core.c revision 69511a452e6dc6b74fe4f3671a51b1b44b9c57e3
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/of.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57#ifdef CONFIG_DEBUG_FS
58static struct dentry *debugfs_root;
59#endif
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78struct regulator {
79	struct device *dev;
80	struct list_head list;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87#ifdef CONFIG_DEBUG_FS
88	struct dentry *debugfs;
89#endif
90};
91
92static int _regulator_is_enabled(struct regulator_dev *rdev);
93static int _regulator_disable(struct regulator_dev *rdev);
94static int _regulator_get_voltage(struct regulator_dev *rdev);
95static int _regulator_get_current_limit(struct regulator_dev *rdev);
96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97static void _notifier_call_chain(struct regulator_dev *rdev,
98				  unsigned long event, void *data);
99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100				     int min_uV, int max_uV);
101static struct regulator *create_regulator(struct regulator_dev *rdev,
102					  struct device *dev,
103					  const char *supply_name);
104
105static const char *rdev_get_name(struct regulator_dev *rdev)
106{
107	if (rdev->constraints && rdev->constraints->name)
108		return rdev->constraints->name;
109	else if (rdev->desc->name)
110		return rdev->desc->name;
111	else
112		return "";
113}
114
115/* gets the regulator for a given consumer device */
116static struct regulator *get_device_regulator(struct device *dev)
117{
118	struct regulator *regulator = NULL;
119	struct regulator_dev *rdev;
120
121	mutex_lock(&regulator_list_mutex);
122	list_for_each_entry(rdev, &regulator_list, list) {
123		mutex_lock(&rdev->mutex);
124		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125			if (regulator->dev == dev) {
126				mutex_unlock(&rdev->mutex);
127				mutex_unlock(&regulator_list_mutex);
128				return regulator;
129			}
130		}
131		mutex_unlock(&rdev->mutex);
132	}
133	mutex_unlock(&regulator_list_mutex);
134	return NULL;
135}
136
137/**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147{
148	struct device_node *regnode = NULL;
149	char prop_name[32]; /* 32 is max size of property name */
150
151	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153	snprintf(prop_name, 32, "%s-supply", supply);
154	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156	if (!regnode) {
157		dev_warn(dev, "%s property in node %s references invalid phandle",
158				prop_name, dev->of_node->full_name);
159		return NULL;
160	}
161	return regnode;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV)
216		return -EINVAL;
217
218	return 0;
219}
220
221/* current constraint check */
222static int regulator_check_current_limit(struct regulator_dev *rdev,
223					int *min_uA, int *max_uA)
224{
225	BUG_ON(*min_uA > *max_uA);
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	if (*max_uA > rdev->constraints->max_uA)
237		*max_uA = rdev->constraints->max_uA;
238	if (*min_uA < rdev->constraints->min_uA)
239		*min_uA = rdev->constraints->min_uA;
240
241	if (*min_uA > *max_uA) {
242		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243			 *min_uA, *max_uA);
244		return -EINVAL;
245	}
246
247	return 0;
248}
249
250/* operating mode constraint check */
251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252{
253	switch (*mode) {
254	case REGULATOR_MODE_FAST:
255	case REGULATOR_MODE_NORMAL:
256	case REGULATOR_MODE_IDLE:
257	case REGULATOR_MODE_STANDBY:
258		break;
259	default:
260		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261		return -EINVAL;
262	}
263
264	if (!rdev->constraints) {
265		rdev_err(rdev, "no constraints\n");
266		return -ENODEV;
267	}
268	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269		rdev_err(rdev, "operation not allowed\n");
270		return -EPERM;
271	}
272
273	/* The modes are bitmasks, the most power hungry modes having
274	 * the lowest values. If the requested mode isn't supported
275	 * try higher modes. */
276	while (*mode) {
277		if (rdev->constraints->valid_modes_mask & *mode)
278			return 0;
279		*mode /= 2;
280	}
281
282	return -EINVAL;
283}
284
285/* dynamic regulator mode switching constraint check */
286static int regulator_check_drms(struct regulator_dev *rdev)
287{
288	if (!rdev->constraints) {
289		rdev_err(rdev, "no constraints\n");
290		return -ENODEV;
291	}
292	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293		rdev_err(rdev, "operation not allowed\n");
294		return -EPERM;
295	}
296	return 0;
297}
298
299static ssize_t device_requested_uA_show(struct device *dev,
300			     struct device_attribute *attr, char *buf)
301{
302	struct regulator *regulator;
303
304	regulator = get_device_regulator(dev);
305	if (regulator == NULL)
306		return 0;
307
308	return sprintf(buf, "%d\n", regulator->uA_load);
309}
310
311static ssize_t regulator_uV_show(struct device *dev,
312				struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325static ssize_t regulator_uA_show(struct device *dev,
326				struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331}
332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334static ssize_t regulator_name_show(struct device *dev,
335			     struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340}
341
342static ssize_t regulator_print_opmode(char *buf, int mode)
343{
344	switch (mode) {
345	case REGULATOR_MODE_FAST:
346		return sprintf(buf, "fast\n");
347	case REGULATOR_MODE_NORMAL:
348		return sprintf(buf, "normal\n");
349	case REGULATOR_MODE_IDLE:
350		return sprintf(buf, "idle\n");
351	case REGULATOR_MODE_STANDBY:
352		return sprintf(buf, "standby\n");
353	}
354	return sprintf(buf, "unknown\n");
355}
356
357static ssize_t regulator_opmode_show(struct device *dev,
358				    struct device_attribute *attr, char *buf)
359{
360	struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363}
364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366static ssize_t regulator_print_state(char *buf, int state)
367{
368	if (state > 0)
369		return sprintf(buf, "enabled\n");
370	else if (state == 0)
371		return sprintf(buf, "disabled\n");
372	else
373		return sprintf(buf, "unknown\n");
374}
375
376static ssize_t regulator_state_show(struct device *dev,
377				   struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	ssize_t ret;
381
382	mutex_lock(&rdev->mutex);
383	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384	mutex_unlock(&rdev->mutex);
385
386	return ret;
387}
388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390static ssize_t regulator_status_show(struct device *dev,
391				   struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	int status;
395	char *label;
396
397	status = rdev->desc->ops->get_status(rdev);
398	if (status < 0)
399		return status;
400
401	switch (status) {
402	case REGULATOR_STATUS_OFF:
403		label = "off";
404		break;
405	case REGULATOR_STATUS_ON:
406		label = "on";
407		break;
408	case REGULATOR_STATUS_ERROR:
409		label = "error";
410		break;
411	case REGULATOR_STATUS_FAST:
412		label = "fast";
413		break;
414	case REGULATOR_STATUS_NORMAL:
415		label = "normal";
416		break;
417	case REGULATOR_STATUS_IDLE:
418		label = "idle";
419		break;
420	case REGULATOR_STATUS_STANDBY:
421		label = "standby";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t regulator_num_users_show(struct device *dev,
495				      struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500
501static ssize_t regulator_type_show(struct device *dev,
502				  struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611
612/*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616static struct device_attribute regulator_dev_attrs[] = {
617	__ATTR(name, 0444, regulator_name_show, NULL),
618	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619	__ATTR(type, 0444, regulator_type_show, NULL),
620	__ATTR_NULL,
621};
622
623static void regulator_dev_release(struct device *dev)
624{
625	struct regulator_dev *rdev = dev_get_drvdata(dev);
626	kfree(rdev);
627}
628
629static struct class regulator_class = {
630	.name = "regulator",
631	.dev_release = regulator_dev_release,
632	.dev_attrs = regulator_dev_attrs,
633};
634
635/* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637static void drms_uA_update(struct regulator_dev *rdev)
638{
639	struct regulator *sibling;
640	int current_uA = 0, output_uV, input_uV, err;
641	unsigned int mode;
642
643	err = regulator_check_drms(rdev);
644	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645	    (!rdev->desc->ops->get_voltage &&
646	     !rdev->desc->ops->get_voltage_sel) ||
647	    !rdev->desc->ops->set_mode)
648		return;
649
650	/* get output voltage */
651	output_uV = _regulator_get_voltage(rdev);
652	if (output_uV <= 0)
653		return;
654
655	/* get input voltage */
656	input_uV = 0;
657	if (rdev->supply)
658		input_uV = _regulator_get_voltage(rdev);
659	if (input_uV <= 0)
660		input_uV = rdev->constraints->input_uV;
661	if (input_uV <= 0)
662		return;
663
664	/* calc total requested load */
665	list_for_each_entry(sibling, &rdev->consumer_list, list)
666		current_uA += sibling->uA_load;
667
668	/* now get the optimum mode for our new total regulator load */
669	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670						  output_uV, current_uA);
671
672	/* check the new mode is allowed */
673	err = regulator_mode_constrain(rdev, &mode);
674	if (err == 0)
675		rdev->desc->ops->set_mode(rdev, mode);
676}
677
678static int suspend_set_state(struct regulator_dev *rdev,
679	struct regulator_state *rstate)
680{
681	int ret = 0;
682	bool can_set_state;
683
684	can_set_state = rdev->desc->ops->set_suspend_enable &&
685		rdev->desc->ops->set_suspend_disable;
686
687	/* If we have no suspend mode configration don't set anything;
688	 * only warn if the driver actually makes the suspend mode
689	 * configurable.
690	 */
691	if (!rstate->enabled && !rstate->disabled) {
692		if (can_set_state)
693			rdev_warn(rdev, "No configuration\n");
694		return 0;
695	}
696
697	if (rstate->enabled && rstate->disabled) {
698		rdev_err(rdev, "invalid configuration\n");
699		return -EINVAL;
700	}
701
702	if (!can_set_state) {
703		rdev_err(rdev, "no way to set suspend state\n");
704		return -EINVAL;
705	}
706
707	if (rstate->enabled)
708		ret = rdev->desc->ops->set_suspend_enable(rdev);
709	else
710		ret = rdev->desc->ops->set_suspend_disable(rdev);
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	rdev_info(rdev, "%s\n", buf);
810}
811
812static int machine_constraints_voltage(struct regulator_dev *rdev,
813	struct regulation_constraints *constraints)
814{
815	struct regulator_ops *ops = rdev->desc->ops;
816	int ret;
817
818	/* do we need to apply the constraint voltage */
819	if (rdev->constraints->apply_uV &&
820	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821		ret = _regulator_do_set_voltage(rdev,
822						rdev->constraints->min_uV,
823						rdev->constraints->max_uV);
824		if (ret < 0) {
825			rdev_err(rdev, "failed to apply %duV constraint\n",
826				 rdev->constraints->min_uV);
827			return ret;
828		}
829	}
830
831	/* constrain machine-level voltage specs to fit
832	 * the actual range supported by this regulator.
833	 */
834	if (ops->list_voltage && rdev->desc->n_voltages) {
835		int	count = rdev->desc->n_voltages;
836		int	i;
837		int	min_uV = INT_MAX;
838		int	max_uV = INT_MIN;
839		int	cmin = constraints->min_uV;
840		int	cmax = constraints->max_uV;
841
842		/* it's safe to autoconfigure fixed-voltage supplies
843		   and the constraints are used by list_voltage. */
844		if (count == 1 && !cmin) {
845			cmin = 1;
846			cmax = INT_MAX;
847			constraints->min_uV = cmin;
848			constraints->max_uV = cmax;
849		}
850
851		/* voltage constraints are optional */
852		if ((cmin == 0) && (cmax == 0))
853			return 0;
854
855		/* else require explicit machine-level constraints */
856		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857			rdev_err(rdev, "invalid voltage constraints\n");
858			return -EINVAL;
859		}
860
861		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862		for (i = 0; i < count; i++) {
863			int	value;
864
865			value = ops->list_voltage(rdev, i);
866			if (value <= 0)
867				continue;
868
869			/* maybe adjust [min_uV..max_uV] */
870			if (value >= cmin && value < min_uV)
871				min_uV = value;
872			if (value <= cmax && value > max_uV)
873				max_uV = value;
874		}
875
876		/* final: [min_uV..max_uV] valid iff constraints valid */
877		if (max_uV < min_uV) {
878			rdev_err(rdev, "unsupportable voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* use regulator's subset of machine constraints */
883		if (constraints->min_uV < min_uV) {
884			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885				 constraints->min_uV, min_uV);
886			constraints->min_uV = min_uV;
887		}
888		if (constraints->max_uV > max_uV) {
889			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890				 constraints->max_uV, max_uV);
891			constraints->max_uV = max_uV;
892		}
893	}
894
895	return 0;
896}
897
898/**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909static int set_machine_constraints(struct regulator_dev *rdev,
910	const struct regulation_constraints *constraints)
911{
912	int ret = 0;
913	struct regulator_ops *ops = rdev->desc->ops;
914
915	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916				    GFP_KERNEL);
917	if (!rdev->constraints)
918		return -ENOMEM;
919
920	ret = machine_constraints_voltage(rdev, rdev->constraints);
921	if (ret != 0)
922		goto out;
923
924	/* do we need to setup our suspend state */
925	if (constraints->initial_state) {
926		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
927		if (ret < 0) {
928			rdev_err(rdev, "failed to set suspend state\n");
929			goto out;
930		}
931	}
932
933	if (constraints->initial_mode) {
934		if (!ops->set_mode) {
935			rdev_err(rdev, "no set_mode operation\n");
936			ret = -EINVAL;
937			goto out;
938		}
939
940		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
941		if (ret < 0) {
942			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
943			goto out;
944		}
945	}
946
947	/* If the constraints say the regulator should be on at this point
948	 * and we have control then make sure it is enabled.
949	 */
950	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
951	    ops->enable) {
952		ret = ops->enable(rdev);
953		if (ret < 0) {
954			rdev_err(rdev, "failed to enable\n");
955			goto out;
956		}
957	}
958
959	print_constraints(rdev);
960	return 0;
961out:
962	kfree(rdev->constraints);
963	rdev->constraints = NULL;
964	return ret;
965}
966
967/**
968 * set_supply - set regulator supply regulator
969 * @rdev: regulator name
970 * @supply_rdev: supply regulator name
971 *
972 * Called by platform initialisation code to set the supply regulator for this
973 * regulator. This ensures that a regulators supply will also be enabled by the
974 * core if it's child is enabled.
975 */
976static int set_supply(struct regulator_dev *rdev,
977		      struct regulator_dev *supply_rdev)
978{
979	int err;
980
981	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
982
983	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
984	if (IS_ERR(rdev->supply)) {
985		err = PTR_ERR(rdev->supply);
986		rdev->supply = NULL;
987		return err;
988	}
989
990	return 0;
991}
992
993/**
994 * set_consumer_device_supply - Bind a regulator to a symbolic supply
995 * @rdev:         regulator source
996 * @consumer_dev: device the supply applies to
997 * @consumer_dev_name: dev_name() string for device supply applies to
998 * @supply:       symbolic name for supply
999 *
1000 * Allows platform initialisation code to map physical regulator
1001 * sources to symbolic names for supplies for use by devices.  Devices
1002 * should use these symbolic names to request regulators, avoiding the
1003 * need to provide board-specific regulator names as platform data.
1004 *
1005 * Only one of consumer_dev and consumer_dev_name may be specified.
1006 */
1007static int set_consumer_device_supply(struct regulator_dev *rdev,
1008	struct device *consumer_dev, const char *consumer_dev_name,
1009	const char *supply)
1010{
1011	struct regulator_map *node;
1012	int has_dev;
1013
1014	if (consumer_dev && consumer_dev_name)
1015		return -EINVAL;
1016
1017	if (!consumer_dev_name && consumer_dev)
1018		consumer_dev_name = dev_name(consumer_dev);
1019
1020	if (supply == NULL)
1021		return -EINVAL;
1022
1023	if (consumer_dev_name != NULL)
1024		has_dev = 1;
1025	else
1026		has_dev = 0;
1027
1028	list_for_each_entry(node, &regulator_map_list, list) {
1029		if (node->dev_name && consumer_dev_name) {
1030			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1031				continue;
1032		} else if (node->dev_name || consumer_dev_name) {
1033			continue;
1034		}
1035
1036		if (strcmp(node->supply, supply) != 0)
1037			continue;
1038
1039		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1040			dev_name(&node->regulator->dev),
1041			node->regulator->desc->name,
1042			supply,
1043			dev_name(&rdev->dev), rdev_get_name(rdev));
1044		return -EBUSY;
1045	}
1046
1047	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1048	if (node == NULL)
1049		return -ENOMEM;
1050
1051	node->regulator = rdev;
1052	node->supply = supply;
1053
1054	if (has_dev) {
1055		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1056		if (node->dev_name == NULL) {
1057			kfree(node);
1058			return -ENOMEM;
1059		}
1060	}
1061
1062	list_add(&node->list, &regulator_map_list);
1063	return 0;
1064}
1065
1066static void unset_regulator_supplies(struct regulator_dev *rdev)
1067{
1068	struct regulator_map *node, *n;
1069
1070	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1071		if (rdev == node->regulator) {
1072			list_del(&node->list);
1073			kfree(node->dev_name);
1074			kfree(node);
1075		}
1076	}
1077}
1078
1079#define REG_STR_SIZE	64
1080
1081static struct regulator *create_regulator(struct regulator_dev *rdev,
1082					  struct device *dev,
1083					  const char *supply_name)
1084{
1085	struct regulator *regulator;
1086	char buf[REG_STR_SIZE];
1087	int err, size;
1088
1089	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1090	if (regulator == NULL)
1091		return NULL;
1092
1093	mutex_lock(&rdev->mutex);
1094	regulator->rdev = rdev;
1095	list_add(&regulator->list, &rdev->consumer_list);
1096
1097	if (dev) {
1098		/* create a 'requested_microamps_name' sysfs entry */
1099		size = scnprintf(buf, REG_STR_SIZE,
1100				 "microamps_requested_%s-%s",
1101				 dev_name(dev), supply_name);
1102		if (size >= REG_STR_SIZE)
1103			goto overflow_err;
1104
1105		regulator->dev = dev;
1106		sysfs_attr_init(&regulator->dev_attr.attr);
1107		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1108		if (regulator->dev_attr.attr.name == NULL)
1109			goto attr_name_err;
1110
1111		regulator->dev_attr.attr.mode = 0444;
1112		regulator->dev_attr.show = device_requested_uA_show;
1113		err = device_create_file(dev, &regulator->dev_attr);
1114		if (err < 0) {
1115			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1116			goto attr_name_err;
1117		}
1118
1119		/* also add a link to the device sysfs entry */
1120		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1121				 dev->kobj.name, supply_name);
1122		if (size >= REG_STR_SIZE)
1123			goto attr_err;
1124
1125		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1126		if (regulator->supply_name == NULL)
1127			goto attr_err;
1128
1129		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1130					buf);
1131		if (err) {
1132			rdev_warn(rdev, "could not add device link %s err %d\n",
1133				  dev->kobj.name, err);
1134			goto link_name_err;
1135		}
1136	} else {
1137		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1138		if (regulator->supply_name == NULL)
1139			goto attr_err;
1140	}
1141
1142#ifdef CONFIG_DEBUG_FS
1143	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1144						rdev->debugfs);
1145	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1146		rdev_warn(rdev, "Failed to create debugfs directory\n");
1147		regulator->debugfs = NULL;
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156#endif
1157
1158	mutex_unlock(&rdev->mutex);
1159	return regulator;
1160link_name_err:
1161	kfree(regulator->supply_name);
1162attr_err:
1163	device_remove_file(regulator->dev, &regulator->dev_attr);
1164attr_name_err:
1165	kfree(regulator->dev_attr.attr.name);
1166overflow_err:
1167	list_del(&regulator->list);
1168	kfree(regulator);
1169	mutex_unlock(&rdev->mutex);
1170	return NULL;
1171}
1172
1173static int _regulator_get_enable_time(struct regulator_dev *rdev)
1174{
1175	if (!rdev->desc->ops->enable_time)
1176		return 0;
1177	return rdev->desc->ops->enable_time(rdev);
1178}
1179
1180static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1181							 const char *supply)
1182{
1183	struct regulator_dev *r;
1184	struct device_node *node;
1185
1186	/* first do a dt based lookup */
1187	if (dev && dev->of_node) {
1188		node = of_get_regulator(dev, supply);
1189		if (node)
1190			list_for_each_entry(r, &regulator_list, list)
1191				if (r->dev.parent &&
1192					node == r->dev.of_node)
1193					return r;
1194	}
1195
1196	/* if not found, try doing it non-dt way */
1197	list_for_each_entry(r, &regulator_list, list)
1198		if (strcmp(rdev_get_name(r), supply) == 0)
1199			return r;
1200
1201	return NULL;
1202}
1203
1204/* Internal regulator request function */
1205static struct regulator *_regulator_get(struct device *dev, const char *id,
1206					int exclusive)
1207{
1208	struct regulator_dev *rdev;
1209	struct regulator_map *map;
1210	struct regulator *regulator = ERR_PTR(-ENODEV);
1211	const char *devname = NULL;
1212	int ret;
1213
1214	if (id == NULL) {
1215		pr_err("get() with no identifier\n");
1216		return regulator;
1217	}
1218
1219	if (dev)
1220		devname = dev_name(dev);
1221
1222	mutex_lock(&regulator_list_mutex);
1223
1224	rdev = regulator_dev_lookup(dev, id);
1225	if (rdev)
1226		goto found;
1227
1228	list_for_each_entry(map, &regulator_map_list, list) {
1229		/* If the mapping has a device set up it must match */
1230		if (map->dev_name &&
1231		    (!devname || strcmp(map->dev_name, devname)))
1232			continue;
1233
1234		if (strcmp(map->supply, id) == 0) {
1235			rdev = map->regulator;
1236			goto found;
1237		}
1238	}
1239
1240	if (board_wants_dummy_regulator) {
1241		rdev = dummy_regulator_rdev;
1242		goto found;
1243	}
1244
1245#ifdef CONFIG_REGULATOR_DUMMY
1246	if (!devname)
1247		devname = "deviceless";
1248
1249	/* If the board didn't flag that it was fully constrained then
1250	 * substitute in a dummy regulator so consumers can continue.
1251	 */
1252	if (!has_full_constraints) {
1253		pr_warn("%s supply %s not found, using dummy regulator\n",
1254			devname, id);
1255		rdev = dummy_regulator_rdev;
1256		goto found;
1257	}
1258#endif
1259
1260	mutex_unlock(&regulator_list_mutex);
1261	return regulator;
1262
1263found:
1264	if (rdev->exclusive) {
1265		regulator = ERR_PTR(-EPERM);
1266		goto out;
1267	}
1268
1269	if (exclusive && rdev->open_count) {
1270		regulator = ERR_PTR(-EBUSY);
1271		goto out;
1272	}
1273
1274	if (!try_module_get(rdev->owner))
1275		goto out;
1276
1277	regulator = create_regulator(rdev, dev, id);
1278	if (regulator == NULL) {
1279		regulator = ERR_PTR(-ENOMEM);
1280		module_put(rdev->owner);
1281	}
1282
1283	rdev->open_count++;
1284	if (exclusive) {
1285		rdev->exclusive = 1;
1286
1287		ret = _regulator_is_enabled(rdev);
1288		if (ret > 0)
1289			rdev->use_count = 1;
1290		else
1291			rdev->use_count = 0;
1292	}
1293
1294out:
1295	mutex_unlock(&regulator_list_mutex);
1296
1297	return regulator;
1298}
1299
1300/**
1301 * regulator_get - lookup and obtain a reference to a regulator.
1302 * @dev: device for regulator "consumer"
1303 * @id: Supply name or regulator ID.
1304 *
1305 * Returns a struct regulator corresponding to the regulator producer,
1306 * or IS_ERR() condition containing errno.
1307 *
1308 * Use of supply names configured via regulator_set_device_supply() is
1309 * strongly encouraged.  It is recommended that the supply name used
1310 * should match the name used for the supply and/or the relevant
1311 * device pins in the datasheet.
1312 */
1313struct regulator *regulator_get(struct device *dev, const char *id)
1314{
1315	return _regulator_get(dev, id, 0);
1316}
1317EXPORT_SYMBOL_GPL(regulator_get);
1318
1319/**
1320 * regulator_get_exclusive - obtain exclusive access to a regulator.
1321 * @dev: device for regulator "consumer"
1322 * @id: Supply name or regulator ID.
1323 *
1324 * Returns a struct regulator corresponding to the regulator producer,
1325 * or IS_ERR() condition containing errno.  Other consumers will be
1326 * unable to obtain this reference is held and the use count for the
1327 * regulator will be initialised to reflect the current state of the
1328 * regulator.
1329 *
1330 * This is intended for use by consumers which cannot tolerate shared
1331 * use of the regulator such as those which need to force the
1332 * regulator off for correct operation of the hardware they are
1333 * controlling.
1334 *
1335 * Use of supply names configured via regulator_set_device_supply() is
1336 * strongly encouraged.  It is recommended that the supply name used
1337 * should match the name used for the supply and/or the relevant
1338 * device pins in the datasheet.
1339 */
1340struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1341{
1342	return _regulator_get(dev, id, 1);
1343}
1344EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1345
1346/**
1347 * regulator_put - "free" the regulator source
1348 * @regulator: regulator source
1349 *
1350 * Note: drivers must ensure that all regulator_enable calls made on this
1351 * regulator source are balanced by regulator_disable calls prior to calling
1352 * this function.
1353 */
1354void regulator_put(struct regulator *regulator)
1355{
1356	struct regulator_dev *rdev;
1357
1358	if (regulator == NULL || IS_ERR(regulator))
1359		return;
1360
1361	mutex_lock(&regulator_list_mutex);
1362	rdev = regulator->rdev;
1363
1364#ifdef CONFIG_DEBUG_FS
1365	debugfs_remove_recursive(regulator->debugfs);
1366#endif
1367
1368	/* remove any sysfs entries */
1369	if (regulator->dev) {
1370		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1371		device_remove_file(regulator->dev, &regulator->dev_attr);
1372		kfree(regulator->dev_attr.attr.name);
1373	}
1374	kfree(regulator->supply_name);
1375	list_del(&regulator->list);
1376	kfree(regulator);
1377
1378	rdev->open_count--;
1379	rdev->exclusive = 0;
1380
1381	module_put(rdev->owner);
1382	mutex_unlock(&regulator_list_mutex);
1383}
1384EXPORT_SYMBOL_GPL(regulator_put);
1385
1386static int _regulator_can_change_status(struct regulator_dev *rdev)
1387{
1388	if (!rdev->constraints)
1389		return 0;
1390
1391	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1392		return 1;
1393	else
1394		return 0;
1395}
1396
1397/* locks held by regulator_enable() */
1398static int _regulator_enable(struct regulator_dev *rdev)
1399{
1400	int ret, delay;
1401
1402	/* check voltage and requested load before enabling */
1403	if (rdev->constraints &&
1404	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1405		drms_uA_update(rdev);
1406
1407	if (rdev->use_count == 0) {
1408		/* The regulator may on if it's not switchable or left on */
1409		ret = _regulator_is_enabled(rdev);
1410		if (ret == -EINVAL || ret == 0) {
1411			if (!_regulator_can_change_status(rdev))
1412				return -EPERM;
1413
1414			if (!rdev->desc->ops->enable)
1415				return -EINVAL;
1416
1417			/* Query before enabling in case configuration
1418			 * dependent.  */
1419			ret = _regulator_get_enable_time(rdev);
1420			if (ret >= 0) {
1421				delay = ret;
1422			} else {
1423				rdev_warn(rdev, "enable_time() failed: %d\n",
1424					   ret);
1425				delay = 0;
1426			}
1427
1428			trace_regulator_enable(rdev_get_name(rdev));
1429
1430			/* Allow the regulator to ramp; it would be useful
1431			 * to extend this for bulk operations so that the
1432			 * regulators can ramp together.  */
1433			ret = rdev->desc->ops->enable(rdev);
1434			if (ret < 0)
1435				return ret;
1436
1437			trace_regulator_enable_delay(rdev_get_name(rdev));
1438
1439			if (delay >= 1000) {
1440				mdelay(delay / 1000);
1441				udelay(delay % 1000);
1442			} else if (delay) {
1443				udelay(delay);
1444			}
1445
1446			trace_regulator_enable_complete(rdev_get_name(rdev));
1447
1448		} else if (ret < 0) {
1449			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1450			return ret;
1451		}
1452		/* Fallthrough on positive return values - already enabled */
1453	}
1454
1455	rdev->use_count++;
1456
1457	return 0;
1458}
1459
1460/**
1461 * regulator_enable - enable regulator output
1462 * @regulator: regulator source
1463 *
1464 * Request that the regulator be enabled with the regulator output at
1465 * the predefined voltage or current value.  Calls to regulator_enable()
1466 * must be balanced with calls to regulator_disable().
1467 *
1468 * NOTE: the output value can be set by other drivers, boot loader or may be
1469 * hardwired in the regulator.
1470 */
1471int regulator_enable(struct regulator *regulator)
1472{
1473	struct regulator_dev *rdev = regulator->rdev;
1474	int ret = 0;
1475
1476	if (rdev->supply) {
1477		ret = regulator_enable(rdev->supply);
1478		if (ret != 0)
1479			return ret;
1480	}
1481
1482	mutex_lock(&rdev->mutex);
1483	ret = _regulator_enable(rdev);
1484	mutex_unlock(&rdev->mutex);
1485
1486	if (ret != 0 && rdev->supply)
1487		regulator_disable(rdev->supply);
1488
1489	return ret;
1490}
1491EXPORT_SYMBOL_GPL(regulator_enable);
1492
1493/* locks held by regulator_disable() */
1494static int _regulator_disable(struct regulator_dev *rdev)
1495{
1496	int ret = 0;
1497
1498	if (WARN(rdev->use_count <= 0,
1499		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1500		return -EIO;
1501
1502	/* are we the last user and permitted to disable ? */
1503	if (rdev->use_count == 1 &&
1504	    (rdev->constraints && !rdev->constraints->always_on)) {
1505
1506		/* we are last user */
1507		if (_regulator_can_change_status(rdev) &&
1508		    rdev->desc->ops->disable) {
1509			trace_regulator_disable(rdev_get_name(rdev));
1510
1511			ret = rdev->desc->ops->disable(rdev);
1512			if (ret < 0) {
1513				rdev_err(rdev, "failed to disable\n");
1514				return ret;
1515			}
1516
1517			trace_regulator_disable_complete(rdev_get_name(rdev));
1518
1519			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1520					     NULL);
1521		}
1522
1523		rdev->use_count = 0;
1524	} else if (rdev->use_count > 1) {
1525
1526		if (rdev->constraints &&
1527			(rdev->constraints->valid_ops_mask &
1528			REGULATOR_CHANGE_DRMS))
1529			drms_uA_update(rdev);
1530
1531		rdev->use_count--;
1532	}
1533
1534	return ret;
1535}
1536
1537/**
1538 * regulator_disable - disable regulator output
1539 * @regulator: regulator source
1540 *
1541 * Disable the regulator output voltage or current.  Calls to
1542 * regulator_enable() must be balanced with calls to
1543 * regulator_disable().
1544 *
1545 * NOTE: this will only disable the regulator output if no other consumer
1546 * devices have it enabled, the regulator device supports disabling and
1547 * machine constraints permit this operation.
1548 */
1549int regulator_disable(struct regulator *regulator)
1550{
1551	struct regulator_dev *rdev = regulator->rdev;
1552	int ret = 0;
1553
1554	mutex_lock(&rdev->mutex);
1555	ret = _regulator_disable(rdev);
1556	mutex_unlock(&rdev->mutex);
1557
1558	if (ret == 0 && rdev->supply)
1559		regulator_disable(rdev->supply);
1560
1561	return ret;
1562}
1563EXPORT_SYMBOL_GPL(regulator_disable);
1564
1565/* locks held by regulator_force_disable() */
1566static int _regulator_force_disable(struct regulator_dev *rdev)
1567{
1568	int ret = 0;
1569
1570	/* force disable */
1571	if (rdev->desc->ops->disable) {
1572		/* ah well, who wants to live forever... */
1573		ret = rdev->desc->ops->disable(rdev);
1574		if (ret < 0) {
1575			rdev_err(rdev, "failed to force disable\n");
1576			return ret;
1577		}
1578		/* notify other consumers that power has been forced off */
1579		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1580			REGULATOR_EVENT_DISABLE, NULL);
1581	}
1582
1583	return ret;
1584}
1585
1586/**
1587 * regulator_force_disable - force disable regulator output
1588 * @regulator: regulator source
1589 *
1590 * Forcibly disable the regulator output voltage or current.
1591 * NOTE: this *will* disable the regulator output even if other consumer
1592 * devices have it enabled. This should be used for situations when device
1593 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1594 */
1595int regulator_force_disable(struct regulator *regulator)
1596{
1597	struct regulator_dev *rdev = regulator->rdev;
1598	int ret;
1599
1600	mutex_lock(&rdev->mutex);
1601	regulator->uA_load = 0;
1602	ret = _regulator_force_disable(regulator->rdev);
1603	mutex_unlock(&rdev->mutex);
1604
1605	if (rdev->supply)
1606		while (rdev->open_count--)
1607			regulator_disable(rdev->supply);
1608
1609	return ret;
1610}
1611EXPORT_SYMBOL_GPL(regulator_force_disable);
1612
1613static void regulator_disable_work(struct work_struct *work)
1614{
1615	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1616						  disable_work.work);
1617	int count, i, ret;
1618
1619	mutex_lock(&rdev->mutex);
1620
1621	BUG_ON(!rdev->deferred_disables);
1622
1623	count = rdev->deferred_disables;
1624	rdev->deferred_disables = 0;
1625
1626	for (i = 0; i < count; i++) {
1627		ret = _regulator_disable(rdev);
1628		if (ret != 0)
1629			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1630	}
1631
1632	mutex_unlock(&rdev->mutex);
1633
1634	if (rdev->supply) {
1635		for (i = 0; i < count; i++) {
1636			ret = regulator_disable(rdev->supply);
1637			if (ret != 0) {
1638				rdev_err(rdev,
1639					 "Supply disable failed: %d\n", ret);
1640			}
1641		}
1642	}
1643}
1644
1645/**
1646 * regulator_disable_deferred - disable regulator output with delay
1647 * @regulator: regulator source
1648 * @ms: miliseconds until the regulator is disabled
1649 *
1650 * Execute regulator_disable() on the regulator after a delay.  This
1651 * is intended for use with devices that require some time to quiesce.
1652 *
1653 * NOTE: this will only disable the regulator output if no other consumer
1654 * devices have it enabled, the regulator device supports disabling and
1655 * machine constraints permit this operation.
1656 */
1657int regulator_disable_deferred(struct regulator *regulator, int ms)
1658{
1659	struct regulator_dev *rdev = regulator->rdev;
1660	int ret;
1661
1662	mutex_lock(&rdev->mutex);
1663	rdev->deferred_disables++;
1664	mutex_unlock(&rdev->mutex);
1665
1666	ret = schedule_delayed_work(&rdev->disable_work,
1667				    msecs_to_jiffies(ms));
1668	if (ret < 0)
1669		return ret;
1670	else
1671		return 0;
1672}
1673EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1674
1675static int _regulator_is_enabled(struct regulator_dev *rdev)
1676{
1677	/* If we don't know then assume that the regulator is always on */
1678	if (!rdev->desc->ops->is_enabled)
1679		return 1;
1680
1681	return rdev->desc->ops->is_enabled(rdev);
1682}
1683
1684/**
1685 * regulator_is_enabled - is the regulator output enabled
1686 * @regulator: regulator source
1687 *
1688 * Returns positive if the regulator driver backing the source/client
1689 * has requested that the device be enabled, zero if it hasn't, else a
1690 * negative errno code.
1691 *
1692 * Note that the device backing this regulator handle can have multiple
1693 * users, so it might be enabled even if regulator_enable() was never
1694 * called for this particular source.
1695 */
1696int regulator_is_enabled(struct regulator *regulator)
1697{
1698	int ret;
1699
1700	mutex_lock(&regulator->rdev->mutex);
1701	ret = _regulator_is_enabled(regulator->rdev);
1702	mutex_unlock(&regulator->rdev->mutex);
1703
1704	return ret;
1705}
1706EXPORT_SYMBOL_GPL(regulator_is_enabled);
1707
1708/**
1709 * regulator_count_voltages - count regulator_list_voltage() selectors
1710 * @regulator: regulator source
1711 *
1712 * Returns number of selectors, or negative errno.  Selectors are
1713 * numbered starting at zero, and typically correspond to bitfields
1714 * in hardware registers.
1715 */
1716int regulator_count_voltages(struct regulator *regulator)
1717{
1718	struct regulator_dev	*rdev = regulator->rdev;
1719
1720	return rdev->desc->n_voltages ? : -EINVAL;
1721}
1722EXPORT_SYMBOL_GPL(regulator_count_voltages);
1723
1724/**
1725 * regulator_list_voltage - enumerate supported voltages
1726 * @regulator: regulator source
1727 * @selector: identify voltage to list
1728 * Context: can sleep
1729 *
1730 * Returns a voltage that can be passed to @regulator_set_voltage(),
1731 * zero if this selector code can't be used on this system, or a
1732 * negative errno.
1733 */
1734int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1735{
1736	struct regulator_dev	*rdev = regulator->rdev;
1737	struct regulator_ops	*ops = rdev->desc->ops;
1738	int			ret;
1739
1740	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1741		return -EINVAL;
1742
1743	mutex_lock(&rdev->mutex);
1744	ret = ops->list_voltage(rdev, selector);
1745	mutex_unlock(&rdev->mutex);
1746
1747	if (ret > 0) {
1748		if (ret < rdev->constraints->min_uV)
1749			ret = 0;
1750		else if (ret > rdev->constraints->max_uV)
1751			ret = 0;
1752	}
1753
1754	return ret;
1755}
1756EXPORT_SYMBOL_GPL(regulator_list_voltage);
1757
1758/**
1759 * regulator_is_supported_voltage - check if a voltage range can be supported
1760 *
1761 * @regulator: Regulator to check.
1762 * @min_uV: Minimum required voltage in uV.
1763 * @max_uV: Maximum required voltage in uV.
1764 *
1765 * Returns a boolean or a negative error code.
1766 */
1767int regulator_is_supported_voltage(struct regulator *regulator,
1768				   int min_uV, int max_uV)
1769{
1770	int i, voltages, ret;
1771
1772	ret = regulator_count_voltages(regulator);
1773	if (ret < 0)
1774		return ret;
1775	voltages = ret;
1776
1777	for (i = 0; i < voltages; i++) {
1778		ret = regulator_list_voltage(regulator, i);
1779
1780		if (ret >= min_uV && ret <= max_uV)
1781			return 1;
1782	}
1783
1784	return 0;
1785}
1786
1787static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1788				     int min_uV, int max_uV)
1789{
1790	int ret;
1791	int delay = 0;
1792	unsigned int selector;
1793
1794	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1795
1796	min_uV += rdev->constraints->uV_offset;
1797	max_uV += rdev->constraints->uV_offset;
1798
1799	if (rdev->desc->ops->set_voltage) {
1800		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1801						   &selector);
1802
1803		if (rdev->desc->ops->list_voltage)
1804			selector = rdev->desc->ops->list_voltage(rdev,
1805								 selector);
1806		else
1807			selector = -1;
1808	} else if (rdev->desc->ops->set_voltage_sel) {
1809		int best_val = INT_MAX;
1810		int i;
1811
1812		selector = 0;
1813
1814		/* Find the smallest voltage that falls within the specified
1815		 * range.
1816		 */
1817		for (i = 0; i < rdev->desc->n_voltages; i++) {
1818			ret = rdev->desc->ops->list_voltage(rdev, i);
1819			if (ret < 0)
1820				continue;
1821
1822			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1823				best_val = ret;
1824				selector = i;
1825			}
1826		}
1827
1828		/*
1829		 * If we can't obtain the old selector there is not enough
1830		 * info to call set_voltage_time_sel().
1831		 */
1832		if (rdev->desc->ops->set_voltage_time_sel &&
1833		    rdev->desc->ops->get_voltage_sel) {
1834			unsigned int old_selector = 0;
1835
1836			ret = rdev->desc->ops->get_voltage_sel(rdev);
1837			if (ret < 0)
1838				return ret;
1839			old_selector = ret;
1840			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1841						old_selector, selector);
1842		}
1843
1844		if (best_val != INT_MAX) {
1845			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1846			selector = best_val;
1847		} else {
1848			ret = -EINVAL;
1849		}
1850	} else {
1851		ret = -EINVAL;
1852	}
1853
1854	/* Insert any necessary delays */
1855	if (delay >= 1000) {
1856		mdelay(delay / 1000);
1857		udelay(delay % 1000);
1858	} else if (delay) {
1859		udelay(delay);
1860	}
1861
1862	if (ret == 0)
1863		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1864				     NULL);
1865
1866	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1867
1868	return ret;
1869}
1870
1871/**
1872 * regulator_set_voltage - set regulator output voltage
1873 * @regulator: regulator source
1874 * @min_uV: Minimum required voltage in uV
1875 * @max_uV: Maximum acceptable voltage in uV
1876 *
1877 * Sets a voltage regulator to the desired output voltage. This can be set
1878 * during any regulator state. IOW, regulator can be disabled or enabled.
1879 *
1880 * If the regulator is enabled then the voltage will change to the new value
1881 * immediately otherwise if the regulator is disabled the regulator will
1882 * output at the new voltage when enabled.
1883 *
1884 * NOTE: If the regulator is shared between several devices then the lowest
1885 * request voltage that meets the system constraints will be used.
1886 * Regulator system constraints must be set for this regulator before
1887 * calling this function otherwise this call will fail.
1888 */
1889int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1890{
1891	struct regulator_dev *rdev = regulator->rdev;
1892	int ret = 0;
1893
1894	mutex_lock(&rdev->mutex);
1895
1896	/* If we're setting the same range as last time the change
1897	 * should be a noop (some cpufreq implementations use the same
1898	 * voltage for multiple frequencies, for example).
1899	 */
1900	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1901		goto out;
1902
1903	/* sanity check */
1904	if (!rdev->desc->ops->set_voltage &&
1905	    !rdev->desc->ops->set_voltage_sel) {
1906		ret = -EINVAL;
1907		goto out;
1908	}
1909
1910	/* constraints check */
1911	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1912	if (ret < 0)
1913		goto out;
1914	regulator->min_uV = min_uV;
1915	regulator->max_uV = max_uV;
1916
1917	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1918	if (ret < 0)
1919		goto out;
1920
1921	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1922
1923out:
1924	mutex_unlock(&rdev->mutex);
1925	return ret;
1926}
1927EXPORT_SYMBOL_GPL(regulator_set_voltage);
1928
1929/**
1930 * regulator_set_voltage_time - get raise/fall time
1931 * @regulator: regulator source
1932 * @old_uV: starting voltage in microvolts
1933 * @new_uV: target voltage in microvolts
1934 *
1935 * Provided with the starting and ending voltage, this function attempts to
1936 * calculate the time in microseconds required to rise or fall to this new
1937 * voltage.
1938 */
1939int regulator_set_voltage_time(struct regulator *regulator,
1940			       int old_uV, int new_uV)
1941{
1942	struct regulator_dev	*rdev = regulator->rdev;
1943	struct regulator_ops	*ops = rdev->desc->ops;
1944	int old_sel = -1;
1945	int new_sel = -1;
1946	int voltage;
1947	int i;
1948
1949	/* Currently requires operations to do this */
1950	if (!ops->list_voltage || !ops->set_voltage_time_sel
1951	    || !rdev->desc->n_voltages)
1952		return -EINVAL;
1953
1954	for (i = 0; i < rdev->desc->n_voltages; i++) {
1955		/* We only look for exact voltage matches here */
1956		voltage = regulator_list_voltage(regulator, i);
1957		if (voltage < 0)
1958			return -EINVAL;
1959		if (voltage == 0)
1960			continue;
1961		if (voltage == old_uV)
1962			old_sel = i;
1963		if (voltage == new_uV)
1964			new_sel = i;
1965	}
1966
1967	if (old_sel < 0 || new_sel < 0)
1968		return -EINVAL;
1969
1970	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1971}
1972EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1973
1974/**
1975 * regulator_sync_voltage - re-apply last regulator output voltage
1976 * @regulator: regulator source
1977 *
1978 * Re-apply the last configured voltage.  This is intended to be used
1979 * where some external control source the consumer is cooperating with
1980 * has caused the configured voltage to change.
1981 */
1982int regulator_sync_voltage(struct regulator *regulator)
1983{
1984	struct regulator_dev *rdev = regulator->rdev;
1985	int ret, min_uV, max_uV;
1986
1987	mutex_lock(&rdev->mutex);
1988
1989	if (!rdev->desc->ops->set_voltage &&
1990	    !rdev->desc->ops->set_voltage_sel) {
1991		ret = -EINVAL;
1992		goto out;
1993	}
1994
1995	/* This is only going to work if we've had a voltage configured. */
1996	if (!regulator->min_uV && !regulator->max_uV) {
1997		ret = -EINVAL;
1998		goto out;
1999	}
2000
2001	min_uV = regulator->min_uV;
2002	max_uV = regulator->max_uV;
2003
2004	/* This should be a paranoia check... */
2005	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2006	if (ret < 0)
2007		goto out;
2008
2009	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2010	if (ret < 0)
2011		goto out;
2012
2013	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2014
2015out:
2016	mutex_unlock(&rdev->mutex);
2017	return ret;
2018}
2019EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2020
2021static int _regulator_get_voltage(struct regulator_dev *rdev)
2022{
2023	int sel, ret;
2024
2025	if (rdev->desc->ops->get_voltage_sel) {
2026		sel = rdev->desc->ops->get_voltage_sel(rdev);
2027		if (sel < 0)
2028			return sel;
2029		ret = rdev->desc->ops->list_voltage(rdev, sel);
2030	} else if (rdev->desc->ops->get_voltage) {
2031		ret = rdev->desc->ops->get_voltage(rdev);
2032	} else {
2033		return -EINVAL;
2034	}
2035
2036	if (ret < 0)
2037		return ret;
2038	return ret - rdev->constraints->uV_offset;
2039}
2040
2041/**
2042 * regulator_get_voltage - get regulator output voltage
2043 * @regulator: regulator source
2044 *
2045 * This returns the current regulator voltage in uV.
2046 *
2047 * NOTE: If the regulator is disabled it will return the voltage value. This
2048 * function should not be used to determine regulator state.
2049 */
2050int regulator_get_voltage(struct regulator *regulator)
2051{
2052	int ret;
2053
2054	mutex_lock(&regulator->rdev->mutex);
2055
2056	ret = _regulator_get_voltage(regulator->rdev);
2057
2058	mutex_unlock(&regulator->rdev->mutex);
2059
2060	return ret;
2061}
2062EXPORT_SYMBOL_GPL(regulator_get_voltage);
2063
2064/**
2065 * regulator_set_current_limit - set regulator output current limit
2066 * @regulator: regulator source
2067 * @min_uA: Minimuum supported current in uA
2068 * @max_uA: Maximum supported current in uA
2069 *
2070 * Sets current sink to the desired output current. This can be set during
2071 * any regulator state. IOW, regulator can be disabled or enabled.
2072 *
2073 * If the regulator is enabled then the current will change to the new value
2074 * immediately otherwise if the regulator is disabled the regulator will
2075 * output at the new current when enabled.
2076 *
2077 * NOTE: Regulator system constraints must be set for this regulator before
2078 * calling this function otherwise this call will fail.
2079 */
2080int regulator_set_current_limit(struct regulator *regulator,
2081			       int min_uA, int max_uA)
2082{
2083	struct regulator_dev *rdev = regulator->rdev;
2084	int ret;
2085
2086	mutex_lock(&rdev->mutex);
2087
2088	/* sanity check */
2089	if (!rdev->desc->ops->set_current_limit) {
2090		ret = -EINVAL;
2091		goto out;
2092	}
2093
2094	/* constraints check */
2095	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2096	if (ret < 0)
2097		goto out;
2098
2099	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2100out:
2101	mutex_unlock(&rdev->mutex);
2102	return ret;
2103}
2104EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2105
2106static int _regulator_get_current_limit(struct regulator_dev *rdev)
2107{
2108	int ret;
2109
2110	mutex_lock(&rdev->mutex);
2111
2112	/* sanity check */
2113	if (!rdev->desc->ops->get_current_limit) {
2114		ret = -EINVAL;
2115		goto out;
2116	}
2117
2118	ret = rdev->desc->ops->get_current_limit(rdev);
2119out:
2120	mutex_unlock(&rdev->mutex);
2121	return ret;
2122}
2123
2124/**
2125 * regulator_get_current_limit - get regulator output current
2126 * @regulator: regulator source
2127 *
2128 * This returns the current supplied by the specified current sink in uA.
2129 *
2130 * NOTE: If the regulator is disabled it will return the current value. This
2131 * function should not be used to determine regulator state.
2132 */
2133int regulator_get_current_limit(struct regulator *regulator)
2134{
2135	return _regulator_get_current_limit(regulator->rdev);
2136}
2137EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2138
2139/**
2140 * regulator_set_mode - set regulator operating mode
2141 * @regulator: regulator source
2142 * @mode: operating mode - one of the REGULATOR_MODE constants
2143 *
2144 * Set regulator operating mode to increase regulator efficiency or improve
2145 * regulation performance.
2146 *
2147 * NOTE: Regulator system constraints must be set for this regulator before
2148 * calling this function otherwise this call will fail.
2149 */
2150int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2151{
2152	struct regulator_dev *rdev = regulator->rdev;
2153	int ret;
2154	int regulator_curr_mode;
2155
2156	mutex_lock(&rdev->mutex);
2157
2158	/* sanity check */
2159	if (!rdev->desc->ops->set_mode) {
2160		ret = -EINVAL;
2161		goto out;
2162	}
2163
2164	/* return if the same mode is requested */
2165	if (rdev->desc->ops->get_mode) {
2166		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2167		if (regulator_curr_mode == mode) {
2168			ret = 0;
2169			goto out;
2170		}
2171	}
2172
2173	/* constraints check */
2174	ret = regulator_mode_constrain(rdev, &mode);
2175	if (ret < 0)
2176		goto out;
2177
2178	ret = rdev->desc->ops->set_mode(rdev, mode);
2179out:
2180	mutex_unlock(&rdev->mutex);
2181	return ret;
2182}
2183EXPORT_SYMBOL_GPL(regulator_set_mode);
2184
2185static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2186{
2187	int ret;
2188
2189	mutex_lock(&rdev->mutex);
2190
2191	/* sanity check */
2192	if (!rdev->desc->ops->get_mode) {
2193		ret = -EINVAL;
2194		goto out;
2195	}
2196
2197	ret = rdev->desc->ops->get_mode(rdev);
2198out:
2199	mutex_unlock(&rdev->mutex);
2200	return ret;
2201}
2202
2203/**
2204 * regulator_get_mode - get regulator operating mode
2205 * @regulator: regulator source
2206 *
2207 * Get the current regulator operating mode.
2208 */
2209unsigned int regulator_get_mode(struct regulator *regulator)
2210{
2211	return _regulator_get_mode(regulator->rdev);
2212}
2213EXPORT_SYMBOL_GPL(regulator_get_mode);
2214
2215/**
2216 * regulator_set_optimum_mode - set regulator optimum operating mode
2217 * @regulator: regulator source
2218 * @uA_load: load current
2219 *
2220 * Notifies the regulator core of a new device load. This is then used by
2221 * DRMS (if enabled by constraints) to set the most efficient regulator
2222 * operating mode for the new regulator loading.
2223 *
2224 * Consumer devices notify their supply regulator of the maximum power
2225 * they will require (can be taken from device datasheet in the power
2226 * consumption tables) when they change operational status and hence power
2227 * state. Examples of operational state changes that can affect power
2228 * consumption are :-
2229 *
2230 *    o Device is opened / closed.
2231 *    o Device I/O is about to begin or has just finished.
2232 *    o Device is idling in between work.
2233 *
2234 * This information is also exported via sysfs to userspace.
2235 *
2236 * DRMS will sum the total requested load on the regulator and change
2237 * to the most efficient operating mode if platform constraints allow.
2238 *
2239 * Returns the new regulator mode or error.
2240 */
2241int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2242{
2243	struct regulator_dev *rdev = regulator->rdev;
2244	struct regulator *consumer;
2245	int ret, output_uV, input_uV, total_uA_load = 0;
2246	unsigned int mode;
2247
2248	mutex_lock(&rdev->mutex);
2249
2250	/*
2251	 * first check to see if we can set modes at all, otherwise just
2252	 * tell the consumer everything is OK.
2253	 */
2254	regulator->uA_load = uA_load;
2255	ret = regulator_check_drms(rdev);
2256	if (ret < 0) {
2257		ret = 0;
2258		goto out;
2259	}
2260
2261	if (!rdev->desc->ops->get_optimum_mode)
2262		goto out;
2263
2264	/*
2265	 * we can actually do this so any errors are indicators of
2266	 * potential real failure.
2267	 */
2268	ret = -EINVAL;
2269
2270	/* get output voltage */
2271	output_uV = _regulator_get_voltage(rdev);
2272	if (output_uV <= 0) {
2273		rdev_err(rdev, "invalid output voltage found\n");
2274		goto out;
2275	}
2276
2277	/* get input voltage */
2278	input_uV = 0;
2279	if (rdev->supply)
2280		input_uV = regulator_get_voltage(rdev->supply);
2281	if (input_uV <= 0)
2282		input_uV = rdev->constraints->input_uV;
2283	if (input_uV <= 0) {
2284		rdev_err(rdev, "invalid input voltage found\n");
2285		goto out;
2286	}
2287
2288	/* calc total requested load for this regulator */
2289	list_for_each_entry(consumer, &rdev->consumer_list, list)
2290		total_uA_load += consumer->uA_load;
2291
2292	mode = rdev->desc->ops->get_optimum_mode(rdev,
2293						 input_uV, output_uV,
2294						 total_uA_load);
2295	ret = regulator_mode_constrain(rdev, &mode);
2296	if (ret < 0) {
2297		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2298			 total_uA_load, input_uV, output_uV);
2299		goto out;
2300	}
2301
2302	ret = rdev->desc->ops->set_mode(rdev, mode);
2303	if (ret < 0) {
2304		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2305		goto out;
2306	}
2307	ret = mode;
2308out:
2309	mutex_unlock(&rdev->mutex);
2310	return ret;
2311}
2312EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2313
2314/**
2315 * regulator_register_notifier - register regulator event notifier
2316 * @regulator: regulator source
2317 * @nb: notifier block
2318 *
2319 * Register notifier block to receive regulator events.
2320 */
2321int regulator_register_notifier(struct regulator *regulator,
2322			      struct notifier_block *nb)
2323{
2324	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2325						nb);
2326}
2327EXPORT_SYMBOL_GPL(regulator_register_notifier);
2328
2329/**
2330 * regulator_unregister_notifier - unregister regulator event notifier
2331 * @regulator: regulator source
2332 * @nb: notifier block
2333 *
2334 * Unregister regulator event notifier block.
2335 */
2336int regulator_unregister_notifier(struct regulator *regulator,
2337				struct notifier_block *nb)
2338{
2339	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2340						  nb);
2341}
2342EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2343
2344/* notify regulator consumers and downstream regulator consumers.
2345 * Note mutex must be held by caller.
2346 */
2347static void _notifier_call_chain(struct regulator_dev *rdev,
2348				  unsigned long event, void *data)
2349{
2350	/* call rdev chain first */
2351	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2352}
2353
2354/**
2355 * regulator_bulk_get - get multiple regulator consumers
2356 *
2357 * @dev:           Device to supply
2358 * @num_consumers: Number of consumers to register
2359 * @consumers:     Configuration of consumers; clients are stored here.
2360 *
2361 * @return 0 on success, an errno on failure.
2362 *
2363 * This helper function allows drivers to get several regulator
2364 * consumers in one operation.  If any of the regulators cannot be
2365 * acquired then any regulators that were allocated will be freed
2366 * before returning to the caller.
2367 */
2368int regulator_bulk_get(struct device *dev, int num_consumers,
2369		       struct regulator_bulk_data *consumers)
2370{
2371	int i;
2372	int ret;
2373
2374	for (i = 0; i < num_consumers; i++)
2375		consumers[i].consumer = NULL;
2376
2377	for (i = 0; i < num_consumers; i++) {
2378		consumers[i].consumer = regulator_get(dev,
2379						      consumers[i].supply);
2380		if (IS_ERR(consumers[i].consumer)) {
2381			ret = PTR_ERR(consumers[i].consumer);
2382			dev_err(dev, "Failed to get supply '%s': %d\n",
2383				consumers[i].supply, ret);
2384			consumers[i].consumer = NULL;
2385			goto err;
2386		}
2387	}
2388
2389	return 0;
2390
2391err:
2392	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2393		regulator_put(consumers[i].consumer);
2394
2395	return ret;
2396}
2397EXPORT_SYMBOL_GPL(regulator_bulk_get);
2398
2399static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2400{
2401	struct regulator_bulk_data *bulk = data;
2402
2403	bulk->ret = regulator_enable(bulk->consumer);
2404}
2405
2406/**
2407 * regulator_bulk_enable - enable multiple regulator consumers
2408 *
2409 * @num_consumers: Number of consumers
2410 * @consumers:     Consumer data; clients are stored here.
2411 * @return         0 on success, an errno on failure
2412 *
2413 * This convenience API allows consumers to enable multiple regulator
2414 * clients in a single API call.  If any consumers cannot be enabled
2415 * then any others that were enabled will be disabled again prior to
2416 * return.
2417 */
2418int regulator_bulk_enable(int num_consumers,
2419			  struct regulator_bulk_data *consumers)
2420{
2421	LIST_HEAD(async_domain);
2422	int i;
2423	int ret = 0;
2424
2425	for (i = 0; i < num_consumers; i++)
2426		async_schedule_domain(regulator_bulk_enable_async,
2427				      &consumers[i], &async_domain);
2428
2429	async_synchronize_full_domain(&async_domain);
2430
2431	/* If any consumer failed we need to unwind any that succeeded */
2432	for (i = 0; i < num_consumers; i++) {
2433		if (consumers[i].ret != 0) {
2434			ret = consumers[i].ret;
2435			goto err;
2436		}
2437	}
2438
2439	return 0;
2440
2441err:
2442	for (i = 0; i < num_consumers; i++)
2443		if (consumers[i].ret == 0)
2444			regulator_disable(consumers[i].consumer);
2445		else
2446			pr_err("Failed to enable %s: %d\n",
2447			       consumers[i].supply, consumers[i].ret);
2448
2449	return ret;
2450}
2451EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2452
2453/**
2454 * regulator_bulk_disable - disable multiple regulator consumers
2455 *
2456 * @num_consumers: Number of consumers
2457 * @consumers:     Consumer data; clients are stored here.
2458 * @return         0 on success, an errno on failure
2459 *
2460 * This convenience API allows consumers to disable multiple regulator
2461 * clients in a single API call.  If any consumers cannot be enabled
2462 * then any others that were disabled will be disabled again prior to
2463 * return.
2464 */
2465int regulator_bulk_disable(int num_consumers,
2466			   struct regulator_bulk_data *consumers)
2467{
2468	int i;
2469	int ret;
2470
2471	for (i = 0; i < num_consumers; i++) {
2472		ret = regulator_disable(consumers[i].consumer);
2473		if (ret != 0)
2474			goto err;
2475	}
2476
2477	return 0;
2478
2479err:
2480	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2481	for (--i; i >= 0; --i)
2482		regulator_enable(consumers[i].consumer);
2483
2484	return ret;
2485}
2486EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2487
2488/**
2489 * regulator_bulk_free - free multiple regulator consumers
2490 *
2491 * @num_consumers: Number of consumers
2492 * @consumers:     Consumer data; clients are stored here.
2493 *
2494 * This convenience API allows consumers to free multiple regulator
2495 * clients in a single API call.
2496 */
2497void regulator_bulk_free(int num_consumers,
2498			 struct regulator_bulk_data *consumers)
2499{
2500	int i;
2501
2502	for (i = 0; i < num_consumers; i++) {
2503		regulator_put(consumers[i].consumer);
2504		consumers[i].consumer = NULL;
2505	}
2506}
2507EXPORT_SYMBOL_GPL(regulator_bulk_free);
2508
2509/**
2510 * regulator_notifier_call_chain - call regulator event notifier
2511 * @rdev: regulator source
2512 * @event: notifier block
2513 * @data: callback-specific data.
2514 *
2515 * Called by regulator drivers to notify clients a regulator event has
2516 * occurred. We also notify regulator clients downstream.
2517 * Note lock must be held by caller.
2518 */
2519int regulator_notifier_call_chain(struct regulator_dev *rdev,
2520				  unsigned long event, void *data)
2521{
2522	_notifier_call_chain(rdev, event, data);
2523	return NOTIFY_DONE;
2524
2525}
2526EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2527
2528/**
2529 * regulator_mode_to_status - convert a regulator mode into a status
2530 *
2531 * @mode: Mode to convert
2532 *
2533 * Convert a regulator mode into a status.
2534 */
2535int regulator_mode_to_status(unsigned int mode)
2536{
2537	switch (mode) {
2538	case REGULATOR_MODE_FAST:
2539		return REGULATOR_STATUS_FAST;
2540	case REGULATOR_MODE_NORMAL:
2541		return REGULATOR_STATUS_NORMAL;
2542	case REGULATOR_MODE_IDLE:
2543		return REGULATOR_STATUS_IDLE;
2544	case REGULATOR_STATUS_STANDBY:
2545		return REGULATOR_STATUS_STANDBY;
2546	default:
2547		return 0;
2548	}
2549}
2550EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2551
2552/*
2553 * To avoid cluttering sysfs (and memory) with useless state, only
2554 * create attributes that can be meaningfully displayed.
2555 */
2556static int add_regulator_attributes(struct regulator_dev *rdev)
2557{
2558	struct device		*dev = &rdev->dev;
2559	struct regulator_ops	*ops = rdev->desc->ops;
2560	int			status = 0;
2561
2562	/* some attributes need specific methods to be displayed */
2563	if (ops->get_voltage || ops->get_voltage_sel) {
2564		status = device_create_file(dev, &dev_attr_microvolts);
2565		if (status < 0)
2566			return status;
2567	}
2568	if (ops->get_current_limit) {
2569		status = device_create_file(dev, &dev_attr_microamps);
2570		if (status < 0)
2571			return status;
2572	}
2573	if (ops->get_mode) {
2574		status = device_create_file(dev, &dev_attr_opmode);
2575		if (status < 0)
2576			return status;
2577	}
2578	if (ops->is_enabled) {
2579		status = device_create_file(dev, &dev_attr_state);
2580		if (status < 0)
2581			return status;
2582	}
2583	if (ops->get_status) {
2584		status = device_create_file(dev, &dev_attr_status);
2585		if (status < 0)
2586			return status;
2587	}
2588
2589	/* some attributes are type-specific */
2590	if (rdev->desc->type == REGULATOR_CURRENT) {
2591		status = device_create_file(dev, &dev_attr_requested_microamps);
2592		if (status < 0)
2593			return status;
2594	}
2595
2596	/* all the other attributes exist to support constraints;
2597	 * don't show them if there are no constraints, or if the
2598	 * relevant supporting methods are missing.
2599	 */
2600	if (!rdev->constraints)
2601		return status;
2602
2603	/* constraints need specific supporting methods */
2604	if (ops->set_voltage || ops->set_voltage_sel) {
2605		status = device_create_file(dev, &dev_attr_min_microvolts);
2606		if (status < 0)
2607			return status;
2608		status = device_create_file(dev, &dev_attr_max_microvolts);
2609		if (status < 0)
2610			return status;
2611	}
2612	if (ops->set_current_limit) {
2613		status = device_create_file(dev, &dev_attr_min_microamps);
2614		if (status < 0)
2615			return status;
2616		status = device_create_file(dev, &dev_attr_max_microamps);
2617		if (status < 0)
2618			return status;
2619	}
2620
2621	/* suspend mode constraints need multiple supporting methods */
2622	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2623		return status;
2624
2625	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2626	if (status < 0)
2627		return status;
2628	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2629	if (status < 0)
2630		return status;
2631	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2632	if (status < 0)
2633		return status;
2634
2635	if (ops->set_suspend_voltage) {
2636		status = device_create_file(dev,
2637				&dev_attr_suspend_standby_microvolts);
2638		if (status < 0)
2639			return status;
2640		status = device_create_file(dev,
2641				&dev_attr_suspend_mem_microvolts);
2642		if (status < 0)
2643			return status;
2644		status = device_create_file(dev,
2645				&dev_attr_suspend_disk_microvolts);
2646		if (status < 0)
2647			return status;
2648	}
2649
2650	if (ops->set_suspend_mode) {
2651		status = device_create_file(dev,
2652				&dev_attr_suspend_standby_mode);
2653		if (status < 0)
2654			return status;
2655		status = device_create_file(dev,
2656				&dev_attr_suspend_mem_mode);
2657		if (status < 0)
2658			return status;
2659		status = device_create_file(dev,
2660				&dev_attr_suspend_disk_mode);
2661		if (status < 0)
2662			return status;
2663	}
2664
2665	return status;
2666}
2667
2668static void rdev_init_debugfs(struct regulator_dev *rdev)
2669{
2670#ifdef CONFIG_DEBUG_FS
2671	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2672	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2673		rdev_warn(rdev, "Failed to create debugfs directory\n");
2674		rdev->debugfs = NULL;
2675		return;
2676	}
2677
2678	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2679			   &rdev->use_count);
2680	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2681			   &rdev->open_count);
2682#endif
2683}
2684
2685/**
2686 * regulator_register - register regulator
2687 * @regulator_desc: regulator to register
2688 * @dev: struct device for the regulator
2689 * @init_data: platform provided init data, passed through by driver
2690 * @driver_data: private regulator data
2691 *
2692 * Called by regulator drivers to register a regulator.
2693 * Returns 0 on success.
2694 */
2695struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2696	struct device *dev, const struct regulator_init_data *init_data,
2697	void *driver_data, struct device_node *of_node)
2698{
2699	static atomic_t regulator_no = ATOMIC_INIT(0);
2700	struct regulator_dev *rdev;
2701	int ret, i;
2702	const char *supply = NULL;
2703
2704	if (regulator_desc == NULL)
2705		return ERR_PTR(-EINVAL);
2706
2707	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2708		return ERR_PTR(-EINVAL);
2709
2710	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2711	    regulator_desc->type != REGULATOR_CURRENT)
2712		return ERR_PTR(-EINVAL);
2713
2714	if (!init_data)
2715		return ERR_PTR(-EINVAL);
2716
2717	/* Only one of each should be implemented */
2718	WARN_ON(regulator_desc->ops->get_voltage &&
2719		regulator_desc->ops->get_voltage_sel);
2720	WARN_ON(regulator_desc->ops->set_voltage &&
2721		regulator_desc->ops->set_voltage_sel);
2722
2723	/* If we're using selectors we must implement list_voltage. */
2724	if (regulator_desc->ops->get_voltage_sel &&
2725	    !regulator_desc->ops->list_voltage) {
2726		return ERR_PTR(-EINVAL);
2727	}
2728	if (regulator_desc->ops->set_voltage_sel &&
2729	    !regulator_desc->ops->list_voltage) {
2730		return ERR_PTR(-EINVAL);
2731	}
2732
2733	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2734	if (rdev == NULL)
2735		return ERR_PTR(-ENOMEM);
2736
2737	mutex_lock(&regulator_list_mutex);
2738
2739	mutex_init(&rdev->mutex);
2740	rdev->reg_data = driver_data;
2741	rdev->owner = regulator_desc->owner;
2742	rdev->desc = regulator_desc;
2743	INIT_LIST_HEAD(&rdev->consumer_list);
2744	INIT_LIST_HEAD(&rdev->list);
2745	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2746	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2747
2748	/* preform any regulator specific init */
2749	if (init_data->regulator_init) {
2750		ret = init_data->regulator_init(rdev->reg_data);
2751		if (ret < 0)
2752			goto clean;
2753	}
2754
2755	/* register with sysfs */
2756	rdev->dev.class = &regulator_class;
2757	rdev->dev.of_node = of_node;
2758	rdev->dev.parent = dev;
2759	dev_set_name(&rdev->dev, "regulator.%d",
2760		     atomic_inc_return(&regulator_no) - 1);
2761	ret = device_register(&rdev->dev);
2762	if (ret != 0) {
2763		put_device(&rdev->dev);
2764		goto clean;
2765	}
2766
2767	dev_set_drvdata(&rdev->dev, rdev);
2768
2769	/* set regulator constraints */
2770	ret = set_machine_constraints(rdev, &init_data->constraints);
2771	if (ret < 0)
2772		goto scrub;
2773
2774	/* add attributes supported by this regulator */
2775	ret = add_regulator_attributes(rdev);
2776	if (ret < 0)
2777		goto scrub;
2778
2779	if (init_data->supply_regulator)
2780		supply = init_data->supply_regulator;
2781	else if (regulator_desc->supply_name)
2782		supply = regulator_desc->supply_name;
2783
2784	if (supply) {
2785		struct regulator_dev *r;
2786
2787		r = regulator_dev_lookup(dev, supply);
2788
2789		if (!r) {
2790			dev_err(dev, "Failed to find supply %s\n", supply);
2791			ret = -ENODEV;
2792			goto scrub;
2793		}
2794
2795		ret = set_supply(rdev, r);
2796		if (ret < 0)
2797			goto scrub;
2798	}
2799
2800	/* add consumers devices */
2801	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2802		ret = set_consumer_device_supply(rdev,
2803			init_data->consumer_supplies[i].dev,
2804			init_data->consumer_supplies[i].dev_name,
2805			init_data->consumer_supplies[i].supply);
2806		if (ret < 0) {
2807			dev_err(dev, "Failed to set supply %s\n",
2808				init_data->consumer_supplies[i].supply);
2809			goto unset_supplies;
2810		}
2811	}
2812
2813	list_add(&rdev->list, &regulator_list);
2814
2815	rdev_init_debugfs(rdev);
2816out:
2817	mutex_unlock(&regulator_list_mutex);
2818	return rdev;
2819
2820unset_supplies:
2821	unset_regulator_supplies(rdev);
2822
2823scrub:
2824	kfree(rdev->constraints);
2825	device_unregister(&rdev->dev);
2826	/* device core frees rdev */
2827	rdev = ERR_PTR(ret);
2828	goto out;
2829
2830clean:
2831	kfree(rdev);
2832	rdev = ERR_PTR(ret);
2833	goto out;
2834}
2835EXPORT_SYMBOL_GPL(regulator_register);
2836
2837/**
2838 * regulator_unregister - unregister regulator
2839 * @rdev: regulator to unregister
2840 *
2841 * Called by regulator drivers to unregister a regulator.
2842 */
2843void regulator_unregister(struct regulator_dev *rdev)
2844{
2845	if (rdev == NULL)
2846		return;
2847
2848	mutex_lock(&regulator_list_mutex);
2849#ifdef CONFIG_DEBUG_FS
2850	debugfs_remove_recursive(rdev->debugfs);
2851#endif
2852	flush_work_sync(&rdev->disable_work.work);
2853	WARN_ON(rdev->open_count);
2854	unset_regulator_supplies(rdev);
2855	list_del(&rdev->list);
2856	if (rdev->supply)
2857		regulator_put(rdev->supply);
2858	device_unregister(&rdev->dev);
2859	kfree(rdev->constraints);
2860	mutex_unlock(&regulator_list_mutex);
2861}
2862EXPORT_SYMBOL_GPL(regulator_unregister);
2863
2864/**
2865 * regulator_suspend_prepare - prepare regulators for system wide suspend
2866 * @state: system suspend state
2867 *
2868 * Configure each regulator with it's suspend operating parameters for state.
2869 * This will usually be called by machine suspend code prior to supending.
2870 */
2871int regulator_suspend_prepare(suspend_state_t state)
2872{
2873	struct regulator_dev *rdev;
2874	int ret = 0;
2875
2876	/* ON is handled by regulator active state */
2877	if (state == PM_SUSPEND_ON)
2878		return -EINVAL;
2879
2880	mutex_lock(&regulator_list_mutex);
2881	list_for_each_entry(rdev, &regulator_list, list) {
2882
2883		mutex_lock(&rdev->mutex);
2884		ret = suspend_prepare(rdev, state);
2885		mutex_unlock(&rdev->mutex);
2886
2887		if (ret < 0) {
2888			rdev_err(rdev, "failed to prepare\n");
2889			goto out;
2890		}
2891	}
2892out:
2893	mutex_unlock(&regulator_list_mutex);
2894	return ret;
2895}
2896EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2897
2898/**
2899 * regulator_suspend_finish - resume regulators from system wide suspend
2900 *
2901 * Turn on regulators that might be turned off by regulator_suspend_prepare
2902 * and that should be turned on according to the regulators properties.
2903 */
2904int regulator_suspend_finish(void)
2905{
2906	struct regulator_dev *rdev;
2907	int ret = 0, error;
2908
2909	mutex_lock(&regulator_list_mutex);
2910	list_for_each_entry(rdev, &regulator_list, list) {
2911		struct regulator_ops *ops = rdev->desc->ops;
2912
2913		mutex_lock(&rdev->mutex);
2914		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2915				ops->enable) {
2916			error = ops->enable(rdev);
2917			if (error)
2918				ret = error;
2919		} else {
2920			if (!has_full_constraints)
2921				goto unlock;
2922			if (!ops->disable)
2923				goto unlock;
2924			if (ops->is_enabled && !ops->is_enabled(rdev))
2925				goto unlock;
2926
2927			error = ops->disable(rdev);
2928			if (error)
2929				ret = error;
2930		}
2931unlock:
2932		mutex_unlock(&rdev->mutex);
2933	}
2934	mutex_unlock(&regulator_list_mutex);
2935	return ret;
2936}
2937EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2938
2939/**
2940 * regulator_has_full_constraints - the system has fully specified constraints
2941 *
2942 * Calling this function will cause the regulator API to disable all
2943 * regulators which have a zero use count and don't have an always_on
2944 * constraint in a late_initcall.
2945 *
2946 * The intention is that this will become the default behaviour in a
2947 * future kernel release so users are encouraged to use this facility
2948 * now.
2949 */
2950void regulator_has_full_constraints(void)
2951{
2952	has_full_constraints = 1;
2953}
2954EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2955
2956/**
2957 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2958 *
2959 * Calling this function will cause the regulator API to provide a
2960 * dummy regulator to consumers if no physical regulator is found,
2961 * allowing most consumers to proceed as though a regulator were
2962 * configured.  This allows systems such as those with software
2963 * controllable regulators for the CPU core only to be brought up more
2964 * readily.
2965 */
2966void regulator_use_dummy_regulator(void)
2967{
2968	board_wants_dummy_regulator = true;
2969}
2970EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2971
2972/**
2973 * rdev_get_drvdata - get rdev regulator driver data
2974 * @rdev: regulator
2975 *
2976 * Get rdev regulator driver private data. This call can be used in the
2977 * regulator driver context.
2978 */
2979void *rdev_get_drvdata(struct regulator_dev *rdev)
2980{
2981	return rdev->reg_data;
2982}
2983EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2984
2985/**
2986 * regulator_get_drvdata - get regulator driver data
2987 * @regulator: regulator
2988 *
2989 * Get regulator driver private data. This call can be used in the consumer
2990 * driver context when non API regulator specific functions need to be called.
2991 */
2992void *regulator_get_drvdata(struct regulator *regulator)
2993{
2994	return regulator->rdev->reg_data;
2995}
2996EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2997
2998/**
2999 * regulator_set_drvdata - set regulator driver data
3000 * @regulator: regulator
3001 * @data: data
3002 */
3003void regulator_set_drvdata(struct regulator *regulator, void *data)
3004{
3005	regulator->rdev->reg_data = data;
3006}
3007EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3008
3009/**
3010 * regulator_get_id - get regulator ID
3011 * @rdev: regulator
3012 */
3013int rdev_get_id(struct regulator_dev *rdev)
3014{
3015	return rdev->desc->id;
3016}
3017EXPORT_SYMBOL_GPL(rdev_get_id);
3018
3019struct device *rdev_get_dev(struct regulator_dev *rdev)
3020{
3021	return &rdev->dev;
3022}
3023EXPORT_SYMBOL_GPL(rdev_get_dev);
3024
3025void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3026{
3027	return reg_init_data->driver_data;
3028}
3029EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3030
3031#ifdef CONFIG_DEBUG_FS
3032static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3033				    size_t count, loff_t *ppos)
3034{
3035	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3036	ssize_t len, ret = 0;
3037	struct regulator_map *map;
3038
3039	if (!buf)
3040		return -ENOMEM;
3041
3042	list_for_each_entry(map, &regulator_map_list, list) {
3043		len = snprintf(buf + ret, PAGE_SIZE - ret,
3044			       "%s -> %s.%s\n",
3045			       rdev_get_name(map->regulator), map->dev_name,
3046			       map->supply);
3047		if (len >= 0)
3048			ret += len;
3049		if (ret > PAGE_SIZE) {
3050			ret = PAGE_SIZE;
3051			break;
3052		}
3053	}
3054
3055	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3056
3057	kfree(buf);
3058
3059	return ret;
3060}
3061
3062static const struct file_operations supply_map_fops = {
3063	.read = supply_map_read_file,
3064	.llseek = default_llseek,
3065};
3066#endif
3067
3068static int __init regulator_init(void)
3069{
3070	int ret;
3071
3072	ret = class_register(&regulator_class);
3073
3074#ifdef CONFIG_DEBUG_FS
3075	debugfs_root = debugfs_create_dir("regulator", NULL);
3076	if (IS_ERR(debugfs_root) || !debugfs_root) {
3077		pr_warn("regulator: Failed to create debugfs directory\n");
3078		debugfs_root = NULL;
3079	}
3080
3081	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3082				       NULL, &supply_map_fops)))
3083		pr_warn("regulator: Failed to create supplies debugfs\n");
3084#endif
3085
3086	regulator_dummy_init();
3087
3088	return ret;
3089}
3090
3091/* init early to allow our consumers to complete system booting */
3092core_initcall(regulator_init);
3093
3094static int __init regulator_init_complete(void)
3095{
3096	struct regulator_dev *rdev;
3097	struct regulator_ops *ops;
3098	struct regulation_constraints *c;
3099	int enabled, ret;
3100
3101	mutex_lock(&regulator_list_mutex);
3102
3103	/* If we have a full configuration then disable any regulators
3104	 * which are not in use or always_on.  This will become the
3105	 * default behaviour in the future.
3106	 */
3107	list_for_each_entry(rdev, &regulator_list, list) {
3108		ops = rdev->desc->ops;
3109		c = rdev->constraints;
3110
3111		if (!ops->disable || (c && c->always_on))
3112			continue;
3113
3114		mutex_lock(&rdev->mutex);
3115
3116		if (rdev->use_count)
3117			goto unlock;
3118
3119		/* If we can't read the status assume it's on. */
3120		if (ops->is_enabled)
3121			enabled = ops->is_enabled(rdev);
3122		else
3123			enabled = 1;
3124
3125		if (!enabled)
3126			goto unlock;
3127
3128		if (has_full_constraints) {
3129			/* We log since this may kill the system if it
3130			 * goes wrong. */
3131			rdev_info(rdev, "disabling\n");
3132			ret = ops->disable(rdev);
3133			if (ret != 0) {
3134				rdev_err(rdev, "couldn't disable: %d\n", ret);
3135			}
3136		} else {
3137			/* The intention is that in future we will
3138			 * assume that full constraints are provided
3139			 * so warn even if we aren't going to do
3140			 * anything here.
3141			 */
3142			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3143		}
3144
3145unlock:
3146		mutex_unlock(&rdev->mutex);
3147	}
3148
3149	mutex_unlock(&regulator_list_mutex);
3150
3151	return 0;
3152}
3153late_initcall(regulator_init_complete);
3154