core.c revision 69c3f7239e29216fbf92a39c86b4e9cc63cd6d74
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122static bool have_full_constraints(void)
123{
124	return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		ret = _regulator_do_set_voltage(rdev,
848						rdev->constraints->min_uV,
849						rdev->constraints->max_uV);
850		if (ret < 0) {
851			rdev_err(rdev, "failed to apply %duV constraint\n",
852				 rdev->constraints->min_uV);
853			return ret;
854		}
855	}
856
857	/* constrain machine-level voltage specs to fit
858	 * the actual range supported by this regulator.
859	 */
860	if (ops->list_voltage && rdev->desc->n_voltages) {
861		int	count = rdev->desc->n_voltages;
862		int	i;
863		int	min_uV = INT_MAX;
864		int	max_uV = INT_MIN;
865		int	cmin = constraints->min_uV;
866		int	cmax = constraints->max_uV;
867
868		/* it's safe to autoconfigure fixed-voltage supplies
869		   and the constraints are used by list_voltage. */
870		if (count == 1 && !cmin) {
871			cmin = 1;
872			cmax = INT_MAX;
873			constraints->min_uV = cmin;
874			constraints->max_uV = cmax;
875		}
876
877		/* voltage constraints are optional */
878		if ((cmin == 0) && (cmax == 0))
879			return 0;
880
881		/* else require explicit machine-level constraints */
882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883			rdev_err(rdev, "invalid voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888		for (i = 0; i < count; i++) {
889			int	value;
890
891			value = ops->list_voltage(rdev, i);
892			if (value <= 0)
893				continue;
894
895			/* maybe adjust [min_uV..max_uV] */
896			if (value >= cmin && value < min_uV)
897				min_uV = value;
898			if (value <= cmax && value > max_uV)
899				max_uV = value;
900		}
901
902		/* final: [min_uV..max_uV] valid iff constraints valid */
903		if (max_uV < min_uV) {
904			rdev_err(rdev,
905				 "unsupportable voltage constraints %u-%uuV\n",
906				 min_uV, max_uV);
907			return -EINVAL;
908		}
909
910		/* use regulator's subset of machine constraints */
911		if (constraints->min_uV < min_uV) {
912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913				 constraints->min_uV, min_uV);
914			constraints->min_uV = min_uV;
915		}
916		if (constraints->max_uV > max_uV) {
917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918				 constraints->max_uV, max_uV);
919			constraints->max_uV = max_uV;
920		}
921	}
922
923	return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927	struct regulation_constraints *constraints)
928{
929	struct regulator_ops *ops = rdev->desc->ops;
930	int ret;
931
932	if (!constraints->min_uA && !constraints->max_uA)
933		return 0;
934
935	if (constraints->min_uA > constraints->max_uA) {
936		rdev_err(rdev, "Invalid current constraints\n");
937		return -EINVAL;
938	}
939
940	if (!ops->set_current_limit || !ops->get_current_limit) {
941		rdev_warn(rdev, "Operation of current configuration missing\n");
942		return 0;
943	}
944
945	/* Set regulator current in constraints range */
946	ret = ops->set_current_limit(rdev, constraints->min_uA,
947			constraints->max_uA);
948	if (ret < 0) {
949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950		return ret;
951	}
952
953	return 0;
954}
955
956static int _regulator_do_enable(struct regulator_dev *rdev);
957
958/**
959 * set_machine_constraints - sets regulator constraints
960 * @rdev: regulator source
961 * @constraints: constraints to apply
962 *
963 * Allows platform initialisation code to define and constrain
964 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
965 * Constraints *must* be set by platform code in order for some
966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
967 * set_mode.
968 */
969static int set_machine_constraints(struct regulator_dev *rdev,
970	const struct regulation_constraints *constraints)
971{
972	int ret = 0;
973	struct regulator_ops *ops = rdev->desc->ops;
974
975	if (constraints)
976		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977					    GFP_KERNEL);
978	else
979		rdev->constraints = kzalloc(sizeof(*constraints),
980					    GFP_KERNEL);
981	if (!rdev->constraints)
982		return -ENOMEM;
983
984	ret = machine_constraints_voltage(rdev, rdev->constraints);
985	if (ret != 0)
986		goto out;
987
988	ret = machine_constraints_current(rdev, rdev->constraints);
989	if (ret != 0)
990		goto out;
991
992	/* do we need to setup our suspend state */
993	if (rdev->constraints->initial_state) {
994		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995		if (ret < 0) {
996			rdev_err(rdev, "failed to set suspend state\n");
997			goto out;
998		}
999	}
1000
1001	if (rdev->constraints->initial_mode) {
1002		if (!ops->set_mode) {
1003			rdev_err(rdev, "no set_mode operation\n");
1004			ret = -EINVAL;
1005			goto out;
1006		}
1007
1008		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009		if (ret < 0) {
1010			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011			goto out;
1012		}
1013	}
1014
1015	/* If the constraints say the regulator should be on at this point
1016	 * and we have control then make sure it is enabled.
1017	 */
1018	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019		ret = _regulator_do_enable(rdev);
1020		if (ret < 0 && ret != -EINVAL) {
1021			rdev_err(rdev, "failed to enable\n");
1022			goto out;
1023		}
1024	}
1025
1026	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027		&& ops->set_ramp_delay) {
1028		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029		if (ret < 0) {
1030			rdev_err(rdev, "failed to set ramp_delay\n");
1031			goto out;
1032		}
1033	}
1034
1035	print_constraints(rdev);
1036	return 0;
1037out:
1038	kfree(rdev->constraints);
1039	rdev->constraints = NULL;
1040	return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053		      struct regulator_dev *supply_rdev)
1054{
1055	int err;
1056
1057	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060	if (rdev->supply == NULL) {
1061		err = -ENOMEM;
1062		return err;
1063	}
1064	supply_rdev->open_count++;
1065
1066	return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev:         regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply:       symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices.  Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081				      const char *consumer_dev_name,
1082				      const char *supply)
1083{
1084	struct regulator_map *node;
1085	int has_dev;
1086
1087	if (supply == NULL)
1088		return -EINVAL;
1089
1090	if (consumer_dev_name != NULL)
1091		has_dev = 1;
1092	else
1093		has_dev = 0;
1094
1095	list_for_each_entry(node, &regulator_map_list, list) {
1096		if (node->dev_name && consumer_dev_name) {
1097			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098				continue;
1099		} else if (node->dev_name || consumer_dev_name) {
1100			continue;
1101		}
1102
1103		if (strcmp(node->supply, supply) != 0)
1104			continue;
1105
1106		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107			 consumer_dev_name,
1108			 dev_name(&node->regulator->dev),
1109			 node->regulator->desc->name,
1110			 supply,
1111			 dev_name(&rdev->dev), rdev_get_name(rdev));
1112		return -EBUSY;
1113	}
1114
1115	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116	if (node == NULL)
1117		return -ENOMEM;
1118
1119	node->regulator = rdev;
1120	node->supply = supply;
1121
1122	if (has_dev) {
1123		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124		if (node->dev_name == NULL) {
1125			kfree(node);
1126			return -ENOMEM;
1127		}
1128	}
1129
1130	list_add(&node->list, &regulator_map_list);
1131	return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136	struct regulator_map *node, *n;
1137
1138	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139		if (rdev == node->regulator) {
1140			list_del(&node->list);
1141			kfree(node->dev_name);
1142			kfree(node);
1143		}
1144	}
1145}
1146
1147#define REG_STR_SIZE	64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150					  struct device *dev,
1151					  const char *supply_name)
1152{
1153	struct regulator *regulator;
1154	char buf[REG_STR_SIZE];
1155	int err, size;
1156
1157	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158	if (regulator == NULL)
1159		return NULL;
1160
1161	mutex_lock(&rdev->mutex);
1162	regulator->rdev = rdev;
1163	list_add(&regulator->list, &rdev->consumer_list);
1164
1165	if (dev) {
1166		regulator->dev = dev;
1167
1168		/* Add a link to the device sysfs entry */
1169		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170				 dev->kobj.name, supply_name);
1171		if (size >= REG_STR_SIZE)
1172			goto overflow_err;
1173
1174		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175		if (regulator->supply_name == NULL)
1176			goto overflow_err;
1177
1178		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179					buf);
1180		if (err) {
1181			rdev_warn(rdev, "could not add device link %s err %d\n",
1182				  dev->kobj.name, err);
1183			/* non-fatal */
1184		}
1185	} else {
1186		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187		if (regulator->supply_name == NULL)
1188			goto overflow_err;
1189	}
1190
1191	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192						rdev->debugfs);
1193	if (!regulator->debugfs) {
1194		rdev_warn(rdev, "Failed to create debugfs directory\n");
1195	} else {
1196		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197				   &regulator->uA_load);
1198		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199				   &regulator->min_uV);
1200		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201				   &regulator->max_uV);
1202	}
1203
1204	/*
1205	 * Check now if the regulator is an always on regulator - if
1206	 * it is then we don't need to do nearly so much work for
1207	 * enable/disable calls.
1208	 */
1209	if (!_regulator_can_change_status(rdev) &&
1210	    _regulator_is_enabled(rdev))
1211		regulator->always_on = true;
1212
1213	mutex_unlock(&rdev->mutex);
1214	return regulator;
1215overflow_err:
1216	list_del(&regulator->list);
1217	kfree(regulator);
1218	mutex_unlock(&rdev->mutex);
1219	return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224	if (rdev->constraints && rdev->constraints->enable_time)
1225		return rdev->constraints->enable_time;
1226	if (!rdev->desc->ops->enable_time)
1227		return rdev->desc->enable_time;
1228	return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232		struct device *dev, const char *supply)
1233{
1234	struct regulator_supply_alias *map;
1235
1236	list_for_each_entry(map, &regulator_supply_alias_list, list)
1237		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238			return map;
1239
1240	return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245	struct regulator_supply_alias *map;
1246
1247	map = regulator_find_supply_alias(*dev, *supply);
1248	if (map) {
1249		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250				*supply, map->alias_supply,
1251				dev_name(map->alias_dev));
1252		*dev = map->alias_dev;
1253		*supply = map->alias_supply;
1254	}
1255}
1256
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258						  const char *supply,
1259						  int *ret)
1260{
1261	struct regulator_dev *r;
1262	struct device_node *node;
1263	struct regulator_map *map;
1264	const char *devname = NULL;
1265
1266	regulator_supply_alias(&dev, &supply);
1267
1268	/* first do a dt based lookup */
1269	if (dev && dev->of_node) {
1270		node = of_get_regulator(dev, supply);
1271		if (node) {
1272			list_for_each_entry(r, &regulator_list, list)
1273				if (r->dev.parent &&
1274					node == r->dev.of_node)
1275					return r;
1276			*ret = -EPROBE_DEFER;
1277			return NULL;
1278		} else {
1279			/*
1280			 * If we couldn't even get the node then it's
1281			 * not just that the device didn't register
1282			 * yet, there's no node and we'll never
1283			 * succeed.
1284			 */
1285			*ret = -ENODEV;
1286		}
1287	}
1288
1289	/* if not found, try doing it non-dt way */
1290	if (dev)
1291		devname = dev_name(dev);
1292
1293	list_for_each_entry(r, &regulator_list, list)
1294		if (strcmp(rdev_get_name(r), supply) == 0)
1295			return r;
1296
1297	list_for_each_entry(map, &regulator_map_list, list) {
1298		/* If the mapping has a device set up it must match */
1299		if (map->dev_name &&
1300		    (!devname || strcmp(map->dev_name, devname)))
1301			continue;
1302
1303		if (strcmp(map->supply, supply) == 0)
1304			return map->regulator;
1305	}
1306
1307
1308	return NULL;
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313					bool exclusive, bool allow_dummy)
1314{
1315	struct regulator_dev *rdev;
1316	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317	const char *devname = NULL;
1318	int ret;
1319
1320	if (id == NULL) {
1321		pr_err("get() with no identifier\n");
1322		return ERR_PTR(-EINVAL);
1323	}
1324
1325	if (dev)
1326		devname = dev_name(dev);
1327
1328	if (have_full_constraints())
1329		ret = -ENODEV;
1330	else
1331		ret = -EPROBE_DEFER;
1332
1333	mutex_lock(&regulator_list_mutex);
1334
1335	rdev = regulator_dev_lookup(dev, id, &ret);
1336	if (rdev)
1337		goto found;
1338
1339	regulator = ERR_PTR(ret);
1340
1341	/*
1342	 * If we have return value from dev_lookup fail, we do not expect to
1343	 * succeed, so, quit with appropriate error value
1344	 */
1345	if (ret && ret != -ENODEV)
1346		goto out;
1347
1348	if (!devname)
1349		devname = "deviceless";
1350
1351	/*
1352	 * Assume that a regulator is physically present and enabled
1353	 * even if it isn't hooked up and just provide a dummy.
1354	 */
1355	if (have_full_constraints() && allow_dummy) {
1356		pr_warn("%s supply %s not found, using dummy regulator\n",
1357			devname, id);
1358
1359		rdev = dummy_regulator_rdev;
1360		goto found;
1361	/* Don't log an error when called from regulator_get_optional() */
1362	} else if (!have_full_constraints() || exclusive) {
1363		dev_warn(dev, "dummy supplies not allowed\n");
1364	}
1365
1366	mutex_unlock(&regulator_list_mutex);
1367	return regulator;
1368
1369found:
1370	if (rdev->exclusive) {
1371		regulator = ERR_PTR(-EPERM);
1372		goto out;
1373	}
1374
1375	if (exclusive && rdev->open_count) {
1376		regulator = ERR_PTR(-EBUSY);
1377		goto out;
1378	}
1379
1380	if (!try_module_get(rdev->owner))
1381		goto out;
1382
1383	regulator = create_regulator(rdev, dev, id);
1384	if (regulator == NULL) {
1385		regulator = ERR_PTR(-ENOMEM);
1386		module_put(rdev->owner);
1387		goto out;
1388	}
1389
1390	rdev->open_count++;
1391	if (exclusive) {
1392		rdev->exclusive = 1;
1393
1394		ret = _regulator_is_enabled(rdev);
1395		if (ret > 0)
1396			rdev->use_count = 1;
1397		else
1398			rdev->use_count = 0;
1399	}
1400
1401out:
1402	mutex_unlock(&regulator_list_mutex);
1403
1404	return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged.  It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422	return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno.  Other consumers will be
1433 * unable to obtain this regulator while this reference is held and the
1434 * use count for the regulator will be initialised to reflect the current
1435 * state of the regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged.  It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449	return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno.
1460 *
1461 * This is intended for use by consumers for devices which can have
1462 * some supplies unconnected in normal use, such as some MMC devices.
1463 * It can allow the regulator core to provide stub supplies for other
1464 * supplies requested using normal regulator_get() calls without
1465 * disrupting the operation of drivers that can handle absent
1466 * supplies.
1467 *
1468 * Use of supply names configured via regulator_set_device_supply() is
1469 * strongly encouraged.  It is recommended that the supply name used
1470 * should match the name used for the supply and/or the relevant
1471 * device pins in the datasheet.
1472 */
1473struct regulator *regulator_get_optional(struct device *dev, const char *id)
1474{
1475	return _regulator_get(dev, id, false, false);
1476}
1477EXPORT_SYMBOL_GPL(regulator_get_optional);
1478
1479/* Locks held by regulator_put() */
1480static void _regulator_put(struct regulator *regulator)
1481{
1482	struct regulator_dev *rdev;
1483
1484	if (regulator == NULL || IS_ERR(regulator))
1485		return;
1486
1487	rdev = regulator->rdev;
1488
1489	debugfs_remove_recursive(regulator->debugfs);
1490
1491	/* remove any sysfs entries */
1492	if (regulator->dev)
1493		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1494	kfree(regulator->supply_name);
1495	list_del(&regulator->list);
1496	kfree(regulator);
1497
1498	rdev->open_count--;
1499	rdev->exclusive = 0;
1500
1501	module_put(rdev->owner);
1502}
1503
1504/**
1505 * regulator_put - "free" the regulator source
1506 * @regulator: regulator source
1507 *
1508 * Note: drivers must ensure that all regulator_enable calls made on this
1509 * regulator source are balanced by regulator_disable calls prior to calling
1510 * this function.
1511 */
1512void regulator_put(struct regulator *regulator)
1513{
1514	mutex_lock(&regulator_list_mutex);
1515	_regulator_put(regulator);
1516	mutex_unlock(&regulator_list_mutex);
1517}
1518EXPORT_SYMBOL_GPL(regulator_put);
1519
1520/**
1521 * regulator_register_supply_alias - Provide device alias for supply lookup
1522 *
1523 * @dev: device that will be given as the regulator "consumer"
1524 * @id: Supply name or regulator ID
1525 * @alias_dev: device that should be used to lookup the supply
1526 * @alias_id: Supply name or regulator ID that should be used to lookup the
1527 * supply
1528 *
1529 * All lookups for id on dev will instead be conducted for alias_id on
1530 * alias_dev.
1531 */
1532int regulator_register_supply_alias(struct device *dev, const char *id,
1533				    struct device *alias_dev,
1534				    const char *alias_id)
1535{
1536	struct regulator_supply_alias *map;
1537
1538	map = regulator_find_supply_alias(dev, id);
1539	if (map)
1540		return -EEXIST;
1541
1542	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1543	if (!map)
1544		return -ENOMEM;
1545
1546	map->src_dev = dev;
1547	map->src_supply = id;
1548	map->alias_dev = alias_dev;
1549	map->alias_supply = alias_id;
1550
1551	list_add(&map->list, &regulator_supply_alias_list);
1552
1553	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1554		id, dev_name(dev), alias_id, dev_name(alias_dev));
1555
1556	return 0;
1557}
1558EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1559
1560/**
1561 * regulator_unregister_supply_alias - Remove device alias
1562 *
1563 * @dev: device that will be given as the regulator "consumer"
1564 * @id: Supply name or regulator ID
1565 *
1566 * Remove a lookup alias if one exists for id on dev.
1567 */
1568void regulator_unregister_supply_alias(struct device *dev, const char *id)
1569{
1570	struct regulator_supply_alias *map;
1571
1572	map = regulator_find_supply_alias(dev, id);
1573	if (map) {
1574		list_del(&map->list);
1575		kfree(map);
1576	}
1577}
1578EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1579
1580/**
1581 * regulator_bulk_register_supply_alias - register multiple aliases
1582 *
1583 * @dev: device that will be given as the regulator "consumer"
1584 * @id: List of supply names or regulator IDs
1585 * @alias_dev: device that should be used to lookup the supply
1586 * @alias_id: List of supply names or regulator IDs that should be used to
1587 * lookup the supply
1588 * @num_id: Number of aliases to register
1589 *
1590 * @return 0 on success, an errno on failure.
1591 *
1592 * This helper function allows drivers to register several supply
1593 * aliases in one operation.  If any of the aliases cannot be
1594 * registered any aliases that were registered will be removed
1595 * before returning to the caller.
1596 */
1597int regulator_bulk_register_supply_alias(struct device *dev,
1598					 const char *const *id,
1599					 struct device *alias_dev,
1600					 const char *const *alias_id,
1601					 int num_id)
1602{
1603	int i;
1604	int ret;
1605
1606	for (i = 0; i < num_id; ++i) {
1607		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1608						      alias_id[i]);
1609		if (ret < 0)
1610			goto err;
1611	}
1612
1613	return 0;
1614
1615err:
1616	dev_err(dev,
1617		"Failed to create supply alias %s,%s -> %s,%s\n",
1618		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1619
1620	while (--i >= 0)
1621		regulator_unregister_supply_alias(dev, id[i]);
1622
1623	return ret;
1624}
1625EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1626
1627/**
1628 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1629 *
1630 * @dev: device that will be given as the regulator "consumer"
1631 * @id: List of supply names or regulator IDs
1632 * @num_id: Number of aliases to unregister
1633 *
1634 * This helper function allows drivers to unregister several supply
1635 * aliases in one operation.
1636 */
1637void regulator_bulk_unregister_supply_alias(struct device *dev,
1638					    const char *const *id,
1639					    int num_id)
1640{
1641	int i;
1642
1643	for (i = 0; i < num_id; ++i)
1644		regulator_unregister_supply_alias(dev, id[i]);
1645}
1646EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1647
1648
1649/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1650static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1651				const struct regulator_config *config)
1652{
1653	struct regulator_enable_gpio *pin;
1654	int ret;
1655
1656	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1657		if (pin->gpio == config->ena_gpio) {
1658			rdev_dbg(rdev, "GPIO %d is already used\n",
1659				config->ena_gpio);
1660			goto update_ena_gpio_to_rdev;
1661		}
1662	}
1663
1664	ret = gpio_request_one(config->ena_gpio,
1665				GPIOF_DIR_OUT | config->ena_gpio_flags,
1666				rdev_get_name(rdev));
1667	if (ret)
1668		return ret;
1669
1670	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1671	if (pin == NULL) {
1672		gpio_free(config->ena_gpio);
1673		return -ENOMEM;
1674	}
1675
1676	pin->gpio = config->ena_gpio;
1677	pin->ena_gpio_invert = config->ena_gpio_invert;
1678	list_add(&pin->list, &regulator_ena_gpio_list);
1679
1680update_ena_gpio_to_rdev:
1681	pin->request_count++;
1682	rdev->ena_pin = pin;
1683	return 0;
1684}
1685
1686static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1687{
1688	struct regulator_enable_gpio *pin, *n;
1689
1690	if (!rdev->ena_pin)
1691		return;
1692
1693	/* Free the GPIO only in case of no use */
1694	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1695		if (pin->gpio == rdev->ena_pin->gpio) {
1696			if (pin->request_count <= 1) {
1697				pin->request_count = 0;
1698				gpio_free(pin->gpio);
1699				list_del(&pin->list);
1700				kfree(pin);
1701			} else {
1702				pin->request_count--;
1703			}
1704		}
1705	}
1706}
1707
1708/**
1709 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1710 * @rdev: regulator_dev structure
1711 * @enable: enable GPIO at initial use?
1712 *
1713 * GPIO is enabled in case of initial use. (enable_count is 0)
1714 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1715 */
1716static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1717{
1718	struct regulator_enable_gpio *pin = rdev->ena_pin;
1719
1720	if (!pin)
1721		return -EINVAL;
1722
1723	if (enable) {
1724		/* Enable GPIO at initial use */
1725		if (pin->enable_count == 0)
1726			gpio_set_value_cansleep(pin->gpio,
1727						!pin->ena_gpio_invert);
1728
1729		pin->enable_count++;
1730	} else {
1731		if (pin->enable_count > 1) {
1732			pin->enable_count--;
1733			return 0;
1734		}
1735
1736		/* Disable GPIO if not used */
1737		if (pin->enable_count <= 1) {
1738			gpio_set_value_cansleep(pin->gpio,
1739						pin->ena_gpio_invert);
1740			pin->enable_count = 0;
1741		}
1742	}
1743
1744	return 0;
1745}
1746
1747static int _regulator_do_enable(struct regulator_dev *rdev)
1748{
1749	int ret, delay;
1750
1751	/* Query before enabling in case configuration dependent.  */
1752	ret = _regulator_get_enable_time(rdev);
1753	if (ret >= 0) {
1754		delay = ret;
1755	} else {
1756		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1757		delay = 0;
1758	}
1759
1760	trace_regulator_enable(rdev_get_name(rdev));
1761
1762	if (rdev->ena_pin) {
1763		ret = regulator_ena_gpio_ctrl(rdev, true);
1764		if (ret < 0)
1765			return ret;
1766		rdev->ena_gpio_state = 1;
1767	} else if (rdev->desc->ops->enable) {
1768		ret = rdev->desc->ops->enable(rdev);
1769		if (ret < 0)
1770			return ret;
1771	} else {
1772		return -EINVAL;
1773	}
1774
1775	/* Allow the regulator to ramp; it would be useful to extend
1776	 * this for bulk operations so that the regulators can ramp
1777	 * together.  */
1778	trace_regulator_enable_delay(rdev_get_name(rdev));
1779
1780	/*
1781	 * Delay for the requested amount of time as per the guidelines in:
1782	 *
1783	 *     Documentation/timers/timers-howto.txt
1784	 *
1785	 * The assumption here is that regulators will never be enabled in
1786	 * atomic context and therefore sleeping functions can be used.
1787	 */
1788	if (delay) {
1789		unsigned int ms = delay / 1000;
1790		unsigned int us = delay % 1000;
1791
1792		if (ms > 0) {
1793			/*
1794			 * For small enough values, handle super-millisecond
1795			 * delays in the usleep_range() call below.
1796			 */
1797			if (ms < 20)
1798				us += ms * 1000;
1799			else
1800				msleep(ms);
1801		}
1802
1803		/*
1804		 * Give the scheduler some room to coalesce with any other
1805		 * wakeup sources. For delays shorter than 10 us, don't even
1806		 * bother setting up high-resolution timers and just busy-
1807		 * loop.
1808		 */
1809		if (us >= 10)
1810			usleep_range(us, us + 100);
1811		else
1812			udelay(us);
1813	}
1814
1815	trace_regulator_enable_complete(rdev_get_name(rdev));
1816
1817	return 0;
1818}
1819
1820/* locks held by regulator_enable() */
1821static int _regulator_enable(struct regulator_dev *rdev)
1822{
1823	int ret;
1824
1825	/* check voltage and requested load before enabling */
1826	if (rdev->constraints &&
1827	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1828		drms_uA_update(rdev);
1829
1830	if (rdev->use_count == 0) {
1831		/* The regulator may on if it's not switchable or left on */
1832		ret = _regulator_is_enabled(rdev);
1833		if (ret == -EINVAL || ret == 0) {
1834			if (!_regulator_can_change_status(rdev))
1835				return -EPERM;
1836
1837			ret = _regulator_do_enable(rdev);
1838			if (ret < 0)
1839				return ret;
1840
1841		} else if (ret < 0) {
1842			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1843			return ret;
1844		}
1845		/* Fallthrough on positive return values - already enabled */
1846	}
1847
1848	rdev->use_count++;
1849
1850	return 0;
1851}
1852
1853/**
1854 * regulator_enable - enable regulator output
1855 * @regulator: regulator source
1856 *
1857 * Request that the regulator be enabled with the regulator output at
1858 * the predefined voltage or current value.  Calls to regulator_enable()
1859 * must be balanced with calls to regulator_disable().
1860 *
1861 * NOTE: the output value can be set by other drivers, boot loader or may be
1862 * hardwired in the regulator.
1863 */
1864int regulator_enable(struct regulator *regulator)
1865{
1866	struct regulator_dev *rdev = regulator->rdev;
1867	int ret = 0;
1868
1869	if (regulator->always_on)
1870		return 0;
1871
1872	if (rdev->supply) {
1873		ret = regulator_enable(rdev->supply);
1874		if (ret != 0)
1875			return ret;
1876	}
1877
1878	mutex_lock(&rdev->mutex);
1879	ret = _regulator_enable(rdev);
1880	mutex_unlock(&rdev->mutex);
1881
1882	if (ret != 0 && rdev->supply)
1883		regulator_disable(rdev->supply);
1884
1885	return ret;
1886}
1887EXPORT_SYMBOL_GPL(regulator_enable);
1888
1889static int _regulator_do_disable(struct regulator_dev *rdev)
1890{
1891	int ret;
1892
1893	trace_regulator_disable(rdev_get_name(rdev));
1894
1895	if (rdev->ena_pin) {
1896		ret = regulator_ena_gpio_ctrl(rdev, false);
1897		if (ret < 0)
1898			return ret;
1899		rdev->ena_gpio_state = 0;
1900
1901	} else if (rdev->desc->ops->disable) {
1902		ret = rdev->desc->ops->disable(rdev);
1903		if (ret != 0)
1904			return ret;
1905	}
1906
1907	trace_regulator_disable_complete(rdev_get_name(rdev));
1908
1909	return 0;
1910}
1911
1912/* locks held by regulator_disable() */
1913static int _regulator_disable(struct regulator_dev *rdev)
1914{
1915	int ret = 0;
1916
1917	if (WARN(rdev->use_count <= 0,
1918		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1919		return -EIO;
1920
1921	/* are we the last user and permitted to disable ? */
1922	if (rdev->use_count == 1 &&
1923	    (rdev->constraints && !rdev->constraints->always_on)) {
1924
1925		/* we are last user */
1926		if (_regulator_can_change_status(rdev)) {
1927			ret = _regulator_do_disable(rdev);
1928			if (ret < 0) {
1929				rdev_err(rdev, "failed to disable\n");
1930				return ret;
1931			}
1932			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1933					NULL);
1934		}
1935
1936		rdev->use_count = 0;
1937	} else if (rdev->use_count > 1) {
1938
1939		if (rdev->constraints &&
1940			(rdev->constraints->valid_ops_mask &
1941			REGULATOR_CHANGE_DRMS))
1942			drms_uA_update(rdev);
1943
1944		rdev->use_count--;
1945	}
1946
1947	return ret;
1948}
1949
1950/**
1951 * regulator_disable - disable regulator output
1952 * @regulator: regulator source
1953 *
1954 * Disable the regulator output voltage or current.  Calls to
1955 * regulator_enable() must be balanced with calls to
1956 * regulator_disable().
1957 *
1958 * NOTE: this will only disable the regulator output if no other consumer
1959 * devices have it enabled, the regulator device supports disabling and
1960 * machine constraints permit this operation.
1961 */
1962int regulator_disable(struct regulator *regulator)
1963{
1964	struct regulator_dev *rdev = regulator->rdev;
1965	int ret = 0;
1966
1967	if (regulator->always_on)
1968		return 0;
1969
1970	mutex_lock(&rdev->mutex);
1971	ret = _regulator_disable(rdev);
1972	mutex_unlock(&rdev->mutex);
1973
1974	if (ret == 0 && rdev->supply)
1975		regulator_disable(rdev->supply);
1976
1977	return ret;
1978}
1979EXPORT_SYMBOL_GPL(regulator_disable);
1980
1981/* locks held by regulator_force_disable() */
1982static int _regulator_force_disable(struct regulator_dev *rdev)
1983{
1984	int ret = 0;
1985
1986	ret = _regulator_do_disable(rdev);
1987	if (ret < 0) {
1988		rdev_err(rdev, "failed to force disable\n");
1989		return ret;
1990	}
1991
1992	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1993			REGULATOR_EVENT_DISABLE, NULL);
1994
1995	return 0;
1996}
1997
1998/**
1999 * regulator_force_disable - force disable regulator output
2000 * @regulator: regulator source
2001 *
2002 * Forcibly disable the regulator output voltage or current.
2003 * NOTE: this *will* disable the regulator output even if other consumer
2004 * devices have it enabled. This should be used for situations when device
2005 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2006 */
2007int regulator_force_disable(struct regulator *regulator)
2008{
2009	struct regulator_dev *rdev = regulator->rdev;
2010	int ret;
2011
2012	mutex_lock(&rdev->mutex);
2013	regulator->uA_load = 0;
2014	ret = _regulator_force_disable(regulator->rdev);
2015	mutex_unlock(&rdev->mutex);
2016
2017	if (rdev->supply)
2018		while (rdev->open_count--)
2019			regulator_disable(rdev->supply);
2020
2021	return ret;
2022}
2023EXPORT_SYMBOL_GPL(regulator_force_disable);
2024
2025static void regulator_disable_work(struct work_struct *work)
2026{
2027	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2028						  disable_work.work);
2029	int count, i, ret;
2030
2031	mutex_lock(&rdev->mutex);
2032
2033	BUG_ON(!rdev->deferred_disables);
2034
2035	count = rdev->deferred_disables;
2036	rdev->deferred_disables = 0;
2037
2038	for (i = 0; i < count; i++) {
2039		ret = _regulator_disable(rdev);
2040		if (ret != 0)
2041			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2042	}
2043
2044	mutex_unlock(&rdev->mutex);
2045
2046	if (rdev->supply) {
2047		for (i = 0; i < count; i++) {
2048			ret = regulator_disable(rdev->supply);
2049			if (ret != 0) {
2050				rdev_err(rdev,
2051					 "Supply disable failed: %d\n", ret);
2052			}
2053		}
2054	}
2055}
2056
2057/**
2058 * regulator_disable_deferred - disable regulator output with delay
2059 * @regulator: regulator source
2060 * @ms: miliseconds until the regulator is disabled
2061 *
2062 * Execute regulator_disable() on the regulator after a delay.  This
2063 * is intended for use with devices that require some time to quiesce.
2064 *
2065 * NOTE: this will only disable the regulator output if no other consumer
2066 * devices have it enabled, the regulator device supports disabling and
2067 * machine constraints permit this operation.
2068 */
2069int regulator_disable_deferred(struct regulator *regulator, int ms)
2070{
2071	struct regulator_dev *rdev = regulator->rdev;
2072	int ret;
2073
2074	if (regulator->always_on)
2075		return 0;
2076
2077	if (!ms)
2078		return regulator_disable(regulator);
2079
2080	mutex_lock(&rdev->mutex);
2081	rdev->deferred_disables++;
2082	mutex_unlock(&rdev->mutex);
2083
2084	ret = queue_delayed_work(system_power_efficient_wq,
2085				 &rdev->disable_work,
2086				 msecs_to_jiffies(ms));
2087	if (ret < 0)
2088		return ret;
2089	else
2090		return 0;
2091}
2092EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2093
2094static int _regulator_is_enabled(struct regulator_dev *rdev)
2095{
2096	/* A GPIO control always takes precedence */
2097	if (rdev->ena_pin)
2098		return rdev->ena_gpio_state;
2099
2100	/* If we don't know then assume that the regulator is always on */
2101	if (!rdev->desc->ops->is_enabled)
2102		return 1;
2103
2104	return rdev->desc->ops->is_enabled(rdev);
2105}
2106
2107/**
2108 * regulator_is_enabled - is the regulator output enabled
2109 * @regulator: regulator source
2110 *
2111 * Returns positive if the regulator driver backing the source/client
2112 * has requested that the device be enabled, zero if it hasn't, else a
2113 * negative errno code.
2114 *
2115 * Note that the device backing this regulator handle can have multiple
2116 * users, so it might be enabled even if regulator_enable() was never
2117 * called for this particular source.
2118 */
2119int regulator_is_enabled(struct regulator *regulator)
2120{
2121	int ret;
2122
2123	if (regulator->always_on)
2124		return 1;
2125
2126	mutex_lock(&regulator->rdev->mutex);
2127	ret = _regulator_is_enabled(regulator->rdev);
2128	mutex_unlock(&regulator->rdev->mutex);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regulator_is_enabled);
2133
2134/**
2135 * regulator_can_change_voltage - check if regulator can change voltage
2136 * @regulator: regulator source
2137 *
2138 * Returns positive if the regulator driver backing the source/client
2139 * can change its voltage, false otherwise. Useful for detecting fixed
2140 * or dummy regulators and disabling voltage change logic in the client
2141 * driver.
2142 */
2143int regulator_can_change_voltage(struct regulator *regulator)
2144{
2145	struct regulator_dev	*rdev = regulator->rdev;
2146
2147	if (rdev->constraints &&
2148	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2149		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2150			return 1;
2151
2152		if (rdev->desc->continuous_voltage_range &&
2153		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2154		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2155			return 1;
2156	}
2157
2158	return 0;
2159}
2160EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2161
2162/**
2163 * regulator_count_voltages - count regulator_list_voltage() selectors
2164 * @regulator: regulator source
2165 *
2166 * Returns number of selectors, or negative errno.  Selectors are
2167 * numbered starting at zero, and typically correspond to bitfields
2168 * in hardware registers.
2169 */
2170int regulator_count_voltages(struct regulator *regulator)
2171{
2172	struct regulator_dev	*rdev = regulator->rdev;
2173
2174	return rdev->desc->n_voltages ? : -EINVAL;
2175}
2176EXPORT_SYMBOL_GPL(regulator_count_voltages);
2177
2178/**
2179 * regulator_list_voltage - enumerate supported voltages
2180 * @regulator: regulator source
2181 * @selector: identify voltage to list
2182 * Context: can sleep
2183 *
2184 * Returns a voltage that can be passed to @regulator_set_voltage(),
2185 * zero if this selector code can't be used on this system, or a
2186 * negative errno.
2187 */
2188int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2189{
2190	struct regulator_dev	*rdev = regulator->rdev;
2191	struct regulator_ops	*ops = rdev->desc->ops;
2192	int			ret;
2193
2194	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2195		return rdev->desc->fixed_uV;
2196
2197	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2198		return -EINVAL;
2199
2200	mutex_lock(&rdev->mutex);
2201	ret = ops->list_voltage(rdev, selector);
2202	mutex_unlock(&rdev->mutex);
2203
2204	if (ret > 0) {
2205		if (ret < rdev->constraints->min_uV)
2206			ret = 0;
2207		else if (ret > rdev->constraints->max_uV)
2208			ret = 0;
2209	}
2210
2211	return ret;
2212}
2213EXPORT_SYMBOL_GPL(regulator_list_voltage);
2214
2215/**
2216 * regulator_get_linear_step - return the voltage step size between VSEL values
2217 * @regulator: regulator source
2218 *
2219 * Returns the voltage step size between VSEL values for linear
2220 * regulators, or return 0 if the regulator isn't a linear regulator.
2221 */
2222unsigned int regulator_get_linear_step(struct regulator *regulator)
2223{
2224	struct regulator_dev *rdev = regulator->rdev;
2225
2226	return rdev->desc->uV_step;
2227}
2228EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2229
2230/**
2231 * regulator_is_supported_voltage - check if a voltage range can be supported
2232 *
2233 * @regulator: Regulator to check.
2234 * @min_uV: Minimum required voltage in uV.
2235 * @max_uV: Maximum required voltage in uV.
2236 *
2237 * Returns a boolean or a negative error code.
2238 */
2239int regulator_is_supported_voltage(struct regulator *regulator,
2240				   int min_uV, int max_uV)
2241{
2242	struct regulator_dev *rdev = regulator->rdev;
2243	int i, voltages, ret;
2244
2245	/* If we can't change voltage check the current voltage */
2246	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2247		ret = regulator_get_voltage(regulator);
2248		if (ret >= 0)
2249			return min_uV <= ret && ret <= max_uV;
2250		else
2251			return ret;
2252	}
2253
2254	/* Any voltage within constrains range is fine? */
2255	if (rdev->desc->continuous_voltage_range)
2256		return min_uV >= rdev->constraints->min_uV &&
2257				max_uV <= rdev->constraints->max_uV;
2258
2259	ret = regulator_count_voltages(regulator);
2260	if (ret < 0)
2261		return ret;
2262	voltages = ret;
2263
2264	for (i = 0; i < voltages; i++) {
2265		ret = regulator_list_voltage(regulator, i);
2266
2267		if (ret >= min_uV && ret <= max_uV)
2268			return 1;
2269	}
2270
2271	return 0;
2272}
2273EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2274
2275static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2276				     int min_uV, int max_uV)
2277{
2278	int ret;
2279	int delay = 0;
2280	int best_val = 0;
2281	unsigned int selector;
2282	int old_selector = -1;
2283
2284	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2285
2286	min_uV += rdev->constraints->uV_offset;
2287	max_uV += rdev->constraints->uV_offset;
2288
2289	/*
2290	 * If we can't obtain the old selector there is not enough
2291	 * info to call set_voltage_time_sel().
2292	 */
2293	if (_regulator_is_enabled(rdev) &&
2294	    rdev->desc->ops->set_voltage_time_sel &&
2295	    rdev->desc->ops->get_voltage_sel) {
2296		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2297		if (old_selector < 0)
2298			return old_selector;
2299	}
2300
2301	if (rdev->desc->ops->set_voltage) {
2302		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2303						   &selector);
2304
2305		if (ret >= 0) {
2306			if (rdev->desc->ops->list_voltage)
2307				best_val = rdev->desc->ops->list_voltage(rdev,
2308									 selector);
2309			else
2310				best_val = _regulator_get_voltage(rdev);
2311		}
2312
2313	} else if (rdev->desc->ops->set_voltage_sel) {
2314		if (rdev->desc->ops->map_voltage) {
2315			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2316							   max_uV);
2317		} else {
2318			if (rdev->desc->ops->list_voltage ==
2319			    regulator_list_voltage_linear)
2320				ret = regulator_map_voltage_linear(rdev,
2321								min_uV, max_uV);
2322			else if (rdev->desc->ops->list_voltage ==
2323				 regulator_list_voltage_linear_range)
2324				ret = regulator_map_voltage_linear_range(rdev,
2325								min_uV, max_uV);
2326			else
2327				ret = regulator_map_voltage_iterate(rdev,
2328								min_uV, max_uV);
2329		}
2330
2331		if (ret >= 0) {
2332			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2333			if (min_uV <= best_val && max_uV >= best_val) {
2334				selector = ret;
2335				if (old_selector == selector)
2336					ret = 0;
2337				else
2338					ret = rdev->desc->ops->set_voltage_sel(
2339								rdev, ret);
2340			} else {
2341				ret = -EINVAL;
2342			}
2343		}
2344	} else {
2345		ret = -EINVAL;
2346	}
2347
2348	/* Call set_voltage_time_sel if successfully obtained old_selector */
2349	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2350		&& old_selector != selector) {
2351
2352		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2353						old_selector, selector);
2354		if (delay < 0) {
2355			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2356				  delay);
2357			delay = 0;
2358		}
2359
2360		/* Insert any necessary delays */
2361		if (delay >= 1000) {
2362			mdelay(delay / 1000);
2363			udelay(delay % 1000);
2364		} else if (delay) {
2365			udelay(delay);
2366		}
2367	}
2368
2369	if (ret == 0 && best_val >= 0) {
2370		unsigned long data = best_val;
2371
2372		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2373				     (void *)data);
2374	}
2375
2376	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2377
2378	return ret;
2379}
2380
2381/**
2382 * regulator_set_voltage - set regulator output voltage
2383 * @regulator: regulator source
2384 * @min_uV: Minimum required voltage in uV
2385 * @max_uV: Maximum acceptable voltage in uV
2386 *
2387 * Sets a voltage regulator to the desired output voltage. This can be set
2388 * during any regulator state. IOW, regulator can be disabled or enabled.
2389 *
2390 * If the regulator is enabled then the voltage will change to the new value
2391 * immediately otherwise if the regulator is disabled the regulator will
2392 * output at the new voltage when enabled.
2393 *
2394 * NOTE: If the regulator is shared between several devices then the lowest
2395 * request voltage that meets the system constraints will be used.
2396 * Regulator system constraints must be set for this regulator before
2397 * calling this function otherwise this call will fail.
2398 */
2399int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2400{
2401	struct regulator_dev *rdev = regulator->rdev;
2402	int ret = 0;
2403	int old_min_uV, old_max_uV;
2404	int current_uV;
2405
2406	mutex_lock(&rdev->mutex);
2407
2408	/* If we're setting the same range as last time the change
2409	 * should be a noop (some cpufreq implementations use the same
2410	 * voltage for multiple frequencies, for example).
2411	 */
2412	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2413		goto out;
2414
2415	/* If we're trying to set a range that overlaps the current voltage,
2416	 * return succesfully even though the regulator does not support
2417	 * changing the voltage.
2418	 */
2419	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2420		current_uV = _regulator_get_voltage(rdev);
2421		if (min_uV <= current_uV && current_uV <= max_uV) {
2422			regulator->min_uV = min_uV;
2423			regulator->max_uV = max_uV;
2424			goto out;
2425		}
2426	}
2427
2428	/* sanity check */
2429	if (!rdev->desc->ops->set_voltage &&
2430	    !rdev->desc->ops->set_voltage_sel) {
2431		ret = -EINVAL;
2432		goto out;
2433	}
2434
2435	/* constraints check */
2436	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2437	if (ret < 0)
2438		goto out;
2439
2440	/* restore original values in case of error */
2441	old_min_uV = regulator->min_uV;
2442	old_max_uV = regulator->max_uV;
2443	regulator->min_uV = min_uV;
2444	regulator->max_uV = max_uV;
2445
2446	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2447	if (ret < 0)
2448		goto out2;
2449
2450	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2451	if (ret < 0)
2452		goto out2;
2453
2454out:
2455	mutex_unlock(&rdev->mutex);
2456	return ret;
2457out2:
2458	regulator->min_uV = old_min_uV;
2459	regulator->max_uV = old_max_uV;
2460	mutex_unlock(&rdev->mutex);
2461	return ret;
2462}
2463EXPORT_SYMBOL_GPL(regulator_set_voltage);
2464
2465/**
2466 * regulator_set_voltage_time - get raise/fall time
2467 * @regulator: regulator source
2468 * @old_uV: starting voltage in microvolts
2469 * @new_uV: target voltage in microvolts
2470 *
2471 * Provided with the starting and ending voltage, this function attempts to
2472 * calculate the time in microseconds required to rise or fall to this new
2473 * voltage.
2474 */
2475int regulator_set_voltage_time(struct regulator *regulator,
2476			       int old_uV, int new_uV)
2477{
2478	struct regulator_dev	*rdev = regulator->rdev;
2479	struct regulator_ops	*ops = rdev->desc->ops;
2480	int old_sel = -1;
2481	int new_sel = -1;
2482	int voltage;
2483	int i;
2484
2485	/* Currently requires operations to do this */
2486	if (!ops->list_voltage || !ops->set_voltage_time_sel
2487	    || !rdev->desc->n_voltages)
2488		return -EINVAL;
2489
2490	for (i = 0; i < rdev->desc->n_voltages; i++) {
2491		/* We only look for exact voltage matches here */
2492		voltage = regulator_list_voltage(regulator, i);
2493		if (voltage < 0)
2494			return -EINVAL;
2495		if (voltage == 0)
2496			continue;
2497		if (voltage == old_uV)
2498			old_sel = i;
2499		if (voltage == new_uV)
2500			new_sel = i;
2501	}
2502
2503	if (old_sel < 0 || new_sel < 0)
2504		return -EINVAL;
2505
2506	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2507}
2508EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2509
2510/**
2511 * regulator_set_voltage_time_sel - get raise/fall time
2512 * @rdev: regulator source device
2513 * @old_selector: selector for starting voltage
2514 * @new_selector: selector for target voltage
2515 *
2516 * Provided with the starting and target voltage selectors, this function
2517 * returns time in microseconds required to rise or fall to this new voltage
2518 *
2519 * Drivers providing ramp_delay in regulation_constraints can use this as their
2520 * set_voltage_time_sel() operation.
2521 */
2522int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2523				   unsigned int old_selector,
2524				   unsigned int new_selector)
2525{
2526	unsigned int ramp_delay = 0;
2527	int old_volt, new_volt;
2528
2529	if (rdev->constraints->ramp_delay)
2530		ramp_delay = rdev->constraints->ramp_delay;
2531	else if (rdev->desc->ramp_delay)
2532		ramp_delay = rdev->desc->ramp_delay;
2533
2534	if (ramp_delay == 0) {
2535		rdev_warn(rdev, "ramp_delay not set\n");
2536		return 0;
2537	}
2538
2539	/* sanity check */
2540	if (!rdev->desc->ops->list_voltage)
2541		return -EINVAL;
2542
2543	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2544	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2545
2546	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2547}
2548EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2549
2550/**
2551 * regulator_sync_voltage - re-apply last regulator output voltage
2552 * @regulator: regulator source
2553 *
2554 * Re-apply the last configured voltage.  This is intended to be used
2555 * where some external control source the consumer is cooperating with
2556 * has caused the configured voltage to change.
2557 */
2558int regulator_sync_voltage(struct regulator *regulator)
2559{
2560	struct regulator_dev *rdev = regulator->rdev;
2561	int ret, min_uV, max_uV;
2562
2563	mutex_lock(&rdev->mutex);
2564
2565	if (!rdev->desc->ops->set_voltage &&
2566	    !rdev->desc->ops->set_voltage_sel) {
2567		ret = -EINVAL;
2568		goto out;
2569	}
2570
2571	/* This is only going to work if we've had a voltage configured. */
2572	if (!regulator->min_uV && !regulator->max_uV) {
2573		ret = -EINVAL;
2574		goto out;
2575	}
2576
2577	min_uV = regulator->min_uV;
2578	max_uV = regulator->max_uV;
2579
2580	/* This should be a paranoia check... */
2581	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2582	if (ret < 0)
2583		goto out;
2584
2585	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2586	if (ret < 0)
2587		goto out;
2588
2589	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2590
2591out:
2592	mutex_unlock(&rdev->mutex);
2593	return ret;
2594}
2595EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2596
2597static int _regulator_get_voltage(struct regulator_dev *rdev)
2598{
2599	int sel, ret;
2600
2601	if (rdev->desc->ops->get_voltage_sel) {
2602		sel = rdev->desc->ops->get_voltage_sel(rdev);
2603		if (sel < 0)
2604			return sel;
2605		ret = rdev->desc->ops->list_voltage(rdev, sel);
2606	} else if (rdev->desc->ops->get_voltage) {
2607		ret = rdev->desc->ops->get_voltage(rdev);
2608	} else if (rdev->desc->ops->list_voltage) {
2609		ret = rdev->desc->ops->list_voltage(rdev, 0);
2610	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2611		ret = rdev->desc->fixed_uV;
2612	} else {
2613		return -EINVAL;
2614	}
2615
2616	if (ret < 0)
2617		return ret;
2618	return ret - rdev->constraints->uV_offset;
2619}
2620
2621/**
2622 * regulator_get_voltage - get regulator output voltage
2623 * @regulator: regulator source
2624 *
2625 * This returns the current regulator voltage in uV.
2626 *
2627 * NOTE: If the regulator is disabled it will return the voltage value. This
2628 * function should not be used to determine regulator state.
2629 */
2630int regulator_get_voltage(struct regulator *regulator)
2631{
2632	int ret;
2633
2634	mutex_lock(&regulator->rdev->mutex);
2635
2636	ret = _regulator_get_voltage(regulator->rdev);
2637
2638	mutex_unlock(&regulator->rdev->mutex);
2639
2640	return ret;
2641}
2642EXPORT_SYMBOL_GPL(regulator_get_voltage);
2643
2644/**
2645 * regulator_set_current_limit - set regulator output current limit
2646 * @regulator: regulator source
2647 * @min_uA: Minimum supported current in uA
2648 * @max_uA: Maximum supported current in uA
2649 *
2650 * Sets current sink to the desired output current. This can be set during
2651 * any regulator state. IOW, regulator can be disabled or enabled.
2652 *
2653 * If the regulator is enabled then the current will change to the new value
2654 * immediately otherwise if the regulator is disabled the regulator will
2655 * output at the new current when enabled.
2656 *
2657 * NOTE: Regulator system constraints must be set for this regulator before
2658 * calling this function otherwise this call will fail.
2659 */
2660int regulator_set_current_limit(struct regulator *regulator,
2661			       int min_uA, int max_uA)
2662{
2663	struct regulator_dev *rdev = regulator->rdev;
2664	int ret;
2665
2666	mutex_lock(&rdev->mutex);
2667
2668	/* sanity check */
2669	if (!rdev->desc->ops->set_current_limit) {
2670		ret = -EINVAL;
2671		goto out;
2672	}
2673
2674	/* constraints check */
2675	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2676	if (ret < 0)
2677		goto out;
2678
2679	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2680out:
2681	mutex_unlock(&rdev->mutex);
2682	return ret;
2683}
2684EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2685
2686static int _regulator_get_current_limit(struct regulator_dev *rdev)
2687{
2688	int ret;
2689
2690	mutex_lock(&rdev->mutex);
2691
2692	/* sanity check */
2693	if (!rdev->desc->ops->get_current_limit) {
2694		ret = -EINVAL;
2695		goto out;
2696	}
2697
2698	ret = rdev->desc->ops->get_current_limit(rdev);
2699out:
2700	mutex_unlock(&rdev->mutex);
2701	return ret;
2702}
2703
2704/**
2705 * regulator_get_current_limit - get regulator output current
2706 * @regulator: regulator source
2707 *
2708 * This returns the current supplied by the specified current sink in uA.
2709 *
2710 * NOTE: If the regulator is disabled it will return the current value. This
2711 * function should not be used to determine regulator state.
2712 */
2713int regulator_get_current_limit(struct regulator *regulator)
2714{
2715	return _regulator_get_current_limit(regulator->rdev);
2716}
2717EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2718
2719/**
2720 * regulator_set_mode - set regulator operating mode
2721 * @regulator: regulator source
2722 * @mode: operating mode - one of the REGULATOR_MODE constants
2723 *
2724 * Set regulator operating mode to increase regulator efficiency or improve
2725 * regulation performance.
2726 *
2727 * NOTE: Regulator system constraints must be set for this regulator before
2728 * calling this function otherwise this call will fail.
2729 */
2730int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2731{
2732	struct regulator_dev *rdev = regulator->rdev;
2733	int ret;
2734	int regulator_curr_mode;
2735
2736	mutex_lock(&rdev->mutex);
2737
2738	/* sanity check */
2739	if (!rdev->desc->ops->set_mode) {
2740		ret = -EINVAL;
2741		goto out;
2742	}
2743
2744	/* return if the same mode is requested */
2745	if (rdev->desc->ops->get_mode) {
2746		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2747		if (regulator_curr_mode == mode) {
2748			ret = 0;
2749			goto out;
2750		}
2751	}
2752
2753	/* constraints check */
2754	ret = regulator_mode_constrain(rdev, &mode);
2755	if (ret < 0)
2756		goto out;
2757
2758	ret = rdev->desc->ops->set_mode(rdev, mode);
2759out:
2760	mutex_unlock(&rdev->mutex);
2761	return ret;
2762}
2763EXPORT_SYMBOL_GPL(regulator_set_mode);
2764
2765static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2766{
2767	int ret;
2768
2769	mutex_lock(&rdev->mutex);
2770
2771	/* sanity check */
2772	if (!rdev->desc->ops->get_mode) {
2773		ret = -EINVAL;
2774		goto out;
2775	}
2776
2777	ret = rdev->desc->ops->get_mode(rdev);
2778out:
2779	mutex_unlock(&rdev->mutex);
2780	return ret;
2781}
2782
2783/**
2784 * regulator_get_mode - get regulator operating mode
2785 * @regulator: regulator source
2786 *
2787 * Get the current regulator operating mode.
2788 */
2789unsigned int regulator_get_mode(struct regulator *regulator)
2790{
2791	return _regulator_get_mode(regulator->rdev);
2792}
2793EXPORT_SYMBOL_GPL(regulator_get_mode);
2794
2795/**
2796 * regulator_set_optimum_mode - set regulator optimum operating mode
2797 * @regulator: regulator source
2798 * @uA_load: load current
2799 *
2800 * Notifies the regulator core of a new device load. This is then used by
2801 * DRMS (if enabled by constraints) to set the most efficient regulator
2802 * operating mode for the new regulator loading.
2803 *
2804 * Consumer devices notify their supply regulator of the maximum power
2805 * they will require (can be taken from device datasheet in the power
2806 * consumption tables) when they change operational status and hence power
2807 * state. Examples of operational state changes that can affect power
2808 * consumption are :-
2809 *
2810 *    o Device is opened / closed.
2811 *    o Device I/O is about to begin or has just finished.
2812 *    o Device is idling in between work.
2813 *
2814 * This information is also exported via sysfs to userspace.
2815 *
2816 * DRMS will sum the total requested load on the regulator and change
2817 * to the most efficient operating mode if platform constraints allow.
2818 *
2819 * Returns the new regulator mode or error.
2820 */
2821int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2822{
2823	struct regulator_dev *rdev = regulator->rdev;
2824	struct regulator *consumer;
2825	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2826	unsigned int mode;
2827
2828	if (rdev->supply)
2829		input_uV = regulator_get_voltage(rdev->supply);
2830
2831	mutex_lock(&rdev->mutex);
2832
2833	/*
2834	 * first check to see if we can set modes at all, otherwise just
2835	 * tell the consumer everything is OK.
2836	 */
2837	regulator->uA_load = uA_load;
2838	ret = regulator_check_drms(rdev);
2839	if (ret < 0) {
2840		ret = 0;
2841		goto out;
2842	}
2843
2844	if (!rdev->desc->ops->get_optimum_mode)
2845		goto out;
2846
2847	/*
2848	 * we can actually do this so any errors are indicators of
2849	 * potential real failure.
2850	 */
2851	ret = -EINVAL;
2852
2853	if (!rdev->desc->ops->set_mode)
2854		goto out;
2855
2856	/* get output voltage */
2857	output_uV = _regulator_get_voltage(rdev);
2858	if (output_uV <= 0) {
2859		rdev_err(rdev, "invalid output voltage found\n");
2860		goto out;
2861	}
2862
2863	/* No supply? Use constraint voltage */
2864	if (input_uV <= 0)
2865		input_uV = rdev->constraints->input_uV;
2866	if (input_uV <= 0) {
2867		rdev_err(rdev, "invalid input voltage found\n");
2868		goto out;
2869	}
2870
2871	/* calc total requested load for this regulator */
2872	list_for_each_entry(consumer, &rdev->consumer_list, list)
2873		total_uA_load += consumer->uA_load;
2874
2875	mode = rdev->desc->ops->get_optimum_mode(rdev,
2876						 input_uV, output_uV,
2877						 total_uA_load);
2878	ret = regulator_mode_constrain(rdev, &mode);
2879	if (ret < 0) {
2880		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2881			 total_uA_load, input_uV, output_uV);
2882		goto out;
2883	}
2884
2885	ret = rdev->desc->ops->set_mode(rdev, mode);
2886	if (ret < 0) {
2887		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2888		goto out;
2889	}
2890	ret = mode;
2891out:
2892	mutex_unlock(&rdev->mutex);
2893	return ret;
2894}
2895EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2896
2897/**
2898 * regulator_allow_bypass - allow the regulator to go into bypass mode
2899 *
2900 * @regulator: Regulator to configure
2901 * @enable: enable or disable bypass mode
2902 *
2903 * Allow the regulator to go into bypass mode if all other consumers
2904 * for the regulator also enable bypass mode and the machine
2905 * constraints allow this.  Bypass mode means that the regulator is
2906 * simply passing the input directly to the output with no regulation.
2907 */
2908int regulator_allow_bypass(struct regulator *regulator, bool enable)
2909{
2910	struct regulator_dev *rdev = regulator->rdev;
2911	int ret = 0;
2912
2913	if (!rdev->desc->ops->set_bypass)
2914		return 0;
2915
2916	if (rdev->constraints &&
2917	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2918		return 0;
2919
2920	mutex_lock(&rdev->mutex);
2921
2922	if (enable && !regulator->bypass) {
2923		rdev->bypass_count++;
2924
2925		if (rdev->bypass_count == rdev->open_count) {
2926			ret = rdev->desc->ops->set_bypass(rdev, enable);
2927			if (ret != 0)
2928				rdev->bypass_count--;
2929		}
2930
2931	} else if (!enable && regulator->bypass) {
2932		rdev->bypass_count--;
2933
2934		if (rdev->bypass_count != rdev->open_count) {
2935			ret = rdev->desc->ops->set_bypass(rdev, enable);
2936			if (ret != 0)
2937				rdev->bypass_count++;
2938		}
2939	}
2940
2941	if (ret == 0)
2942		regulator->bypass = enable;
2943
2944	mutex_unlock(&rdev->mutex);
2945
2946	return ret;
2947}
2948EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2949
2950/**
2951 * regulator_register_notifier - register regulator event notifier
2952 * @regulator: regulator source
2953 * @nb: notifier block
2954 *
2955 * Register notifier block to receive regulator events.
2956 */
2957int regulator_register_notifier(struct regulator *regulator,
2958			      struct notifier_block *nb)
2959{
2960	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2961						nb);
2962}
2963EXPORT_SYMBOL_GPL(regulator_register_notifier);
2964
2965/**
2966 * regulator_unregister_notifier - unregister regulator event notifier
2967 * @regulator: regulator source
2968 * @nb: notifier block
2969 *
2970 * Unregister regulator event notifier block.
2971 */
2972int regulator_unregister_notifier(struct regulator *regulator,
2973				struct notifier_block *nb)
2974{
2975	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2976						  nb);
2977}
2978EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2979
2980/* notify regulator consumers and downstream regulator consumers.
2981 * Note mutex must be held by caller.
2982 */
2983static void _notifier_call_chain(struct regulator_dev *rdev,
2984				  unsigned long event, void *data)
2985{
2986	/* call rdev chain first */
2987	blocking_notifier_call_chain(&rdev->notifier, event, data);
2988}
2989
2990/**
2991 * regulator_bulk_get - get multiple regulator consumers
2992 *
2993 * @dev:           Device to supply
2994 * @num_consumers: Number of consumers to register
2995 * @consumers:     Configuration of consumers; clients are stored here.
2996 *
2997 * @return 0 on success, an errno on failure.
2998 *
2999 * This helper function allows drivers to get several regulator
3000 * consumers in one operation.  If any of the regulators cannot be
3001 * acquired then any regulators that were allocated will be freed
3002 * before returning to the caller.
3003 */
3004int regulator_bulk_get(struct device *dev, int num_consumers,
3005		       struct regulator_bulk_data *consumers)
3006{
3007	int i;
3008	int ret;
3009
3010	for (i = 0; i < num_consumers; i++)
3011		consumers[i].consumer = NULL;
3012
3013	for (i = 0; i < num_consumers; i++) {
3014		consumers[i].consumer = regulator_get(dev,
3015						      consumers[i].supply);
3016		if (IS_ERR(consumers[i].consumer)) {
3017			ret = PTR_ERR(consumers[i].consumer);
3018			dev_err(dev, "Failed to get supply '%s': %d\n",
3019				consumers[i].supply, ret);
3020			consumers[i].consumer = NULL;
3021			goto err;
3022		}
3023	}
3024
3025	return 0;
3026
3027err:
3028	while (--i >= 0)
3029		regulator_put(consumers[i].consumer);
3030
3031	return ret;
3032}
3033EXPORT_SYMBOL_GPL(regulator_bulk_get);
3034
3035static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3036{
3037	struct regulator_bulk_data *bulk = data;
3038
3039	bulk->ret = regulator_enable(bulk->consumer);
3040}
3041
3042/**
3043 * regulator_bulk_enable - enable multiple regulator consumers
3044 *
3045 * @num_consumers: Number of consumers
3046 * @consumers:     Consumer data; clients are stored here.
3047 * @return         0 on success, an errno on failure
3048 *
3049 * This convenience API allows consumers to enable multiple regulator
3050 * clients in a single API call.  If any consumers cannot be enabled
3051 * then any others that were enabled will be disabled again prior to
3052 * return.
3053 */
3054int regulator_bulk_enable(int num_consumers,
3055			  struct regulator_bulk_data *consumers)
3056{
3057	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3058	int i;
3059	int ret = 0;
3060
3061	for (i = 0; i < num_consumers; i++) {
3062		if (consumers[i].consumer->always_on)
3063			consumers[i].ret = 0;
3064		else
3065			async_schedule_domain(regulator_bulk_enable_async,
3066					      &consumers[i], &async_domain);
3067	}
3068
3069	async_synchronize_full_domain(&async_domain);
3070
3071	/* If any consumer failed we need to unwind any that succeeded */
3072	for (i = 0; i < num_consumers; i++) {
3073		if (consumers[i].ret != 0) {
3074			ret = consumers[i].ret;
3075			goto err;
3076		}
3077	}
3078
3079	return 0;
3080
3081err:
3082	for (i = 0; i < num_consumers; i++) {
3083		if (consumers[i].ret < 0)
3084			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3085			       consumers[i].ret);
3086		else
3087			regulator_disable(consumers[i].consumer);
3088	}
3089
3090	return ret;
3091}
3092EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3093
3094/**
3095 * regulator_bulk_disable - disable multiple regulator consumers
3096 *
3097 * @num_consumers: Number of consumers
3098 * @consumers:     Consumer data; clients are stored here.
3099 * @return         0 on success, an errno on failure
3100 *
3101 * This convenience API allows consumers to disable multiple regulator
3102 * clients in a single API call.  If any consumers cannot be disabled
3103 * then any others that were disabled will be enabled again prior to
3104 * return.
3105 */
3106int regulator_bulk_disable(int num_consumers,
3107			   struct regulator_bulk_data *consumers)
3108{
3109	int i;
3110	int ret, r;
3111
3112	for (i = num_consumers - 1; i >= 0; --i) {
3113		ret = regulator_disable(consumers[i].consumer);
3114		if (ret != 0)
3115			goto err;
3116	}
3117
3118	return 0;
3119
3120err:
3121	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3122	for (++i; i < num_consumers; ++i) {
3123		r = regulator_enable(consumers[i].consumer);
3124		if (r != 0)
3125			pr_err("Failed to reename %s: %d\n",
3126			       consumers[i].supply, r);
3127	}
3128
3129	return ret;
3130}
3131EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3132
3133/**
3134 * regulator_bulk_force_disable - force disable multiple regulator consumers
3135 *
3136 * @num_consumers: Number of consumers
3137 * @consumers:     Consumer data; clients are stored here.
3138 * @return         0 on success, an errno on failure
3139 *
3140 * This convenience API allows consumers to forcibly disable multiple regulator
3141 * clients in a single API call.
3142 * NOTE: This should be used for situations when device damage will
3143 * likely occur if the regulators are not disabled (e.g. over temp).
3144 * Although regulator_force_disable function call for some consumers can
3145 * return error numbers, the function is called for all consumers.
3146 */
3147int regulator_bulk_force_disable(int num_consumers,
3148			   struct regulator_bulk_data *consumers)
3149{
3150	int i;
3151	int ret;
3152
3153	for (i = 0; i < num_consumers; i++)
3154		consumers[i].ret =
3155			    regulator_force_disable(consumers[i].consumer);
3156
3157	for (i = 0; i < num_consumers; i++) {
3158		if (consumers[i].ret != 0) {
3159			ret = consumers[i].ret;
3160			goto out;
3161		}
3162	}
3163
3164	return 0;
3165out:
3166	return ret;
3167}
3168EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3169
3170/**
3171 * regulator_bulk_free - free multiple regulator consumers
3172 *
3173 * @num_consumers: Number of consumers
3174 * @consumers:     Consumer data; clients are stored here.
3175 *
3176 * This convenience API allows consumers to free multiple regulator
3177 * clients in a single API call.
3178 */
3179void regulator_bulk_free(int num_consumers,
3180			 struct regulator_bulk_data *consumers)
3181{
3182	int i;
3183
3184	for (i = 0; i < num_consumers; i++) {
3185		regulator_put(consumers[i].consumer);
3186		consumers[i].consumer = NULL;
3187	}
3188}
3189EXPORT_SYMBOL_GPL(regulator_bulk_free);
3190
3191/**
3192 * regulator_notifier_call_chain - call regulator event notifier
3193 * @rdev: regulator source
3194 * @event: notifier block
3195 * @data: callback-specific data.
3196 *
3197 * Called by regulator drivers to notify clients a regulator event has
3198 * occurred. We also notify regulator clients downstream.
3199 * Note lock must be held by caller.
3200 */
3201int regulator_notifier_call_chain(struct regulator_dev *rdev,
3202				  unsigned long event, void *data)
3203{
3204	_notifier_call_chain(rdev, event, data);
3205	return NOTIFY_DONE;
3206
3207}
3208EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3209
3210/**
3211 * regulator_mode_to_status - convert a regulator mode into a status
3212 *
3213 * @mode: Mode to convert
3214 *
3215 * Convert a regulator mode into a status.
3216 */
3217int regulator_mode_to_status(unsigned int mode)
3218{
3219	switch (mode) {
3220	case REGULATOR_MODE_FAST:
3221		return REGULATOR_STATUS_FAST;
3222	case REGULATOR_MODE_NORMAL:
3223		return REGULATOR_STATUS_NORMAL;
3224	case REGULATOR_MODE_IDLE:
3225		return REGULATOR_STATUS_IDLE;
3226	case REGULATOR_MODE_STANDBY:
3227		return REGULATOR_STATUS_STANDBY;
3228	default:
3229		return REGULATOR_STATUS_UNDEFINED;
3230	}
3231}
3232EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3233
3234/*
3235 * To avoid cluttering sysfs (and memory) with useless state, only
3236 * create attributes that can be meaningfully displayed.
3237 */
3238static int add_regulator_attributes(struct regulator_dev *rdev)
3239{
3240	struct device		*dev = &rdev->dev;
3241	struct regulator_ops	*ops = rdev->desc->ops;
3242	int			status = 0;
3243
3244	/* some attributes need specific methods to be displayed */
3245	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3246	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3247	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3248		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3249		status = device_create_file(dev, &dev_attr_microvolts);
3250		if (status < 0)
3251			return status;
3252	}
3253	if (ops->get_current_limit) {
3254		status = device_create_file(dev, &dev_attr_microamps);
3255		if (status < 0)
3256			return status;
3257	}
3258	if (ops->get_mode) {
3259		status = device_create_file(dev, &dev_attr_opmode);
3260		if (status < 0)
3261			return status;
3262	}
3263	if (rdev->ena_pin || ops->is_enabled) {
3264		status = device_create_file(dev, &dev_attr_state);
3265		if (status < 0)
3266			return status;
3267	}
3268	if (ops->get_status) {
3269		status = device_create_file(dev, &dev_attr_status);
3270		if (status < 0)
3271			return status;
3272	}
3273	if (ops->get_bypass) {
3274		status = device_create_file(dev, &dev_attr_bypass);
3275		if (status < 0)
3276			return status;
3277	}
3278
3279	/* some attributes are type-specific */
3280	if (rdev->desc->type == REGULATOR_CURRENT) {
3281		status = device_create_file(dev, &dev_attr_requested_microamps);
3282		if (status < 0)
3283			return status;
3284	}
3285
3286	/* all the other attributes exist to support constraints;
3287	 * don't show them if there are no constraints, or if the
3288	 * relevant supporting methods are missing.
3289	 */
3290	if (!rdev->constraints)
3291		return status;
3292
3293	/* constraints need specific supporting methods */
3294	if (ops->set_voltage || ops->set_voltage_sel) {
3295		status = device_create_file(dev, &dev_attr_min_microvolts);
3296		if (status < 0)
3297			return status;
3298		status = device_create_file(dev, &dev_attr_max_microvolts);
3299		if (status < 0)
3300			return status;
3301	}
3302	if (ops->set_current_limit) {
3303		status = device_create_file(dev, &dev_attr_min_microamps);
3304		if (status < 0)
3305			return status;
3306		status = device_create_file(dev, &dev_attr_max_microamps);
3307		if (status < 0)
3308			return status;
3309	}
3310
3311	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3312	if (status < 0)
3313		return status;
3314	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3315	if (status < 0)
3316		return status;
3317	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3318	if (status < 0)
3319		return status;
3320
3321	if (ops->set_suspend_voltage) {
3322		status = device_create_file(dev,
3323				&dev_attr_suspend_standby_microvolts);
3324		if (status < 0)
3325			return status;
3326		status = device_create_file(dev,
3327				&dev_attr_suspend_mem_microvolts);
3328		if (status < 0)
3329			return status;
3330		status = device_create_file(dev,
3331				&dev_attr_suspend_disk_microvolts);
3332		if (status < 0)
3333			return status;
3334	}
3335
3336	if (ops->set_suspend_mode) {
3337		status = device_create_file(dev,
3338				&dev_attr_suspend_standby_mode);
3339		if (status < 0)
3340			return status;
3341		status = device_create_file(dev,
3342				&dev_attr_suspend_mem_mode);
3343		if (status < 0)
3344			return status;
3345		status = device_create_file(dev,
3346				&dev_attr_suspend_disk_mode);
3347		if (status < 0)
3348			return status;
3349	}
3350
3351	return status;
3352}
3353
3354static void rdev_init_debugfs(struct regulator_dev *rdev)
3355{
3356	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3357	if (!rdev->debugfs) {
3358		rdev_warn(rdev, "Failed to create debugfs directory\n");
3359		return;
3360	}
3361
3362	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3363			   &rdev->use_count);
3364	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3365			   &rdev->open_count);
3366	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3367			   &rdev->bypass_count);
3368}
3369
3370/**
3371 * regulator_register - register regulator
3372 * @regulator_desc: regulator to register
3373 * @config: runtime configuration for regulator
3374 *
3375 * Called by regulator drivers to register a regulator.
3376 * Returns a valid pointer to struct regulator_dev on success
3377 * or an ERR_PTR() on error.
3378 */
3379struct regulator_dev *
3380regulator_register(const struct regulator_desc *regulator_desc,
3381		   const struct regulator_config *config)
3382{
3383	const struct regulation_constraints *constraints = NULL;
3384	const struct regulator_init_data *init_data;
3385	static atomic_t regulator_no = ATOMIC_INIT(0);
3386	struct regulator_dev *rdev;
3387	struct device *dev;
3388	int ret, i;
3389	const char *supply = NULL;
3390
3391	if (regulator_desc == NULL || config == NULL)
3392		return ERR_PTR(-EINVAL);
3393
3394	dev = config->dev;
3395	WARN_ON(!dev);
3396
3397	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3398		return ERR_PTR(-EINVAL);
3399
3400	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3401	    regulator_desc->type != REGULATOR_CURRENT)
3402		return ERR_PTR(-EINVAL);
3403
3404	/* Only one of each should be implemented */
3405	WARN_ON(regulator_desc->ops->get_voltage &&
3406		regulator_desc->ops->get_voltage_sel);
3407	WARN_ON(regulator_desc->ops->set_voltage &&
3408		regulator_desc->ops->set_voltage_sel);
3409
3410	/* If we're using selectors we must implement list_voltage. */
3411	if (regulator_desc->ops->get_voltage_sel &&
3412	    !regulator_desc->ops->list_voltage) {
3413		return ERR_PTR(-EINVAL);
3414	}
3415	if (regulator_desc->ops->set_voltage_sel &&
3416	    !regulator_desc->ops->list_voltage) {
3417		return ERR_PTR(-EINVAL);
3418	}
3419
3420	init_data = config->init_data;
3421
3422	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3423	if (rdev == NULL)
3424		return ERR_PTR(-ENOMEM);
3425
3426	mutex_lock(&regulator_list_mutex);
3427
3428	mutex_init(&rdev->mutex);
3429	rdev->reg_data = config->driver_data;
3430	rdev->owner = regulator_desc->owner;
3431	rdev->desc = regulator_desc;
3432	if (config->regmap)
3433		rdev->regmap = config->regmap;
3434	else if (dev_get_regmap(dev, NULL))
3435		rdev->regmap = dev_get_regmap(dev, NULL);
3436	else if (dev->parent)
3437		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3438	INIT_LIST_HEAD(&rdev->consumer_list);
3439	INIT_LIST_HEAD(&rdev->list);
3440	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3441	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3442
3443	/* preform any regulator specific init */
3444	if (init_data && init_data->regulator_init) {
3445		ret = init_data->regulator_init(rdev->reg_data);
3446		if (ret < 0)
3447			goto clean;
3448	}
3449
3450	/* register with sysfs */
3451	rdev->dev.class = &regulator_class;
3452	rdev->dev.of_node = config->of_node;
3453	rdev->dev.parent = dev;
3454	dev_set_name(&rdev->dev, "regulator.%d",
3455		     atomic_inc_return(&regulator_no) - 1);
3456	ret = device_register(&rdev->dev);
3457	if (ret != 0) {
3458		put_device(&rdev->dev);
3459		goto clean;
3460	}
3461
3462	dev_set_drvdata(&rdev->dev, rdev);
3463
3464	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3465		ret = regulator_ena_gpio_request(rdev, config);
3466		if (ret != 0) {
3467			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3468				 config->ena_gpio, ret);
3469			goto wash;
3470		}
3471
3472		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3473			rdev->ena_gpio_state = 1;
3474
3475		if (config->ena_gpio_invert)
3476			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3477	}
3478
3479	/* set regulator constraints */
3480	if (init_data)
3481		constraints = &init_data->constraints;
3482
3483	ret = set_machine_constraints(rdev, constraints);
3484	if (ret < 0)
3485		goto scrub;
3486
3487	/* add attributes supported by this regulator */
3488	ret = add_regulator_attributes(rdev);
3489	if (ret < 0)
3490		goto scrub;
3491
3492	if (init_data && init_data->supply_regulator)
3493		supply = init_data->supply_regulator;
3494	else if (regulator_desc->supply_name)
3495		supply = regulator_desc->supply_name;
3496
3497	if (supply) {
3498		struct regulator_dev *r;
3499
3500		r = regulator_dev_lookup(dev, supply, &ret);
3501
3502		if (ret == -ENODEV) {
3503			/*
3504			 * No supply was specified for this regulator and
3505			 * there will never be one.
3506			 */
3507			ret = 0;
3508			goto add_dev;
3509		} else if (!r) {
3510			dev_err(dev, "Failed to find supply %s\n", supply);
3511			ret = -EPROBE_DEFER;
3512			goto scrub;
3513		}
3514
3515		ret = set_supply(rdev, r);
3516		if (ret < 0)
3517			goto scrub;
3518
3519		/* Enable supply if rail is enabled */
3520		if (_regulator_is_enabled(rdev)) {
3521			ret = regulator_enable(rdev->supply);
3522			if (ret < 0)
3523				goto scrub;
3524		}
3525	}
3526
3527add_dev:
3528	/* add consumers devices */
3529	if (init_data) {
3530		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3531			ret = set_consumer_device_supply(rdev,
3532				init_data->consumer_supplies[i].dev_name,
3533				init_data->consumer_supplies[i].supply);
3534			if (ret < 0) {
3535				dev_err(dev, "Failed to set supply %s\n",
3536					init_data->consumer_supplies[i].supply);
3537				goto unset_supplies;
3538			}
3539		}
3540	}
3541
3542	list_add(&rdev->list, &regulator_list);
3543
3544	rdev_init_debugfs(rdev);
3545out:
3546	mutex_unlock(&regulator_list_mutex);
3547	return rdev;
3548
3549unset_supplies:
3550	unset_regulator_supplies(rdev);
3551
3552scrub:
3553	if (rdev->supply)
3554		_regulator_put(rdev->supply);
3555	regulator_ena_gpio_free(rdev);
3556	kfree(rdev->constraints);
3557wash:
3558	device_unregister(&rdev->dev);
3559	/* device core frees rdev */
3560	rdev = ERR_PTR(ret);
3561	goto out;
3562
3563clean:
3564	kfree(rdev);
3565	rdev = ERR_PTR(ret);
3566	goto out;
3567}
3568EXPORT_SYMBOL_GPL(regulator_register);
3569
3570/**
3571 * regulator_unregister - unregister regulator
3572 * @rdev: regulator to unregister
3573 *
3574 * Called by regulator drivers to unregister a regulator.
3575 */
3576void regulator_unregister(struct regulator_dev *rdev)
3577{
3578	if (rdev == NULL)
3579		return;
3580
3581	if (rdev->supply) {
3582		while (rdev->use_count--)
3583			regulator_disable(rdev->supply);
3584		regulator_put(rdev->supply);
3585	}
3586	mutex_lock(&regulator_list_mutex);
3587	debugfs_remove_recursive(rdev->debugfs);
3588	flush_work(&rdev->disable_work.work);
3589	WARN_ON(rdev->open_count);
3590	unset_regulator_supplies(rdev);
3591	list_del(&rdev->list);
3592	kfree(rdev->constraints);
3593	regulator_ena_gpio_free(rdev);
3594	device_unregister(&rdev->dev);
3595	mutex_unlock(&regulator_list_mutex);
3596}
3597EXPORT_SYMBOL_GPL(regulator_unregister);
3598
3599/**
3600 * regulator_suspend_prepare - prepare regulators for system wide suspend
3601 * @state: system suspend state
3602 *
3603 * Configure each regulator with it's suspend operating parameters for state.
3604 * This will usually be called by machine suspend code prior to supending.
3605 */
3606int regulator_suspend_prepare(suspend_state_t state)
3607{
3608	struct regulator_dev *rdev;
3609	int ret = 0;
3610
3611	/* ON is handled by regulator active state */
3612	if (state == PM_SUSPEND_ON)
3613		return -EINVAL;
3614
3615	mutex_lock(&regulator_list_mutex);
3616	list_for_each_entry(rdev, &regulator_list, list) {
3617
3618		mutex_lock(&rdev->mutex);
3619		ret = suspend_prepare(rdev, state);
3620		mutex_unlock(&rdev->mutex);
3621
3622		if (ret < 0) {
3623			rdev_err(rdev, "failed to prepare\n");
3624			goto out;
3625		}
3626	}
3627out:
3628	mutex_unlock(&regulator_list_mutex);
3629	return ret;
3630}
3631EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3632
3633/**
3634 * regulator_suspend_finish - resume regulators from system wide suspend
3635 *
3636 * Turn on regulators that might be turned off by regulator_suspend_prepare
3637 * and that should be turned on according to the regulators properties.
3638 */
3639int regulator_suspend_finish(void)
3640{
3641	struct regulator_dev *rdev;
3642	int ret = 0, error;
3643
3644	mutex_lock(&regulator_list_mutex);
3645	list_for_each_entry(rdev, &regulator_list, list) {
3646		mutex_lock(&rdev->mutex);
3647		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3648			error = _regulator_do_enable(rdev);
3649			if (error)
3650				ret = error;
3651		} else {
3652			if (!have_full_constraints())
3653				goto unlock;
3654			if (!_regulator_is_enabled(rdev))
3655				goto unlock;
3656
3657			error = _regulator_do_disable(rdev);
3658			if (error)
3659				ret = error;
3660		}
3661unlock:
3662		mutex_unlock(&rdev->mutex);
3663	}
3664	mutex_unlock(&regulator_list_mutex);
3665	return ret;
3666}
3667EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3668
3669/**
3670 * regulator_has_full_constraints - the system has fully specified constraints
3671 *
3672 * Calling this function will cause the regulator API to disable all
3673 * regulators which have a zero use count and don't have an always_on
3674 * constraint in a late_initcall.
3675 *
3676 * The intention is that this will become the default behaviour in a
3677 * future kernel release so users are encouraged to use this facility
3678 * now.
3679 */
3680void regulator_has_full_constraints(void)
3681{
3682	has_full_constraints = 1;
3683}
3684EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3685
3686/**
3687 * rdev_get_drvdata - get rdev regulator driver data
3688 * @rdev: regulator
3689 *
3690 * Get rdev regulator driver private data. This call can be used in the
3691 * regulator driver context.
3692 */
3693void *rdev_get_drvdata(struct regulator_dev *rdev)
3694{
3695	return rdev->reg_data;
3696}
3697EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3698
3699/**
3700 * regulator_get_drvdata - get regulator driver data
3701 * @regulator: regulator
3702 *
3703 * Get regulator driver private data. This call can be used in the consumer
3704 * driver context when non API regulator specific functions need to be called.
3705 */
3706void *regulator_get_drvdata(struct regulator *regulator)
3707{
3708	return regulator->rdev->reg_data;
3709}
3710EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3711
3712/**
3713 * regulator_set_drvdata - set regulator driver data
3714 * @regulator: regulator
3715 * @data: data
3716 */
3717void regulator_set_drvdata(struct regulator *regulator, void *data)
3718{
3719	regulator->rdev->reg_data = data;
3720}
3721EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3722
3723/**
3724 * regulator_get_id - get regulator ID
3725 * @rdev: regulator
3726 */
3727int rdev_get_id(struct regulator_dev *rdev)
3728{
3729	return rdev->desc->id;
3730}
3731EXPORT_SYMBOL_GPL(rdev_get_id);
3732
3733struct device *rdev_get_dev(struct regulator_dev *rdev)
3734{
3735	return &rdev->dev;
3736}
3737EXPORT_SYMBOL_GPL(rdev_get_dev);
3738
3739void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3740{
3741	return reg_init_data->driver_data;
3742}
3743EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3744
3745#ifdef CONFIG_DEBUG_FS
3746static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3747				    size_t count, loff_t *ppos)
3748{
3749	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3750	ssize_t len, ret = 0;
3751	struct regulator_map *map;
3752
3753	if (!buf)
3754		return -ENOMEM;
3755
3756	list_for_each_entry(map, &regulator_map_list, list) {
3757		len = snprintf(buf + ret, PAGE_SIZE - ret,
3758			       "%s -> %s.%s\n",
3759			       rdev_get_name(map->regulator), map->dev_name,
3760			       map->supply);
3761		if (len >= 0)
3762			ret += len;
3763		if (ret > PAGE_SIZE) {
3764			ret = PAGE_SIZE;
3765			break;
3766		}
3767	}
3768
3769	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3770
3771	kfree(buf);
3772
3773	return ret;
3774}
3775#endif
3776
3777static const struct file_operations supply_map_fops = {
3778#ifdef CONFIG_DEBUG_FS
3779	.read = supply_map_read_file,
3780	.llseek = default_llseek,
3781#endif
3782};
3783
3784static int __init regulator_init(void)
3785{
3786	int ret;
3787
3788	ret = class_register(&regulator_class);
3789
3790	debugfs_root = debugfs_create_dir("regulator", NULL);
3791	if (!debugfs_root)
3792		pr_warn("regulator: Failed to create debugfs directory\n");
3793
3794	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3795			    &supply_map_fops);
3796
3797	regulator_dummy_init();
3798
3799	return ret;
3800}
3801
3802/* init early to allow our consumers to complete system booting */
3803core_initcall(regulator_init);
3804
3805static int __init regulator_init_complete(void)
3806{
3807	struct regulator_dev *rdev;
3808	struct regulator_ops *ops;
3809	struct regulation_constraints *c;
3810	int enabled, ret;
3811
3812	/*
3813	 * Since DT doesn't provide an idiomatic mechanism for
3814	 * enabling full constraints and since it's much more natural
3815	 * with DT to provide them just assume that a DT enabled
3816	 * system has full constraints.
3817	 */
3818	if (of_have_populated_dt())
3819		has_full_constraints = true;
3820
3821	mutex_lock(&regulator_list_mutex);
3822
3823	/* If we have a full configuration then disable any regulators
3824	 * which are not in use or always_on.  This will become the
3825	 * default behaviour in the future.
3826	 */
3827	list_for_each_entry(rdev, &regulator_list, list) {
3828		ops = rdev->desc->ops;
3829		c = rdev->constraints;
3830
3831		if (c && c->always_on)
3832			continue;
3833
3834		mutex_lock(&rdev->mutex);
3835
3836		if (rdev->use_count)
3837			goto unlock;
3838
3839		/* If we can't read the status assume it's on. */
3840		if (ops->is_enabled)
3841			enabled = ops->is_enabled(rdev);
3842		else
3843			enabled = 1;
3844
3845		if (!enabled)
3846			goto unlock;
3847
3848		if (have_full_constraints()) {
3849			/* We log since this may kill the system if it
3850			 * goes wrong. */
3851			rdev_info(rdev, "disabling\n");
3852			ret = _regulator_do_disable(rdev);
3853			if (ret != 0)
3854				rdev_err(rdev, "couldn't disable: %d\n", ret);
3855		} else {
3856			/* The intention is that in future we will
3857			 * assume that full constraints are provided
3858			 * so warn even if we aren't going to do
3859			 * anything here.
3860			 */
3861			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3862		}
3863
3864unlock:
3865		mutex_unlock(&rdev->mutex);
3866	}
3867
3868	mutex_unlock(&regulator_list_mutex);
3869
3870	return 0;
3871}
3872late_initcall(regulator_init_complete);
3873