core.c revision 69d588392b057c0cedb1ba58d7973b77a65997ec
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122static bool have_full_constraints(void)
123{
124	return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		int current_uV = _regulator_get_voltage(rdev);
848		if (current_uV < 0) {
849			rdev_err(rdev,
850				 "failed to get the current voltage(%d)\n",
851				 current_uV);
852			return current_uV;
853		}
854		if (current_uV < rdev->constraints->min_uV ||
855		    current_uV > rdev->constraints->max_uV) {
856			ret = _regulator_do_set_voltage(
857				rdev, rdev->constraints->min_uV,
858				rdev->constraints->max_uV);
859			if (ret < 0) {
860				rdev_err(rdev,
861					"failed to apply %duV constraint(%d)\n",
862					rdev->constraints->min_uV, ret);
863				return ret;
864			}
865		}
866	}
867
868	/* constrain machine-level voltage specs to fit
869	 * the actual range supported by this regulator.
870	 */
871	if (ops->list_voltage && rdev->desc->n_voltages) {
872		int	count = rdev->desc->n_voltages;
873		int	i;
874		int	min_uV = INT_MAX;
875		int	max_uV = INT_MIN;
876		int	cmin = constraints->min_uV;
877		int	cmax = constraints->max_uV;
878
879		/* it's safe to autoconfigure fixed-voltage supplies
880		   and the constraints are used by list_voltage. */
881		if (count == 1 && !cmin) {
882			cmin = 1;
883			cmax = INT_MAX;
884			constraints->min_uV = cmin;
885			constraints->max_uV = cmax;
886		}
887
888		/* voltage constraints are optional */
889		if ((cmin == 0) && (cmax == 0))
890			return 0;
891
892		/* else require explicit machine-level constraints */
893		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
894			rdev_err(rdev, "invalid voltage constraints\n");
895			return -EINVAL;
896		}
897
898		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
899		for (i = 0; i < count; i++) {
900			int	value;
901
902			value = ops->list_voltage(rdev, i);
903			if (value <= 0)
904				continue;
905
906			/* maybe adjust [min_uV..max_uV] */
907			if (value >= cmin && value < min_uV)
908				min_uV = value;
909			if (value <= cmax && value > max_uV)
910				max_uV = value;
911		}
912
913		/* final: [min_uV..max_uV] valid iff constraints valid */
914		if (max_uV < min_uV) {
915			rdev_err(rdev,
916				 "unsupportable voltage constraints %u-%uuV\n",
917				 min_uV, max_uV);
918			return -EINVAL;
919		}
920
921		/* use regulator's subset of machine constraints */
922		if (constraints->min_uV < min_uV) {
923			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
924				 constraints->min_uV, min_uV);
925			constraints->min_uV = min_uV;
926		}
927		if (constraints->max_uV > max_uV) {
928			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
929				 constraints->max_uV, max_uV);
930			constraints->max_uV = max_uV;
931		}
932	}
933
934	return 0;
935}
936
937static int machine_constraints_current(struct regulator_dev *rdev,
938	struct regulation_constraints *constraints)
939{
940	struct regulator_ops *ops = rdev->desc->ops;
941	int ret;
942
943	if (!constraints->min_uA && !constraints->max_uA)
944		return 0;
945
946	if (constraints->min_uA > constraints->max_uA) {
947		rdev_err(rdev, "Invalid current constraints\n");
948		return -EINVAL;
949	}
950
951	if (!ops->set_current_limit || !ops->get_current_limit) {
952		rdev_warn(rdev, "Operation of current configuration missing\n");
953		return 0;
954	}
955
956	/* Set regulator current in constraints range */
957	ret = ops->set_current_limit(rdev, constraints->min_uA,
958			constraints->max_uA);
959	if (ret < 0) {
960		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
961		return ret;
962	}
963
964	return 0;
965}
966
967static int _regulator_do_enable(struct regulator_dev *rdev);
968
969/**
970 * set_machine_constraints - sets regulator constraints
971 * @rdev: regulator source
972 * @constraints: constraints to apply
973 *
974 * Allows platform initialisation code to define and constrain
975 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
976 * Constraints *must* be set by platform code in order for some
977 * regulator operations to proceed i.e. set_voltage, set_current_limit,
978 * set_mode.
979 */
980static int set_machine_constraints(struct regulator_dev *rdev,
981	const struct regulation_constraints *constraints)
982{
983	int ret = 0;
984	struct regulator_ops *ops = rdev->desc->ops;
985
986	if (constraints)
987		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
988					    GFP_KERNEL);
989	else
990		rdev->constraints = kzalloc(sizeof(*constraints),
991					    GFP_KERNEL);
992	if (!rdev->constraints)
993		return -ENOMEM;
994
995	ret = machine_constraints_voltage(rdev, rdev->constraints);
996	if (ret != 0)
997		goto out;
998
999	ret = machine_constraints_current(rdev, rdev->constraints);
1000	if (ret != 0)
1001		goto out;
1002
1003	/* do we need to setup our suspend state */
1004	if (rdev->constraints->initial_state) {
1005		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1006		if (ret < 0) {
1007			rdev_err(rdev, "failed to set suspend state\n");
1008			goto out;
1009		}
1010	}
1011
1012	if (rdev->constraints->initial_mode) {
1013		if (!ops->set_mode) {
1014			rdev_err(rdev, "no set_mode operation\n");
1015			ret = -EINVAL;
1016			goto out;
1017		}
1018
1019		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1020		if (ret < 0) {
1021			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1022			goto out;
1023		}
1024	}
1025
1026	/* If the constraints say the regulator should be on at this point
1027	 * and we have control then make sure it is enabled.
1028	 */
1029	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1030		ret = _regulator_do_enable(rdev);
1031		if (ret < 0 && ret != -EINVAL) {
1032			rdev_err(rdev, "failed to enable\n");
1033			goto out;
1034		}
1035	}
1036
1037	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1038		&& ops->set_ramp_delay) {
1039		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1040		if (ret < 0) {
1041			rdev_err(rdev, "failed to set ramp_delay\n");
1042			goto out;
1043		}
1044	}
1045
1046	print_constraints(rdev);
1047	return 0;
1048out:
1049	kfree(rdev->constraints);
1050	rdev->constraints = NULL;
1051	return ret;
1052}
1053
1054/**
1055 * set_supply - set regulator supply regulator
1056 * @rdev: regulator name
1057 * @supply_rdev: supply regulator name
1058 *
1059 * Called by platform initialisation code to set the supply regulator for this
1060 * regulator. This ensures that a regulators supply will also be enabled by the
1061 * core if it's child is enabled.
1062 */
1063static int set_supply(struct regulator_dev *rdev,
1064		      struct regulator_dev *supply_rdev)
1065{
1066	int err;
1067
1068	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1069
1070	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1071	if (rdev->supply == NULL) {
1072		err = -ENOMEM;
1073		return err;
1074	}
1075	supply_rdev->open_count++;
1076
1077	return 0;
1078}
1079
1080/**
1081 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1082 * @rdev:         regulator source
1083 * @consumer_dev_name: dev_name() string for device supply applies to
1084 * @supply:       symbolic name for supply
1085 *
1086 * Allows platform initialisation code to map physical regulator
1087 * sources to symbolic names for supplies for use by devices.  Devices
1088 * should use these symbolic names to request regulators, avoiding the
1089 * need to provide board-specific regulator names as platform data.
1090 */
1091static int set_consumer_device_supply(struct regulator_dev *rdev,
1092				      const char *consumer_dev_name,
1093				      const char *supply)
1094{
1095	struct regulator_map *node;
1096	int has_dev;
1097
1098	if (supply == NULL)
1099		return -EINVAL;
1100
1101	if (consumer_dev_name != NULL)
1102		has_dev = 1;
1103	else
1104		has_dev = 0;
1105
1106	list_for_each_entry(node, &regulator_map_list, list) {
1107		if (node->dev_name && consumer_dev_name) {
1108			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1109				continue;
1110		} else if (node->dev_name || consumer_dev_name) {
1111			continue;
1112		}
1113
1114		if (strcmp(node->supply, supply) != 0)
1115			continue;
1116
1117		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1118			 consumer_dev_name,
1119			 dev_name(&node->regulator->dev),
1120			 node->regulator->desc->name,
1121			 supply,
1122			 dev_name(&rdev->dev), rdev_get_name(rdev));
1123		return -EBUSY;
1124	}
1125
1126	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1127	if (node == NULL)
1128		return -ENOMEM;
1129
1130	node->regulator = rdev;
1131	node->supply = supply;
1132
1133	if (has_dev) {
1134		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1135		if (node->dev_name == NULL) {
1136			kfree(node);
1137			return -ENOMEM;
1138		}
1139	}
1140
1141	list_add(&node->list, &regulator_map_list);
1142	return 0;
1143}
1144
1145static void unset_regulator_supplies(struct regulator_dev *rdev)
1146{
1147	struct regulator_map *node, *n;
1148
1149	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1150		if (rdev == node->regulator) {
1151			list_del(&node->list);
1152			kfree(node->dev_name);
1153			kfree(node);
1154		}
1155	}
1156}
1157
1158#define REG_STR_SIZE	64
1159
1160static struct regulator *create_regulator(struct regulator_dev *rdev,
1161					  struct device *dev,
1162					  const char *supply_name)
1163{
1164	struct regulator *regulator;
1165	char buf[REG_STR_SIZE];
1166	int err, size;
1167
1168	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1169	if (regulator == NULL)
1170		return NULL;
1171
1172	mutex_lock(&rdev->mutex);
1173	regulator->rdev = rdev;
1174	list_add(&regulator->list, &rdev->consumer_list);
1175
1176	if (dev) {
1177		regulator->dev = dev;
1178
1179		/* Add a link to the device sysfs entry */
1180		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1181				 dev->kobj.name, supply_name);
1182		if (size >= REG_STR_SIZE)
1183			goto overflow_err;
1184
1185		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1186		if (regulator->supply_name == NULL)
1187			goto overflow_err;
1188
1189		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1190					buf);
1191		if (err) {
1192			rdev_warn(rdev, "could not add device link %s err %d\n",
1193				  dev->kobj.name, err);
1194			/* non-fatal */
1195		}
1196	} else {
1197		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1198		if (regulator->supply_name == NULL)
1199			goto overflow_err;
1200	}
1201
1202	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1203						rdev->debugfs);
1204	if (!regulator->debugfs) {
1205		rdev_warn(rdev, "Failed to create debugfs directory\n");
1206	} else {
1207		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1208				   &regulator->uA_load);
1209		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1210				   &regulator->min_uV);
1211		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1212				   &regulator->max_uV);
1213	}
1214
1215	/*
1216	 * Check now if the regulator is an always on regulator - if
1217	 * it is then we don't need to do nearly so much work for
1218	 * enable/disable calls.
1219	 */
1220	if (!_regulator_can_change_status(rdev) &&
1221	    _regulator_is_enabled(rdev))
1222		regulator->always_on = true;
1223
1224	mutex_unlock(&rdev->mutex);
1225	return regulator;
1226overflow_err:
1227	list_del(&regulator->list);
1228	kfree(regulator);
1229	mutex_unlock(&rdev->mutex);
1230	return NULL;
1231}
1232
1233static int _regulator_get_enable_time(struct regulator_dev *rdev)
1234{
1235	if (rdev->constraints && rdev->constraints->enable_time)
1236		return rdev->constraints->enable_time;
1237	if (!rdev->desc->ops->enable_time)
1238		return rdev->desc->enable_time;
1239	return rdev->desc->ops->enable_time(rdev);
1240}
1241
1242static struct regulator_supply_alias *regulator_find_supply_alias(
1243		struct device *dev, const char *supply)
1244{
1245	struct regulator_supply_alias *map;
1246
1247	list_for_each_entry(map, &regulator_supply_alias_list, list)
1248		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1249			return map;
1250
1251	return NULL;
1252}
1253
1254static void regulator_supply_alias(struct device **dev, const char **supply)
1255{
1256	struct regulator_supply_alias *map;
1257
1258	map = regulator_find_supply_alias(*dev, *supply);
1259	if (map) {
1260		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1261				*supply, map->alias_supply,
1262				dev_name(map->alias_dev));
1263		*dev = map->alias_dev;
1264		*supply = map->alias_supply;
1265	}
1266}
1267
1268static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1269						  const char *supply,
1270						  int *ret)
1271{
1272	struct regulator_dev *r;
1273	struct device_node *node;
1274	struct regulator_map *map;
1275	const char *devname = NULL;
1276
1277	regulator_supply_alias(&dev, &supply);
1278
1279	/* first do a dt based lookup */
1280	if (dev && dev->of_node) {
1281		node = of_get_regulator(dev, supply);
1282		if (node) {
1283			list_for_each_entry(r, &regulator_list, list)
1284				if (r->dev.parent &&
1285					node == r->dev.of_node)
1286					return r;
1287			*ret = -EPROBE_DEFER;
1288			return NULL;
1289		} else {
1290			/*
1291			 * If we couldn't even get the node then it's
1292			 * not just that the device didn't register
1293			 * yet, there's no node and we'll never
1294			 * succeed.
1295			 */
1296			*ret = -ENODEV;
1297		}
1298	}
1299
1300	/* if not found, try doing it non-dt way */
1301	if (dev)
1302		devname = dev_name(dev);
1303
1304	list_for_each_entry(r, &regulator_list, list)
1305		if (strcmp(rdev_get_name(r), supply) == 0)
1306			return r;
1307
1308	list_for_each_entry(map, &regulator_map_list, list) {
1309		/* If the mapping has a device set up it must match */
1310		if (map->dev_name &&
1311		    (!devname || strcmp(map->dev_name, devname)))
1312			continue;
1313
1314		if (strcmp(map->supply, supply) == 0)
1315			return map->regulator;
1316	}
1317
1318
1319	return NULL;
1320}
1321
1322/* Internal regulator request function */
1323static struct regulator *_regulator_get(struct device *dev, const char *id,
1324					bool exclusive, bool allow_dummy)
1325{
1326	struct regulator_dev *rdev;
1327	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1328	const char *devname = NULL;
1329	int ret;
1330
1331	if (id == NULL) {
1332		pr_err("get() with no identifier\n");
1333		return ERR_PTR(-EINVAL);
1334	}
1335
1336	if (dev)
1337		devname = dev_name(dev);
1338
1339	if (have_full_constraints())
1340		ret = -ENODEV;
1341	else
1342		ret = -EPROBE_DEFER;
1343
1344	mutex_lock(&regulator_list_mutex);
1345
1346	rdev = regulator_dev_lookup(dev, id, &ret);
1347	if (rdev)
1348		goto found;
1349
1350	regulator = ERR_PTR(ret);
1351
1352	/*
1353	 * If we have return value from dev_lookup fail, we do not expect to
1354	 * succeed, so, quit with appropriate error value
1355	 */
1356	if (ret && ret != -ENODEV)
1357		goto out;
1358
1359	if (!devname)
1360		devname = "deviceless";
1361
1362	/*
1363	 * Assume that a regulator is physically present and enabled
1364	 * even if it isn't hooked up and just provide a dummy.
1365	 */
1366	if (have_full_constraints() && allow_dummy) {
1367		pr_warn("%s supply %s not found, using dummy regulator\n",
1368			devname, id);
1369
1370		rdev = dummy_regulator_rdev;
1371		goto found;
1372	/* Don't log an error when called from regulator_get_optional() */
1373	} else if (!have_full_constraints() || exclusive) {
1374		dev_warn(dev, "dummy supplies not allowed\n");
1375	}
1376
1377	mutex_unlock(&regulator_list_mutex);
1378	return regulator;
1379
1380found:
1381	if (rdev->exclusive) {
1382		regulator = ERR_PTR(-EPERM);
1383		goto out;
1384	}
1385
1386	if (exclusive && rdev->open_count) {
1387		regulator = ERR_PTR(-EBUSY);
1388		goto out;
1389	}
1390
1391	if (!try_module_get(rdev->owner))
1392		goto out;
1393
1394	regulator = create_regulator(rdev, dev, id);
1395	if (regulator == NULL) {
1396		regulator = ERR_PTR(-ENOMEM);
1397		module_put(rdev->owner);
1398		goto out;
1399	}
1400
1401	rdev->open_count++;
1402	if (exclusive) {
1403		rdev->exclusive = 1;
1404
1405		ret = _regulator_is_enabled(rdev);
1406		if (ret > 0)
1407			rdev->use_count = 1;
1408		else
1409			rdev->use_count = 0;
1410	}
1411
1412out:
1413	mutex_unlock(&regulator_list_mutex);
1414
1415	return regulator;
1416}
1417
1418/**
1419 * regulator_get - lookup and obtain a reference to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1422 *
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno.
1425 *
1426 * Use of supply names configured via regulator_set_device_supply() is
1427 * strongly encouraged.  It is recommended that the supply name used
1428 * should match the name used for the supply and/or the relevant
1429 * device pins in the datasheet.
1430 */
1431struct regulator *regulator_get(struct device *dev, const char *id)
1432{
1433	return _regulator_get(dev, id, false, true);
1434}
1435EXPORT_SYMBOL_GPL(regulator_get);
1436
1437/**
1438 * regulator_get_exclusive - obtain exclusive access to a regulator.
1439 * @dev: device for regulator "consumer"
1440 * @id: Supply name or regulator ID.
1441 *
1442 * Returns a struct regulator corresponding to the regulator producer,
1443 * or IS_ERR() condition containing errno.  Other consumers will be
1444 * unable to obtain this regulator while this reference is held and the
1445 * use count for the regulator will be initialised to reflect the current
1446 * state of the regulator.
1447 *
1448 * This is intended for use by consumers which cannot tolerate shared
1449 * use of the regulator such as those which need to force the
1450 * regulator off for correct operation of the hardware they are
1451 * controlling.
1452 *
1453 * Use of supply names configured via regulator_set_device_supply() is
1454 * strongly encouraged.  It is recommended that the supply name used
1455 * should match the name used for the supply and/or the relevant
1456 * device pins in the datasheet.
1457 */
1458struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1459{
1460	return _regulator_get(dev, id, true, false);
1461}
1462EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1463
1464/**
1465 * regulator_get_optional - obtain optional access to a regulator.
1466 * @dev: device for regulator "consumer"
1467 * @id: Supply name or regulator ID.
1468 *
1469 * Returns a struct regulator corresponding to the regulator producer,
1470 * or IS_ERR() condition containing errno.
1471 *
1472 * This is intended for use by consumers for devices which can have
1473 * some supplies unconnected in normal use, such as some MMC devices.
1474 * It can allow the regulator core to provide stub supplies for other
1475 * supplies requested using normal regulator_get() calls without
1476 * disrupting the operation of drivers that can handle absent
1477 * supplies.
1478 *
1479 * Use of supply names configured via regulator_set_device_supply() is
1480 * strongly encouraged.  It is recommended that the supply name used
1481 * should match the name used for the supply and/or the relevant
1482 * device pins in the datasheet.
1483 */
1484struct regulator *regulator_get_optional(struct device *dev, const char *id)
1485{
1486	return _regulator_get(dev, id, false, false);
1487}
1488EXPORT_SYMBOL_GPL(regulator_get_optional);
1489
1490/* Locks held by regulator_put() */
1491static void _regulator_put(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev;
1494
1495	if (regulator == NULL || IS_ERR(regulator))
1496		return;
1497
1498	rdev = regulator->rdev;
1499
1500	debugfs_remove_recursive(regulator->debugfs);
1501
1502	/* remove any sysfs entries */
1503	if (regulator->dev)
1504		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1505	kfree(regulator->supply_name);
1506	list_del(&regulator->list);
1507	kfree(regulator);
1508
1509	rdev->open_count--;
1510	rdev->exclusive = 0;
1511
1512	module_put(rdev->owner);
1513}
1514
1515/**
1516 * regulator_put - "free" the regulator source
1517 * @regulator: regulator source
1518 *
1519 * Note: drivers must ensure that all regulator_enable calls made on this
1520 * regulator source are balanced by regulator_disable calls prior to calling
1521 * this function.
1522 */
1523void regulator_put(struct regulator *regulator)
1524{
1525	mutex_lock(&regulator_list_mutex);
1526	_regulator_put(regulator);
1527	mutex_unlock(&regulator_list_mutex);
1528}
1529EXPORT_SYMBOL_GPL(regulator_put);
1530
1531/**
1532 * regulator_register_supply_alias - Provide device alias for supply lookup
1533 *
1534 * @dev: device that will be given as the regulator "consumer"
1535 * @id: Supply name or regulator ID
1536 * @alias_dev: device that should be used to lookup the supply
1537 * @alias_id: Supply name or regulator ID that should be used to lookup the
1538 * supply
1539 *
1540 * All lookups for id on dev will instead be conducted for alias_id on
1541 * alias_dev.
1542 */
1543int regulator_register_supply_alias(struct device *dev, const char *id,
1544				    struct device *alias_dev,
1545				    const char *alias_id)
1546{
1547	struct regulator_supply_alias *map;
1548
1549	map = regulator_find_supply_alias(dev, id);
1550	if (map)
1551		return -EEXIST;
1552
1553	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1554	if (!map)
1555		return -ENOMEM;
1556
1557	map->src_dev = dev;
1558	map->src_supply = id;
1559	map->alias_dev = alias_dev;
1560	map->alias_supply = alias_id;
1561
1562	list_add(&map->list, &regulator_supply_alias_list);
1563
1564	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1565		id, dev_name(dev), alias_id, dev_name(alias_dev));
1566
1567	return 0;
1568}
1569EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1570
1571/**
1572 * regulator_unregister_supply_alias - Remove device alias
1573 *
1574 * @dev: device that will be given as the regulator "consumer"
1575 * @id: Supply name or regulator ID
1576 *
1577 * Remove a lookup alias if one exists for id on dev.
1578 */
1579void regulator_unregister_supply_alias(struct device *dev, const char *id)
1580{
1581	struct regulator_supply_alias *map;
1582
1583	map = regulator_find_supply_alias(dev, id);
1584	if (map) {
1585		list_del(&map->list);
1586		kfree(map);
1587	}
1588}
1589EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1590
1591/**
1592 * regulator_bulk_register_supply_alias - register multiple aliases
1593 *
1594 * @dev: device that will be given as the regulator "consumer"
1595 * @id: List of supply names or regulator IDs
1596 * @alias_dev: device that should be used to lookup the supply
1597 * @alias_id: List of supply names or regulator IDs that should be used to
1598 * lookup the supply
1599 * @num_id: Number of aliases to register
1600 *
1601 * @return 0 on success, an errno on failure.
1602 *
1603 * This helper function allows drivers to register several supply
1604 * aliases in one operation.  If any of the aliases cannot be
1605 * registered any aliases that were registered will be removed
1606 * before returning to the caller.
1607 */
1608int regulator_bulk_register_supply_alias(struct device *dev,
1609					 const char *const *id,
1610					 struct device *alias_dev,
1611					 const char *const *alias_id,
1612					 int num_id)
1613{
1614	int i;
1615	int ret;
1616
1617	for (i = 0; i < num_id; ++i) {
1618		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1619						      alias_id[i]);
1620		if (ret < 0)
1621			goto err;
1622	}
1623
1624	return 0;
1625
1626err:
1627	dev_err(dev,
1628		"Failed to create supply alias %s,%s -> %s,%s\n",
1629		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1630
1631	while (--i >= 0)
1632		regulator_unregister_supply_alias(dev, id[i]);
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1637
1638/**
1639 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1640 *
1641 * @dev: device that will be given as the regulator "consumer"
1642 * @id: List of supply names or regulator IDs
1643 * @num_id: Number of aliases to unregister
1644 *
1645 * This helper function allows drivers to unregister several supply
1646 * aliases in one operation.
1647 */
1648void regulator_bulk_unregister_supply_alias(struct device *dev,
1649					    const char *const *id,
1650					    int num_id)
1651{
1652	int i;
1653
1654	for (i = 0; i < num_id; ++i)
1655		regulator_unregister_supply_alias(dev, id[i]);
1656}
1657EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1658
1659
1660/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1661static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1662				const struct regulator_config *config)
1663{
1664	struct regulator_enable_gpio *pin;
1665	int ret;
1666
1667	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1668		if (pin->gpio == config->ena_gpio) {
1669			rdev_dbg(rdev, "GPIO %d is already used\n",
1670				config->ena_gpio);
1671			goto update_ena_gpio_to_rdev;
1672		}
1673	}
1674
1675	ret = gpio_request_one(config->ena_gpio,
1676				GPIOF_DIR_OUT | config->ena_gpio_flags,
1677				rdev_get_name(rdev));
1678	if (ret)
1679		return ret;
1680
1681	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1682	if (pin == NULL) {
1683		gpio_free(config->ena_gpio);
1684		return -ENOMEM;
1685	}
1686
1687	pin->gpio = config->ena_gpio;
1688	pin->ena_gpio_invert = config->ena_gpio_invert;
1689	list_add(&pin->list, &regulator_ena_gpio_list);
1690
1691update_ena_gpio_to_rdev:
1692	pin->request_count++;
1693	rdev->ena_pin = pin;
1694	return 0;
1695}
1696
1697static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1698{
1699	struct regulator_enable_gpio *pin, *n;
1700
1701	if (!rdev->ena_pin)
1702		return;
1703
1704	/* Free the GPIO only in case of no use */
1705	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1706		if (pin->gpio == rdev->ena_pin->gpio) {
1707			if (pin->request_count <= 1) {
1708				pin->request_count = 0;
1709				gpio_free(pin->gpio);
1710				list_del(&pin->list);
1711				kfree(pin);
1712			} else {
1713				pin->request_count--;
1714			}
1715		}
1716	}
1717}
1718
1719/**
1720 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1721 * @rdev: regulator_dev structure
1722 * @enable: enable GPIO at initial use?
1723 *
1724 * GPIO is enabled in case of initial use. (enable_count is 0)
1725 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1726 */
1727static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1728{
1729	struct regulator_enable_gpio *pin = rdev->ena_pin;
1730
1731	if (!pin)
1732		return -EINVAL;
1733
1734	if (enable) {
1735		/* Enable GPIO at initial use */
1736		if (pin->enable_count == 0)
1737			gpio_set_value_cansleep(pin->gpio,
1738						!pin->ena_gpio_invert);
1739
1740		pin->enable_count++;
1741	} else {
1742		if (pin->enable_count > 1) {
1743			pin->enable_count--;
1744			return 0;
1745		}
1746
1747		/* Disable GPIO if not used */
1748		if (pin->enable_count <= 1) {
1749			gpio_set_value_cansleep(pin->gpio,
1750						pin->ena_gpio_invert);
1751			pin->enable_count = 0;
1752		}
1753	}
1754
1755	return 0;
1756}
1757
1758static int _regulator_do_enable(struct regulator_dev *rdev)
1759{
1760	int ret, delay;
1761
1762	/* Query before enabling in case configuration dependent.  */
1763	ret = _regulator_get_enable_time(rdev);
1764	if (ret >= 0) {
1765		delay = ret;
1766	} else {
1767		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1768		delay = 0;
1769	}
1770
1771	trace_regulator_enable(rdev_get_name(rdev));
1772
1773	if (rdev->ena_pin) {
1774		ret = regulator_ena_gpio_ctrl(rdev, true);
1775		if (ret < 0)
1776			return ret;
1777		rdev->ena_gpio_state = 1;
1778	} else if (rdev->desc->ops->enable) {
1779		ret = rdev->desc->ops->enable(rdev);
1780		if (ret < 0)
1781			return ret;
1782	} else {
1783		return -EINVAL;
1784	}
1785
1786	/* Allow the regulator to ramp; it would be useful to extend
1787	 * this for bulk operations so that the regulators can ramp
1788	 * together.  */
1789	trace_regulator_enable_delay(rdev_get_name(rdev));
1790
1791	/*
1792	 * Delay for the requested amount of time as per the guidelines in:
1793	 *
1794	 *     Documentation/timers/timers-howto.txt
1795	 *
1796	 * The assumption here is that regulators will never be enabled in
1797	 * atomic context and therefore sleeping functions can be used.
1798	 */
1799	if (delay) {
1800		unsigned int ms = delay / 1000;
1801		unsigned int us = delay % 1000;
1802
1803		if (ms > 0) {
1804			/*
1805			 * For small enough values, handle super-millisecond
1806			 * delays in the usleep_range() call below.
1807			 */
1808			if (ms < 20)
1809				us += ms * 1000;
1810			else
1811				msleep(ms);
1812		}
1813
1814		/*
1815		 * Give the scheduler some room to coalesce with any other
1816		 * wakeup sources. For delays shorter than 10 us, don't even
1817		 * bother setting up high-resolution timers and just busy-
1818		 * loop.
1819		 */
1820		if (us >= 10)
1821			usleep_range(us, us + 100);
1822		else
1823			udelay(us);
1824	}
1825
1826	trace_regulator_enable_complete(rdev_get_name(rdev));
1827
1828	return 0;
1829}
1830
1831/* locks held by regulator_enable() */
1832static int _regulator_enable(struct regulator_dev *rdev)
1833{
1834	int ret;
1835
1836	/* check voltage and requested load before enabling */
1837	if (rdev->constraints &&
1838	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1839		drms_uA_update(rdev);
1840
1841	if (rdev->use_count == 0) {
1842		/* The regulator may on if it's not switchable or left on */
1843		ret = _regulator_is_enabled(rdev);
1844		if (ret == -EINVAL || ret == 0) {
1845			if (!_regulator_can_change_status(rdev))
1846				return -EPERM;
1847
1848			ret = _regulator_do_enable(rdev);
1849			if (ret < 0)
1850				return ret;
1851
1852		} else if (ret < 0) {
1853			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1854			return ret;
1855		}
1856		/* Fallthrough on positive return values - already enabled */
1857	}
1858
1859	rdev->use_count++;
1860
1861	return 0;
1862}
1863
1864/**
1865 * regulator_enable - enable regulator output
1866 * @regulator: regulator source
1867 *
1868 * Request that the regulator be enabled with the regulator output at
1869 * the predefined voltage or current value.  Calls to regulator_enable()
1870 * must be balanced with calls to regulator_disable().
1871 *
1872 * NOTE: the output value can be set by other drivers, boot loader or may be
1873 * hardwired in the regulator.
1874 */
1875int regulator_enable(struct regulator *regulator)
1876{
1877	struct regulator_dev *rdev = regulator->rdev;
1878	int ret = 0;
1879
1880	if (regulator->always_on)
1881		return 0;
1882
1883	if (rdev->supply) {
1884		ret = regulator_enable(rdev->supply);
1885		if (ret != 0)
1886			return ret;
1887	}
1888
1889	mutex_lock(&rdev->mutex);
1890	ret = _regulator_enable(rdev);
1891	mutex_unlock(&rdev->mutex);
1892
1893	if (ret != 0 && rdev->supply)
1894		regulator_disable(rdev->supply);
1895
1896	return ret;
1897}
1898EXPORT_SYMBOL_GPL(regulator_enable);
1899
1900static int _regulator_do_disable(struct regulator_dev *rdev)
1901{
1902	int ret;
1903
1904	trace_regulator_disable(rdev_get_name(rdev));
1905
1906	if (rdev->ena_pin) {
1907		ret = regulator_ena_gpio_ctrl(rdev, false);
1908		if (ret < 0)
1909			return ret;
1910		rdev->ena_gpio_state = 0;
1911
1912	} else if (rdev->desc->ops->disable) {
1913		ret = rdev->desc->ops->disable(rdev);
1914		if (ret != 0)
1915			return ret;
1916	}
1917
1918	trace_regulator_disable_complete(rdev_get_name(rdev));
1919
1920	return 0;
1921}
1922
1923/* locks held by regulator_disable() */
1924static int _regulator_disable(struct regulator_dev *rdev)
1925{
1926	int ret = 0;
1927
1928	if (WARN(rdev->use_count <= 0,
1929		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1930		return -EIO;
1931
1932	/* are we the last user and permitted to disable ? */
1933	if (rdev->use_count == 1 &&
1934	    (rdev->constraints && !rdev->constraints->always_on)) {
1935
1936		/* we are last user */
1937		if (_regulator_can_change_status(rdev)) {
1938			ret = _regulator_do_disable(rdev);
1939			if (ret < 0) {
1940				rdev_err(rdev, "failed to disable\n");
1941				return ret;
1942			}
1943			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1944					NULL);
1945		}
1946
1947		rdev->use_count = 0;
1948	} else if (rdev->use_count > 1) {
1949
1950		if (rdev->constraints &&
1951			(rdev->constraints->valid_ops_mask &
1952			REGULATOR_CHANGE_DRMS))
1953			drms_uA_update(rdev);
1954
1955		rdev->use_count--;
1956	}
1957
1958	return ret;
1959}
1960
1961/**
1962 * regulator_disable - disable regulator output
1963 * @regulator: regulator source
1964 *
1965 * Disable the regulator output voltage or current.  Calls to
1966 * regulator_enable() must be balanced with calls to
1967 * regulator_disable().
1968 *
1969 * NOTE: this will only disable the regulator output if no other consumer
1970 * devices have it enabled, the regulator device supports disabling and
1971 * machine constraints permit this operation.
1972 */
1973int regulator_disable(struct regulator *regulator)
1974{
1975	struct regulator_dev *rdev = regulator->rdev;
1976	int ret = 0;
1977
1978	if (regulator->always_on)
1979		return 0;
1980
1981	mutex_lock(&rdev->mutex);
1982	ret = _regulator_disable(rdev);
1983	mutex_unlock(&rdev->mutex);
1984
1985	if (ret == 0 && rdev->supply)
1986		regulator_disable(rdev->supply);
1987
1988	return ret;
1989}
1990EXPORT_SYMBOL_GPL(regulator_disable);
1991
1992/* locks held by regulator_force_disable() */
1993static int _regulator_force_disable(struct regulator_dev *rdev)
1994{
1995	int ret = 0;
1996
1997	ret = _regulator_do_disable(rdev);
1998	if (ret < 0) {
1999		rdev_err(rdev, "failed to force disable\n");
2000		return ret;
2001	}
2002
2003	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2004			REGULATOR_EVENT_DISABLE, NULL);
2005
2006	return 0;
2007}
2008
2009/**
2010 * regulator_force_disable - force disable regulator output
2011 * @regulator: regulator source
2012 *
2013 * Forcibly disable the regulator output voltage or current.
2014 * NOTE: this *will* disable the regulator output even if other consumer
2015 * devices have it enabled. This should be used for situations when device
2016 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2017 */
2018int regulator_force_disable(struct regulator *regulator)
2019{
2020	struct regulator_dev *rdev = regulator->rdev;
2021	int ret;
2022
2023	mutex_lock(&rdev->mutex);
2024	regulator->uA_load = 0;
2025	ret = _regulator_force_disable(regulator->rdev);
2026	mutex_unlock(&rdev->mutex);
2027
2028	if (rdev->supply)
2029		while (rdev->open_count--)
2030			regulator_disable(rdev->supply);
2031
2032	return ret;
2033}
2034EXPORT_SYMBOL_GPL(regulator_force_disable);
2035
2036static void regulator_disable_work(struct work_struct *work)
2037{
2038	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2039						  disable_work.work);
2040	int count, i, ret;
2041
2042	mutex_lock(&rdev->mutex);
2043
2044	BUG_ON(!rdev->deferred_disables);
2045
2046	count = rdev->deferred_disables;
2047	rdev->deferred_disables = 0;
2048
2049	for (i = 0; i < count; i++) {
2050		ret = _regulator_disable(rdev);
2051		if (ret != 0)
2052			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2053	}
2054
2055	mutex_unlock(&rdev->mutex);
2056
2057	if (rdev->supply) {
2058		for (i = 0; i < count; i++) {
2059			ret = regulator_disable(rdev->supply);
2060			if (ret != 0) {
2061				rdev_err(rdev,
2062					 "Supply disable failed: %d\n", ret);
2063			}
2064		}
2065	}
2066}
2067
2068/**
2069 * regulator_disable_deferred - disable regulator output with delay
2070 * @regulator: regulator source
2071 * @ms: miliseconds until the regulator is disabled
2072 *
2073 * Execute regulator_disable() on the regulator after a delay.  This
2074 * is intended for use with devices that require some time to quiesce.
2075 *
2076 * NOTE: this will only disable the regulator output if no other consumer
2077 * devices have it enabled, the regulator device supports disabling and
2078 * machine constraints permit this operation.
2079 */
2080int regulator_disable_deferred(struct regulator *regulator, int ms)
2081{
2082	struct regulator_dev *rdev = regulator->rdev;
2083	int ret;
2084
2085	if (regulator->always_on)
2086		return 0;
2087
2088	if (!ms)
2089		return regulator_disable(regulator);
2090
2091	mutex_lock(&rdev->mutex);
2092	rdev->deferred_disables++;
2093	mutex_unlock(&rdev->mutex);
2094
2095	ret = queue_delayed_work(system_power_efficient_wq,
2096				 &rdev->disable_work,
2097				 msecs_to_jiffies(ms));
2098	if (ret < 0)
2099		return ret;
2100	else
2101		return 0;
2102}
2103EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2104
2105static int _regulator_is_enabled(struct regulator_dev *rdev)
2106{
2107	/* A GPIO control always takes precedence */
2108	if (rdev->ena_pin)
2109		return rdev->ena_gpio_state;
2110
2111	/* If we don't know then assume that the regulator is always on */
2112	if (!rdev->desc->ops->is_enabled)
2113		return 1;
2114
2115	return rdev->desc->ops->is_enabled(rdev);
2116}
2117
2118/**
2119 * regulator_is_enabled - is the regulator output enabled
2120 * @regulator: regulator source
2121 *
2122 * Returns positive if the regulator driver backing the source/client
2123 * has requested that the device be enabled, zero if it hasn't, else a
2124 * negative errno code.
2125 *
2126 * Note that the device backing this regulator handle can have multiple
2127 * users, so it might be enabled even if regulator_enable() was never
2128 * called for this particular source.
2129 */
2130int regulator_is_enabled(struct regulator *regulator)
2131{
2132	int ret;
2133
2134	if (regulator->always_on)
2135		return 1;
2136
2137	mutex_lock(&regulator->rdev->mutex);
2138	ret = _regulator_is_enabled(regulator->rdev);
2139	mutex_unlock(&regulator->rdev->mutex);
2140
2141	return ret;
2142}
2143EXPORT_SYMBOL_GPL(regulator_is_enabled);
2144
2145/**
2146 * regulator_can_change_voltage - check if regulator can change voltage
2147 * @regulator: regulator source
2148 *
2149 * Returns positive if the regulator driver backing the source/client
2150 * can change its voltage, false otherwise. Useful for detecting fixed
2151 * or dummy regulators and disabling voltage change logic in the client
2152 * driver.
2153 */
2154int regulator_can_change_voltage(struct regulator *regulator)
2155{
2156	struct regulator_dev	*rdev = regulator->rdev;
2157
2158	if (rdev->constraints &&
2159	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2160		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2161			return 1;
2162
2163		if (rdev->desc->continuous_voltage_range &&
2164		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2165		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2166			return 1;
2167	}
2168
2169	return 0;
2170}
2171EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2172
2173/**
2174 * regulator_count_voltages - count regulator_list_voltage() selectors
2175 * @regulator: regulator source
2176 *
2177 * Returns number of selectors, or negative errno.  Selectors are
2178 * numbered starting at zero, and typically correspond to bitfields
2179 * in hardware registers.
2180 */
2181int regulator_count_voltages(struct regulator *regulator)
2182{
2183	struct regulator_dev	*rdev = regulator->rdev;
2184
2185	return rdev->desc->n_voltages ? : -EINVAL;
2186}
2187EXPORT_SYMBOL_GPL(regulator_count_voltages);
2188
2189/**
2190 * regulator_list_voltage - enumerate supported voltages
2191 * @regulator: regulator source
2192 * @selector: identify voltage to list
2193 * Context: can sleep
2194 *
2195 * Returns a voltage that can be passed to @regulator_set_voltage(),
2196 * zero if this selector code can't be used on this system, or a
2197 * negative errno.
2198 */
2199int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2200{
2201	struct regulator_dev	*rdev = regulator->rdev;
2202	struct regulator_ops	*ops = rdev->desc->ops;
2203	int			ret;
2204
2205	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2206		return rdev->desc->fixed_uV;
2207
2208	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2209		return -EINVAL;
2210
2211	mutex_lock(&rdev->mutex);
2212	ret = ops->list_voltage(rdev, selector);
2213	mutex_unlock(&rdev->mutex);
2214
2215	if (ret > 0) {
2216		if (ret < rdev->constraints->min_uV)
2217			ret = 0;
2218		else if (ret > rdev->constraints->max_uV)
2219			ret = 0;
2220	}
2221
2222	return ret;
2223}
2224EXPORT_SYMBOL_GPL(regulator_list_voltage);
2225
2226/**
2227 * regulator_get_linear_step - return the voltage step size between VSEL values
2228 * @regulator: regulator source
2229 *
2230 * Returns the voltage step size between VSEL values for linear
2231 * regulators, or return 0 if the regulator isn't a linear regulator.
2232 */
2233unsigned int regulator_get_linear_step(struct regulator *regulator)
2234{
2235	struct regulator_dev *rdev = regulator->rdev;
2236
2237	return rdev->desc->uV_step;
2238}
2239EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2240
2241/**
2242 * regulator_is_supported_voltage - check if a voltage range can be supported
2243 *
2244 * @regulator: Regulator to check.
2245 * @min_uV: Minimum required voltage in uV.
2246 * @max_uV: Maximum required voltage in uV.
2247 *
2248 * Returns a boolean or a negative error code.
2249 */
2250int regulator_is_supported_voltage(struct regulator *regulator,
2251				   int min_uV, int max_uV)
2252{
2253	struct regulator_dev *rdev = regulator->rdev;
2254	int i, voltages, ret;
2255
2256	/* If we can't change voltage check the current voltage */
2257	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2258		ret = regulator_get_voltage(regulator);
2259		if (ret >= 0)
2260			return min_uV <= ret && ret <= max_uV;
2261		else
2262			return ret;
2263	}
2264
2265	/* Any voltage within constrains range is fine? */
2266	if (rdev->desc->continuous_voltage_range)
2267		return min_uV >= rdev->constraints->min_uV &&
2268				max_uV <= rdev->constraints->max_uV;
2269
2270	ret = regulator_count_voltages(regulator);
2271	if (ret < 0)
2272		return ret;
2273	voltages = ret;
2274
2275	for (i = 0; i < voltages; i++) {
2276		ret = regulator_list_voltage(regulator, i);
2277
2278		if (ret >= min_uV && ret <= max_uV)
2279			return 1;
2280	}
2281
2282	return 0;
2283}
2284EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2285
2286static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2287				     int min_uV, int max_uV)
2288{
2289	int ret;
2290	int delay = 0;
2291	int best_val = 0;
2292	unsigned int selector;
2293	int old_selector = -1;
2294
2295	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2296
2297	min_uV += rdev->constraints->uV_offset;
2298	max_uV += rdev->constraints->uV_offset;
2299
2300	/*
2301	 * If we can't obtain the old selector there is not enough
2302	 * info to call set_voltage_time_sel().
2303	 */
2304	if (_regulator_is_enabled(rdev) &&
2305	    rdev->desc->ops->set_voltage_time_sel &&
2306	    rdev->desc->ops->get_voltage_sel) {
2307		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2308		if (old_selector < 0)
2309			return old_selector;
2310	}
2311
2312	if (rdev->desc->ops->set_voltage) {
2313		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2314						   &selector);
2315
2316		if (ret >= 0) {
2317			if (rdev->desc->ops->list_voltage)
2318				best_val = rdev->desc->ops->list_voltage(rdev,
2319									 selector);
2320			else
2321				best_val = _regulator_get_voltage(rdev);
2322		}
2323
2324	} else if (rdev->desc->ops->set_voltage_sel) {
2325		if (rdev->desc->ops->map_voltage) {
2326			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2327							   max_uV);
2328		} else {
2329			if (rdev->desc->ops->list_voltage ==
2330			    regulator_list_voltage_linear)
2331				ret = regulator_map_voltage_linear(rdev,
2332								min_uV, max_uV);
2333			else if (rdev->desc->ops->list_voltage ==
2334				 regulator_list_voltage_linear_range)
2335				ret = regulator_map_voltage_linear_range(rdev,
2336								min_uV, max_uV);
2337			else
2338				ret = regulator_map_voltage_iterate(rdev,
2339								min_uV, max_uV);
2340		}
2341
2342		if (ret >= 0) {
2343			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2344			if (min_uV <= best_val && max_uV >= best_val) {
2345				selector = ret;
2346				if (old_selector == selector)
2347					ret = 0;
2348				else
2349					ret = rdev->desc->ops->set_voltage_sel(
2350								rdev, ret);
2351			} else {
2352				ret = -EINVAL;
2353			}
2354		}
2355	} else {
2356		ret = -EINVAL;
2357	}
2358
2359	/* Call set_voltage_time_sel if successfully obtained old_selector */
2360	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2361		&& old_selector != selector) {
2362
2363		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2364						old_selector, selector);
2365		if (delay < 0) {
2366			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2367				  delay);
2368			delay = 0;
2369		}
2370
2371		/* Insert any necessary delays */
2372		if (delay >= 1000) {
2373			mdelay(delay / 1000);
2374			udelay(delay % 1000);
2375		} else if (delay) {
2376			udelay(delay);
2377		}
2378	}
2379
2380	if (ret == 0 && best_val >= 0) {
2381		unsigned long data = best_val;
2382
2383		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2384				     (void *)data);
2385	}
2386
2387	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2388
2389	return ret;
2390}
2391
2392/**
2393 * regulator_set_voltage - set regulator output voltage
2394 * @regulator: regulator source
2395 * @min_uV: Minimum required voltage in uV
2396 * @max_uV: Maximum acceptable voltage in uV
2397 *
2398 * Sets a voltage regulator to the desired output voltage. This can be set
2399 * during any regulator state. IOW, regulator can be disabled or enabled.
2400 *
2401 * If the regulator is enabled then the voltage will change to the new value
2402 * immediately otherwise if the regulator is disabled the regulator will
2403 * output at the new voltage when enabled.
2404 *
2405 * NOTE: If the regulator is shared between several devices then the lowest
2406 * request voltage that meets the system constraints will be used.
2407 * Regulator system constraints must be set for this regulator before
2408 * calling this function otherwise this call will fail.
2409 */
2410int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2411{
2412	struct regulator_dev *rdev = regulator->rdev;
2413	int ret = 0;
2414	int old_min_uV, old_max_uV;
2415	int current_uV;
2416
2417	mutex_lock(&rdev->mutex);
2418
2419	/* If we're setting the same range as last time the change
2420	 * should be a noop (some cpufreq implementations use the same
2421	 * voltage for multiple frequencies, for example).
2422	 */
2423	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2424		goto out;
2425
2426	/* If we're trying to set a range that overlaps the current voltage,
2427	 * return succesfully even though the regulator does not support
2428	 * changing the voltage.
2429	 */
2430	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2431		current_uV = _regulator_get_voltage(rdev);
2432		if (min_uV <= current_uV && current_uV <= max_uV) {
2433			regulator->min_uV = min_uV;
2434			regulator->max_uV = max_uV;
2435			goto out;
2436		}
2437	}
2438
2439	/* sanity check */
2440	if (!rdev->desc->ops->set_voltage &&
2441	    !rdev->desc->ops->set_voltage_sel) {
2442		ret = -EINVAL;
2443		goto out;
2444	}
2445
2446	/* constraints check */
2447	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2448	if (ret < 0)
2449		goto out;
2450
2451	/* restore original values in case of error */
2452	old_min_uV = regulator->min_uV;
2453	old_max_uV = regulator->max_uV;
2454	regulator->min_uV = min_uV;
2455	regulator->max_uV = max_uV;
2456
2457	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2458	if (ret < 0)
2459		goto out2;
2460
2461	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2462	if (ret < 0)
2463		goto out2;
2464
2465out:
2466	mutex_unlock(&rdev->mutex);
2467	return ret;
2468out2:
2469	regulator->min_uV = old_min_uV;
2470	regulator->max_uV = old_max_uV;
2471	mutex_unlock(&rdev->mutex);
2472	return ret;
2473}
2474EXPORT_SYMBOL_GPL(regulator_set_voltage);
2475
2476/**
2477 * regulator_set_voltage_time - get raise/fall time
2478 * @regulator: regulator source
2479 * @old_uV: starting voltage in microvolts
2480 * @new_uV: target voltage in microvolts
2481 *
2482 * Provided with the starting and ending voltage, this function attempts to
2483 * calculate the time in microseconds required to rise or fall to this new
2484 * voltage.
2485 */
2486int regulator_set_voltage_time(struct regulator *regulator,
2487			       int old_uV, int new_uV)
2488{
2489	struct regulator_dev	*rdev = regulator->rdev;
2490	struct regulator_ops	*ops = rdev->desc->ops;
2491	int old_sel = -1;
2492	int new_sel = -1;
2493	int voltage;
2494	int i;
2495
2496	/* Currently requires operations to do this */
2497	if (!ops->list_voltage || !ops->set_voltage_time_sel
2498	    || !rdev->desc->n_voltages)
2499		return -EINVAL;
2500
2501	for (i = 0; i < rdev->desc->n_voltages; i++) {
2502		/* We only look for exact voltage matches here */
2503		voltage = regulator_list_voltage(regulator, i);
2504		if (voltage < 0)
2505			return -EINVAL;
2506		if (voltage == 0)
2507			continue;
2508		if (voltage == old_uV)
2509			old_sel = i;
2510		if (voltage == new_uV)
2511			new_sel = i;
2512	}
2513
2514	if (old_sel < 0 || new_sel < 0)
2515		return -EINVAL;
2516
2517	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2518}
2519EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2520
2521/**
2522 * regulator_set_voltage_time_sel - get raise/fall time
2523 * @rdev: regulator source device
2524 * @old_selector: selector for starting voltage
2525 * @new_selector: selector for target voltage
2526 *
2527 * Provided with the starting and target voltage selectors, this function
2528 * returns time in microseconds required to rise or fall to this new voltage
2529 *
2530 * Drivers providing ramp_delay in regulation_constraints can use this as their
2531 * set_voltage_time_sel() operation.
2532 */
2533int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2534				   unsigned int old_selector,
2535				   unsigned int new_selector)
2536{
2537	unsigned int ramp_delay = 0;
2538	int old_volt, new_volt;
2539
2540	if (rdev->constraints->ramp_delay)
2541		ramp_delay = rdev->constraints->ramp_delay;
2542	else if (rdev->desc->ramp_delay)
2543		ramp_delay = rdev->desc->ramp_delay;
2544
2545	if (ramp_delay == 0) {
2546		rdev_warn(rdev, "ramp_delay not set\n");
2547		return 0;
2548	}
2549
2550	/* sanity check */
2551	if (!rdev->desc->ops->list_voltage)
2552		return -EINVAL;
2553
2554	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2555	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2556
2557	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2558}
2559EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2560
2561/**
2562 * regulator_sync_voltage - re-apply last regulator output voltage
2563 * @regulator: regulator source
2564 *
2565 * Re-apply the last configured voltage.  This is intended to be used
2566 * where some external control source the consumer is cooperating with
2567 * has caused the configured voltage to change.
2568 */
2569int regulator_sync_voltage(struct regulator *regulator)
2570{
2571	struct regulator_dev *rdev = regulator->rdev;
2572	int ret, min_uV, max_uV;
2573
2574	mutex_lock(&rdev->mutex);
2575
2576	if (!rdev->desc->ops->set_voltage &&
2577	    !rdev->desc->ops->set_voltage_sel) {
2578		ret = -EINVAL;
2579		goto out;
2580	}
2581
2582	/* This is only going to work if we've had a voltage configured. */
2583	if (!regulator->min_uV && !regulator->max_uV) {
2584		ret = -EINVAL;
2585		goto out;
2586	}
2587
2588	min_uV = regulator->min_uV;
2589	max_uV = regulator->max_uV;
2590
2591	/* This should be a paranoia check... */
2592	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2593	if (ret < 0)
2594		goto out;
2595
2596	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2597	if (ret < 0)
2598		goto out;
2599
2600	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2601
2602out:
2603	mutex_unlock(&rdev->mutex);
2604	return ret;
2605}
2606EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2607
2608static int _regulator_get_voltage(struct regulator_dev *rdev)
2609{
2610	int sel, ret;
2611
2612	if (rdev->desc->ops->get_voltage_sel) {
2613		sel = rdev->desc->ops->get_voltage_sel(rdev);
2614		if (sel < 0)
2615			return sel;
2616		ret = rdev->desc->ops->list_voltage(rdev, sel);
2617	} else if (rdev->desc->ops->get_voltage) {
2618		ret = rdev->desc->ops->get_voltage(rdev);
2619	} else if (rdev->desc->ops->list_voltage) {
2620		ret = rdev->desc->ops->list_voltage(rdev, 0);
2621	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2622		ret = rdev->desc->fixed_uV;
2623	} else {
2624		return -EINVAL;
2625	}
2626
2627	if (ret < 0)
2628		return ret;
2629	return ret - rdev->constraints->uV_offset;
2630}
2631
2632/**
2633 * regulator_get_voltage - get regulator output voltage
2634 * @regulator: regulator source
2635 *
2636 * This returns the current regulator voltage in uV.
2637 *
2638 * NOTE: If the regulator is disabled it will return the voltage value. This
2639 * function should not be used to determine regulator state.
2640 */
2641int regulator_get_voltage(struct regulator *regulator)
2642{
2643	int ret;
2644
2645	mutex_lock(&regulator->rdev->mutex);
2646
2647	ret = _regulator_get_voltage(regulator->rdev);
2648
2649	mutex_unlock(&regulator->rdev->mutex);
2650
2651	return ret;
2652}
2653EXPORT_SYMBOL_GPL(regulator_get_voltage);
2654
2655/**
2656 * regulator_set_current_limit - set regulator output current limit
2657 * @regulator: regulator source
2658 * @min_uA: Minimum supported current in uA
2659 * @max_uA: Maximum supported current in uA
2660 *
2661 * Sets current sink to the desired output current. This can be set during
2662 * any regulator state. IOW, regulator can be disabled or enabled.
2663 *
2664 * If the regulator is enabled then the current will change to the new value
2665 * immediately otherwise if the regulator is disabled the regulator will
2666 * output at the new current when enabled.
2667 *
2668 * NOTE: Regulator system constraints must be set for this regulator before
2669 * calling this function otherwise this call will fail.
2670 */
2671int regulator_set_current_limit(struct regulator *regulator,
2672			       int min_uA, int max_uA)
2673{
2674	struct regulator_dev *rdev = regulator->rdev;
2675	int ret;
2676
2677	mutex_lock(&rdev->mutex);
2678
2679	/* sanity check */
2680	if (!rdev->desc->ops->set_current_limit) {
2681		ret = -EINVAL;
2682		goto out;
2683	}
2684
2685	/* constraints check */
2686	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2687	if (ret < 0)
2688		goto out;
2689
2690	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2691out:
2692	mutex_unlock(&rdev->mutex);
2693	return ret;
2694}
2695EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2696
2697static int _regulator_get_current_limit(struct regulator_dev *rdev)
2698{
2699	int ret;
2700
2701	mutex_lock(&rdev->mutex);
2702
2703	/* sanity check */
2704	if (!rdev->desc->ops->get_current_limit) {
2705		ret = -EINVAL;
2706		goto out;
2707	}
2708
2709	ret = rdev->desc->ops->get_current_limit(rdev);
2710out:
2711	mutex_unlock(&rdev->mutex);
2712	return ret;
2713}
2714
2715/**
2716 * regulator_get_current_limit - get regulator output current
2717 * @regulator: regulator source
2718 *
2719 * This returns the current supplied by the specified current sink in uA.
2720 *
2721 * NOTE: If the regulator is disabled it will return the current value. This
2722 * function should not be used to determine regulator state.
2723 */
2724int regulator_get_current_limit(struct regulator *regulator)
2725{
2726	return _regulator_get_current_limit(regulator->rdev);
2727}
2728EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2729
2730/**
2731 * regulator_set_mode - set regulator operating mode
2732 * @regulator: regulator source
2733 * @mode: operating mode - one of the REGULATOR_MODE constants
2734 *
2735 * Set regulator operating mode to increase regulator efficiency or improve
2736 * regulation performance.
2737 *
2738 * NOTE: Regulator system constraints must be set for this regulator before
2739 * calling this function otherwise this call will fail.
2740 */
2741int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2742{
2743	struct regulator_dev *rdev = regulator->rdev;
2744	int ret;
2745	int regulator_curr_mode;
2746
2747	mutex_lock(&rdev->mutex);
2748
2749	/* sanity check */
2750	if (!rdev->desc->ops->set_mode) {
2751		ret = -EINVAL;
2752		goto out;
2753	}
2754
2755	/* return if the same mode is requested */
2756	if (rdev->desc->ops->get_mode) {
2757		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2758		if (regulator_curr_mode == mode) {
2759			ret = 0;
2760			goto out;
2761		}
2762	}
2763
2764	/* constraints check */
2765	ret = regulator_mode_constrain(rdev, &mode);
2766	if (ret < 0)
2767		goto out;
2768
2769	ret = rdev->desc->ops->set_mode(rdev, mode);
2770out:
2771	mutex_unlock(&rdev->mutex);
2772	return ret;
2773}
2774EXPORT_SYMBOL_GPL(regulator_set_mode);
2775
2776static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2777{
2778	int ret;
2779
2780	mutex_lock(&rdev->mutex);
2781
2782	/* sanity check */
2783	if (!rdev->desc->ops->get_mode) {
2784		ret = -EINVAL;
2785		goto out;
2786	}
2787
2788	ret = rdev->desc->ops->get_mode(rdev);
2789out:
2790	mutex_unlock(&rdev->mutex);
2791	return ret;
2792}
2793
2794/**
2795 * regulator_get_mode - get regulator operating mode
2796 * @regulator: regulator source
2797 *
2798 * Get the current regulator operating mode.
2799 */
2800unsigned int regulator_get_mode(struct regulator *regulator)
2801{
2802	return _regulator_get_mode(regulator->rdev);
2803}
2804EXPORT_SYMBOL_GPL(regulator_get_mode);
2805
2806/**
2807 * regulator_set_optimum_mode - set regulator optimum operating mode
2808 * @regulator: regulator source
2809 * @uA_load: load current
2810 *
2811 * Notifies the regulator core of a new device load. This is then used by
2812 * DRMS (if enabled by constraints) to set the most efficient regulator
2813 * operating mode for the new regulator loading.
2814 *
2815 * Consumer devices notify their supply regulator of the maximum power
2816 * they will require (can be taken from device datasheet in the power
2817 * consumption tables) when they change operational status and hence power
2818 * state. Examples of operational state changes that can affect power
2819 * consumption are :-
2820 *
2821 *    o Device is opened / closed.
2822 *    o Device I/O is about to begin or has just finished.
2823 *    o Device is idling in between work.
2824 *
2825 * This information is also exported via sysfs to userspace.
2826 *
2827 * DRMS will sum the total requested load on the regulator and change
2828 * to the most efficient operating mode if platform constraints allow.
2829 *
2830 * Returns the new regulator mode or error.
2831 */
2832int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2833{
2834	struct regulator_dev *rdev = regulator->rdev;
2835	struct regulator *consumer;
2836	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2837	unsigned int mode;
2838
2839	if (rdev->supply)
2840		input_uV = regulator_get_voltage(rdev->supply);
2841
2842	mutex_lock(&rdev->mutex);
2843
2844	/*
2845	 * first check to see if we can set modes at all, otherwise just
2846	 * tell the consumer everything is OK.
2847	 */
2848	regulator->uA_load = uA_load;
2849	ret = regulator_check_drms(rdev);
2850	if (ret < 0) {
2851		ret = 0;
2852		goto out;
2853	}
2854
2855	if (!rdev->desc->ops->get_optimum_mode)
2856		goto out;
2857
2858	/*
2859	 * we can actually do this so any errors are indicators of
2860	 * potential real failure.
2861	 */
2862	ret = -EINVAL;
2863
2864	if (!rdev->desc->ops->set_mode)
2865		goto out;
2866
2867	/* get output voltage */
2868	output_uV = _regulator_get_voltage(rdev);
2869	if (output_uV <= 0) {
2870		rdev_err(rdev, "invalid output voltage found\n");
2871		goto out;
2872	}
2873
2874	/* No supply? Use constraint voltage */
2875	if (input_uV <= 0)
2876		input_uV = rdev->constraints->input_uV;
2877	if (input_uV <= 0) {
2878		rdev_err(rdev, "invalid input voltage found\n");
2879		goto out;
2880	}
2881
2882	/* calc total requested load for this regulator */
2883	list_for_each_entry(consumer, &rdev->consumer_list, list)
2884		total_uA_load += consumer->uA_load;
2885
2886	mode = rdev->desc->ops->get_optimum_mode(rdev,
2887						 input_uV, output_uV,
2888						 total_uA_load);
2889	ret = regulator_mode_constrain(rdev, &mode);
2890	if (ret < 0) {
2891		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2892			 total_uA_load, input_uV, output_uV);
2893		goto out;
2894	}
2895
2896	ret = rdev->desc->ops->set_mode(rdev, mode);
2897	if (ret < 0) {
2898		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2899		goto out;
2900	}
2901	ret = mode;
2902out:
2903	mutex_unlock(&rdev->mutex);
2904	return ret;
2905}
2906EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2907
2908/**
2909 * regulator_allow_bypass - allow the regulator to go into bypass mode
2910 *
2911 * @regulator: Regulator to configure
2912 * @enable: enable or disable bypass mode
2913 *
2914 * Allow the regulator to go into bypass mode if all other consumers
2915 * for the regulator also enable bypass mode and the machine
2916 * constraints allow this.  Bypass mode means that the regulator is
2917 * simply passing the input directly to the output with no regulation.
2918 */
2919int regulator_allow_bypass(struct regulator *regulator, bool enable)
2920{
2921	struct regulator_dev *rdev = regulator->rdev;
2922	int ret = 0;
2923
2924	if (!rdev->desc->ops->set_bypass)
2925		return 0;
2926
2927	if (rdev->constraints &&
2928	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2929		return 0;
2930
2931	mutex_lock(&rdev->mutex);
2932
2933	if (enable && !regulator->bypass) {
2934		rdev->bypass_count++;
2935
2936		if (rdev->bypass_count == rdev->open_count) {
2937			ret = rdev->desc->ops->set_bypass(rdev, enable);
2938			if (ret != 0)
2939				rdev->bypass_count--;
2940		}
2941
2942	} else if (!enable && regulator->bypass) {
2943		rdev->bypass_count--;
2944
2945		if (rdev->bypass_count != rdev->open_count) {
2946			ret = rdev->desc->ops->set_bypass(rdev, enable);
2947			if (ret != 0)
2948				rdev->bypass_count++;
2949		}
2950	}
2951
2952	if (ret == 0)
2953		regulator->bypass = enable;
2954
2955	mutex_unlock(&rdev->mutex);
2956
2957	return ret;
2958}
2959EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2960
2961/**
2962 * regulator_register_notifier - register regulator event notifier
2963 * @regulator: regulator source
2964 * @nb: notifier block
2965 *
2966 * Register notifier block to receive regulator events.
2967 */
2968int regulator_register_notifier(struct regulator *regulator,
2969			      struct notifier_block *nb)
2970{
2971	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2972						nb);
2973}
2974EXPORT_SYMBOL_GPL(regulator_register_notifier);
2975
2976/**
2977 * regulator_unregister_notifier - unregister regulator event notifier
2978 * @regulator: regulator source
2979 * @nb: notifier block
2980 *
2981 * Unregister regulator event notifier block.
2982 */
2983int regulator_unregister_notifier(struct regulator *regulator,
2984				struct notifier_block *nb)
2985{
2986	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2987						  nb);
2988}
2989EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2990
2991/* notify regulator consumers and downstream regulator consumers.
2992 * Note mutex must be held by caller.
2993 */
2994static void _notifier_call_chain(struct regulator_dev *rdev,
2995				  unsigned long event, void *data)
2996{
2997	/* call rdev chain first */
2998	blocking_notifier_call_chain(&rdev->notifier, event, data);
2999}
3000
3001/**
3002 * regulator_bulk_get - get multiple regulator consumers
3003 *
3004 * @dev:           Device to supply
3005 * @num_consumers: Number of consumers to register
3006 * @consumers:     Configuration of consumers; clients are stored here.
3007 *
3008 * @return 0 on success, an errno on failure.
3009 *
3010 * This helper function allows drivers to get several regulator
3011 * consumers in one operation.  If any of the regulators cannot be
3012 * acquired then any regulators that were allocated will be freed
3013 * before returning to the caller.
3014 */
3015int regulator_bulk_get(struct device *dev, int num_consumers,
3016		       struct regulator_bulk_data *consumers)
3017{
3018	int i;
3019	int ret;
3020
3021	for (i = 0; i < num_consumers; i++)
3022		consumers[i].consumer = NULL;
3023
3024	for (i = 0; i < num_consumers; i++) {
3025		consumers[i].consumer = regulator_get(dev,
3026						      consumers[i].supply);
3027		if (IS_ERR(consumers[i].consumer)) {
3028			ret = PTR_ERR(consumers[i].consumer);
3029			dev_err(dev, "Failed to get supply '%s': %d\n",
3030				consumers[i].supply, ret);
3031			consumers[i].consumer = NULL;
3032			goto err;
3033		}
3034	}
3035
3036	return 0;
3037
3038err:
3039	while (--i >= 0)
3040		regulator_put(consumers[i].consumer);
3041
3042	return ret;
3043}
3044EXPORT_SYMBOL_GPL(regulator_bulk_get);
3045
3046static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3047{
3048	struct regulator_bulk_data *bulk = data;
3049
3050	bulk->ret = regulator_enable(bulk->consumer);
3051}
3052
3053/**
3054 * regulator_bulk_enable - enable multiple regulator consumers
3055 *
3056 * @num_consumers: Number of consumers
3057 * @consumers:     Consumer data; clients are stored here.
3058 * @return         0 on success, an errno on failure
3059 *
3060 * This convenience API allows consumers to enable multiple regulator
3061 * clients in a single API call.  If any consumers cannot be enabled
3062 * then any others that were enabled will be disabled again prior to
3063 * return.
3064 */
3065int regulator_bulk_enable(int num_consumers,
3066			  struct regulator_bulk_data *consumers)
3067{
3068	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3069	int i;
3070	int ret = 0;
3071
3072	for (i = 0; i < num_consumers; i++) {
3073		if (consumers[i].consumer->always_on)
3074			consumers[i].ret = 0;
3075		else
3076			async_schedule_domain(regulator_bulk_enable_async,
3077					      &consumers[i], &async_domain);
3078	}
3079
3080	async_synchronize_full_domain(&async_domain);
3081
3082	/* If any consumer failed we need to unwind any that succeeded */
3083	for (i = 0; i < num_consumers; i++) {
3084		if (consumers[i].ret != 0) {
3085			ret = consumers[i].ret;
3086			goto err;
3087		}
3088	}
3089
3090	return 0;
3091
3092err:
3093	for (i = 0; i < num_consumers; i++) {
3094		if (consumers[i].ret < 0)
3095			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3096			       consumers[i].ret);
3097		else
3098			regulator_disable(consumers[i].consumer);
3099	}
3100
3101	return ret;
3102}
3103EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3104
3105/**
3106 * regulator_bulk_disable - disable multiple regulator consumers
3107 *
3108 * @num_consumers: Number of consumers
3109 * @consumers:     Consumer data; clients are stored here.
3110 * @return         0 on success, an errno on failure
3111 *
3112 * This convenience API allows consumers to disable multiple regulator
3113 * clients in a single API call.  If any consumers cannot be disabled
3114 * then any others that were disabled will be enabled again prior to
3115 * return.
3116 */
3117int regulator_bulk_disable(int num_consumers,
3118			   struct regulator_bulk_data *consumers)
3119{
3120	int i;
3121	int ret, r;
3122
3123	for (i = num_consumers - 1; i >= 0; --i) {
3124		ret = regulator_disable(consumers[i].consumer);
3125		if (ret != 0)
3126			goto err;
3127	}
3128
3129	return 0;
3130
3131err:
3132	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3133	for (++i; i < num_consumers; ++i) {
3134		r = regulator_enable(consumers[i].consumer);
3135		if (r != 0)
3136			pr_err("Failed to reename %s: %d\n",
3137			       consumers[i].supply, r);
3138	}
3139
3140	return ret;
3141}
3142EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3143
3144/**
3145 * regulator_bulk_force_disable - force disable multiple regulator consumers
3146 *
3147 * @num_consumers: Number of consumers
3148 * @consumers:     Consumer data; clients are stored here.
3149 * @return         0 on success, an errno on failure
3150 *
3151 * This convenience API allows consumers to forcibly disable multiple regulator
3152 * clients in a single API call.
3153 * NOTE: This should be used for situations when device damage will
3154 * likely occur if the regulators are not disabled (e.g. over temp).
3155 * Although regulator_force_disable function call for some consumers can
3156 * return error numbers, the function is called for all consumers.
3157 */
3158int regulator_bulk_force_disable(int num_consumers,
3159			   struct regulator_bulk_data *consumers)
3160{
3161	int i;
3162	int ret;
3163
3164	for (i = 0; i < num_consumers; i++)
3165		consumers[i].ret =
3166			    regulator_force_disable(consumers[i].consumer);
3167
3168	for (i = 0; i < num_consumers; i++) {
3169		if (consumers[i].ret != 0) {
3170			ret = consumers[i].ret;
3171			goto out;
3172		}
3173	}
3174
3175	return 0;
3176out:
3177	return ret;
3178}
3179EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3180
3181/**
3182 * regulator_bulk_free - free multiple regulator consumers
3183 *
3184 * @num_consumers: Number of consumers
3185 * @consumers:     Consumer data; clients are stored here.
3186 *
3187 * This convenience API allows consumers to free multiple regulator
3188 * clients in a single API call.
3189 */
3190void regulator_bulk_free(int num_consumers,
3191			 struct regulator_bulk_data *consumers)
3192{
3193	int i;
3194
3195	for (i = 0; i < num_consumers; i++) {
3196		regulator_put(consumers[i].consumer);
3197		consumers[i].consumer = NULL;
3198	}
3199}
3200EXPORT_SYMBOL_GPL(regulator_bulk_free);
3201
3202/**
3203 * regulator_notifier_call_chain - call regulator event notifier
3204 * @rdev: regulator source
3205 * @event: notifier block
3206 * @data: callback-specific data.
3207 *
3208 * Called by regulator drivers to notify clients a regulator event has
3209 * occurred. We also notify regulator clients downstream.
3210 * Note lock must be held by caller.
3211 */
3212int regulator_notifier_call_chain(struct regulator_dev *rdev,
3213				  unsigned long event, void *data)
3214{
3215	_notifier_call_chain(rdev, event, data);
3216	return NOTIFY_DONE;
3217
3218}
3219EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3220
3221/**
3222 * regulator_mode_to_status - convert a regulator mode into a status
3223 *
3224 * @mode: Mode to convert
3225 *
3226 * Convert a regulator mode into a status.
3227 */
3228int regulator_mode_to_status(unsigned int mode)
3229{
3230	switch (mode) {
3231	case REGULATOR_MODE_FAST:
3232		return REGULATOR_STATUS_FAST;
3233	case REGULATOR_MODE_NORMAL:
3234		return REGULATOR_STATUS_NORMAL;
3235	case REGULATOR_MODE_IDLE:
3236		return REGULATOR_STATUS_IDLE;
3237	case REGULATOR_MODE_STANDBY:
3238		return REGULATOR_STATUS_STANDBY;
3239	default:
3240		return REGULATOR_STATUS_UNDEFINED;
3241	}
3242}
3243EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3244
3245/*
3246 * To avoid cluttering sysfs (and memory) with useless state, only
3247 * create attributes that can be meaningfully displayed.
3248 */
3249static int add_regulator_attributes(struct regulator_dev *rdev)
3250{
3251	struct device		*dev = &rdev->dev;
3252	struct regulator_ops	*ops = rdev->desc->ops;
3253	int			status = 0;
3254
3255	/* some attributes need specific methods to be displayed */
3256	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3257	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3258	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3259		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3260		status = device_create_file(dev, &dev_attr_microvolts);
3261		if (status < 0)
3262			return status;
3263	}
3264	if (ops->get_current_limit) {
3265		status = device_create_file(dev, &dev_attr_microamps);
3266		if (status < 0)
3267			return status;
3268	}
3269	if (ops->get_mode) {
3270		status = device_create_file(dev, &dev_attr_opmode);
3271		if (status < 0)
3272			return status;
3273	}
3274	if (rdev->ena_pin || ops->is_enabled) {
3275		status = device_create_file(dev, &dev_attr_state);
3276		if (status < 0)
3277			return status;
3278	}
3279	if (ops->get_status) {
3280		status = device_create_file(dev, &dev_attr_status);
3281		if (status < 0)
3282			return status;
3283	}
3284	if (ops->get_bypass) {
3285		status = device_create_file(dev, &dev_attr_bypass);
3286		if (status < 0)
3287			return status;
3288	}
3289
3290	/* some attributes are type-specific */
3291	if (rdev->desc->type == REGULATOR_CURRENT) {
3292		status = device_create_file(dev, &dev_attr_requested_microamps);
3293		if (status < 0)
3294			return status;
3295	}
3296
3297	/* all the other attributes exist to support constraints;
3298	 * don't show them if there are no constraints, or if the
3299	 * relevant supporting methods are missing.
3300	 */
3301	if (!rdev->constraints)
3302		return status;
3303
3304	/* constraints need specific supporting methods */
3305	if (ops->set_voltage || ops->set_voltage_sel) {
3306		status = device_create_file(dev, &dev_attr_min_microvolts);
3307		if (status < 0)
3308			return status;
3309		status = device_create_file(dev, &dev_attr_max_microvolts);
3310		if (status < 0)
3311			return status;
3312	}
3313	if (ops->set_current_limit) {
3314		status = device_create_file(dev, &dev_attr_min_microamps);
3315		if (status < 0)
3316			return status;
3317		status = device_create_file(dev, &dev_attr_max_microamps);
3318		if (status < 0)
3319			return status;
3320	}
3321
3322	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3323	if (status < 0)
3324		return status;
3325	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3326	if (status < 0)
3327		return status;
3328	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3329	if (status < 0)
3330		return status;
3331
3332	if (ops->set_suspend_voltage) {
3333		status = device_create_file(dev,
3334				&dev_attr_suspend_standby_microvolts);
3335		if (status < 0)
3336			return status;
3337		status = device_create_file(dev,
3338				&dev_attr_suspend_mem_microvolts);
3339		if (status < 0)
3340			return status;
3341		status = device_create_file(dev,
3342				&dev_attr_suspend_disk_microvolts);
3343		if (status < 0)
3344			return status;
3345	}
3346
3347	if (ops->set_suspend_mode) {
3348		status = device_create_file(dev,
3349				&dev_attr_suspend_standby_mode);
3350		if (status < 0)
3351			return status;
3352		status = device_create_file(dev,
3353				&dev_attr_suspend_mem_mode);
3354		if (status < 0)
3355			return status;
3356		status = device_create_file(dev,
3357				&dev_attr_suspend_disk_mode);
3358		if (status < 0)
3359			return status;
3360	}
3361
3362	return status;
3363}
3364
3365static void rdev_init_debugfs(struct regulator_dev *rdev)
3366{
3367	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3368	if (!rdev->debugfs) {
3369		rdev_warn(rdev, "Failed to create debugfs directory\n");
3370		return;
3371	}
3372
3373	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3374			   &rdev->use_count);
3375	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3376			   &rdev->open_count);
3377	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3378			   &rdev->bypass_count);
3379}
3380
3381/**
3382 * regulator_register - register regulator
3383 * @regulator_desc: regulator to register
3384 * @config: runtime configuration for regulator
3385 *
3386 * Called by regulator drivers to register a regulator.
3387 * Returns a valid pointer to struct regulator_dev on success
3388 * or an ERR_PTR() on error.
3389 */
3390struct regulator_dev *
3391regulator_register(const struct regulator_desc *regulator_desc,
3392		   const struct regulator_config *config)
3393{
3394	const struct regulation_constraints *constraints = NULL;
3395	const struct regulator_init_data *init_data;
3396	static atomic_t regulator_no = ATOMIC_INIT(0);
3397	struct regulator_dev *rdev;
3398	struct device *dev;
3399	int ret, i;
3400	const char *supply = NULL;
3401
3402	if (regulator_desc == NULL || config == NULL)
3403		return ERR_PTR(-EINVAL);
3404
3405	dev = config->dev;
3406	WARN_ON(!dev);
3407
3408	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3409		return ERR_PTR(-EINVAL);
3410
3411	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3412	    regulator_desc->type != REGULATOR_CURRENT)
3413		return ERR_PTR(-EINVAL);
3414
3415	/* Only one of each should be implemented */
3416	WARN_ON(regulator_desc->ops->get_voltage &&
3417		regulator_desc->ops->get_voltage_sel);
3418	WARN_ON(regulator_desc->ops->set_voltage &&
3419		regulator_desc->ops->set_voltage_sel);
3420
3421	/* If we're using selectors we must implement list_voltage. */
3422	if (regulator_desc->ops->get_voltage_sel &&
3423	    !regulator_desc->ops->list_voltage) {
3424		return ERR_PTR(-EINVAL);
3425	}
3426	if (regulator_desc->ops->set_voltage_sel &&
3427	    !regulator_desc->ops->list_voltage) {
3428		return ERR_PTR(-EINVAL);
3429	}
3430
3431	init_data = config->init_data;
3432
3433	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3434	if (rdev == NULL)
3435		return ERR_PTR(-ENOMEM);
3436
3437	mutex_lock(&regulator_list_mutex);
3438
3439	mutex_init(&rdev->mutex);
3440	rdev->reg_data = config->driver_data;
3441	rdev->owner = regulator_desc->owner;
3442	rdev->desc = regulator_desc;
3443	if (config->regmap)
3444		rdev->regmap = config->regmap;
3445	else if (dev_get_regmap(dev, NULL))
3446		rdev->regmap = dev_get_regmap(dev, NULL);
3447	else if (dev->parent)
3448		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3449	INIT_LIST_HEAD(&rdev->consumer_list);
3450	INIT_LIST_HEAD(&rdev->list);
3451	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3452	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3453
3454	/* preform any regulator specific init */
3455	if (init_data && init_data->regulator_init) {
3456		ret = init_data->regulator_init(rdev->reg_data);
3457		if (ret < 0)
3458			goto clean;
3459	}
3460
3461	/* register with sysfs */
3462	rdev->dev.class = &regulator_class;
3463	rdev->dev.of_node = of_node_get(config->of_node);
3464	rdev->dev.parent = dev;
3465	dev_set_name(&rdev->dev, "regulator.%d",
3466		     atomic_inc_return(&regulator_no) - 1);
3467	ret = device_register(&rdev->dev);
3468	if (ret != 0) {
3469		put_device(&rdev->dev);
3470		goto clean;
3471	}
3472
3473	dev_set_drvdata(&rdev->dev, rdev);
3474
3475	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3476		ret = regulator_ena_gpio_request(rdev, config);
3477		if (ret != 0) {
3478			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3479				 config->ena_gpio, ret);
3480			goto wash;
3481		}
3482
3483		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3484			rdev->ena_gpio_state = 1;
3485
3486		if (config->ena_gpio_invert)
3487			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3488	}
3489
3490	/* set regulator constraints */
3491	if (init_data)
3492		constraints = &init_data->constraints;
3493
3494	ret = set_machine_constraints(rdev, constraints);
3495	if (ret < 0)
3496		goto scrub;
3497
3498	/* add attributes supported by this regulator */
3499	ret = add_regulator_attributes(rdev);
3500	if (ret < 0)
3501		goto scrub;
3502
3503	if (init_data && init_data->supply_regulator)
3504		supply = init_data->supply_regulator;
3505	else if (regulator_desc->supply_name)
3506		supply = regulator_desc->supply_name;
3507
3508	if (supply) {
3509		struct regulator_dev *r;
3510
3511		r = regulator_dev_lookup(dev, supply, &ret);
3512
3513		if (ret == -ENODEV) {
3514			/*
3515			 * No supply was specified for this regulator and
3516			 * there will never be one.
3517			 */
3518			ret = 0;
3519			goto add_dev;
3520		} else if (!r) {
3521			dev_err(dev, "Failed to find supply %s\n", supply);
3522			ret = -EPROBE_DEFER;
3523			goto scrub;
3524		}
3525
3526		ret = set_supply(rdev, r);
3527		if (ret < 0)
3528			goto scrub;
3529
3530		/* Enable supply if rail is enabled */
3531		if (_regulator_is_enabled(rdev)) {
3532			ret = regulator_enable(rdev->supply);
3533			if (ret < 0)
3534				goto scrub;
3535		}
3536	}
3537
3538add_dev:
3539	/* add consumers devices */
3540	if (init_data) {
3541		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3542			ret = set_consumer_device_supply(rdev,
3543				init_data->consumer_supplies[i].dev_name,
3544				init_data->consumer_supplies[i].supply);
3545			if (ret < 0) {
3546				dev_err(dev, "Failed to set supply %s\n",
3547					init_data->consumer_supplies[i].supply);
3548				goto unset_supplies;
3549			}
3550		}
3551	}
3552
3553	list_add(&rdev->list, &regulator_list);
3554
3555	rdev_init_debugfs(rdev);
3556out:
3557	mutex_unlock(&regulator_list_mutex);
3558	return rdev;
3559
3560unset_supplies:
3561	unset_regulator_supplies(rdev);
3562
3563scrub:
3564	if (rdev->supply)
3565		_regulator_put(rdev->supply);
3566	regulator_ena_gpio_free(rdev);
3567	kfree(rdev->constraints);
3568wash:
3569	device_unregister(&rdev->dev);
3570	/* device core frees rdev */
3571	rdev = ERR_PTR(ret);
3572	goto out;
3573
3574clean:
3575	kfree(rdev);
3576	rdev = ERR_PTR(ret);
3577	goto out;
3578}
3579EXPORT_SYMBOL_GPL(regulator_register);
3580
3581/**
3582 * regulator_unregister - unregister regulator
3583 * @rdev: regulator to unregister
3584 *
3585 * Called by regulator drivers to unregister a regulator.
3586 */
3587void regulator_unregister(struct regulator_dev *rdev)
3588{
3589	if (rdev == NULL)
3590		return;
3591
3592	if (rdev->supply) {
3593		while (rdev->use_count--)
3594			regulator_disable(rdev->supply);
3595		regulator_put(rdev->supply);
3596	}
3597	mutex_lock(&regulator_list_mutex);
3598	debugfs_remove_recursive(rdev->debugfs);
3599	flush_work(&rdev->disable_work.work);
3600	WARN_ON(rdev->open_count);
3601	unset_regulator_supplies(rdev);
3602	list_del(&rdev->list);
3603	kfree(rdev->constraints);
3604	regulator_ena_gpio_free(rdev);
3605	of_node_put(rdev->dev.of_node);
3606	device_unregister(&rdev->dev);
3607	mutex_unlock(&regulator_list_mutex);
3608}
3609EXPORT_SYMBOL_GPL(regulator_unregister);
3610
3611/**
3612 * regulator_suspend_prepare - prepare regulators for system wide suspend
3613 * @state: system suspend state
3614 *
3615 * Configure each regulator with it's suspend operating parameters for state.
3616 * This will usually be called by machine suspend code prior to supending.
3617 */
3618int regulator_suspend_prepare(suspend_state_t state)
3619{
3620	struct regulator_dev *rdev;
3621	int ret = 0;
3622
3623	/* ON is handled by regulator active state */
3624	if (state == PM_SUSPEND_ON)
3625		return -EINVAL;
3626
3627	mutex_lock(&regulator_list_mutex);
3628	list_for_each_entry(rdev, &regulator_list, list) {
3629
3630		mutex_lock(&rdev->mutex);
3631		ret = suspend_prepare(rdev, state);
3632		mutex_unlock(&rdev->mutex);
3633
3634		if (ret < 0) {
3635			rdev_err(rdev, "failed to prepare\n");
3636			goto out;
3637		}
3638	}
3639out:
3640	mutex_unlock(&regulator_list_mutex);
3641	return ret;
3642}
3643EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3644
3645/**
3646 * regulator_suspend_finish - resume regulators from system wide suspend
3647 *
3648 * Turn on regulators that might be turned off by regulator_suspend_prepare
3649 * and that should be turned on according to the regulators properties.
3650 */
3651int regulator_suspend_finish(void)
3652{
3653	struct regulator_dev *rdev;
3654	int ret = 0, error;
3655
3656	mutex_lock(&regulator_list_mutex);
3657	list_for_each_entry(rdev, &regulator_list, list) {
3658		mutex_lock(&rdev->mutex);
3659		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3660			error = _regulator_do_enable(rdev);
3661			if (error)
3662				ret = error;
3663		} else {
3664			if (!have_full_constraints())
3665				goto unlock;
3666			if (!_regulator_is_enabled(rdev))
3667				goto unlock;
3668
3669			error = _regulator_do_disable(rdev);
3670			if (error)
3671				ret = error;
3672		}
3673unlock:
3674		mutex_unlock(&rdev->mutex);
3675	}
3676	mutex_unlock(&regulator_list_mutex);
3677	return ret;
3678}
3679EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3680
3681/**
3682 * regulator_has_full_constraints - the system has fully specified constraints
3683 *
3684 * Calling this function will cause the regulator API to disable all
3685 * regulators which have a zero use count and don't have an always_on
3686 * constraint in a late_initcall.
3687 *
3688 * The intention is that this will become the default behaviour in a
3689 * future kernel release so users are encouraged to use this facility
3690 * now.
3691 */
3692void regulator_has_full_constraints(void)
3693{
3694	has_full_constraints = 1;
3695}
3696EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3697
3698/**
3699 * rdev_get_drvdata - get rdev regulator driver data
3700 * @rdev: regulator
3701 *
3702 * Get rdev regulator driver private data. This call can be used in the
3703 * regulator driver context.
3704 */
3705void *rdev_get_drvdata(struct regulator_dev *rdev)
3706{
3707	return rdev->reg_data;
3708}
3709EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3710
3711/**
3712 * regulator_get_drvdata - get regulator driver data
3713 * @regulator: regulator
3714 *
3715 * Get regulator driver private data. This call can be used in the consumer
3716 * driver context when non API regulator specific functions need to be called.
3717 */
3718void *regulator_get_drvdata(struct regulator *regulator)
3719{
3720	return regulator->rdev->reg_data;
3721}
3722EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3723
3724/**
3725 * regulator_set_drvdata - set regulator driver data
3726 * @regulator: regulator
3727 * @data: data
3728 */
3729void regulator_set_drvdata(struct regulator *regulator, void *data)
3730{
3731	regulator->rdev->reg_data = data;
3732}
3733EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3734
3735/**
3736 * regulator_get_id - get regulator ID
3737 * @rdev: regulator
3738 */
3739int rdev_get_id(struct regulator_dev *rdev)
3740{
3741	return rdev->desc->id;
3742}
3743EXPORT_SYMBOL_GPL(rdev_get_id);
3744
3745struct device *rdev_get_dev(struct regulator_dev *rdev)
3746{
3747	return &rdev->dev;
3748}
3749EXPORT_SYMBOL_GPL(rdev_get_dev);
3750
3751void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3752{
3753	return reg_init_data->driver_data;
3754}
3755EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3756
3757#ifdef CONFIG_DEBUG_FS
3758static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3759				    size_t count, loff_t *ppos)
3760{
3761	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3762	ssize_t len, ret = 0;
3763	struct regulator_map *map;
3764
3765	if (!buf)
3766		return -ENOMEM;
3767
3768	list_for_each_entry(map, &regulator_map_list, list) {
3769		len = snprintf(buf + ret, PAGE_SIZE - ret,
3770			       "%s -> %s.%s\n",
3771			       rdev_get_name(map->regulator), map->dev_name,
3772			       map->supply);
3773		if (len >= 0)
3774			ret += len;
3775		if (ret > PAGE_SIZE) {
3776			ret = PAGE_SIZE;
3777			break;
3778		}
3779	}
3780
3781	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3782
3783	kfree(buf);
3784
3785	return ret;
3786}
3787#endif
3788
3789static const struct file_operations supply_map_fops = {
3790#ifdef CONFIG_DEBUG_FS
3791	.read = supply_map_read_file,
3792	.llseek = default_llseek,
3793#endif
3794};
3795
3796static int __init regulator_init(void)
3797{
3798	int ret;
3799
3800	ret = class_register(&regulator_class);
3801
3802	debugfs_root = debugfs_create_dir("regulator", NULL);
3803	if (!debugfs_root)
3804		pr_warn("regulator: Failed to create debugfs directory\n");
3805
3806	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3807			    &supply_map_fops);
3808
3809	regulator_dummy_init();
3810
3811	return ret;
3812}
3813
3814/* init early to allow our consumers to complete system booting */
3815core_initcall(regulator_init);
3816
3817static int __init regulator_init_complete(void)
3818{
3819	struct regulator_dev *rdev;
3820	struct regulator_ops *ops;
3821	struct regulation_constraints *c;
3822	int enabled, ret;
3823
3824	/*
3825	 * Since DT doesn't provide an idiomatic mechanism for
3826	 * enabling full constraints and since it's much more natural
3827	 * with DT to provide them just assume that a DT enabled
3828	 * system has full constraints.
3829	 */
3830	if (of_have_populated_dt())
3831		has_full_constraints = true;
3832
3833	mutex_lock(&regulator_list_mutex);
3834
3835	/* If we have a full configuration then disable any regulators
3836	 * we have permission to change the status for and which are
3837	 * not in use or always_on.  This is effectively the default
3838	 * for DT and ACPI as they have full constraints.
3839	 */
3840	list_for_each_entry(rdev, &regulator_list, list) {
3841		ops = rdev->desc->ops;
3842		c = rdev->constraints;
3843
3844		if (c && c->always_on)
3845			continue;
3846
3847		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3848			continue;
3849
3850		mutex_lock(&rdev->mutex);
3851
3852		if (rdev->use_count)
3853			goto unlock;
3854
3855		/* If we can't read the status assume it's on. */
3856		if (ops->is_enabled)
3857			enabled = ops->is_enabled(rdev);
3858		else
3859			enabled = 1;
3860
3861		if (!enabled)
3862			goto unlock;
3863
3864		if (have_full_constraints()) {
3865			/* We log since this may kill the system if it
3866			 * goes wrong. */
3867			rdev_info(rdev, "disabling\n");
3868			ret = _regulator_do_disable(rdev);
3869			if (ret != 0)
3870				rdev_err(rdev, "couldn't disable: %d\n", ret);
3871		} else {
3872			/* The intention is that in future we will
3873			 * assume that full constraints are provided
3874			 * so warn even if we aren't going to do
3875			 * anything here.
3876			 */
3877			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3878		}
3879
3880unlock:
3881		mutex_unlock(&rdev->mutex);
3882	}
3883
3884	mutex_unlock(&regulator_list_mutex);
3885
3886	return 0;
3887}
3888late_initcall_sync(regulator_init_complete);
3889