core.c revision 5c5659d0a22ec4f947ef4faa3055767572f15e74
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114	struct regulator *regulator = NULL;
115	struct regulator_dev *rdev;
116
117	mutex_lock(&regulator_list_mutex);
118	list_for_each_entry(rdev, &regulator_list, list) {
119		mutex_lock(&rdev->mutex);
120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
121			if (regulator->dev == dev) {
122				mutex_unlock(&rdev->mutex);
123				mutex_unlock(&regulator_list_mutex);
124				return regulator;
125			}
126		}
127		mutex_unlock(&rdev->mutex);
128	}
129	mutex_unlock(&regulator_list_mutex);
130	return NULL;
131}
132
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144	struct device_node *regnode = NULL;
145	char prop_name[32]; /* 32 is max size of property name */
146
147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149	snprintf(prop_name, 32, "%s-supply", supply);
150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152	if (!regnode) {
153		dev_dbg(dev, "Looking up %s property in node %s failed",
154				prop_name, dev->of_node->full_name);
155		return NULL;
156	}
157	return regnode;
158}
159
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162	if (!rdev->constraints)
163		return 0;
164
165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166		return 1;
167	else
168		return 0;
169}
170
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173				   int *min_uV, int *max_uV)
174{
175	BUG_ON(*min_uV > *max_uV);
176
177	if (!rdev->constraints) {
178		rdev_err(rdev, "no constraints\n");
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182		rdev_err(rdev, "operation not allowed\n");
183		return -EPERM;
184	}
185
186	if (*max_uV > rdev->constraints->max_uV)
187		*max_uV = rdev->constraints->max_uV;
188	if (*min_uV < rdev->constraints->min_uV)
189		*min_uV = rdev->constraints->min_uV;
190
191	if (*min_uV > *max_uV) {
192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193			 *min_uV, *max_uV);
194		return -EINVAL;
195	}
196
197	return 0;
198}
199
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204				     int *min_uV, int *max_uV)
205{
206	struct regulator *regulator;
207
208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209		/*
210		 * Assume consumers that didn't say anything are OK
211		 * with anything in the constraint range.
212		 */
213		if (!regulator->min_uV && !regulator->max_uV)
214			continue;
215
216		if (*max_uV > regulator->max_uV)
217			*max_uV = regulator->max_uV;
218		if (*min_uV < regulator->min_uV)
219			*min_uV = regulator->min_uV;
220	}
221
222	if (*min_uV > *max_uV)
223		return -EINVAL;
224
225	return 0;
226}
227
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230					int *min_uA, int *max_uA)
231{
232	BUG_ON(*min_uA > *max_uA);
233
234	if (!rdev->constraints) {
235		rdev_err(rdev, "no constraints\n");
236		return -ENODEV;
237	}
238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239		rdev_err(rdev, "operation not allowed\n");
240		return -EPERM;
241	}
242
243	if (*max_uA > rdev->constraints->max_uA)
244		*max_uA = rdev->constraints->max_uA;
245	if (*min_uA < rdev->constraints->min_uA)
246		*min_uA = rdev->constraints->min_uA;
247
248	if (*min_uA > *max_uA) {
249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250			 *min_uA, *max_uA);
251		return -EINVAL;
252	}
253
254	return 0;
255}
256
257/* operating mode constraint check */
258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259{
260	switch (*mode) {
261	case REGULATOR_MODE_FAST:
262	case REGULATOR_MODE_NORMAL:
263	case REGULATOR_MODE_IDLE:
264	case REGULATOR_MODE_STANDBY:
265		break;
266	default:
267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268		return -EINVAL;
269	}
270
271	if (!rdev->constraints) {
272		rdev_err(rdev, "no constraints\n");
273		return -ENODEV;
274	}
275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276		rdev_err(rdev, "operation not allowed\n");
277		return -EPERM;
278	}
279
280	/* The modes are bitmasks, the most power hungry modes having
281	 * the lowest values. If the requested mode isn't supported
282	 * try higher modes. */
283	while (*mode) {
284		if (rdev->constraints->valid_modes_mask & *mode)
285			return 0;
286		*mode /= 2;
287	}
288
289	return -EINVAL;
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295	if (!rdev->constraints) {
296		rdev_err(rdev, "no constraints\n");
297		return -ENODEV;
298	}
299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300		rdev_err(rdev, "operation not allowed\n");
301		return -EPERM;
302	}
303	return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307			     struct device_attribute *attr, char *buf)
308{
309	struct regulator *regulator;
310
311	regulator = get_device_regulator(dev);
312	if (regulator == NULL)
313		return 0;
314
315	return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332static ssize_t regulator_uA_show(struct device *dev,
333				struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341static ssize_t regulator_name_show(struct device *dev,
342			     struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347}
348
349static ssize_t regulator_print_opmode(char *buf, int mode)
350{
351	switch (mode) {
352	case REGULATOR_MODE_FAST:
353		return sprintf(buf, "fast\n");
354	case REGULATOR_MODE_NORMAL:
355		return sprintf(buf, "normal\n");
356	case REGULATOR_MODE_IDLE:
357		return sprintf(buf, "idle\n");
358	case REGULATOR_MODE_STANDBY:
359		return sprintf(buf, "standby\n");
360	}
361	return sprintf(buf, "unknown\n");
362}
363
364static ssize_t regulator_opmode_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
375	if (state > 0)
376		return sprintf(buf, "enabled\n");
377	else if (state == 0)
378		return sprintf(buf, "disabled\n");
379	else
380		return sprintf(buf, "unknown\n");
381}
382
383static ssize_t regulator_state_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	ssize_t ret;
388
389	mutex_lock(&rdev->mutex);
390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391	mutex_unlock(&rdev->mutex);
392
393	return ret;
394}
395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397static ssize_t regulator_status_show(struct device *dev,
398				   struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	int status;
402	char *label;
403
404	status = rdev->desc->ops->get_status(rdev);
405	if (status < 0)
406		return status;
407
408	switch (status) {
409	case REGULATOR_STATUS_OFF:
410		label = "off";
411		break;
412	case REGULATOR_STATUS_ON:
413		label = "on";
414		break;
415	case REGULATOR_STATUS_ERROR:
416		label = "error";
417		break;
418	case REGULATOR_STATUS_FAST:
419		label = "fast";
420		break;
421	case REGULATOR_STATUS_NORMAL:
422		label = "normal";
423		break;
424	case REGULATOR_STATUS_IDLE:
425		label = "idle";
426		break;
427	case REGULATOR_STATUS_STANDBY:
428		label = "standby";
429		break;
430	default:
431		return -ERANGE;
432	}
433
434	return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438static ssize_t regulator_min_uA_show(struct device *dev,
439				    struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	if (!rdev->constraints)
444		return sprintf(buf, "constraint not defined\n");
445
446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451				    struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	if (!rdev->constraints)
456		return sprintf(buf, "constraint not defined\n");
457
458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463				    struct device_attribute *attr, char *buf)
464{
465	struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467	if (!rdev->constraints)
468		return sprintf(buf, "constraint not defined\n");
469
470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475				    struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	if (!rdev->constraints)
480		return sprintf(buf, "constraint not defined\n");
481
482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487				      struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490	struct regulator *regulator;
491	int uA = 0;
492
493	mutex_lock(&rdev->mutex);
494	list_for_each_entry(regulator, &rdev->consumer_list, list)
495		uA += regulator->uA_load;
496	mutex_unlock(&rdev->mutex);
497	return sprintf(buf, "%d\n", uA);
498}
499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501static ssize_t regulator_num_users_show(struct device *dev,
502				      struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505	return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509				  struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	switch (rdev->desc->type) {
514	case REGULATOR_VOLTAGE:
515		return sprintf(buf, "voltage\n");
516	case REGULATOR_CURRENT:
517		return sprintf(buf, "current\n");
518	}
519	return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530		regulator_suspend_mem_uV_show, NULL);
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533				struct device_attribute *attr, char *buf)
534{
535	struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540		regulator_suspend_disk_uV_show, NULL);
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543				struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550		regulator_suspend_standby_uV_show, NULL);
551
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_mem.mode);
559}
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561		regulator_suspend_mem_mode_show, NULL);
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_disk.mode);
570}
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572		regulator_suspend_disk_mode_show, NULL);
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575				struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_opmode(buf,
580		rdev->constraints->state_standby.mode);
581}
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583		regulator_suspend_standby_mode_show, NULL);
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_mem.enabled);
592}
593static DEVICE_ATTR(suspend_mem_state, 0444,
594		regulator_suspend_mem_state_show, NULL);
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_disk.enabled);
603}
604static DEVICE_ATTR(suspend_disk_state, 0444,
605		regulator_suspend_disk_state_show, NULL);
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608				   struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612	return regulator_print_state(buf,
613			rdev->constraints->state_standby.enabled);
614}
615static DEVICE_ATTR(suspend_standby_state, 0444,
616		regulator_suspend_standby_state_show, NULL);
617
618
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623static struct device_attribute regulator_dev_attrs[] = {
624	__ATTR(name, 0444, regulator_name_show, NULL),
625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
626	__ATTR(type, 0444, regulator_type_show, NULL),
627	__ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
632	struct regulator_dev *rdev = dev_get_drvdata(dev);
633	kfree(rdev);
634}
635
636static struct class regulator_class = {
637	.name = "regulator",
638	.dev_release = regulator_dev_release,
639	.dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646	struct regulator *sibling;
647	int current_uA = 0, output_uV, input_uV, err;
648	unsigned int mode;
649
650	err = regulator_check_drms(rdev);
651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652	    (!rdev->desc->ops->get_voltage &&
653	     !rdev->desc->ops->get_voltage_sel) ||
654	    !rdev->desc->ops->set_mode)
655		return;
656
657	/* get output voltage */
658	output_uV = _regulator_get_voltage(rdev);
659	if (output_uV <= 0)
660		return;
661
662	/* get input voltage */
663	input_uV = 0;
664	if (rdev->supply)
665		input_uV = regulator_get_voltage(rdev->supply);
666	if (input_uV <= 0)
667		input_uV = rdev->constraints->input_uV;
668	if (input_uV <= 0)
669		return;
670
671	/* calc total requested load */
672	list_for_each_entry(sibling, &rdev->consumer_list, list)
673		current_uA += sibling->uA_load;
674
675	/* now get the optimum mode for our new total regulator load */
676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677						  output_uV, current_uA);
678
679	/* check the new mode is allowed */
680	err = regulator_mode_constrain(rdev, &mode);
681	if (err == 0)
682		rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686	struct regulator_state *rstate)
687{
688	int ret = 0;
689
690	/* If we have no suspend mode configration don't set anything;
691	 * only warn if the driver implements set_suspend_voltage or
692	 * set_suspend_mode callback.
693	 */
694	if (!rstate->enabled && !rstate->disabled) {
695		if (rdev->desc->ops->set_suspend_voltage ||
696		    rdev->desc->ops->set_suspend_mode)
697			rdev_warn(rdev, "No configuration\n");
698		return 0;
699	}
700
701	if (rstate->enabled && rstate->disabled) {
702		rdev_err(rdev, "invalid configuration\n");
703		return -EINVAL;
704	}
705
706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707		ret = rdev->desc->ops->set_suspend_enable(rdev);
708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709		ret = rdev->desc->ops->set_suspend_disable(rdev);
710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711		ret = 0;
712
713	if (ret < 0) {
714		rdev_err(rdev, "failed to enabled/disable\n");
715		return ret;
716	}
717
718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set voltage\n");
722			return ret;
723		}
724	}
725
726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728		if (ret < 0) {
729			rdev_err(rdev, "failed to set mode\n");
730			return ret;
731		}
732	}
733	return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739	if (!rdev->constraints)
740		return -EINVAL;
741
742	switch (state) {
743	case PM_SUSPEND_STANDBY:
744		return suspend_set_state(rdev,
745			&rdev->constraints->state_standby);
746	case PM_SUSPEND_MEM:
747		return suspend_set_state(rdev,
748			&rdev->constraints->state_mem);
749	case PM_SUSPEND_MAX:
750		return suspend_set_state(rdev,
751			&rdev->constraints->state_disk);
752	default:
753		return -EINVAL;
754	}
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759	struct regulation_constraints *constraints = rdev->constraints;
760	char buf[80] = "";
761	int count = 0;
762	int ret;
763
764	if (constraints->min_uV && constraints->max_uV) {
765		if (constraints->min_uV == constraints->max_uV)
766			count += sprintf(buf + count, "%d mV ",
767					 constraints->min_uV / 1000);
768		else
769			count += sprintf(buf + count, "%d <--> %d mV ",
770					 constraints->min_uV / 1000,
771					 constraints->max_uV / 1000);
772	}
773
774	if (!constraints->min_uV ||
775	    constraints->min_uV != constraints->max_uV) {
776		ret = _regulator_get_voltage(rdev);
777		if (ret > 0)
778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
779	}
780
781	if (constraints->uV_offset)
782		count += sprintf(buf, "%dmV offset ",
783				 constraints->uV_offset / 1000);
784
785	if (constraints->min_uA && constraints->max_uA) {
786		if (constraints->min_uA == constraints->max_uA)
787			count += sprintf(buf + count, "%d mA ",
788					 constraints->min_uA / 1000);
789		else
790			count += sprintf(buf + count, "%d <--> %d mA ",
791					 constraints->min_uA / 1000,
792					 constraints->max_uA / 1000);
793	}
794
795	if (!constraints->min_uA ||
796	    constraints->min_uA != constraints->max_uA) {
797		ret = _regulator_get_current_limit(rdev);
798		if (ret > 0)
799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800	}
801
802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803		count += sprintf(buf + count, "fast ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805		count += sprintf(buf + count, "normal ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807		count += sprintf(buf + count, "idle ");
808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809		count += sprintf(buf + count, "standby");
810
811	rdev_info(rdev, "%s\n", buf);
812
813	if ((constraints->min_uV != constraints->max_uV) &&
814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815		rdev_warn(rdev,
816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817}
818
819static int machine_constraints_voltage(struct regulator_dev *rdev,
820	struct regulation_constraints *constraints)
821{
822	struct regulator_ops *ops = rdev->desc->ops;
823	int ret;
824
825	/* do we need to apply the constraint voltage */
826	if (rdev->constraints->apply_uV &&
827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
828		ret = _regulator_do_set_voltage(rdev,
829						rdev->constraints->min_uV,
830						rdev->constraints->max_uV);
831		if (ret < 0) {
832			rdev_err(rdev, "failed to apply %duV constraint\n",
833				 rdev->constraints->min_uV);
834			return ret;
835		}
836	}
837
838	/* constrain machine-level voltage specs to fit
839	 * the actual range supported by this regulator.
840	 */
841	if (ops->list_voltage && rdev->desc->n_voltages) {
842		int	count = rdev->desc->n_voltages;
843		int	i;
844		int	min_uV = INT_MAX;
845		int	max_uV = INT_MIN;
846		int	cmin = constraints->min_uV;
847		int	cmax = constraints->max_uV;
848
849		/* it's safe to autoconfigure fixed-voltage supplies
850		   and the constraints are used by list_voltage. */
851		if (count == 1 && !cmin) {
852			cmin = 1;
853			cmax = INT_MAX;
854			constraints->min_uV = cmin;
855			constraints->max_uV = cmax;
856		}
857
858		/* voltage constraints are optional */
859		if ((cmin == 0) && (cmax == 0))
860			return 0;
861
862		/* else require explicit machine-level constraints */
863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864			rdev_err(rdev, "invalid voltage constraints\n");
865			return -EINVAL;
866		}
867
868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869		for (i = 0; i < count; i++) {
870			int	value;
871
872			value = ops->list_voltage(rdev, i);
873			if (value <= 0)
874				continue;
875
876			/* maybe adjust [min_uV..max_uV] */
877			if (value >= cmin && value < min_uV)
878				min_uV = value;
879			if (value <= cmax && value > max_uV)
880				max_uV = value;
881		}
882
883		/* final: [min_uV..max_uV] valid iff constraints valid */
884		if (max_uV < min_uV) {
885			rdev_err(rdev, "unsupportable voltage constraints\n");
886			return -EINVAL;
887		}
888
889		/* use regulator's subset of machine constraints */
890		if (constraints->min_uV < min_uV) {
891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892				 constraints->min_uV, min_uV);
893			constraints->min_uV = min_uV;
894		}
895		if (constraints->max_uV > max_uV) {
896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897				 constraints->max_uV, max_uV);
898			constraints->max_uV = max_uV;
899		}
900	}
901
902	return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
917	const struct regulation_constraints *constraints)
918{
919	int ret = 0;
920	struct regulator_ops *ops = rdev->desc->ops;
921
922	if (constraints)
923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924					    GFP_KERNEL);
925	else
926		rdev->constraints = kzalloc(sizeof(*constraints),
927					    GFP_KERNEL);
928	if (!rdev->constraints)
929		return -ENOMEM;
930
931	ret = machine_constraints_voltage(rdev, rdev->constraints);
932	if (ret != 0)
933		goto out;
934
935	/* do we need to setup our suspend state */
936	if (rdev->constraints->initial_state) {
937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938		if (ret < 0) {
939			rdev_err(rdev, "failed to set suspend state\n");
940			goto out;
941		}
942	}
943
944	if (rdev->constraints->initial_mode) {
945		if (!ops->set_mode) {
946			rdev_err(rdev, "no set_mode operation\n");
947			ret = -EINVAL;
948			goto out;
949		}
950
951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952		if (ret < 0) {
953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954			goto out;
955		}
956	}
957
958	/* If the constraints say the regulator should be on at this point
959	 * and we have control then make sure it is enabled.
960	 */
961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962	    ops->enable) {
963		ret = ops->enable(rdev);
964		if (ret < 0) {
965			rdev_err(rdev, "failed to enable\n");
966			goto out;
967		}
968	}
969
970	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
971		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
972		if (ret < 0) {
973			rdev_err(rdev, "failed to set ramp_delay\n");
974			goto out;
975		}
976	}
977
978	print_constraints(rdev);
979	return 0;
980out:
981	kfree(rdev->constraints);
982	rdev->constraints = NULL;
983	return ret;
984}
985
986/**
987 * set_supply - set regulator supply regulator
988 * @rdev: regulator name
989 * @supply_rdev: supply regulator name
990 *
991 * Called by platform initialisation code to set the supply regulator for this
992 * regulator. This ensures that a regulators supply will also be enabled by the
993 * core if it's child is enabled.
994 */
995static int set_supply(struct regulator_dev *rdev,
996		      struct regulator_dev *supply_rdev)
997{
998	int err;
999
1000	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1001
1002	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1003	if (rdev->supply == NULL) {
1004		err = -ENOMEM;
1005		return err;
1006	}
1007
1008	return 0;
1009}
1010
1011/**
1012 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1013 * @rdev:         regulator source
1014 * @consumer_dev_name: dev_name() string for device supply applies to
1015 * @supply:       symbolic name for supply
1016 *
1017 * Allows platform initialisation code to map physical regulator
1018 * sources to symbolic names for supplies for use by devices.  Devices
1019 * should use these symbolic names to request regulators, avoiding the
1020 * need to provide board-specific regulator names as platform data.
1021 */
1022static int set_consumer_device_supply(struct regulator_dev *rdev,
1023				      const char *consumer_dev_name,
1024				      const char *supply)
1025{
1026	struct regulator_map *node;
1027	int has_dev;
1028
1029	if (supply == NULL)
1030		return -EINVAL;
1031
1032	if (consumer_dev_name != NULL)
1033		has_dev = 1;
1034	else
1035		has_dev = 0;
1036
1037	list_for_each_entry(node, &regulator_map_list, list) {
1038		if (node->dev_name && consumer_dev_name) {
1039			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1040				continue;
1041		} else if (node->dev_name || consumer_dev_name) {
1042			continue;
1043		}
1044
1045		if (strcmp(node->supply, supply) != 0)
1046			continue;
1047
1048		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1049			 consumer_dev_name,
1050			 dev_name(&node->regulator->dev),
1051			 node->regulator->desc->name,
1052			 supply,
1053			 dev_name(&rdev->dev), rdev_get_name(rdev));
1054		return -EBUSY;
1055	}
1056
1057	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1058	if (node == NULL)
1059		return -ENOMEM;
1060
1061	node->regulator = rdev;
1062	node->supply = supply;
1063
1064	if (has_dev) {
1065		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1066		if (node->dev_name == NULL) {
1067			kfree(node);
1068			return -ENOMEM;
1069		}
1070	}
1071
1072	list_add(&node->list, &regulator_map_list);
1073	return 0;
1074}
1075
1076static void unset_regulator_supplies(struct regulator_dev *rdev)
1077{
1078	struct regulator_map *node, *n;
1079
1080	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1081		if (rdev == node->regulator) {
1082			list_del(&node->list);
1083			kfree(node->dev_name);
1084			kfree(node);
1085		}
1086	}
1087}
1088
1089#define REG_STR_SIZE	64
1090
1091static struct regulator *create_regulator(struct regulator_dev *rdev,
1092					  struct device *dev,
1093					  const char *supply_name)
1094{
1095	struct regulator *regulator;
1096	char buf[REG_STR_SIZE];
1097	int err, size;
1098
1099	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1100	if (regulator == NULL)
1101		return NULL;
1102
1103	mutex_lock(&rdev->mutex);
1104	regulator->rdev = rdev;
1105	list_add(&regulator->list, &rdev->consumer_list);
1106
1107	if (dev) {
1108		/* create a 'requested_microamps_name' sysfs entry */
1109		size = scnprintf(buf, REG_STR_SIZE,
1110				 "microamps_requested_%s-%s",
1111				 dev_name(dev), supply_name);
1112		if (size >= REG_STR_SIZE)
1113			goto overflow_err;
1114
1115		regulator->dev = dev;
1116		sysfs_attr_init(&regulator->dev_attr.attr);
1117		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1118		if (regulator->dev_attr.attr.name == NULL)
1119			goto attr_name_err;
1120
1121		regulator->dev_attr.attr.mode = 0444;
1122		regulator->dev_attr.show = device_requested_uA_show;
1123		err = device_create_file(dev, &regulator->dev_attr);
1124		if (err < 0) {
1125			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1126			goto attr_name_err;
1127		}
1128
1129		/* also add a link to the device sysfs entry */
1130		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131				 dev->kobj.name, supply_name);
1132		if (size >= REG_STR_SIZE)
1133			goto attr_err;
1134
1135		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136		if (regulator->supply_name == NULL)
1137			goto attr_err;
1138
1139		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140					buf);
1141		if (err) {
1142			rdev_warn(rdev, "could not add device link %s err %d\n",
1143				  dev->kobj.name, err);
1144			goto link_name_err;
1145		}
1146	} else {
1147		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148		if (regulator->supply_name == NULL)
1149			goto attr_err;
1150	}
1151
1152	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153						rdev->debugfs);
1154	if (!regulator->debugfs) {
1155		rdev_warn(rdev, "Failed to create debugfs directory\n");
1156	} else {
1157		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158				   &regulator->uA_load);
1159		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160				   &regulator->min_uV);
1161		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162				   &regulator->max_uV);
1163	}
1164
1165	/*
1166	 * Check now if the regulator is an always on regulator - if
1167	 * it is then we don't need to do nearly so much work for
1168	 * enable/disable calls.
1169	 */
1170	if (!_regulator_can_change_status(rdev) &&
1171	    _regulator_is_enabled(rdev))
1172		regulator->always_on = true;
1173
1174	mutex_unlock(&rdev->mutex);
1175	return regulator;
1176link_name_err:
1177	kfree(regulator->supply_name);
1178attr_err:
1179	device_remove_file(regulator->dev, &regulator->dev_attr);
1180attr_name_err:
1181	kfree(regulator->dev_attr.attr.name);
1182overflow_err:
1183	list_del(&regulator->list);
1184	kfree(regulator);
1185	mutex_unlock(&rdev->mutex);
1186	return NULL;
1187}
1188
1189static int _regulator_get_enable_time(struct regulator_dev *rdev)
1190{
1191	if (!rdev->desc->ops->enable_time)
1192		return rdev->desc->enable_time;
1193	return rdev->desc->ops->enable_time(rdev);
1194}
1195
1196static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1197						  const char *supply,
1198						  int *ret)
1199{
1200	struct regulator_dev *r;
1201	struct device_node *node;
1202	struct regulator_map *map;
1203	const char *devname = NULL;
1204
1205	/* first do a dt based lookup */
1206	if (dev && dev->of_node) {
1207		node = of_get_regulator(dev, supply);
1208		if (node) {
1209			list_for_each_entry(r, &regulator_list, list)
1210				if (r->dev.parent &&
1211					node == r->dev.of_node)
1212					return r;
1213		} else {
1214			/*
1215			 * If we couldn't even get the node then it's
1216			 * not just that the device didn't register
1217			 * yet, there's no node and we'll never
1218			 * succeed.
1219			 */
1220			*ret = -ENODEV;
1221		}
1222	}
1223
1224	/* if not found, try doing it non-dt way */
1225	if (dev)
1226		devname = dev_name(dev);
1227
1228	list_for_each_entry(r, &regulator_list, list)
1229		if (strcmp(rdev_get_name(r), supply) == 0)
1230			return r;
1231
1232	list_for_each_entry(map, &regulator_map_list, list) {
1233		/* If the mapping has a device set up it must match */
1234		if (map->dev_name &&
1235		    (!devname || strcmp(map->dev_name, devname)))
1236			continue;
1237
1238		if (strcmp(map->supply, supply) == 0)
1239			return map->regulator;
1240	}
1241
1242
1243	return NULL;
1244}
1245
1246/* Internal regulator request function */
1247static struct regulator *_regulator_get(struct device *dev, const char *id,
1248					int exclusive)
1249{
1250	struct regulator_dev *rdev;
1251	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1252	const char *devname = NULL;
1253	int ret;
1254
1255	if (id == NULL) {
1256		pr_err("get() with no identifier\n");
1257		return regulator;
1258	}
1259
1260	if (dev)
1261		devname = dev_name(dev);
1262
1263	mutex_lock(&regulator_list_mutex);
1264
1265	rdev = regulator_dev_lookup(dev, id, &ret);
1266	if (rdev)
1267		goto found;
1268
1269	if (board_wants_dummy_regulator) {
1270		rdev = dummy_regulator_rdev;
1271		goto found;
1272	}
1273
1274#ifdef CONFIG_REGULATOR_DUMMY
1275	if (!devname)
1276		devname = "deviceless";
1277
1278	/* If the board didn't flag that it was fully constrained then
1279	 * substitute in a dummy regulator so consumers can continue.
1280	 */
1281	if (!has_full_constraints) {
1282		pr_warn("%s supply %s not found, using dummy regulator\n",
1283			devname, id);
1284		rdev = dummy_regulator_rdev;
1285		goto found;
1286	}
1287#endif
1288
1289	mutex_unlock(&regulator_list_mutex);
1290	return regulator;
1291
1292found:
1293	if (rdev->exclusive) {
1294		regulator = ERR_PTR(-EPERM);
1295		goto out;
1296	}
1297
1298	if (exclusive && rdev->open_count) {
1299		regulator = ERR_PTR(-EBUSY);
1300		goto out;
1301	}
1302
1303	if (!try_module_get(rdev->owner))
1304		goto out;
1305
1306	regulator = create_regulator(rdev, dev, id);
1307	if (regulator == NULL) {
1308		regulator = ERR_PTR(-ENOMEM);
1309		module_put(rdev->owner);
1310		goto out;
1311	}
1312
1313	rdev->open_count++;
1314	if (exclusive) {
1315		rdev->exclusive = 1;
1316
1317		ret = _regulator_is_enabled(rdev);
1318		if (ret > 0)
1319			rdev->use_count = 1;
1320		else
1321			rdev->use_count = 0;
1322	}
1323
1324out:
1325	mutex_unlock(&regulator_list_mutex);
1326
1327	return regulator;
1328}
1329
1330/**
1331 * regulator_get - lookup and obtain a reference to a regulator.
1332 * @dev: device for regulator "consumer"
1333 * @id: Supply name or regulator ID.
1334 *
1335 * Returns a struct regulator corresponding to the regulator producer,
1336 * or IS_ERR() condition containing errno.
1337 *
1338 * Use of supply names configured via regulator_set_device_supply() is
1339 * strongly encouraged.  It is recommended that the supply name used
1340 * should match the name used for the supply and/or the relevant
1341 * device pins in the datasheet.
1342 */
1343struct regulator *regulator_get(struct device *dev, const char *id)
1344{
1345	return _regulator_get(dev, id, 0);
1346}
1347EXPORT_SYMBOL_GPL(regulator_get);
1348
1349static void devm_regulator_release(struct device *dev, void *res)
1350{
1351	regulator_put(*(struct regulator **)res);
1352}
1353
1354/**
1355 * devm_regulator_get - Resource managed regulator_get()
1356 * @dev: device for regulator "consumer"
1357 * @id: Supply name or regulator ID.
1358 *
1359 * Managed regulator_get(). Regulators returned from this function are
1360 * automatically regulator_put() on driver detach. See regulator_get() for more
1361 * information.
1362 */
1363struct regulator *devm_regulator_get(struct device *dev, const char *id)
1364{
1365	struct regulator **ptr, *regulator;
1366
1367	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1368	if (!ptr)
1369		return ERR_PTR(-ENOMEM);
1370
1371	regulator = regulator_get(dev, id);
1372	if (!IS_ERR(regulator)) {
1373		*ptr = regulator;
1374		devres_add(dev, ptr);
1375	} else {
1376		devres_free(ptr);
1377	}
1378
1379	return regulator;
1380}
1381EXPORT_SYMBOL_GPL(devm_regulator_get);
1382
1383/**
1384 * regulator_get_exclusive - obtain exclusive access to a regulator.
1385 * @dev: device for regulator "consumer"
1386 * @id: Supply name or regulator ID.
1387 *
1388 * Returns a struct regulator corresponding to the regulator producer,
1389 * or IS_ERR() condition containing errno.  Other consumers will be
1390 * unable to obtain this reference is held and the use count for the
1391 * regulator will be initialised to reflect the current state of the
1392 * regulator.
1393 *
1394 * This is intended for use by consumers which cannot tolerate shared
1395 * use of the regulator such as those which need to force the
1396 * regulator off for correct operation of the hardware they are
1397 * controlling.
1398 *
1399 * Use of supply names configured via regulator_set_device_supply() is
1400 * strongly encouraged.  It is recommended that the supply name used
1401 * should match the name used for the supply and/or the relevant
1402 * device pins in the datasheet.
1403 */
1404struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1405{
1406	return _regulator_get(dev, id, 1);
1407}
1408EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1409
1410/**
1411 * regulator_put - "free" the regulator source
1412 * @regulator: regulator source
1413 *
1414 * Note: drivers must ensure that all regulator_enable calls made on this
1415 * regulator source are balanced by regulator_disable calls prior to calling
1416 * this function.
1417 */
1418void regulator_put(struct regulator *regulator)
1419{
1420	struct regulator_dev *rdev;
1421
1422	if (regulator == NULL || IS_ERR(regulator))
1423		return;
1424
1425	mutex_lock(&regulator_list_mutex);
1426	rdev = regulator->rdev;
1427
1428	debugfs_remove_recursive(regulator->debugfs);
1429
1430	/* remove any sysfs entries */
1431	if (regulator->dev) {
1432		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1433		device_remove_file(regulator->dev, &regulator->dev_attr);
1434		kfree(regulator->dev_attr.attr.name);
1435	}
1436	kfree(regulator->supply_name);
1437	list_del(&regulator->list);
1438	kfree(regulator);
1439
1440	rdev->open_count--;
1441	rdev->exclusive = 0;
1442
1443	module_put(rdev->owner);
1444	mutex_unlock(&regulator_list_mutex);
1445}
1446EXPORT_SYMBOL_GPL(regulator_put);
1447
1448static int devm_regulator_match(struct device *dev, void *res, void *data)
1449{
1450	struct regulator **r = res;
1451	if (!r || !*r) {
1452		WARN_ON(!r || !*r);
1453		return 0;
1454	}
1455	return *r == data;
1456}
1457
1458/**
1459 * devm_regulator_put - Resource managed regulator_put()
1460 * @regulator: regulator to free
1461 *
1462 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1463 * this function will not need to be called and the resource management
1464 * code will ensure that the resource is freed.
1465 */
1466void devm_regulator_put(struct regulator *regulator)
1467{
1468	int rc;
1469
1470	rc = devres_release(regulator->dev, devm_regulator_release,
1471			    devm_regulator_match, regulator);
1472	if (rc == 0)
1473		regulator_put(regulator);
1474	else
1475		WARN_ON(rc);
1476}
1477EXPORT_SYMBOL_GPL(devm_regulator_put);
1478
1479static int _regulator_do_enable(struct regulator_dev *rdev)
1480{
1481	int ret, delay;
1482
1483	/* Query before enabling in case configuration dependent.  */
1484	ret = _regulator_get_enable_time(rdev);
1485	if (ret >= 0) {
1486		delay = ret;
1487	} else {
1488		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1489		delay = 0;
1490	}
1491
1492	trace_regulator_enable(rdev_get_name(rdev));
1493
1494	if (rdev->desc->ops->enable) {
1495		ret = rdev->desc->ops->enable(rdev);
1496		if (ret < 0)
1497			return ret;
1498	} else {
1499		return -EINVAL;
1500	}
1501
1502	/* Allow the regulator to ramp; it would be useful to extend
1503	 * this for bulk operations so that the regulators can ramp
1504	 * together.  */
1505	trace_regulator_enable_delay(rdev_get_name(rdev));
1506
1507	if (delay >= 1000) {
1508		mdelay(delay / 1000);
1509		udelay(delay % 1000);
1510	} else if (delay) {
1511		udelay(delay);
1512	}
1513
1514	trace_regulator_enable_complete(rdev_get_name(rdev));
1515
1516	return 0;
1517}
1518
1519/* locks held by regulator_enable() */
1520static int _regulator_enable(struct regulator_dev *rdev)
1521{
1522	int ret;
1523
1524	/* check voltage and requested load before enabling */
1525	if (rdev->constraints &&
1526	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1527		drms_uA_update(rdev);
1528
1529	if (rdev->use_count == 0) {
1530		/* The regulator may on if it's not switchable or left on */
1531		ret = _regulator_is_enabled(rdev);
1532		if (ret == -EINVAL || ret == 0) {
1533			if (!_regulator_can_change_status(rdev))
1534				return -EPERM;
1535
1536			ret = _regulator_do_enable(rdev);
1537			if (ret < 0)
1538				return ret;
1539
1540		} else if (ret < 0) {
1541			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1542			return ret;
1543		}
1544		/* Fallthrough on positive return values - already enabled */
1545	}
1546
1547	rdev->use_count++;
1548
1549	return 0;
1550}
1551
1552/**
1553 * regulator_enable - enable regulator output
1554 * @regulator: regulator source
1555 *
1556 * Request that the regulator be enabled with the regulator output at
1557 * the predefined voltage or current value.  Calls to regulator_enable()
1558 * must be balanced with calls to regulator_disable().
1559 *
1560 * NOTE: the output value can be set by other drivers, boot loader or may be
1561 * hardwired in the regulator.
1562 */
1563int regulator_enable(struct regulator *regulator)
1564{
1565	struct regulator_dev *rdev = regulator->rdev;
1566	int ret = 0;
1567
1568	if (regulator->always_on)
1569		return 0;
1570
1571	if (rdev->supply) {
1572		ret = regulator_enable(rdev->supply);
1573		if (ret != 0)
1574			return ret;
1575	}
1576
1577	mutex_lock(&rdev->mutex);
1578	ret = _regulator_enable(rdev);
1579	mutex_unlock(&rdev->mutex);
1580
1581	if (ret != 0 && rdev->supply)
1582		regulator_disable(rdev->supply);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_enable);
1587
1588static int _regulator_do_disable(struct regulator_dev *rdev)
1589{
1590	int ret;
1591
1592	trace_regulator_disable(rdev_get_name(rdev));
1593
1594	if (rdev->ena_gpio) {
1595		gpio_set_value_cansleep(rdev->ena_gpio,
1596					rdev->ena_gpio_invert);
1597		rdev->ena_gpio_state = 0;
1598
1599	} else if (rdev->desc->ops->disable) {
1600		ret = rdev->desc->ops->disable(rdev);
1601		if (ret != 0)
1602			return ret;
1603	}
1604
1605	trace_regulator_disable_complete(rdev_get_name(rdev));
1606
1607	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1608			     NULL);
1609	return 0;
1610}
1611
1612/* locks held by regulator_disable() */
1613static int _regulator_disable(struct regulator_dev *rdev)
1614{
1615	int ret = 0;
1616
1617	if (WARN(rdev->use_count <= 0,
1618		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1619		return -EIO;
1620
1621	/* are we the last user and permitted to disable ? */
1622	if (rdev->use_count == 1 &&
1623	    (rdev->constraints && !rdev->constraints->always_on)) {
1624
1625		/* we are last user */
1626		if (_regulator_can_change_status(rdev)) {
1627			ret = _regulator_do_disable(rdev);
1628			if (ret < 0) {
1629				rdev_err(rdev, "failed to disable\n");
1630				return ret;
1631			}
1632		}
1633
1634		rdev->use_count = 0;
1635	} else if (rdev->use_count > 1) {
1636
1637		if (rdev->constraints &&
1638			(rdev->constraints->valid_ops_mask &
1639			REGULATOR_CHANGE_DRMS))
1640			drms_uA_update(rdev);
1641
1642		rdev->use_count--;
1643	}
1644
1645	return ret;
1646}
1647
1648/**
1649 * regulator_disable - disable regulator output
1650 * @regulator: regulator source
1651 *
1652 * Disable the regulator output voltage or current.  Calls to
1653 * regulator_enable() must be balanced with calls to
1654 * regulator_disable().
1655 *
1656 * NOTE: this will only disable the regulator output if no other consumer
1657 * devices have it enabled, the regulator device supports disabling and
1658 * machine constraints permit this operation.
1659 */
1660int regulator_disable(struct regulator *regulator)
1661{
1662	struct regulator_dev *rdev = regulator->rdev;
1663	int ret = 0;
1664
1665	if (regulator->always_on)
1666		return 0;
1667
1668	mutex_lock(&rdev->mutex);
1669	ret = _regulator_disable(rdev);
1670	mutex_unlock(&rdev->mutex);
1671
1672	if (ret == 0 && rdev->supply)
1673		regulator_disable(rdev->supply);
1674
1675	return ret;
1676}
1677EXPORT_SYMBOL_GPL(regulator_disable);
1678
1679/* locks held by regulator_force_disable() */
1680static int _regulator_force_disable(struct regulator_dev *rdev)
1681{
1682	int ret = 0;
1683
1684	/* force disable */
1685	if (rdev->desc->ops->disable) {
1686		/* ah well, who wants to live forever... */
1687		ret = rdev->desc->ops->disable(rdev);
1688		if (ret < 0) {
1689			rdev_err(rdev, "failed to force disable\n");
1690			return ret;
1691		}
1692		/* notify other consumers that power has been forced off */
1693		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1694			REGULATOR_EVENT_DISABLE, NULL);
1695	}
1696
1697	return ret;
1698}
1699
1700/**
1701 * regulator_force_disable - force disable regulator output
1702 * @regulator: regulator source
1703 *
1704 * Forcibly disable the regulator output voltage or current.
1705 * NOTE: this *will* disable the regulator output even if other consumer
1706 * devices have it enabled. This should be used for situations when device
1707 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1708 */
1709int regulator_force_disable(struct regulator *regulator)
1710{
1711	struct regulator_dev *rdev = regulator->rdev;
1712	int ret;
1713
1714	mutex_lock(&rdev->mutex);
1715	regulator->uA_load = 0;
1716	ret = _regulator_force_disable(regulator->rdev);
1717	mutex_unlock(&rdev->mutex);
1718
1719	if (rdev->supply)
1720		while (rdev->open_count--)
1721			regulator_disable(rdev->supply);
1722
1723	return ret;
1724}
1725EXPORT_SYMBOL_GPL(regulator_force_disable);
1726
1727static void regulator_disable_work(struct work_struct *work)
1728{
1729	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1730						  disable_work.work);
1731	int count, i, ret;
1732
1733	mutex_lock(&rdev->mutex);
1734
1735	BUG_ON(!rdev->deferred_disables);
1736
1737	count = rdev->deferred_disables;
1738	rdev->deferred_disables = 0;
1739
1740	for (i = 0; i < count; i++) {
1741		ret = _regulator_disable(rdev);
1742		if (ret != 0)
1743			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1744	}
1745
1746	mutex_unlock(&rdev->mutex);
1747
1748	if (rdev->supply) {
1749		for (i = 0; i < count; i++) {
1750			ret = regulator_disable(rdev->supply);
1751			if (ret != 0) {
1752				rdev_err(rdev,
1753					 "Supply disable failed: %d\n", ret);
1754			}
1755		}
1756	}
1757}
1758
1759/**
1760 * regulator_disable_deferred - disable regulator output with delay
1761 * @regulator: regulator source
1762 * @ms: miliseconds until the regulator is disabled
1763 *
1764 * Execute regulator_disable() on the regulator after a delay.  This
1765 * is intended for use with devices that require some time to quiesce.
1766 *
1767 * NOTE: this will only disable the regulator output if no other consumer
1768 * devices have it enabled, the regulator device supports disabling and
1769 * machine constraints permit this operation.
1770 */
1771int regulator_disable_deferred(struct regulator *regulator, int ms)
1772{
1773	struct regulator_dev *rdev = regulator->rdev;
1774	int ret;
1775
1776	if (regulator->always_on)
1777		return 0;
1778
1779	mutex_lock(&rdev->mutex);
1780	rdev->deferred_disables++;
1781	mutex_unlock(&rdev->mutex);
1782
1783	ret = schedule_delayed_work(&rdev->disable_work,
1784				    msecs_to_jiffies(ms));
1785	if (ret < 0)
1786		return ret;
1787	else
1788		return 0;
1789}
1790EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1791
1792/**
1793 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1794 *
1795 * @rdev: regulator to operate on
1796 *
1797 * Regulators that use regmap for their register I/O can set the
1798 * enable_reg and enable_mask fields in their descriptor and then use
1799 * this as their is_enabled operation, saving some code.
1800 */
1801int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1802{
1803	unsigned int val;
1804	int ret;
1805
1806	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1807	if (ret != 0)
1808		return ret;
1809
1810	return (val & rdev->desc->enable_mask) != 0;
1811}
1812EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1813
1814/**
1815 * regulator_enable_regmap - standard enable() for regmap users
1816 *
1817 * @rdev: regulator to operate on
1818 *
1819 * Regulators that use regmap for their register I/O can set the
1820 * enable_reg and enable_mask fields in their descriptor and then use
1821 * this as their enable() operation, saving some code.
1822 */
1823int regulator_enable_regmap(struct regulator_dev *rdev)
1824{
1825	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1826				  rdev->desc->enable_mask,
1827				  rdev->desc->enable_mask);
1828}
1829EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1830
1831/**
1832 * regulator_disable_regmap - standard disable() for regmap users
1833 *
1834 * @rdev: regulator to operate on
1835 *
1836 * Regulators that use regmap for their register I/O can set the
1837 * enable_reg and enable_mask fields in their descriptor and then use
1838 * this as their disable() operation, saving some code.
1839 */
1840int regulator_disable_regmap(struct regulator_dev *rdev)
1841{
1842	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1843				  rdev->desc->enable_mask, 0);
1844}
1845EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1846
1847static int _regulator_is_enabled(struct regulator_dev *rdev)
1848{
1849	/* If we don't know then assume that the regulator is always on */
1850	if (!rdev->desc->ops->is_enabled)
1851		return 1;
1852
1853	return rdev->desc->ops->is_enabled(rdev);
1854}
1855
1856/**
1857 * regulator_is_enabled - is the regulator output enabled
1858 * @regulator: regulator source
1859 *
1860 * Returns positive if the regulator driver backing the source/client
1861 * has requested that the device be enabled, zero if it hasn't, else a
1862 * negative errno code.
1863 *
1864 * Note that the device backing this regulator handle can have multiple
1865 * users, so it might be enabled even if regulator_enable() was never
1866 * called for this particular source.
1867 */
1868int regulator_is_enabled(struct regulator *regulator)
1869{
1870	int ret;
1871
1872	if (regulator->always_on)
1873		return 1;
1874
1875	mutex_lock(&regulator->rdev->mutex);
1876	ret = _regulator_is_enabled(regulator->rdev);
1877	mutex_unlock(&regulator->rdev->mutex);
1878
1879	return ret;
1880}
1881EXPORT_SYMBOL_GPL(regulator_is_enabled);
1882
1883/**
1884 * regulator_count_voltages - count regulator_list_voltage() selectors
1885 * @regulator: regulator source
1886 *
1887 * Returns number of selectors, or negative errno.  Selectors are
1888 * numbered starting at zero, and typically correspond to bitfields
1889 * in hardware registers.
1890 */
1891int regulator_count_voltages(struct regulator *regulator)
1892{
1893	struct regulator_dev	*rdev = regulator->rdev;
1894
1895	return rdev->desc->n_voltages ? : -EINVAL;
1896}
1897EXPORT_SYMBOL_GPL(regulator_count_voltages);
1898
1899/**
1900 * regulator_list_voltage_linear - List voltages with simple calculation
1901 *
1902 * @rdev: Regulator device
1903 * @selector: Selector to convert into a voltage
1904 *
1905 * Regulators with a simple linear mapping between voltages and
1906 * selectors can set min_uV and uV_step in the regulator descriptor
1907 * and then use this function as their list_voltage() operation,
1908 */
1909int regulator_list_voltage_linear(struct regulator_dev *rdev,
1910				  unsigned int selector)
1911{
1912	if (selector >= rdev->desc->n_voltages)
1913		return -EINVAL;
1914
1915	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1916}
1917EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1918
1919/**
1920 * regulator_list_voltage_table - List voltages with table based mapping
1921 *
1922 * @rdev: Regulator device
1923 * @selector: Selector to convert into a voltage
1924 *
1925 * Regulators with table based mapping between voltages and
1926 * selectors can set volt_table in the regulator descriptor
1927 * and then use this function as their list_voltage() operation.
1928 */
1929int regulator_list_voltage_table(struct regulator_dev *rdev,
1930				 unsigned int selector)
1931{
1932	if (!rdev->desc->volt_table) {
1933		BUG_ON(!rdev->desc->volt_table);
1934		return -EINVAL;
1935	}
1936
1937	if (selector >= rdev->desc->n_voltages)
1938		return -EINVAL;
1939
1940	return rdev->desc->volt_table[selector];
1941}
1942EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1943
1944/**
1945 * regulator_list_voltage - enumerate supported voltages
1946 * @regulator: regulator source
1947 * @selector: identify voltage to list
1948 * Context: can sleep
1949 *
1950 * Returns a voltage that can be passed to @regulator_set_voltage(),
1951 * zero if this selector code can't be used on this system, or a
1952 * negative errno.
1953 */
1954int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1955{
1956	struct regulator_dev	*rdev = regulator->rdev;
1957	struct regulator_ops	*ops = rdev->desc->ops;
1958	int			ret;
1959
1960	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1961		return -EINVAL;
1962
1963	mutex_lock(&rdev->mutex);
1964	ret = ops->list_voltage(rdev, selector);
1965	mutex_unlock(&rdev->mutex);
1966
1967	if (ret > 0) {
1968		if (ret < rdev->constraints->min_uV)
1969			ret = 0;
1970		else if (ret > rdev->constraints->max_uV)
1971			ret = 0;
1972	}
1973
1974	return ret;
1975}
1976EXPORT_SYMBOL_GPL(regulator_list_voltage);
1977
1978/**
1979 * regulator_is_supported_voltage - check if a voltage range can be supported
1980 *
1981 * @regulator: Regulator to check.
1982 * @min_uV: Minimum required voltage in uV.
1983 * @max_uV: Maximum required voltage in uV.
1984 *
1985 * Returns a boolean or a negative error code.
1986 */
1987int regulator_is_supported_voltage(struct regulator *regulator,
1988				   int min_uV, int max_uV)
1989{
1990	int i, voltages, ret;
1991
1992	ret = regulator_count_voltages(regulator);
1993	if (ret < 0)
1994		return ret;
1995	voltages = ret;
1996
1997	for (i = 0; i < voltages; i++) {
1998		ret = regulator_list_voltage(regulator, i);
1999
2000		if (ret >= min_uV && ret <= max_uV)
2001			return 1;
2002	}
2003
2004	return 0;
2005}
2006EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2007
2008/**
2009 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2010 *
2011 * @rdev: regulator to operate on
2012 *
2013 * Regulators that use regmap for their register I/O can set the
2014 * vsel_reg and vsel_mask fields in their descriptor and then use this
2015 * as their get_voltage_vsel operation, saving some code.
2016 */
2017int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2018{
2019	unsigned int val;
2020	int ret;
2021
2022	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2023	if (ret != 0)
2024		return ret;
2025
2026	val &= rdev->desc->vsel_mask;
2027	val >>= ffs(rdev->desc->vsel_mask) - 1;
2028
2029	return val;
2030}
2031EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2032
2033/**
2034 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2035 *
2036 * @rdev: regulator to operate on
2037 * @sel: Selector to set
2038 *
2039 * Regulators that use regmap for their register I/O can set the
2040 * vsel_reg and vsel_mask fields in their descriptor and then use this
2041 * as their set_voltage_vsel operation, saving some code.
2042 */
2043int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2044{
2045	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2046
2047	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2048				  rdev->desc->vsel_mask, sel);
2049}
2050EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2051
2052/**
2053 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2054 *
2055 * @rdev: Regulator to operate on
2056 * @min_uV: Lower bound for voltage
2057 * @max_uV: Upper bound for voltage
2058 *
2059 * Drivers implementing set_voltage_sel() and list_voltage() can use
2060 * this as their map_voltage() operation.  It will find a suitable
2061 * voltage by calling list_voltage() until it gets something in bounds
2062 * for the requested voltages.
2063 */
2064int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2065				  int min_uV, int max_uV)
2066{
2067	int best_val = INT_MAX;
2068	int selector = 0;
2069	int i, ret;
2070
2071	/* Find the smallest voltage that falls within the specified
2072	 * range.
2073	 */
2074	for (i = 0; i < rdev->desc->n_voltages; i++) {
2075		ret = rdev->desc->ops->list_voltage(rdev, i);
2076		if (ret < 0)
2077			continue;
2078
2079		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2080			best_val = ret;
2081			selector = i;
2082		}
2083	}
2084
2085	if (best_val != INT_MAX)
2086		return selector;
2087	else
2088		return -EINVAL;
2089}
2090EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2091
2092/**
2093 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2094 *
2095 * @rdev: Regulator to operate on
2096 * @min_uV: Lower bound for voltage
2097 * @max_uV: Upper bound for voltage
2098 *
2099 * Drivers providing min_uV and uV_step in their regulator_desc can
2100 * use this as their map_voltage() operation.
2101 */
2102int regulator_map_voltage_linear(struct regulator_dev *rdev,
2103				 int min_uV, int max_uV)
2104{
2105	int ret, voltage;
2106
2107	/* Allow uV_step to be 0 for fixed voltage */
2108	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2109		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2110			return 0;
2111		else
2112			return -EINVAL;
2113	}
2114
2115	if (!rdev->desc->uV_step) {
2116		BUG_ON(!rdev->desc->uV_step);
2117		return -EINVAL;
2118	}
2119
2120	if (min_uV < rdev->desc->min_uV)
2121		min_uV = rdev->desc->min_uV;
2122
2123	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2124	if (ret < 0)
2125		return ret;
2126
2127	/* Map back into a voltage to verify we're still in bounds */
2128	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2129	if (voltage < min_uV || voltage > max_uV)
2130		return -EINVAL;
2131
2132	return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2135
2136static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2137				     int min_uV, int max_uV)
2138{
2139	int ret;
2140	int delay = 0;
2141	int best_val;
2142	unsigned int selector;
2143	int old_selector = -1;
2144
2145	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2146
2147	min_uV += rdev->constraints->uV_offset;
2148	max_uV += rdev->constraints->uV_offset;
2149
2150	/*
2151	 * If we can't obtain the old selector there is not enough
2152	 * info to call set_voltage_time_sel().
2153	 */
2154	if (_regulator_is_enabled(rdev) &&
2155	    rdev->desc->ops->set_voltage_time_sel &&
2156	    rdev->desc->ops->get_voltage_sel) {
2157		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2158		if (old_selector < 0)
2159			return old_selector;
2160	}
2161
2162	if (rdev->desc->ops->set_voltage) {
2163		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2164						   &selector);
2165	} else if (rdev->desc->ops->set_voltage_sel) {
2166		if (rdev->desc->ops->map_voltage)
2167			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2168							   max_uV);
2169		else
2170			ret = regulator_map_voltage_iterate(rdev, min_uV,
2171							    max_uV);
2172
2173		if (ret >= 0) {
2174			selector = ret;
2175			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2176		}
2177	} else {
2178		ret = -EINVAL;
2179	}
2180
2181	if (rdev->desc->ops->list_voltage)
2182		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2183	else
2184		best_val = -1;
2185
2186	/* Call set_voltage_time_sel if successfully obtained old_selector */
2187	if (_regulator_is_enabled(rdev) && ret == 0 && old_selector >= 0 &&
2188	    rdev->desc->ops->set_voltage_time_sel) {
2189
2190		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2191						old_selector, selector);
2192		if (delay < 0) {
2193			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2194				  delay);
2195			delay = 0;
2196		}
2197	}
2198
2199	/* Insert any necessary delays */
2200	if (delay >= 1000) {
2201		mdelay(delay / 1000);
2202		udelay(delay % 1000);
2203	} else if (delay) {
2204		udelay(delay);
2205	}
2206
2207	if (ret == 0)
2208		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2209				     NULL);
2210
2211	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2212
2213	return ret;
2214}
2215
2216/**
2217 * regulator_set_voltage - set regulator output voltage
2218 * @regulator: regulator source
2219 * @min_uV: Minimum required voltage in uV
2220 * @max_uV: Maximum acceptable voltage in uV
2221 *
2222 * Sets a voltage regulator to the desired output voltage. This can be set
2223 * during any regulator state. IOW, regulator can be disabled or enabled.
2224 *
2225 * If the regulator is enabled then the voltage will change to the new value
2226 * immediately otherwise if the regulator is disabled the regulator will
2227 * output at the new voltage when enabled.
2228 *
2229 * NOTE: If the regulator is shared between several devices then the lowest
2230 * request voltage that meets the system constraints will be used.
2231 * Regulator system constraints must be set for this regulator before
2232 * calling this function otherwise this call will fail.
2233 */
2234int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2235{
2236	struct regulator_dev *rdev = regulator->rdev;
2237	int ret = 0;
2238
2239	mutex_lock(&rdev->mutex);
2240
2241	/* If we're setting the same range as last time the change
2242	 * should be a noop (some cpufreq implementations use the same
2243	 * voltage for multiple frequencies, for example).
2244	 */
2245	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2246		goto out;
2247
2248	/* sanity check */
2249	if (!rdev->desc->ops->set_voltage &&
2250	    !rdev->desc->ops->set_voltage_sel) {
2251		ret = -EINVAL;
2252		goto out;
2253	}
2254
2255	/* constraints check */
2256	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2257	if (ret < 0)
2258		goto out;
2259	regulator->min_uV = min_uV;
2260	regulator->max_uV = max_uV;
2261
2262	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2263	if (ret < 0)
2264		goto out;
2265
2266	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2267
2268out:
2269	mutex_unlock(&rdev->mutex);
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(regulator_set_voltage);
2273
2274/**
2275 * regulator_set_voltage_time - get raise/fall time
2276 * @regulator: regulator source
2277 * @old_uV: starting voltage in microvolts
2278 * @new_uV: target voltage in microvolts
2279 *
2280 * Provided with the starting and ending voltage, this function attempts to
2281 * calculate the time in microseconds required to rise or fall to this new
2282 * voltage.
2283 */
2284int regulator_set_voltage_time(struct regulator *regulator,
2285			       int old_uV, int new_uV)
2286{
2287	struct regulator_dev	*rdev = regulator->rdev;
2288	struct regulator_ops	*ops = rdev->desc->ops;
2289	int old_sel = -1;
2290	int new_sel = -1;
2291	int voltage;
2292	int i;
2293
2294	/* Currently requires operations to do this */
2295	if (!ops->list_voltage || !ops->set_voltage_time_sel
2296	    || !rdev->desc->n_voltages)
2297		return -EINVAL;
2298
2299	for (i = 0; i < rdev->desc->n_voltages; i++) {
2300		/* We only look for exact voltage matches here */
2301		voltage = regulator_list_voltage(regulator, i);
2302		if (voltage < 0)
2303			return -EINVAL;
2304		if (voltage == 0)
2305			continue;
2306		if (voltage == old_uV)
2307			old_sel = i;
2308		if (voltage == new_uV)
2309			new_sel = i;
2310	}
2311
2312	if (old_sel < 0 || new_sel < 0)
2313		return -EINVAL;
2314
2315	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2316}
2317EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2318
2319/**
2320 *regulator_set_voltage_time_sel - get raise/fall time
2321 * @regulator: regulator source
2322 * @old_selector: selector for starting voltage
2323 * @new_selector: selector for target voltage
2324 *
2325 * Provided with the starting and target voltage selectors, this function
2326 * returns time in microseconds required to rise or fall to this new voltage
2327 *
2328 * Drivers providing ramp_delay in regulation_constraints can use this as their
2329 * set_voltage_time_sel() operation.
2330 */
2331int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2332				   unsigned int old_selector,
2333				   unsigned int new_selector)
2334{
2335	unsigned int ramp_delay = 0;
2336	int old_volt, new_volt;
2337
2338	if (rdev->constraints->ramp_delay)
2339		ramp_delay = rdev->constraints->ramp_delay;
2340	else if (rdev->desc->ramp_delay)
2341		ramp_delay = rdev->desc->ramp_delay;
2342
2343	if (ramp_delay == 0) {
2344		rdev_warn(rdev, "ramp_delay not set\n");
2345		return 0;
2346	}
2347
2348	/* sanity check */
2349	if (!rdev->desc->ops->list_voltage)
2350		return -EINVAL;
2351
2352	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2353	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2354
2355	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2356}
2357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2358
2359/**
2360 * regulator_sync_voltage - re-apply last regulator output voltage
2361 * @regulator: regulator source
2362 *
2363 * Re-apply the last configured voltage.  This is intended to be used
2364 * where some external control source the consumer is cooperating with
2365 * has caused the configured voltage to change.
2366 */
2367int regulator_sync_voltage(struct regulator *regulator)
2368{
2369	struct regulator_dev *rdev = regulator->rdev;
2370	int ret, min_uV, max_uV;
2371
2372	mutex_lock(&rdev->mutex);
2373
2374	if (!rdev->desc->ops->set_voltage &&
2375	    !rdev->desc->ops->set_voltage_sel) {
2376		ret = -EINVAL;
2377		goto out;
2378	}
2379
2380	/* This is only going to work if we've had a voltage configured. */
2381	if (!regulator->min_uV && !regulator->max_uV) {
2382		ret = -EINVAL;
2383		goto out;
2384	}
2385
2386	min_uV = regulator->min_uV;
2387	max_uV = regulator->max_uV;
2388
2389	/* This should be a paranoia check... */
2390	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2391	if (ret < 0)
2392		goto out;
2393
2394	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2395	if (ret < 0)
2396		goto out;
2397
2398	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2399
2400out:
2401	mutex_unlock(&rdev->mutex);
2402	return ret;
2403}
2404EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2405
2406static int _regulator_get_voltage(struct regulator_dev *rdev)
2407{
2408	int sel, ret;
2409
2410	if (rdev->desc->ops->get_voltage_sel) {
2411		sel = rdev->desc->ops->get_voltage_sel(rdev);
2412		if (sel < 0)
2413			return sel;
2414		ret = rdev->desc->ops->list_voltage(rdev, sel);
2415	} else if (rdev->desc->ops->get_voltage) {
2416		ret = rdev->desc->ops->get_voltage(rdev);
2417	} else {
2418		return -EINVAL;
2419	}
2420
2421	if (ret < 0)
2422		return ret;
2423	return ret - rdev->constraints->uV_offset;
2424}
2425
2426/**
2427 * regulator_get_voltage - get regulator output voltage
2428 * @regulator: regulator source
2429 *
2430 * This returns the current regulator voltage in uV.
2431 *
2432 * NOTE: If the regulator is disabled it will return the voltage value. This
2433 * function should not be used to determine regulator state.
2434 */
2435int regulator_get_voltage(struct regulator *regulator)
2436{
2437	int ret;
2438
2439	mutex_lock(&regulator->rdev->mutex);
2440
2441	ret = _regulator_get_voltage(regulator->rdev);
2442
2443	mutex_unlock(&regulator->rdev->mutex);
2444
2445	return ret;
2446}
2447EXPORT_SYMBOL_GPL(regulator_get_voltage);
2448
2449/**
2450 * regulator_set_current_limit - set regulator output current limit
2451 * @regulator: regulator source
2452 * @min_uA: Minimuum supported current in uA
2453 * @max_uA: Maximum supported current in uA
2454 *
2455 * Sets current sink to the desired output current. This can be set during
2456 * any regulator state. IOW, regulator can be disabled or enabled.
2457 *
2458 * If the regulator is enabled then the current will change to the new value
2459 * immediately otherwise if the regulator is disabled the regulator will
2460 * output at the new current when enabled.
2461 *
2462 * NOTE: Regulator system constraints must be set for this regulator before
2463 * calling this function otherwise this call will fail.
2464 */
2465int regulator_set_current_limit(struct regulator *regulator,
2466			       int min_uA, int max_uA)
2467{
2468	struct regulator_dev *rdev = regulator->rdev;
2469	int ret;
2470
2471	mutex_lock(&rdev->mutex);
2472
2473	/* sanity check */
2474	if (!rdev->desc->ops->set_current_limit) {
2475		ret = -EINVAL;
2476		goto out;
2477	}
2478
2479	/* constraints check */
2480	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2481	if (ret < 0)
2482		goto out;
2483
2484	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2485out:
2486	mutex_unlock(&rdev->mutex);
2487	return ret;
2488}
2489EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2490
2491static int _regulator_get_current_limit(struct regulator_dev *rdev)
2492{
2493	int ret;
2494
2495	mutex_lock(&rdev->mutex);
2496
2497	/* sanity check */
2498	if (!rdev->desc->ops->get_current_limit) {
2499		ret = -EINVAL;
2500		goto out;
2501	}
2502
2503	ret = rdev->desc->ops->get_current_limit(rdev);
2504out:
2505	mutex_unlock(&rdev->mutex);
2506	return ret;
2507}
2508
2509/**
2510 * regulator_get_current_limit - get regulator output current
2511 * @regulator: regulator source
2512 *
2513 * This returns the current supplied by the specified current sink in uA.
2514 *
2515 * NOTE: If the regulator is disabled it will return the current value. This
2516 * function should not be used to determine regulator state.
2517 */
2518int regulator_get_current_limit(struct regulator *regulator)
2519{
2520	return _regulator_get_current_limit(regulator->rdev);
2521}
2522EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2523
2524/**
2525 * regulator_set_mode - set regulator operating mode
2526 * @regulator: regulator source
2527 * @mode: operating mode - one of the REGULATOR_MODE constants
2528 *
2529 * Set regulator operating mode to increase regulator efficiency or improve
2530 * regulation performance.
2531 *
2532 * NOTE: Regulator system constraints must be set for this regulator before
2533 * calling this function otherwise this call will fail.
2534 */
2535int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2536{
2537	struct regulator_dev *rdev = regulator->rdev;
2538	int ret;
2539	int regulator_curr_mode;
2540
2541	mutex_lock(&rdev->mutex);
2542
2543	/* sanity check */
2544	if (!rdev->desc->ops->set_mode) {
2545		ret = -EINVAL;
2546		goto out;
2547	}
2548
2549	/* return if the same mode is requested */
2550	if (rdev->desc->ops->get_mode) {
2551		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2552		if (regulator_curr_mode == mode) {
2553			ret = 0;
2554			goto out;
2555		}
2556	}
2557
2558	/* constraints check */
2559	ret = regulator_mode_constrain(rdev, &mode);
2560	if (ret < 0)
2561		goto out;
2562
2563	ret = rdev->desc->ops->set_mode(rdev, mode);
2564out:
2565	mutex_unlock(&rdev->mutex);
2566	return ret;
2567}
2568EXPORT_SYMBOL_GPL(regulator_set_mode);
2569
2570static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2571{
2572	int ret;
2573
2574	mutex_lock(&rdev->mutex);
2575
2576	/* sanity check */
2577	if (!rdev->desc->ops->get_mode) {
2578		ret = -EINVAL;
2579		goto out;
2580	}
2581
2582	ret = rdev->desc->ops->get_mode(rdev);
2583out:
2584	mutex_unlock(&rdev->mutex);
2585	return ret;
2586}
2587
2588/**
2589 * regulator_get_mode - get regulator operating mode
2590 * @regulator: regulator source
2591 *
2592 * Get the current regulator operating mode.
2593 */
2594unsigned int regulator_get_mode(struct regulator *regulator)
2595{
2596	return _regulator_get_mode(regulator->rdev);
2597}
2598EXPORT_SYMBOL_GPL(regulator_get_mode);
2599
2600/**
2601 * regulator_set_optimum_mode - set regulator optimum operating mode
2602 * @regulator: regulator source
2603 * @uA_load: load current
2604 *
2605 * Notifies the regulator core of a new device load. This is then used by
2606 * DRMS (if enabled by constraints) to set the most efficient regulator
2607 * operating mode for the new regulator loading.
2608 *
2609 * Consumer devices notify their supply regulator of the maximum power
2610 * they will require (can be taken from device datasheet in the power
2611 * consumption tables) when they change operational status and hence power
2612 * state. Examples of operational state changes that can affect power
2613 * consumption are :-
2614 *
2615 *    o Device is opened / closed.
2616 *    o Device I/O is about to begin or has just finished.
2617 *    o Device is idling in between work.
2618 *
2619 * This information is also exported via sysfs to userspace.
2620 *
2621 * DRMS will sum the total requested load on the regulator and change
2622 * to the most efficient operating mode if platform constraints allow.
2623 *
2624 * Returns the new regulator mode or error.
2625 */
2626int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2627{
2628	struct regulator_dev *rdev = regulator->rdev;
2629	struct regulator *consumer;
2630	int ret, output_uV, input_uV, total_uA_load = 0;
2631	unsigned int mode;
2632
2633	mutex_lock(&rdev->mutex);
2634
2635	/*
2636	 * first check to see if we can set modes at all, otherwise just
2637	 * tell the consumer everything is OK.
2638	 */
2639	regulator->uA_load = uA_load;
2640	ret = regulator_check_drms(rdev);
2641	if (ret < 0) {
2642		ret = 0;
2643		goto out;
2644	}
2645
2646	if (!rdev->desc->ops->get_optimum_mode)
2647		goto out;
2648
2649	/*
2650	 * we can actually do this so any errors are indicators of
2651	 * potential real failure.
2652	 */
2653	ret = -EINVAL;
2654
2655	if (!rdev->desc->ops->set_mode)
2656		goto out;
2657
2658	/* get output voltage */
2659	output_uV = _regulator_get_voltage(rdev);
2660	if (output_uV <= 0) {
2661		rdev_err(rdev, "invalid output voltage found\n");
2662		goto out;
2663	}
2664
2665	/* get input voltage */
2666	input_uV = 0;
2667	if (rdev->supply)
2668		input_uV = regulator_get_voltage(rdev->supply);
2669	if (input_uV <= 0)
2670		input_uV = rdev->constraints->input_uV;
2671	if (input_uV <= 0) {
2672		rdev_err(rdev, "invalid input voltage found\n");
2673		goto out;
2674	}
2675
2676	/* calc total requested load for this regulator */
2677	list_for_each_entry(consumer, &rdev->consumer_list, list)
2678		total_uA_load += consumer->uA_load;
2679
2680	mode = rdev->desc->ops->get_optimum_mode(rdev,
2681						 input_uV, output_uV,
2682						 total_uA_load);
2683	ret = regulator_mode_constrain(rdev, &mode);
2684	if (ret < 0) {
2685		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2686			 total_uA_load, input_uV, output_uV);
2687		goto out;
2688	}
2689
2690	ret = rdev->desc->ops->set_mode(rdev, mode);
2691	if (ret < 0) {
2692		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2693		goto out;
2694	}
2695	ret = mode;
2696out:
2697	mutex_unlock(&rdev->mutex);
2698	return ret;
2699}
2700EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2701
2702/**
2703 * regulator_register_notifier - register regulator event notifier
2704 * @regulator: regulator source
2705 * @nb: notifier block
2706 *
2707 * Register notifier block to receive regulator events.
2708 */
2709int regulator_register_notifier(struct regulator *regulator,
2710			      struct notifier_block *nb)
2711{
2712	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2713						nb);
2714}
2715EXPORT_SYMBOL_GPL(regulator_register_notifier);
2716
2717/**
2718 * regulator_unregister_notifier - unregister regulator event notifier
2719 * @regulator: regulator source
2720 * @nb: notifier block
2721 *
2722 * Unregister regulator event notifier block.
2723 */
2724int regulator_unregister_notifier(struct regulator *regulator,
2725				struct notifier_block *nb)
2726{
2727	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2728						  nb);
2729}
2730EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2731
2732/* notify regulator consumers and downstream regulator consumers.
2733 * Note mutex must be held by caller.
2734 */
2735static void _notifier_call_chain(struct regulator_dev *rdev,
2736				  unsigned long event, void *data)
2737{
2738	/* call rdev chain first */
2739	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2740}
2741
2742/**
2743 * regulator_bulk_get - get multiple regulator consumers
2744 *
2745 * @dev:           Device to supply
2746 * @num_consumers: Number of consumers to register
2747 * @consumers:     Configuration of consumers; clients are stored here.
2748 *
2749 * @return 0 on success, an errno on failure.
2750 *
2751 * This helper function allows drivers to get several regulator
2752 * consumers in one operation.  If any of the regulators cannot be
2753 * acquired then any regulators that were allocated will be freed
2754 * before returning to the caller.
2755 */
2756int regulator_bulk_get(struct device *dev, int num_consumers,
2757		       struct regulator_bulk_data *consumers)
2758{
2759	int i;
2760	int ret;
2761
2762	for (i = 0; i < num_consumers; i++)
2763		consumers[i].consumer = NULL;
2764
2765	for (i = 0; i < num_consumers; i++) {
2766		consumers[i].consumer = regulator_get(dev,
2767						      consumers[i].supply);
2768		if (IS_ERR(consumers[i].consumer)) {
2769			ret = PTR_ERR(consumers[i].consumer);
2770			dev_err(dev, "Failed to get supply '%s': %d\n",
2771				consumers[i].supply, ret);
2772			consumers[i].consumer = NULL;
2773			goto err;
2774		}
2775	}
2776
2777	return 0;
2778
2779err:
2780	while (--i >= 0)
2781		regulator_put(consumers[i].consumer);
2782
2783	return ret;
2784}
2785EXPORT_SYMBOL_GPL(regulator_bulk_get);
2786
2787/**
2788 * devm_regulator_bulk_get - managed get multiple regulator consumers
2789 *
2790 * @dev:           Device to supply
2791 * @num_consumers: Number of consumers to register
2792 * @consumers:     Configuration of consumers; clients are stored here.
2793 *
2794 * @return 0 on success, an errno on failure.
2795 *
2796 * This helper function allows drivers to get several regulator
2797 * consumers in one operation with management, the regulators will
2798 * automatically be freed when the device is unbound.  If any of the
2799 * regulators cannot be acquired then any regulators that were
2800 * allocated will be freed before returning to the caller.
2801 */
2802int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2803			    struct regulator_bulk_data *consumers)
2804{
2805	int i;
2806	int ret;
2807
2808	for (i = 0; i < num_consumers; i++)
2809		consumers[i].consumer = NULL;
2810
2811	for (i = 0; i < num_consumers; i++) {
2812		consumers[i].consumer = devm_regulator_get(dev,
2813							   consumers[i].supply);
2814		if (IS_ERR(consumers[i].consumer)) {
2815			ret = PTR_ERR(consumers[i].consumer);
2816			dev_err(dev, "Failed to get supply '%s': %d\n",
2817				consumers[i].supply, ret);
2818			consumers[i].consumer = NULL;
2819			goto err;
2820		}
2821	}
2822
2823	return 0;
2824
2825err:
2826	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2827		devm_regulator_put(consumers[i].consumer);
2828
2829	return ret;
2830}
2831EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2832
2833static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2834{
2835	struct regulator_bulk_data *bulk = data;
2836
2837	bulk->ret = regulator_enable(bulk->consumer);
2838}
2839
2840/**
2841 * regulator_bulk_enable - enable multiple regulator consumers
2842 *
2843 * @num_consumers: Number of consumers
2844 * @consumers:     Consumer data; clients are stored here.
2845 * @return         0 on success, an errno on failure
2846 *
2847 * This convenience API allows consumers to enable multiple regulator
2848 * clients in a single API call.  If any consumers cannot be enabled
2849 * then any others that were enabled will be disabled again prior to
2850 * return.
2851 */
2852int regulator_bulk_enable(int num_consumers,
2853			  struct regulator_bulk_data *consumers)
2854{
2855	LIST_HEAD(async_domain);
2856	int i;
2857	int ret = 0;
2858
2859	for (i = 0; i < num_consumers; i++) {
2860		if (consumers[i].consumer->always_on)
2861			consumers[i].ret = 0;
2862		else
2863			async_schedule_domain(regulator_bulk_enable_async,
2864					      &consumers[i], &async_domain);
2865	}
2866
2867	async_synchronize_full_domain(&async_domain);
2868
2869	/* If any consumer failed we need to unwind any that succeeded */
2870	for (i = 0; i < num_consumers; i++) {
2871		if (consumers[i].ret != 0) {
2872			ret = consumers[i].ret;
2873			goto err;
2874		}
2875	}
2876
2877	return 0;
2878
2879err:
2880	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2881	while (--i >= 0)
2882		regulator_disable(consumers[i].consumer);
2883
2884	return ret;
2885}
2886EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2887
2888/**
2889 * regulator_bulk_disable - disable multiple regulator consumers
2890 *
2891 * @num_consumers: Number of consumers
2892 * @consumers:     Consumer data; clients are stored here.
2893 * @return         0 on success, an errno on failure
2894 *
2895 * This convenience API allows consumers to disable multiple regulator
2896 * clients in a single API call.  If any consumers cannot be disabled
2897 * then any others that were disabled will be enabled again prior to
2898 * return.
2899 */
2900int regulator_bulk_disable(int num_consumers,
2901			   struct regulator_bulk_data *consumers)
2902{
2903	int i;
2904	int ret, r;
2905
2906	for (i = num_consumers - 1; i >= 0; --i) {
2907		ret = regulator_disable(consumers[i].consumer);
2908		if (ret != 0)
2909			goto err;
2910	}
2911
2912	return 0;
2913
2914err:
2915	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2916	for (++i; i < num_consumers; ++i) {
2917		r = regulator_enable(consumers[i].consumer);
2918		if (r != 0)
2919			pr_err("Failed to reename %s: %d\n",
2920			       consumers[i].supply, r);
2921	}
2922
2923	return ret;
2924}
2925EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2926
2927/**
2928 * regulator_bulk_force_disable - force disable multiple regulator consumers
2929 *
2930 * @num_consumers: Number of consumers
2931 * @consumers:     Consumer data; clients are stored here.
2932 * @return         0 on success, an errno on failure
2933 *
2934 * This convenience API allows consumers to forcibly disable multiple regulator
2935 * clients in a single API call.
2936 * NOTE: This should be used for situations when device damage will
2937 * likely occur if the regulators are not disabled (e.g. over temp).
2938 * Although regulator_force_disable function call for some consumers can
2939 * return error numbers, the function is called for all consumers.
2940 */
2941int regulator_bulk_force_disable(int num_consumers,
2942			   struct regulator_bulk_data *consumers)
2943{
2944	int i;
2945	int ret;
2946
2947	for (i = 0; i < num_consumers; i++)
2948		consumers[i].ret =
2949			    regulator_force_disable(consumers[i].consumer);
2950
2951	for (i = 0; i < num_consumers; i++) {
2952		if (consumers[i].ret != 0) {
2953			ret = consumers[i].ret;
2954			goto out;
2955		}
2956	}
2957
2958	return 0;
2959out:
2960	return ret;
2961}
2962EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2963
2964/**
2965 * regulator_bulk_free - free multiple regulator consumers
2966 *
2967 * @num_consumers: Number of consumers
2968 * @consumers:     Consumer data; clients are stored here.
2969 *
2970 * This convenience API allows consumers to free multiple regulator
2971 * clients in a single API call.
2972 */
2973void regulator_bulk_free(int num_consumers,
2974			 struct regulator_bulk_data *consumers)
2975{
2976	int i;
2977
2978	for (i = 0; i < num_consumers; i++) {
2979		regulator_put(consumers[i].consumer);
2980		consumers[i].consumer = NULL;
2981	}
2982}
2983EXPORT_SYMBOL_GPL(regulator_bulk_free);
2984
2985/**
2986 * regulator_notifier_call_chain - call regulator event notifier
2987 * @rdev: regulator source
2988 * @event: notifier block
2989 * @data: callback-specific data.
2990 *
2991 * Called by regulator drivers to notify clients a regulator event has
2992 * occurred. We also notify regulator clients downstream.
2993 * Note lock must be held by caller.
2994 */
2995int regulator_notifier_call_chain(struct regulator_dev *rdev,
2996				  unsigned long event, void *data)
2997{
2998	_notifier_call_chain(rdev, event, data);
2999	return NOTIFY_DONE;
3000
3001}
3002EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3003
3004/**
3005 * regulator_mode_to_status - convert a regulator mode into a status
3006 *
3007 * @mode: Mode to convert
3008 *
3009 * Convert a regulator mode into a status.
3010 */
3011int regulator_mode_to_status(unsigned int mode)
3012{
3013	switch (mode) {
3014	case REGULATOR_MODE_FAST:
3015		return REGULATOR_STATUS_FAST;
3016	case REGULATOR_MODE_NORMAL:
3017		return REGULATOR_STATUS_NORMAL;
3018	case REGULATOR_MODE_IDLE:
3019		return REGULATOR_STATUS_IDLE;
3020	case REGULATOR_STATUS_STANDBY:
3021		return REGULATOR_STATUS_STANDBY;
3022	default:
3023		return 0;
3024	}
3025}
3026EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3027
3028/*
3029 * To avoid cluttering sysfs (and memory) with useless state, only
3030 * create attributes that can be meaningfully displayed.
3031 */
3032static int add_regulator_attributes(struct regulator_dev *rdev)
3033{
3034	struct device		*dev = &rdev->dev;
3035	struct regulator_ops	*ops = rdev->desc->ops;
3036	int			status = 0;
3037
3038	/* some attributes need specific methods to be displayed */
3039	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3040	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3041		status = device_create_file(dev, &dev_attr_microvolts);
3042		if (status < 0)
3043			return status;
3044	}
3045	if (ops->get_current_limit) {
3046		status = device_create_file(dev, &dev_attr_microamps);
3047		if (status < 0)
3048			return status;
3049	}
3050	if (ops->get_mode) {
3051		status = device_create_file(dev, &dev_attr_opmode);
3052		if (status < 0)
3053			return status;
3054	}
3055	if (ops->is_enabled) {
3056		status = device_create_file(dev, &dev_attr_state);
3057		if (status < 0)
3058			return status;
3059	}
3060	if (ops->get_status) {
3061		status = device_create_file(dev, &dev_attr_status);
3062		if (status < 0)
3063			return status;
3064	}
3065
3066	/* some attributes are type-specific */
3067	if (rdev->desc->type == REGULATOR_CURRENT) {
3068		status = device_create_file(dev, &dev_attr_requested_microamps);
3069		if (status < 0)
3070			return status;
3071	}
3072
3073	/* all the other attributes exist to support constraints;
3074	 * don't show them if there are no constraints, or if the
3075	 * relevant supporting methods are missing.
3076	 */
3077	if (!rdev->constraints)
3078		return status;
3079
3080	/* constraints need specific supporting methods */
3081	if (ops->set_voltage || ops->set_voltage_sel) {
3082		status = device_create_file(dev, &dev_attr_min_microvolts);
3083		if (status < 0)
3084			return status;
3085		status = device_create_file(dev, &dev_attr_max_microvolts);
3086		if (status < 0)
3087			return status;
3088	}
3089	if (ops->set_current_limit) {
3090		status = device_create_file(dev, &dev_attr_min_microamps);
3091		if (status < 0)
3092			return status;
3093		status = device_create_file(dev, &dev_attr_max_microamps);
3094		if (status < 0)
3095			return status;
3096	}
3097
3098	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3099	if (status < 0)
3100		return status;
3101	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3102	if (status < 0)
3103		return status;
3104	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3105	if (status < 0)
3106		return status;
3107
3108	if (ops->set_suspend_voltage) {
3109		status = device_create_file(dev,
3110				&dev_attr_suspend_standby_microvolts);
3111		if (status < 0)
3112			return status;
3113		status = device_create_file(dev,
3114				&dev_attr_suspend_mem_microvolts);
3115		if (status < 0)
3116			return status;
3117		status = device_create_file(dev,
3118				&dev_attr_suspend_disk_microvolts);
3119		if (status < 0)
3120			return status;
3121	}
3122
3123	if (ops->set_suspend_mode) {
3124		status = device_create_file(dev,
3125				&dev_attr_suspend_standby_mode);
3126		if (status < 0)
3127			return status;
3128		status = device_create_file(dev,
3129				&dev_attr_suspend_mem_mode);
3130		if (status < 0)
3131			return status;
3132		status = device_create_file(dev,
3133				&dev_attr_suspend_disk_mode);
3134		if (status < 0)
3135			return status;
3136	}
3137
3138	return status;
3139}
3140
3141static void rdev_init_debugfs(struct regulator_dev *rdev)
3142{
3143	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3144	if (!rdev->debugfs) {
3145		rdev_warn(rdev, "Failed to create debugfs directory\n");
3146		return;
3147	}
3148
3149	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3150			   &rdev->use_count);
3151	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3152			   &rdev->open_count);
3153}
3154
3155/**
3156 * regulator_register - register regulator
3157 * @regulator_desc: regulator to register
3158 * @config: runtime configuration for regulator
3159 *
3160 * Called by regulator drivers to register a regulator.
3161 * Returns 0 on success.
3162 */
3163struct regulator_dev *
3164regulator_register(const struct regulator_desc *regulator_desc,
3165		   const struct regulator_config *config)
3166{
3167	const struct regulation_constraints *constraints = NULL;
3168	const struct regulator_init_data *init_data;
3169	static atomic_t regulator_no = ATOMIC_INIT(0);
3170	struct regulator_dev *rdev;
3171	struct device *dev;
3172	int ret, i;
3173	const char *supply = NULL;
3174
3175	if (regulator_desc == NULL || config == NULL)
3176		return ERR_PTR(-EINVAL);
3177
3178	dev = config->dev;
3179	WARN_ON(!dev);
3180
3181	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3182		return ERR_PTR(-EINVAL);
3183
3184	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3185	    regulator_desc->type != REGULATOR_CURRENT)
3186		return ERR_PTR(-EINVAL);
3187
3188	/* Only one of each should be implemented */
3189	WARN_ON(regulator_desc->ops->get_voltage &&
3190		regulator_desc->ops->get_voltage_sel);
3191	WARN_ON(regulator_desc->ops->set_voltage &&
3192		regulator_desc->ops->set_voltage_sel);
3193
3194	/* If we're using selectors we must implement list_voltage. */
3195	if (regulator_desc->ops->get_voltage_sel &&
3196	    !regulator_desc->ops->list_voltage) {
3197		return ERR_PTR(-EINVAL);
3198	}
3199	if (regulator_desc->ops->set_voltage_sel &&
3200	    !regulator_desc->ops->list_voltage) {
3201		return ERR_PTR(-EINVAL);
3202	}
3203
3204	init_data = config->init_data;
3205
3206	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3207	if (rdev == NULL)
3208		return ERR_PTR(-ENOMEM);
3209
3210	mutex_lock(&regulator_list_mutex);
3211
3212	mutex_init(&rdev->mutex);
3213	rdev->reg_data = config->driver_data;
3214	rdev->owner = regulator_desc->owner;
3215	rdev->desc = regulator_desc;
3216	if (config->regmap)
3217		rdev->regmap = config->regmap;
3218	else
3219		rdev->regmap = dev_get_regmap(dev, NULL);
3220	INIT_LIST_HEAD(&rdev->consumer_list);
3221	INIT_LIST_HEAD(&rdev->list);
3222	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3223	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3224
3225	/* preform any regulator specific init */
3226	if (init_data && init_data->regulator_init) {
3227		ret = init_data->regulator_init(rdev->reg_data);
3228		if (ret < 0)
3229			goto clean;
3230	}
3231
3232	/* register with sysfs */
3233	rdev->dev.class = &regulator_class;
3234	rdev->dev.of_node = config->of_node;
3235	rdev->dev.parent = dev;
3236	dev_set_name(&rdev->dev, "regulator.%d",
3237		     atomic_inc_return(&regulator_no) - 1);
3238	ret = device_register(&rdev->dev);
3239	if (ret != 0) {
3240		put_device(&rdev->dev);
3241		goto clean;
3242	}
3243
3244	dev_set_drvdata(&rdev->dev, rdev);
3245
3246	/* set regulator constraints */
3247	if (init_data)
3248		constraints = &init_data->constraints;
3249
3250	ret = set_machine_constraints(rdev, constraints);
3251	if (ret < 0)
3252		goto scrub;
3253
3254	/* add attributes supported by this regulator */
3255	ret = add_regulator_attributes(rdev);
3256	if (ret < 0)
3257		goto scrub;
3258
3259	if (init_data && init_data->supply_regulator)
3260		supply = init_data->supply_regulator;
3261	else if (regulator_desc->supply_name)
3262		supply = regulator_desc->supply_name;
3263
3264	if (supply) {
3265		struct regulator_dev *r;
3266
3267		r = regulator_dev_lookup(dev, supply, &ret);
3268
3269		if (!r) {
3270			dev_err(dev, "Failed to find supply %s\n", supply);
3271			ret = -EPROBE_DEFER;
3272			goto scrub;
3273		}
3274
3275		ret = set_supply(rdev, r);
3276		if (ret < 0)
3277			goto scrub;
3278
3279		/* Enable supply if rail is enabled */
3280		if (_regulator_is_enabled(rdev)) {
3281			ret = regulator_enable(rdev->supply);
3282			if (ret < 0)
3283				goto scrub;
3284		}
3285	}
3286
3287	/* add consumers devices */
3288	if (init_data) {
3289		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3290			ret = set_consumer_device_supply(rdev,
3291				init_data->consumer_supplies[i].dev_name,
3292				init_data->consumer_supplies[i].supply);
3293			if (ret < 0) {
3294				dev_err(dev, "Failed to set supply %s\n",
3295					init_data->consumer_supplies[i].supply);
3296				goto unset_supplies;
3297			}
3298		}
3299	}
3300
3301	list_add(&rdev->list, &regulator_list);
3302
3303	rdev_init_debugfs(rdev);
3304out:
3305	mutex_unlock(&regulator_list_mutex);
3306	return rdev;
3307
3308unset_supplies:
3309	unset_regulator_supplies(rdev);
3310
3311scrub:
3312	if (rdev->supply)
3313		regulator_put(rdev->supply);
3314	kfree(rdev->constraints);
3315	device_unregister(&rdev->dev);
3316	/* device core frees rdev */
3317	rdev = ERR_PTR(ret);
3318	goto out;
3319
3320clean:
3321	kfree(rdev);
3322	rdev = ERR_PTR(ret);
3323	goto out;
3324}
3325EXPORT_SYMBOL_GPL(regulator_register);
3326
3327/**
3328 * regulator_unregister - unregister regulator
3329 * @rdev: regulator to unregister
3330 *
3331 * Called by regulator drivers to unregister a regulator.
3332 */
3333void regulator_unregister(struct regulator_dev *rdev)
3334{
3335	if (rdev == NULL)
3336		return;
3337
3338	if (rdev->supply)
3339		regulator_put(rdev->supply);
3340	mutex_lock(&regulator_list_mutex);
3341	debugfs_remove_recursive(rdev->debugfs);
3342	flush_work_sync(&rdev->disable_work.work);
3343	WARN_ON(rdev->open_count);
3344	unset_regulator_supplies(rdev);
3345	list_del(&rdev->list);
3346	kfree(rdev->constraints);
3347	device_unregister(&rdev->dev);
3348	mutex_unlock(&regulator_list_mutex);
3349}
3350EXPORT_SYMBOL_GPL(regulator_unregister);
3351
3352/**
3353 * regulator_suspend_prepare - prepare regulators for system wide suspend
3354 * @state: system suspend state
3355 *
3356 * Configure each regulator with it's suspend operating parameters for state.
3357 * This will usually be called by machine suspend code prior to supending.
3358 */
3359int regulator_suspend_prepare(suspend_state_t state)
3360{
3361	struct regulator_dev *rdev;
3362	int ret = 0;
3363
3364	/* ON is handled by regulator active state */
3365	if (state == PM_SUSPEND_ON)
3366		return -EINVAL;
3367
3368	mutex_lock(&regulator_list_mutex);
3369	list_for_each_entry(rdev, &regulator_list, list) {
3370
3371		mutex_lock(&rdev->mutex);
3372		ret = suspend_prepare(rdev, state);
3373		mutex_unlock(&rdev->mutex);
3374
3375		if (ret < 0) {
3376			rdev_err(rdev, "failed to prepare\n");
3377			goto out;
3378		}
3379	}
3380out:
3381	mutex_unlock(&regulator_list_mutex);
3382	return ret;
3383}
3384EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3385
3386/**
3387 * regulator_suspend_finish - resume regulators from system wide suspend
3388 *
3389 * Turn on regulators that might be turned off by regulator_suspend_prepare
3390 * and that should be turned on according to the regulators properties.
3391 */
3392int regulator_suspend_finish(void)
3393{
3394	struct regulator_dev *rdev;
3395	int ret = 0, error;
3396
3397	mutex_lock(&regulator_list_mutex);
3398	list_for_each_entry(rdev, &regulator_list, list) {
3399		struct regulator_ops *ops = rdev->desc->ops;
3400
3401		mutex_lock(&rdev->mutex);
3402		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3403				ops->enable) {
3404			error = ops->enable(rdev);
3405			if (error)
3406				ret = error;
3407		} else {
3408			if (!has_full_constraints)
3409				goto unlock;
3410			if (!ops->disable)
3411				goto unlock;
3412			if (!_regulator_is_enabled(rdev))
3413				goto unlock;
3414
3415			error = ops->disable(rdev);
3416			if (error)
3417				ret = error;
3418		}
3419unlock:
3420		mutex_unlock(&rdev->mutex);
3421	}
3422	mutex_unlock(&regulator_list_mutex);
3423	return ret;
3424}
3425EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3426
3427/**
3428 * regulator_has_full_constraints - the system has fully specified constraints
3429 *
3430 * Calling this function will cause the regulator API to disable all
3431 * regulators which have a zero use count and don't have an always_on
3432 * constraint in a late_initcall.
3433 *
3434 * The intention is that this will become the default behaviour in a
3435 * future kernel release so users are encouraged to use this facility
3436 * now.
3437 */
3438void regulator_has_full_constraints(void)
3439{
3440	has_full_constraints = 1;
3441}
3442EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3443
3444/**
3445 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3446 *
3447 * Calling this function will cause the regulator API to provide a
3448 * dummy regulator to consumers if no physical regulator is found,
3449 * allowing most consumers to proceed as though a regulator were
3450 * configured.  This allows systems such as those with software
3451 * controllable regulators for the CPU core only to be brought up more
3452 * readily.
3453 */
3454void regulator_use_dummy_regulator(void)
3455{
3456	board_wants_dummy_regulator = true;
3457}
3458EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3459
3460/**
3461 * rdev_get_drvdata - get rdev regulator driver data
3462 * @rdev: regulator
3463 *
3464 * Get rdev regulator driver private data. This call can be used in the
3465 * regulator driver context.
3466 */
3467void *rdev_get_drvdata(struct regulator_dev *rdev)
3468{
3469	return rdev->reg_data;
3470}
3471EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3472
3473/**
3474 * regulator_get_drvdata - get regulator driver data
3475 * @regulator: regulator
3476 *
3477 * Get regulator driver private data. This call can be used in the consumer
3478 * driver context when non API regulator specific functions need to be called.
3479 */
3480void *regulator_get_drvdata(struct regulator *regulator)
3481{
3482	return regulator->rdev->reg_data;
3483}
3484EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3485
3486/**
3487 * regulator_set_drvdata - set regulator driver data
3488 * @regulator: regulator
3489 * @data: data
3490 */
3491void regulator_set_drvdata(struct regulator *regulator, void *data)
3492{
3493	regulator->rdev->reg_data = data;
3494}
3495EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3496
3497/**
3498 * regulator_get_id - get regulator ID
3499 * @rdev: regulator
3500 */
3501int rdev_get_id(struct regulator_dev *rdev)
3502{
3503	return rdev->desc->id;
3504}
3505EXPORT_SYMBOL_GPL(rdev_get_id);
3506
3507struct device *rdev_get_dev(struct regulator_dev *rdev)
3508{
3509	return &rdev->dev;
3510}
3511EXPORT_SYMBOL_GPL(rdev_get_dev);
3512
3513void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3514{
3515	return reg_init_data->driver_data;
3516}
3517EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3518
3519#ifdef CONFIG_DEBUG_FS
3520static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3521				    size_t count, loff_t *ppos)
3522{
3523	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3524	ssize_t len, ret = 0;
3525	struct regulator_map *map;
3526
3527	if (!buf)
3528		return -ENOMEM;
3529
3530	list_for_each_entry(map, &regulator_map_list, list) {
3531		len = snprintf(buf + ret, PAGE_SIZE - ret,
3532			       "%s -> %s.%s\n",
3533			       rdev_get_name(map->regulator), map->dev_name,
3534			       map->supply);
3535		if (len >= 0)
3536			ret += len;
3537		if (ret > PAGE_SIZE) {
3538			ret = PAGE_SIZE;
3539			break;
3540		}
3541	}
3542
3543	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3544
3545	kfree(buf);
3546
3547	return ret;
3548}
3549#endif
3550
3551static const struct file_operations supply_map_fops = {
3552#ifdef CONFIG_DEBUG_FS
3553	.read = supply_map_read_file,
3554	.llseek = default_llseek,
3555#endif
3556};
3557
3558static int __init regulator_init(void)
3559{
3560	int ret;
3561
3562	ret = class_register(&regulator_class);
3563
3564	debugfs_root = debugfs_create_dir("regulator", NULL);
3565	if (!debugfs_root)
3566		pr_warn("regulator: Failed to create debugfs directory\n");
3567
3568	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3569			    &supply_map_fops);
3570
3571	regulator_dummy_init();
3572
3573	return ret;
3574}
3575
3576/* init early to allow our consumers to complete system booting */
3577core_initcall(regulator_init);
3578
3579static int __init regulator_init_complete(void)
3580{
3581	struct regulator_dev *rdev;
3582	struct regulator_ops *ops;
3583	struct regulation_constraints *c;
3584	int enabled, ret;
3585
3586	mutex_lock(&regulator_list_mutex);
3587
3588	/* If we have a full configuration then disable any regulators
3589	 * which are not in use or always_on.  This will become the
3590	 * default behaviour in the future.
3591	 */
3592	list_for_each_entry(rdev, &regulator_list, list) {
3593		ops = rdev->desc->ops;
3594		c = rdev->constraints;
3595
3596		if (!ops->disable || (c && c->always_on))
3597			continue;
3598
3599		mutex_lock(&rdev->mutex);
3600
3601		if (rdev->use_count)
3602			goto unlock;
3603
3604		/* If we can't read the status assume it's on. */
3605		if (ops->is_enabled)
3606			enabled = ops->is_enabled(rdev);
3607		else
3608			enabled = 1;
3609
3610		if (!enabled)
3611			goto unlock;
3612
3613		if (has_full_constraints) {
3614			/* We log since this may kill the system if it
3615			 * goes wrong. */
3616			rdev_info(rdev, "disabling\n");
3617			ret = ops->disable(rdev);
3618			if (ret != 0) {
3619				rdev_err(rdev, "couldn't disable: %d\n", ret);
3620			}
3621		} else {
3622			/* The intention is that in future we will
3623			 * assume that full constraints are provided
3624			 * so warn even if we aren't going to do
3625			 * anything here.
3626			 */
3627			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3628		}
3629
3630unlock:
3631		mutex_unlock(&rdev->mutex);
3632	}
3633
3634	mutex_unlock(&regulator_list_mutex);
3635
3636	return 0;
3637}
3638late_initcall(regulator_init_complete);
3639