator_no) - 1);
2796	ret = device_register(&rdev->dev);
2797	if (ret != 0) {
2798		put_device(&rdev->dev);
2799		goto clean;
2800	}
2801
2802	dev_set_drvdata(&rdev->dev, rdev);
2803
2804	/* set regulator constraints */
2805	if (init_data)
2806		constraints = &init_data->constraints;
2807
2808	ret = set_machine_constraints(rdev, constraints);
2809	if (ret < 0)
2810		goto scrub;
2811
2812	/* add attributes supported by this regulator */
2813	ret = add_regulator_attributes(rdev);
2814	if (ret < 0)
2815		goto scrub;
2816
2817	if (init_data && init_data->supply_regulator)
2818		supply = init_data->supply_regulator;
2819	else if (regulator_desc->supply_name)
2820		supply = regulator_desc->supply_name;
2821
2822	if (supply) {
2823		struct regulator_dev *r;
2824
2825		r = regulator_dev_lookup(dev, supply);
2826
2827		if (!r) {
2828			dev_err(dev, "Failed to find supply %s\n", supply);
2829			ret = -ENODEV;
2830			goto scrub;
2831		}
2832
2833		ret = set_supply(rdev, r);
2834		if (ret < 0)
2835			goto scrub;
2836
2837		/* Enable supply if rail is enabled */
2838		if (rdev->desc->ops->is_enabled &&
2839				rdev->desc->ops->is_enabled(rdev)) {
2840			ret = regulator_enable(rdev->supply);
2841			if (ret < 0)
2842				goto scrub;
2843		}
2844	}
2845
2846	/* add consumers devices */
2847	if (init_data) {
2848		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2849			ret = set_consumer_device_supply(rdev,
2850				init_data->consumer_supplies[i].dev_name,
2851				init_data->consumer_supplies[i].supply);
2852			if (ret < 0) {
2853				dev_err(dev, "Failed to set supply %s\n",
2854					init_data->consumer_supplies[i].supply);
2855				goto unset_supplies;
2856			}
2857		}
2858	}
2859
2860	list_add(&rdev->list, &regulator_list);
2861
2862	rdev_init_debugfs(rdev);
2863out:
2864	mutex_unlock(&regulator_list_mutex);
2865	return rdev;
2866
2867unset_supplies:
2868	unset_regulator_supplies(rdev);
2869
2870scrub:
2871	kfree(rdev->constraints);
2872	device_unregister(&rdev->dev);
2873	/* device core frees rdev */
2874	rdev = ERR_PTR(ret);
2875	goto out;
2876
2877clean:
2878	kfree(rdev);
2879	rdev = ERR_PTR(ret);
2880	goto out;
2881}
2882EXPORT_SYMBOL_GPL(regulator_register);
2883
2884/**
2885 * regulator_unregister - unregister regulator
2886 * @rdev: regulator to unregister
2887 *
2888 * Called by regulator drivers to unregister a regulator.
2889 */
2890void regulator_unregister(struct regulator_dev *rdev)
2891{
2892	if (rdev == NULL)
2893		return;
2894
2895	mutex_lock(&regulator_list_mutex);
2896#ifdef CONFIG_DEBUG_FS
2897	debugfs_remove_recursive(rdev->debugfs);
2898#endif
2899	flush_work_sync(&rdev->disable_work.work);
2900	WARN_ON(rdev->open_count);
2901	unset_regulator_supplies(rdev);
2902	list_del(&rdev->list);
2903	if (rdev->supply)
2904		regulator_put(rdev->supply);
2905	kfree(rdev->constraints);
2906	device_unregister(&rdev->dev);
2907	mutex_unlock(&regulator_list_mutex);
2908}
2909EXPORT_SYMBOL_GPL(regulator_unregister);
2910
2911/**
2912 * regulator_suspend_prepare - prepare regulators for system wide suspend
2913 * @state: system suspend state
2914 *
2915 * Configure each regulator with it's suspend operating parameters for state.
2916 * This will usually be called by machine suspend code prior to supending.
2917 */
2918int regulator_suspend_prepare(suspend_state_t state)
2919{
2920	struct regulator_dev *rdev;
2921	int ret = 0;
2922
2923	/* ON is handled by regulator active state */
2924	if (state == PM_SUSPEND_ON)
2925		return -EINVAL;
2926
2927	mutex_lock(&regulator_list_mutex);
2928	list_for_each_entry(rdev, &regulator_list, list) {
2929
2930		mutex_lock(&rdev->mutex);
2931		ret = suspend_prepare(rdev, state);
2932		mutex_unlock(&rdev->mutex);
2933
2934		if (ret < 0) {
2935			rdev_err(rdev, "failed to prepare\n");
2936			goto out;
2937		}
2938	}
2939out:
2940	mutex_unlock(&regulator_list_mutex);
2941	return ret;
2942}
2943EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2944
2945/**
2946 * regulator_suspend_finish - resume regulators from system wide suspend
2947 *
2948 * Turn on regulators that might be turned off by regulator_suspend_prepare
2949 * and that should be turned on according to the regulators properties.
2950 */
2951int regulator_suspend_finish(void)
2952{
2953	struct regulator_dev *rdev;
2954	int ret = 0, error;
2955
2956	mutex_lock(&regulator_list_mutex);
2957	list_for_each_entry(rdev, &regulator_list, list) {
2958		struct regulator_ops *ops = rdev->desc->ops;
2959
2960		mutex_lock(&rdev->mutex);
2961		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2962				ops->enable) {
2963			error = ops->enable(rdev);
2964			if (error)
2965				ret = error;
2966		} else {
2967			if (!has_full_constraints)
2968				goto unlock;
2969			if (!ops->disable)
2970				goto unlock;
2971			if (ops->is_enabled && !ops->is_enabled(rdev))
2972				goto unlock;
2973
2974			error = ops->disable(rdev);
2975			if (error)
2976				ret = error;
2977		}
2978unlock:
2979		mutex_unlock(&rdev->mutex);
2980	}
2981	mutex_unlock(&regulator_list_mutex);
2982	return ret;
2983}
2984EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2985
2986/**
2987 * regulator_has_full_constraints - the system has fully specified constraints
2988 *
2989 * Calling this function will cause the regulator API to disable all
2990 * regulators which have a zero use count and don't have an always_on
2991 * constraint in a late_initcall.
2992 *
2993 * The intention is that this will become the default behaviour in a
2994 * future kernel release so users are encouraged to use this facility
2995 * now.
2996 */
2997void regulator_has_full_constraints(void)
2998{
2999	has_full_constraints = 1;
3000}
3001EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3002
3003/**
3004 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3005 *
3006 * Calling this function will cause the regulator API to provide a
3007 * dummy regulator to consumers if no physical regulator is found,
3008 * allowing most consumers to proceed as though a regulator were
3009 * configured.  This allows systems such as those with software
3010 * controllable regulators for the CPU core only to be brought up more
3011 * readily.
3012 */
3013void regulator_use_dummy_regulator(void)
3014{
3015	board_wants_dummy_regulator = true;
3016}
3017EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3018
3019/**
3020 * rdev_get_drvdata - get rdev regulator driver data
3021 * @rdev: regulator
3022 *
3023 * Get rdev regulator driver private data. This call can be used in the
3024 * regulator driver context.
3025 */
3026void *rdev_get_drvdata(struct regulator_dev *rdev)
3027{
3028	return rdev->reg_data;
3029}
3030EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3031
3032/**
3033 * regulator_get_drvdata - get regulator driver data
3034 * @regulator: regulator
3035 *
3036 * Get regulator driver private data. This call can be used in the consumer
3037 * driver context when non API regulator specific functions need to be called.
3038 */
3039void *regulator_get_drvdata(struct regulator *regulator)
3040{
3041	return regulator->rdev->reg_data;
3042}
3043EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3044
3045/**
3046 * regulator_set_drvdata - set regulator driver data
3047 * @regulator: regulator
3048 * @data: data
3049 */
3050void regulator_set_drvdata(struct regulator *regulator, void *data)
3051{
3052	regulator->rdev->reg_data = data;
3053}
3054EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3055
3056/**
3057 * regulator_get_id - get regulator ID
3058 * @rdev: regulator
3059 */
3060int rdev_get_id(struct regulator_dev *rdev)
3061{
3062	return rdev->desc->id;
3063}
3064EXPORT_SYMBOL_GPL(rdev_get_id);
3065
3066struct device *rdev_get_dev(struct regulator_dev *rdev)
3067{
3068	return &rdev->dev;
3069}
3070EXPORT_SYMBOL_GPL(rdev_get_dev);
3071
3072void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3073{
3074	return reg_init_data->driver_data;
3075}
3076EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3077
3078#ifdef CONFIG_DEBUG_FS
3079static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3080				    size_t count, loff_t *ppos)
3081{
3082	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3083	ssize_t len, ret = 0;
3084	struct regulator_map *map;
3085
3086	if (!buf)
3087		return -ENOMEM;
3088
3089	list_for_each_entry(map, &regulator_map_list, list) {
3090		len = snprintf(buf + ret, PAGE_SIZE - ret,
3091			       "%s -> %s.%s\n",
3092			       rdev_get_name(map->regulator), map->dev_name,
3093			       map->supply);
3094		if (len >= 0)
3095			ret += len;
3096		if (ret > PAGE_SIZE) {
3097			ret = PAGE_SIZE;
3098			break;
3099		}
3100	}
3101
3102	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3103
3104	kfree(buf);
3105
3106	return ret;
3107}
3108
3109static const struct file_operations supply_map_fops = {
3110	.read = supply_map_read_file,
3111	.llseek = default_llseek,
3112};
3113#endif
3114
3115static int __init regulator_init(void)
3116{
3117	int ret;
3118
3119	ret = class_register(&regulator_class);
3120
3121#ifdef CONFIG_DEBUG_FS
3122	debugfs_root = debugfs_create_dir("regulator", NULL);
3123	if (IS_ERR(debugfs_root) || !debugfs_root) {
3124		pr_warn("regulator: Failed to create debugfs directory\n");
3125		debugfs_root = NULL;
3126	}
3127
3128	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3129				       NULL, &supply_map_fops)))
3130		pr_warn("regulator: Failed to create supplies debugfs\n");
3131#endif
3132
3133	regulator_dummy_init();
3134
3135	return ret;
3136}
3137
3138/* init early to allow our consumers to complete system booting */
3139core_initcall(regulator_init);
3140
3141static int __init regulator_init_complete(void)
3142{
3143	struct regulator_dev *rdev;
3144	struct regulator_ops *ops;
3145	struct regulation_constraints *c;
3146	int enabled, ret;
3147
3148	mutex_lock(&regulator_list_mutex);
3149
3150	/* If we have a full configuration then disable any regulators
3151	 * which are not in use or always_on.  This will become the
3152	 * default behaviour in the future.
3153	 */
3154	list_for_each_entry(rdev, &regulator_list, list) {
3155		ops = rdev->desc->ops;
3156		c = rdev->constraints;
3157
3158		if (!ops->disable || (c && c->always_on))
3159			continue;
3160
3161		mutex_lock(&rdev->mutex);
3162
3163		if (rdev->use_count)
3164			goto unlock;
3165
3166		/* If we can't read the status assume it's on. */
3167		if (ops->is_enabled)
3168			enabled = ops->is_enabled(rdev);
3169		else
3170			enabled = 1;
3171
3172		if (!enabled)
3173			goto unlock;
3174
3175		if (has_full_constraints) {
3176			/* We log since this may kill the system if it
3177			 * goes wrong. */
3178			rdev_info(rdev, "disabling\n");
3179			ret = ops->disable(rdev);
3180			if (ret != 0) {
3181				rdev_err(rdev, "couldn't disable: %d\n", ret);
3182			}
3183		} else {
3184			/* The intention is that in future we will
3185			 * assume that full constraints are provided
3186			 * so warn even if we aren't going to do
3187			 * anything here.
3188			 */
3189			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3190		}
3191
3192unlock:
3193		mutex_unlock(&rdev->mutex);
3194	}
3195
3196	mutex_unlock(&regulator_list_mutex);
3197
3198	return 0;
3199}
3200late_initcall(regulator_init_complete);
3201