core.c revision 6bf87d17c9f5b855e9dde7b3d6f726385b966814
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544		return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	/* constrain machine-level voltage specs to fit
696	 * the actual range supported by this regulator.
697	 */
698	if (ops->list_voltage && rdev->desc->n_voltages) {
699		int	count = rdev->desc->n_voltages;
700		int	i;
701		int	min_uV = INT_MAX;
702		int	max_uV = INT_MIN;
703		int	cmin = constraints->min_uV;
704		int	cmax = constraints->max_uV;
705
706		/* it's safe to autoconfigure fixed-voltage supplies
707		   and the constraints are used by list_voltage. */
708		if (count == 1 && !cmin) {
709			cmin = 1;
710			cmax = INT_MAX;
711			constraints->min_uV = cmin;
712			constraints->max_uV = cmax;
713		}
714
715		/* voltage constraints are optional */
716		if ((cmin == 0) && (cmax == 0))
717			goto out;
718
719		/* else require explicit machine-level constraints */
720		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721			pr_err("%s: %s '%s' voltage constraints\n",
722				       __func__, "invalid", name);
723			ret = -EINVAL;
724			goto out;
725		}
726
727		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728		for (i = 0; i < count; i++) {
729			int	value;
730
731			value = ops->list_voltage(rdev, i);
732			if (value <= 0)
733				continue;
734
735			/* maybe adjust [min_uV..max_uV] */
736			if (value >= cmin && value < min_uV)
737				min_uV = value;
738			if (value <= cmax && value > max_uV)
739				max_uV = value;
740		}
741
742		/* final: [min_uV..max_uV] valid iff constraints valid */
743		if (max_uV < min_uV) {
744			pr_err("%s: %s '%s' voltage constraints\n",
745				       __func__, "unsupportable", name);
746			ret = -EINVAL;
747			goto out;
748		}
749
750		/* use regulator's subset of machine constraints */
751		if (constraints->min_uV < min_uV) {
752			pr_debug("%s: override '%s' %s, %d -> %d\n",
753				       __func__, name, "min_uV",
754					constraints->min_uV, min_uV);
755			constraints->min_uV = min_uV;
756		}
757		if (constraints->max_uV > max_uV) {
758			pr_debug("%s: override '%s' %s, %d -> %d\n",
759				       __func__, name, "max_uV",
760					constraints->max_uV, max_uV);
761			constraints->max_uV = max_uV;
762		}
763	}
764
765	rdev->constraints = constraints;
766
767	/* do we need to apply the constraint voltage */
768	if (rdev->constraints->apply_uV &&
769		rdev->constraints->min_uV == rdev->constraints->max_uV &&
770		ops->set_voltage) {
771		ret = ops->set_voltage(rdev,
772			rdev->constraints->min_uV, rdev->constraints->max_uV);
773			if (ret < 0) {
774				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775				       __func__,
776				       rdev->constraints->min_uV, name);
777				rdev->constraints = NULL;
778				goto out;
779			}
780	}
781
782	/* do we need to setup our suspend state */
783	if (constraints->initial_state) {
784		ret = suspend_prepare(rdev, constraints->initial_state);
785		if (ret < 0) {
786			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787			       __func__, name);
788			rdev->constraints = NULL;
789			goto out;
790		}
791	}
792
793	if (constraints->initial_mode) {
794		if (!ops->set_mode) {
795			printk(KERN_ERR "%s: no set_mode operation for %s\n",
796			       __func__, name);
797			ret = -EINVAL;
798			goto out;
799		}
800
801		ret = ops->set_mode(rdev, constraints->initial_mode);
802		if (ret < 0) {
803			printk(KERN_ERR
804			       "%s: failed to set initial mode for %s: %d\n",
805			       __func__, name, ret);
806			goto out;
807		}
808	}
809
810	/* If the constraints say the regulator should be on at this point
811	 * and we have control then make sure it is enabled.
812	 */
813	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814		ret = ops->enable(rdev);
815		if (ret < 0) {
816			printk(KERN_ERR "%s: failed to enable %s\n",
817			       __func__, name);
818			rdev->constraints = NULL;
819			goto out;
820		}
821	}
822
823	print_constraints(rdev);
824out:
825	return ret;
826}
827
828/**
829 * set_supply - set regulator supply regulator
830 * @rdev: regulator name
831 * @supply_rdev: supply regulator name
832 *
833 * Called by platform initialisation code to set the supply regulator for this
834 * regulator. This ensures that a regulators supply will also be enabled by the
835 * core if it's child is enabled.
836 */
837static int set_supply(struct regulator_dev *rdev,
838	struct regulator_dev *supply_rdev)
839{
840	int err;
841
842	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843				"supply");
844	if (err) {
845		printk(KERN_ERR
846		       "%s: could not add device link %s err %d\n",
847		       __func__, supply_rdev->dev.kobj.name, err);
848		       goto out;
849	}
850	rdev->supply = supply_rdev;
851	list_add(&rdev->slist, &supply_rdev->supply_list);
852out:
853	return err;
854}
855
856/**
857 * set_consumer_device_supply: Bind a regulator to a symbolic supply
858 * @rdev:         regulator source
859 * @consumer_dev: device the supply applies to
860 * @consumer_dev_name: dev_name() string for device supply applies to
861 * @supply:       symbolic name for supply
862 *
863 * Allows platform initialisation code to map physical regulator
864 * sources to symbolic names for supplies for use by devices.  Devices
865 * should use these symbolic names to request regulators, avoiding the
866 * need to provide board-specific regulator names as platform data.
867 *
868 * Only one of consumer_dev and consumer_dev_name may be specified.
869 */
870static int set_consumer_device_supply(struct regulator_dev *rdev,
871	struct device *consumer_dev, const char *consumer_dev_name,
872	const char *supply)
873{
874	struct regulator_map *node;
875
876	if (consumer_dev && consumer_dev_name)
877		return -EINVAL;
878
879	if (!consumer_dev_name && consumer_dev)
880		consumer_dev_name = dev_name(consumer_dev);
881
882	if (supply == NULL)
883		return -EINVAL;
884
885	list_for_each_entry(node, &regulator_map_list, list) {
886		if (consumer_dev_name != node->dev_name)
887			continue;
888		if (strcmp(node->supply, supply) != 0)
889			continue;
890
891		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
892				dev_name(&node->regulator->dev),
893				node->regulator->desc->name,
894				supply,
895				dev_name(&rdev->dev), rdev->desc->name);
896		return -EBUSY;
897	}
898
899	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
900	if (node == NULL)
901		return -ENOMEM;
902
903	node->regulator = rdev;
904	node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
905	node->supply = supply;
906
907	if (node->dev_name == NULL) {
908		kfree(node);
909		return -ENOMEM;
910	}
911
912	list_add(&node->list, &regulator_map_list);
913	return 0;
914}
915
916static void unset_consumer_device_supply(struct regulator_dev *rdev,
917	const char *consumer_dev_name, struct device *consumer_dev)
918{
919	struct regulator_map *node, *n;
920
921	if (consumer_dev && !consumer_dev_name)
922		consumer_dev_name = dev_name(consumer_dev);
923
924	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
925		if (rdev != node->regulator)
926			continue;
927
928		if (consumer_dev_name && node->dev_name &&
929		    strcmp(consumer_dev_name, node->dev_name))
930			continue;
931
932		list_del(&node->list);
933		kfree(node->dev_name);
934		kfree(node);
935		return;
936	}
937}
938
939static void unset_regulator_supplies(struct regulator_dev *rdev)
940{
941	struct regulator_map *node, *n;
942
943	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
944		if (rdev == node->regulator) {
945			list_del(&node->list);
946			kfree(node->dev_name);
947			kfree(node);
948			return;
949		}
950	}
951}
952
953#define REG_STR_SIZE	32
954
955static struct regulator *create_regulator(struct regulator_dev *rdev,
956					  struct device *dev,
957					  const char *supply_name)
958{
959	struct regulator *regulator;
960	char buf[REG_STR_SIZE];
961	int err, size;
962
963	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
964	if (regulator == NULL)
965		return NULL;
966
967	mutex_lock(&rdev->mutex);
968	regulator->rdev = rdev;
969	list_add(&regulator->list, &rdev->consumer_list);
970
971	if (dev) {
972		/* create a 'requested_microamps_name' sysfs entry */
973		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
974			supply_name);
975		if (size >= REG_STR_SIZE)
976			goto overflow_err;
977
978		regulator->dev = dev;
979		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
980		if (regulator->dev_attr.attr.name == NULL)
981			goto attr_name_err;
982
983		regulator->dev_attr.attr.owner = THIS_MODULE;
984		regulator->dev_attr.attr.mode = 0444;
985		regulator->dev_attr.show = device_requested_uA_show;
986		err = device_create_file(dev, &regulator->dev_attr);
987		if (err < 0) {
988			printk(KERN_WARNING "%s: could not add regulator_dev"
989				" load sysfs\n", __func__);
990			goto attr_name_err;
991		}
992
993		/* also add a link to the device sysfs entry */
994		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
995				 dev->kobj.name, supply_name);
996		if (size >= REG_STR_SIZE)
997			goto attr_err;
998
999		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1000		if (regulator->supply_name == NULL)
1001			goto attr_err;
1002
1003		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1004					buf);
1005		if (err) {
1006			printk(KERN_WARNING
1007			       "%s: could not add device link %s err %d\n",
1008			       __func__, dev->kobj.name, err);
1009			device_remove_file(dev, &regulator->dev_attr);
1010			goto link_name_err;
1011		}
1012	}
1013	mutex_unlock(&rdev->mutex);
1014	return regulator;
1015link_name_err:
1016	kfree(regulator->supply_name);
1017attr_err:
1018	device_remove_file(regulator->dev, &regulator->dev_attr);
1019attr_name_err:
1020	kfree(regulator->dev_attr.attr.name);
1021overflow_err:
1022	list_del(&regulator->list);
1023	kfree(regulator);
1024	mutex_unlock(&rdev->mutex);
1025	return NULL;
1026}
1027
1028/* Internal regulator request function */
1029static struct regulator *_regulator_get(struct device *dev, const char *id,
1030					int exclusive)
1031{
1032	struct regulator_dev *rdev;
1033	struct regulator_map *map;
1034	struct regulator *regulator = ERR_PTR(-ENODEV);
1035	const char *devname = NULL;
1036	int ret;
1037
1038	if (id == NULL) {
1039		printk(KERN_ERR "regulator: get() with no identifier\n");
1040		return regulator;
1041	}
1042
1043	if (dev)
1044		devname = dev_name(dev);
1045
1046	mutex_lock(&regulator_list_mutex);
1047
1048	list_for_each_entry(map, &regulator_map_list, list) {
1049		/* If the mapping has a device set up it must match */
1050		if (map->dev_name &&
1051		    (!devname || strcmp(map->dev_name, devname)))
1052			continue;
1053
1054		if (strcmp(map->supply, id) == 0) {
1055			rdev = map->regulator;
1056			goto found;
1057		}
1058	}
1059	mutex_unlock(&regulator_list_mutex);
1060	return regulator;
1061
1062found:
1063	if (rdev->exclusive) {
1064		regulator = ERR_PTR(-EPERM);
1065		goto out;
1066	}
1067
1068	if (exclusive && rdev->open_count) {
1069		regulator = ERR_PTR(-EBUSY);
1070		goto out;
1071	}
1072
1073	if (!try_module_get(rdev->owner))
1074		goto out;
1075
1076	regulator = create_regulator(rdev, dev, id);
1077	if (regulator == NULL) {
1078		regulator = ERR_PTR(-ENOMEM);
1079		module_put(rdev->owner);
1080	}
1081
1082	rdev->open_count++;
1083	if (exclusive) {
1084		rdev->exclusive = 1;
1085
1086		ret = _regulator_is_enabled(rdev);
1087		if (ret > 0)
1088			rdev->use_count = 1;
1089		else
1090			rdev->use_count = 0;
1091	}
1092
1093out:
1094	mutex_unlock(&regulator_list_mutex);
1095
1096	return regulator;
1097}
1098
1099/**
1100 * regulator_get - lookup and obtain a reference to a regulator.
1101 * @dev: device for regulator "consumer"
1102 * @id: Supply name or regulator ID.
1103 *
1104 * Returns a struct regulator corresponding to the regulator producer,
1105 * or IS_ERR() condition containing errno.
1106 *
1107 * Use of supply names configured via regulator_set_device_supply() is
1108 * strongly encouraged.  It is recommended that the supply name used
1109 * should match the name used for the supply and/or the relevant
1110 * device pins in the datasheet.
1111 */
1112struct regulator *regulator_get(struct device *dev, const char *id)
1113{
1114	return _regulator_get(dev, id, 0);
1115}
1116EXPORT_SYMBOL_GPL(regulator_get);
1117
1118/**
1119 * regulator_get_exclusive - obtain exclusive access to a regulator.
1120 * @dev: device for regulator "consumer"
1121 * @id: Supply name or regulator ID.
1122 *
1123 * Returns a struct regulator corresponding to the regulator producer,
1124 * or IS_ERR() condition containing errno.  Other consumers will be
1125 * unable to obtain this reference is held and the use count for the
1126 * regulator will be initialised to reflect the current state of the
1127 * regulator.
1128 *
1129 * This is intended for use by consumers which cannot tolerate shared
1130 * use of the regulator such as those which need to force the
1131 * regulator off for correct operation of the hardware they are
1132 * controlling.
1133 *
1134 * Use of supply names configured via regulator_set_device_supply() is
1135 * strongly encouraged.  It is recommended that the supply name used
1136 * should match the name used for the supply and/or the relevant
1137 * device pins in the datasheet.
1138 */
1139struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1140{
1141	return _regulator_get(dev, id, 1);
1142}
1143EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1144
1145/**
1146 * regulator_put - "free" the regulator source
1147 * @regulator: regulator source
1148 *
1149 * Note: drivers must ensure that all regulator_enable calls made on this
1150 * regulator source are balanced by regulator_disable calls prior to calling
1151 * this function.
1152 */
1153void regulator_put(struct regulator *regulator)
1154{
1155	struct regulator_dev *rdev;
1156
1157	if (regulator == NULL || IS_ERR(regulator))
1158		return;
1159
1160	mutex_lock(&regulator_list_mutex);
1161	rdev = regulator->rdev;
1162
1163	/* remove any sysfs entries */
1164	if (regulator->dev) {
1165		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1166		kfree(regulator->supply_name);
1167		device_remove_file(regulator->dev, &regulator->dev_attr);
1168		kfree(regulator->dev_attr.attr.name);
1169	}
1170	list_del(&regulator->list);
1171	kfree(regulator);
1172
1173	rdev->open_count--;
1174	rdev->exclusive = 0;
1175
1176	module_put(rdev->owner);
1177	mutex_unlock(&regulator_list_mutex);
1178}
1179EXPORT_SYMBOL_GPL(regulator_put);
1180
1181/* locks held by regulator_enable() */
1182static int _regulator_enable(struct regulator_dev *rdev)
1183{
1184	int ret = -EINVAL;
1185
1186	if (!rdev->constraints) {
1187		printk(KERN_ERR "%s: %s has no constraints\n",
1188		       __func__, rdev->desc->name);
1189		return ret;
1190	}
1191
1192	/* do we need to enable the supply regulator first */
1193	if (rdev->supply) {
1194		ret = _regulator_enable(rdev->supply);
1195		if (ret < 0) {
1196			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1197			       __func__, rdev->desc->name, ret);
1198			return ret;
1199		}
1200	}
1201
1202	/* check voltage and requested load before enabling */
1203	if (rdev->desc->ops->enable) {
1204
1205		if (rdev->constraints &&
1206			(rdev->constraints->valid_ops_mask &
1207			REGULATOR_CHANGE_DRMS))
1208			drms_uA_update(rdev);
1209
1210		ret = rdev->desc->ops->enable(rdev);
1211		if (ret < 0) {
1212			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1213			       __func__, rdev->desc->name, ret);
1214			return ret;
1215		}
1216		rdev->use_count++;
1217		return ret;
1218	}
1219
1220	return ret;
1221}
1222
1223/**
1224 * regulator_enable - enable regulator output
1225 * @regulator: regulator source
1226 *
1227 * Request that the regulator be enabled with the regulator output at
1228 * the predefined voltage or current value.  Calls to regulator_enable()
1229 * must be balanced with calls to regulator_disable().
1230 *
1231 * NOTE: the output value can be set by other drivers, boot loader or may be
1232 * hardwired in the regulator.
1233 */
1234int regulator_enable(struct regulator *regulator)
1235{
1236	struct regulator_dev *rdev = regulator->rdev;
1237	int ret = 0;
1238
1239	mutex_lock(&rdev->mutex);
1240	ret = _regulator_enable(rdev);
1241	mutex_unlock(&rdev->mutex);
1242	return ret;
1243}
1244EXPORT_SYMBOL_GPL(regulator_enable);
1245
1246/* locks held by regulator_disable() */
1247static int _regulator_disable(struct regulator_dev *rdev)
1248{
1249	int ret = 0;
1250
1251	if (WARN(rdev->use_count <= 0,
1252			"unbalanced disables for %s\n",
1253			rdev->desc->name))
1254		return -EIO;
1255
1256	/* are we the last user and permitted to disable ? */
1257	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1258
1259		/* we are last user */
1260		if (rdev->desc->ops->disable) {
1261			ret = rdev->desc->ops->disable(rdev);
1262			if (ret < 0) {
1263				printk(KERN_ERR "%s: failed to disable %s\n",
1264				       __func__, rdev->desc->name);
1265				return ret;
1266			}
1267		}
1268
1269		/* decrease our supplies ref count and disable if required */
1270		if (rdev->supply)
1271			_regulator_disable(rdev->supply);
1272
1273		rdev->use_count = 0;
1274	} else if (rdev->use_count > 1) {
1275
1276		if (rdev->constraints &&
1277			(rdev->constraints->valid_ops_mask &
1278			REGULATOR_CHANGE_DRMS))
1279			drms_uA_update(rdev);
1280
1281		rdev->use_count--;
1282	}
1283	return ret;
1284}
1285
1286/**
1287 * regulator_disable - disable regulator output
1288 * @regulator: regulator source
1289 *
1290 * Disable the regulator output voltage or current.  Calls to
1291 * regulator_enable() must be balanced with calls to
1292 * regulator_disable().
1293 *
1294 * NOTE: this will only disable the regulator output if no other consumer
1295 * devices have it enabled, the regulator device supports disabling and
1296 * machine constraints permit this operation.
1297 */
1298int regulator_disable(struct regulator *regulator)
1299{
1300	struct regulator_dev *rdev = regulator->rdev;
1301	int ret = 0;
1302
1303	mutex_lock(&rdev->mutex);
1304	ret = _regulator_disable(rdev);
1305	mutex_unlock(&rdev->mutex);
1306	return ret;
1307}
1308EXPORT_SYMBOL_GPL(regulator_disable);
1309
1310/* locks held by regulator_force_disable() */
1311static int _regulator_force_disable(struct regulator_dev *rdev)
1312{
1313	int ret = 0;
1314
1315	/* force disable */
1316	if (rdev->desc->ops->disable) {
1317		/* ah well, who wants to live forever... */
1318		ret = rdev->desc->ops->disable(rdev);
1319		if (ret < 0) {
1320			printk(KERN_ERR "%s: failed to force disable %s\n",
1321			       __func__, rdev->desc->name);
1322			return ret;
1323		}
1324		/* notify other consumers that power has been forced off */
1325		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1326			NULL);
1327	}
1328
1329	/* decrease our supplies ref count and disable if required */
1330	if (rdev->supply)
1331		_regulator_disable(rdev->supply);
1332
1333	rdev->use_count = 0;
1334	return ret;
1335}
1336
1337/**
1338 * regulator_force_disable - force disable regulator output
1339 * @regulator: regulator source
1340 *
1341 * Forcibly disable the regulator output voltage or current.
1342 * NOTE: this *will* disable the regulator output even if other consumer
1343 * devices have it enabled. This should be used for situations when device
1344 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1345 */
1346int regulator_force_disable(struct regulator *regulator)
1347{
1348	int ret;
1349
1350	mutex_lock(&regulator->rdev->mutex);
1351	regulator->uA_load = 0;
1352	ret = _regulator_force_disable(regulator->rdev);
1353	mutex_unlock(&regulator->rdev->mutex);
1354	return ret;
1355}
1356EXPORT_SYMBOL_GPL(regulator_force_disable);
1357
1358static int _regulator_is_enabled(struct regulator_dev *rdev)
1359{
1360	int ret;
1361
1362	mutex_lock(&rdev->mutex);
1363
1364	/* sanity check */
1365	if (!rdev->desc->ops->is_enabled) {
1366		ret = -EINVAL;
1367		goto out;
1368	}
1369
1370	ret = rdev->desc->ops->is_enabled(rdev);
1371out:
1372	mutex_unlock(&rdev->mutex);
1373	return ret;
1374}
1375
1376/**
1377 * regulator_is_enabled - is the regulator output enabled
1378 * @regulator: regulator source
1379 *
1380 * Returns positive if the regulator driver backing the source/client
1381 * has requested that the device be enabled, zero if it hasn't, else a
1382 * negative errno code.
1383 *
1384 * Note that the device backing this regulator handle can have multiple
1385 * users, so it might be enabled even if regulator_enable() was never
1386 * called for this particular source.
1387 */
1388int regulator_is_enabled(struct regulator *regulator)
1389{
1390	return _regulator_is_enabled(regulator->rdev);
1391}
1392EXPORT_SYMBOL_GPL(regulator_is_enabled);
1393
1394/**
1395 * regulator_count_voltages - count regulator_list_voltage() selectors
1396 * @regulator: regulator source
1397 *
1398 * Returns number of selectors, or negative errno.  Selectors are
1399 * numbered starting at zero, and typically correspond to bitfields
1400 * in hardware registers.
1401 */
1402int regulator_count_voltages(struct regulator *regulator)
1403{
1404	struct regulator_dev	*rdev = regulator->rdev;
1405
1406	return rdev->desc->n_voltages ? : -EINVAL;
1407}
1408EXPORT_SYMBOL_GPL(regulator_count_voltages);
1409
1410/**
1411 * regulator_list_voltage - enumerate supported voltages
1412 * @regulator: regulator source
1413 * @selector: identify voltage to list
1414 * Context: can sleep
1415 *
1416 * Returns a voltage that can be passed to @regulator_set_voltage(),
1417 * zero if this selector code can't be used on this sytem, or a
1418 * negative errno.
1419 */
1420int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1421{
1422	struct regulator_dev	*rdev = regulator->rdev;
1423	struct regulator_ops	*ops = rdev->desc->ops;
1424	int			ret;
1425
1426	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1427		return -EINVAL;
1428
1429	mutex_lock(&rdev->mutex);
1430	ret = ops->list_voltage(rdev, selector);
1431	mutex_unlock(&rdev->mutex);
1432
1433	if (ret > 0) {
1434		if (ret < rdev->constraints->min_uV)
1435			ret = 0;
1436		else if (ret > rdev->constraints->max_uV)
1437			ret = 0;
1438	}
1439
1440	return ret;
1441}
1442EXPORT_SYMBOL_GPL(regulator_list_voltage);
1443
1444/**
1445 * regulator_is_supported_voltage - check if a voltage range can be supported
1446 *
1447 * @regulator: Regulator to check.
1448 * @min_uV: Minimum required voltage in uV.
1449 * @max_uV: Maximum required voltage in uV.
1450 *
1451 * Returns a boolean or a negative error code.
1452 */
1453int regulator_is_supported_voltage(struct regulator *regulator,
1454				   int min_uV, int max_uV)
1455{
1456	int i, voltages, ret;
1457
1458	ret = regulator_count_voltages(regulator);
1459	if (ret < 0)
1460		return ret;
1461	voltages = ret;
1462
1463	for (i = 0; i < voltages; i++) {
1464		ret = regulator_list_voltage(regulator, i);
1465
1466		if (ret >= min_uV && ret <= max_uV)
1467			return 1;
1468	}
1469
1470	return 0;
1471}
1472
1473/**
1474 * regulator_set_voltage - set regulator output voltage
1475 * @regulator: regulator source
1476 * @min_uV: Minimum required voltage in uV
1477 * @max_uV: Maximum acceptable voltage in uV
1478 *
1479 * Sets a voltage regulator to the desired output voltage. This can be set
1480 * during any regulator state. IOW, regulator can be disabled or enabled.
1481 *
1482 * If the regulator is enabled then the voltage will change to the new value
1483 * immediately otherwise if the regulator is disabled the regulator will
1484 * output at the new voltage when enabled.
1485 *
1486 * NOTE: If the regulator is shared between several devices then the lowest
1487 * request voltage that meets the system constraints will be used.
1488 * Regulator system constraints must be set for this regulator before
1489 * calling this function otherwise this call will fail.
1490 */
1491int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret;
1495
1496	mutex_lock(&rdev->mutex);
1497
1498	/* sanity check */
1499	if (!rdev->desc->ops->set_voltage) {
1500		ret = -EINVAL;
1501		goto out;
1502	}
1503
1504	/* constraints check */
1505	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1506	if (ret < 0)
1507		goto out;
1508	regulator->min_uV = min_uV;
1509	regulator->max_uV = max_uV;
1510	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1511
1512out:
1513	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1514	mutex_unlock(&rdev->mutex);
1515	return ret;
1516}
1517EXPORT_SYMBOL_GPL(regulator_set_voltage);
1518
1519static int _regulator_get_voltage(struct regulator_dev *rdev)
1520{
1521	/* sanity check */
1522	if (rdev->desc->ops->get_voltage)
1523		return rdev->desc->ops->get_voltage(rdev);
1524	else
1525		return -EINVAL;
1526}
1527
1528/**
1529 * regulator_get_voltage - get regulator output voltage
1530 * @regulator: regulator source
1531 *
1532 * This returns the current regulator voltage in uV.
1533 *
1534 * NOTE: If the regulator is disabled it will return the voltage value. This
1535 * function should not be used to determine regulator state.
1536 */
1537int regulator_get_voltage(struct regulator *regulator)
1538{
1539	int ret;
1540
1541	mutex_lock(&regulator->rdev->mutex);
1542
1543	ret = _regulator_get_voltage(regulator->rdev);
1544
1545	mutex_unlock(&regulator->rdev->mutex);
1546
1547	return ret;
1548}
1549EXPORT_SYMBOL_GPL(regulator_get_voltage);
1550
1551/**
1552 * regulator_set_current_limit - set regulator output current limit
1553 * @regulator: regulator source
1554 * @min_uA: Minimuum supported current in uA
1555 * @max_uA: Maximum supported current in uA
1556 *
1557 * Sets current sink to the desired output current. This can be set during
1558 * any regulator state. IOW, regulator can be disabled or enabled.
1559 *
1560 * If the regulator is enabled then the current will change to the new value
1561 * immediately otherwise if the regulator is disabled the regulator will
1562 * output at the new current when enabled.
1563 *
1564 * NOTE: Regulator system constraints must be set for this regulator before
1565 * calling this function otherwise this call will fail.
1566 */
1567int regulator_set_current_limit(struct regulator *regulator,
1568			       int min_uA, int max_uA)
1569{
1570	struct regulator_dev *rdev = regulator->rdev;
1571	int ret;
1572
1573	mutex_lock(&rdev->mutex);
1574
1575	/* sanity check */
1576	if (!rdev->desc->ops->set_current_limit) {
1577		ret = -EINVAL;
1578		goto out;
1579	}
1580
1581	/* constraints check */
1582	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1583	if (ret < 0)
1584		goto out;
1585
1586	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1587out:
1588	mutex_unlock(&rdev->mutex);
1589	return ret;
1590}
1591EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1592
1593static int _regulator_get_current_limit(struct regulator_dev *rdev)
1594{
1595	int ret;
1596
1597	mutex_lock(&rdev->mutex);
1598
1599	/* sanity check */
1600	if (!rdev->desc->ops->get_current_limit) {
1601		ret = -EINVAL;
1602		goto out;
1603	}
1604
1605	ret = rdev->desc->ops->get_current_limit(rdev);
1606out:
1607	mutex_unlock(&rdev->mutex);
1608	return ret;
1609}
1610
1611/**
1612 * regulator_get_current_limit - get regulator output current
1613 * @regulator: regulator source
1614 *
1615 * This returns the current supplied by the specified current sink in uA.
1616 *
1617 * NOTE: If the regulator is disabled it will return the current value. This
1618 * function should not be used to determine regulator state.
1619 */
1620int regulator_get_current_limit(struct regulator *regulator)
1621{
1622	return _regulator_get_current_limit(regulator->rdev);
1623}
1624EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1625
1626/**
1627 * regulator_set_mode - set regulator operating mode
1628 * @regulator: regulator source
1629 * @mode: operating mode - one of the REGULATOR_MODE constants
1630 *
1631 * Set regulator operating mode to increase regulator efficiency or improve
1632 * regulation performance.
1633 *
1634 * NOTE: Regulator system constraints must be set for this regulator before
1635 * calling this function otherwise this call will fail.
1636 */
1637int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1638{
1639	struct regulator_dev *rdev = regulator->rdev;
1640	int ret;
1641
1642	mutex_lock(&rdev->mutex);
1643
1644	/* sanity check */
1645	if (!rdev->desc->ops->set_mode) {
1646		ret = -EINVAL;
1647		goto out;
1648	}
1649
1650	/* constraints check */
1651	ret = regulator_check_mode(rdev, mode);
1652	if (ret < 0)
1653		goto out;
1654
1655	ret = rdev->desc->ops->set_mode(rdev, mode);
1656out:
1657	mutex_unlock(&rdev->mutex);
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regulator_set_mode);
1661
1662static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1663{
1664	int ret;
1665
1666	mutex_lock(&rdev->mutex);
1667
1668	/* sanity check */
1669	if (!rdev->desc->ops->get_mode) {
1670		ret = -EINVAL;
1671		goto out;
1672	}
1673
1674	ret = rdev->desc->ops->get_mode(rdev);
1675out:
1676	mutex_unlock(&rdev->mutex);
1677	return ret;
1678}
1679
1680/**
1681 * regulator_get_mode - get regulator operating mode
1682 * @regulator: regulator source
1683 *
1684 * Get the current regulator operating mode.
1685 */
1686unsigned int regulator_get_mode(struct regulator *regulator)
1687{
1688	return _regulator_get_mode(regulator->rdev);
1689}
1690EXPORT_SYMBOL_GPL(regulator_get_mode);
1691
1692/**
1693 * regulator_set_optimum_mode - set regulator optimum operating mode
1694 * @regulator: regulator source
1695 * @uA_load: load current
1696 *
1697 * Notifies the regulator core of a new device load. This is then used by
1698 * DRMS (if enabled by constraints) to set the most efficient regulator
1699 * operating mode for the new regulator loading.
1700 *
1701 * Consumer devices notify their supply regulator of the maximum power
1702 * they will require (can be taken from device datasheet in the power
1703 * consumption tables) when they change operational status and hence power
1704 * state. Examples of operational state changes that can affect power
1705 * consumption are :-
1706 *
1707 *    o Device is opened / closed.
1708 *    o Device I/O is about to begin or has just finished.
1709 *    o Device is idling in between work.
1710 *
1711 * This information is also exported via sysfs to userspace.
1712 *
1713 * DRMS will sum the total requested load on the regulator and change
1714 * to the most efficient operating mode if platform constraints allow.
1715 *
1716 * Returns the new regulator mode or error.
1717 */
1718int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1719{
1720	struct regulator_dev *rdev = regulator->rdev;
1721	struct regulator *consumer;
1722	int ret, output_uV, input_uV, total_uA_load = 0;
1723	unsigned int mode;
1724
1725	mutex_lock(&rdev->mutex);
1726
1727	regulator->uA_load = uA_load;
1728	ret = regulator_check_drms(rdev);
1729	if (ret < 0)
1730		goto out;
1731	ret = -EINVAL;
1732
1733	/* sanity check */
1734	if (!rdev->desc->ops->get_optimum_mode)
1735		goto out;
1736
1737	/* get output voltage */
1738	output_uV = rdev->desc->ops->get_voltage(rdev);
1739	if (output_uV <= 0) {
1740		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1741			__func__, rdev->desc->name);
1742		goto out;
1743	}
1744
1745	/* get input voltage */
1746	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1747		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1748	else
1749		input_uV = rdev->constraints->input_uV;
1750	if (input_uV <= 0) {
1751		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1752			__func__, rdev->desc->name);
1753		goto out;
1754	}
1755
1756	/* calc total requested load for this regulator */
1757	list_for_each_entry(consumer, &rdev->consumer_list, list)
1758	    total_uA_load += consumer->uA_load;
1759
1760	mode = rdev->desc->ops->get_optimum_mode(rdev,
1761						 input_uV, output_uV,
1762						 total_uA_load);
1763	ret = regulator_check_mode(rdev, mode);
1764	if (ret < 0) {
1765		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1766			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1767			total_uA_load, input_uV, output_uV);
1768		goto out;
1769	}
1770
1771	ret = rdev->desc->ops->set_mode(rdev, mode);
1772	if (ret < 0) {
1773		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1774			__func__, mode, rdev->desc->name);
1775		goto out;
1776	}
1777	ret = mode;
1778out:
1779	mutex_unlock(&rdev->mutex);
1780	return ret;
1781}
1782EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1783
1784/**
1785 * regulator_register_notifier - register regulator event notifier
1786 * @regulator: regulator source
1787 * @nb: notifier block
1788 *
1789 * Register notifier block to receive regulator events.
1790 */
1791int regulator_register_notifier(struct regulator *regulator,
1792			      struct notifier_block *nb)
1793{
1794	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1795						nb);
1796}
1797EXPORT_SYMBOL_GPL(regulator_register_notifier);
1798
1799/**
1800 * regulator_unregister_notifier - unregister regulator event notifier
1801 * @regulator: regulator source
1802 * @nb: notifier block
1803 *
1804 * Unregister regulator event notifier block.
1805 */
1806int regulator_unregister_notifier(struct regulator *regulator,
1807				struct notifier_block *nb)
1808{
1809	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1810						  nb);
1811}
1812EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1813
1814/* notify regulator consumers and downstream regulator consumers.
1815 * Note mutex must be held by caller.
1816 */
1817static void _notifier_call_chain(struct regulator_dev *rdev,
1818				  unsigned long event, void *data)
1819{
1820	struct regulator_dev *_rdev;
1821
1822	/* call rdev chain first */
1823	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1824
1825	/* now notify regulator we supply */
1826	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1827	  mutex_lock(&_rdev->mutex);
1828	  _notifier_call_chain(_rdev, event, data);
1829	  mutex_unlock(&_rdev->mutex);
1830	}
1831}
1832
1833/**
1834 * regulator_bulk_get - get multiple regulator consumers
1835 *
1836 * @dev:           Device to supply
1837 * @num_consumers: Number of consumers to register
1838 * @consumers:     Configuration of consumers; clients are stored here.
1839 *
1840 * @return 0 on success, an errno on failure.
1841 *
1842 * This helper function allows drivers to get several regulator
1843 * consumers in one operation.  If any of the regulators cannot be
1844 * acquired then any regulators that were allocated will be freed
1845 * before returning to the caller.
1846 */
1847int regulator_bulk_get(struct device *dev, int num_consumers,
1848		       struct regulator_bulk_data *consumers)
1849{
1850	int i;
1851	int ret;
1852
1853	for (i = 0; i < num_consumers; i++)
1854		consumers[i].consumer = NULL;
1855
1856	for (i = 0; i < num_consumers; i++) {
1857		consumers[i].consumer = regulator_get(dev,
1858						      consumers[i].supply);
1859		if (IS_ERR(consumers[i].consumer)) {
1860			dev_err(dev, "Failed to get supply '%s'\n",
1861				consumers[i].supply);
1862			ret = PTR_ERR(consumers[i].consumer);
1863			consumers[i].consumer = NULL;
1864			goto err;
1865		}
1866	}
1867
1868	return 0;
1869
1870err:
1871	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1872		regulator_put(consumers[i].consumer);
1873
1874	return ret;
1875}
1876EXPORT_SYMBOL_GPL(regulator_bulk_get);
1877
1878/**
1879 * regulator_bulk_enable - enable multiple regulator consumers
1880 *
1881 * @num_consumers: Number of consumers
1882 * @consumers:     Consumer data; clients are stored here.
1883 * @return         0 on success, an errno on failure
1884 *
1885 * This convenience API allows consumers to enable multiple regulator
1886 * clients in a single API call.  If any consumers cannot be enabled
1887 * then any others that were enabled will be disabled again prior to
1888 * return.
1889 */
1890int regulator_bulk_enable(int num_consumers,
1891			  struct regulator_bulk_data *consumers)
1892{
1893	int i;
1894	int ret;
1895
1896	for (i = 0; i < num_consumers; i++) {
1897		ret = regulator_enable(consumers[i].consumer);
1898		if (ret != 0)
1899			goto err;
1900	}
1901
1902	return 0;
1903
1904err:
1905	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1906	for (i = 0; i < num_consumers; i++)
1907		regulator_disable(consumers[i].consumer);
1908
1909	return ret;
1910}
1911EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1912
1913/**
1914 * regulator_bulk_disable - disable multiple regulator consumers
1915 *
1916 * @num_consumers: Number of consumers
1917 * @consumers:     Consumer data; clients are stored here.
1918 * @return         0 on success, an errno on failure
1919 *
1920 * This convenience API allows consumers to disable multiple regulator
1921 * clients in a single API call.  If any consumers cannot be enabled
1922 * then any others that were disabled will be disabled again prior to
1923 * return.
1924 */
1925int regulator_bulk_disable(int num_consumers,
1926			   struct regulator_bulk_data *consumers)
1927{
1928	int i;
1929	int ret;
1930
1931	for (i = 0; i < num_consumers; i++) {
1932		ret = regulator_disable(consumers[i].consumer);
1933		if (ret != 0)
1934			goto err;
1935	}
1936
1937	return 0;
1938
1939err:
1940	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1941	for (i = 0; i < num_consumers; i++)
1942		regulator_enable(consumers[i].consumer);
1943
1944	return ret;
1945}
1946EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1947
1948/**
1949 * regulator_bulk_free - free multiple regulator consumers
1950 *
1951 * @num_consumers: Number of consumers
1952 * @consumers:     Consumer data; clients are stored here.
1953 *
1954 * This convenience API allows consumers to free multiple regulator
1955 * clients in a single API call.
1956 */
1957void regulator_bulk_free(int num_consumers,
1958			 struct regulator_bulk_data *consumers)
1959{
1960	int i;
1961
1962	for (i = 0; i < num_consumers; i++) {
1963		regulator_put(consumers[i].consumer);
1964		consumers[i].consumer = NULL;
1965	}
1966}
1967EXPORT_SYMBOL_GPL(regulator_bulk_free);
1968
1969/**
1970 * regulator_notifier_call_chain - call regulator event notifier
1971 * @rdev: regulator source
1972 * @event: notifier block
1973 * @data: callback-specific data.
1974 *
1975 * Called by regulator drivers to notify clients a regulator event has
1976 * occurred. We also notify regulator clients downstream.
1977 * Note lock must be held by caller.
1978 */
1979int regulator_notifier_call_chain(struct regulator_dev *rdev,
1980				  unsigned long event, void *data)
1981{
1982	_notifier_call_chain(rdev, event, data);
1983	return NOTIFY_DONE;
1984
1985}
1986EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1987
1988/**
1989 * regulator_mode_to_status - convert a regulator mode into a status
1990 *
1991 * @mode: Mode to convert
1992 *
1993 * Convert a regulator mode into a status.
1994 */
1995int regulator_mode_to_status(unsigned int mode)
1996{
1997	switch (mode) {
1998	case REGULATOR_MODE_FAST:
1999		return REGULATOR_STATUS_FAST;
2000	case REGULATOR_MODE_NORMAL:
2001		return REGULATOR_STATUS_NORMAL;
2002	case REGULATOR_MODE_IDLE:
2003		return REGULATOR_STATUS_IDLE;
2004	case REGULATOR_STATUS_STANDBY:
2005		return REGULATOR_STATUS_STANDBY;
2006	default:
2007		return 0;
2008	}
2009}
2010EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2011
2012/*
2013 * To avoid cluttering sysfs (and memory) with useless state, only
2014 * create attributes that can be meaningfully displayed.
2015 */
2016static int add_regulator_attributes(struct regulator_dev *rdev)
2017{
2018	struct device		*dev = &rdev->dev;
2019	struct regulator_ops	*ops = rdev->desc->ops;
2020	int			status = 0;
2021
2022	/* some attributes need specific methods to be displayed */
2023	if (ops->get_voltage) {
2024		status = device_create_file(dev, &dev_attr_microvolts);
2025		if (status < 0)
2026			return status;
2027	}
2028	if (ops->get_current_limit) {
2029		status = device_create_file(dev, &dev_attr_microamps);
2030		if (status < 0)
2031			return status;
2032	}
2033	if (ops->get_mode) {
2034		status = device_create_file(dev, &dev_attr_opmode);
2035		if (status < 0)
2036			return status;
2037	}
2038	if (ops->is_enabled) {
2039		status = device_create_file(dev, &dev_attr_state);
2040		if (status < 0)
2041			return status;
2042	}
2043	if (ops->get_status) {
2044		status = device_create_file(dev, &dev_attr_status);
2045		if (status < 0)
2046			return status;
2047	}
2048
2049	/* some attributes are type-specific */
2050	if (rdev->desc->type == REGULATOR_CURRENT) {
2051		status = device_create_file(dev, &dev_attr_requested_microamps);
2052		if (status < 0)
2053			return status;
2054	}
2055
2056	/* all the other attributes exist to support constraints;
2057	 * don't show them if there are no constraints, or if the
2058	 * relevant supporting methods are missing.
2059	 */
2060	if (!rdev->constraints)
2061		return status;
2062
2063	/* constraints need specific supporting methods */
2064	if (ops->set_voltage) {
2065		status = device_create_file(dev, &dev_attr_min_microvolts);
2066		if (status < 0)
2067			return status;
2068		status = device_create_file(dev, &dev_attr_max_microvolts);
2069		if (status < 0)
2070			return status;
2071	}
2072	if (ops->set_current_limit) {
2073		status = device_create_file(dev, &dev_attr_min_microamps);
2074		if (status < 0)
2075			return status;
2076		status = device_create_file(dev, &dev_attr_max_microamps);
2077		if (status < 0)
2078			return status;
2079	}
2080
2081	/* suspend mode constraints need multiple supporting methods */
2082	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2083		return status;
2084
2085	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2086	if (status < 0)
2087		return status;
2088	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2089	if (status < 0)
2090		return status;
2091	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2092	if (status < 0)
2093		return status;
2094
2095	if (ops->set_suspend_voltage) {
2096		status = device_create_file(dev,
2097				&dev_attr_suspend_standby_microvolts);
2098		if (status < 0)
2099			return status;
2100		status = device_create_file(dev,
2101				&dev_attr_suspend_mem_microvolts);
2102		if (status < 0)
2103			return status;
2104		status = device_create_file(dev,
2105				&dev_attr_suspend_disk_microvolts);
2106		if (status < 0)
2107			return status;
2108	}
2109
2110	if (ops->set_suspend_mode) {
2111		status = device_create_file(dev,
2112				&dev_attr_suspend_standby_mode);
2113		if (status < 0)
2114			return status;
2115		status = device_create_file(dev,
2116				&dev_attr_suspend_mem_mode);
2117		if (status < 0)
2118			return status;
2119		status = device_create_file(dev,
2120				&dev_attr_suspend_disk_mode);
2121		if (status < 0)
2122			return status;
2123	}
2124
2125	return status;
2126}
2127
2128/**
2129 * regulator_register - register regulator
2130 * @regulator_desc: regulator to register
2131 * @dev: struct device for the regulator
2132 * @init_data: platform provided init data, passed through by driver
2133 * @driver_data: private regulator data
2134 *
2135 * Called by regulator drivers to register a regulator.
2136 * Returns 0 on success.
2137 */
2138struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2139	struct device *dev, struct regulator_init_data *init_data,
2140	void *driver_data)
2141{
2142	static atomic_t regulator_no = ATOMIC_INIT(0);
2143	struct regulator_dev *rdev;
2144	int ret, i;
2145
2146	if (regulator_desc == NULL)
2147		return ERR_PTR(-EINVAL);
2148
2149	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2150		return ERR_PTR(-EINVAL);
2151
2152	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2153	    regulator_desc->type != REGULATOR_CURRENT)
2154		return ERR_PTR(-EINVAL);
2155
2156	if (!init_data)
2157		return ERR_PTR(-EINVAL);
2158
2159	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2160	if (rdev == NULL)
2161		return ERR_PTR(-ENOMEM);
2162
2163	mutex_lock(&regulator_list_mutex);
2164
2165	mutex_init(&rdev->mutex);
2166	rdev->reg_data = driver_data;
2167	rdev->owner = regulator_desc->owner;
2168	rdev->desc = regulator_desc;
2169	INIT_LIST_HEAD(&rdev->consumer_list);
2170	INIT_LIST_HEAD(&rdev->supply_list);
2171	INIT_LIST_HEAD(&rdev->list);
2172	INIT_LIST_HEAD(&rdev->slist);
2173	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2174
2175	/* preform any regulator specific init */
2176	if (init_data->regulator_init) {
2177		ret = init_data->regulator_init(rdev->reg_data);
2178		if (ret < 0)
2179			goto clean;
2180	}
2181
2182	/* register with sysfs */
2183	rdev->dev.class = &regulator_class;
2184	rdev->dev.parent = dev;
2185	dev_set_name(&rdev->dev, "regulator.%d",
2186		     atomic_inc_return(&regulator_no) - 1);
2187	ret = device_register(&rdev->dev);
2188	if (ret != 0)
2189		goto clean;
2190
2191	dev_set_drvdata(&rdev->dev, rdev);
2192
2193	/* set regulator constraints */
2194	ret = set_machine_constraints(rdev, &init_data->constraints);
2195	if (ret < 0)
2196		goto scrub;
2197
2198	/* add attributes supported by this regulator */
2199	ret = add_regulator_attributes(rdev);
2200	if (ret < 0)
2201		goto scrub;
2202
2203	/* set supply regulator if it exists */
2204	if (init_data->supply_regulator_dev) {
2205		ret = set_supply(rdev,
2206			dev_get_drvdata(init_data->supply_regulator_dev));
2207		if (ret < 0)
2208			goto scrub;
2209	}
2210
2211	/* add consumers devices */
2212	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2213		ret = set_consumer_device_supply(rdev,
2214			init_data->consumer_supplies[i].dev,
2215			init_data->consumer_supplies[i].dev_name,
2216			init_data->consumer_supplies[i].supply);
2217		if (ret < 0) {
2218			for (--i; i >= 0; i--)
2219				unset_consumer_device_supply(rdev,
2220				    init_data->consumer_supplies[i].dev_name,
2221				    init_data->consumer_supplies[i].dev);
2222			goto scrub;
2223		}
2224	}
2225
2226	list_add(&rdev->list, &regulator_list);
2227out:
2228	mutex_unlock(&regulator_list_mutex);
2229	return rdev;
2230
2231scrub:
2232	device_unregister(&rdev->dev);
2233	/* device core frees rdev */
2234	rdev = ERR_PTR(ret);
2235	goto out;
2236
2237clean:
2238	kfree(rdev);
2239	rdev = ERR_PTR(ret);
2240	goto out;
2241}
2242EXPORT_SYMBOL_GPL(regulator_register);
2243
2244/**
2245 * regulator_unregister - unregister regulator
2246 * @rdev: regulator to unregister
2247 *
2248 * Called by regulator drivers to unregister a regulator.
2249 */
2250void regulator_unregister(struct regulator_dev *rdev)
2251{
2252	if (rdev == NULL)
2253		return;
2254
2255	mutex_lock(&regulator_list_mutex);
2256	WARN_ON(rdev->open_count);
2257	unset_regulator_supplies(rdev);
2258	list_del(&rdev->list);
2259	if (rdev->supply)
2260		sysfs_remove_link(&rdev->dev.kobj, "supply");
2261	device_unregister(&rdev->dev);
2262	mutex_unlock(&regulator_list_mutex);
2263}
2264EXPORT_SYMBOL_GPL(regulator_unregister);
2265
2266/**
2267 * regulator_suspend_prepare - prepare regulators for system wide suspend
2268 * @state: system suspend state
2269 *
2270 * Configure each regulator with it's suspend operating parameters for state.
2271 * This will usually be called by machine suspend code prior to supending.
2272 */
2273int regulator_suspend_prepare(suspend_state_t state)
2274{
2275	struct regulator_dev *rdev;
2276	int ret = 0;
2277
2278	/* ON is handled by regulator active state */
2279	if (state == PM_SUSPEND_ON)
2280		return -EINVAL;
2281
2282	mutex_lock(&regulator_list_mutex);
2283	list_for_each_entry(rdev, &regulator_list, list) {
2284
2285		mutex_lock(&rdev->mutex);
2286		ret = suspend_prepare(rdev, state);
2287		mutex_unlock(&rdev->mutex);
2288
2289		if (ret < 0) {
2290			printk(KERN_ERR "%s: failed to prepare %s\n",
2291				__func__, rdev->desc->name);
2292			goto out;
2293		}
2294	}
2295out:
2296	mutex_unlock(&regulator_list_mutex);
2297	return ret;
2298}
2299EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2300
2301/**
2302 * regulator_has_full_constraints - the system has fully specified constraints
2303 *
2304 * Calling this function will cause the regulator API to disable all
2305 * regulators which have a zero use count and don't have an always_on
2306 * constraint in a late_initcall.
2307 *
2308 * The intention is that this will become the default behaviour in a
2309 * future kernel release so users are encouraged to use this facility
2310 * now.
2311 */
2312void regulator_has_full_constraints(void)
2313{
2314	has_full_constraints = 1;
2315}
2316EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2317
2318/**
2319 * rdev_get_drvdata - get rdev regulator driver data
2320 * @rdev: regulator
2321 *
2322 * Get rdev regulator driver private data. This call can be used in the
2323 * regulator driver context.
2324 */
2325void *rdev_get_drvdata(struct regulator_dev *rdev)
2326{
2327	return rdev->reg_data;
2328}
2329EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2330
2331/**
2332 * regulator_get_drvdata - get regulator driver data
2333 * @regulator: regulator
2334 *
2335 * Get regulator driver private data. This call can be used in the consumer
2336 * driver context when non API regulator specific functions need to be called.
2337 */
2338void *regulator_get_drvdata(struct regulator *regulator)
2339{
2340	return regulator->rdev->reg_data;
2341}
2342EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2343
2344/**
2345 * regulator_set_drvdata - set regulator driver data
2346 * @regulator: regulator
2347 * @data: data
2348 */
2349void regulator_set_drvdata(struct regulator *regulator, void *data)
2350{
2351	regulator->rdev->reg_data = data;
2352}
2353EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2354
2355/**
2356 * regulator_get_id - get regulator ID
2357 * @rdev: regulator
2358 */
2359int rdev_get_id(struct regulator_dev *rdev)
2360{
2361	return rdev->desc->id;
2362}
2363EXPORT_SYMBOL_GPL(rdev_get_id);
2364
2365struct device *rdev_get_dev(struct regulator_dev *rdev)
2366{
2367	return &rdev->dev;
2368}
2369EXPORT_SYMBOL_GPL(rdev_get_dev);
2370
2371void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2372{
2373	return reg_init_data->driver_data;
2374}
2375EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2376
2377static int __init regulator_init(void)
2378{
2379	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2380	return class_register(&regulator_class);
2381}
2382
2383/* init early to allow our consumers to complete system booting */
2384core_initcall(regulator_init);
2385
2386static int __init regulator_init_complete(void)
2387{
2388	struct regulator_dev *rdev;
2389	struct regulator_ops *ops;
2390	struct regulation_constraints *c;
2391	int enabled, ret;
2392	const char *name;
2393
2394	mutex_lock(&regulator_list_mutex);
2395
2396	/* If we have a full configuration then disable any regulators
2397	 * which are not in use or always_on.  This will become the
2398	 * default behaviour in the future.
2399	 */
2400	list_for_each_entry(rdev, &regulator_list, list) {
2401		ops = rdev->desc->ops;
2402		c = rdev->constraints;
2403
2404		if (c->name)
2405			name = c->name;
2406		else if (rdev->desc->name)
2407			name = rdev->desc->name;
2408		else
2409			name = "regulator";
2410
2411		if (!ops->disable || c->always_on)
2412			continue;
2413
2414		mutex_lock(&rdev->mutex);
2415
2416		if (rdev->use_count)
2417			goto unlock;
2418
2419		/* If we can't read the status assume it's on. */
2420		if (ops->is_enabled)
2421			enabled = ops->is_enabled(rdev);
2422		else
2423			enabled = 1;
2424
2425		if (!enabled)
2426			goto unlock;
2427
2428		if (has_full_constraints) {
2429			/* We log since this may kill the system if it
2430			 * goes wrong. */
2431			printk(KERN_INFO "%s: disabling %s\n",
2432			       __func__, name);
2433			ret = ops->disable(rdev);
2434			if (ret != 0) {
2435				printk(KERN_ERR
2436				       "%s: couldn't disable %s: %d\n",
2437				       __func__, name, ret);
2438			}
2439		} else {
2440			/* The intention is that in future we will
2441			 * assume that full constraints are provided
2442			 * so warn even if we aren't going to do
2443			 * anything here.
2444			 */
2445			printk(KERN_WARNING
2446			       "%s: incomplete constraints, leaving %s on\n",
2447			       __func__, name);
2448		}
2449
2450unlock:
2451		mutex_unlock(&rdev->mutex);
2452	}
2453
2454	mutex_unlock(&regulator_list_mutex);
2455
2456	return 0;
2457}
2458late_initcall(regulator_init_complete);
2459