core.c revision 5de705194e9883a39f993e2ff96028d5aab99b37
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_crit(rdev, fmt, ...)					\
38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_err(rdev, fmt, ...)					\
40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_warn(rdev, fmt, ...)					\
42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_info(rdev, fmt, ...)					\
44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_dbg(rdev, fmt, ...)					\
46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48static DEFINE_MUTEX(regulator_list_mutex);
49static LIST_HEAD(regulator_list);
50static LIST_HEAD(regulator_map_list);
51static bool has_full_constraints;
52static bool board_wants_dummy_regulator;
53
54#ifdef CONFIG_DEBUG_FS
55static struct dentry *debugfs_root;
56#endif
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	int uA_load;
79	int min_uV;
80	int max_uV;
81	char *supply_name;
82	struct device_attribute dev_attr;
83	struct regulator_dev *rdev;
84#ifdef CONFIG_DEBUG_FS
85	struct dentry *debugfs;
86#endif
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95				  unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97				     int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99					  struct device *dev,
100					  const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104	if (rdev->constraints && rdev->constraints->name)
105		return rdev->constraints->name;
106	else if (rdev->desc->name)
107		return rdev->desc->name;
108	else
109		return "";
110}
111
112/* gets the regulator for a given consumer device */
113static struct regulator *get_device_regulator(struct device *dev)
114{
115	struct regulator *regulator = NULL;
116	struct regulator_dev *rdev;
117
118	mutex_lock(&regulator_list_mutex);
119	list_for_each_entry(rdev, &regulator_list, list) {
120		mutex_lock(&rdev->mutex);
121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
122			if (regulator->dev == dev) {
123				mutex_unlock(&rdev->mutex);
124				mutex_unlock(&regulator_list_mutex);
125				return regulator;
126			}
127		}
128		mutex_unlock(&rdev->mutex);
129	}
130	mutex_unlock(&regulator_list_mutex);
131	return NULL;
132}
133
134/* Platform voltage constraint check */
135static int regulator_check_voltage(struct regulator_dev *rdev,
136				   int *min_uV, int *max_uV)
137{
138	BUG_ON(*min_uV > *max_uV);
139
140	if (!rdev->constraints) {
141		rdev_err(rdev, "no constraints\n");
142		return -ENODEV;
143	}
144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145		rdev_err(rdev, "operation not allowed\n");
146		return -EPERM;
147	}
148
149	if (*max_uV > rdev->constraints->max_uV)
150		*max_uV = rdev->constraints->max_uV;
151	if (*min_uV < rdev->constraints->min_uV)
152		*min_uV = rdev->constraints->min_uV;
153
154	if (*min_uV > *max_uV)
155		return -EINVAL;
156
157	return 0;
158}
159
160/* Make sure we select a voltage that suits the needs of all
161 * regulator consumers
162 */
163static int regulator_check_consumers(struct regulator_dev *rdev,
164				     int *min_uV, int *max_uV)
165{
166	struct regulator *regulator;
167
168	list_for_each_entry(regulator, &rdev->consumer_list, list) {
169		/*
170		 * Assume consumers that didn't say anything are OK
171		 * with anything in the constraint range.
172		 */
173		if (!regulator->min_uV && !regulator->max_uV)
174			continue;
175
176		if (*max_uV > regulator->max_uV)
177			*max_uV = regulator->max_uV;
178		if (*min_uV < regulator->min_uV)
179			*min_uV = regulator->min_uV;
180	}
181
182	if (*min_uV > *max_uV)
183		return -EINVAL;
184
185	return 0;
186}
187
188/* current constraint check */
189static int regulator_check_current_limit(struct regulator_dev *rdev,
190					int *min_uA, int *max_uA)
191{
192	BUG_ON(*min_uA > *max_uA);
193
194	if (!rdev->constraints) {
195		rdev_err(rdev, "no constraints\n");
196		return -ENODEV;
197	}
198	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
199		rdev_err(rdev, "operation not allowed\n");
200		return -EPERM;
201	}
202
203	if (*max_uA > rdev->constraints->max_uA)
204		*max_uA = rdev->constraints->max_uA;
205	if (*min_uA < rdev->constraints->min_uA)
206		*min_uA = rdev->constraints->min_uA;
207
208	if (*min_uA > *max_uA)
209		return -EINVAL;
210
211	return 0;
212}
213
214/* operating mode constraint check */
215static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
216{
217	switch (*mode) {
218	case REGULATOR_MODE_FAST:
219	case REGULATOR_MODE_NORMAL:
220	case REGULATOR_MODE_IDLE:
221	case REGULATOR_MODE_STANDBY:
222		break;
223	default:
224		return -EINVAL;
225	}
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	/* The modes are bitmasks, the most power hungry modes having
237	 * the lowest values. If the requested mode isn't supported
238	 * try higher modes. */
239	while (*mode) {
240		if (rdev->constraints->valid_modes_mask & *mode)
241			return 0;
242		*mode /= 2;
243	}
244
245	return -EINVAL;
246}
247
248/* dynamic regulator mode switching constraint check */
249static int regulator_check_drms(struct regulator_dev *rdev)
250{
251	if (!rdev->constraints) {
252		rdev_err(rdev, "no constraints\n");
253		return -ENODEV;
254	}
255	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
256		rdev_err(rdev, "operation not allowed\n");
257		return -EPERM;
258	}
259	return 0;
260}
261
262static ssize_t device_requested_uA_show(struct device *dev,
263			     struct device_attribute *attr, char *buf)
264{
265	struct regulator *regulator;
266
267	regulator = get_device_regulator(dev);
268	if (regulator == NULL)
269		return 0;
270
271	return sprintf(buf, "%d\n", regulator->uA_load);
272}
273
274static ssize_t regulator_uV_show(struct device *dev,
275				struct device_attribute *attr, char *buf)
276{
277	struct regulator_dev *rdev = dev_get_drvdata(dev);
278	ssize_t ret;
279
280	mutex_lock(&rdev->mutex);
281	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
282	mutex_unlock(&rdev->mutex);
283
284	return ret;
285}
286static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
287
288static ssize_t regulator_uA_show(struct device *dev,
289				struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292
293	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
294}
295static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
296
297static ssize_t regulator_name_show(struct device *dev,
298			     struct device_attribute *attr, char *buf)
299{
300	struct regulator_dev *rdev = dev_get_drvdata(dev);
301
302	return sprintf(buf, "%s\n", rdev_get_name(rdev));
303}
304
305static ssize_t regulator_print_opmode(char *buf, int mode)
306{
307	switch (mode) {
308	case REGULATOR_MODE_FAST:
309		return sprintf(buf, "fast\n");
310	case REGULATOR_MODE_NORMAL:
311		return sprintf(buf, "normal\n");
312	case REGULATOR_MODE_IDLE:
313		return sprintf(buf, "idle\n");
314	case REGULATOR_MODE_STANDBY:
315		return sprintf(buf, "standby\n");
316	}
317	return sprintf(buf, "unknown\n");
318}
319
320static ssize_t regulator_opmode_show(struct device *dev,
321				    struct device_attribute *attr, char *buf)
322{
323	struct regulator_dev *rdev = dev_get_drvdata(dev);
324
325	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
326}
327static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
328
329static ssize_t regulator_print_state(char *buf, int state)
330{
331	if (state > 0)
332		return sprintf(buf, "enabled\n");
333	else if (state == 0)
334		return sprintf(buf, "disabled\n");
335	else
336		return sprintf(buf, "unknown\n");
337}
338
339static ssize_t regulator_state_show(struct device *dev,
340				   struct device_attribute *attr, char *buf)
341{
342	struct regulator_dev *rdev = dev_get_drvdata(dev);
343	ssize_t ret;
344
345	mutex_lock(&rdev->mutex);
346	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
347	mutex_unlock(&rdev->mutex);
348
349	return ret;
350}
351static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
352
353static ssize_t regulator_status_show(struct device *dev,
354				   struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357	int status;
358	char *label;
359
360	status = rdev->desc->ops->get_status(rdev);
361	if (status < 0)
362		return status;
363
364	switch (status) {
365	case REGULATOR_STATUS_OFF:
366		label = "off";
367		break;
368	case REGULATOR_STATUS_ON:
369		label = "on";
370		break;
371	case REGULATOR_STATUS_ERROR:
372		label = "error";
373		break;
374	case REGULATOR_STATUS_FAST:
375		label = "fast";
376		break;
377	case REGULATOR_STATUS_NORMAL:
378		label = "normal";
379		break;
380	case REGULATOR_STATUS_IDLE:
381		label = "idle";
382		break;
383	case REGULATOR_STATUS_STANDBY:
384		label = "standby";
385		break;
386	default:
387		return -ERANGE;
388	}
389
390	return sprintf(buf, "%s\n", label);
391}
392static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
393
394static ssize_t regulator_min_uA_show(struct device *dev,
395				    struct device_attribute *attr, char *buf)
396{
397	struct regulator_dev *rdev = dev_get_drvdata(dev);
398
399	if (!rdev->constraints)
400		return sprintf(buf, "constraint not defined\n");
401
402	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
403}
404static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
405
406static ssize_t regulator_max_uA_show(struct device *dev,
407				    struct device_attribute *attr, char *buf)
408{
409	struct regulator_dev *rdev = dev_get_drvdata(dev);
410
411	if (!rdev->constraints)
412		return sprintf(buf, "constraint not defined\n");
413
414	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
415}
416static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
417
418static ssize_t regulator_min_uV_show(struct device *dev,
419				    struct device_attribute *attr, char *buf)
420{
421	struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423	if (!rdev->constraints)
424		return sprintf(buf, "constraint not defined\n");
425
426	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
427}
428static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
429
430static ssize_t regulator_max_uV_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
439}
440static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
441
442static ssize_t regulator_total_uA_show(struct device *dev,
443				      struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446	struct regulator *regulator;
447	int uA = 0;
448
449	mutex_lock(&rdev->mutex);
450	list_for_each_entry(regulator, &rdev->consumer_list, list)
451		uA += regulator->uA_load;
452	mutex_unlock(&rdev->mutex);
453	return sprintf(buf, "%d\n", uA);
454}
455static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
456
457static ssize_t regulator_num_users_show(struct device *dev,
458				      struct device_attribute *attr, char *buf)
459{
460	struct regulator_dev *rdev = dev_get_drvdata(dev);
461	return sprintf(buf, "%d\n", rdev->use_count);
462}
463
464static ssize_t regulator_type_show(struct device *dev,
465				  struct device_attribute *attr, char *buf)
466{
467	struct regulator_dev *rdev = dev_get_drvdata(dev);
468
469	switch (rdev->desc->type) {
470	case REGULATOR_VOLTAGE:
471		return sprintf(buf, "voltage\n");
472	case REGULATOR_CURRENT:
473		return sprintf(buf, "current\n");
474	}
475	return sprintf(buf, "unknown\n");
476}
477
478static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
479				struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
484}
485static DEVICE_ATTR(suspend_mem_microvolts, 0444,
486		regulator_suspend_mem_uV_show, NULL);
487
488static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
489				struct device_attribute *attr, char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492
493	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
494}
495static DEVICE_ATTR(suspend_disk_microvolts, 0444,
496		regulator_suspend_disk_uV_show, NULL);
497
498static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
499				struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
504}
505static DEVICE_ATTR(suspend_standby_microvolts, 0444,
506		regulator_suspend_standby_uV_show, NULL);
507
508static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
509				struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	return regulator_print_opmode(buf,
514		rdev->constraints->state_mem.mode);
515}
516static DEVICE_ATTR(suspend_mem_mode, 0444,
517		regulator_suspend_mem_mode_show, NULL);
518
519static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return regulator_print_opmode(buf,
525		rdev->constraints->state_disk.mode);
526}
527static DEVICE_ATTR(suspend_disk_mode, 0444,
528		regulator_suspend_disk_mode_show, NULL);
529
530static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
531				struct device_attribute *attr, char *buf)
532{
533	struct regulator_dev *rdev = dev_get_drvdata(dev);
534
535	return regulator_print_opmode(buf,
536		rdev->constraints->state_standby.mode);
537}
538static DEVICE_ATTR(suspend_standby_mode, 0444,
539		regulator_suspend_standby_mode_show, NULL);
540
541static ssize_t regulator_suspend_mem_state_show(struct device *dev,
542				   struct device_attribute *attr, char *buf)
543{
544	struct regulator_dev *rdev = dev_get_drvdata(dev);
545
546	return regulator_print_state(buf,
547			rdev->constraints->state_mem.enabled);
548}
549static DEVICE_ATTR(suspend_mem_state, 0444,
550		regulator_suspend_mem_state_show, NULL);
551
552static ssize_t regulator_suspend_disk_state_show(struct device *dev,
553				   struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_state(buf,
558			rdev->constraints->state_disk.enabled);
559}
560static DEVICE_ATTR(suspend_disk_state, 0444,
561		regulator_suspend_disk_state_show, NULL);
562
563static ssize_t regulator_suspend_standby_state_show(struct device *dev,
564				   struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_state(buf,
569			rdev->constraints->state_standby.enabled);
570}
571static DEVICE_ATTR(suspend_standby_state, 0444,
572		regulator_suspend_standby_state_show, NULL);
573
574
575/*
576 * These are the only attributes are present for all regulators.
577 * Other attributes are a function of regulator functionality.
578 */
579static struct device_attribute regulator_dev_attrs[] = {
580	__ATTR(name, 0444, regulator_name_show, NULL),
581	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
582	__ATTR(type, 0444, regulator_type_show, NULL),
583	__ATTR_NULL,
584};
585
586static void regulator_dev_release(struct device *dev)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589	kfree(rdev);
590}
591
592static struct class regulator_class = {
593	.name = "regulator",
594	.dev_release = regulator_dev_release,
595	.dev_attrs = regulator_dev_attrs,
596};
597
598/* Calculate the new optimum regulator operating mode based on the new total
599 * consumer load. All locks held by caller */
600static void drms_uA_update(struct regulator_dev *rdev)
601{
602	struct regulator *sibling;
603	int current_uA = 0, output_uV, input_uV, err;
604	unsigned int mode;
605
606	err = regulator_check_drms(rdev);
607	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
608	    (!rdev->desc->ops->get_voltage &&
609	     !rdev->desc->ops->get_voltage_sel) ||
610	    !rdev->desc->ops->set_mode)
611		return;
612
613	/* get output voltage */
614	output_uV = _regulator_get_voltage(rdev);
615	if (output_uV <= 0)
616		return;
617
618	/* get input voltage */
619	input_uV = 0;
620	if (rdev->supply)
621		input_uV = _regulator_get_voltage(rdev);
622	if (input_uV <= 0)
623		input_uV = rdev->constraints->input_uV;
624	if (input_uV <= 0)
625		return;
626
627	/* calc total requested load */
628	list_for_each_entry(sibling, &rdev->consumer_list, list)
629		current_uA += sibling->uA_load;
630
631	/* now get the optimum mode for our new total regulator load */
632	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
633						  output_uV, current_uA);
634
635	/* check the new mode is allowed */
636	err = regulator_mode_constrain(rdev, &mode);
637	if (err == 0)
638		rdev->desc->ops->set_mode(rdev, mode);
639}
640
641static int suspend_set_state(struct regulator_dev *rdev,
642	struct regulator_state *rstate)
643{
644	int ret = 0;
645	bool can_set_state;
646
647	can_set_state = rdev->desc->ops->set_suspend_enable &&
648		rdev->desc->ops->set_suspend_disable;
649
650	/* If we have no suspend mode configration don't set anything;
651	 * only warn if the driver actually makes the suspend mode
652	 * configurable.
653	 */
654	if (!rstate->enabled && !rstate->disabled) {
655		if (can_set_state)
656			rdev_warn(rdev, "No configuration\n");
657		return 0;
658	}
659
660	if (rstate->enabled && rstate->disabled) {
661		rdev_err(rdev, "invalid configuration\n");
662		return -EINVAL;
663	}
664
665	if (!can_set_state) {
666		rdev_err(rdev, "no way to set suspend state\n");
667		return -EINVAL;
668	}
669
670	if (rstate->enabled)
671		ret = rdev->desc->ops->set_suspend_enable(rdev);
672	else
673		ret = rdev->desc->ops->set_suspend_disable(rdev);
674	if (ret < 0) {
675		rdev_err(rdev, "failed to enabled/disable\n");
676		return ret;
677	}
678
679	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
680		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
681		if (ret < 0) {
682			rdev_err(rdev, "failed to set voltage\n");
683			return ret;
684		}
685	}
686
687	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
688		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
689		if (ret < 0) {
690			rdev_err(rdev, "failed to set mode\n");
691			return ret;
692		}
693	}
694	return ret;
695}
696
697/* locks held by caller */
698static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
699{
700	if (!rdev->constraints)
701		return -EINVAL;
702
703	switch (state) {
704	case PM_SUSPEND_STANDBY:
705		return suspend_set_state(rdev,
706			&rdev->constraints->state_standby);
707	case PM_SUSPEND_MEM:
708		return suspend_set_state(rdev,
709			&rdev->constraints->state_mem);
710	case PM_SUSPEND_MAX:
711		return suspend_set_state(rdev,
712			&rdev->constraints->state_disk);
713	default:
714		return -EINVAL;
715	}
716}
717
718static void print_constraints(struct regulator_dev *rdev)
719{
720	struct regulation_constraints *constraints = rdev->constraints;
721	char buf[80] = "";
722	int count = 0;
723	int ret;
724
725	if (constraints->min_uV && constraints->max_uV) {
726		if (constraints->min_uV == constraints->max_uV)
727			count += sprintf(buf + count, "%d mV ",
728					 constraints->min_uV / 1000);
729		else
730			count += sprintf(buf + count, "%d <--> %d mV ",
731					 constraints->min_uV / 1000,
732					 constraints->max_uV / 1000);
733	}
734
735	if (!constraints->min_uV ||
736	    constraints->min_uV != constraints->max_uV) {
737		ret = _regulator_get_voltage(rdev);
738		if (ret > 0)
739			count += sprintf(buf + count, "at %d mV ", ret / 1000);
740	}
741
742	if (constraints->uV_offset)
743		count += sprintf(buf, "%dmV offset ",
744				 constraints->uV_offset / 1000);
745
746	if (constraints->min_uA && constraints->max_uA) {
747		if (constraints->min_uA == constraints->max_uA)
748			count += sprintf(buf + count, "%d mA ",
749					 constraints->min_uA / 1000);
750		else
751			count += sprintf(buf + count, "%d <--> %d mA ",
752					 constraints->min_uA / 1000,
753					 constraints->max_uA / 1000);
754	}
755
756	if (!constraints->min_uA ||
757	    constraints->min_uA != constraints->max_uA) {
758		ret = _regulator_get_current_limit(rdev);
759		if (ret > 0)
760			count += sprintf(buf + count, "at %d mA ", ret / 1000);
761	}
762
763	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
764		count += sprintf(buf + count, "fast ");
765	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
766		count += sprintf(buf + count, "normal ");
767	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
768		count += sprintf(buf + count, "idle ");
769	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
770		count += sprintf(buf + count, "standby");
771
772	rdev_info(rdev, "%s\n", buf);
773}
774
775static int machine_constraints_voltage(struct regulator_dev *rdev,
776	struct regulation_constraints *constraints)
777{
778	struct regulator_ops *ops = rdev->desc->ops;
779	int ret;
780
781	/* do we need to apply the constraint voltage */
782	if (rdev->constraints->apply_uV &&
783	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
784		ret = _regulator_do_set_voltage(rdev,
785						rdev->constraints->min_uV,
786						rdev->constraints->max_uV);
787		if (ret < 0) {
788			rdev_err(rdev, "failed to apply %duV constraint\n",
789				 rdev->constraints->min_uV);
790			rdev->constraints = NULL;
791			return ret;
792		}
793	}
794
795	/* constrain machine-level voltage specs to fit
796	 * the actual range supported by this regulator.
797	 */
798	if (ops->list_voltage && rdev->desc->n_voltages) {
799		int	count = rdev->desc->n_voltages;
800		int	i;
801		int	min_uV = INT_MAX;
802		int	max_uV = INT_MIN;
803		int	cmin = constraints->min_uV;
804		int	cmax = constraints->max_uV;
805
806		/* it's safe to autoconfigure fixed-voltage supplies
807		   and the constraints are used by list_voltage. */
808		if (count == 1 && !cmin) {
809			cmin = 1;
810			cmax = INT_MAX;
811			constraints->min_uV = cmin;
812			constraints->max_uV = cmax;
813		}
814
815		/* voltage constraints are optional */
816		if ((cmin == 0) && (cmax == 0))
817			return 0;
818
819		/* else require explicit machine-level constraints */
820		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
821			rdev_err(rdev, "invalid voltage constraints\n");
822			return -EINVAL;
823		}
824
825		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
826		for (i = 0; i < count; i++) {
827			int	value;
828
829			value = ops->list_voltage(rdev, i);
830			if (value <= 0)
831				continue;
832
833			/* maybe adjust [min_uV..max_uV] */
834			if (value >= cmin && value < min_uV)
835				min_uV = value;
836			if (value <= cmax && value > max_uV)
837				max_uV = value;
838		}
839
840		/* final: [min_uV..max_uV] valid iff constraints valid */
841		if (max_uV < min_uV) {
842			rdev_err(rdev, "unsupportable voltage constraints\n");
843			return -EINVAL;
844		}
845
846		/* use regulator's subset of machine constraints */
847		if (constraints->min_uV < min_uV) {
848			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
849				 constraints->min_uV, min_uV);
850			constraints->min_uV = min_uV;
851		}
852		if (constraints->max_uV > max_uV) {
853			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
854				 constraints->max_uV, max_uV);
855			constraints->max_uV = max_uV;
856		}
857	}
858
859	return 0;
860}
861
862/**
863 * set_machine_constraints - sets regulator constraints
864 * @rdev: regulator source
865 * @constraints: constraints to apply
866 *
867 * Allows platform initialisation code to define and constrain
868 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
869 * Constraints *must* be set by platform code in order for some
870 * regulator operations to proceed i.e. set_voltage, set_current_limit,
871 * set_mode.
872 */
873static int set_machine_constraints(struct regulator_dev *rdev,
874	const struct regulation_constraints *constraints)
875{
876	int ret = 0;
877	struct regulator_ops *ops = rdev->desc->ops;
878
879	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
880				    GFP_KERNEL);
881	if (!rdev->constraints)
882		return -ENOMEM;
883
884	ret = machine_constraints_voltage(rdev, rdev->constraints);
885	if (ret != 0)
886		goto out;
887
888	/* do we need to setup our suspend state */
889	if (constraints->initial_state) {
890		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
891		if (ret < 0) {
892			rdev_err(rdev, "failed to set suspend state\n");
893			rdev->constraints = NULL;
894			goto out;
895		}
896	}
897
898	if (constraints->initial_mode) {
899		if (!ops->set_mode) {
900			rdev_err(rdev, "no set_mode operation\n");
901			ret = -EINVAL;
902			goto out;
903		}
904
905		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
906		if (ret < 0) {
907			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
908			goto out;
909		}
910	}
911
912	/* If the constraints say the regulator should be on at this point
913	 * and we have control then make sure it is enabled.
914	 */
915	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
916	    ops->enable) {
917		ret = ops->enable(rdev);
918		if (ret < 0) {
919			rdev_err(rdev, "failed to enable\n");
920			rdev->constraints = NULL;
921			goto out;
922		}
923	}
924
925	print_constraints(rdev);
926out:
927	return ret;
928}
929
930/**
931 * set_supply - set regulator supply regulator
932 * @rdev: regulator name
933 * @supply_rdev: supply regulator name
934 *
935 * Called by platform initialisation code to set the supply regulator for this
936 * regulator. This ensures that a regulators supply will also be enabled by the
937 * core if it's child is enabled.
938 */
939static int set_supply(struct regulator_dev *rdev,
940		      struct regulator_dev *supply_rdev)
941{
942	int err;
943
944	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
945
946	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
947	if (IS_ERR(rdev->supply)) {
948		err = PTR_ERR(rdev->supply);
949		rdev->supply = NULL;
950		return err;
951	}
952
953	return 0;
954}
955
956/**
957 * set_consumer_device_supply - Bind a regulator to a symbolic supply
958 * @rdev:         regulator source
959 * @consumer_dev: device the supply applies to
960 * @consumer_dev_name: dev_name() string for device supply applies to
961 * @supply:       symbolic name for supply
962 *
963 * Allows platform initialisation code to map physical regulator
964 * sources to symbolic names for supplies for use by devices.  Devices
965 * should use these symbolic names to request regulators, avoiding the
966 * need to provide board-specific regulator names as platform data.
967 *
968 * Only one of consumer_dev and consumer_dev_name may be specified.
969 */
970static int set_consumer_device_supply(struct regulator_dev *rdev,
971	struct device *consumer_dev, const char *consumer_dev_name,
972	const char *supply)
973{
974	struct regulator_map *node;
975	int has_dev;
976
977	if (consumer_dev && consumer_dev_name)
978		return -EINVAL;
979
980	if (!consumer_dev_name && consumer_dev)
981		consumer_dev_name = dev_name(consumer_dev);
982
983	if (supply == NULL)
984		return -EINVAL;
985
986	if (consumer_dev_name != NULL)
987		has_dev = 1;
988	else
989		has_dev = 0;
990
991	list_for_each_entry(node, &regulator_map_list, list) {
992		if (node->dev_name && consumer_dev_name) {
993			if (strcmp(node->dev_name, consumer_dev_name) != 0)
994				continue;
995		} else if (node->dev_name || consumer_dev_name) {
996			continue;
997		}
998
999		if (strcmp(node->supply, supply) != 0)
1000			continue;
1001
1002		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1003			dev_name(&node->regulator->dev),
1004			node->regulator->desc->name,
1005			supply,
1006			dev_name(&rdev->dev), rdev_get_name(rdev));
1007		return -EBUSY;
1008	}
1009
1010	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1011	if (node == NULL)
1012		return -ENOMEM;
1013
1014	node->regulator = rdev;
1015	node->supply = supply;
1016
1017	if (has_dev) {
1018		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1019		if (node->dev_name == NULL) {
1020			kfree(node);
1021			return -ENOMEM;
1022		}
1023	}
1024
1025	list_add(&node->list, &regulator_map_list);
1026	return 0;
1027}
1028
1029static void unset_regulator_supplies(struct regulator_dev *rdev)
1030{
1031	struct regulator_map *node, *n;
1032
1033	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1034		if (rdev == node->regulator) {
1035			list_del(&node->list);
1036			kfree(node->dev_name);
1037			kfree(node);
1038		}
1039	}
1040}
1041
1042#define REG_STR_SIZE	64
1043
1044static struct regulator *create_regulator(struct regulator_dev *rdev,
1045					  struct device *dev,
1046					  const char *supply_name)
1047{
1048	struct regulator *regulator;
1049	char buf[REG_STR_SIZE];
1050	int err, size;
1051
1052	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1053	if (regulator == NULL)
1054		return NULL;
1055
1056	mutex_lock(&rdev->mutex);
1057	regulator->rdev = rdev;
1058	list_add(&regulator->list, &rdev->consumer_list);
1059
1060	if (dev) {
1061		/* create a 'requested_microamps_name' sysfs entry */
1062		size = scnprintf(buf, REG_STR_SIZE,
1063				 "microamps_requested_%s-%s",
1064				 dev_name(dev), supply_name);
1065		if (size >= REG_STR_SIZE)
1066			goto overflow_err;
1067
1068		regulator->dev = dev;
1069		sysfs_attr_init(&regulator->dev_attr.attr);
1070		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1071		if (regulator->dev_attr.attr.name == NULL)
1072			goto attr_name_err;
1073
1074		regulator->dev_attr.attr.mode = 0444;
1075		regulator->dev_attr.show = device_requested_uA_show;
1076		err = device_create_file(dev, &regulator->dev_attr);
1077		if (err < 0) {
1078			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1079			goto attr_name_err;
1080		}
1081
1082		/* also add a link to the device sysfs entry */
1083		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1084				 dev->kobj.name, supply_name);
1085		if (size >= REG_STR_SIZE)
1086			goto attr_err;
1087
1088		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1089		if (regulator->supply_name == NULL)
1090			goto attr_err;
1091
1092		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1093					buf);
1094		if (err) {
1095			rdev_warn(rdev, "could not add device link %s err %d\n",
1096				  dev->kobj.name, err);
1097			goto link_name_err;
1098		}
1099	} else {
1100		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1101		if (regulator->supply_name == NULL)
1102			goto attr_err;
1103	}
1104
1105#ifdef CONFIG_DEBUG_FS
1106	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1107						rdev->debugfs);
1108	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1109		rdev_warn(rdev, "Failed to create debugfs directory\n");
1110		regulator->debugfs = NULL;
1111	} else {
1112		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1113				   &regulator->uA_load);
1114		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1115				   &regulator->min_uV);
1116		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1117				   &regulator->max_uV);
1118	}
1119#endif
1120
1121	mutex_unlock(&rdev->mutex);
1122	return regulator;
1123link_name_err:
1124	kfree(regulator->supply_name);
1125attr_err:
1126	device_remove_file(regulator->dev, &regulator->dev_attr);
1127attr_name_err:
1128	kfree(regulator->dev_attr.attr.name);
1129overflow_err:
1130	list_del(&regulator->list);
1131	kfree(regulator);
1132	mutex_unlock(&rdev->mutex);
1133	return NULL;
1134}
1135
1136static int _regulator_get_enable_time(struct regulator_dev *rdev)
1137{
1138	if (!rdev->desc->ops->enable_time)
1139		return 0;
1140	return rdev->desc->ops->enable_time(rdev);
1141}
1142
1143/* Internal regulator request function */
1144static struct regulator *_regulator_get(struct device *dev, const char *id,
1145					int exclusive)
1146{
1147	struct regulator_dev *rdev;
1148	struct regulator_map *map;
1149	struct regulator *regulator = ERR_PTR(-ENODEV);
1150	const char *devname = NULL;
1151	int ret;
1152
1153	if (id == NULL) {
1154		pr_err("get() with no identifier\n");
1155		return regulator;
1156	}
1157
1158	if (dev)
1159		devname = dev_name(dev);
1160
1161	mutex_lock(&regulator_list_mutex);
1162
1163	list_for_each_entry(map, &regulator_map_list, list) {
1164		/* If the mapping has a device set up it must match */
1165		if (map->dev_name &&
1166		    (!devname || strcmp(map->dev_name, devname)))
1167			continue;
1168
1169		if (strcmp(map->supply, id) == 0) {
1170			rdev = map->regulator;
1171			goto found;
1172		}
1173	}
1174
1175	if (board_wants_dummy_regulator) {
1176		rdev = dummy_regulator_rdev;
1177		goto found;
1178	}
1179
1180#ifdef CONFIG_REGULATOR_DUMMY
1181	if (!devname)
1182		devname = "deviceless";
1183
1184	/* If the board didn't flag that it was fully constrained then
1185	 * substitute in a dummy regulator so consumers can continue.
1186	 */
1187	if (!has_full_constraints) {
1188		pr_warn("%s supply %s not found, using dummy regulator\n",
1189			devname, id);
1190		rdev = dummy_regulator_rdev;
1191		goto found;
1192	}
1193#endif
1194
1195	mutex_unlock(&regulator_list_mutex);
1196	return regulator;
1197
1198found:
1199	if (rdev->exclusive) {
1200		regulator = ERR_PTR(-EPERM);
1201		goto out;
1202	}
1203
1204	if (exclusive && rdev->open_count) {
1205		regulator = ERR_PTR(-EBUSY);
1206		goto out;
1207	}
1208
1209	if (!try_module_get(rdev->owner))
1210		goto out;
1211
1212	regulator = create_regulator(rdev, dev, id);
1213	if (regulator == NULL) {
1214		regulator = ERR_PTR(-ENOMEM);
1215		module_put(rdev->owner);
1216	}
1217
1218	rdev->open_count++;
1219	if (exclusive) {
1220		rdev->exclusive = 1;
1221
1222		ret = _regulator_is_enabled(rdev);
1223		if (ret > 0)
1224			rdev->use_count = 1;
1225		else
1226			rdev->use_count = 0;
1227	}
1228
1229out:
1230	mutex_unlock(&regulator_list_mutex);
1231
1232	return regulator;
1233}
1234
1235/**
1236 * regulator_get - lookup and obtain a reference to a regulator.
1237 * @dev: device for regulator "consumer"
1238 * @id: Supply name or regulator ID.
1239 *
1240 * Returns a struct regulator corresponding to the regulator producer,
1241 * or IS_ERR() condition containing errno.
1242 *
1243 * Use of supply names configured via regulator_set_device_supply() is
1244 * strongly encouraged.  It is recommended that the supply name used
1245 * should match the name used for the supply and/or the relevant
1246 * device pins in the datasheet.
1247 */
1248struct regulator *regulator_get(struct device *dev, const char *id)
1249{
1250	return _regulator_get(dev, id, 0);
1251}
1252EXPORT_SYMBOL_GPL(regulator_get);
1253
1254/**
1255 * regulator_get_exclusive - obtain exclusive access to a regulator.
1256 * @dev: device for regulator "consumer"
1257 * @id: Supply name or regulator ID.
1258 *
1259 * Returns a struct regulator corresponding to the regulator producer,
1260 * or IS_ERR() condition containing errno.  Other consumers will be
1261 * unable to obtain this reference is held and the use count for the
1262 * regulator will be initialised to reflect the current state of the
1263 * regulator.
1264 *
1265 * This is intended for use by consumers which cannot tolerate shared
1266 * use of the regulator such as those which need to force the
1267 * regulator off for correct operation of the hardware they are
1268 * controlling.
1269 *
1270 * Use of supply names configured via regulator_set_device_supply() is
1271 * strongly encouraged.  It is recommended that the supply name used
1272 * should match the name used for the supply and/or the relevant
1273 * device pins in the datasheet.
1274 */
1275struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1276{
1277	return _regulator_get(dev, id, 1);
1278}
1279EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1280
1281/**
1282 * regulator_put - "free" the regulator source
1283 * @regulator: regulator source
1284 *
1285 * Note: drivers must ensure that all regulator_enable calls made on this
1286 * regulator source are balanced by regulator_disable calls prior to calling
1287 * this function.
1288 */
1289void regulator_put(struct regulator *regulator)
1290{
1291	struct regulator_dev *rdev;
1292
1293	if (regulator == NULL || IS_ERR(regulator))
1294		return;
1295
1296	mutex_lock(&regulator_list_mutex);
1297	rdev = regulator->rdev;
1298
1299#ifdef CONFIG_DEBUG_FS
1300	debugfs_remove_recursive(regulator->debugfs);
1301#endif
1302
1303	/* remove any sysfs entries */
1304	if (regulator->dev) {
1305		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1306		device_remove_file(regulator->dev, &regulator->dev_attr);
1307		kfree(regulator->dev_attr.attr.name);
1308	}
1309	kfree(regulator->supply_name);
1310	list_del(&regulator->list);
1311	kfree(regulator);
1312
1313	rdev->open_count--;
1314	rdev->exclusive = 0;
1315
1316	module_put(rdev->owner);
1317	mutex_unlock(&regulator_list_mutex);
1318}
1319EXPORT_SYMBOL_GPL(regulator_put);
1320
1321static int _regulator_can_change_status(struct regulator_dev *rdev)
1322{
1323	if (!rdev->constraints)
1324		return 0;
1325
1326	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1327		return 1;
1328	else
1329		return 0;
1330}
1331
1332/* locks held by regulator_enable() */
1333static int _regulator_enable(struct regulator_dev *rdev)
1334{
1335	int ret, delay;
1336
1337	/* check voltage and requested load before enabling */
1338	if (rdev->constraints &&
1339	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1340		drms_uA_update(rdev);
1341
1342	if (rdev->use_count == 0) {
1343		/* The regulator may on if it's not switchable or left on */
1344		ret = _regulator_is_enabled(rdev);
1345		if (ret == -EINVAL || ret == 0) {
1346			if (!_regulator_can_change_status(rdev))
1347				return -EPERM;
1348
1349			if (!rdev->desc->ops->enable)
1350				return -EINVAL;
1351
1352			/* Query before enabling in case configuration
1353			 * dependent.  */
1354			ret = _regulator_get_enable_time(rdev);
1355			if (ret >= 0) {
1356				delay = ret;
1357			} else {
1358				rdev_warn(rdev, "enable_time() failed: %d\n",
1359					   ret);
1360				delay = 0;
1361			}
1362
1363			trace_regulator_enable(rdev_get_name(rdev));
1364
1365			/* Allow the regulator to ramp; it would be useful
1366			 * to extend this for bulk operations so that the
1367			 * regulators can ramp together.  */
1368			ret = rdev->desc->ops->enable(rdev);
1369			if (ret < 0)
1370				return ret;
1371
1372			trace_regulator_enable_delay(rdev_get_name(rdev));
1373
1374			if (delay >= 1000) {
1375				mdelay(delay / 1000);
1376				udelay(delay % 1000);
1377			} else if (delay) {
1378				udelay(delay);
1379			}
1380
1381			trace_regulator_enable_complete(rdev_get_name(rdev));
1382
1383		} else if (ret < 0) {
1384			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1385			return ret;
1386		}
1387		/* Fallthrough on positive return values - already enabled */
1388	}
1389
1390	rdev->use_count++;
1391
1392	return 0;
1393}
1394
1395/**
1396 * regulator_enable - enable regulator output
1397 * @regulator: regulator source
1398 *
1399 * Request that the regulator be enabled with the regulator output at
1400 * the predefined voltage or current value.  Calls to regulator_enable()
1401 * must be balanced with calls to regulator_disable().
1402 *
1403 * NOTE: the output value can be set by other drivers, boot loader or may be
1404 * hardwired in the regulator.
1405 */
1406int regulator_enable(struct regulator *regulator)
1407{
1408	struct regulator_dev *rdev = regulator->rdev;
1409	int ret = 0;
1410
1411	if (rdev->supply) {
1412		ret = regulator_enable(rdev->supply);
1413		if (ret != 0)
1414			return ret;
1415	}
1416
1417	mutex_lock(&rdev->mutex);
1418	ret = _regulator_enable(rdev);
1419	mutex_unlock(&rdev->mutex);
1420
1421	if (ret != 0)
1422		regulator_disable(rdev->supply);
1423
1424	return ret;
1425}
1426EXPORT_SYMBOL_GPL(regulator_enable);
1427
1428/* locks held by regulator_disable() */
1429static int _regulator_disable(struct regulator_dev *rdev)
1430{
1431	int ret = 0;
1432
1433	if (WARN(rdev->use_count <= 0,
1434		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1435		return -EIO;
1436
1437	/* are we the last user and permitted to disable ? */
1438	if (rdev->use_count == 1 &&
1439	    (rdev->constraints && !rdev->constraints->always_on)) {
1440
1441		/* we are last user */
1442		if (_regulator_can_change_status(rdev) &&
1443		    rdev->desc->ops->disable) {
1444			trace_regulator_disable(rdev_get_name(rdev));
1445
1446			ret = rdev->desc->ops->disable(rdev);
1447			if (ret < 0) {
1448				rdev_err(rdev, "failed to disable\n");
1449				return ret;
1450			}
1451
1452			trace_regulator_disable_complete(rdev_get_name(rdev));
1453
1454			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1455					     NULL);
1456		}
1457
1458		rdev->use_count = 0;
1459	} else if (rdev->use_count > 1) {
1460
1461		if (rdev->constraints &&
1462			(rdev->constraints->valid_ops_mask &
1463			REGULATOR_CHANGE_DRMS))
1464			drms_uA_update(rdev);
1465
1466		rdev->use_count--;
1467	}
1468
1469	return ret;
1470}
1471
1472/**
1473 * regulator_disable - disable regulator output
1474 * @regulator: regulator source
1475 *
1476 * Disable the regulator output voltage or current.  Calls to
1477 * regulator_enable() must be balanced with calls to
1478 * regulator_disable().
1479 *
1480 * NOTE: this will only disable the regulator output if no other consumer
1481 * devices have it enabled, the regulator device supports disabling and
1482 * machine constraints permit this operation.
1483 */
1484int regulator_disable(struct regulator *regulator)
1485{
1486	struct regulator_dev *rdev = regulator->rdev;
1487	int ret = 0;
1488
1489	mutex_lock(&rdev->mutex);
1490	ret = _regulator_disable(rdev);
1491	mutex_unlock(&rdev->mutex);
1492
1493	if (ret == 0 && rdev->supply)
1494		regulator_disable(rdev->supply);
1495
1496	return ret;
1497}
1498EXPORT_SYMBOL_GPL(regulator_disable);
1499
1500/* locks held by regulator_force_disable() */
1501static int _regulator_force_disable(struct regulator_dev *rdev)
1502{
1503	int ret = 0;
1504
1505	/* force disable */
1506	if (rdev->desc->ops->disable) {
1507		/* ah well, who wants to live forever... */
1508		ret = rdev->desc->ops->disable(rdev);
1509		if (ret < 0) {
1510			rdev_err(rdev, "failed to force disable\n");
1511			return ret;
1512		}
1513		/* notify other consumers that power has been forced off */
1514		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1515			REGULATOR_EVENT_DISABLE, NULL);
1516	}
1517
1518	return ret;
1519}
1520
1521/**
1522 * regulator_force_disable - force disable regulator output
1523 * @regulator: regulator source
1524 *
1525 * Forcibly disable the regulator output voltage or current.
1526 * NOTE: this *will* disable the regulator output even if other consumer
1527 * devices have it enabled. This should be used for situations when device
1528 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1529 */
1530int regulator_force_disable(struct regulator *regulator)
1531{
1532	struct regulator_dev *rdev = regulator->rdev;
1533	int ret;
1534
1535	mutex_lock(&rdev->mutex);
1536	regulator->uA_load = 0;
1537	ret = _regulator_force_disable(regulator->rdev);
1538	mutex_unlock(&rdev->mutex);
1539
1540	if (rdev->supply)
1541		while (rdev->open_count--)
1542			regulator_disable(rdev->supply);
1543
1544	return ret;
1545}
1546EXPORT_SYMBOL_GPL(regulator_force_disable);
1547
1548static int _regulator_is_enabled(struct regulator_dev *rdev)
1549{
1550	/* If we don't know then assume that the regulator is always on */
1551	if (!rdev->desc->ops->is_enabled)
1552		return 1;
1553
1554	return rdev->desc->ops->is_enabled(rdev);
1555}
1556
1557/**
1558 * regulator_is_enabled - is the regulator output enabled
1559 * @regulator: regulator source
1560 *
1561 * Returns positive if the regulator driver backing the source/client
1562 * has requested that the device be enabled, zero if it hasn't, else a
1563 * negative errno code.
1564 *
1565 * Note that the device backing this regulator handle can have multiple
1566 * users, so it might be enabled even if regulator_enable() was never
1567 * called for this particular source.
1568 */
1569int regulator_is_enabled(struct regulator *regulator)
1570{
1571	int ret;
1572
1573	mutex_lock(&regulator->rdev->mutex);
1574	ret = _regulator_is_enabled(regulator->rdev);
1575	mutex_unlock(&regulator->rdev->mutex);
1576
1577	return ret;
1578}
1579EXPORT_SYMBOL_GPL(regulator_is_enabled);
1580
1581/**
1582 * regulator_count_voltages - count regulator_list_voltage() selectors
1583 * @regulator: regulator source
1584 *
1585 * Returns number of selectors, or negative errno.  Selectors are
1586 * numbered starting at zero, and typically correspond to bitfields
1587 * in hardware registers.
1588 */
1589int regulator_count_voltages(struct regulator *regulator)
1590{
1591	struct regulator_dev	*rdev = regulator->rdev;
1592
1593	return rdev->desc->n_voltages ? : -EINVAL;
1594}
1595EXPORT_SYMBOL_GPL(regulator_count_voltages);
1596
1597/**
1598 * regulator_list_voltage - enumerate supported voltages
1599 * @regulator: regulator source
1600 * @selector: identify voltage to list
1601 * Context: can sleep
1602 *
1603 * Returns a voltage that can be passed to @regulator_set_voltage(),
1604 * zero if this selector code can't be used on this system, or a
1605 * negative errno.
1606 */
1607int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1608{
1609	struct regulator_dev	*rdev = regulator->rdev;
1610	struct regulator_ops	*ops = rdev->desc->ops;
1611	int			ret;
1612
1613	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1614		return -EINVAL;
1615
1616	mutex_lock(&rdev->mutex);
1617	ret = ops->list_voltage(rdev, selector);
1618	mutex_unlock(&rdev->mutex);
1619
1620	if (ret > 0) {
1621		if (ret < rdev->constraints->min_uV)
1622			ret = 0;
1623		else if (ret > rdev->constraints->max_uV)
1624			ret = 0;
1625	}
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regulator_list_voltage);
1630
1631/**
1632 * regulator_is_supported_voltage - check if a voltage range can be supported
1633 *
1634 * @regulator: Regulator to check.
1635 * @min_uV: Minimum required voltage in uV.
1636 * @max_uV: Maximum required voltage in uV.
1637 *
1638 * Returns a boolean or a negative error code.
1639 */
1640int regulator_is_supported_voltage(struct regulator *regulator,
1641				   int min_uV, int max_uV)
1642{
1643	int i, voltages, ret;
1644
1645	ret = regulator_count_voltages(regulator);
1646	if (ret < 0)
1647		return ret;
1648	voltages = ret;
1649
1650	for (i = 0; i < voltages; i++) {
1651		ret = regulator_list_voltage(regulator, i);
1652
1653		if (ret >= min_uV && ret <= max_uV)
1654			return 1;
1655	}
1656
1657	return 0;
1658}
1659
1660static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1661				     int min_uV, int max_uV)
1662{
1663	int ret;
1664	int delay = 0;
1665	unsigned int selector;
1666
1667	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1668
1669	min_uV += rdev->constraints->uV_offset;
1670	max_uV += rdev->constraints->uV_offset;
1671
1672	if (rdev->desc->ops->set_voltage) {
1673		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1674						   &selector);
1675
1676		if (rdev->desc->ops->list_voltage)
1677			selector = rdev->desc->ops->list_voltage(rdev,
1678								 selector);
1679		else
1680			selector = -1;
1681	} else if (rdev->desc->ops->set_voltage_sel) {
1682		int best_val = INT_MAX;
1683		int i;
1684
1685		selector = 0;
1686
1687		/* Find the smallest voltage that falls within the specified
1688		 * range.
1689		 */
1690		for (i = 0; i < rdev->desc->n_voltages; i++) {
1691			ret = rdev->desc->ops->list_voltage(rdev, i);
1692			if (ret < 0)
1693				continue;
1694
1695			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1696				best_val = ret;
1697				selector = i;
1698			}
1699		}
1700
1701		/*
1702		 * If we can't obtain the old selector there is not enough
1703		 * info to call set_voltage_time_sel().
1704		 */
1705		if (rdev->desc->ops->set_voltage_time_sel &&
1706		    rdev->desc->ops->get_voltage_sel) {
1707			unsigned int old_selector = 0;
1708
1709			ret = rdev->desc->ops->get_voltage_sel(rdev);
1710			if (ret < 0)
1711				return ret;
1712			old_selector = ret;
1713			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1714						old_selector, selector);
1715		}
1716
1717		if (best_val != INT_MAX) {
1718			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1719			selector = best_val;
1720		} else {
1721			ret = -EINVAL;
1722		}
1723	} else {
1724		ret = -EINVAL;
1725	}
1726
1727	/* Insert any necessary delays */
1728	if (delay >= 1000) {
1729		mdelay(delay / 1000);
1730		udelay(delay % 1000);
1731	} else if (delay) {
1732		udelay(delay);
1733	}
1734
1735	if (ret == 0)
1736		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1737				     NULL);
1738
1739	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1740
1741	return ret;
1742}
1743
1744/**
1745 * regulator_set_voltage - set regulator output voltage
1746 * @regulator: regulator source
1747 * @min_uV: Minimum required voltage in uV
1748 * @max_uV: Maximum acceptable voltage in uV
1749 *
1750 * Sets a voltage regulator to the desired output voltage. This can be set
1751 * during any regulator state. IOW, regulator can be disabled or enabled.
1752 *
1753 * If the regulator is enabled then the voltage will change to the new value
1754 * immediately otherwise if the regulator is disabled the regulator will
1755 * output at the new voltage when enabled.
1756 *
1757 * NOTE: If the regulator is shared between several devices then the lowest
1758 * request voltage that meets the system constraints will be used.
1759 * Regulator system constraints must be set for this regulator before
1760 * calling this function otherwise this call will fail.
1761 */
1762int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1763{
1764	struct regulator_dev *rdev = regulator->rdev;
1765	int ret = 0;
1766
1767	mutex_lock(&rdev->mutex);
1768
1769	/* If we're setting the same range as last time the change
1770	 * should be a noop (some cpufreq implementations use the same
1771	 * voltage for multiple frequencies, for example).
1772	 */
1773	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1774		goto out;
1775
1776	/* sanity check */
1777	if (!rdev->desc->ops->set_voltage &&
1778	    !rdev->desc->ops->set_voltage_sel) {
1779		ret = -EINVAL;
1780		goto out;
1781	}
1782
1783	/* constraints check */
1784	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1785	if (ret < 0)
1786		goto out;
1787	regulator->min_uV = min_uV;
1788	regulator->max_uV = max_uV;
1789
1790	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1791	if (ret < 0)
1792		goto out;
1793
1794	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1795
1796out:
1797	mutex_unlock(&rdev->mutex);
1798	return ret;
1799}
1800EXPORT_SYMBOL_GPL(regulator_set_voltage);
1801
1802/**
1803 * regulator_set_voltage_time - get raise/fall time
1804 * @regulator: regulator source
1805 * @old_uV: starting voltage in microvolts
1806 * @new_uV: target voltage in microvolts
1807 *
1808 * Provided with the starting and ending voltage, this function attempts to
1809 * calculate the time in microseconds required to rise or fall to this new
1810 * voltage.
1811 */
1812int regulator_set_voltage_time(struct regulator *regulator,
1813			       int old_uV, int new_uV)
1814{
1815	struct regulator_dev	*rdev = regulator->rdev;
1816	struct regulator_ops	*ops = rdev->desc->ops;
1817	int old_sel = -1;
1818	int new_sel = -1;
1819	int voltage;
1820	int i;
1821
1822	/* Currently requires operations to do this */
1823	if (!ops->list_voltage || !ops->set_voltage_time_sel
1824	    || !rdev->desc->n_voltages)
1825		return -EINVAL;
1826
1827	for (i = 0; i < rdev->desc->n_voltages; i++) {
1828		/* We only look for exact voltage matches here */
1829		voltage = regulator_list_voltage(regulator, i);
1830		if (voltage < 0)
1831			return -EINVAL;
1832		if (voltage == 0)
1833			continue;
1834		if (voltage == old_uV)
1835			old_sel = i;
1836		if (voltage == new_uV)
1837			new_sel = i;
1838	}
1839
1840	if (old_sel < 0 || new_sel < 0)
1841		return -EINVAL;
1842
1843	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1844}
1845EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1846
1847/**
1848 * regulator_sync_voltage - re-apply last regulator output voltage
1849 * @regulator: regulator source
1850 *
1851 * Re-apply the last configured voltage.  This is intended to be used
1852 * where some external control source the consumer is cooperating with
1853 * has caused the configured voltage to change.
1854 */
1855int regulator_sync_voltage(struct regulator *regulator)
1856{
1857	struct regulator_dev *rdev = regulator->rdev;
1858	int ret, min_uV, max_uV;
1859
1860	mutex_lock(&rdev->mutex);
1861
1862	if (!rdev->desc->ops->set_voltage &&
1863	    !rdev->desc->ops->set_voltage_sel) {
1864		ret = -EINVAL;
1865		goto out;
1866	}
1867
1868	/* This is only going to work if we've had a voltage configured. */
1869	if (!regulator->min_uV && !regulator->max_uV) {
1870		ret = -EINVAL;
1871		goto out;
1872	}
1873
1874	min_uV = regulator->min_uV;
1875	max_uV = regulator->max_uV;
1876
1877	/* This should be a paranoia check... */
1878	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1879	if (ret < 0)
1880		goto out;
1881
1882	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1883	if (ret < 0)
1884		goto out;
1885
1886	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1887
1888out:
1889	mutex_unlock(&rdev->mutex);
1890	return ret;
1891}
1892EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1893
1894static int _regulator_get_voltage(struct regulator_dev *rdev)
1895{
1896	int sel, ret;
1897
1898	if (rdev->desc->ops->get_voltage_sel) {
1899		sel = rdev->desc->ops->get_voltage_sel(rdev);
1900		if (sel < 0)
1901			return sel;
1902		ret = rdev->desc->ops->list_voltage(rdev, sel);
1903	} else if (rdev->desc->ops->get_voltage) {
1904		ret = rdev->desc->ops->get_voltage(rdev);
1905	} else {
1906		return -EINVAL;
1907	}
1908
1909	if (ret < 0)
1910		return ret;
1911	return ret - rdev->constraints->uV_offset;
1912}
1913
1914/**
1915 * regulator_get_voltage - get regulator output voltage
1916 * @regulator: regulator source
1917 *
1918 * This returns the current regulator voltage in uV.
1919 *
1920 * NOTE: If the regulator is disabled it will return the voltage value. This
1921 * function should not be used to determine regulator state.
1922 */
1923int regulator_get_voltage(struct regulator *regulator)
1924{
1925	int ret;
1926
1927	mutex_lock(&regulator->rdev->mutex);
1928
1929	ret = _regulator_get_voltage(regulator->rdev);
1930
1931	mutex_unlock(&regulator->rdev->mutex);
1932
1933	return ret;
1934}
1935EXPORT_SYMBOL_GPL(regulator_get_voltage);
1936
1937/**
1938 * regulator_set_current_limit - set regulator output current limit
1939 * @regulator: regulator source
1940 * @min_uA: Minimuum supported current in uA
1941 * @max_uA: Maximum supported current in uA
1942 *
1943 * Sets current sink to the desired output current. This can be set during
1944 * any regulator state. IOW, regulator can be disabled or enabled.
1945 *
1946 * If the regulator is enabled then the current will change to the new value
1947 * immediately otherwise if the regulator is disabled the regulator will
1948 * output at the new current when enabled.
1949 *
1950 * NOTE: Regulator system constraints must be set for this regulator before
1951 * calling this function otherwise this call will fail.
1952 */
1953int regulator_set_current_limit(struct regulator *regulator,
1954			       int min_uA, int max_uA)
1955{
1956	struct regulator_dev *rdev = regulator->rdev;
1957	int ret;
1958
1959	mutex_lock(&rdev->mutex);
1960
1961	/* sanity check */
1962	if (!rdev->desc->ops->set_current_limit) {
1963		ret = -EINVAL;
1964		goto out;
1965	}
1966
1967	/* constraints check */
1968	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1969	if (ret < 0)
1970		goto out;
1971
1972	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1973out:
1974	mutex_unlock(&rdev->mutex);
1975	return ret;
1976}
1977EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1978
1979static int _regulator_get_current_limit(struct regulator_dev *rdev)
1980{
1981	int ret;
1982
1983	mutex_lock(&rdev->mutex);
1984
1985	/* sanity check */
1986	if (!rdev->desc->ops->get_current_limit) {
1987		ret = -EINVAL;
1988		goto out;
1989	}
1990
1991	ret = rdev->desc->ops->get_current_limit(rdev);
1992out:
1993	mutex_unlock(&rdev->mutex);
1994	return ret;
1995}
1996
1997/**
1998 * regulator_get_current_limit - get regulator output current
1999 * @regulator: regulator source
2000 *
2001 * This returns the current supplied by the specified current sink in uA.
2002 *
2003 * NOTE: If the regulator is disabled it will return the current value. This
2004 * function should not be used to determine regulator state.
2005 */
2006int regulator_get_current_limit(struct regulator *regulator)
2007{
2008	return _regulator_get_current_limit(regulator->rdev);
2009}
2010EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2011
2012/**
2013 * regulator_set_mode - set regulator operating mode
2014 * @regulator: regulator source
2015 * @mode: operating mode - one of the REGULATOR_MODE constants
2016 *
2017 * Set regulator operating mode to increase regulator efficiency or improve
2018 * regulation performance.
2019 *
2020 * NOTE: Regulator system constraints must be set for this regulator before
2021 * calling this function otherwise this call will fail.
2022 */
2023int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2024{
2025	struct regulator_dev *rdev = regulator->rdev;
2026	int ret;
2027	int regulator_curr_mode;
2028
2029	mutex_lock(&rdev->mutex);
2030
2031	/* sanity check */
2032	if (!rdev->desc->ops->set_mode) {
2033		ret = -EINVAL;
2034		goto out;
2035	}
2036
2037	/* return if the same mode is requested */
2038	if (rdev->desc->ops->get_mode) {
2039		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2040		if (regulator_curr_mode == mode) {
2041			ret = 0;
2042			goto out;
2043		}
2044	}
2045
2046	/* constraints check */
2047	ret = regulator_mode_constrain(rdev, &mode);
2048	if (ret < 0)
2049		goto out;
2050
2051	ret = rdev->desc->ops->set_mode(rdev, mode);
2052out:
2053	mutex_unlock(&rdev->mutex);
2054	return ret;
2055}
2056EXPORT_SYMBOL_GPL(regulator_set_mode);
2057
2058static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2059{
2060	int ret;
2061
2062	mutex_lock(&rdev->mutex);
2063
2064	/* sanity check */
2065	if (!rdev->desc->ops->get_mode) {
2066		ret = -EINVAL;
2067		goto out;
2068	}
2069
2070	ret = rdev->desc->ops->get_mode(rdev);
2071out:
2072	mutex_unlock(&rdev->mutex);
2073	return ret;
2074}
2075
2076/**
2077 * regulator_get_mode - get regulator operating mode
2078 * @regulator: regulator source
2079 *
2080 * Get the current regulator operating mode.
2081 */
2082unsigned int regulator_get_mode(struct regulator *regulator)
2083{
2084	return _regulator_get_mode(regulator->rdev);
2085}
2086EXPORT_SYMBOL_GPL(regulator_get_mode);
2087
2088/**
2089 * regulator_set_optimum_mode - set regulator optimum operating mode
2090 * @regulator: regulator source
2091 * @uA_load: load current
2092 *
2093 * Notifies the regulator core of a new device load. This is then used by
2094 * DRMS (if enabled by constraints) to set the most efficient regulator
2095 * operating mode for the new regulator loading.
2096 *
2097 * Consumer devices notify their supply regulator of the maximum power
2098 * they will require (can be taken from device datasheet in the power
2099 * consumption tables) when they change operational status and hence power
2100 * state. Examples of operational state changes that can affect power
2101 * consumption are :-
2102 *
2103 *    o Device is opened / closed.
2104 *    o Device I/O is about to begin or has just finished.
2105 *    o Device is idling in between work.
2106 *
2107 * This information is also exported via sysfs to userspace.
2108 *
2109 * DRMS will sum the total requested load on the regulator and change
2110 * to the most efficient operating mode if platform constraints allow.
2111 *
2112 * Returns the new regulator mode or error.
2113 */
2114int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2115{
2116	struct regulator_dev *rdev = regulator->rdev;
2117	struct regulator *consumer;
2118	int ret, output_uV, input_uV, total_uA_load = 0;
2119	unsigned int mode;
2120
2121	mutex_lock(&rdev->mutex);
2122
2123	/*
2124	 * first check to see if we can set modes at all, otherwise just
2125	 * tell the consumer everything is OK.
2126	 */
2127	regulator->uA_load = uA_load;
2128	ret = regulator_check_drms(rdev);
2129	if (ret < 0) {
2130		ret = 0;
2131		goto out;
2132	}
2133
2134	if (!rdev->desc->ops->get_optimum_mode)
2135		goto out;
2136
2137	/*
2138	 * we can actually do this so any errors are indicators of
2139	 * potential real failure.
2140	 */
2141	ret = -EINVAL;
2142
2143	/* get output voltage */
2144	output_uV = _regulator_get_voltage(rdev);
2145	if (output_uV <= 0) {
2146		rdev_err(rdev, "invalid output voltage found\n");
2147		goto out;
2148	}
2149
2150	/* get input voltage */
2151	input_uV = 0;
2152	if (rdev->supply)
2153		input_uV = regulator_get_voltage(rdev->supply);
2154	if (input_uV <= 0)
2155		input_uV = rdev->constraints->input_uV;
2156	if (input_uV <= 0) {
2157		rdev_err(rdev, "invalid input voltage found\n");
2158		goto out;
2159	}
2160
2161	/* calc total requested load for this regulator */
2162	list_for_each_entry(consumer, &rdev->consumer_list, list)
2163		total_uA_load += consumer->uA_load;
2164
2165	mode = rdev->desc->ops->get_optimum_mode(rdev,
2166						 input_uV, output_uV,
2167						 total_uA_load);
2168	ret = regulator_mode_constrain(rdev, &mode);
2169	if (ret < 0) {
2170		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2171			 total_uA_load, input_uV, output_uV);
2172		goto out;
2173	}
2174
2175	ret = rdev->desc->ops->set_mode(rdev, mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2178		goto out;
2179	}
2180	ret = mode;
2181out:
2182	mutex_unlock(&rdev->mutex);
2183	return ret;
2184}
2185EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2186
2187/**
2188 * regulator_register_notifier - register regulator event notifier
2189 * @regulator: regulator source
2190 * @nb: notifier block
2191 *
2192 * Register notifier block to receive regulator events.
2193 */
2194int regulator_register_notifier(struct regulator *regulator,
2195			      struct notifier_block *nb)
2196{
2197	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2198						nb);
2199}
2200EXPORT_SYMBOL_GPL(regulator_register_notifier);
2201
2202/**
2203 * regulator_unregister_notifier - unregister regulator event notifier
2204 * @regulator: regulator source
2205 * @nb: notifier block
2206 *
2207 * Unregister regulator event notifier block.
2208 */
2209int regulator_unregister_notifier(struct regulator *regulator,
2210				struct notifier_block *nb)
2211{
2212	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2213						  nb);
2214}
2215EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2216
2217/* notify regulator consumers and downstream regulator consumers.
2218 * Note mutex must be held by caller.
2219 */
2220static void _notifier_call_chain(struct regulator_dev *rdev,
2221				  unsigned long event, void *data)
2222{
2223	/* call rdev chain first */
2224	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2225}
2226
2227/**
2228 * regulator_bulk_get - get multiple regulator consumers
2229 *
2230 * @dev:           Device to supply
2231 * @num_consumers: Number of consumers to register
2232 * @consumers:     Configuration of consumers; clients are stored here.
2233 *
2234 * @return 0 on success, an errno on failure.
2235 *
2236 * This helper function allows drivers to get several regulator
2237 * consumers in one operation.  If any of the regulators cannot be
2238 * acquired then any regulators that were allocated will be freed
2239 * before returning to the caller.
2240 */
2241int regulator_bulk_get(struct device *dev, int num_consumers,
2242		       struct regulator_bulk_data *consumers)
2243{
2244	int i;
2245	int ret;
2246
2247	for (i = 0; i < num_consumers; i++)
2248		consumers[i].consumer = NULL;
2249
2250	for (i = 0; i < num_consumers; i++) {
2251		consumers[i].consumer = regulator_get(dev,
2252						      consumers[i].supply);
2253		if (IS_ERR(consumers[i].consumer)) {
2254			ret = PTR_ERR(consumers[i].consumer);
2255			dev_err(dev, "Failed to get supply '%s': %d\n",
2256				consumers[i].supply, ret);
2257			consumers[i].consumer = NULL;
2258			goto err;
2259		}
2260	}
2261
2262	return 0;
2263
2264err:
2265	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2266		regulator_put(consumers[i].consumer);
2267
2268	return ret;
2269}
2270EXPORT_SYMBOL_GPL(regulator_bulk_get);
2271
2272static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2273{
2274	struct regulator_bulk_data *bulk = data;
2275
2276	bulk->ret = regulator_enable(bulk->consumer);
2277}
2278
2279/**
2280 * regulator_bulk_enable - enable multiple regulator consumers
2281 *
2282 * @num_consumers: Number of consumers
2283 * @consumers:     Consumer data; clients are stored here.
2284 * @return         0 on success, an errno on failure
2285 *
2286 * This convenience API allows consumers to enable multiple regulator
2287 * clients in a single API call.  If any consumers cannot be enabled
2288 * then any others that were enabled will be disabled again prior to
2289 * return.
2290 */
2291int regulator_bulk_enable(int num_consumers,
2292			  struct regulator_bulk_data *consumers)
2293{
2294	LIST_HEAD(async_domain);
2295	int i;
2296	int ret = 0;
2297
2298	for (i = 0; i < num_consumers; i++)
2299		async_schedule_domain(regulator_bulk_enable_async,
2300				      &consumers[i], &async_domain);
2301
2302	async_synchronize_full_domain(&async_domain);
2303
2304	/* If any consumer failed we need to unwind any that succeeded */
2305	for (i = 0; i < num_consumers; i++) {
2306		if (consumers[i].ret != 0) {
2307			ret = consumers[i].ret;
2308			goto err;
2309		}
2310	}
2311
2312	return 0;
2313
2314err:
2315	for (i = 0; i < num_consumers; i++)
2316		if (consumers[i].ret == 0)
2317			regulator_disable(consumers[i].consumer);
2318		else
2319			pr_err("Failed to enable %s: %d\n",
2320			       consumers[i].supply, consumers[i].ret);
2321
2322	return ret;
2323}
2324EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2325
2326/**
2327 * regulator_bulk_disable - disable multiple regulator consumers
2328 *
2329 * @num_consumers: Number of consumers
2330 * @consumers:     Consumer data; clients are stored here.
2331 * @return         0 on success, an errno on failure
2332 *
2333 * This convenience API allows consumers to disable multiple regulator
2334 * clients in a single API call.  If any consumers cannot be enabled
2335 * then any others that were disabled will be disabled again prior to
2336 * return.
2337 */
2338int regulator_bulk_disable(int num_consumers,
2339			   struct regulator_bulk_data *consumers)
2340{
2341	int i;
2342	int ret;
2343
2344	for (i = 0; i < num_consumers; i++) {
2345		ret = regulator_disable(consumers[i].consumer);
2346		if (ret != 0)
2347			goto err;
2348	}
2349
2350	return 0;
2351
2352err:
2353	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2354	for (--i; i >= 0; --i)
2355		regulator_enable(consumers[i].consumer);
2356
2357	return ret;
2358}
2359EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2360
2361/**
2362 * regulator_bulk_free - free multiple regulator consumers
2363 *
2364 * @num_consumers: Number of consumers
2365 * @consumers:     Consumer data; clients are stored here.
2366 *
2367 * This convenience API allows consumers to free multiple regulator
2368 * clients in a single API call.
2369 */
2370void regulator_bulk_free(int num_consumers,
2371			 struct regulator_bulk_data *consumers)
2372{
2373	int i;
2374
2375	for (i = 0; i < num_consumers; i++) {
2376		regulator_put(consumers[i].consumer);
2377		consumers[i].consumer = NULL;
2378	}
2379}
2380EXPORT_SYMBOL_GPL(regulator_bulk_free);
2381
2382/**
2383 * regulator_notifier_call_chain - call regulator event notifier
2384 * @rdev: regulator source
2385 * @event: notifier block
2386 * @data: callback-specific data.
2387 *
2388 * Called by regulator drivers to notify clients a regulator event has
2389 * occurred. We also notify regulator clients downstream.
2390 * Note lock must be held by caller.
2391 */
2392int regulator_notifier_call_chain(struct regulator_dev *rdev,
2393				  unsigned long event, void *data)
2394{
2395	_notifier_call_chain(rdev, event, data);
2396	return NOTIFY_DONE;
2397
2398}
2399EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2400
2401/**
2402 * regulator_mode_to_status - convert a regulator mode into a status
2403 *
2404 * @mode: Mode to convert
2405 *
2406 * Convert a regulator mode into a status.
2407 */
2408int regulator_mode_to_status(unsigned int mode)
2409{
2410	switch (mode) {
2411	case REGULATOR_MODE_FAST:
2412		return REGULATOR_STATUS_FAST;
2413	case REGULATOR_MODE_NORMAL:
2414		return REGULATOR_STATUS_NORMAL;
2415	case REGULATOR_MODE_IDLE:
2416		return REGULATOR_STATUS_IDLE;
2417	case REGULATOR_STATUS_STANDBY:
2418		return REGULATOR_STATUS_STANDBY;
2419	default:
2420		return 0;
2421	}
2422}
2423EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2424
2425/*
2426 * To avoid cluttering sysfs (and memory) with useless state, only
2427 * create attributes that can be meaningfully displayed.
2428 */
2429static int add_regulator_attributes(struct regulator_dev *rdev)
2430{
2431	struct device		*dev = &rdev->dev;
2432	struct regulator_ops	*ops = rdev->desc->ops;
2433	int			status = 0;
2434
2435	/* some attributes need specific methods to be displayed */
2436	if (ops->get_voltage || ops->get_voltage_sel) {
2437		status = device_create_file(dev, &dev_attr_microvolts);
2438		if (status < 0)
2439			return status;
2440	}
2441	if (ops->get_current_limit) {
2442		status = device_create_file(dev, &dev_attr_microamps);
2443		if (status < 0)
2444			return status;
2445	}
2446	if (ops->get_mode) {
2447		status = device_create_file(dev, &dev_attr_opmode);
2448		if (status < 0)
2449			return status;
2450	}
2451	if (ops->is_enabled) {
2452		status = device_create_file(dev, &dev_attr_state);
2453		if (status < 0)
2454			return status;
2455	}
2456	if (ops->get_status) {
2457		status = device_create_file(dev, &dev_attr_status);
2458		if (status < 0)
2459			return status;
2460	}
2461
2462	/* some attributes are type-specific */
2463	if (rdev->desc->type == REGULATOR_CURRENT) {
2464		status = device_create_file(dev, &dev_attr_requested_microamps);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* all the other attributes exist to support constraints;
2470	 * don't show them if there are no constraints, or if the
2471	 * relevant supporting methods are missing.
2472	 */
2473	if (!rdev->constraints)
2474		return status;
2475
2476	/* constraints need specific supporting methods */
2477	if (ops->set_voltage || ops->set_voltage_sel) {
2478		status = device_create_file(dev, &dev_attr_min_microvolts);
2479		if (status < 0)
2480			return status;
2481		status = device_create_file(dev, &dev_attr_max_microvolts);
2482		if (status < 0)
2483			return status;
2484	}
2485	if (ops->set_current_limit) {
2486		status = device_create_file(dev, &dev_attr_min_microamps);
2487		if (status < 0)
2488			return status;
2489		status = device_create_file(dev, &dev_attr_max_microamps);
2490		if (status < 0)
2491			return status;
2492	}
2493
2494	/* suspend mode constraints need multiple supporting methods */
2495	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2496		return status;
2497
2498	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2499	if (status < 0)
2500		return status;
2501	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2502	if (status < 0)
2503		return status;
2504	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2505	if (status < 0)
2506		return status;
2507
2508	if (ops->set_suspend_voltage) {
2509		status = device_create_file(dev,
2510				&dev_attr_suspend_standby_microvolts);
2511		if (status < 0)
2512			return status;
2513		status = device_create_file(dev,
2514				&dev_attr_suspend_mem_microvolts);
2515		if (status < 0)
2516			return status;
2517		status = device_create_file(dev,
2518				&dev_attr_suspend_disk_microvolts);
2519		if (status < 0)
2520			return status;
2521	}
2522
2523	if (ops->set_suspend_mode) {
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_standby_mode);
2526		if (status < 0)
2527			return status;
2528		status = device_create_file(dev,
2529				&dev_attr_suspend_mem_mode);
2530		if (status < 0)
2531			return status;
2532		status = device_create_file(dev,
2533				&dev_attr_suspend_disk_mode);
2534		if (status < 0)
2535			return status;
2536	}
2537
2538	return status;
2539}
2540
2541static void rdev_init_debugfs(struct regulator_dev *rdev)
2542{
2543#ifdef CONFIG_DEBUG_FS
2544	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2545	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2546		rdev_warn(rdev, "Failed to create debugfs directory\n");
2547		rdev->debugfs = NULL;
2548		return;
2549	}
2550
2551	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2552			   &rdev->use_count);
2553	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2554			   &rdev->open_count);
2555#endif
2556}
2557
2558/**
2559 * regulator_register - register regulator
2560 * @regulator_desc: regulator to register
2561 * @dev: struct device for the regulator
2562 * @init_data: platform provided init data, passed through by driver
2563 * @driver_data: private regulator data
2564 *
2565 * Called by regulator drivers to register a regulator.
2566 * Returns 0 on success.
2567 */
2568struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2569	struct device *dev, const struct regulator_init_data *init_data,
2570	void *driver_data)
2571{
2572	static atomic_t regulator_no = ATOMIC_INIT(0);
2573	struct regulator_dev *rdev;
2574	int ret, i;
2575
2576	if (regulator_desc == NULL)
2577		return ERR_PTR(-EINVAL);
2578
2579	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2580		return ERR_PTR(-EINVAL);
2581
2582	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2583	    regulator_desc->type != REGULATOR_CURRENT)
2584		return ERR_PTR(-EINVAL);
2585
2586	if (!init_data)
2587		return ERR_PTR(-EINVAL);
2588
2589	/* Only one of each should be implemented */
2590	WARN_ON(regulator_desc->ops->get_voltage &&
2591		regulator_desc->ops->get_voltage_sel);
2592	WARN_ON(regulator_desc->ops->set_voltage &&
2593		regulator_desc->ops->set_voltage_sel);
2594
2595	/* If we're using selectors we must implement list_voltage. */
2596	if (regulator_desc->ops->get_voltage_sel &&
2597	    !regulator_desc->ops->list_voltage) {
2598		return ERR_PTR(-EINVAL);
2599	}
2600	if (regulator_desc->ops->set_voltage_sel &&
2601	    !regulator_desc->ops->list_voltage) {
2602		return ERR_PTR(-EINVAL);
2603	}
2604
2605	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2606	if (rdev == NULL)
2607		return ERR_PTR(-ENOMEM);
2608
2609	mutex_lock(&regulator_list_mutex);
2610
2611	mutex_init(&rdev->mutex);
2612	rdev->reg_data = driver_data;
2613	rdev->owner = regulator_desc->owner;
2614	rdev->desc = regulator_desc;
2615	INIT_LIST_HEAD(&rdev->consumer_list);
2616	INIT_LIST_HEAD(&rdev->list);
2617	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2618
2619	/* preform any regulator specific init */
2620	if (init_data->regulator_init) {
2621		ret = init_data->regulator_init(rdev->reg_data);
2622		if (ret < 0)
2623			goto clean;
2624	}
2625
2626	/* register with sysfs */
2627	rdev->dev.class = &regulator_class;
2628	rdev->dev.parent = dev;
2629	dev_set_name(&rdev->dev, "regulator.%d",
2630		     atomic_inc_return(&regulator_no) - 1);
2631	ret = device_register(&rdev->dev);
2632	if (ret != 0) {
2633		put_device(&rdev->dev);
2634		goto clean;
2635	}
2636
2637	dev_set_drvdata(&rdev->dev, rdev);
2638
2639	/* set regulator constraints */
2640	ret = set_machine_constraints(rdev, &init_data->constraints);
2641	if (ret < 0)
2642		goto scrub;
2643
2644	/* add attributes supported by this regulator */
2645	ret = add_regulator_attributes(rdev);
2646	if (ret < 0)
2647		goto scrub;
2648
2649	if (init_data->supply_regulator) {
2650		struct regulator_dev *r;
2651		int found = 0;
2652
2653		list_for_each_entry(r, &regulator_list, list) {
2654			if (strcmp(rdev_get_name(r),
2655				   init_data->supply_regulator) == 0) {
2656				found = 1;
2657				break;
2658			}
2659		}
2660
2661		if (!found) {
2662			dev_err(dev, "Failed to find supply %s\n",
2663				init_data->supply_regulator);
2664			ret = -ENODEV;
2665			goto scrub;
2666		}
2667
2668		ret = set_supply(rdev, r);
2669		if (ret < 0)
2670			goto scrub;
2671	}
2672
2673	/* add consumers devices */
2674	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2675		ret = set_consumer_device_supply(rdev,
2676			init_data->consumer_supplies[i].dev,
2677			init_data->consumer_supplies[i].dev_name,
2678			init_data->consumer_supplies[i].supply);
2679		if (ret < 0) {
2680			dev_err(dev, "Failed to set supply %s\n",
2681				init_data->consumer_supplies[i].supply);
2682			goto unset_supplies;
2683		}
2684	}
2685
2686	list_add(&rdev->list, &regulator_list);
2687
2688	rdev_init_debugfs(rdev);
2689out:
2690	mutex_unlock(&regulator_list_mutex);
2691	return rdev;
2692
2693unset_supplies:
2694	unset_regulator_supplies(rdev);
2695
2696scrub:
2697	device_unregister(&rdev->dev);
2698	/* device core frees rdev */
2699	rdev = ERR_PTR(ret);
2700	goto out;
2701
2702clean:
2703	kfree(rdev);
2704	rdev = ERR_PTR(ret);
2705	goto out;
2706}
2707EXPORT_SYMBOL_GPL(regulator_register);
2708
2709/**
2710 * regulator_unregister - unregister regulator
2711 * @rdev: regulator to unregister
2712 *
2713 * Called by regulator drivers to unregister a regulator.
2714 */
2715void regulator_unregister(struct regulator_dev *rdev)
2716{
2717	if (rdev == NULL)
2718		return;
2719
2720	mutex_lock(&regulator_list_mutex);
2721#ifdef CONFIG_DEBUG_FS
2722	debugfs_remove_recursive(rdev->debugfs);
2723#endif
2724	WARN_ON(rdev->open_count);
2725	unset_regulator_supplies(rdev);
2726	list_del(&rdev->list);
2727	if (rdev->supply)
2728		regulator_put(rdev->supply);
2729	device_unregister(&rdev->dev);
2730	kfree(rdev->constraints);
2731	mutex_unlock(&regulator_list_mutex);
2732}
2733EXPORT_SYMBOL_GPL(regulator_unregister);
2734
2735/**
2736 * regulator_suspend_prepare - prepare regulators for system wide suspend
2737 * @state: system suspend state
2738 *
2739 * Configure each regulator with it's suspend operating parameters for state.
2740 * This will usually be called by machine suspend code prior to supending.
2741 */
2742int regulator_suspend_prepare(suspend_state_t state)
2743{
2744	struct regulator_dev *rdev;
2745	int ret = 0;
2746
2747	/* ON is handled by regulator active state */
2748	if (state == PM_SUSPEND_ON)
2749		return -EINVAL;
2750
2751	mutex_lock(&regulator_list_mutex);
2752	list_for_each_entry(rdev, &regulator_list, list) {
2753
2754		mutex_lock(&rdev->mutex);
2755		ret = suspend_prepare(rdev, state);
2756		mutex_unlock(&rdev->mutex);
2757
2758		if (ret < 0) {
2759			rdev_err(rdev, "failed to prepare\n");
2760			goto out;
2761		}
2762	}
2763out:
2764	mutex_unlock(&regulator_list_mutex);
2765	return ret;
2766}
2767EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2768
2769/**
2770 * regulator_suspend_finish - resume regulators from system wide suspend
2771 *
2772 * Turn on regulators that might be turned off by regulator_suspend_prepare
2773 * and that should be turned on according to the regulators properties.
2774 */
2775int regulator_suspend_finish(void)
2776{
2777	struct regulator_dev *rdev;
2778	int ret = 0, error;
2779
2780	mutex_lock(&regulator_list_mutex);
2781	list_for_each_entry(rdev, &regulator_list, list) {
2782		struct regulator_ops *ops = rdev->desc->ops;
2783
2784		mutex_lock(&rdev->mutex);
2785		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2786				ops->enable) {
2787			error = ops->enable(rdev);
2788			if (error)
2789				ret = error;
2790		} else {
2791			if (!has_full_constraints)
2792				goto unlock;
2793			if (!ops->disable)
2794				goto unlock;
2795			if (ops->is_enabled && !ops->is_enabled(rdev))
2796				goto unlock;
2797
2798			error = ops->disable(rdev);
2799			if (error)
2800				ret = error;
2801		}
2802unlock:
2803		mutex_unlock(&rdev->mutex);
2804	}
2805	mutex_unlock(&regulator_list_mutex);
2806	return ret;
2807}
2808EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2809
2810/**
2811 * regulator_has_full_constraints - the system has fully specified constraints
2812 *
2813 * Calling this function will cause the regulator API to disable all
2814 * regulators which have a zero use count and don't have an always_on
2815 * constraint in a late_initcall.
2816 *
2817 * The intention is that this will become the default behaviour in a
2818 * future kernel release so users are encouraged to use this facility
2819 * now.
2820 */
2821void regulator_has_full_constraints(void)
2822{
2823	has_full_constraints = 1;
2824}
2825EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2826
2827/**
2828 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2829 *
2830 * Calling this function will cause the regulator API to provide a
2831 * dummy regulator to consumers if no physical regulator is found,
2832 * allowing most consumers to proceed as though a regulator were
2833 * configured.  This allows systems such as those with software
2834 * controllable regulators for the CPU core only to be brought up more
2835 * readily.
2836 */
2837void regulator_use_dummy_regulator(void)
2838{
2839	board_wants_dummy_regulator = true;
2840}
2841EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2842
2843/**
2844 * rdev_get_drvdata - get rdev regulator driver data
2845 * @rdev: regulator
2846 *
2847 * Get rdev regulator driver private data. This call can be used in the
2848 * regulator driver context.
2849 */
2850void *rdev_get_drvdata(struct regulator_dev *rdev)
2851{
2852	return rdev->reg_data;
2853}
2854EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2855
2856/**
2857 * regulator_get_drvdata - get regulator driver data
2858 * @regulator: regulator
2859 *
2860 * Get regulator driver private data. This call can be used in the consumer
2861 * driver context when non API regulator specific functions need to be called.
2862 */
2863void *regulator_get_drvdata(struct regulator *regulator)
2864{
2865	return regulator->rdev->reg_data;
2866}
2867EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2868
2869/**
2870 * regulator_set_drvdata - set regulator driver data
2871 * @regulator: regulator
2872 * @data: data
2873 */
2874void regulator_set_drvdata(struct regulator *regulator, void *data)
2875{
2876	regulator->rdev->reg_data = data;
2877}
2878EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2879
2880/**
2881 * regulator_get_id - get regulator ID
2882 * @rdev: regulator
2883 */
2884int rdev_get_id(struct regulator_dev *rdev)
2885{
2886	return rdev->desc->id;
2887}
2888EXPORT_SYMBOL_GPL(rdev_get_id);
2889
2890struct device *rdev_get_dev(struct regulator_dev *rdev)
2891{
2892	return &rdev->dev;
2893}
2894EXPORT_SYMBOL_GPL(rdev_get_dev);
2895
2896void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2897{
2898	return reg_init_data->driver_data;
2899}
2900EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2901
2902static int __init regulator_init(void)
2903{
2904	int ret;
2905
2906	ret = class_register(&regulator_class);
2907
2908#ifdef CONFIG_DEBUG_FS
2909	debugfs_root = debugfs_create_dir("regulator", NULL);
2910	if (IS_ERR(debugfs_root) || !debugfs_root) {
2911		pr_warn("regulator: Failed to create debugfs directory\n");
2912		debugfs_root = NULL;
2913	}
2914#endif
2915
2916	regulator_dummy_init();
2917
2918	return ret;
2919}
2920
2921/* init early to allow our consumers to complete system booting */
2922core_initcall(regulator_init);
2923
2924static int __init regulator_init_complete(void)
2925{
2926	struct regulator_dev *rdev;
2927	struct regulator_ops *ops;
2928	struct regulation_constraints *c;
2929	int enabled, ret;
2930
2931	mutex_lock(&regulator_list_mutex);
2932
2933	/* If we have a full configuration then disable any regulators
2934	 * which are not in use or always_on.  This will become the
2935	 * default behaviour in the future.
2936	 */
2937	list_for_each_entry(rdev, &regulator_list, list) {
2938		ops = rdev->desc->ops;
2939		c = rdev->constraints;
2940
2941		if (!ops->disable || (c && c->always_on))
2942			continue;
2943
2944		mutex_lock(&rdev->mutex);
2945
2946		if (rdev->use_count)
2947			goto unlock;
2948
2949		/* If we can't read the status assume it's on. */
2950		if (ops->is_enabled)
2951			enabled = ops->is_enabled(rdev);
2952		else
2953			enabled = 1;
2954
2955		if (!enabled)
2956			goto unlock;
2957
2958		if (has_full_constraints) {
2959			/* We log since this may kill the system if it
2960			 * goes wrong. */
2961			rdev_info(rdev, "disabling\n");
2962			ret = ops->disable(rdev);
2963			if (ret != 0) {
2964				rdev_err(rdev, "couldn't disable: %d\n", ret);
2965			}
2966		} else {
2967			/* The intention is that in future we will
2968			 * assume that full constraints are provided
2969			 * so warn even if we aren't going to do
2970			 * anything here.
2971			 */
2972			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2973		}
2974
2975unlock:
2976		mutex_unlock(&rdev->mutex);
2977	}
2978
2979	mutex_unlock(&regulator_list_mutex);
2980
2981	return 0;
2982}
2983late_initcall(regulator_init_complete);
2984